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Spin foam models, loop quantum gravity, and group field theory are discussed as quantum gravity candidate theories and usually
involve a continuous Lie group. We advocate here to consider quantum gravity-inspired models with finite groups, firstly as a test
bed for the full theory and secondly as a class of new lattice theories possibly featuring an analogue diffeomorphism symmetry.
To make these notes accessible to readers outside the quantum gravity community, we provide an introduction to some essential
concepts in the loop quantum gravity, spin foam, and group field theory approach and point out the many connections to the lattice

field theory and the condensed-matter systems.

1. Introduction

Spin foam models [1-8] arose as one possible quantization
method for gravity. These models can be seen in the tradition
of lattice approaches to quantum gravity [9], in which gravity
is formulated as a statistical system on either a fixed or
fluctuating lattice. In a rather independent fashion, lattice
methods are also ubiquitous in condensed-matter and (Yang-
Mills) gauge theories. It is interesting to note that the lattice
structures appearing in the strong coupling expansion of
QCD or in the high-temperature expansion for the Ising
gauge [10] systems are of spin foam type.

In any lattice approach to gravity, one has to discuss the
significance of the (choice of) lattice for physical predictions.
Although this point arises also for other lattice field theories,
it carries extreme importance for general relativity. When it
comes to matter fields on a lattice, we can interpret the lattice
itself as providing the background geometry and therefore
background space time. This could not contrast more with the
situation in general relativity, where geometry, and therefore
space time itself, is a dynamical variable and has to be an
outcome rather than an ingredient of the theory. This is
one aspect of background independence for quantum gravity
(11, 12].

One possibility, to alleviate the dependence of physical
results on the choice of lattice, is to turn the lattice itself

into a dynamical variable and to sum over (a certain class
of) lattices. This is one motivation for the dynamical trian-
gulation approach [13-15], causal dynamical triangulations
(16, 17], and tensor model/tensor group field theory [18-
26]. See also [27, 28] for another possibility to introduce
a dynamical lattice. Once one decides to sum over lattice
structure, one must provide a prescription to do so. The class
of triangulations to be summed over can be restricted, for
instance, in order to implement causality [16, 17, 29] or to
symmetry—reduce models [30-32].!

Another possibility is to ask for models which are per
se lattice or discretization independent. Such models might
arise as fixed points of a Wilsonian renormalization flow
and represent the so-called perfect discretizations [33-38].
For gravity, this concept is intertwined with the appearance
of discrete representation of diffeomorphism symmetry in
the lattice models [36-41]. Such a discrete notion of dif-
feomorphism symmetry can arise in the form of vertex
translations [42-46]. Discrete geometries can be represented
by a triangulation carrying geometric data, for instance, in
the Regge calculus [47, 48], the lengths of the edges in
the triangulation. Vertex translations are then symmetries
that act (locally) on the vertices of the triangulations by
changing the geometric data of the adjacent building blocks.
If the symmetry is fully implemented into the model, then
this action should not change the weights in the partition



function. Such vertex translation symmetries are realized in
3D gravity, where general relativity is a topological theory
[49]. This means that the theory has no local degrees of
freedom, only a topology-dependent finite number of global
ones. The first-order formalism of 3D gravity coincides with
a 3D version of the BF-theory [50]. The BF-theory is a gauge
theory and can be formulated with a gauge group given by
a Lie group. The 3D gravity is obtained by choosing SU(2).
However, one can also choose finite groups [51-53]. In this
case, one obtains models used in quantum computing [54] as
well as models describing topological phases of condensed-
matter systems, so called string-net models [55]. Moreover
the BF-systems can be seen as Yang-Mills-like systems for
a special choice of the coupling parameter (corresponding
to zero temperature). Hence, in 3D, we have Yang-Mills-like
theories with the usual (lattice) gauge symmetry as well as
the topological BF-theories with the additional translation
symmetries.

The BF-theory (in any dimension) is a topological theory
because it has a large gauge group of symmetries, which
reduces the physical degrees of freedom to a finite number.
It is characterized not only by the usual (lattice) gauge
symmetry determined by the gauge group but also by the
so-called translational symmetries, based on the 3-cells (i.e.,
cubes) of the lattice and parametrized by the Lie algebra
elements (if we work with the Lie groups). For 3D gravity,
these symmetries can be interpreted as being associated
to the vertices of the dual lattice (for instance, given by
a triangulation) and are hence termed vertex translations.
However, for 4D, the symmetries are still associated to the 3-
cells of the lattice and hence to the edges of the dual lattice or
triangulation. As in general there are more edges than vertices
in a triangulation, we obtain much more symmetries than the
vertex translations one might look for in 4D gravity. To obtain
vertex translations of the dual lattice in 4D, one would rather
need a symmetry based on the 4-cells of the lattice.

In 4D, gravity is not a topological theory. There is however
a formulation due to Plebanski [56] that starts with the BF-
theory and imposes the so-called simplicity constraints on the
variables. These break the symmetries of the BF-theory down
to a subgroup that can be interpreted as diffeomorphism
symmetry (in the continuum). This Plebanski formulation is
also the one used in many spin foam models. Here, one of
the main problems is to implement the simplicity constraints
[57-64] into the BF-partition function. The status of the
symmetries is quite unclear in these models; however, there
are indications [40] that in the discrete the reduction of the
BF-translation symmetries does not leave a sufficiently large
group to be interpretable as diffeomorphisms. Nevertheless,
if these models are related to gravity, then there is a pos-
sibility that diffeomorphism symmetry as the fundamental
symmetry of general relativity arises as a symmetry for
large scales. In the abovementioned method of regaining
symmetries by coarse graining, one can then expect that
this diffeomorphism symmetry arises as vertex translation
symmetry (on the vertices of the dual lattice).

Hence, we want to emphasize that, in 4D, spin foam
models are candidates for a new class of lattice models in
addition to Yang-Mills-like systems and the BF-theory. This
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new class would be characterized by a symmetry group in
between those for the Yang-Mills theory (usual lattice gauge
symmetry) and BF-symmetry (usual lattice gauge symmetry
and translation symmetry associated to the 3-cells). Here, we
would look for a symmetry given by the usual lattice gauge
symmetry and translation symmetries associated to the 4-
cells.

As we will show in this work, the 4D spin foam models,
which as gravity models are based on SO(4), SO(3,1), or
SU(2), can be easily generalized to finite groups (or more
generally tensor categories [65, 66]). Although the immediate
interpretation as gravity models is lost, one can nevertheless
ask whether translation symmetries are realized, and if not,
how these could be implemented. This question is much
easier to answer for finite groups than in the full gravity
case. One can therefore see these models as a test bed for
the full theory. This also applies for renormalization and
coarse graining techniques which need to be developed to
access the large-scale limit of spin foams. With finite group
models, it might be in particular possible to access the
many-particle (that is many simplices or building blocks in
the triangulation) and small-spin (corresponding to small
geometrical size of the building blocks) regime.” This is in
contrast to the few-particle and large-spin (semiclassical)
regime [67-69] which is accessible so far.

In the emergent gravity approaches [70-72], one attempts
to construct models, which do not necessarily start from
gravitational or even geometrical variables but nevertheless
show features typical of gravity. The models proposed here
can also be seen as candidates for an emergent gravity
scenario. A related proposal is the truncated Regge models
in [73-76], in which the continuous length variables of the
Regge calculus are replaced by values in Z,, with g = 2 for
“the Ising quantum gravity”

Apart from providing a wealth of test models for quantum
gravity researchers, another intention of this work is to give
an introduction to some of the spin foam concepts and ideas
to researchers outside quantum gravity. Indeed, spin foams
arise as graphical tools in high-temperature expansions of
lattice theories, or more generally in the construction of
dual models. We will review these ideas in Section 2 where
we will discuss the Ising-like systems and introduce spin
nets as a graphical tool for the high-temperature expansion.
Next, in Section 3, we will discuss lattice gauge theories with
the “Abelian” finite groups. Here, spin foams arise in the
high-temperature expansion. The zero-temperature limit of
these theories gives topological BF-theories which we will
discuss in more detail in Section 4. In Section 5, we detail spin
foam models with the non-Abelian finite groups. Following a
strategy from quantum gravity, we will also discuss the so-
called constrained models which arise from the BF-models
by implementing simplicity constraints, here in the form
of edge projectors, into the partition function. This will in
general change the topological character of the BF-models to
nontopological ones.

We will then discuss in Section 6 a canonical description
for lattice gauge theories and show that for the BF-theories
the transfer operators are given by projectors onto the so-
called physical Hilbert space. These are known as stabilizer
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conditions in quantum computing and in the description of
string nets. Here, we will discuss the possibility to alter the
projectors in order to break some subset of the translation
symmetries of the BF-theories.

Next, in Section 7, we give an overview of group field
theories for finite groups. Group field theories are quantum
field theories on these finite groups and generate spin foams
as the Feynman diagrams. Finally, in Section 8, we discuss
the possibility of nonlocal spin foams. We will end with an
outlook in Section 9.

2. The Ising-Like Models

We will review the construction of the models [77, 78]
that are dual to the Ising-like models. Henceforth, they
will be referred to as dual models. As we will see, similar
techniques lead to the spin foam representation for (Ising-
like) gauge theories. The main ingredient comprises of a
Fourier expansion of the couplings, which can be understood
as functions of group variables. We will concentrate on the
groups Z, with q = 2 for the Ising models proper.

2.1. Spin Foam Representation. Consider a generic lattice, of
regular or random type,’ in which the edges are oriented.
(In principle, this last condition is not necessary for the Ising
models; that is, g = 2). One defines an Ising model on such a
lattice, with spins g, associated to the vertices and nearest-
neighbour interactions, by utilizing the following partition
function:

= o Z H exp (B 9rc0) M

where g, € {0, 1}, 3 is a coupling constant, which is inversely
proportional to temperature, and §v is the number of vertices
in the lattice. Note that the group product is the standard
product on Z,, that is, addition modulo 2.* The action S =
B2e9se) gt_(l) describes the coupling between the spin g, at
the source or starting vertex and the spin g, at the target or
terminating vertex of every edge.

More generally, one can assume that g, € {0,...,q — 1}
(giving the various vector Potts models). The group product is
the standard one on Z,, that is, addition modulo g. A further
generalization of (1) is to allow the edge weights w, to be
(even locally varying) functions of the two group elements
(9s(e) and gy(,)) associated to the edge e:

quvZ [ Twe (90 910)) - @)

Now, these group-valued functions w, can be expanded with
respect to a basis given by the irreducible representations of
the group [79]. For the groups Z, this is just the usual discrete
Fourier transform:

w(o)= qiwao %(a),
N G)
9) % (9)

Zw

where x,.(g9) = exp((2mi/q)k - g) are the group characters.
Characters for the Abelian groups are multiplicative; that is,
X(91-92) = x(gD) - xe(92) and (97 = D@1 = Xe(9)-

Applying the character expansion to the weights in
(2), one obtains (using the multiplicative property of the
characters)

FEE (17 0 x (s

e

FLZ (700 ) (Mo ms))

T g

3 (o 60) [T (31T ()

qﬁv gy edv

where o(v, e) = 1 if v is the source of e and -1 if v is the target
of e. Here, we simply resorted the product so that in the last
line the factor [ -, x ( 9279 involves all of the appearances
of g,. We can now sum over g,, which according to the
Fourier inversion theorem gives a delta function involving the
k, of the edges adjacent to v:

Z= Z(Hw k)) [ ] (Zo(v,e)k) 5)

edv

where 89 (-) is the g-periodic delta function.’

We have represented the partition function in a form
where the group variables are replaced by variables taking
values in the set of representation labels. This set inherits its
own group product via this transform and is known as the
Pontryagin dual of G. For Z,, the Pontryagin dual and the
group itself are isomorphic, as both g,k € {0,...,q — 1}. We
will call a representation of the form of (5), where the sum
over group elements is replaced by a sum over representation
labels, a spin foam representation.® Generically speaking,
representations meeting at vertices must satisfy a certain
condition. For the Abelian models above, this condition
stated that the oriented sum of the representation labels,
meeting at a given vertex, had to vanish. In other words, the
tensor product of the representations meeting at an edge has
to be trivial. In other models, one finds other characteristics
as the following. (i) For the non-Abelian groups, this triviality
condition generalizes to the choice of a projector from the
tensor product of all representations meeting at a vertex into
the trivial representation. This choice is encoded as additional
information attached to the vertices. (ii) For the gauge theory
models we will examine later, the representations are attached
to faces, while the triviality condition involves faces sharing a
given edge.

Note that the number of representation labels k, differs
from the number of group variables g,, since the number
of edges is generally larger than the number of vertices. In
addition, however, these representation labels are subject to
constraints. These are referred to as the Gauss constraints,
since they demand that the analogue of the electric field
(the representation labels) be divergence free (the sum of



the representation labels meeting at a vertex has to be zero
modulo g).

2.2. Dual Models. To finalize the construction of the dual
models [78], one solves the Gauss constraints and replaces the
representation labels associated to the edges of the lattice by
variables defined on the dual lattice.

(2d) A particularly clear example arises in two dimensions.
On a differentiable manifold, a divergence-free vector
field ¥ can be constructed from a scalar field ¢ via v, =
0,¢, v, = —0,¢. On the lattice, a similar construction
leads to a dual model with variables associated to
the vertices of the dual lattice.” Indeed, for Z,, one
finds again the Ising model, just that the high- (low-)
temperature regime of the original model is mapped
to the low- (high-) temperature regime of the dual
model.

(3d) In three dimensions, a divergence-free vector field v
can be constructed from another vector field @ by
taking its curl: v; = ¢ 0;w,. However, adding a
gradient of a scalar field to @ does not change 7
@ — i+ 0¢ leaves 7 — 7. This translates into a
local gauge symmetry for the dual lattice theory. For
the dual lattice model, variables reside on the edges
of the dual lattice, and the weights define couplings
among the edges bounding the faces (that is, the two-
dimensional cells) of the dual lattice. Moreover, the
aforementioned local gauge symmetry is realized at
the vertices of the dual lattice (since the continuum
gauge symmetry is parametrized by a scalar field).
As a result, the dual model is a gauge theory, a class
of theories that we will discuss in more detail in
Section 3.

(4d) In four dimensions, a similar argument to that just
made in three dimensions leads to a class of dual
models that are “higher-gauge theories” [80, 81]: the
variables are associated to the faces of the dual lattice,
and the weights define couplings among the faces
bounding three-dimensional cells.

(1d) Finally, let us examine one-dimensional models.
Every vertex is adjacent to two edges. Hence, the
Gauss constraints, expressed in (5), force the rep-
resentation labels to be equal (we assume periodic
boundary conditions). We can easily find that

7= qﬁ”% (Hw (k)) = qﬁ”%m(k)”f. (6)

For the second equality above, we are restricted to
couplings that are homogenous on the lattice; that is,
they do not depend on the position or orientation of
the edge.

2.3. High-Temperature Expansion and Spin Nets. This spin
foam representation is well adapted to describe the high-
temperature expansion [82]. Indeed, if one considers the Ising
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model with couplings as in (1), one obtains the following
coefficients in the character expansion:

w (0) = P2 cosh f3,
(7)
w(l) = P2 cosh 3 tanh f3.

One can now expand the partition function (5) in powers of
the ratio w(1)/w(0), that is, into terms distinguished by the
number of times the representation labelled k, = 1 appears.

The “ground” state is the configuration with k, = 0
for all edges. Edges with k, = 1 are said to be “excited”.
The Gauss constraints in (5) enforce that the number of
“excited” edges incident at each vertex must be even. On a
cubical lattice, therefore, the lowest-order contribution arises
at (@(1)/@(0))* from those configurations with excited edges
on the boundary of a single plaquette. The full amplitude
at this order involves a combinatorial factor, namely, the
number of ways one can embed the square (with four edges)
into the lattice.

This reasoning extends to all Ising-like models and to
higher-order terms in the perturbation series, which can be
represented by closed graphs, known as polymers, embedded
into the lattice. The expansion in terms of these graphs can
then be organized in different ways [82]. Consider one par-
ticular contribution to the expansion, that is, a configuration
where a some subset of edges carries nontrivial representation
labels. In general, one may decompose such a subset into
connected components, where one defines two sets of edges
as disconnected if these sets do not share a vertex.

We will call such a connected component a restricted
spin net, where restricted refers to the condition that all
edges must carry a nontrivial representation. The Kronecker-
ds in (5) forbid the spin net to have open ends; that is, all
vertices are bivalent or higher. (For the Ising model, with its
lone nontrivial representation, only even valency is allowed.)
Furthermore, edges meeting at a bivalent vertex, whether
there is a “change of direction” or not, must carry the same
representation label. (On this point, we have assumed that
the couplings w, depend neither on the positions nor on the
directions of the edges; otherwise, one must equip the spin
nets with more embedding data.) The representation labels
may only change at vertices that are trivalent or higher, so
called branching points. This allows one to define geometric
(restricted) spin nets,® which are specified by two quantities:
(i) the connectivity of the spin net vertices, that is, the valency
of the branching points within the spin net and (ii) the length
of the edges of the spin net, that is, the number of lattice
edges that make up a spin net edge. The contribution of such
a spin net to the free energy’ can be split into two parts, one
is specific to the spin net itself and, from (4), one records that
it is given by

H me (ke) . (8)

ek, #0

The other part is a combinatorial factor determined by the
number of embeddings of the spin net into the ambient
lattice. This could be summarized as a measure (or entropic)
factor, which carries information about the lattice in question,
including its dimension.
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2.4. Some Considerations for Quantum Gravity. To reiterate,
one notes from (8) that the spin net-specific contribution
factorizes with respect to the edges of the spin net; for an

edge with representation k, it is given by @(k)’ where [ is the
length of the spin net edge. Meanwhile, the combinatorial
factors are determined by the ambient lattice and its structure.
To describe quantum gravity, one is interested rather more
in “background-independent” models, where such factors
should not play a role. In this context, one can define an
alternative partition function over geometric spin nets, whose
edges carry both a representation label and an edge-length
label. This length variable encodes the geometry of space time
as a dynamical variable on the geometric spin net.

From that point of view, “background independence”
motivates the search for models, within which the spin net
weights are independent of these edge lengths. These can be
termed abstract spin nets [83]. (Note that, with this definition,
the abstract spin nets generally still remember some features
of the ambient lattice; for instance, the valency of the spin
net cannot be higher than the valency of the lattice.) For
the Ising model, such abstract spin nets arise in the limit
tanh 8 = 1, that is, for zero temperature. In contrast to
the high-temperature expansion, which is a sum ordered
according to the length of the excited edges, abstract spin
networks arise in a regime where this length does not play
arole.

A similar structure arises in string-net models [55],
which were designed to describe condensed phases of (scale-
free) branching strings. Indeed, these string-net models are
closely related to (the canonical formulation of) topolog-
ical field theories, such as the BF-theories, which we will
describe in Section 6. In this canonical formulation, spin
net(work)s appear as one choice of basis for the Hilbert
space of the BF-theories. String-net models assign amplitudes
(corresponding to the so-called physical wave functions in
the BF-theory) to spin networks that satisfy certain (gauge)
symmetry properties. This implies that these spin networks
can be freely deformed on the lattice without changing their
amplitude.

In the following section, we will consider gauge systems,
for which we will devise once again a spin foam representa-
tion. For these gauged models, rather than labelling the terms
in the expansion using spin nets, we will utilize a different, yet
similar structure known as a spin foam. These have a similar
structure to spin nets, except that the various roles are played
by simplices one dimension higher. To clarify, the roles of
the vertices and edges are assumed by the edges and faces,
respectively. With this proviso, other concepts introduced
above translate nicely. Spin foam edges and faces are generally
comprised of several edges and faces in the ambient lattice.
Moreover, one can define both geometric and abstract spin
foams [83]. Both are branched surfaces [1-6, 84] whose
constituent faces carry a nontrivial representation label.” The
amplitudes for geometric spin foams will most often depend
on the area of their surfaces, that is, the number of plaquettes
in the ambient lattice constituting the spin foam surface in
question, as well as the lengths of their branches, that is, the
number of edges in the ambient lattice constituting the spin

foam branch in question. For instance, this is the case in the
Yang-Mills-like theories, where geometric spin foams arise in
the strong coupling or high-temperature expansion.

The conditions for abstract spin foams, that is, amplitudes
independent of the surface area, may be understood as
requiring that the amplitudes be invariant under trivial (face
and edge) subdivision. This can be used to specify measure
factors for the spin foam models [1-5, 83, 85-87]. Abstract
spin foams are also generated by the tensor models discussed
in Section 7; however, the spin foams thus generated are not
“restricted” in the manner we defined earlier; that is, the
trivial representation label is allowed. Furthermore, the spin
foams need not be embeddable into a given lattice. See also
[88] for one possible connection between partition functions
with restricted and unrestricted spin foams.

This discussion on geometric and abstract spin nets and
spin foams assumes that the couplings do not depend on the
position or direction of the edges or plaquettes in the lattice,
otherwise, one would need to introduce more decorations for
the spin nets and foams. However, one can show [89], for
instance, that the Z, Ising gauge model in 4D with varying
couplings is universal. In other words, one can encode all
other Z, lattice models. Here, it would be interesting to
develop the equivalent spin foam picture and to see how a
spin foam with additional decorations could encode other
spin foam models.

3. Lattice Gauge Theories

The spin foam representation originated as a representation
of partition functions for gauge theories [1-6, 11]. Such gauge
theories can also be formulated with discrete groups [10, 52,
90], and for Z,, they give the Ising gauge models [10]. A
spin foam representation for the Yang-Mills theories with
continuous Lie groups has been presented in [91], see also
[92, 93], and the results can be easily adapted to discrete
groups. For the Abelian (discrete and continuous) groups,
these are again closely related to the construction of dual
models [78] and the high-temperature (or strong coupling)
expansion [84].

Given a lattice, one associates group variables to its
(oriented) edges. To be more precise, a lattice in this context
is an orientable 2-complex x, within which one can uniquely
specify the 2-cells, called faces or plaquettes. The aim is
to construct models with gauge symmetries at the vertices,
where the gauge action is given by g, — gy 9. gt_(l) and the
g, are the gauge symmetry parameters. They are associated
to the vertices of the lattice; remember that s(e) is the source
vertex of e and t(e) is the target vertex. Gauge-invariant
quantities are given by the Wilson loops." Expressing the
action as a function of these quantities ensures that it in turn is
gauge invariant, as can be easily checked. A Wilson loop is the
trace (in some matrix representation) of the oriented product
of group variables associated to a loop of edges in the lattice."
The “smallest” Wilson loops are those constructed from edges
around a single lattice face. The associated face variables are

then hy =: 12[ ge> Where ]:[ denotes the oriented product.



Given a unitary (finite-dimensional) matrix representa-
tion of a group g — U(g), a Wilson-styled action is given

by

S= a;fRe (tr (U (1)) ©)

Here, « is a coupling constant and U is a matrix representation
of Z,. As we saw earlier, for the groups Z, the irreducible
unitary representations are 1 dimensional and labelled by k €
{0,...,q— 1} so that the representations matrices are realized
by g — exp((27i/q)k - g).

Asbefore, let us generalize to a class of partition functions
of the form

= wa (hs), (10)

ey,

where the weights w are class functions; that is, just like

the trace, they are invariant under conjugation w ¢( ghg™) =
w f(h). Moreover, we included a measure normalization
factor 1/q for every summation over the group Z,,.

3.1. Spin Foam Representation. The face weights w, as class
functions, can be expanded in characters. For the Abelian
groups Z,, this again just amounts to the discrete Fourier
transform. Thus, the expansion takes the initial form

Z H wa (ks) i, () (1)

q“e

while the derivation of the spin foam representation proceeds
as in Section 2 as follows:

z=2YY <wa (Fkr) xi, (hf)>

e
1" '3 &

_ quez <wa (kf)> I (Zﬂxkf (9‘2“’6)))

€ e f)e

(e 1o (oo

-2 (ITos ) )10 Bo0s, )

vV edv fDe

where o( f, ) = 1 if the orientation of the edge coincides with
the one induced by the “adjacent” face and —1 otherwise. In
the last step, we simply replace the Kronecker-6 weighting
each edge by its square and associate one factor to each vertex.
The reason is that in the spin foam representation one usually
works with vertex amplitudes, which in this case is A, =
-,89(% f2e 0(f>€) ky). Having said that, these amplitudes
and the splitting are more complicated for both the non-
Abelian groups (see Section 5) and continuous groups.
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3.2. Dual Models. The construction of the dual models [78]
proceeds by solving for the Gauss constraints associated
to the edges in (12), that is, by solving the Kronecker-Js.
These enforce that the oriented sum of representation labels,
associated to the faces incident at a given edge, vanishes.

(2d) For the lowest-dimensional case, namely, two dimen-
sions, one obtains a “trivial” dual theory. Since every
edge lies on just two faces, all of the representation
labels coincide: ks = k, and one obtains (assuming
that the W;(ky) do not depend on the position and
orientation of the plaquettes, W f(k f) = w(k))

z =Y (@)". (13)
k

(3d) For the three-dimensional case, we have already seen
that lattice models without any gauge symmetry are
dual to lattice gauge models. For example, the Ising
gauge model in 3d is dual to the 3d Ising model.

(4d) In four dimensions, lattice gauge models are dual to
lattice gauge models. In the case that the cohomology
of the lattice is nontrivial, topological models might
appear as the dual model [94].

3.3. High-Temperature Expansion and Spin Foams. As for the
Ising models, there is a high-temperature expansion, which
for the Ising gauge model is also an expansion in powers
of w(1)/w(0) = tanh . The discussion is very similar to
the one for the Ising models, with the difference being that
the perturbative contributions are now represented by closed
surfaces rather than closed polymers.

The “ground state” is the configuration with k, = 0 for
all faces. The Gauss constraints demand that the number
of excited plaquettes (those with k;#0) incident at every
edge must be even. In particular, this means that the excited
plaquettes must form closed surfaces. In the case of the
Ising gauge model on a hypercubical lattice, the lowest-order
contribution arises at (@(1)/@(0))® from those configurations
with excited faces on the boundary of a single 3d cube. As one
might expect, there is a combinatorial factor arising from the
number of embeddings of this cube into the ambient lattice.

More generally, the perturbative contributions are now
described by closed, possibly branched surfaces. (For the
free energy, one has only to consider connected components
[95].) Here, a proper branching is a sequence of edges where
at least three excited plaquettes meet. Excited plaquettes
make up the elementary surfaces or spin foam faces. In
other words, at the inner edges of these spin foam faces,
there are always only two excited plaquettes meeting. Again
the Gauss constraints demand that the representation labels
of all of the plaquettes in a given spin foam face agree.
For homogeneous and isotropic couplings, the spin foam
amplitude (ignoring the combinatorial embedding factors)
depends on the number of plaquettes a inside each spin
foam face, but not on how the spin foam is embedded into
the lattice. The contribution of a spin foam face with label
k is ~ (W,/w,)". (In general, for models with the non-
Abelian groups, the amplitudes might also depend on the
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length of the branching or spin foam edges.) This definition of
geometric and abstract spin foams [83] parallels the one given
for spin nets. Note that the condition for abstract spin foams
invalidates the conditions of the high-temperature expansion,
which is an expansion in the number of excited plaquettes of
the underlying lattice.

In Section 4, we will discuss the BF-theory. This is a
topological model that satisfies the conditions necessary to
class it as an abstract spin foam. In other words, the amplitude
does not depend on the areas a of the spin foam faces. The
reason is that w(k)/w(0) = 1 for the BF-models. For the Ising
gauge model, this is the case at zero temperature.”

3.4. Expansion around a Topological Sector. If one starts from
the first line in (11) and keeps the summation over both group
and representation labels, one obtains

i ke \f
1 —
_ %ZZ [ @, (k) exp(— ky-hg (%)))
9k \ f
1 271
- %;§<Hexp<7 ky-hs(g,)+Iniwy (kf)>>

(14)

This corresponds to a first-order representation of the Yang-
Mills theory where the g, are the connection variables and
the kf represent the dual (electric field or flux) variables.
The model where all w(k;) = 1 is a topological BF-model,
whose partition function can be solved exactly. Hence, the
Yang-Mills theory can be understood as a deformed BF-
theory [92, 93, 96, 97]. The deformation appears here as the
In(w f(k f)) term; in the continuum, it is BA xB.M

The expansion of models with propagating degrees of
freedom, for instance, those modelling 4d gravity and the
Yang-Mills theories, around topological theories has been
discussed, for instance, in [83, 98, 99].

In the case of the Ising model, one expands around the
BF-theory partition function by introducing an expansion
parameter o = tanh 3 — 1, which is small for low tempera-
tures:

Z= (eﬁ/2 coshﬁ)ufz H(Sm <Zo(f, e) kf>

k, e foe

(1160 ews1-1) )

f

= (e’3/2 cosh ﬁ)ufz H5(2) <ZO (fre) kf>

k; e foe

7
X <1 +oc28(2) (kf1 - 1) +ao’
h
X 262)( —1) (kf2—1)+---+(xﬁf
fi<ha
<3 )8, 1))
fi<e<fyr
(15)

Note that to get to the second equality we have used the fact
that 8P (k) + (1 + &) 8P (k; 1) = 1+ 6P (k[ - 1). Thus,
for a given configuration {k}, the coefficient of o« records

the number of excited faces. The coefficient of a® gives the
number of ordered pairs of excited faces. The next coefficient
records the number of ordered triples of faces and so on. The
last coefficient of a*/ is one for the configuration k ¢ =1land
zero for all other configurations. The terms in this expansion
can be seen as expectation values of observables in a BF-
model, where the observables are the numbers of ordered n-
tuples of excited plaquettes, for each 0 <n < f f.

4. Topological Models

In the previous section, we saw that theories of the Yang-
Mills type can be understood as a deformation of the BF-
theories, which we will discuss here in more detail. From
the conventional standpoint, F represents the curvature of a
connection, usually taking values in the Lie group, while Bisa
Lie algebra-valued (D—-2)-form. Hence, in constructing these
models for discrete groups, the following question arises: with
what should one replace the B variables? We have seen that
the B-field corresponds to the representation labels. Examples
for topological models with discrete groups are discussed in
several texts [51, 53,100, 101]. See also [102, 103] for the relation
between the Chern-Simons-like theories and the BF-like
theories in 3d with discrete group Z,. In this section, we will
restrict to the Abelian groups, in particular Z,. The models
for the non-Abelian groups will be presented in Section 5.
The BF-theory is a topological field theory in which the
equations of motion demand that the “local” curvature van-
ishes. One often starts with the partition function encoding
this requirement. It is defined in a manner very similar to that
of the previous sections (see, for instance, [6,104]) as follows:

1
= q—ugz ];[5@ (hs(g0)), (16)

where again h(g,) = ]:LC 9. means the oriented product®
of edges around a face. Note that this is just a special case of
the gauge theory partition functions (10), obtained by setting
w; =89,

The partition function can be easily evaluated:

o =id vr | x iﬂ a7

= {f | configurations {g,},
ecf



For the groups Z,, an expansion of the type detailed in (14)
yields

2= G117 (1 (0)

9 f
(18)

1 2mi
= que+ufzzeXp<_ Zkf “hy (ge)>'
9 k; 1 75

One may interpret the term in the exponential as a BF-
theory action, where the representation labels k, represent
the B-field on the lattice, while the products h/(g,) =
Yecs0(fr€) g, represent curvature.

The spin foam representation can be derived in the same
way as for the gauge theories in Section 3.1:

7z - q%;]:[(ﬂsw)( Zo(f,e)kf>>. (19)

edv fZ)e

This recasts the partition function as

Z =1 | configurations {k f} X
(20)

Zo(f,e)kf =0(modq) Ve | x %,
foe g

that is, as the number of assignments {k}  satisfying the

Gauss constraint for every edge. In the following section, we
will discuss the local symmetries of the BF-theory partition
function. We will find that, on the set of all configurations
{ky} ., there acts a translation symmetry. This is realized at

the 3-cells of the lattice. Hence, Z reflects the orbit volume
of this translational gauge symmetry. It is this symmetry that
leads to divergences in the BF-theory partition functions for
the “continuous” Lie groups [105, 106].'°

4.1. Symmetries of the Partition Function. We will now discuss
the gauge symmetries of the partition function (16). As
its form coincides with that of the gauge theories (10),
the partition function is invariant under the usual gauge
transformations g, — gy geg;(l), where g, € Z, are gauge
parameters associated to the vertices. This is manifest in the
representation given in (16).

There is a further symmetry, the so-called translation
symmetry, which is easiest to see in the spin foam represen-
tation. This symmetry is based on the 3-cell ¢ of the lattice,
that is, the cubes for a hypercubical lattice.” Consider a field
¢ — k_ of gauge parameters associated to the cubes and define
the gauge transformations

K=k + gfo(c,f)kc(modq)> (21)

where o(c, f) = 1 if the orientation of f agrees with that
induced by c and -1 otherwise. If {k;}, is a configuration
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that satisfies all of the Gauss constraints, then so does {k;} ¥
and vice versa. The reason stems from the following fact: if
an edge e is in the boundary of a 3-cell ¢, then there are
exactly two faces, say f; and f,, that are both in the boundary
of ¢ and adjacent to e. The orientation factors are such that
the contributions of k, to the two faces f; and f, are of
opposite signs in the Gauss constraint associated to e. Hence,
the stated result follows and the contributions of these two
configurations, {k f} f and {k}} £ to the partition function are
equal.

The above symmetry is a realization of the well-known
cohomological principle that “the boundary of a boundary is
zero” (0 o 0 = 0) and underlies the Bianchi identity for the
curvature. With the Bianchi identity, one can also explain the
translation symmetry; see [39, 49].

In 3d, the BF-theory with SU(2) as its gauge group
has a gravitational interpretation. This translation symmetry
corresponds to the diffeomorphism symmetry of the theory.
The gauge field k. corresponds in the dual lattice to a field
associated to the dual vertices, and one can interpret the
gauge transformation as a translation' of these dual vertices
(which in the gravity models are the vertices in a triangulation
of space time).

In 4d, the 3-cells are dual to edges in the dual lattice,
so this symmetry translates the dual edges rather than the
dual vertices. For gravity-like models, on the other hand,
one would like to break down this translation symmetry,
where it is based on the dual edges, to symmetries based on
the dual vertices. (Correspondingly, in 4d, diffeomorphism
symmetry of the action leads to the Noether charges encoding
the contracted Bianchi identities and not the Bianchi identity
itself.) In the case of gravity, one strategy is to impose the so-
called simplicity constraints [56-61, 64] within the partition
function. For models with finite groups, the question arises
as to whether there is a class of 4d gauge models with
“translation-like” symmetries based on the dual vertices. Such
models would be nontopological and feature propagating
degrees of freedom, as a symmetry group based on dual
vertices is much smaller than that for BE, where it is based
on dual edges. See also the discussion in Sections 5 and 6.

5. Gauge Theories for the Non-Abelian Groups

In the following, we will consider how to generalize the
construction performed so far for the finite, but non-Abelian,
groups G. Details about representations can be found in [79].

Again, we denote by p the irreducible, unitary represen-
tations of G on C" = V,,, where n = dim p. Note that for the
non-Abelian groups n can be larger than 1. Every function
f : G — C can be decomposed into matrix elements of

representations; that is,

f(9) = Y \dimp o P(9), (22)
P
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where the sum ranges over all “equivalence classes” of
irreducible representations of G. The f, are given by

é;x/dim pf (9) P(9)ap (23)

where |G| denotes the number of elements in the group G.
Introducing an inner product between functions f;, f,
G — Cby

f p.a.b

£ =1 2 F @50 = Y (R)0u(7),

geG psab
(24)
then the matrix elements of p are orthogonal; that is,
0, 5010
~ p,p ik jl
.. = — 25
<Pz] | pkl> dim p ( )
Furthermore, we denote by
X (9) =t (p(9) (26)

the character of p; then the §-function on the group G is given
by

3 (g) =) dim py, (g), 27)
P

which satisfies

|G| 3 (9) f(9) = f (V). (28)

5.1. The G-Gauge Yheory on a Two-Complex k. Consider an
oriented two-complex . Denote the set of edges E and the
set of faces F; then by a connection we mean an assignment
E — G of group elements g, to edges e € E. For every face
f € F, we denote the curvature of this connection by

_ Ini o(fe)
he=]]g" (29)

e€of

which is the ordered product of group elements of edges in
the boundary of f, where we take o(f, e) = +1 depending on
the relative orientation of e and f. In the non-Abelian case,
the ordering of the group elements around a face/plaquette
actually matters, and we choose here the convention as
depicted in Figure 1.

As before, we define a gauge-invariant partition function
by choosing a collection of weight-functions w, : G —
C invariant under conjugation. These encode the action
“and the path integral measure” of the system. The partition
function is defined as

7= L3 T

e fEF

s (), (30)

€4

€1

FIGURE 1: A face f, bordered by edges e, ..., es. The curvature is
givenby h, = g;: e, g;; e, 9., (note the ordering).

where |G| is the number of elements in G. Since wy can be
expanded into characters via (22), the path integral can be

2= Gr L ETE) ),

Ll

9e Pf (31)
x Pf(g:zl)' P 'Pf(g:nl)inil'

s
In sum, there is for each edge e a representation ps(g,)
appearing for every face f adjacent to e, f > e. The
corresponding sum results in (assuming that the orientations
of all f agree with those of e for the moment, in order not to
overburden the notation)

(Pe)iliz"'in;jljz"'jn
(32)
: an (g)injn'

|G| Zpﬂ 11]1pf2 )1zjz .

9€G
It is not hard to see that the operator P, called the Haar-
intertwiner, given by

(peu/)ilizmin = (Pe)i1i2~--in;j1j2---j,,l//]'ljz"‘]'n’ (33)
which maps the edge-Hilbert space
Ho=V, 0V, 80V, (34)

to itself, is actually an orthogonal projector on the gauge-
invariant subspace of #,.*° Note that, while in the Abelian
case one has to sum over all representations over faces such
that at all edges the “oriented” sum adds up to zero (as in
(12)), in the non-Abelian generalization one has to sum over
all representations such that at each edge e the representations
of the faces f > e meeting at e have to contain, in their
tensor product, the trivial representation. Also, one obtains
a nontrivial tensor P, for each edge, which in the case of
Since the representations for the non-Abehan groups can f)e
more than 1 dimensional, in general the tensor P, has indices
which are contracted at each vertex v in the two-complex «.

Choosing an orthonormal base ¢, ®) k= 1,...,m for the
invariant subspace of #’,, we get

R= 21 () )
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FIGURE 2: The relative orientations of both e; to f and e, to f
agree, so in both Hilbert spaces H,, and H,,, the factor fo occurs.

Moreover [i,,) and (i,,| have indices belonging to V, ; in opposite

positions, so they may be contracted.

In case the orientations of e and f do not agree for some
e, then g, is essentially replaced by g,' in (32), which
leads to the appearance of the dual” representation in the
tensor product (34) of the #,. In this case, lék) labels a
basis of intertwiner maps between the tensor product of all
representations associated to faces f with o( f,e) = —1 and the
tensor product of all representations associated to the faces
with o(f,e) = 1.

In (35), one regards |1,) and (1,| as attached to, respec-
tively, the endpoint and the beginning of e. For each vertex
v in k, the associated |1,) and (1| can be contracted in a
canonical way. For every face f which touches v, there are
exactly two edges e, e, in the boundary of f that meet at v.
The definitions above are exactly such that, if one chooses a
basis in each V, and the dual basis in each Vp* ,iny, andy, the
two indices associated to f are in opposite position, so they
can be contracted. See Figure 2 for an example.

Therefore, contracting all the appropriate 1, at one ver-
tex leaves one with the vertex-amplitude <, (py, 1), which
depends on the representations p, and intertwiners 1, associ-
ated to the faces and edges that meet at v (and the orientations
of these). The vertex amplitude can be computed by evaluat-
ing the so-called neighbouring spin network function, living
on graph which results from a dimensional reduction of the
neighbourhood of v. Construct a spin network, where there
is a vertex for each edge e touching v, and a line between any
two vertices for each face f between two edges. Assigning the
pyto the lines of the spin network and the intertwiners |1,) or
(1,] to the vertices, depending on whether the corresponding
edge e is incoming or outgoing of v, results in a spin network,
whose evaluation gives <.

With this, the state sum can, using (31) and (32), be
written in terms of vertex amplitudes via

z= Y1), [T (py-v). (36)

Prte f

5.2. Examples. The first example we consider is the G BF-
theory, which corresponds to an integral over only flat
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connections, that is, the choice wf(h) = dg(h). Since the §-
function can be decomposed into characters with (W )y =
dim py, we get

Z = ZH dimpr,va. (37)

pfle f

If x is the two-complex dual to a triangulation of a 3-
dimensional manifold, then the vertex amplitude is essen-

tially the analogue of the 6 j-symbol for G’

The second example that one usually considers is the
Yang-Mills theory. The Wilson action can be specified, similar
to the Abelian case, by choosing a unitary representation p, so
that

Sv () = (s (W + x5 (7)) = aRe (x5 (), 38)

where « is the coupling constant. The weights are then given
by wf(h) = exp(—Syp(h)).

5.3. Constrained Models. There is a generalization of the
state-sum models (36), coming from the desire to obtain
nontopological generalizations of the BF-theory. It amounts
to choosing the intertwiners , not to span all of the invariant
subspace, but only a proper subspace V, ¢ Inv(#,). This
originates in the attempt to define a state-sum model for
general relativity, which can be written as a constrained BF-
theory. The subspace V, is viewed as the space of intertwiners
satisfying the so-called simplicity constraints; see, for exam-
ple, [56, 64, 107]. Examples for such models are the Barrett-
Crane model [57] and the EPRL and FK models [58-61].
These models can also be written in the form of a path integral
over connections [91, 108, 109], but we will not concern
ourselves with this here.

In the following, we will introduce a class of models
which can be seen as the generalization of the Barrett-
Crane models to finite groups. Given a finite group H, the
model is a state-sum model for the group G = H x H.
Irreducible representations of G are then pairs of irreducible
representations (p},p}) of H. In the edge-Hilbert space
I ,, there is a specific element 15 of the space of gauge-
invariant elements, called the Barrett-Crane intertwiner. It is
only nonzero if and only if the representations p; and py are
dual to each other. In that case, for an edge e with attached
faces f, consider the Hilbert space

X, = VP}I ® - ® fok' (39)
Again, we have assumed that the orientations of all faces
fx and e agree, in order not to overburden the notation;
otherwise, replace Vp; by its dual or, equivalently, exchange

+

py- If we consider the projector P, : %, — %, onto the

subspace of elements invariant under the action of H, then P,
can be seen as an element of 7, ® Z, which is naturally
isomorphic to #,, because p}" are dual to each other. The
corresponding element i in 7, is invariant under H x H, as
one can readily see, and it is our distinguished element onto
which P, is projecting.
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Since the projection space for each edge is (at most) 1
dimensional, the vertex amplitude for the BC-model does not
depend on intertwiners, but only on the representations p;? =

(ps)" associated to the faces. In fact, since the representations
are unitary, every representation is dual to itself, so we
effectively have only one representation p, attached to each
face. Using diagrammatical calculus [110]{ it is not hard to
show that the vertex amplitude for the BC model is given by a
sum over squares of the BF-theory model on the same vertex:
that is,

AP (hoisc) = Vet (o) o)

where the sum ranges over an orthonormal basis 1, of S;-
intertwiners in 7, for every edge e at the vertex v.

Let us shortly discuss the case of H = S;, the group of
permutations in three elements. For S;, which is generated
by (12), the permutation of the first two elements, and (123),
which is the cyclic permutation, subject to the relation (12)* =
(123)* = 1, the representations theory is well known [79]:
There are three irreducible representations, called [1], [-1],
and [2]. The first is the trivial representation and the second
one maps a permutation o to its sign (—1)°. The third one is
two dimensional, and

cos 2 _sin271
1 0 3 3
12)) = , 123)) =
p((12)) (0 ‘1> p((123) sin2m  cos2m
3 3
(41)

The nontrivial tensor products of the representations decom-
pose as

(-1]e[-1] =[1],
[2]e[2] = [1]e[-1] @ [2].

[-1]e[2] = [2],

Therefore, the intertwiner space in %, is, for example, three
dimensional, when there are four faces attached to e carrying
the representation [2]. Hence, for H = §;, the BC-model is
an example for a constrained version of an H x H-state-sum
model, as defined in the last section, because P, projects onto
a proper subspace of the invariant subspace of 7.

This class of models is an example for an abstract spin
foam [83], since its amplitudes only depend on combinatorial
data, and the topology of the two-complex «. In particular,
it leads to a model which is invariant under refinement of
the two-complex x by trivial subdivisions of edges or faces.
Hence, these models provide potential examples for models
which are background independent, but not topological (as
is the case in the full theory).

Note that there is a wealth of different models, which
come from different choices of nontrivial subspaces of 7,
onto which P, is projecting. In particular, one could consider
EPRL-like models where G = S, x S, or G = A, x A, and
consider the subspace of intertwiners for p]t = py» which

. . . ] + -
are in the image of a boosting map b : Vo, = fo ® fo,

1

given by the fusion coefficients (see, e.g., [58-61] for H =
SU(2)). Here, S, (A,) is the group of “even” permutation of
four elements. Another, possibly more geometric way would
be to consider embeddings S, — S5 and thus construct
proper subspaces of Ss-intertwiners.”> Such models can be
considered as truncations of the EPRL modelsas S, (A,) is the
“chiral” symmetry group of the tetrahedron and a subgroup
of the rotation group. Here, it will be interesting to investigate
the relation to the full models in more detail.

The models can serve to test many proposals for the
full theory, for instance, how the different choices of edge
projectors P, determine the physical degrees of freedom or
particle content of the given theory. This is related to the
problem of implementing the simplicity constraints into spin
foam models. We are planning to investigate the features of
these models, in particular their symmetries [65a, 65b] and
behaviours under coarse graining, in future work.

6. The Hilbert Space, the Transfer Operators,
and Constraints

We intend to derive the transfer operators [111, 112] for the
Yang-Mills-like gauge theories, having partition functions of
the forms (10) and (30) and incorporating a generic finite
group G of cardinality |G|. We will permit G to be non-
Abelian. The first part of the discussion is of a similar nature
to that found in [112] for the Yang-Mills theory. However, we
will also include the BF-theory as a special case. From the
transfer operators, one can obtain, via a limiting procedure,
the Hamiltonian operators. However, for the BF-theory, we
will see that this limiting procedure is not necessary. Rather,
the transfer operators can be understood as projectors onto
the space of the so-called physical states. These can be charac-
terized as lying in the kernel of the “Hamiltonian” constraints.
This illustrates the general principle that a path integral with
local symmetries acts a projector onto a constrained subspace
[113, 114]. Conversely, one can construct a projector onto the
constrained subspace as a path integral. See [115], in which
this is performed for 3d gravity in its formulation as an
SU(2) BF-theory.

The transfer operator T is defined on a Hilbert space %,
so that the partition function can be written as

We assume for simplicity** that the lattice is hypercubical.
One lattice direction is designated as a time direction, in
which there are periodic boundary conditions. The trace trg,
is the trace over states in the following Hilbert space. It is
associated to the spatial lattice and is built as a direct product
of the Hilbert spaces associated to the spatial edges e,. More
succinctly written as # = (), #,, the “configuration”
variable attached to any given edge is a group element, so the
associated Hilbert space is the space of complex functions on
the group, equipped with an inner product,” that is, %, =
CI[G].

We will work in the representation in which a basis of
eigenstates is given by | g,). This is known as the holonomy or
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connection representation. For any unitary matrix represen-
tation, g, — p(g,). of the group G, these are simultaneous
eigenstates of the so-called edge holonomy operators p(g,) .,

P(9)ar 19) = P(9e) s |9) - (44)
These basis states are orthonormal:
' G) [ 1
(g 19)=110"(a..a.) (45)

where 8 is the delta function on the group such that
(1/1GJ) Zg 8(G)(g, g') = 1. We have also the completeness
relation

Z l9) (gl. (46)

dor = |G|“

We use this resolution of identity N times in (43) to rewrite
the partition function as

Z= tr?fTN ue Z 1_[ <gn+1| T |gn (47)
|G| Geg,n n=0
where we introduced n = 0,...,N to label the “constant

time hypersurfaces” in the lattice. On the other hand, we will
assume that our partition function is of the form

= ﬁ; Uwf (rs)

N

=TT I w2 (n) (48)
G w0 gy, ™
x [Twy, (hf)Hw ().

(£).

Here, we introduced the weight functions w; of the
holonomies around plaquettes h¢, which in the form of
the right-hand side can also be chosen to differ for spatial
plaquettes f; and timelike plaquettes f,. (This is necessary
if one wants to obtain the Hamiltonian in the limit of small
lattice constant in timelike direction.) Since we are dealing
with a gauge theory, the weights w/ are class functions, that
is, invariant under conjugation; furthermore, we will assume
that wy (h) =w f(h_l); that is, the weights are independent of
the orientation of the face. A weight function can therefore
be expanded into characters, which are linear combinations
of matrix elements of representations (in fact, characters are
just the trace). Hence, the weight functions will be quantized
as edge holonomy operators.

On the right-hand side of (48), we have just split the
product into factors labelled by the time parameter n. Here,
we assume that the plaquettes (f,), are the ones between
time n and n + 1. Comparing the two forms of the partition
functions (47) and (48), we can conclude that

<gn+1| T |gn> = Hw}s/z (h(fs)rHl) %
fs Gl

x> [ Twy, (hey,) 1;[“’}5/2 (hsy,)-

et (f.)

(49)
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FIGURE 3: A timelike plaquette in a cubical lattice. The group
elements at the timelike edges can be understood to act as gauge
transformations on the vertices either at time steps n or n + 1.
Integration over the group elements assoicated to the timelike edges
enforces therefore (via group averaging) a projector onto the gauge
invariant Hilbert space.

The two outer factors can be easily quantized as multiplica-
tion operators, so that we can write

T = WKW (50)
with
W= Hw}s/z (hs)

|G|ne,zn ﬂ( n)'

ey f )

(51)
<gn+1| |gn

To tackle the operator K, note that the group elements
associated to the timelike edges appearing in the plaquette
weights

-1 -1
wy (9, 96,9c),, 9, (52)

can be understood as acting as gauge transformations associ-
ated to the vertices of the spatial lattice; see Figure 3.
That is, we define operators T(y), y € G* by

Ty)lg) =" >a), (53)

where (y > g), = Yy gey;(i) and s(e), t(e) are the source
and target vertices of the edge e, respectively. The operators
I generate gauge transformations as

GTW W =Grglyy=yyrg). 4

Now, we can see the plaquette weight in (52) as either a
wave function at time # or a wave function at time »n + 1
on which the group elements associated to the timelike
edges act as gauge transformations. The sum in (51) over the
group elements g, then induces an averaging over all gauge
transformations, that is, a projection onto the space of gauge-
invariant states. Hence, we can write

K = P.K, = K, P, (55)
where

~ 1 ~
Po=—)T(y),
¢ |G|“s;

= [T (g9, )

(56)
<gn+l I RO |gn



Journal of Gravity

The operator P is a projector; that is, Pz = Pg. One can
easily show that T(y)P; = PgI(y) = Pg forany y € G*;
hence, it projects onto the space of gauge-invariant functions.
As the operator W is made up from gauge-invariant plaquette
couplings, it commutes with Py, so that we can write
T = P;WK,WP. (57)

Here, we see an example for a general mechanism, namely,
that the transfer operator for a partition function with local
gauge symmetries acts as a projector onto the space of gauge-
invariant states. We can characterize such gauge-invariant
states as being annihilated by constraint operators. In the case
of the usual lattice gauge symmetries, these constraints are the
Gauss constraints, which we will discuss later on.

To discuss the action of K, we introduce first the spin
network basis, in which K, will be diagonal.

6.1. Spin Network Basis. So far, we encountered the holonomy
operators, that is, the multiplication operators p(g,),, in the
configuration representation. The conjugated operators are
the electric fields or fluxes, which act as “matrix” multiplica-
tion operators in the spin network basis. This is a convenient
basis to discuss the remaining part K, of the transfer operator.

To obtain the spin network basis [11, 12], we just need to
use that every function on the group can be expanded as a
sum over the matrix elements p(-) , of all irreducible unitary
representations p. For the Abelian groups, all irreducible
representations are one dimensional; hence, a,b = 0 and
we obtain the discrete Fourier transform (3). In the general
case of the non-Abelian groups, we define spin network states

|p,a,b) by
[ Tdim pep.(ge),, = (g1 poab), (58)

which are orthonormal; that is, (p,a,b | p',a',b') =

8,00 Oppy -

In the spin network basis, we can easily express the left
L,(h) and right translation operators R,(h). These are the
conjugated operators to the holonomy operators (44). To
simplify notation, we will just consider the Hilbert space and
states associated to one edge and omit the edge subindex. We

define

Lilg)=|n"g).  Rlg)=lgh). (59

In the spin network basis,
(9L (k) |p,a,b) = (hg | p,a,b) = \/dim pp(hg),,

= \[dim pp(h),cp(g)., (60)

= P(h)ac <g | P’C’b>’

where we sum over repeated indices. That is,
LW |p.a,b) = p(h)a |psc.b)

) B (61
R|p.a,b) = |p.ac) p(h) .
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The remaining factor K, of the transfer operator factorizes
over the edges, and it is straightforward to check that it acts
on one edge as

LS w, (L) = — e, RG). ()
h

Ko = G| £

(Here, one has to use that w is a class function and invariant
under inversion of the argument) On a spin network state,
we obtain

Rolp by = — Ywy p(h), [p.c.b)

IG5

|G|ZZC K DI lprcb)  (63)

1
=) ——0c|p,ab),
;dim P |p-a.b)
where in the second line we used that a class function can
be expanded into characters x, and in we used the third the
orthogonality relation

1 1
@;Xp' (h) p(h)uc = di_rnp(sp,p' 6ac' (64)
The expansion coefficients c, are given by

%= 612 wat WX, Hh). (65)

That is, K, acts as a diagonal in the spin network basis, and as
the eigenvalues only depend on the representation labels p, it
commutes with left and right translations. For the Yang-Mills
theory (with Lie groups) in the limit of continuous time, one
obtains for K, the Laplacian on the group [111, 112].

6.2. Gauge-Invariant Spin Nets. Given a spin network func-
tion y, which can be regarded as function y(h,) of
holonomies associated to edges, where h € G* is a connec-
tion, and a gauge transformation y € G™, an assignment
of group elements to vertices of the network, then the gauge
transformed spin network function is given by

f (V) v (he) =y (Vs(e)he)/t_(i)) > (66)

where s(e) and t(e) are the source and the target vertices of
the edge e. A gauge transformation can therefore be expressed
as a linear operator in terms of L and R, as shown in the
last section. Decomposing the spin network function into the

basis |p,, a,, b,), that is,
Z Voab,
)

v (h,) = a,b,),
Pe>Ae>0e

(67)
one can readily see that the condition for a function y to be

invariant under all gauge transformations «,, translates into a
condition for the coefficients ¥, , ;, ; namely,

- _ )
l//pe’az’be - Hlael ’“"bey, ’ (68)
v
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where the product ranges over vertices v, and each tensor 1",
which has the indices a, for each edge e outgoing of and b(e)
for each edge e incoming v, is an invariant element of the
tensor representation space

eInV<®V ® XV, ) (69)

v=s(e) v=t(e)

that is, an intertwiner between the tensor product of
incoming and outgoing representations for each vertex. An
orthonormal basis on the space of gauge-invariant spin
network functions therefore corresponds to a choice of
orthonormal intertwiner in each tensor product representa-
tion space for each vertex, where the inner product is the
tensor product of the inner products on each V,, V.

Note that neither the holonomies p(h,),, nor left and
right translations are gauge invariant; therefore, they map
gauge-invariant functions to nongauge-invariant ones. How-
ever, they can be combined into gauge-invariant combina-
tions, such as the holonomy of a Wilson loop within a net.

6.3. Local Constraint Operators and Physical Inner Product.
We have seen that for a general gauge partition function of
the form of (48) the transfer operator (57)

T = B,WK,WE, (70)

incorporates a projection ﬁG onto the space of gauge-
invariant states. This is a general feature of partition functions
with gauge symmetries [113, 114]. Indeed in quantum gravity,
one attempts to construct a projector onto gauge-invariant
states by constructing an appropriate partition function.

As has been discussed in Section 4.1, the BF-models enjoy
a further gauge symmetry, the translation symmetries (21).
(A generalization of these symmetries holds also for the non-
Abelian groups.) Hence, we can expect that another projector
will appear in the transfer operator. Indeed, it will turn
out that the transfer operator for the BF-models is just a
combination of projectors.

This is straightforward to see as for the BF-models that
the plaquette weights are given by w¢(h) = §(h), so that

_ ~ 1/2
W= l;[(% (he)) 71)

Here, one might be worried by taking the square roots of
the delta functions; however, we are on a finite group. The
operator W? is diagonal in the basis |g) and has only two
eigenvalues: g*/ on states where all plaquette holonomies
vanish and zero otherwise. The square root of W? is defined
by taking the square root of these eigenvalues.

Hence, W is proportional to another projector Pz, which
projects onto the states for which all the plaquette holonomies
are trivial, that is, states with zero (local) curvature.

The final factor in the transfer operator T is K, which,
according to the matrix element of K, in (56) (putting
w f(h) = §(h)), is proportional to the identity

K, = |G|*1d,, (72)
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where the numerical factor arises due to our normalization
convention for the group delta functions, which amounts to

Og(id) = |G|. Hence, the transfer operator for the BF-theory
is given by
T = |GI***"P P, = |G|**"¥P,P;, (73)
and since for the projectors we have Py = Pg, Py = Py, the
partition function simplifies to
Z = tl‘y/TN = |G|N(ne$+uﬂ)tr%ﬁGﬁF
(74)

= |GV dim () -

The projection operators in the transfer operator ensure that
only the so-called physical states y € 7, are contributing
to the partition function Z. These are states in the image
of the projectors (we will call the corresponding subspace

7 phys) and can be equivalently described to be annihilated
by constraint operators, which we will discuss below.

The objective in canonical approaches to quantum gravity
[11, 12] is to characterize the space of physical states according
to the constraints given by general relativity, which follow
from the local symmetries of the theory. (The quantization
of these constraints in a consistent way is highly complicated
[116-118].) Indeed, also in general relativity, as well as in any
theory which is invariant under reparametrizations of the
time parameter, one would expect that the transfer operator
(or the path integral) is given by a projector, so that the
property T> ~ T would hold.* This would also imply a
certain notion of discretization independence, namely, the
independence of transition amplitudes on the number of time
steps used in the discretization; see also the discussion in [38]
on the relation between reparametrization symmetry in the
time parameter and discretization independence. For a lattice
based on triangulations, one can introduce a local notion of
evolution, the so-called tent moves [41, 119-121]. These moves
evolve just one vertex and the adjacent cells. Local transfer
operators can be associated to these tent moves. These would
evolve the spatial hypersurface not globally, but locally, and
would allow to choose some arbitrary order of the vertices
to evolve. In this way, one can generate different slicings of a
triangulation as well as different triangulations. The condition
that the transfer operator associated to a tent move is given by
a projector would then implement an even stronger notion of
triangulation independence.

However, reparametrization invariance, which would
lead to such transfer operators, is usually broken by dis-
cretizations already for one-dimensional toy models. For
“coarse graining and renormalization” methods to regain
this symmetry, see [36-38, 122]. In the case of gravity, or
more generally nontopological field theories, these methods
will however lead to nonlocal couplings for the partition
functions [122], for which one would have to modify the
transfer operator formalism.

Furthermore, one has to construct a physical inner
product on the space of the physical sates. This process is
quite trivial in the case considered here, as we are considering
finite groups and all of the projectors are proper projectors.
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FIGURE 4: Two states in the spin network basis for Z, which are
equivalent under the physical inner product. The thick edges carry
nontrivial representations. The right state can be obtained from the
left state by applying a plaquette stabilizer.

Hence, the physical states are proper states in the “so-called”
kinematical Hilbert space #’, and the inner product of this
space can be taken over for the physical states. In contrast,
already for the BF-theory with “compact” Lie groups, the
translation symmetries lead to noncompact orbits. This leads
to physical states which are not normalizable with respect to
the inner product of the kinematical Hilbert space. For the
intricacies of this case (with SU(2)), see, for instance, [115]. A
further complication for gravity is the very complicated non-
commutative structure of the constraints [123-125].

Let us summarize the projectors onto P= 136 Py. Also in
the case of generalized projectors, a physical inner product
can be defined [12, 126] between equivalence classes of
kinematical states labelled by representatives v, v, through

(1 1 ¥2) pye = (W1 Ply,). (75)

Kinematical states which project to the same (physical) state
define the same equivalence class. This leads, for instance,
to an identification of the two states (for the group Z,)
in Figure 4. This is analogous to the action of the spatial
diffeomorphism group in “3D and 4D” loop quantum gravity,
see the discussion in [115], and reflects the concept of
abstract spin foams, whose amplitude does not depend on the
embedding into the lattice, in Section 2. Indeed any two states
which can be deformed into each other by applying the so-
called stabilizer operators introduced below in (76) and (82)
are equivalent to each other. The reason is that the physical
Hilbert space is the common eigenspace to the eigenvalue 1
with respect to all of the stabilizer operators. Hence, any part
of a state that undergoes a nontrivial change if a stabilizer is
applied will be projected out in the physical inner product.
Another problem in quantum gravity is then to find
“quantum” observables [127-131] that are well defined on the
physical Hilbert space. In the case of gravity, these Dirac
observables are very hard to obtain explicitly; even classically
there are almost none known. In particular, such Dirac
observables have to be nonlocal [132]. If one interprets a
quantum gravity model as a statistical system, a related task
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is to find a well-defined order parameter characterizing the
phases. Expectation values of gauge-variant observables may
be projected to zero under the physical inner product [133]:
As in our case, we work with finite-dimensional Hilbert
spaces, and the physical Hilbert space is just a subspace of
the kinematical one; there is a construction principle for
physical observables. For any operator O on the kinematical
Hilbert space, one can consider POP, which preserves the
physical Hilbert space and corresponds to a “gauge averaging”
of O. However, many observables constructed in this way
will turn out to be constants. For the BF-theory, observables
can be constructed by considering a product of the stabilizer
operators discussed below along non-contractable loops [54,
134-136]. The resulting observables are nonlocal, and the
cardinality of a set of independent operators (equivalently the
dimension of the physical Hilbert space) just depends on the
topology of the lattice and not on its size.

We will now discuss the stabilizer operators which
characterize the physical states. In topological quantum
computing, these are known as stabilizer conditions [54].

We have considered the operators f(y) in (53) that imple-
ment a gauge transformation according to the assignments
(y), of group elements to the vertices of the “spatial sub-”
lattice. These can be easily localized to the vertices v, of
the spatial lattice by choosing the gauge parameters y (an
assignment of one group element to every vertex in the spatial
lattice) such that all group elements are trivial except for
one vertex v,. We will call the corresponding operators I, (y)
where now y denotes an element in the gauge group G (and
not in the direct product G**). These can be expressed by the
left and right translation operators (59)

[T 2.0) [] RaMla)- (7

e, s(e;)=v, el: t(el)=v,

L, (y)|g) =

Physical states |y/) have to satisfy”’

L, (y)|w) = lv) 77)

for all vertices v, and all group elements y. As the operators
T define a representation of the group, we can restrict to the
elements of a generating set of the group.

This suggests considering the action of these “star” oper-
ators in the spin network basis:

fvs (Y) |P> a, b> = 1_[ Pe(Y)aece H pe’(y_l)de,ber

e: s(e)=v, e': t(e)=v, (78)
X |P, (Ce, ae:, ae/,) N (be, de" beu)> s

where on the right-hand side edges e are the ones starting at
v, €' are those ending at v, and e' are all of the remaining
edges in the spatial lattice. From this expression, one can
conclude that the spin network states transform at v, in a
tensor product of representations

va = ® pe® ® Pe*” (79)

e: s(e)=v, e t(e'):vS
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where p* is the dual representation to p. Gauge-invariant
states can be constructed by considering the projections of
these representations to the trivial ones, or equivalently by
contracting the matrix indices of the states with the inter-
twiners between the tensor product of “incoming” represen-
tations and the tensor product of “outgoing” representations
at the vertices; see Section 6.2.

For the Abelian groups Z,, the irreducible representa-
tions are one-dimensional; hence, we can omit the indices a, b
in the spin network basis. The tensor product of represen-
tations (79) is also one dimensional and equal to the trivial
representation provided that

Y k=) ky (80)

e: s(e)=v, e t(e)=v,

for the representation labels k,, k. of the outgoing and
incoming edges at v,, respectively. Hence, we recover the
Gauss constraints from the spin foam representation (12).
Here, these Gauss constraints appear as based on vertices
as opposed to edges as in (12). But the spatial vertices v,
represent the timelike edges, and the Gauss constraints in the
canonical formalism are just the Gauss constraints associated
to the timelike edges in the spin foam representation (12).
Let us turn to the other projector Py. It maps to states for
which all of the spatial plaquettes f; have trivial holonomies.
Hence, the conditions on physical states can be written as

F olw) =08 v), (81)

where we have introduced the plaquette operators (corre-
sponding to the flatness constraints)

Ff b= (F[ﬁ(g;’”s‘))) : (82)
ab

eCf,

Here, p should be a faithful representation; otherwise, one
might find that also states with local non-trivial holonomies
satisfy the conditions (81); see, for instance, the discussion in
[137]. On the other hand, this can be taken as one possible
generalization of the model. For the non-Abelian groups, the
plaquette operators additionally depend on the choice of a
vertex adjacent to the face, at which the holonomy around
the face starts and ends. However, the conditions (81) do not
depend on this choice of vertex: if a holonomy around a face
is trivial for one choice of vertex, then it will be trivial for all
other vertices in this face, as these holonomies just differ by a
conjugation.

The BF-theory in any dimension is a topological field
theory; that is, there are only finitely many physical degrees of
freedom depending on the topology of space. Consequently
the number of physical states, or equivalently of equivalence
classes of kinematical states in the sense of (75), is finite and
does not scale with the lattice volume.

There are a number of generalizations one could consider.
First, one can couple matter in the form of defects to the
models. In 3D, the SU(2) BF-theory corresponds to a first-
order formulation of 3D gravity. Point-like particles can be
coupled to the model, see, for instance, [134-136], and lead

Journal of Gravity

to the violation of the flatness constraint (82) (coupling to
the mass of the particles) and to the violation of the Gauss
constraints (77) (coupling to the spin of the particles) at the
position of the particle. The defects can be understood as
changing the topology of the spatial lattice, that is, changing
its first fundamental group. To have the same effect in, say,
four dimensions, one needs to couple strings; see [138-140].

In the context of quantum computing [54], one does
not necessarily impose the conditions (77) and (82) as
constraints but as characterizations for the ground states
of the system. Elementary excitations or quasi-particles are
states in which either the flatness or the Gauss constraints
are violated. These excitations appear in pairs (at least for the
Abelian models [141]) and can be created by so-called ribbon
operators [54, 141-143], which in the context of the proper
particle models in 3D gravity are related to gauge-invariant
“Dirac” observables [144]. For further generalizations based
on symmetry breaking from G to a subgroup of G, see, for
instance, [141].

In 4D gravity is not topological, rather there are propa-
gating degrees of freedom. Similar to the discussion for the
partition functions in Section 4.1, one can try to construct
new models which are nearer to gravity by breaking down the
symmetries of the BF-theory. In 3D, the flatness constraints
are defined on the plaquettes of the lattice. Constraints
act also as generators of gauge transformations (indeed the
conditions (77) and (82) impose that physical states have
to be gauge invariant), and the flatness constraints can be
interpreted as translating the vertices of the dual lattice in
space time [39, 40, 145, 146], which can be seen as an action of
a diffeomorphism. In 4D, the same interpretation holds only
for some exceptional cases corresponding to special lattices
that do not lead to space time curvature; see the discussion
in [107]. In general, the flatness constraints rather generate
translations of the edges of the dual lattice [147].

A possible generalization leading to gravity-like models
is therefore to replace the flatness conditions (81) based on
plaquettes with some contractions of these conditions, such
that these new conditions are based on the 3-cells, that
is, cubes in a hyper-cubical lattice. This would correspond
to the contractions of the form FEE (the Hamiltonian
constraints) and FE (diffefomorphism constraints) in the
“complex” Ashtekar variables of the curvature F with the
electric flux variables E [11, 12, 148-150]. The difficulty in
constructing such models is consistency of the constraint
algebra, that is, to find constraints that form a closed algebra.
However to consider such models for finite groups should be
much simpler than in the case of full gravity. Even if such
consistent constraint algebras cannot be found, the physical
Hilbert spaces could be constructed, for instance, with the
techniques in [123-125, 151].

Furthermore, it will be illuminating to derive the trans-
fer operators for the constrained models introduced in
Section 5.3; as in the full theory, the relation between the
covariant models and the Hamiltonians in the canonical
formalism is still open [152, 153]. To this end, a connection
representation [91, 109] can be employed.
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7. Tensor Models and Tensor Group
Field Theories

Tensor models are theories of random topological spaces in
the fashion of matrix models [154, 155], of which they may be
seen as a superset.

Matrix models are a well-studied theory that can describe
a multitude of different scenarios including 2d gravity with
cosmological constant [156-159] (optionally coupled to the
2d Ising/Potts matter [160, 161] or the 2d Yang-Mills matters
theories [162]), certain string theories [163], the enumeration
of virtual knots and links [164-167], and the list goes on.
Moreover, they have inspired the development of a plethora
of useful techniques to solve and analyse statistical ensembles
of random matrices [168] such as the topological expansion
[169-172], the eigenvalue method [173], the double-scaling
limit, the method of orthogonal polynomials [174], and the
character expansion [175, 176], to name just a few. Tensor
models are a natural extension of this idea to higher dimen-
sions. The ambition is to develop a similar technology, with
similar applications, for tensor models in general.

Despite some initial pessimism [177], a recent spike
of optimism occurred within the growing tensor model
community, when it was discovered that a large class of
such theories [18, 178-182] possessed a 1/N-expansion [183-
189]; that is, their Feynman graphs could be partitioned
into manageable subsets, using some parameter N. In fact,
it was shown that the leading order sector, in the large-
N limit, contained an infinite but manageable number of
the Feynman graphs with the topology of the D-sphere (D
being the rank of the tensor). This leading order sector was
analysed for a variety of models, which included the plain
model [190, 191], placing the Ising/Potts [192] and dimer [193,
194] matter interactions on these D-dimensional topological
spaces, as well as dually weighing the spaces [195]. Critical
exponents were extracted, indicating that this sector of the
theory displayed identical physical properties to those of
the branched polymer phase of the Euclidean dynamical
triangulations [196, 197]. This likelihood was further con-
firmed when it was shown that their respective Hausdorff and
spectral dimensions coincided [198]. Interestingly, aspects
of universality have also been displayed by this leading
order sector [199], while the quantum symmetries have been
catalogued at all orders and take the suggestive form of a
Virasoro-like algebra [200-202].

While the majority of the results stated above has been
explicitly detailed for the simplest class of tensor models, the
independent identically distributed IID tensor models, the
initial result on the 1/N-expansion applies to many more
classes of tensor models, including certain topological and
quantum-gravity-inspired tensor models. Thus, a current aim
is to develop the above formalism for these broader tensor
model scenarios. As stated in the introduction, spin foams
for quantum gravity generically involved the Lie groups, and
so more structure, than that provided by tensor models, is
needed to describe them.

Tensor group field theories (TGFTs) [19-21, 203] are
to quantum field theory as tensor models are to quantum
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mechanics. Spin foam diagrams naturally arise as the Feyn-
man graphs of TGFTs [1-5], and indeed various quantum-
gravity-inspired TGFTs exist in the literature, such as the
Boulatov-Ooguri theories [204, 205], the EPRL and FK
theories [22-24, 206], and the Baratin-Oriti theories [25,
26]. As a result, they have garnered increasing attention
from the quantum gravity community, since, inherently, all
current spin foam models for 4d quantum gravity involve a
truncation of the degrees of freedom (due to the use of a single
lattice structure) and a manifest loss of diffeomorphism sym-
metry. With their explicit summation over D-dimensional
topological spaces, the hope is that TGFTs recapture these
lost degrees of freedom. Indeed, some evidence has already
been found at the level of the TGFT action for a seed of dif-
feomorphism symmetry [207]. Moreover, many techniques
may be applied to these field theories that are idiosyncratic to
quantum field theories (as opposed to quantum mechanics).
Perhaps the most striking is the study of their renormalisation
group properties [208-218], but also work has commenced
on the study of mean field theory properties [219], matter
coupling [220-222], various symmetry analyses [223, 224],
and instantonic field theory solutions [225-228] (including
cosmological applications [229]).

Having said all that, the aim of this paper is not to detail
spin foam models with the Lie groups, but rather spin foam
models with finite groups. This places us back under the
purview of tensor models, and it is these that we will describe
in the coming section.

To commence, let us detail some of the general setup.

71. General Setup. Let us construct the class of independent
identically distributed (1ID) models. We will attempt to be
precise without being especially detailed. We refer the reader
to [230] for a more thorough explanation. The fundamental
variable is a complex rank-D tensor (D > 2), which may
be viewed asamap T : H; X --- x H;, — C, where the
H; are complex vector spaces of dimension Nj. It is a tensor,
so it transforms covariantly under a change of basis of each
vector space independently. Its complex-conjugate T is its
contravariant counterpart.

One refers to their components in a given basis by T, and

T4 where g ={g,...,gp} g = {g;- .., gp}> and the bar (-)
distinguishes contravariant from covariant indices. We have
purposefully denoted the indices by g; as they may be viewed
as elements of respective Z .

As one might imagine, with these ingredients, one can
build objects that are invariant under changes of bases. These
so-called trace invariants are a subset of (T, T)-dependent
monomials that are built by pairwise contracting covariant
and contravariant indices until all indices are saturated.
It emerges readily that the pattern of contractions for a
given trace invariant is associated to a unique closed D-
colored graph, in the sense that, given such a graph, one
can reconstruct the corresponding trace invariant and vice
versa.”®

In Figure 5, we illustrate the graph %, the unique closed
D-colored graph with two vertices, which represents the

unique quadratic trace invariant trg (7T, T) = T, 845 _g'
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More generally, we denote the trace invariant correspond-
ing to the graph & by try, (T, T).

From now on, we will make two restrictions: (i) all of the
vector spaces have the same dimension N and (ii) we consider
only connected trace invariants, that is, trace invariants corre-
sponding to graphs with just a single connected component.

Given these provisos, the most general invariant action
for such tensors is

S(T.T)
— & t —. (83
=trg, (T> T) + Z Z N(z/(D—gg)!)w(g) trg (T’ T)’
k2 ger

where F,ED ) is the set of connected closed D-colored graphs
with 2k vertices, {tg;} is the set of coupling constants, and
w(AB) > 0 is the degree of AB (see [18] for its definition and
properties). This defines the IID class of models.

7.2. 1/N-Expansion. The central objects for further investi-
gation are the free energy (per degree of freedom) associated
to these models:

E(lta}) = g log ([ araTe ™70, (s

along with the various other #n-point Green functions. When
facing such a quantity, the standard procedure is to expand
it in a Taylor series with respect to the coupling constants ¢4
and to evaluate the resulting Gaussian integrals in terms of the
Wick contractions. It transpires that the Feynman graphs &
contributing to E({t}) are none other than connected closed
(D + 1)-colored graphs with weight:

B (-1l —@/(D-1))w(¥)
Ay = SN @ <1:[t%p>>N . (85)
where
©(9) = (D; D! [D+ DD g 1 _ |97g|], (86)

SYM(¥9) is a symmetry factor, and %, runs over the
subgraphs with colors {1,...,D} of &, while 7'y and F¢
are the vertex and face sets of &, respectively. For D =
2, the degree w(¥) coincides with the genus of a surface
specified by €. A few more words of explanation are most
definitely in order here. The graphs & € I arise in the
following manner. One knows that a given term in the Taylor
expansion is a product of trace invariants upon which one
performs Wick contractions. For such a term, one indexes
these trace invariants by p € {1,...,p""}; that is, we
index their associated D-colored graphs 9,,). A single Wick
contraction pairs a tensor T, lying somewhere in the product,
with a tensor T lying somewhere else. One represents such
a contraction by joining the black vertex representing T' to
the white vertex representing T with a line of color 0. Thus, a
complete set of the Wick contractions results in a connected
(as one is dealing with the free energy) closed (D + 1)-colored
graph. A particular Wick contraction is drawn in Figure 6.

Journal of Gravity

trg, (T,T) = Tylgzgz 6,71?1 89252 6H3§3 T?l?z?s

FIGURE 5: A closed D-colored graph and its associated trace
invariant (for D = 3).

FIGURE 6: A Wick contraction of two trace invariants (for D = 3).
The contraction of each (T, T) pair is represented by a dashed line
of color 0.

It requires a bit more work to reconstruct the amplitude
explicitly; see [230]. Importantly, w(¥) is a nonnegative
integer, and so one can order the terms in the Taylor
expansion of (84) according to their power of 1/N. Quite
evidently, therefore, one has a 1/N-expansion.

7.3. Interpretation. Strikingly, (D + 1)-colored graphs repre-
sent D-dimensional simplicial pseudomanifolds. We will give
arough presentation here. One distinguishes the k-bubbles of
species {i,..., i} as those maximally connected subgraphs
with the colors {i;, ..., i;.}. These k-bubbles are identified with
the (D — k)-simplices of the associated simplicial complexes.
Moreover, one can see clearly that the k-bubbles of species
{i;,...,i,} are nested within (k + 1)-bubbles of species
{iy,.. >0 j}, where j € {0,...,D} \ {i},...,4}. This set
of nested relationships encodes the gluing of the simplices
within the simplicial complex. This argument may be made
rigorously. Thus, at the very least, rank-D tensor models
capture a sum over D-dimensional topological spaces.

Moreover, a geometrical interpretation may be attached
most readily to the amplitudes of the IID model by setting
ty = g7 22 |SYM(B) for all B, where g is some coupling
constant. Then, one may rewrite the amplitudes as

SYM (%) Ay, = o2 Vpa0/p, (87)

where /. denotes the number of k simplices in the simplicial
complex associated to & and

Kp_, =logN,
(88)

Kp <%D(D—1)logN—logg).

| =
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Interestingly, the discretization of the Einstein-Hilbert action
on an equilateral D-dimensional simplicial complex takes the
form

1

Sppr = AY vol (o)) - ————
ot % P 1 6ﬂGNewton

(89)
1
= A vol(op) N p - 1V60 gTD_Z)
7T Newton
X <271/VD_2 - Marccos (%) /VD> ,

where Gyeyion and A are the bare Newton and cosmological

constants, respectively, and vol(o,) = (@ kD (k + 1)/ 2F
is the volume of the equilateral k-simplex, while 8(op,_,)
denotes the deficit angles associated to the (D — 2)-simplices.
If one further associates (N, g) to (Guewton> V) in the following
fashion:

1
log N = w’ log g
8GNewton
= 1
16ﬂGNewton v (GD_Z)
1 (90)
X <71 (D-1)-(D+1) arccosB>
- 2Avol (op)
= —2aDK,

then one finds that the Feynman amplitudes for the IID
model are coincide with those in a Euclidean dynamical
triangulations approach. We will return to this later.

74. Large-N Limit. In the large-N limit, only one subclass
of graphs survives, containing those graphs with w(&€) = 0.
At this point, there is a marked difference between two and
higher dimensions.

(i) In the 2-dimensional model, w(¥) is the genus of the
graph in question. Thus, the graphs surviving in this
limit are all graphs with the topology of the 2-sphere.

(ii) In higher dimensions, that is D > 3, it was shown in
[190, 191] that the only graphs surviving this limiting
procedure are the melonic graphs (with this name
stemming from their distinctive structure). While
these have the topology of the D-sphere, they do not
constitute all possible (D+1)-colored graphs with this

topology.

The series constituting the leading order sector

(_1)|P|
SYM (9) Ut‘%’w ©D

Ero({ta}) = Z

G:w(9)=0
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has a finite radius of convergence. This indicates that the
theory displays critical behaviour, for some values of the
coupling constants, characterised by some critical exponents.
There are various scenarios that one might investigate. One
simple, yet interesting case is to set t ;, = g'” /> /SYM(%B) for
all %, where g is some coupling constant. In this scenario, the
series display the following critical behaviour:

g\
Bolo)~(1-2) (02)
9e
where
1 1
gc_—g, y=-2 for D = 2,
93
—D—D —l for D>3 >
gc_(D+1)D+1) Y—Z, 2 J.

Multicritical behaviour can be extracted by tuning several
coupling constants independently.

Given the description provided in the previous sub-
section, one notices that the large-N limit corresponds to
Guewton — 0. Moreover, tuning g — g,, one enters the
regime dominated by graphs with large numbers of vertices
(or equivalently, simplicial complexes with large numbers of
simplices). As it stands, this corresponds to a large-volume
limit. However, with some more work, one can interpret it as
a continuum limit. To begin, the average volume is

(Volume) = a® (¥ p)

3
= 2aDg@ log Eyo (9)
-1 (94)
~ aD<1 — i)
g.

)
logg 9./

To obtain a continuum limit, one should tune g — g, while
keeping the average volume finite. This may be achieved in
the following fashion:

9g— 9> a—0, (95)
while keeping
P (1- i) fixed, (96)
log g 9e

where A j is a renormalized cosmological constant.

7.5. Coupling to the Ising and Potts Matter. The coupling to the
Ising/Potts matter in tensor models is a direct generalisation
of that scenario in matrix models [231, 232]. For the Ising
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matter, one considers a model with two complex tensors and
action:

s(Tl,TZ,Tl,TZ)

2 oo
_ i L
= Cijtrg, (T T ) * Z ) . NCID-2Da() e
&l

(97)

where

Cij= <—1c _16) (98)

and ¢ is a coupling constant. This class of models has
been examined in [192], where critical exponents have been
extracted, which coincide with those of branched polymers.

This matter model may be extended to the g-state Potts
matter by increasing the number of tensors along with a
suitable alteration of the propagator.

7.6. Non-1ID Models. The IID models are but the simplest of
a much larger class of models possessing a 1/N-expansion,
defined by actions of the form

_ _ ¢ _
S(LT) = TyKegTg+ ), Yy ta(TT)- (99)

The difference resides in the propagator and the scalings,
a(AB), of the coupling constant, which can be chosen to
reproduce any local (quantum-gravity-inspired) spin foam
model (in this case, with the finite rather than the Lie
group information). As an example, let us briefly detail the
choice that yields the Boulatov-Ooguri class of tensor models.
Firstly, the propagator is chosen to be

D
Kgg: Z H‘Sgihﬂil'

heZy i=0

(100)

The a(9B) can be specified so that the resulting amplitudes for
the free energy take the form

_1)le!
E(ttad) = Yovarg Lt | [T [T 0, | aon
g

P ecEy h, feF,

where

_ T peteh
Hy = [ [ne®".

102
ecof (0)

Given that &y, and F, are the edge and face sets of &,
respectively, while o(e, f) is the respective orientation of the
edge e lying in the boundary of the face f, it is clear that Hy
is the holonomy around the face f. As a result, the amplitude
within square brackets is the BF-theory amplitude associated
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to the topological manifold represented by €. It may be
evaluated to obtain some &-dependent factor of N (actually
directly dependent on the second Betti number of & [233-
235]), which allows the graphs to be organised into a 1/N-
expansion.

A more in-depth analysis has yet to be completed,
although these preliminary results are very promising. One
may modify the propagator further to obtain the EPRL,
FK [22-24], and BO [25, 26] quantum gravity spin foam
amplitudes.

8. Nonlocal Spin Foams

We now turn briefly to one of the main open problems facing
quantum gravity practitioners: the study of the large-scale
behaviour emerging from various models. We will restrict
ourselves here to two points: the first motivates the use of the
simple models considered here in this endeavour; the second
comments on how the study of large-scale behaviour may
necessitate the treatment of nonlocality.

To pass from small to large scales, it is clear that renor-
malization group methods could be useful. However, the
application of such techniques, at least to those spin foam
models currently discussed as quantum gravity candidates
[57-61], is hindered not only by many conceptual issues but
also by the tremendously complicated amplitudes emerging
from these models. Here, our “toy spin foam models” could
help, both to develop new techniques and to investigate the
statistical field theory aspects of the models in question.

As a matter of fact, it may be the case that certain
properties are independent of the specifics of the amplitudes.
For instance, consider the questions of whether and how to
sum over topologies within spin foam models. This might not
depend on the chosen group underlying the model.

On top of that, note that there are a number of quantum
gravity approaches which rather work with quite simple
(vertex) amplitudes [13-17, 73-76] (we have in mind here the
work of [16, 17] in particular), in which the question of the
large-scale limit can be addressed. The models proposed in
our work here can be seen as small spin, cut-off versions of the
full theory. The hope is that for these models one can replicate
the successes of [16, 17] by probing the many-particle (and
small-spin) regime, in contrast to the very few-particle and
large-spin regime considered up to now.

There has been some very interesting work exploring
coarse graining in the spin foam context [236-238]. Inde-
pendently, the related concept of tensor networks [239-242],
a generalization of the spin nets introduced here, has been
developed as a tool for coarse graining. In most frameworks,
the local form of the spin foams does not change. It may
be necessary to accommodate also for nonlocal couplings,”
in particular if one attempts to regain diffeomorphism sym-
metry, which is broken by the discretizations employed in
many quantum gravity models [36, 37, 122]. As explained in
[243], such nonlocal couplings can be accommodated into
the tensor network renormalization framework. In this case,
the nonlocal couplings are compensated by introducing more
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and more complicated building blocks (carrying higher-
order variables).

Indeed, after applying block spin transformations to
a nontopological lattice gauge system, one can expect to
possess a partition function of the form

Z= Z H H wll,...,lM (hll>-'-1th);
{

g} M=111,..1y;

(103)

where h are holonomies around loops (that is, around
plaquettes but also around other surfaces made of several
describing possiblé )couplings between (Wilson) loops. A
character expansion would introduce representation labels
not only on the basic plaquettes but also on all of the other
surfaces encircled by loops appearing in (103). The resulting
structure is akin to a two-dimensional generalization of a
graph. Graphs would appear as effective descriptions for
the coarse graining of the Ising-like models discussed in
Section 2. Such nonlocal “spin graphs” would be general-
izations of the spin nets introduced there. Similarly, graphs
have been introduced in [27, 28] to accommodate nonlo-
cal couplings and to describe phase transitions between a
geometric phase (i.e., a phase where, for instance, a space
time dimension can be defined) and a nongeometric phase.
We leave the exploration of the ensuing structures for future
work.

9. Outlook

In this work, we discussed several concepts and tools which
arose in the spin foam, loop quantum gravity, and group field
theory approach to quantum gravity and applied these to
finite groups. We encountered different classes of theories:
one is the well-known example of the Yang-Mills-like the-
ories; others are the topological BF-theories. The latter are
also well known in condensed matter and quantum com-
puting. A third class of theories are the constrained models
discussed in Section 5.3 which mimic the construction of the
gravitational models. These are only applicable for the non-
Abelian groups as for the Abelian groups the invariant Hilbert
space associated to the edges is always one dimensional and
cannot be further restricted. We plan to study these theories
in more detail in the future, in particular the symmetries
and the associated transfer or constraint operators. The
relative simplicity of these models (compared with the full
theory) allows for the prospect of a complete classification
of the choices for the edge projectors and hence of the
different constrained models. For the study of the translation
symmetries in the non-Abelian models, it might be fruitful
to employ a non-commutative Fourier transform [25, 26,
207, 244-246]. This would define an alternative dual for
the non-Abelian models, in which the edge projectors carry
delta function factors, however defined on a noncommutative
space.

We also mentioned the possibilities to obtain gravity-
like models by breaking down the translation symmetries of
the BF-theory. This could be particularly promising in the
canonical formalism where one can be guided by the form of

21

the Hamiltonian constraints for gravity. This strategy is also
available for the Abelian groups. In particular for Z,, it is in
principle possible to parametrize all possible Hamiltonians
or partition functions and to study the associated symmetry
content. See also the universality result in [89]. Hence, there
might be a definitive answer whether gravity-like models
exist, that is, 4D (Z,) lattice models with translation symme-
tries based on the 4-cells (or the dual vertices).

Finally, we hope that these models can be helpful in order
to develop techniques for coarse graining and renormaliza-
tion of spin foam models and in group field theories. Here,
the connection to standard theories could be exploited, and
techniques can be taken over from the known examples and
with adjustments being applied to quantum gravity models.
To this end, the finite group models could be an important
link and provide a class of toy models on which ideas can be
tested more easily. For instance, the connection between (real
space) coarse graining of spin foams and renormalization
in group field theories, which generate spin foams as the
Feynman diagrams, could be explored more explicitly than
in the (divergent) SU(2)-based models.

It will be particularly interesting to access the many-
particle regime, for instance, using the Monte Carlo simula-
tions, which for the full models is yet out of reach. In the ideal
case, it might be possible to explore the phase structure of the
constrained theories and to study the symmetry content of
these different phases.
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Endnotes

1. In some cases, the resulting models might then be
reformulated as “tiling” models on a fixed lattice [30-32].

2. The small-spin regime arises as the spin is just a label
for representation of the group, and for finite groups
there is only a finite number of irreducible unitary
representations.

3. 'The models can be extended to oriented graphs. We will
however not be interested in the most general situation
but will assume that the lattice or more generally cell
complex is sufficiently nice in order to construct the dual
lattices or complexes. Later on, we will also need to be
able to identify higher-dimensional cells (2-cells and 3-
cells) in the lattice.

4. The reader may be more familiar with the form of the
model in which the variables take the values g, € {-1, 1},
which corresponds to the matrix representation of Z,:
g — €9 These are two realizations of the same
model, and their partition functions may be related by
the following redefinition:

Z5M = e FZ0)

iye (104)
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10.

11.
12.

13.

14.

15.

16.

17.

Note that the factors of g disappear because

@ 15 1%
890 ==>%(9) == x(9). (105)
qg:O qg:()

Note that in this particular example we are abusing
language twice as we do have neither a “spin” nor a
“foam”. The term spin arises in the full models from using
the representation labels (spin quantum numbers) of
SU(2). The proper “foams” arise for lattice gauge theories
as a higher-dimensional generalization of the spin nets
introduced in this section.

Here, we assume that the lattice possesses trivial coho-
mology; otherwise,one may find the so-called topologi-
cal models, see [94].

This definition is taken over from [83], in which similar
objects, known as branched surfaces, were defined for
spin foams. We will discuss such objects directly in the
following section. In general, such discussions in this
paper are motivated by similar considerations for spin
foams-like structures appearing in lattice gauge theories
[1-6, 83, 84].

The free energy is defined with respect to the partition
function as

F=logZ. (106)
In the perturbative expansion, contributions to the free
energy come from single spin nets, whereas the partition
function contains contributions from arbitrary products
of spin nets embedded into the lattice.

For the non-Abelian groups, the branchings or spin foam
edges carry intertwiners between the representations
associated to the surfaces meeting at the edges.

A Wilson loop is a contiguous loop of lattice edges.

The orientation of the edges is the one induced by the
orientation of the face and g, = g;ll, where ™! is the
edge with opposite orientation to e.

Indeed, in the zero-temperature limit, the partition
function for the Ising gauge models enforces all plaquette
holonomies to be trivial. This coincides with the parti-
tion function of the BF-theories discussed in Section 4.

Here, A and * are the exterior product and the Hodge
dual operators on space time forms.

As before, the product on Z_ is an addition modulo g:

hf (ge) = ZO (f’ e) YGe- (107)
ecf

However, one should note that not all divergences are

due to this gauge symmetry [105, 106].

In 2d, this symmetry degenerates into a global symmetry
since the Gauss constraints force all k ¢ to be equal: k; =
k. However, the contribution of every representation
label & to the partition function is the same.

18.

19.

20.

21
22.

23.
24.

25.

26.

27.

28.
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The gauge parameters are then the Lie algebra-valued
fields, and for the Lie algebra of SU(2), they truly
correspond to translations.

More specifically, we consider only complexes which are
such that the gluing maps used to successively build
up k are injective. This in particular means that the
boundary of each face contains each edge at most once.
With certain choices for amplitudes, this condition can
be relaxed slightly; see, for example, [85-87].

This can be easily shown by proving that P, = P,
resulting from the unitarity of all representations, and
that (P,)> = P,, which uses the translation-invariance

and normalization of the Haar measure on G.
It is defined by p*(h) 5, = p(h™" ),

Not that there is some ambiguity in the literature about
what is actually called the 6 j-symbol, which is a question
of the correct normalization. We mean the normalized
6j-symbol here, since we chose the intertwiners to be
normalized in the first place. The normalization, which
usually results in nontrivial edge amplitudes, can be
absorbed into the vertex amplitude. Also there might be,
according to convention, some sign factors assigned to
the edges e, which may not be absorbable into the vertex
amplitudes .

We are thankful to Frank Hellmann for this insight.

See [41, 119-121] for a possibility to introduce a slicing
of triangulations into hypersurfaces, and a transfer
operator based on the so-called tent moves.

All functions have finite norm since we consider finite
groups.

In the limit of taking the discretization in time direction
to the continuum, we would obtain the same projector
as for finite time discretization. Indeed, the projectors
already encode for finite time steps the “Hamiltonian”
constraints, which are the generators of time translations
(time reparametrization symmetry).

Here, fvs is a unitary operator, so that the condition on
the physical states is in the form of a so-called stabilizer.
Alternatively, the condition can be expressed by self-
adjoint constraints évs (y) =i, (y)-T,, (y™")) for group
elements y with y#y~'. Otherwise, define C, (y) =
I, (y) — Idg. Physical states are then annihilated by the
constraints.

While we refer the reader to [18] for various definitions,
it is perhaps not unwise to match up right here the
defining properties of a closed D-colored graph 98 with
those of a trace invariant: (i) 98 has two types of vertex,
labelled black and white, that represent the two types of
tensor, T and T, respectively. (ii) Both types of vertex are
D-valent, which matches the property that both types of
tensor have D-indices. (iii) & is bipartite, meaning that
black vertices are directly joined only to white vertices
and vice versa. This is in correspondence with the fact
that indices are contracted in covariant-contravariant
pairs. (iv) Every edge of & is colored by a single element
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of {1,..., D}, such that the D-edges emanating from any
given vertex possess distinct colors. This represents the
fact that the indices index distinct vector spaces so that
a covariant index in the ith position must be contracted
with some contravariant index in the ith position. (v) %
is closed, representing that every index is contracted.

29. 'These couplings are in general exponentially suppressed
with respect to some nonlocality parameter, like the
distance or size of the Wilson loops. In this case, one
would still speak of a local theory.
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