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1 Introduction

The coupling constants of general relativity are the cosmological constant, Λ, and New-

ton’s constant, G. They measure respectively the resistence of spacetime to expansion and

bending. A simple extension of the theory is to take the metric and the connection as

independent fields, which allows the spacetime manifold to have non-trivial torsion. In this

framework, largely unconstrained by current observations [1–3], there is a new fundamen-

tal coupling constant. It has the same dimensions of Newton’s constant, and it can be

conveniently parametrized as Gγ, with γ a real dimensionless coupling. This additional

constant enters the coupling of the gravitational field to the elementary spin of particles

sourcing the torsion.

From a lagrangian perspective, this coupling constant multiplies the term ǫµνρσFµνρσ ,

where ǫµνρσ is the Levi-Civita pseudotensor and F is the curvature of the independent
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connection. When torsion is zero, i.e. when the connection is fixed to be the metric-

dependent Levi-Civita connection, its curvature coincides with the Riemann tensor, and

the above term vanishes identically due to the first Bianchi identities. For this reason,

ǫµνρσFµνρσ is usually discarded in both the classical and the quantum theories. This term

has been known for a long time [4, 5], and it acquired much attention in the last twenty years

with the development of loop quantum gravity (LQG) [6–8]. As shown by Holst [9], the

term is necessary to perform the canonical transformation from the traditional Arnowitt-

Deser-Misner variables for general relativity in the Hamiltonian formalism (spatial metric

and extrinsic curvature), to the gauge-theory-like Ashtekar-Barbero variables [10, 11] used

in LQG. Furthermore, the coupling constant γ coincides with the Immirzi parameter, that

is the real number parametrizing the canonical transformation [12]. Conforming with this

literature, we will refer to the term ǫµνρσFµνρσ as the Holst term, and to its coupling

constant γ as the Immirzi parameter.

The classical irrelevance of the Holst term can be formally extended at the quantum

level: if one restricts the integration to invertible metrics, then the integral over the connec-

tion can be performed exactly, and the usual second order formalism is recovered, with no

left-over dependence on γ. On the other hand, if one allows degenerate metrics in the path

integral, then configurations with non-zero torsion will contribute. The idea that a phase

with 〈gµν〉 = 0 plays a role in non-perturbative quantum gravity has often appeared in

the literature (e.g. [13–16]). One might wonder whether such contributions trigger a non-

perturbative quantum relevance of γ. Loosely speaking, one is considering the possibility

that the gravitational degrees of freedom are better described at high energy by the con-

nection, rather than the metric. This is indeed the set-up of LQG. This approach suggests

that γ plays a major role in non-perturbative quantum gravity. In particular, the famous

kinematical area gap of the theory, A = 4
√

3π~Gγ, is proportional to it [17], and recent

definitions of the non-perturbative quantum dynamics depend explicitly on it [18]. A possi-

ble running of γ within this framework is discussed for example in [19]. Within a quantum

field theory approach, a natural setting in which to look for such a non-perturbative role

of γ could perhaps be that of the asymptotic safety scenario [20–24], and an attempt of

contact in this direction has been recently considered in [25], using a specific truncation of

the functional renormalization group equations.

Motivated by these ideas, one wonders whether the relevance of this coupling constant

at the quantum level can be understood using more conventional methods. In this paper

we consider perturbative quantum gravity, and compute the 1-loop effective action of grav-

ity with the Immirzi parameter. Although non-renormalizable, the theory makes sense as

an effective field theory [26, 27]. We use standard methods, such as the background field

formalism and the heat kernel expansion, which have been extensively applied to quan-

tum gravity [28]. The novelties of our work are the use of the tetrad and connection as

independent variables, and the inclusion of parity-odd terms.

Like in the second-order formulation [29, 30], we find that the pure gravity theory is

1-loop renormalizable, and a running of the coupling constant G is inessential. In addition,

we find that also the running of γ is inessential. Motivated by making contact with non

perturbative results, we also consider an off-shell renormalization condition for γ. In this
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scheme, both G and γ run, and we find two fixed points, at γ = 0 and γ = ∞, respectively

IR and UV attractive.

The situation changes radically if sources of torsion are present, notably in the case

of fermion coupling to gravity. Now the first and second order formulations differ by the

presence, in the first case, of an extra four-fermion contact interaction, and can be thus

distinguished as physical theories. The contact interaction is induced by the coupling

between the connection and the fermionic currents, and depends explicitly on the Immirzi

parameter, which then becomes a quantity a priori classically measurable.

At the quantum level, we find that γ becomes an essential parameter, and furthermore

that it is naturally renormalized, since four-fermion interactions are generated by radiative

corrections. These radiative corrections are found also in the second-order formulation of

the theory [31, 32], where they belong to the non-renormalizable type. On the contrary,

our results show that working in the first-order formalism, the Holst term provides a nat-

ural counter-term to them. We focus mainly on the simplest gravity-fermion system, that

is minimally-coupled Majorana spinors. In this case, we can use previous results [32] to

derive the 1-loop effective action for the coupled system. We compute the beta function

of the Immirzi parameter, and show that in the presence of fermions there are no fixed

points, apart from the special values γ2 = 1 which correspond to general relativity in

self-dual variables [10, 43, 44]. Non-renormalizable logarithmic divergences also appear, as

expected from the second order formalism [31, 32]. Finally, we comment on implications

and extensions to non-minimal couplings, which are likely to require a more general bare

gravitational action.

In all considered cases, the running of the Immirzi parameter is driven by quadratic

divergences. These are usually discarded in the framework of dimensional regularization,

but if the cut-off provides an actual physical scale in the effective field theory, then it

would be uncautious to neglect them. Quadratic divergences might play important roles

in systems coupled to gravity, as emphasized in [33, 34] (see however [35]).

The paper is organized as follows. In section 2 we introduce the general first-order

formalism. We review the Holst action and its relation to general relativity and theories

with torsion. In section 3 we present the general 1-loop algorithm, and then the details of

the pure gravity calculation in section 4, section 5 and section 6. In section 7 we study the

fermion-coupled system. Conclusions and perspectives are collected in section 8. We work

in Euclidean signature, as customary in the perturbative quantum gravity literature. The

appendix contains a list of conventions and useful formulas.

2 First-order action for gravity

As we will later couple gravity to fermions, we work from the beginning with tetrads instead

of the metric. In the first order formalism we take as independent variables the tetrad eIµ,

and a connection ωIJµ in the local gauge group SO(4). If we do not require a priori the

invertibility of the tetrads, there are only six possible invariants under diffeomorphisms
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and local gauge transformations. Accordingly, the most general action reads

S[e, ω] =
1

κ2

{

2Λ

∫

e−
∫

1

2
ǫIJKLe

I ∧ eJ ∧ FKL − 1

γ

∫

eI ∧ eJ ∧ F IJ
}

(2.1)

+α1

∫

ǫIJKLF
IJ ∧ FKL + α2

∫

F IJ ∧ FIJ + α3

∫

(

T I ∧ TI − eI ∧ eJ ∧ F IJ
)

,

where F IJ(ω) = dωIJ + ωIK ∧ ωKJ is the curvature, and T I = dωe
I the torsion. The first

two terms give the Einstein-Cartan action [1, 36–38], with Λ the cosmological constant and

κ2 = 16πG, and the third is the Holst term ǫµνρσFµνρσ . The remaining three terms, in the

second line of (2.1), are the topological Euler, Pontrjagin and Nieh-Yan classes. T I ∧ TI
is the only torsion-squared term that can be written without the inverse metric, and it

coincides with the Holst term up to a boundary contribution (the Nieh-Yan invariant).

The Holst, Pontrjagin and Nieh-Yan terms are parity-odd in vacuum.

When the Nieh-Yan invariant vanishes, the coupling constant γ coincides with the Im-

mirzi parameter which permits to write the canonical theory as an SU(2) gauge theory [9].

When the Nieh-Yan invariant is non-zero, also α3 contributes to this canonical transfor-

mation [39, 40]. In the following, we will consider only spacetimes with trivial topologies,

thus we can identify the sole coupling γ with the Immirzi parameter.1

Equivalence of (2.1) with general relativity is easily established in the sector of invert-

ible tetrads. The field equations are

(1/γ + ⋆)IJKL e
K ∧ dωeL = 0, (2.2)

(1/γ + ⋆)IJKL eJ ∧ FKL(ω) − Λ

6
ǫIJKLe

J ∧ eK ∧ eL = 0. (2.3)

Here ⋆ = (1/2)ǫIJKL and 1 = δIJKL = δI[Kδ
J
L], and the square brackets mean weighted an-

tisymmetrization. Notice that 1/γ + ⋆ is not invertible for γ2 = 1, where it becomes a

projector on the self/antiself-dual parts of the Lorentz group. Assuming γ2 6= 1, and an

invertible tetrad, (2.2) implies the vanishing of the torsion, and it has the unique solution

ωIJµ (e) = eIν∇µe
νJ , (2.4)

where ∇µ denotes the covariant derivative with Levi-Civita connection. Then its curvature

gives the Riemann tensor, F IJµν (ω(e)) ≡ eIρeJσRρσµν(e), and (2.3) reduces to the Einstein’s

equations in the tetrad form RµI − 1
2Re

µ
I + ΛeµI = 0. Notice that the term proportional to

the Immirzi parameter vanishes due to the Bianchi identity ǫµνρσRµνρλ(e) ≡ 0. Hence we

recover the standard metric formulation, and the Immirzi parameter completely drops out

of the theory.

For the special value γ = 1 (and similarly for γ = −1), the antiself-dual components

of the fields completely drop out of the formalism, and one is dealing with a formulation

of gravity in terms of self-dual variables only [10, 43, 44].

1We would like to stress that from this perspective, the Immirzi parameter is simply a coupling constant

which is necessarily present in the action if one chooses to work with independent tetrad and connection.

For instance, it appears also in the same first-order formulation applied to supergravity [41, 42].
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At a formal level, the Immirzi parameter allows us to “interpolate” between different

formulations of the theory: for γ → ∞ we obtain the simple Einstein-Cartan version of first-

order gravity, whereas for γ → 0 we recover the second-order formalism with no torsion.

This can be seen when the Nieh-Yan invariant vanishes. Then the Holst term equals the

torsion-squared term, and by introducing an auxiliary 2-form field B we can rewrite it in

the path integral as 1
γT ∧ T → 2B ∧ T + γB ∧ B: the limit γ = 0 now yields a Lagrange

multiplier enforcing T = 0, i.e. the second-order theory. These changes of formulations

have clearly no consequences at the classical level, but might lead to different quantum

theories. In this respect, the above formal manipulation has been used in [45] to argue

that γ controls the quantum fluctuations of the vanishing torsion condition.

If we do not require the invertibility of the tetrad, (2.1) is the most general action

invariant under diffeomorphisms and local Lorentz transformations: All other invariants

require either the invertibility of the tetrad or the use of auxiliary fields. However, we are

not aware of any symmetry or other mechanism to protect this remarkably simple structure

of the action. If one allows the use of inverse tetrads, there is again an infinite number

of terms that can appear in the action. To study the invariants in the sector of invertible

tetrads, it is convenient to parametrize the connection as

ω = ω(e) +K, (2.5)

in terms of the spin connection (2.4) and the contorsion tensorK, which satisfiesKI
J∧eJ =

T I . The contorsion is antisymmetric on the last two indices, and we can use the tetrad to

project it to a spacetime tensor Kµνρ = −Kµρν .

Using (2.5), we can package the invariants in terms of the more familiar contractions

of the Riemann tensor Rµνρσ(e), and of the contorsion Kµνρ. The unique invariant of zero

dimensions is the usual volume term det eIµ, already included in (2.1). The dimension-two

invariants of (2.1) decompose as follows,

1

2
ǫIJKLe

I ∧ eJ ∧ FKL = (d4x)e[R(e) +KµνρK
νµρ −Kµ

µρKν
νρ] + boundary term, (2.6)

eI ∧ eJ ∧ F IJ = (d4x)Kµν
λKρσλǫ

µνρσ + boundary term. (2.7)

Hence, we can view the theory in (2.1) as a theory of gravity plus (non-dynamical) tor-

sion [2]. In particular, we see from (2.7) that the Holst term is non-trivial on-shell only

in the presence of torsion, as anticipated above. The four terms appearing here do not

exhaust the set of dimension-two invariants of Rµνρσ(e) and Kµνρ. The complete list is

eR(e), (2.8a)

eKµνρKµνρ, eKµνρKνµρ, eKµ
µρK

ν
νρ, (2.8b)

Kµν
λKρσλǫ

µνρσ , KµνρK
λ
λσǫ

µνρσ . (2.8c)

Two new terms are possible, with respect to those present at this order in (2.1), thanks to

the invertibility of the tetrad.2

2In the literature, e.g. [5], two additional parity-odd terms are reported, Kµν
λKλρσǫ

µνρσ and

Kλ
µνKλρσǫ

µνρσ. However, these are not independent from the two already in (2.8c), due to algebraic

identities such as ǫAB[C
[EδD]

F ] = −ǫCD[A
[EδB]

F ].
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Among the invariants of dimension four, we find the terms R2
µνρσ, R

2
µν , and R2 of the

metric formalism, as well as many new ones. For example, we have a new parity-odd term,

the Hirzebruch signature invariant, RµνρσRαβγδg
µ[αgνβ]ǫρσγδ, related to the Pontryagin

class in (2.1). We then have terms of type K4, terms of dynamical torsion3 ∇K∇K, as

well as mixed terms, such as K2R, etc. A moment of thought shows that there is a plethora

of such terms. For instance, there are 15 independent parity-even ∇K∇K terms [47].

These circumstances make an effective field theory approach appear daunting. In

particular, the question of identifying enough physical observables to distinguish all the

coupling constants seems to strongly limit the predictive power of an effective theory based

on this formulation. Although this is certainly an interesting set-up to explore, in the

following we will mainly concentrate on a bare action of the type (2.1). In view of the

list of invariants in (2.8), one might think that, as we are not including the full list of

dimension-two terms in our action, radiative corrections will produce non-renormalizable

divergences proportional to the missing terms. However, we will see that both for pure

gravity, and for gravity minimally coupled to fermions, such divergences are harmless.

3 1-loop effective action: the algorithm

The 1-loop effective action for general relativity has been extensively studied in the litera-

ture, however, to the best of our knowledge, never in the set-up here considered, that is the

tetrad and connection taken as independent fields, and the inclusion of parity-odd terms.

The closest to it is probably the first-order case of [48], but it differs for the use of metric

variables and, more importantly, for the absence of the Holst term.

To quantize the theory we will use the background-field method (e.g. [28, 49]) and a

1-loop perturbative expansion. We introduce the change of variables

eIµ → eIµ + κf Iµ, ωIJµ → ωIJµ + κwIJµ = ω̄IJµ (e) +KIJ
µ + κwIJµ (3.1)

with f and w the quantum fields, e and ω the background fields, which we take generic (in

particular off-shell) for the time being. The only restriction we impose on the background

tetrad is to be invertible, which allows us to decompose ω as in (2.5). This has important

consequences, for as we discussed above, it means that there is an infinite number of

invariants that exist. The quantization will then generate an infinite number of terms, and

we are led to a situation familiar from the metric formalism.

It would certainly be interesting to consider more general backgrounds. Classical

solutions with non-invertible tetrads are known (e.g. [13, 50]), and these could introduce

interesting physical effects through torsion and parity breaking. However, apart from

physical motivations one might wish to discuss, we stress here that there are technical

necessities to take the background invertible. First of all, the action starts with a cubic

term (of the type eeω), hence the Hessian around a non-invertible tetrad would be badly

3Note that, in presence of ∇K∇K terms, the torsion becomes dynamical and the equivalence between

the first- and second-order formulations of gravity gets broken. However, torsion would have a mass of the

order of the Planck mass, thus it would still be non-propagating at low energies (see also [46] for a nice

analogy to the Higgs phenomenon).
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degenerate,4 and we would have troubles in using perturbation theory. A related issue

comes from the need to gauge-fix the invariance under diffeomorphism. The usual covariant

gauge-fixings require the inverse background metric.5

Before entering the details of the perturbative expansion, let us give a brief overview

of the algorithm. The 1-loop effective action is determined by the Hessian of S evaluated

on the background fields. On-shell, the Hessian has zero-modes because of gauge and

diffeomorphism symmetries. Therefore, we need to add a gauge-fixing term, as well as a

ghost term to represent the Faddeev-Popov determinant associated to the gauge fixing. We

define the total action

Stot[e, ω; f,w; ghosts] = S[e+κf, ω+κw]+Sgf [e, ω; f ]+Sgh[e, ω; ghosts] = Ŝ+Sgh, (3.2)

from which we wish to compute the 1-loop effective action

Γ[e, ω] = S[e, ω] +
1

2
Tr ln Ĥ − Tr lnHgh, (3.3)

where Ĥ and Hgh are the Hessians of the gauge-fixed action Ŝ and the ghost term Sgh re-

spectively, both evaluated on the background fields, and Tr denotes the trace of an infinite-

dimensional operator (that is, it includes the spacetime integral). Note that following the

background field method’s protocol, we are identifying in (3.3) the background fields with

the mean fields, arguments of the effective action. At the same time the gauge-fixing term

is chosen in such a way to preserve the symmetry under simultaneous transformations of

the background and fluctuation fields, while breaking of course the genuine gauge transfor-

mations of the fluctuation fields. In this way, one obtains a gauge-invariant effective action,

i.e. we are guaranteed that only gauge-invariant terms are generated upon quantization.

The operator traces can be evaluated following the standard trick of rewriting

Tr lnH = −
∫ ∞

0

dt

t
Tr
[

e−tH
]

, (3.4)

and then using the heat-kernel expansion

Tr
[

e−tH
]

=
1

(4πt)2

∫

d4x
√
g
[

tra0 + t tra1 + t2 tra2 + o(t3)
]

. (3.5)

Here tr denotes the trace over the spacetime/internal indices. Formulas for the heat-kernel

coefficients ai for several type of operators can be found in the literature, and we will report

below those of our interest.

4Even identically zero, if we wanted to do perturbation theory around the vanishing solution eI
µ = 0,

which proved so succesfull in 2+1 gravity [15].
5One could consider alternative gauge-fixing procedures, but this does not seem to improve the situation.

One could consider a generic background, and introduce an auxiliary invertible metric only through the

gauge-fixing term, as done in topological field theories. The physical results should not depend on the

auxiliary metric, but the intermediate calculations will again introduce all possible invariants in the auxiliary,

invertible metric. Or, one could take a non-covariant gauge-fixing such as hµ0 = 0 (e.g. [51]), but then also

non-invariant expressions should be produced.
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In the following, we will be interested in the ultraviolet divergences, and it is easily seen

that these arise from the first three terms of the heat kernel expansion, after integration

over t. The remaining terms are UV-finite. In a standard fashion, we introduce a UV-

cutoff ΛUV by substituting the lower bound of integration on t with 1/Λ2
UV . This gives the

following regularized expression for the divergent 1-loop contributions to (3.3),

Γdiv
1−loop = − 1

32π2

∫

d4x
√
g

[

1

2
Λ4
UV trâ0 + Λ2

UV trâ1 + 2 ln(ΛUV /µ) trâ2

]

+
1

16π2

∫

d4x
√
g

[

1

2
Λ4
UV tragh0 + Λ2

UV tragh1 + 2 ln(ΛUV /µ) tragh2

]

.

(3.6)

In general, the coefficients contain all possible invariants of the tetrad and contorsion,

thus we expect quartic divergences proportional to the volume, and quadratic ones pro-

portional to the various terms in (2.8). In particular, the quadratic ones can renormalize

the bare couplings of (2.1). Before giving the details of this expression and evaluating the

coefficients, we need to discuss the gauge-fixing procedure and the expansion of the action.

4 Perturbative expansion

4.1 Gauge-fixing and ghosts

In Einstein-Cartan theory, it is sufficient to gauge-fix the tetrad to remove the degeneracy

of the action under diffeomorphisms and Lorentz transformations. This is still true in the

presence of the Holst term, provided γ2 6= 1. For these special values, the action reduces to

general relativity in self-dual variables, and as explained earlier only half the components

of the connection can be solved for. Consequently, our formulas will present singularities

at γ2 = 1. In the following we will assume γ2 6= 1 and not discuss general relativity in

self-dual variables.

The action is invariant under diffeomorphism and internal gauge transformations, re-

spectively (at the order we are interested in)

δξf
I
µ = eIρ∇µξ

ρ − ξρωIJρ eµJ , (4.1)

δλf
I
µ = λIJe

J
µ, (4.2)

with the background fields kept fixed. To fix the gauge, we partially follow [31]. We use

the projections fµν = f IµeνI , and decompose them into the symmetric, sµν = fµν + fνµ
with trace s, and antisymmetric parts, aµν = fµν − fνµ. They transform respectively as

δξsµν = ∇µξν + ∇νξµ, δξaµν = ∇µξν −∇νξµ + ξρωIJρ eνJeµI − ξρωIJρ eµJeνI , (4.3a)

δλsµν = 0, δλaµν = 2λIJe
J
µe
I
ν . (4.3b)

This decomposition has the advantage of disentagling the symmetries. Gauge-fixing

terms can be added to the action as one-parameter families,

Sgf =
1

2α

∫

eFµFµ +
1

2β

∫

e aµνa
µν , (4.4)
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where

Fµ = ∇νsµν −
1 + ρ

4
∇µs, (4.5)

and α, β and ρ are real parameters characterizing different gauge choices. The F term

is the standard family used to break the diffeomorphism symmetry. The breaking of the

Lorentz symmetry (4.2) by the aµν term can be seen by a counting argument: so(4) has

6 generators, thus fixing this symmetry means to fix 6 components of fµν , exactly the

number of components of its antisymmetric part aµν .

Let us write the symmetry transformations (4.3) as

sµν → sµν + Q̂(s)α
µνξα ,

aµν → aµν + Q̂(a)α
µνξα + 2λµν ,

and the gauge fixing function as Fµ = F̂ ρσµ sρσ. Then the Faddeev-Popov prescription gives

for the ghost term

Sgh =

∫

e
(

c̄µ χ̄µν
)

(

F̂αβµ 0

0 δαβµν

)(

Q̂(s)ρ
αβ 0

Q̂(a)ρ
αβ 2δρσαβ

)(

cρ
χρσ

)

=

∫

e

{

c̄µ(∇2δρµ +Rρµ +
1 − ρ

2
∇µ∇ρ)cρ + 2 χ̄µνχµν

+ χ̄µν(∇µcν −∇νcµ + 2 cρωIJρ eµIeνJ)

}

.

(4.6)

The χ̄C cross-term can be dropped as it does not contribute to the Faddeev-Popov deter-

minant, thanks to the triangular structure of the matrix.

4.2 Quadratic variation

We now come to the expansion of the action. For simplicity, we disregard from now on the

topological terms, and fix Λ = 0. This is sufficient for our present goals. Hence, we work

from now on with the basic action

S[e, ω] = − 1

κ2

∫

tr

{(

⋆+
1
γ

)

e ∧ e ∧ F [ω]

}

, (4.7)

and the gauge-fixing and ghost terms (4.4) and (4.6).

We take the change of variables (3.1) and expand to second order in the quantum

fields. It is convenient to work with the following projections,

fµν = f IµeνI , wI,JK ≡ eIµwJKµ .

Then, the second variation of the action can be written as

S(2) = −1

2

∫

e
{

fµνM11
µναβfαβ + 2wI,JKM12

µν
I,JKfµν + wI,KLM22

A,BC
I,JK wA,BC

}

, (4.8)

where the kinetic operator Mij is a function of the background fields eIµ and KI,JK , and

only the off-diagonal term M12 contains (first) derivatives. To write Mij explicitly, we

define the matrix

P I,JKA,BC ≡ δIA (1+ ⋆/γ)JKBC . (4.9)
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We then have6

M11
µναβ =

1

2e
eνIe

β
Je
γ
Ce

δ
Lǫ
µαρσǫABKLP

K,IJ
C,AB

(

Rρσγδ + 2∇ρKσγδ + 2KργλKσ
λ
δ

)

(4.10)

M12
αβ
I,JK = eαAe

β
Bǫ

AQRSǫBQMNP
I,[JL
R,MN

(

δ
K]
L eσS∇σ − 2KS,L

K]
)

(4.11)

M22
I,JK
A,BC = 4P

[K,J ]I
[B,C]A (4.12)

with ∇µ the covariant derivative associated to the Christoffel connection Γλµν(e) of the

background metric.

In order to diagonalize the operator Mij, and obtain a second-order operator suitable

for the heat-kernel expansion, we make a field redefinition with trivial Jacobian, by leaving

f unchanged and defining

w → w̃ = w + [M22]
−1[M12f ]. (4.13)

This gives

S(2) =−1

2

∫

e
{

fµν([M11] − [M12]
T [M22]

−1[M12])
µναβfαβ + w̃I,KLM22

A,BC
I,JK w̃A,BC

}

, (4.14)

where the transpose [M12]
T is the same as [M12] but with an opposite sign for the derivative.

Notice that M22 is not diagonal in the algebraic indices. To find its inverse, we consider

the irreducible components of the connection. Recall that wA,BC transforms as a tensor in

the so(4) ∼= so(3) ⊕ so(3) representation

(1/2,1/2) ⊗ [(1,0) ⊕ (0,1)] = (3/2,1/2) ⊕ (1/2,3/2) ⊕ (1/2,1/2) ⊕ (1/2,1/2). (4.15)

The decomposition into (parity-even) irreducibles is realized by the three orthogonal pro-

jectors

P̄ I,JKA,BC = δIAδ
JK
BC − P̌ I,JKA,BC − P̂ I,JKA,BC , P̌ I,JKA,BC =

2

3
δA[Cδ

[J
B]δ

K]I , P̂ I,JKA,BC =
1

6
ǫABCDǫ

IJKD.

(4.16)

Using these projectors and their symmetry properties, one can show that

wA,BCM22
I,JK
A,BCwI,JK = wA,BC

[(

P̄ − 2P̌ − 2P̂
)

P
]I,JK

A,BC
wI,JK . (4.17)

In this block-diagonal form, M22 can be immediately inverted, to give

M−1
22 =

(

P̄ − 1

2
P̌ − 1

2
P̂
)

P−1. (4.18)

As anticipated, singularities are present at γ2 = 1, since

(P−1)I,JKA,BC =
γ2

γ2 − 1
δIA

(1− 1

γ
⋆

)JK

BC

. (4.19)

6Here and in the following, we will be rather blasé about raising and lowering the Euclidean indices I, J ,

etc.
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Collecting (4.11) and (4.18), we have

[M12
TM−1

22 M12]
αβµν = eαAe

β
Be

µ
Me

ν
Nǫ

AEFT ǫBEGHǫMQRSǫNQUV (4.20)

×P I,JLF,GHP
−1P,CD

I,JK

(

P̄ − 1

2
P̌ − 1

2
P̂
)X,Y Z

P,CD
PX,YWR,UV

×
[

− δKLe
τ
T∇τ − 2KT,LK

][

δWZe
σ
S∇σ − 2KS,WZ

]

The explicit evaluation of this expression is a rather tedious operation, which involves

contracting all the indices among the various projectors appearing in the second line. The

operation can be handled very efficiently using the algebraic manipulator Cadabra [52, 53].

We omit the extended result, which is very long and not directly relevant to our scopes,

and report below only the parts of interest.

The tensor algebra simplifies greatly for the terms with two covariant derivatives, since

the first P matrix multiplies its inverse. In particular, for the part symmetric in αβ and

µν we obtain

[M12
TM−1

22 M12]
(αβ)(µν)
2−derivatives ≡ −2(gµαgβν − gµνgαβ)∇2 − 2

(

gαβ∇µ∇ν + gµν∇α∇β
)

+4gαµ∇ν∇β + 2gµαRβν − 2Rαµβν +
1

γ
ǫαµρσRβνρσ , (4.21)

with symmetrization on αβ and µν on the r.h.s. implicitly understood. The Riemann

tensors appear from commuting covariant derivatives. Expression (4.21), together with

the Riemann part of (4.10), gives the usual linearized Einstein tensor on an arbitrary

background.7 In particular, the Riemann terms proportional to 1/γ cancel between the

two expressions.

4.3 Choosing the gauge

For γ2 6= 1, the integral over w does not require any gauge-fixing. Let us then focus on the

part of (4.14) depending only on the the tetrad fluctuation f , and denote Ĥf its Hessian,

including the gauge-fixing terms. Writing fµν = (1/2)sµν + (1/2)aµν , we have

fµνĤ
µναβ
f fαβ =

1

4
sµνĤ

(µν)(αβ)
f sαβ +

1

2
sµνĤ

(µν)[αβ]
f aαβ +

1

4
aµνĤ

[µν][αβ]
f aαβ. (4.22)

Without loss of generality, we can take the simplest gauge β = 0, and freeze completely

the aµν field. This limit can be smoothly obtained either by rescaling the aµν field, leading

to its disappearence from the rest of the action in the limit, or by rewriting the gauge

fixing action by means of an auxiliary field, which in the limit β → 0 becomes a Lagrange

multiplier, implementing the condition aµν = 0. Accordingly, we omit in the following the

contributions with one or more aµν fields, and look only at the pure sµν-part of the Hessian.

The remaining Hessian for sµν can be decomposed according to its number of covariant

derivatives, as

1

4
Ĥf =

1

4
(−M11 +Mgf +M12

TM−1
22 M12) = H2(∇µ) +H1(∇µ) +H0, (4.23)

7Modulo a term proportional to the equations of motion, coming from the use of tetrads — rather than

metric — fluctuations. See the comment at the end of section 5.

– 11 –



J
H
E
P
0
6
(
2
0
1
1
)
1
0
7

where the two-derivative operator comes from (4.21) as well as the gauge-fixing term (4.4),

H1(∇µ) comes from the mixed terms of (4.20) with one contorsion and one covariant

derivative, and finally H0 contains M11, the terms of (4.20) with two contorsions, and the

non-derivative terms in (4.21).

Once the explicit form of the Hessian is known, one typically looks for a gauge in

which the wave solutions on a flat background are null, that is a gauge in which the second

derivatives appear only in the form ∇2. A differential operator satisfying this condition is

called minimal. Explicitly, our second-order operator is

Hαβµν
2 = −1

2

[

gµ(αgβ)ν +

(

(1 + ρ)2

8α
− 1

)

gµνgαβ
]

∇2 (4.24)

+
1

4

(

1 + ρ

α
− 2

)

(

gαβ∇µ∇ν + gµν∇α∇β
)

+

(

1 − 1

α

)

gα(µ∇ν)∇β.

The gauge choice that leads to a minimal second-order operator is the De Donder gauge

α = ρ = 1. In such a gauge,

Hαβµν
2 = −Cαβµν∇2, Cαβµν = 2gµ(αgβ)ν − gµνgαβ , (4.25)

and the Hessian (4.23) can be casted in the following form,

1

4
Ĥf = C

[

− 1∇2 +Bµ∇µ +X
]

≡ CH̃, (4.26)

where Bµ∇µ and X are just the previous tensors H1 and H0 contracted with the in-

verse of C.

5 Heat-kernel expansion

After the gauge-fixing, the 1-loop effective action takes the form

e−Γ = e−Stot

∫

Ds e− 1
2
〈s,CH̃s〉

∫

Dc̄Dc e− 1
2
〈c̄,Hghc〉

∫

Dw e 1
2
〈w,M22w〉. (5.1)

Since [M22] contains neither derivatives nor any dynamical field, the w functional integral

can be performed8 with the standard Gaussian measure, giving a trivial factor 1/
√

detM22.

Doing so, one obtains a formal equivalence between the first and second order formalisms (at

least as long as one considers only observables built from the tetrad and not the connection),

along lines already appeared in the literature (e.g. [13, 54, 55]).9

Concerning the integral over the metrics, the standard De Witt’s prescription (see

also [56]) is to normalize with respect to the supermetric C,
∫

Dsµν e
− 1

2
〈s,Cs〉 = 1. (5.2)

8Note that −M22 is not positive definite for any value of γ: its eigenvalues are −1 ± 1/2γ, each with

multeplicity eight, and 4/3(5±
p

16 + 9/γ2)), each with multeplicity four. Therefore a proper definition of

the integral will require either an analytical continuation of some of the components of w, or the addition

of some other appropriate torsion-squared term, as suggested in [13].
9The equivalence clearly relies on the invertibility of the tetrad. As mentioned earlier, we do not look

here at possible effects arising from contributions of degenerate tetrads, which are expected to spoil the

equivalence.
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If we do so, we read from (5.1) the 1-loop effective action

Γ1−loop =
1

2
Tr ln H̃ − Tr lnHgh. (5.3)

Both operators are of the minimal form −∇2 +Bµ∇µ +X, and the heat-kernel expansion

for such operators is given for example in [32, 57]. The first coefficient a0 is just the identity1 over the internal indices, and the second coefficient reads

a1 =
1

6
R1+

1

2
∇µB

µ − 1

4
BµB

µ −X, (5.4)

where R is the Ricci scalar.

For the ghost contribution, the internal space is the vector space, and the Hessian can

be read from (4.6). In the chosen gauge, it reduces to

Hµν
gh = −gµν∇2 −Rµν . (5.5)

Therefore,

tr a0gh = 4 , tr a1gh =
5

3
R . (5.6)

For the gravitational contribution, the internal space are the symmetric indices (µν).

Disregarding total derivatives, the non-trivial part of the calculation amounts to computing

the traces of the operators BµB
µ and X. This we did starting from (4.20) and using

Cadabra to contract the indices. We found the following expressions,

tr[X] = 4R+
3

2
KµνρK

µνρ +
3

2
Kµ

µρKν
ρν +

3

2
KµνρK

νµρ (5.7)

+
1

e

(

9

2γ
ǫµνρσKµν

λKρσλ +
3

γ
ǫµνρσKµνρK

λ
λσ

)

,

tr[BµBµ] =
5 − 3γ2

γ2
KµνρK

µνρ +
3 − 13γ2

γ2
Kµ

µρKν
ρν +

3γ2 − 13

γ2
KµνρK

νµρ (5.8)

+
1

e

(

− 6

γ
ǫµνρσKµν

λKρσλ +
4

γ
ǫµνρσKµνρK

λ
λσ

)

.

Putting these results together, the divergent part of the 1-loop effective action, equa-

tion (3.6), gives

Γdiv
1−loop = − 1

32π2

{

Λ4
UV

∫

e− Λ2
UV

∫

eL1 − ln(Λ2
UV /µ

2)

∫

eL2

}

, (5.9)

with

L1 =
17

3
R(e) +

3γ2 + 5

4γ2
KµνρK

µνρ − 7γ2 − 3

4γ2
Kµ

µρKν
νρ +

9γ2 − 13

4γ2
KµνρK

νµρ

+
3

γe
ǫµνρσKµν

λKρσλ +
4

γe
ǫµνρσKµνρK

λ
λσ. (5.10)

As expected, all the dimension-two invariants have appeared in the quadratic divergences

(cf. (2.8)). L2 contains the dimension-four operators coming from the coefficient a2. This

is a very long expression which will not be needed in the following.

– 13 –



J
H
E
P
0
6
(
2
0
1
1
)
1
0
7

The result can be compared with the similar calculation performed in the metric

second-order formalism. The relation of the tetrad perturbation to the usual metric per-

turbation is given by

hµν = sµν + f IµfνI , (5.11)

according to gµν → gµν +hµν and gµν = eIµe
J
ν δIJ . The quadratic piece in (5.11) contributes

to the operator H0 in (4.23) an extra factor −2gα(µGν)β , where Gµν = Rµν − 1
2gµνR.

This contributes an extra Tr[−2(C−1)ρσµνgα(ρGσ)β ] = 2R to tr[X]. Adding this contribution

to (5.9) and setting K = 0, the result agrees with what we find in the second-order

formalism [58]. This provides a consistency check of our calculations.

6 Renormalization

We have isolated the contributions to the divergent part of the effective action. In this

section, we discuss how to renormalize it. It is well known in quantum field theory that the

S-matrix is unaffected by local field redefinitions in the effective action. As a consequence,

any term in the effective action which vanishes on-shell does not contribute to the S-

matrix. This is because we can always write such a term as proportional to the equations

of motion, and then we can reinterpret it as coming from an infinitesimal field redefinition.

In this sense, divergences which vanish on-shell are innocuous, as they can be eliminated

by field redefinitions. Furthermore, these same divergences are also gauge-dependent [28],

and gauges can be found where they are absent [59].

Pure quantum gravity at 1-loop turns out to be on-shell finite in all its formula-

tions [29, 30, 48], and the present one is no exception. Indeed, having assumed invertibility

of the tetrad, the equations of motion for (4.7) reduce to

Rµν = 0, Kµνρ = 0, (6.1)

and all the quadratic and logarithmic10 divergences in (5.9) vanish on-shell. Only the

quartic divergence survives, but there are at least two ways to deal with it. A natural one

is to keep, as in [30], Λ 6= 0 in the bare Lagrangian and reabsorb the quartic divergence

in the renormalized Λ. The second, is to modify the measure (5.2), carefully taking into

account δ(4)(0) terms, as suggested by Fradkin and Vilkovisky, with the consequence that

the quartic divergences are automatically cancelled [60–62].

As well-known, the situation changes at higher order. For spacetime dimensions greater

than three, Rµν = 0 does not fix all the components of the Riemann tensor, hence one

finds that at 2-loops the Rµν
ρσRρσ

αβRαβ
µν divergence survives on-shell, thus establishing

the non-renormalizability of gravity [63, 64]. While such terms will certainly be present

also in the first-order formulation we are considering here, it seems not possible to have

new non-renormalizable terms, as the equation Kµνρ = 0 fixes all the components of the

10Even if we did not exhibit the a2 coefficient, notice that any non-topological term in it must be

proportional to either Rµν or Kµνρ. The only exception would be RµνρσR
µνρσ, but this can be eliminated

by using the Gauss-Bonnet invariant [29].
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contorsion.11 Thus, the equivalence between the two formulations seems to persist at the

quantum level despite the non-renormalizability of the theory.

6.1 Off-shell running of the coupling constants

The situation will generally change in presence of a source for curvature or torsion, as we

will discuss in the following section. As a first step in that direction, one might consider a

different renormalization scheme for the pure gravity case, in which some of the divergences

are reabsorbed into a redefinition of the couplings. Specifically, we can consider a scheme in

which we reabsorb into coupling renormalizations all the divergences for which this can be

done, while for the others we use a field redefinition or introduce appropriate counterterms.

Such a scheme has been used e.g. in [48, 58], and it also comes closer to the spirit of the

calculations done in the context of the asymptotic safety scenario, where the running of

the traditionally inessential Newton’s constant can be motivated by the special role it

has in the theory [66]. With these considerations in mind, we now concentrate on the

quadratic divergences and proceed to examine the structure and consequences of such a

renormalization scheme.

The quadratic divergences proportional to the Ricci scalar (first term of the first line

of (5.10)) and to the Holst term (first term of second line of (5.10)) can be absorbed by a

non-minimal subtraction ansatz (see for example [33, 67, 68]):

1

κ2
R

=
1

κ2

(

1 − 17

3

1

32π2
κ2Λ2

UV + b1

)

, (6.2a)

1

γRκ2
R

=
1

γκ2

(

1 − 3

32π2
κ2Λ2

UV + b2

)

. (6.2b)

The requirement of cancellation of the divergences leaves the finite coefficients b1, b2 uncon-

strained. The usual minimal ansatz corresponds to taking b1 = b2 = 0, and it leads to renor-

malized couplings with no dependence on any renormalization scale µ. This is the choice

made by several authors in the literature, and of course it means that quadratic divergences

lead to no running of the couplings [35]. Alternatively, one can introduce a renormalization

scale (or sliding scale [49]) µ by using a different prescription. This can be done in a consis-

tent way with what one is forced to do at higher orders of the heat kernel expansion. There,

we meet also IR divergences, and these can be regulated by cutting-off the upper limit of

the t-integration at 1/µ2, for µ < ΛUV , as we have already implicitly done when writing

the logarithmic divergence as ln(Λ2
UV /µ

2). Keeping µ > 0 also for the first two (IR-finite)

terms of the heat kernel expansion, we find finite µ-dependent terms that can be naturally

absorbed in the redefinition of the couplings. In our case, this procedure leads to (6.2) with

b1 =
17

3

1

32π2
κ2µ2, b2 =

3

32π2
κ2µ2. (6.3)

11Since we are including parity-odd terms, one may expect also cubic combinations of the Riemann tensor

with one or more epsilon tensor to give rise to new non-renormalizable terms. However, these either vanish

on-shell or are proportional to topological terms [65].
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As emphasized in [67, 68], this type of ansatz is very natural from the point of view of the

Wilsonian renormalization group, as it corresponds to implementing the matching condi-

tions

κ2
R(ΛUV = µ) = κ2, γR(ΛUV = µ) = γ, (6.4)

stating the fact that the bare couplings represent the initial condition for the flows.

The non-minimal subtraction ansatz allows us to define non-trivial beta functions from

quadratic divergences. The beta functions are written for the dimensionless coupling con-

stants, hence we define the dimensionless Newton’s constant g ≡ 1
16πµ

2κ2. After rewriting

the renormalization conditions as

gR = g

(

1 +
17

6π
g
Λ2
UV

µ2
− 17

6π
g

)

, (6.5)

1

γR
=

1

γ

(

1 +
4

3π
g
Λ2
UV

µ2
− 4

3π
g

)

, (6.6)

we can finally obtain the beta functions

βg(gR) = µ
∂gR
∂µ

= gR

(

2 − 17

3π
gR

)

, (6.7)

βγ(gR) = µ
∂γR
∂µ

=
4

3π
γRgR. (6.8)

Some observations can now be made. First, we note that the beta function for Newton’s

constant is independent of γ.12 Second, γ = 0 and γ = ∞ are fixed points, consistently

with the result claimed in [25]. We find that the points are respectively IR- and UV-

attractive. If this were a physical feature, it would be nicely consistent with the idea that

the metric correctly captures the degrees of freedom of general relativity at low energies,

while the connection field becomes more important at high energies. On the other hand,

the points γ = ±1 seem to have no role. Finally, we also find a non-Gaussian fixed point

for the Newton constant, in agreement with the asymptotic safety conjecture [20–24], but

of course this goes beyond the realm of perturbation theory.

As already stressed, the running we just presented for γ is scheme and gauge dependent,

hence not physical. We will need to add a source of torsion in order to render it physical

and test whether any of the qualitative features we found persists. This is what we do in

the next section.

7 Adding fermions

The situation becomes more interesting if one includes torsion-generating matter, such

as fermions. In this case, we expect the theory to be non-renormalizable even at one

loop [31, 32], and to get a physical on-shell running for the Immirzi parameter.

12A γ-dependent renormalization of G has been considered in [69]. Notice that one could decide to

reabsorb into G the divergences of one of the last two terms in the first line of (5.10) (see (2.6)), instead of

that proportional to the Ricci scalar as we did. This would lead to a γ-dependent running of G. It would

be interesting to see whether this could have any bearing on the argument of [69].
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7.1 Fermion action and effective interaction

At the classical level, the effect of fermions coupled to the action (4.7) has been discussed

to a great extent, see in particular [70–72, 74]. The key point is that using (2.5), the field

equations simply fix the on-shell value of the contorsion K to be a unique combination of

fermion currents. Therefore, the connection can be effectively integrated out, and the cou-

pled system reduces to second-order tetrad gravity (with no torsion) coupled to fermions,

with the addition of an interaction term coming from the on-shell value of K. Let us briefly

review the relevant details. We consider the following action [71],13

Sψ[e, ω, ψ, ψ] = − i

4

∫

d4x e
(

(1 − iθ)ψγIeµI∇µψ − (1 + iθ)∇µψγ
IeµIψ

)

, (7.4)

where

∇µψ = ∂µψ +
1

8
ωµIJ [γ

I , γJ ]ψ. (7.5)

For θ = 0 we recover the standard minimal coupling. The interest of the non-minimal

coupling will become clear below. Notice that if the connection ωIJµ was torsionless,

ψγIeµI∇µψ + ∇µψγ
IeµIψ would be a total derivative, and as a consequence iψγIeµI∇µψ

would be Hermitian. Because of the presence of torsion, this is not true anymore, hence

one needs to keep both terms in (7.4), and the non-minimal term proportional to θ, be-

comes non-trivial.

If we use the decomposition (2.5) in the coupled gravity-fermion system, the total

action (4.7) plus (7.4) is quadratic inK, and so we can immediately solve the field equations

for it. A simple calculation gives

1

e

δSψ
δωIJµ

= −1

2
eµK

(

1

4
ǫIJKLA

L +
θ

2
δK[IVJ ]

)

,

1

e

δS

δωIJµ
= − 1

κ2
eµK [M22]

A,BC
K,IJ KA,BC ,

from which we find, for γ2 6= 1, the following unique solution,

K̄I,JK(ψ) =
κ2

8

γ2

γ2 − 1

(

1

2
ǫIJKL

(

AL − θ

γ
V L

)

− 1

γ
δI[J(AK] − θγVK])

)

, (7.6)

13For consistency with the rest of the paper we keep here the Euclidean signature. For the definition of

fermions in Euclidean space we follow the construction of [75, 76]. Our conventions are

{γI , γJ} = 2δIJ , (γI)† = γI , (γI)2 = 1 , (7.1)

γ5 = iγ1γ2γ3γ4, {γ5, γI} = 0, (γ5)† = −γ5, (γ5)2 = −1 . (7.2)

We have ψ = ψ†γ5, which ensures so(4)-invariance of the action. Other useful formulas are

{γK , [γI , γJ ]} = −i4ǫIJKLγ5γL, [γK , [γI , γJ ]] = 8δK[IγJ]. (7.3)
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expressed in terms of the fermionic vector and axial currents,

V I = ψγIψ, AI = ψγIγ5ψ. (7.7)

Hence, the reduced action takes the form

Scoupled[e, ψ] = S[e] + Sψ[ψ, e] + Sint[ψ, e], (7.8)

where both S and Sψ are evaluated at ω = ω(e), which in particular reduces S to the

standard Einstein-Hilbert action

S[e] = − 1

κ2

∫

d4x eR(e), (7.9)

and Sψ to the standard Dirac action

Sψ[ψ, e] = − i

2

∫

d4x eψγIeµI∇µ(e)ψ. (7.10)

The extra interaction term is

Sint =
1

2κ2

∫

d4x eK̄K,IJ [M22]
A,BC
K,IJ K̄A,BC

= −3κ2

128

( γ2

γ2 − 1

)

∫

d4x e
(

AIA
I − 2

θ

γ
AIV

I + θ2VIV
I
)

.

(7.11)

This is where all the dependence on the Immirzi parameter goes. The bottom line is

that taking the connection as an independent variable amounts to simply adding the four-

fermion interaction (7.11) to the usual second order formalism. The Immirzi parameter

has now acquired a physical meaning, as it enters explicitly the coupling between the grav-

itational field and the fermionic currents. Its “interpolating” role mentioned in section 2

is also clearer: for γ = 0 the solution to the equations of motion is K̄I,JK = 0, and there

is no four-fermion interaction, while for γ = ∞ we find instead what expected in the

Einstein-Cartan case.

An interesting feature of Sint is the presence of the parity-odd term AIV
I . This term

is responsible for gravity-induced parity breaking in the fermionic sector, but it is hugely

unconstrained by current observations [71], because of the weakness of the gravitational

coupling as well as the large effect already caused by the weak interactions. Notice that

there is no parity breaking effect for the minimal coupling θ = 0. This might look at first

puzzling, since the initial Holst term was parity odd. However, the assessment that the

Holst term is parity odd is made under the assumption of a parity-even torsion. On the

contrary, we see from (7.6) that the on-shell contorsion K̄ has an undefined parity. Then,

the Holst term can a priori acquire both signatures on-shell, and as it turns out from the

interaction term (7.11), for θ = 0 only a parity-even contribution remains.

For γ2 = 1, we obtain gravity in self-dual variables [10, 43, 44], and the only solution

from varying the connection is K = 0 and ψ = 0. That is, fermions can not be consistently
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coupled to gravity in self-dual variables using (7.4). An action to couple fermions to self-

dual gravity is given in [77]. In the following, we will not be interested in this case, and

assume γ2 6= 1 as we did in the previous sections.14

To complete this section on the classical theory, we give the remaining field equations.

From the variation of ψ we get

− iγIeµI∇µψ − 3κ2

32

γ2

γ2 − 1

(

γ5γIψAI + θ2γIψVI −
θ

γ
γ5γIψVI −

θ

γ
γIψAI

)

= 0, (7.12)

while the Einstein equations are

Gµν = −κ
2

2
T(µν), 0 = T[µν], (7.13)

with

T µν =
1

e

δ(Sψ + Sint)

δeIµ
eIν . (7.14)

The symmetric part of the (on-shell) energy-momentum tensor is given by

T (µν) =
i

4

(

ψγLe
(µ
L ∇ν)ψ−∇(νψγLe

µ)
L ψ
)

+
3κ2

128

γ2

γ2−1
gµν
(

AIA
I−2

θ

γ
AIV

I+θ2VIV
I

)

. (7.15)

Notice that it has acquired a trace, although we are working with massless fermions. This

is a consequence of the non-zero on-shell contorsion.

Moving on to the quantization of the coupled system, we could choose to start either

with the action (4.7)+(7.4), or with the partially on-shell (7.8).15 As we are now interested

in the on-shell renormalization, and since the contorsion field is non-dynamical, it turns

out that the two choices lead to identical results. For a matter of simplicity, we will choose

to work with the latter form of the action. Before going to the details, we need to discuss

some delicate issues on the renormalization of coupling constants in general relativity.

7.2 Essential and inessential couplings

By definition, a coupling constant is inessential if it can be removed by a field redefinition,

and so it does not enter in the S-matrix. Following [20], we know that a coupling g

is inessential if and only if ∂S/∂g vanishes when we use the equations of motion. Our

Lagrangian (7.8) has the structure

L = η
(

− 1

κ2
R− i

2
ψγIeµI∇µψ − κ2

2
(xA2 + yV 2 + zAV )

)

. (7.16)

14On the other hand, it has also been remarked in [72, 74] that the physical effects of the Immirzi

parameter due to its presence in (7.11), are equivalent to taking a further non-minimal coupling of the

fermions, with (1 − iθ)1 in (7.4) replaced by (1 − iθ)1 + (τ − iρ)γ5. With this starting point, the gravity-

fermion system alone can not operationally distinguish between γ and the other parameters θ, τ and ρ. In

particular in [72] it has been suggested the special choice θ = τ = 0, ρ = 1/γ, which has the advantage

that in the limit γ2 → 1 it reproduces the action of [77]. The flipside is that it corresponds to a fine-tuning

of the contorsion such that the Holst term reduces to the Nieh-Yan invariant, thus dropping the Immirzi

parameter out of the theory again. Furthermore, as we will show below this special coupling is unstable

under radiative corrections.
15The reader familiar with supergravity will recognize the latter as the so-called 1.5 formalism.

– 19 –



J
H
E
P
0
6
(
2
0
1
1
)
1
0
7

On-shell we find that ∂L/∂η = ∂L/∂κ2 = 0, that is, both η and κ2 are inessential couplings.

This means that we are allowed to set η = κ2 = 1 in our Lagrangian, since they can be

removed by trivial field redefinitions. To see this, we first rescale ψ → 1
κψ, obtaining

L =
η

κ2

(

−R− i

2
ψγIeµI∇µψ − 1

2
(xA2 + yV 2 + zAV )

)

. (7.17)

A further rescaling eIµ → κ√
ηe
I
µ, ψ → η1/4

κ1/2ψ eliminates the overall coupling from the action.

On the contrary, x, y and z are all essential couplings, and can not be eliminated.

Specifically,

x =
3

64

γ2

γ2 − 1
, y = θ2x, z = −2

θ

γ
x. (7.18)

We see that we have only two variables, θ and γ, for the three essential couplings. On

the other hand, radiative corrections will generically produce all three terms A2, V 2 and

AV , which will lead to quadratic divergences. Hence, we will not be able to reabsorb the

divergences into redefinitions of the sole two couplings γ and θ. Assuming that some magic

cancellations do not occur, we conclude that the quadratic divergences of the non-minimally

coupled system are not renormalizable at one loop.

A possible solution is to start with the other K2 terms in the bare gravitational action,

and hope to get in this way three independent x, y and z.16 Such terms are of course natural

to add, since we are not insisting in the non-invertibility of the metric. However, a simpler

solution is to fix θ = 0. In this way we are left with a single essential coupling x. In the

following, we will consider only the minimally coupled theory, and show that the quadratic

divergences can be renormalized using simply the Holst action.

7.3 1-loop results

For θ = 0, the action is given by

Scoupled[e, ψ] = −
∫

d4x e

{

1

κ2
R(e) +

i

2
ψγIeµI∇µ(e)ψ +

3κ2

128

( γ2

γ2 − 1

)

AIA
I

}

. (7.19)

This action coincides with the one considered by Barvinsky and Vilkovisky [32], with their

coupling constant α now a function of the Immirzi parameter, α ≡ γ2/(γ2 − 1). The 1-loop

calculation for (7.19) has already been performed in [32], and we can largely draw from

their results. The calculations of [32] were done for Lorentzian signature, but luckily, it

is not too difficult to adapt their result to our Euclidean choice, by carefully following

their steps and taking care of the different signs (in particular when ǫ tensors are being

contracted). The final results, i.e. the beta functions, actually turn out to be independent

of the signature.

The general 1-loop calculation is of the type outlined in section 3. The two new

ingredients introduced in [32] were a fermion-dependent modification of the gauge-fixing,

needed to maintain the gravitational Hessian in the form of a minimal operator, and a

16The same considerations apply to the most general non-minimal coupling of footnote 14: in this case,

as shown in [74], the action really depends on just three parameters, but now we would have four essential

couplings to renormalize, as there is an additional one in the kinetic term.

– 20 –



J
H
E
P
0
6
(
2
0
1
1
)
1
0
7

procedure to “square” the fermionic Hessian. These require the fermions to be Majorana

spinors. We refer to the original paper for details, and assume from now on that we are

dealing with Majorana spinors. We use their results for the 1-loop effective action in our

set-up, and postpone the possible extension to Dirac spinors to future work.

The 1-loop effective action has again the structure (5.9). After adapting the re-

sults in [32] for the change of signature and the presence of the Immirzi parameter, the

quadratically-divergent part reads

L1 =
11

2
R+

3

512

(

6
γ2

γ2 − 1
− 5

)

κ4A2, (7.20)

where the equations of motion for the fermions have already been used. Using also the

Einstein equations for the tetrad, we find

L1 =
3

512

(

28
γ2

γ2 − 1
− 5

)

κ4A2. (7.21)

As for the logaritmic divergences, the final on-shell result is

L2 =
1

2

(

3
γ4

(γ2 − 1)2
+ 4

γ2

γ2 − 1
+ 13

)

RµνR
µν . (7.22)

Unlike in the vacuum case, the logarithmic divergences are now of crucial importance:

they do not vanish on-shell, and can not be reabsorbed in a renormalization of the bare

couplings. Therefore, the theory is non-renormalizable, as expected, and can only be made

sense of as an effective field theory.17 Our focus here is not on the non-renormalizability,

which was not in doubt, but rather the fate of the Immirzi parameter. To explore any

consequences for the role played by the Immirzi parameter in this theory, we look at the

quadratic divergences (7.21). With a similar non-minimal ansatz as in section 6.1, but this

time on-shell, these can be reabsorbed into the following renormalization of the Immirzi

parameter,
γ2
R

γ2
R − 1

=
γ2

γ2 − 1
− 1

128π2
(Λ2

UV − µ2)κ2

(

28
γ2

γ2 − 1
− 5

)

. (7.23)

By inspection, we see that neither γ = 0 nor γ = ∞ are stable under renormalization. It

is of particular interest what happens if one starts with vanishing bare Immirzi parameter,

γ = 0. The initial action (7.19) reduces to the second-order Einstein-Hilbert action coupled

to fermions, with no four-fermion interaction. However, the latter is nonetheless generated

by radiative corrections, see (7.21) with γ = 0. Namely, the radiative corrections introduce

quadratic divergences which are non-renormalizable in the second-order formalism. In

order to renormalize these divergences one is forced to introduce the four-fermion term

in the classical action, that is, one is forced to have a non-vanishing Immirzi parameter.

In this sense, the first order formulation is more suitable to quantize the coupled gravity-

fermion system.

17The logaritmic divergences cancel for γ2 = 3/4± i
p

7/5, but these are unphysical complex values, and

furthermore they are not stable under renormalization, as we show below.
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From (7.23), we obtain the beta function of the Immirzi parameter,

µ
∂γ2

R

∂µ
= −(γ2

R − 1)
µ2κ2

(8π)2
(23γ2

R + 5). (7.24)

The equation can be easily solved, leading to

γ2
R(µ) =

(23γ2
0 + 5)e

7g0
2π

(µ2/µ2
0−1) + 5(γ2

0 − 1)

(23γ2
0 + 5)e

7g0
2π

(µ2/µ2
0−1) − 23(γ2

0 − 1)
, (7.25)

where g0 = Gµ2
0, and γ0 = γR(µ = µ0) is the initial condition. As the effective interaction

in (7.19) only depends on the effective coupling γ2

γ2−1
, we have to be careful if we want

γR(µ) to remain real for all values of µ. That is, we must take care that the right hand

side of (7.25) does not become negative. It turns out that this requirement imposes some

restriction on the initial conditions. Defining r = e
7g0
2π , we find that for γ2

0 > 1 one has to

take γ2
0 <

r+5/23
r−1 so that the denominator of (7.25) does not become negative for µ → 0,

while for γ2
0 < 1 one has to take γ2

0 >
r−1

r+23/5 for the numerator not to become negative in

the same limit. Note that, given these bounds, in the IR limit µ→ 0 the Immirzi parameter

flows towards a value between γ0 and |γR| = +∞, for γ2
0 > 1, or between γ0 and γR = 0,

for γ2
0 < 1. The precise value depends on the initial condition. The fixed points γ = 0 and

γ = ∞ found in the pure gravity case are never reached. On the contrary, we find that for

any initial condition the point γ2
R = 1 is reached in the UV limit µ→ ∞.

Three remarks can be made from the expressions of the beta function and its solution.

First, we have two independent sectors, for |γR| larger or smaller than 1, with same UV

limit and opposite IR limit. Second, the only real fixed points are at γ2 = 1, but before

attributing much significance to such fixed points, one should bear in mind that they

correspond to a divergent coupling for the four-fermion interaction, hence they are out of the

range of validity of perturbation theory. Third, we have an explicit dependence of the beta

function on the external parameter µ2κ2. This can be interpreted as the renormalization

scale measured in Planck units, as we are not letting κ2 run in the present scheme. The

explicit appearence of the renormalization scale in the beta function is a manifestation of

what discussed in [66], that when treating Newton’s constant as an inessential parameter,

we will usually obtain non-autonomous systems of renormalization equations (Notice that

this phenomenon does not take place at the level of logaritmic divergences, and thus it

does not appear in dimensional regularization).

Alternatively, we could again follow [66], as we did above in section 6.1, by renormal-

izing κ2 and studying its running. A running for Newton’s constant can be introduced

with a partially off-shell scheme, using (7.20) rather than (7.21) to renormalize both κ2

and γ. Such a procedure leads to an autonomous system, but it does not change the

qualitative conclusions about the fixed points for γ, which are on-shell results. Indeed,

the running of Newton’s constant turns out to be again independent of γ, with beta func-

tion βg = gR(2 − 11
2πgR). Its only effect on (7.24) is to replace κ2µ2

16π = g0µ
2/µ2

0 with a

non-trivial running gR(µ), bounded between gR(µ = 0) = 0 and gR(µ = ∞) = 4π
11 . This

modifies things like the velocity along the flow and the reality bounds on γ0, but not the

conclusions about the special points γ2
R = 0, 1,∞.
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To conclude, we would like to stress that the system we considered here corresponds

to the simplest coupling between the Holst action and fermions. Our motivation for using

such minimal model was two-fold. First of all, it greatly simplifies the analysis, in partic-

ular allowing us to use the results of [32]. Furthermore, it provides the simplest model in

which the Immirzi parameter acquires a physical role. One could consider more general

non-minimal couplings, like in [72, 74], and hide the dependence on the Immirzi param-

eter by adding a redundancy of couplings (see footnote 14), but deciding which model

fits better to observational criteria goes beyond our present analysis and scope. We limit

ourselves only to the following observations about other models. First of all, fine-tuned

couplings might not be preserved by radiative corrections. In particular, the coupling pro-

posed in [72] effectively corresponds to Einstein-Cartan theory plus the Nieh-Yan invariant,

minimally coupled to fermions. Clearly, given the topological nature of the Nieh-Yan term,

the resulting interaction (7.11) is in this case the same as for pure Einstein-Cartan (θ = 0

and γ → ∞). However we have shown that such a theory is not stable under renor-

malization. Secondly, a model with θ 6= 0 is very likely to lead to quadratic divergences

non-renormalizable within the Holst action, and one needs to consider a more general bare

action with all dimension-two invariants. This generalization, as well as the extension of

the calculations to Dirac spinors, are interesting lines of research that we hope to come

back to in future work.

8 Summary and conclusions

We have studied perturbative quantum gravity in the first-order formalism. We started

with the bare Holst action with zero cosmological constant, and quantized the theory

around an invertible background metric. As in the standard second-order metric formalism,

the result is a quantum effective action which is on-shell finite for pure gravity, and non-

renormalizable in the presence of matter. The quantum theory should then be seen as an

effective field theory [26, 27].

Our main interest was the effect of quantization on the Immirzi parameter γ. At

the classical level, as we recalled and explained, γ plays no role for pure gravity: the

equations of motion are independent of it. Adding fermions with a (possibly non-minimal)

Dirac action, we have a source for torsion, and the Immirzi parameter enters non-trivially

in the equations of motion. In particular, one finds an effective four-fermion interaction

proportional to γ2/(γ2−1), working with Euclidean signature. The coefficient interpolates

between the interaction in the second-order formalism at γ = 0, and the pure Einstein-

Cartan case at γ = ∞. It is singular at γ2 = 1, where the system collapses to gravity

in self-dual variables and no fermions. This simply signals the inconsistency of the Dirac

action to couple fermions to the special case of gravity in self-dual variables, for which an

alternative fermionic action exists [77].

At the quantum level, we confirmed the inessential character of the Immirzi parameter

in the case of pure gravity. We nevertheless explored the possibility of defining an off-shell

running of γ, and saw it matching the classical expectation of a privileged role for γ = 0

and γ = ∞. These turn out to be fixed points, respectively IR and UV attractive.
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In the presence of fermions, we obtained a physical on-shell running of the Immirzi

parameter. The running is driven by the divergences associated with a four-fermion inter-

action generated by radiative corrections. We computed the beta function, and observed

that neither γ = 0 nor γ = ∞ are fixed points of the theory. An immediate consequence

of these results is that fine-tuned bare actions are not stable under renormalization. These

include the second order tetrad action, pure Einstein-Cartan, as well as the coupling to the

sole Nieh-Yan invariant considered in [72]. We find instead a UV fixed point at γ2 = 1,

but this leads to a diverging effective four-fermion coupling, and hence it is outside of the

validity of perturbation theory. We did not investigate the issue of radiative stability of

the gravity-fermions coupling in self-dual variables.

Our results can be extended in a number of directions. Here we considered only

Majorana spinors, which allowed us to directly adapt the results of [32]. One advantage

of Majorana spinors is the availability of a spinor-dependent gauge fixing which preserves

the minimal form of the gravitational Hessian. Extending the calculations to Dirac spinors

requires then dealing with operators in non-minimal forms, or finding a new gauge condition

with the same property.

It would be also interesting to start with a more general bare action, which is restricted

to invertible tetrads, and includes the full set of invariants (2.8). This should allow us to

consider the most general non-minimal coupling of fermions, and still be able to renormalize

the quadratic divergences. A somewhat opposite direction of investigation, is to take

more seriously the contribution of degenerate tetrads. Throughout the paper, in both the

vacuum case and the coupling to fermions, we did not truly consider the contributions of

non-invertible tetrads: we worked in perturbation theory around an invertible background,

thus effectively neglecting the contribution of degenerate tetrads. On the other hand, the

Holst action is defined also for degenerate tetrads, and so can be the Dirac action on

curved spacetime (7.4), by simply noticing that we can write eeµI = 1
6ǫ
µνρσǫI

JKLeJν e
K
ρ e

L
σ ,

and thus the inverse tetrad is never needed. Solutions with non-invertible tetrads and non-

zero torsion are known, and these could give interesting contributions to the path integral,

and change our results at the level of both pure gravity and fermion coupling. The real

obstacle in the exploration of more general backgrounds, and in particular of the so-called

symmetric phase 〈e〉 = 〈ω〉 = 0, comes from the absence of a quadratic term in the action,

as it has been well known since long time. New insight in this direction might come from

the Plebanski formulation of gravity, with its relation to topological theories [43, 44, 78].

Finally, we stress that in both the vacuum and the coupled cases, the running of the

Immirzi parameter is driven by quadratic divergences. Quadratic divergences have recently

received a lot of attention [33, 34], but their physical relevance is still debated (e.g. [35]).

In particular, a subtle issue with quadratic divergences is that even on-shell they might

carry some residual dependence on the gauge-fixing condition (although not necessarily

so, see [67, 68]). A framework to improve the effective action and ensure gauge-condition

independence is that of the Vilkovisky-DeWitt effective action [79, 80] (and it is indeed

the one used in [34]), and it would be interesting to adapt it to the present case. The

inclusion of a cosmological constant term would also be interesting in this respect, as it

would probably add a logarithmic contribution to the running of the Immirzi parameter.
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A Notation, conventions and useful formulas

Throughout the paper, we work with Euclidean signature and local gauge group SO(4).

We define the Levi-Civita symbol such that ǫµνρσ = 1 for (µνρσ) = (0123), from which the

tetrad determinant reads

e =
1

4!
ǫIJKLǫ

µνρσeIµe
J
ν e
ρ
Ke

σ
L.

We use the same notation for the covariant density weight ǫµνρσ = gµαgνβgργgσδǫ
αβγδ (thus

ǫµνρσ = e2 for (µνρσ) = (0123)). Some useful formulas are

ǫµνρσeIµe
J
ν = e ǫIJKLeρKe

σ
L,

1

4e2
ǫµναβǫ

ρσαβ = δρσµν ≡ 1

2
(δρµδ

σ
ν − δσµδ

ρ
ν). (A.1)

The curvature and torsion are defined as

F (ω) = dω +
1

2
[ω, ω], T (e, ω) = dωe, (A.2)

or in components

F (ω)IJµν = ∂µω
IJ
ν − ∂νω

IJ
µ + ωIµKω

KJ
ν − ωIνKω

KJ
µ , (A.3)

T (e, ω)Iµν = ∂µe
I
ν − ∂νe

I
µ + ωIJµ eνJ − ωIJν eµJ . (A.4)

From the decomposition ωIJµ = ωIJµ (e) +KIJ
µ , one finds for the curvature

eµKeνLF
KL
ρσ

(

ω(e) +K
)

= Rµνρσ(e) + 2∇[ρKσ]µν +KρµλKσ
λ
ν −KσµλKρ

λ
ν , (A.5)

where Rρσµν = ∂µΓ
ρ
σν − ∂νΓ

ρ
σµ + ΓρλµΓ

λ
σν − ΓρλνΓ

λ
σµ is the Riemann tensor of e, related to

the Levi-Civita connection ∇µ of e by

[∇µ,∇ν ]f
ρ = Rρσµνf

σ. (A.6)

For the torsion,

eρI T
I
µν

(

e, ω(e) +K
)

= −2K[µν]
ρ, (A.7)

that is

Kµν
ρ =

1

2
(Tµν

ρ − T ρµν + Tνµ
ρ) . (A.8)

The connection and contorsion can be decomposed in irreducible representations as

in (4.15) of the main text. For completeness, we report here the explicit decomposition

obtained through the orthogonal projectors P̄ , P̌ and P̂ defined in (4.16). For a field w

in (4.15), we have

wA,BC = w̄A,BC +
2

3
δA[Cw̌B] + ǫABCDŵ

D, (A.9)
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where the irreducible components w̄, w̌ and ŵ satisfy

w̄A,BCδ
AB = ǫABCDw̄A,BC = 0, w̌B = δACwA,BC , ŵD =

1

6
ǫABCDwA,BC . (A.10)

Using this decomposition and (4.12) one computes

wA,BCM22
I,JK
A,BCwI,JK = w̄A,BCP I,JKA,BCw̄I,JK − 4

3
w̌Aw̌

A − 12ŵAŵ
A +

8

γ
w̌Aŵ

A

= wA,BC
[(

P̄ − 2P̌ − 2P̂
)

P
]I,JK

A,BC
wI,JK , (A.11)

which is used in the main text. In going from the first to the second line we used w̄A,BC =

w̄B,AC + w̄C,BA, a simple consequence of the symmetries of w̄A,BC , and the commutativity

property [P̌ + P̂ , P±] = 0.
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