
www.frontiersin.org December 2010 | Volume 1 | Article 232 | 1

Original research article
published: 24 December 2010

doi: 10.3389/fpsyg.2010.00232

Segregation of vowels and consonants in human auditory 
cortex: evidence for distributed hierarchical organization
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The speech signal consists of a continuous stream of consonants and vowels, which must be 
de- and encoded in human auditory cortex to ensure the robust recognition and categorization 
of speech sounds. We used small-voxel functional magnetic resonance imaging to study 
information encoded in local brain activation patterns elicited by consonant-vowel syllables, and 
by a control set of noise bursts. First, activation of anterior–lateral superior temporal cortex was 
seen when controlling for unspecific acoustic processing (syllables versus band-passed noises, 
in a “classic” subtraction-based design). Second, a classifier algorithm, which was trained and 
tested iteratively on data from all subjects to discriminate local brain activation patterns, yielded 
separations of cortical patches discriminative of vowel category versus patches discriminative of 
stop-consonant category across the entire superior temporal cortex, yet with regional differences 
in average classification accuracy. Overlap (voxels correctly classifying both speech sound 
categories) was surprisingly sparse. Third, lending further plausibility to the results, classification 
of speech–noise differences was generally superior to speech–speech classifications, with the 
notable exception of a left anterior region, where speech–speech classification accuracies were 
significantly better. These data demonstrate that acoustic–phonetic features are encoded in 
complex yet sparsely overlapping local patterns of neural activity distributed hierarchically across 
different regions of the auditory cortex. The redundancy apparent in these multiple patterns 
may partly explain the robustness of phonemic representations.
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2003; Liebenthal et al., 2005; Warren et al., 2005; Obleser et al., 2006; 
Rauschecker and Scott, 2009). However, there is an ongoing debate 
as to whether these anterior–lateral areas actually house abstract 
and categorical representations of speech sounds. Other authors 
have argued for the importance of posterior STG/STS in phonetic–
phonological processing (e.g., Okada et al., 2010). A third position 
would be that the neural speech sound code is completely distributed 
and does not have a defined locus of main representation at all.

We hypothesize that local activation patterns providing segrega-
tion of acoustic–phonetic features occur most frequently in higher 
areas of auditory cortex (Wang, 2000; Tian et al., 2001; Read et al., 
2002; Zatorre et al., 2004). A robust approach to test this hypothesis 
would be to analyze the anatomical distribution and mean accuracy 
of local classifying patterns across areas of the superior temporal 
cortex. Although functional magnetic resonance imaging (fMRI) 
is a technique that averages over a vast number of neurons with 
different response behaviors in each sampled voxel, it can be used to 
detect complex local patterns that extend over millimeters of cortex, 
especially when comparably small voxels are sampled (here less 
than 2 mm in each dimension) and multivariate analysis methods 
are used (Haxby et al., 2001; Haynes and Rees, 2005; Kriegeskorte 
et al., 2006; Norman et al., 2006). Particularly relevant to phoneme 
representation, these methods are capable of exploiting the richness 
and complexity of information across local arrays of voxels rather 
than being restricted to broad bold amplitude differences averaged 

IntroductIon
Speech perception requires a cascade of processing steps that lead to a 
surprisingly robust mapping of the acoustic speech stream onto pho-
nological representations and, ultimately, meaning. This is only pos-
sible due to highly efficient acoustic decoding and neural encoding of 
the speech signal throughout various levels of the auditory pathway. 
Imagine listening to a stream of words beginning with dee…, goo…, 
or dow…, uttered by different talkers: One usually does not experi-
ence any difficulty in perceiving, categorizing, and further processing 
these speech sounds, although they may be produced, for example, 
by a male, female, or child, whose voices differ vastly in fundamen-
tal frequency. The mechanisms with which the brain accomplishes 
the invariant categorization and identification of speech sounds and 
which subareas of auditory cortex are crucially involved remains 
largely unexplained. Some of the relevant cortical structures have 
been identified in recent years through microelectrode recordings 
in non-human primates and by using neuroimaging techniques in 
humans. It has been shown repeatedly that structures surrounding 
the primary (or core) areas of auditory cortex are critically involved 
in speech perception. In particular, research conducted over the last 
10 years has demonstrated consistently that the anterior and lateral 
parts of the superior temporal gyrus (STG) and superior temporal 
sulcus (STS) are activated more rigorously by speech sounds than 
by non-speech noise or pseudo-speech of similar acoustic com-
plexity (Binder et al., 2000; Scott et al., 2000; Davis and Johnsrude, 
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of articulation” feature, for instance, are well defined for both vowels 
and consonants (e.g., Blumstein and Stevens, 1980; Lahiri et al., 1984) 
and are therefore suitable to test this hypothesis. By including a con-
ventional contrast (speech versus band-passed noise), results from this 
design will be able to compare the relative gain offered by multivari-
ate analysis methods over classical (univariate) analyses and help to 
resolve questions of hierarchical processing in the auditory brain.

By first training a classifier on the auditory brain data from a set 
of participants (independent observations) and testing it then on 
a new set of data (from another subject; repeating this procedure 
as many times as there are subjects), and by using the responses to 
natural consonant–vowel combinations as data, this challenging 
classification problem is most suited to query the across-subjects 
consistency of neural information on speech sounds for defined 
subregions of the auditory cortex. Also, we will compare the speech–
speech classifier performance to speech–noise classifier perform-
ance in select subregions of the superior temporal cortex in order 
to establish a profile of these regions’ response specificities.

MaterIals and Methods
subjects
Sixteen Subjects (8 females, mean age 24.5 years, SD 4.9) took part 
in the study. All of the subjects were right-handed monolingual 
speakers of American English and reported no history of neurologi-
cal or otological disorders. Informed consent was obtained from all 
subjects, and they received a financial compensation of $20.

stIMulI
The speech sound set consisted of 64 syllable tokens; they were 
acoustically variant realizations of eight American English conso-
nant-vowel (CV) syllables: [di:] (e.g., as in “deeper”), [de:] (daisy), 
[du:] (“Doolittle”), [do:] (“dope”), [gi:] (“geezer”), [ge:] (“gait”), 
[gu:] (“Google”), and [go:] (“goat”; these words were articulated 

across large units of voxels (for discussion see Obleser and Eisner, 
2009). Notably, a seminal study by Formisano et al. (2008) demon-
strated in seven subjects robust above-chance classification for a set 
of isolated vowel stimuli (around 65% correctness when training 
and testing the classifier on single trials of data) in temporal areas 
ranging from lateral Heschl’s gyri anterior and posterior, down into 
the superior temporal sulcus. The study demonstrated the power of 
the multivariate method and its applicability to problems of speech 
sound representation. However, one might expect regional varia-
tion in accuracy of classification across superior temporal cortex, 
an issue not specifically addressed by the study of Formisano et al. 
(2008). Moreover, in order to approach the robustness with which 
speech sounds are neurally encoded, it is important to consider that 
such sounds are rarely heard in isolation. Two next steps follow 
immediately from this, covered in the present report.

First, the direct comparison of the information contained in 
activation patterns for speech versus noise (here, consonant-vowel 
syllables versus band-passed noise classification) to the information 
for within-speech activation patterns (e.g., vowel classification) will 
help understand the hierarchies of the subregions in superior tem-
poral cortex. Second, the systematic variation of acoustic–phonetic 
features not in isolated vowels, but in naturally articulated syllables 
will put any machine-learning algorithm presented with such com-
plex data to a more thorough test.

To this end, we chose naturally produced syllables, built from two 
categories of stop-consonants ([d] vs. [g]) and two broad categories 
of vowels ([u:, o:] vs. [i:, e:]). Importantly, such an orthogonal 2 × 2 
design allows to disentangle, within broad activations of the supe-
rior temporal cortex by speech, local voxel activation patterns most 
informative for decoding the heard vowel quality (back vowels [u:, 
o:] vs. front vowels [i:, e]; see Figure 1; see also Obleser et al., 2004b, 
2006) from patterns relevant for decoding the heard stop-consonant 
quality of a syllable. Fortunately, the acoustic correlates of the “place 

FIguRe 1 | exemplary spectrograms of stimuli from the respective syllable conditions (waveform section of consonantal burst has been amplified by 
+6 dB before calculating spectrogram for illustration only). The principal 2 × 2 design realized by the selection of phonetic features for the syllables is also shown.
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Presentation of conditions was pseudo-randomized. Four dif-
ferent randomization lists were used counterbalanced across par-
ticipants, avoiding any unintended systematic order effects. After 
functional data acquisition, a 3-D high-resolution anatomical 
T1-weighted scan (MP-RAGE, 256 mm3 field of view, and resolu-
tion 1 mm × 1 mm × 1 mm) was also acquired. Total scanning time 
amounted to 55 min.

data analysIs
All data were analyzed using SPM8 (Wellcome Department of 
Imaging Neuroscience). The first volume was discarded, and all 
further volumes were realigned to the first volume acquired and 
corrected for field inhomogeneities (“unwarped”). They were 
co-registered to the high-resolution anatomical scan. For further 
reference, a spatial normalization was performed (using the gray-
matter segmentation and normalization approach as implemented 
in SPM). For further analysis strategies, mildly smoothed images 
(using a 3 mm × 3 mm × 4 mm Gaussian kernel) as well as entirely 
non-smoothed images were retained.

In order to arrive at univariate estimates of activation in all 
conditions against silence, the native-space image time series of 
individuals were modeled in a general linear model using a finite 
impulse response (length 1 s, first order). Scaling to the grand mean 
and 128-s high-pass filtering were applied. The resulting contrast 
images (especially the sound greater than silence contrast, the speech 
greater than noise contrast, as well as all four syllable greater silence 
contrasts) were transformed to MNI space using the normaliza-
tion parameters derived in each individual earlier. Figure A1A 
of Appendix shows two examples of individuals’ non-smoothed 
activation maps in native space for the contrast sound greater than 
silence. Random-effects models of the univariate data were thresh-
olded at p < 0.005 and a cluster extent of 30; a Monte Carlo simula-
tion (Slotnick et al., 2003) ensured that this combination, given our 
data acquisition parameters, protects against inflated type-I errors 
on the whole brain significance level of α = 0.05.

Univariate fMRI analyses focus on differences in activation 
strength associated with the experimental conditions. Pattern 
or multivariate analysis, by contrast, focuses on the information 
contained in a region’s activity pattern changes related to the 
experimental conditions, which allows inferences about the infor-
mation content of a region (Kriegeskorte and Bandettini, 2007; 
Formisano et al., 2008). For our classification purposes, we used the 
un-smoothed and non-thresholded but MNI-normalized maps of 
individual brain activity patterns, estimated as condition-specific 
contrasts of each condition (i.e., the SPM maps of non-thresholded 
t-estimates from the condition-specific contrasts, e.g., /d/–front 
against silence, /g/–front against silence, and so forth; see Misaki 
et al., 2010 for evidence on the advantageous performance of t-val-
ue-based classification; note, however, that this approach is differ-
ent from training and testing on single trial data (cf. Formisano 
et al., 2008).

In order to ensure absolute independence of testing and train-
ing sets, we decided to pursue an across-participants classification 
approach. As data in our experiment had been acquired within one 
run, single trials of a given individual would have been too depend-
ent on each other, and we chose to pursue an across-participants 
classification instead: We split our subject sample into n − 1  training 

with exaggerated long vowels to allow for coarticulation-free result-
ing edits). Each syllable was used in four different versions, edited 
from single-word utterances of four monolingual native speakers 
(two females and two males, recorded using a DAT-recorder and a 
microphone in a sound-proof chamber). Figure 1 gives an overview 
over the spectro-temporal characteristics of the syllables. The CV 
syllables were selected to test for possible mapping mechanisms of 
speech sounds in the auditory cortices. See Appendix for extensive 
description of acoustic characteristics of the entire syllable set.

experIMental desIgn and scannIng
The paradigm contrasted the syllables in four conditions: [di:/
de:], [du:/do:], [gi:/ge:], and [gu:/go:] (Figure 1). All syllables were 
instantly recognized as human speech and correctly identified when 
first heard by the subjects. Please note that there was considerable 
acoustic intra-conditional variance due to the four different speak-
ers and the combined usage of [u:, o:] and [i:, e:].

As an additional non-speech reference condition, a set of eight 
different noise bursts was presented, comprising four different center 
frequencies (0.25, 0.5, 2, and 4 kHz) and two different bandwidths 
(one-third and one-octave), expected to activate mainly early (core 
and belt) areas of the auditory cortex (Wessinger et al., 2001).

All audio files were equalized with respect to sampling rate 
(22.05 kHz), envelope (180 ms length; no fade-in but cut at zero-
crossing for syllables, 3 ms Gaussian fade-in for noise bursts; 10 ms 
Gaussian fade-out) and RMS intensity. Stimuli were presented 
binaurally using Presentation software (Neurobehavioral Systems 
Inc.) and a customized air-conduction sound delivery system at an 
average sound pressure level of 65 dB.

Functional magnetic resonance imaging was performed on a 
3-Tesla Siemens Trio scanner using the standard volume head coil 
for radio frequency transmission. After positioning the subject, 
playing back a 16-item sequence of exemplary syllables from all four 
conditions and ensuring that subjects readily recognized all items as 
speech, a 42-min echo planar image acquisition period with small 
voxel sizes and a sparse sampling procedure started (TR = 10 s, 
TA = 2.48 s, 25 axial slices, resolution 1.5 mm × 1.5 mm × 1.9 mm, 
no gap, TE = 36 ms, 90° flip angle, 192 mm × 192 mm field of view, 
128 × 128 matrix). The slices were positioned such as to cover the 
entire superior and middle temporal gyri and the inferior frontal 
gyrus, approximately parallel to the AC–PC line. In total, 252 vol-
umes of interest were acquired; 42 volumes per condition (four 
syllable conditions; band-passed noises; silent trials).

Subjects were instructed to listen attentively to the sequence of 
sounds: Between volume acquisitions, 7500 ms of silence allowed 
presentation of eight acoustically different stimuli of one condition 
(either eight stimuli of a given syllable condition or eight noise bursts) 
with an onset asynchrony of 900 ms. To exemplify, for the /d/–front 
vowel condition in a given trial, a sequence of, e.g., [di:]

male1
, [de:]

male2
, 

[di:]
female1

, [di:]
male2

, [di:]
female2, 

[de:]
female2, 

[de:]
male1

, and [de:]
female2

 was 
presented in silence, followed by volume acquisition; as evident from 
such an exemplary sequence, many salient acoustic effects (e.g., pitch; 
idiosyncracies in consonant–vowel coarticulation, etc.) will average 
out and the volume acquisition will primarily capture an “average” 
activation related to the “abstract” spectro-temporal features of the 
syllables’ stop-consonant (alveolar /d/ or velar /g/) and vowel category 
(front vowels /i:, e:/ or back vowel /u:, o:/) only.
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at the first pass, m is the total number of voxels tested, and q is the 
tolerated rate for false coverage statements, here 0.05 (Benjamini 
and Yekutieli, 2005). See also Figure A2 of Appendix. Effectively, 
this procedure yielded FCR-corrected voxel-wise confidence lim-
its at α ∼ 0.004 rather than 0.05; approximately two-thirds of all 
voxels declared robust classifiers at the first pass also survived this 
correcting second pass.

Note that all brain map overlays of average classification accu-
racy are thresholded to show only voxels with a bootstrapped CI 
lower limit not covering 50% (chance level; 1000 repetitions), while 
all bar graphs or numerical reports and ensuing inferences are based 
on the FCR-corrected data. Significance differences, as indicated by 
asterisks in the bar graphs, were assessed using Wilcoxon signed-
rank tests, corrected for multiple comparisons using false discovery 
rate (FDR, q = 0.05) correction.

results
unIvarIate contrasts analysIs
All 16 subjects were included in the analysis, as they exhibited 
bilateral activation of temporal lobe structures when global con-
trasts of any auditory activation were tested. Examples are shown 
in Figure A1 of Appendix.

As predicted, the global contrast of speech sounds over band-
pass filtered noise (random effects, using the mildly smoothed 
images) yielded focal bilateral activations of the lateral middle to 
anterior aspects of the STG extending into the upper bank of the 
STS (Figure 2).

In order to reveal cortical patches that might show stronger acti-
vation of one vowel type over another or one stop-consonant type 
over another, we tested the direct univariate contrasts of syllable 
conditions or groups of conditions against each other. However, 
none of these contrasts yielded robust significant auditory activa-
tions at any reasonable statistical threshold (p < 0.001 or p < 0.005 
uncorrected). This negative result held true on a whole-volume 
level as well as within a search volume restricted by a liberally-
thresholded (p < 0.01) “sound greater than silence” contrast. This 
outcome is to be taken as safe indication that, at this “macroscopic” 
resolution which contains tens or hundreds of voxels, the different 
classes of speech stimuli used here do not exert broad differences in 
bold amplitudes. All further analyses thus focused on studying local 
multi-voxel patterns of activation (using the Search-light Approach 
described in Materials and Methods) rather than massed univariate 
tests on activation strengths.

MultIvarIate pattern classIfIcatIon results
Figures 3–6 illustrate the results for robust (i.e., significantly above-
chance) vowel–vowel, stop–stop-consonant, as well as noise–speech 
classification from local patterns of brain activity. In Figure 3, all 
voxels marked in color represent centroids of local 60-voxel clusters, 
from which correct prediction of vowel (red) or stop-consonant 
(blue) category of a heard syllable was possible.

The displayed mean accuracies per voxel resulted from averaging 
the results of all 16 leave-one-out classifications per voxel; a 1000-
iterations bootstrap resampling test was used to retain only those 
voxels where the 95%-CI of the mean accuracy did not include 
chance level (50%). As can be seen in Figure 3, voxels that allow 
for such robust classification are, first, distributed throughout the 

data sets and a n = 1-sized testing data set. This procedure was 
repeated n times, yielding for each voxel and each classification 
task n = 16 estimates, from which an average classification accuracy 
could be derived. Please note that successful (i.e., significant above-
chance) classification in such an approach is particularly meaning-
ful, as it indicates that the information coded in a certain spatial 
location (voxel or group of voxels) is reliable across individuals.

A linear support vector machine (SVM) classifier was applied 
to analyze the brain activation patterns (LIBSVM Matlab-toolbox 
v2.89). Several studies in cognitive neuroscience have recently 
reported accurate classification performance using a SVM classi-
fier (e.g., Haynes and Rees, 2005; Formisano et al., 2008), and SVM 
is one of the most widely used classification approaches across 
research fields. For each of our three main classification problems 
(accurate vowel classification from the syllable data; accurate 
stop-consonant classification from the same data; accurate noise 
versus speech classification), a feature vector was obtained using 
the t-estimates from a set of voxels (see “search-light” approach 
below) as feature values. In short, a linear SVM separates training 
data points x for two different given labels (e.g., consonant [d] vs. 
consonant [g]) by fitting a hyperplane wT x + b = 0 defined by the 
weight vector w and an offset b. The classification performance 
(accuracy) was tested, as outlined above, by using a leave-one-out 
cross validation (LOOCV) across participants’ data sets: The clas-
sifier was trained on 15 data sets, while one data set was left out for 
later testing the classifier in “predicting” the labels from the brain 
activation pattern, ensuring strict independence of training and 
test data. Classification accuracies were obtained by comparing the 
predicted labels with actual data labels and averaged across the 16 
leave-one-out iterations afterward, resulting in a mean classification 
accuracy value per voxel.

We chose a multivariate so-called “search-light” approach to 
estimate the local discriminative pattern over the entire voxel space 
measured (Kriegeskorte et al., 2006; Haynes, 2009): multivariate 
pattern classifications were conducted for each voxel position, 
with the “search-light” feature vector containing t-estimates for 
that voxel and a defined group of its closest neighbors. Here, a 
search-light radius of 4.5 mm (i.e., approximately three times the 
voxel length in each dimension) was selected, comprising about 
60 (un-smoothed) voxels per search-light position. Thus, any sig-
nificant voxel shown in the figures will represent a robust local 
pattern of its 60 nearest neighbors. We ensured “robustness” by 
constructing bootstrapped (n = 1000) confidence intervals (CI) 
for each voxel patch’s mean accuracy (as obtained in the leave-one-
out-procedure). Thus, we were able to identify voxel patches with a 
mean accuracy above chance, that is, voxel patches whose 95% CI 
did not cover the 50% chance level. The procedure is exemplified 
in Figure A2 of Appendix.

As an additional control for a possible inflated alpha error due 
to multiple comparisons (which is often neglected when using CI; 
Benjamini and Yekutieli, 2005), we used a procedure suggested in 
analogy to the established false discovery rate (FDR; e.g., Genovese 
et al., 2002), called false coverage-statement rate (FCR). In brief, we 
“selected” those voxels whose 95% CI for accuracy did not cover the 
50% (chance) level in a first pass (see above). In a second correcting 
pass, we (re-)constructed FCR-corrected CI for these select voxels 
at a level of 1 − R × q/m, where R is the number of selected voxels 
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FIguRe 2 | Random effects (N = 16) of the univariate analysis for 
speech > band-passed noise (red) and sound > silence (blue; overlay purple) 
based on smoothed and normalized individual contrast maps, thresholded 

at p < 0.005 at the voxel level and a cluster extent of at least 30 voxels; 
displayed on an average of all 16 subjects’ T1-weighted images (normalized 
in MNI space).

FIguRe 3 | Maps of correct classification for vowel and stop category. 
Display of significantly above-chance classification voxels from the 
leave-one-out across-subjects classification. Axial (top panels) and sagittal 
slices (bottom panels) are shown, arranged for left and right hemisphere 

view, and displayed on a standard T1 template brain. Note the sparse 
overlap in voxels significantly classifying vowel information (red) and stop 
information (blue; voxels allowing correct classification of both are marked 
in purple).
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speech classification results below); in the right, stop-consonant 
classification is above-chance in TE 1.0 and vowel classification in 
TE 1.1. (Figure A3A of Appendix). Figure A1B of Appendix also 
shows individual vowel and stop-consonant classification results 
for four different subjects.

These observations were followed up with a quantitative 
analysis of mean accuracy within regions of interest (Figure 4). 
Differences in mean accuracy between vowel and stop classifica-
tion;  differences in speech classification (average vowel and stop 
classification) and noise versus speech classification; and the 

lateral superior temporal cortex. Second, these voxels appear to 
contain neural populations that are highly selective in their spec-
tro-temporal response properties. This is evident from the fact 
that voxels robustly classifying both vowel and stop-consonant 
categories (i.e., steady-state, formant-like sounds with simple 
temporal structure versus non-steady-state, sweep-like sounds 
with complex temporal structure) are sparse (see also Figure 6). 
Also, subareas of auditory core cortex (here using the definition 
of Morosan et al., 2001; Rademacher et al., 2001; see Figure A3 of 
Appendix) appear relatively spared in the left (but see noise versus 

FIguRe 4 | Comparisons of classification accuracy in regions of interest. 
(A) Classification accuracies for vowel (red) and stop-consonant (blue) 
classification. Means of all FCR-corrected above-chance voxels within a 
region ±1 standard error of the mean are shown. Asterisks indicate a 
FDR-corrected significant difference; *p < 0.05, **p < 0.01, ***p < 0.001. L, 
R – total average of significant left and right hemisphere voxels, respectively; 
for anatomical definition of subregions see Figure A3 of Appendix. (B) 
Classification accuracies for speech–speech classification (accuracies 
averaged across vowel and stop; slate gray) and noise–speech classification 

(purple). Means of all FCR-corrected above-chance voxels within a region ±1 
standard error of the mean are shown. Asterisks indicate a FDR-corrected 
significant difference; *p < 0.05, **p < 0.01, ***p < 0.001. (C) Left–Right 
hemisphere differences for speech–speech classification (accuracies 
averaged across vowel and stop). Mean differences in accuracy ±95% 
confidence limits are shown. Asterisks indicate a FDR-corrected significant 
difference; *p < 0.05, **p < 0.01, ***p < 0.001. NB, the anterior regions 
show the most distinct left-bias for mean classification accuracy, while the 
primary areas show no significant bias.
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Second, the topographic distribution of local patterns that 
allowed noise versus speech classification (Figure 5) strikingly 
resembles the result from the univariate bold contrast analysis 
(Figure 2); most voxels robustly classifying noise from speech 
map to anterior and lateral parts of the superior temporal cortex; 
primary auditory areas also appear spared more clearly than was 
the case in the within-speech (vowel or consonant) classification 
analyses.

Third, we compared the average accuracy of vowel–vowel and 
stop–stop classification (speech–speech classification; purple bars 
in Figure 4B) and compared it statistically to noise–speech classi-
fication (gray bars). Only in the left anterior region, speech–speech 
classification accuracy was statistically better than noise–speech 
classification (p < 0.01). In PAC as well as the posterior regions, 
speech–speech classification accuracies were not statistically dif-
ferent from noise–speech classification accuracies.

A comparison of hemispheres in mean accuracy did not yield a 
strong hemispheric bias in accuracy. However, when again averag-
ing accuracies across stop and vowel classification and testing for 
left–right differences, a lateralization to the left was seen across 
regions (leftmost bar in Figure 4C; p < 0.05). Also, Figure 4 shows 
a strong advantage in both vowel and stop classification accuracy 
for the left anterior region of interest (both mean stop and mean 
vowel accuracy >60%), when compared to its right hemisphere 
homolog region of interest (both <60%).

Figure 6 gives a quantitative survey of the relative sparse overlap 
in voxels that contribute accurately to both vowel and stop clas-
sification (cf. Figure 3). Plotted are the proportions of voxels in 
each subregion that allow above-chance classification (i.e., number 
of FCR-corrected above-chance voxels divided by number of all 
voxels, in % per region) of vowels (red), stop-consonants (blue), 

proportion of significantly classifying voxels were tested in pre-
defined regions of interest. The outline of these regions is shown in 
Figure A3 of Appendix. It directly resulted from the distribution of 
broadly “sound-activated” voxels (T15 > 3 in the “sound > silence” 
contrast); left and right voxels likely to be located in primary audi-
tory cortex (PAC; TE 1.0–1.2; Morosan et al., 2001) were separated 
from regions anterior (ant) and posterior to it (post) as well as 
lateral to it (mid).

Vowels and stops were classified significantly above chance 
throughout these various subregions (Figure 4). In each patch, the 
difference in mean accuracy between vowel and stop classification 
was also assessed statistically to find any potential classification 
accuracy differences between the two broad speech sound catego-
ries. Particularly in the left auditory core region, stop-consonants 
were classified significantly better than vowels (Figure 4A).

Next, we directly compared accuracy in a speech versus band-
passed noise classification analysis with the average accuracy in the 
two speech versus speech classification analyses (i.e., vowel catego-
rization, stop-consonant classification; Figure 5). Three findings 
from this analysis deserve to be elaborated.

First, the noise versus speech classification (accomplished by 
randomly choosing one of the four speech conditions and present-
ing it alongside the band-passed noise condition to the classifier, in 
order to ensure balanced training and test sets) yielded somewhat 
higher average classification performances than the speech ver-
sus speech classifications described above (Figure 4B). This lends 
overall plausibility to the multivariate analysis, as the band-passed 
noise condition differs from the various syllable conditions by hav-
ing much less detailed spectro-temporal complexity, and its neural 
imprints should be distinguished from neural imprints of syllables 
quite robustly by the classifier, which was indeed the case.

FIguRe 5 | Maps of correct noise versus speech classification. Display of significantly above-chance classification voxels from the leave-one-out across-subjects 
classification. Axial slices are shown, arranged for left and right hemisphere view, and displayed on a standard T1 template brain.
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between consonants, could be revealed. This speaks to (i) a good 
overall matching of acoustic parameters that could have influenced 
the auditory cortical bold amplitudes (e.g., loudness, stimulus 
length), and (ii) a more microscopic level of encoding for the criti-
cal information of consonants and vowels, presumably distributed 
over various stages of the central auditory processing “hierarchy.” 
Previous MEG source localization studies, using isolated vowels or 
syllables, had proposed such comparably broad topographic differ-
ences, albeit at very isolated time steps (i.e., for a brief period 100 ms 
after vowel onset; Obleser et al., 2003, 2004b; Shestakova et al., 
2004); however, no broad amplitude differences could be observed 
there either. Using rather complex vowel-alternating design and 
specific vowel-detection tasks, similar shifts in topography had 
been elicited in MEG as well as in fMRI (Obleser et al., 2004a, 
2006). In the latter study, we had observed hints to a vowel feature 
separation in the anterior temporal cortex using standard univari-
ate group statistics, but the vowel material used there had much 
less acoustic variance, used isolated vowels, and – as mentioned 
above – a very specific vowel-detection task. However, the carefully 
balanced syllable material, the highly increased acoustic variance 
in stimulus tokens, and the – arguably pivotal – absence of a task 
(other than attentive listening) in the current study revealed the 
limits of univariate subtraction analysis in studying human speech 
sound representation.

Second, the success of the multivariate pattern classifier stands 
in contrast to this and provides good evidence toward a model of 
speech sound representation that includes clusters of activity spe-
cific to particular speech sound categories distributed over several 
areas of the superior temporal cortex. To reiterate, the classifier was 
trained on activation data from various participants and tested on 
an independent, left-out set of data from another participant and 
had to solve a challenging task (classifying broad vowel categories 
or stop-consonant categories from acoustically diverse syllables).

It was only in this type of analysis that voxels (or, patches of 
voxels, following from the “search-light” approach) could be iden-
tified that allowed robust above-chance and across-individuals 
classification of vowel or stop category. The overall accuracy in 
classification was far from perfect, yet in a range (∼55–65%) that 

or of both these classification problems (purple). As can be seen, 
a proportion of less than 10% of voxels in all regions contribute 
significantly (corrected for multiple comparisons) to the accurate 
classification of speech sounds. However, more importantly, the 
proportion of voxels contributing accurately to both speech sound 
classification problems (i.e., the “overlap”) remains surprisingly 
low. This provides strong evidence in favor of local distributed 
patterns (“patches”) of spectro-temporal analysis that are most 
tuned either to vocalic or to consonantal features, across several 
subregions of human auditory cortex.

dIscussIon
Having participants listen to a simple 2 × 2 array of varying stop-
consonant and vowel features in natural spoken syllables in a 
small-voxel fMRI study, we tested the superior temporal cortex 
for the accuracy by which its neural imprints allow the decoding 
of acoustic–phonetic features – across participants.

First, the univariate or by now “classic” approach of directly 
contrasting speech with non-speech noise stimuli yielded a clear-
cut hierarchy (Figure 2), where all syllables more than band-passed 
noise bursts activate the anterior and lateral parts of the superior 
temporal cortex. This is in line with most current models of hier-
archical processing in central auditory pathways (e.g., Hickok and 
Poeppel, 2007; Rauschecker and Scott, 2009). The peak coordi-
nates of the univariate speech > band-passed noise contrast concur 
with areas in the lateral and somewhat anterior sections of the 
STS previously labeled as voice-sensitive as well as those labeled 
speech-sensitive (Belin et al., 2000; Petkov et al., 2009). This is 
not surprising as the literature review shows that there is, to date, 
no clear separation of speech versus voice-sensitive areas, and 
our design was not tuned toward disentangling any voice versus 
speech sensitivity.

However, the more critical observation here is the inability of 
these subtraction-based analyses to yield consistent (i.e., across 
participants) evidence for broad activation differences for acoustic–
phonetic categories against each other. At an acceptable level of 
thresholding and using mildly smoothed data, no consistent activa-
tion differences for the various syllables, that is, between vowels or 

FIguRe 6 | Proportion of significantly above-chance voxels per region, for 
vowel (red) classification, stop (blue) classification, as well as voxels (and 
their immediate neighbors; see Materials and Methods) that significantly 

classified both speech sound categories (“overlap,” shown in purple). Note 
the low number of such “overlap” voxels across all subregions. For anatomical 
definition of subregions see Figure A3 of Appendix.
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In sum, our results for the left anterior region fit well with previous 
results on comparably high levels of complexity being processed 
in the (left) anterior parts of the superior temporal cortex (for 
imaging results from non-humans see, e.g., Poremba et al., 2004; 
Petkov et al., 2008; for imaging results in humans see, e.g., Binder 
et al., 2004; Zatorre et al., 2004; Obleser et al., 2006; Leaver and 
Rauschecker, 2010; a list that can be extended further if studies on 
more complex forms of linguistic information, mainly syntax, are 
taken into account, e.g., Friederici et al., 2000; Rogalsky and Hickok, 
2009; Brennan et al., 2010). Recall, however, that the current data 
do not allow to draw any conclusions upon possibly discrimina-
tive information being available in the inferior frontal or inferior 
parietal cortex (e.g., Raizada and Poldrack, 2007), as these regions 
were not activated in the broad “sound > silence” comparison and 
were not fully covered by our chosen slices, respectively.

As for the ongoing debate whether posterior (see, e.g., Okada 
et al., 2010) or anterior (see evidence listed above) aspects of the 
central auditory processing pathways have a relatively more impor-
tant role in processing spectro-temporal characteristics of speech, 
i.e., vowel and consonant perception, our study reaffirms the evi-
dence for the anteriority hypothesis. The left posterior region did 
not show a statistically significant advantage for the speech–speech 
over noise–speech classification, and its voxels showed overall 
weaker classification accuracies than the left anterior region. The 
evidence presented in this study, therefore, adds compellingly to 
the existing data on a predominant role of left anterior regions in 
decoding, analyzing and representing speech sounds.

Our conclusions on the differential distribution of voxel patches 
that accurately classify speech sound features gains plausibility by 
two side findings we have reported above. First, above-chance clas-
sification in both hemispheres (combined with a moderate leftward 
bias in overall accuracy, which is in essence present across the entire 
superior temporal cortex) is a likely outcome given the mixed evi-
dence on left-dominant versus bilateral speech sound processing 
(see Hickok and Poeppel, 2007; Obleser and Eisner, 2009; Petkov 
et al., 2009 for reviews). Second, left primary auditory cortex and 
the region lateral to it (“mid”), which probably includes human 
belt and parabelt cortex (Wessinger et al., 2001; Humphries et al., 
2010), showed a significantly better accuracy in classifying stop-
consonants than vowels. This is in line with a wide body of research 
suggesting a left-hemispheric bias toward a better temporal analysis 
of the signal, which has been claimed to be especially relevant for the 
analysis of stop-consonant formant transitions (e.g., Schwartz and 
Tallal, 1980; Zatorre and Belin, 2001; Poeppel, 2003; Schönwiesner 
et al., 2005; Obleser et al., 2008).

Lastly, what can we infer from these data about the functional 
organization of speech sounds in the superior temporal cortex 
across participants? Microscopic (i.e., below-voxel-size) organiza-
tion in the superior temporal areas is expected to be quite variable 
across participants. However, our data imply that there is enough 
spatial concordance within local topographical maps of acoustic–
phonetic feature sensitivity to produce classification accuracies 
above chance. Also recall that we did not submit single voxels and 
single trial data to the classifier, but patches of neighboring voxels 
(which essentially allows for co-registered and normalized par-
ticipant data to vary to some extent and still contribute to the 
same voxel patch) and statistical t-values (see Misaki et al., 2010), 

is comparable to the few previous studies of speech-related fMRI 
classification reports (Formisano et al., 2008; Okada et al., 2010; 
Herrmann et al., in press). However, in the current study the 
classifier arguably had to solve a harder problem, being trained 
on a variety of independent subjects and tested on another, also 
independent subject. Moreover, vowel and stop categories had 
to be classified from naturally coarticulated syllables. Adding 
further plausibility to these conclusions, the classifier performed 
significantly better overall in the acoustically simpler problem of 
classifying band-passed noise (i.e., uniform and simple spectro-
temporal shape) from speech sound information (Figure 4B). 
It is also very likely that through additional sophisticated algo-
rithms, for example, recursive feature elimination (De Martino 
et al., 2008), the performance of the classifier could be improved 
further. The “search-light” approach employed here has the further 
limitation of ignoring the information entailed in the co-variance 
(connectivity) of voxels in remote regions or hemispheres. For 
the purposes of this study, however, the argument stands that a 
patch of voxels in the left anterior region of the STG, for example, 
which carries information to accurately classify, for example, /d/ 
from /g/ in more than 60% of all (independent) subjects above 
chance can be taken as good evidence that the cortical volume 
represented by these voxels encodes relevant neural information 
for this stop-consonant percept.

Third, to go beyond the observation of such above-chance voxel 
patches across a wide range of superior temporal cortex (which has 
also been reported in the vowels-only study by Formisano et al., 
2008), we ran a set of region-specific analyses for the average clas-
sification accuracy. The main findings from this region-specific 
analysis can be summarized as follows:

All eight subregions (left and right primary auditory cortex 
[PAC]; anterior; mid [lateral to PAC]; and posterior) carry substan-
tial information for correctly classifying vowel categories as well as 
stop-consonant categories, and also the more salient noise–speech 
distinction (Figures 3–6). Thus, differentiation of abstract spectro-
temporal features may already begin at the core and belt level, which 
is in line with recordings from non-human primates and rodents 
(e.g., Steinschneider et al., 1995; Wang et al., 1995; Tian et al., 2001; 
Engineer et al., 2008). Between regions, however, differences in 
average accuracy for vowels, stops, and noise–speech classification 
were observed (Figure 4). All findings taken together single out 
the left anterior region (i.e., left-hemispheric voxels that were (i) 
activated by sound in a random-effects analysis and (ii) anterior to 
a probabilistic border of the PAC, as suggested by Morosan et al., 
2001; see Figure A3 of Appendix).

To list a conjunction of these findings, the left anterior region

•	 showed	 the	 highest	 average	 classification	 accuracy	 for	 the	
vowel and stop classification (>60%; Figure 4A);

•	 was	the	only	region	to	show	an	average	speech–speech	classifi-
cation accuracy that was statistically superior to the less speci-
fic noise–speech classification (Figure 4B).

•	 showed	 the	 most	 pronounced	 leftward	 lateralization,	 when	
based on average accuracy (Figure 4C, yielding a ∼4%  leftward 
bias). This might be taken as corroborating evidence to a 
2-FDG PET study on left-lateralized monkey vocalizations 
processing; Poremba et al., 2004.
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In sum, multivariate analysis of natural speech sounds opens 
a new level of sophistication in our conclusions on the topog-
raphy of human speech sound processing in auditory cortical 
areas. First, it converges with subtraction-based analysis meth-
ods for broad, that is, acoustically very salient comparisons (as 
reported here for the speech versus noise comparisons). Second, 
it demonstrates that local activation patterns throughout audi-
tory subregions in the superior temporal cortex contain robust 
(i.e., significant above-chance and sufficiently consistent across 
participants) encodings of different categories of speech sounds, 
with a special emphasis on the role of the left anterior STG/STS 
region. Third, it yields, across a wide area of superior temporal 
cortex, a surprisingly low overlap of those local patterns best for 
classification of vowel information and those best for stop-con-
sonant classification. Given the knowledge about the hierarchical 
nature of non-primary auditory cortex derived from non-human 
primate studies, we can propose that complex sounds, including 
speech sounds as studied here, are represented in hierarchical 
networks distributed over a wide array of cortical areas. How 
these distributed “patches” communicate with each other to form 
a coherent percept will require further studies that can speak to 
dynamic functional connectivity.
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respectively. Therefore, the reported classification accuracies across 
participants form a lower bound of possible classification accuracy. 
What these data will not answer is the true “nature” or abstract-
ness of features that aided successful classification in these various 
subareas of the auditory cortex. It is conceivable (and, in fact, highly 
likely) that different areas are coding different and differentially 
abstract features of the syllable material; which, again, would be 
testimony to the redundant or multi-level neural implementation 
of speech sound information.

conclusIon
In sum, the reported results show a widely distributed range of local 
cortical patches in the superior temporal cortex to encode critical 
information on vowel, consonant, as well as non-speech noise. Yet 
it assigns a specific role to left anterior superior temporal cortex in 
the processing of complex spectro-temporal patterns (Leaver and 
Rauschecker, 2010). In this respect, our results extend previous 
evidence from subtraction-based designs.

Univariate analyses of broad bold differences and multivariate 
analyses of local patterns of small-voxel activations are converg-
ing upon a robust speech versus noise distinction. The wide dis-
tribution of information on the vowel and stop category across 
regions of left and right superior temporal cortex accounts well 
for previous difficulties in pinpointing robust “phoneme areas” or 
“phonetic maps” in human auditory cortex. A closer inspection 
of average classification performance across select subregions of 
auditory cortex, however, singles out the left anterior region of 
the superior temporal cortex as containing the highest proportion 
of voxels bearing information for speech sound categorizations 
(Figure 6) and yielding the strongest lateralization toward the left 
(Figure 4). The consistent and non-overlapping classification into 
vowels and consonants in the current study was surprisingly robust 
and resonates with patient studies reporting selective deficits in 
processing of vowels and consonants (Caramazza et al., 2000). How 
exactly even finer phoneme categories or features (different types 
of vowels and consonants) are represented within these subregions 
escapes the current technology and may have to await future new 
approaches with even better resolution.
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appendIx
Acoustic analysis of stimuli. Voiced stop consonants and vowels were 
selected to reflect either highly homogeneous or largely heterogeneous 
feature combinations with respect to acoustics and phonology: both 
alveolar consonants [d] and front vowels [i], [e] have more energy in 
the higher frequencies, while velar consonants [g] and back vowels [u], 
[o] have more energy in the lower frequencies. Since the CV-syllable 

stimuli were naturally co-articulated, acoustics of stop consonant 
and vowel were not independent but rather influenced by the actual 
combination within the syllable (Farnetani, 1997; Fitch et al., 1997) 
(as shown by a spectral analysis of the syllables’ frequency spectrum 
and subsequent mixed-model analyses of variance with speaker as a 
random factor): The consonantal burst’s center frequency was on aver-
age 300 Hz higher if followed by a front vowel with high F2 (i.e., [i], 

FIguRe A1 | (A) Exemplary single-subject activations in sound > silence 
contrast, thresholded at p < 0.001 at the voxel-level, using a Wavelet 
SPM analysis of individual, non-smoothed, native-space image time-
series; displayed on individual T1-weighted structural images. (B) Examples 
for single-subject vowel (red) and stop (blue) classification performance. 

Voxels in the respective participants shown (and their immediate 
neighbors; see Materials and Methods) could correctly classify vowel 
or stop category above chance (only voxels with performance >50% 
shown) in a given participant’s data, when trained on the 15 
remaining participants.
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FIguRe A2 | example of the classification procedure applied, shown here 
is a simplified sketch for a case of stop consonant classification in one 
voxel patch. Main steps included selection of a voxel and its neighbors 
(“searchlight” approach, see text), using unsmoothed t-estimate vectors from 
each condition (versus baseline) and n − 1 independent subjects for training the 
classifier (upper panel). Testing and assessment of classification accuracy (here 
shown for the consonant) took place using an independent nth subject’s data; 

the entire procedure at this voxel patch was repeated n times. The resulting 
average accuracies were bootstrapped (1000 repetitions) to attain 95% 
confidence limit estimates, which, in a last step, were also corrected for 
multiple comparisons (false coverage statement rate, FCR, see text; dashed 
line in bottom panel). A voxel patch was termed “accurate” in classification only 
when revealing an FCR-corrected confidence limit not covering the 50% 
chance level.
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FIguRe A3 | (A) Overlay of classification results on Probability map of primary 
auditory cortex, using the labels of Morosan et al., 2001 (TE 1.2–TE 1.0). 
Notably, TE 1.2 appears relatively spared by voxels that allow significant 
across-subjects classification of vowel or consonant category. (B) Illustration 
of regions of interest used. A simple selection procedure was done, such as 
that voxels that fell within the probabilistic bounds of primary auditory cortex 
were defined following Rademacher et al., 2001 (lPAC, rPAC); voxels anterior 
to that (lANT, rANT) and posterior to that (lPOST, rPOST) were used to define 
regions, as well as voxels that were within the posterior–anterior bounds of 
PAC but more lateral (lMID, rMID).

[e]) than if followed by a low-F2 back vowel ([u], [o]; F(1,3) = 13.96, 
p < 0.033). Conversely, the vowel’s F2 frequency varied mildly due to 
the preceding consonant, with the typically low F2 in the back vowels 
[u], [o] being on average 90 Hz higher if preceded by the alveolar [d] 
than by the velar [g] [F(1,3) = 8.04, p < 0.065).
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