Genotype	Dg Average C _T	RpL32 Average C _T	ΔC _T Dg-RpL32 ¹	$\frac{\Delta\Delta C_{T}}{\Delta C_{T}-\Delta C_{T,control}}^{2}$	Average Dg relative to control ³	Dg mRNA fold reduction relative to control ⁴
tub-Gal4/+	23.33±0.07	18.35±0.20	4.98±0.21	0.00±0.30	1.00 ± 0.21	1.00±0.21
Dg ^{RNAi} :tub- Gal4/+	25.94±0.13	18.37±0.11	7.57±0.18	2.59±0.28	0.17±0.03	6.02±1.16

Table S1. Decrease in Dystroglycan mRNA level in Dg^{RNAi}:tub-Gal4 mutant

Table S2. Decrease in Dystrophin mRNA level in *Dys^{N-RNAi}:act-Gal4* mutant

Genotype	Dys Average C _T	RpL32 Average C _T	ΔC _T Dys-RpL32 ¹	$\frac{\Delta\Delta C_{T}}{\Delta C_{T} - \Delta C_{T, \text{ control}}^{2}}$	Average Dys relative to control ³	Dys mRNA fold reduction relative to control ⁴
act-Gal4/+	21.25±0.11	15.60±0.03	5.65±0.11	0.00±0.16	1.00 ± 0.11	1.00±0.11
Dys ^{N-RNAi} :act- Gal4/+	23.47±0.06	16.49±0.03	6.96±0.07	1.33±0.13	0.40 ± 0.04	2.51±0.23

¹ the ΔC_T value is determined by subtracting the average RpL32 C_T value from the average Dg (Dys) C_T value. The standard deviation of the difference is calculated from the standard deviations of the Dg (Dys) and RpL32 values using the following formula" s= $\sqrt{s_1^2 + s_2^2}$, where s=std dev;

² the calculation of the $\Delta\Delta C_T$ involves subtraction by the ΔC_T calibrator value. This standard deviation is determined the same as in 'a';

³ the range given for Dg (Dys) relative to Control is determined by evaluating the expression: $2^{T_{AA}CT}$ where the error is determined using regressional analysis;

⁴ the fold reduction given for Dg (Dys) relative to Control is determined by evaluating the expression: 2^{ACT} where the error is determined using regressional analysis.

Loss-of-function mutants **RNAi mutants** Control w¹¹¹⁸ x Dys^{N-RNAi}:act-Gal4 x DysDf x *Dg*⁰⁸⁶ x Dg^{323} x Dg^{RNAi}:tub-Gal4 x Gene degenerated muscles, % n, analyzed muscles Allele , analyzed muscles χ^2 -value χ^2 -value χ^2 -value χ^2 -value χ^2 -value χ^2 -value name 'n ų 'n ď 'n 3.3±3.3 1.0 ± 1.0 5.0 19.2±4.5 9.7±2.2 4.2±2.0 [1118] n=227 n=90 n=112 n=292 n=129 n=98 w βv-[BG01037] 27.2 n=258 17.19** 62.6 n=179 57.74** NA 2 NA 2 NA 2 4.0 n=198 0.07 Integrin 21.8 12.20 ** 0.0 74.3 31.30** 20.2 [n339] n=55 6.7 n=75 2.86 n=20 3.20 n=35 n=104 3.06 3.7 n=27 0.03 Cam 0.0 45.3 14.5 [E593] 31.4 n=35 21.16** n=60 0.50 0.0 n=22 3.20 n=137 9.76** 7.5 n=67 0.08 n=69 4.62* capt [E636] n=50 44.0 33.32** 5.1 n=78 1.57 13.2 n=106 2.84 63.5 n=107 22.67** 21.9 n=96 3.90 0.0 n=7 2.40 CG34400 [c03838] 15.2 n=33 6.42* 32.1 n=28 27.37** 41.7 n=12 27.29** 37.5 n=16 5.27* 73.9 n=23 47.78** 9.1 n=11 0.14 CG7845 [EMS-Mod4] 25.0 n=36 15.14** 37.0 n=54 32.24** 31.4 n=51 17.72** 16.7 n=12 0.06 28.6 n=35 8.36** 4.8 n=147 0.02 31.27** [BG02820]² 41.9 n=105 9.2 n=54 5.08* 18.5 n=91 6.64** 16.3 n=92 12.4 n=265 0.13 n=131 0.49 0.10 7.6 16.25** n=70 chif [EY05746] 26.2 n=42 8.8 n=114 4.71* 11.4 1.78 10.9 n=78 1.77 40.3 n=134 17.52** 10.9 n=82 2.15 [A507], CyO 21.4 n=42 11.83** NA NA NA 19.5 n=87 2.65 0.0 n=31 2.43 14.0 n=50 3.36 12.8 n=47 0.91 2.5 n=39 3.15 NA [3] NA NA del [KG10262] 0.10 0.0 n=50 2.72 2.6 n=38 5.9 0.001 16.8 n=113 0.05 6.0 n=17 0.46 n=17 NA 2 Dmn [k16109] 3.0 n=33 NA 3.0 n=33 0.12 20.0 n=20 0.001 6.5 n=123 0.29 0.07 NA 2.43 [EY09842] 17.5 n=57 8.37** 9.0 n=155 4.90* 5.2 n=116 0.06 31.1 n=122 2.36 28.6 n=14 8.36 0.0 n=36 Fhos 21.73** 11.04** 8.90** [A055] 15.5 21.3 5.24* 32.0 n=25 n=71 n=47 12.8 n=47 0.91 24.0 n=154 2.3 n=44 0.12 Fkbp13 [P962] 2.9 n=34 1.60 16.6 n=28 12.20** 30.5 n=74 16.9** 15.4 n=13 0.22 5.9 n=41 0.50 3.4 n=29 0.01 KG01117]² 13.3 n=160 15.7 n=184 19.0 n=84 2.40 4.87 0.0 n=116 0.50 4.3 n=70 0.01 0.18 NA gcm 0.03 [rA87] 0.0 n=85 1.60 NA 12.2 n=41 2.23 13.1 n=61 0.80 8.0 n=26 NA Grh [IM] 0.0 n=21 n=72 0.17 3.4 0.04 n=52 3.22 0.72 7.5 n=53 0.45 1.60 2.8 n=58 8.7 5.4 n=56 [k13209] 19.8 n=111 10.40** 9.0 n=109 4.90* 12.2 2.24 26.5 0.87 14.8 n=195 0.68 n=117 3.53 n=24 n=68 13 Lis-1 [k11702] 31.8 n=22 21.54** 12.1 n=58 7.78** 0.0 n=41 3.20 9.6 n=48 2.56 14.5 n=62 0.59 8.7 n=103 0.94 [G10.14] 37.5 n=16 27.01** 0.0 n=24 0.50 NA 19.1 n=68 0.02 9.9 n=81 0.03 0.0 n=72 2.43 mbl n=60 14.93** 22.8 [E27] 23.8 n=42 14.03** 12.0 n=25 7.69** 28.3 40.0 n=70 6.63** n=149 4.50* 1.0 n=98 0.93 nAcRa-[EY13897]² 29.4 0.02 0.001 n=68 19.26** 4.5 n=176 1.13 6.5 n=93 8.9 n=146 3.07 8.8 n=90 NA 30D [KG05852] 9.4 n=53 2.05 7.5 n=187 3.33 1.5 n=67 0.96 14.3 n=91 0.45 5.5 n=72 0.67 NA Nrk [k14301]² 37.5 n=48 27.02** 19.9 n=58 15.33** 47.0 n=34 32.33** 15.0 n=40 0.29 16.9 n=230 1.44 7.0 n=185 0.29 [KG07478 30.0 9.5 Pgk 10.1 n=99 2.51 n=80 25.29** NA NA NA n=105 1.34 n=75 1.82 2.02 POSH [k15815]² 1.1 n=90 0.32 0.0 n=82 0.50 0.0 3.20 10.8 n=37 18.2 n=33 6.6 n=61 0.18 [EY00128] 18.1 n=83 8.89** 5.6 n=107 1.96 33.3 n=15 19.45* 11.6 n=112 1.41 11.3 n=133 0.02 3.8 n=105 0.05 Rack1 [1.8] 10.3 6.09* 8.9 9.5 n=42 2.63 0.12 0.0 2.44 11.1 n=27 3.21 n=68 n=45 0.60 12.3 n=122 n=127 5.27* [EE] 13.8 n=36 19.7 n=132 15.13** 7.4 0.16 76.9 n=39 33.45** 19.0 2.40 7.3 n=82 0.38 n=27 n=216 [2] [UifE(br)155] 0.0 n=27 0.9 n=110 0.42 0.0 n=20 3.20 4.4 n=45 8.06** 0.9 n=107 5.73* 3.6 n=84 0.02 robo 1.60 n=74 5.4 16.4 n=91 11.41** 4.0 n=20 0.05 30.7 n=88 2.20 13.8 n=94 0.41 18.1 n=105 7.46* 0.13 SP1070 [Uif2B7] 14.1 n=142 5.52* 12.3 7.97** 4.4 n=91 0.02 37.6 5.33* 44.4 20.99* 21.1 n=90 9.99** n=81 n=117 n=9 SP2353 [MB00605] 0.0 n=59 12.0 7.69** 18.5 n=40 6.64** 11.1 n=27 16.5 1.28 n=62 0.44 1.60 n=52 1.66 n=121 1.6 [k16722]² 4.3 n=46 n=55 39.82** 0.94 n=65 12.27** 11.2 n=89 2.33 0.06 4.6 1.20 54.8 n=73 12.7 n=71 33.8 vimar 9.4 0.0 5.05* 11.41** n=84 1.60 n=32 5.26* 16.4 n=110 12.9 n=70 0.87 32.7 n=49 0.7 n=142 0.93 [09]

Table S3. Frequency of muscle degeneration caused by reduction by one copy of screened genes in Dys and Dg mutant background

All mutant alleles obtained from BDSC, except 1 – described previously (Kucherenko et al., 2008), 2 – obtained from DGRC, 3 – described previously (Zhang and Ward, 2009)

NA – not analyzed

The results were statistically compared using χ^2 test with one degree of freedom and Yates's correction, *p≤0.05; **p≤0.01

Table S4. Other tested genes that did not show genetic interaction with DGC in muscles

	Loss-of-function mutants									
		DysDf x			Dg^{O86} x			<i>w</i> ¹¹¹⁸ x		
Gene name	Allele	degenera ted muscles, %	n, analyzed muscles	χ^2 -value	degenerat ed muscles, %	n, analyzed muscles	χ^2 -value	degenerated muscles, %	n, analyzed muscles	χ^2 -value
w	[1118]	3.3±3.3	n=227	-	$1.0{\pm}1.0$	n=90	-	4.2±2.0	n=98	-
argos	[Delta7]	4.6	n=131	0.01	2.9	n=173	0.21	10.1	n=158	1.69
Dl	[RevF10]	12.3	n=112	4.10*	5.0	n=159	1.50	12.0	n=125	2.85
dpp	[KG08191]	1.8	n=111	0.05	3.7	n=54	0.61	0.0	n=126	2.43
fra	[3]	10.7	n=178	2.90	7.7	n=52	3.73	11.6	n=69	2.59
hipk	[BG00855]	1.6	n=127	0.10	2.7	n=73	0.13	6.3	n=176	0.11
kek1	[k07332]	10.5	n=143	2.80	6.7	n=84	2.86	8.7	n=92	0.95
kis	[BG01657]	3.9	n=204	0.02	5.4	n=56	1.80	4.6	n=109	0.04
msk	[5]	NA	-	-	3.6	n=139	0.55	10.4	n=134	1.88
Sdc	[10608]	2.1	n=143	0.01	6.4	n=110	2.61	7.6	n=159	0.47
Sema-1a	[k13702]	10.7	n=56	2.93	3.5	n=116	0.50	12.1	n=99	2.93
Sema-2a	[k11240]	1.2	n=168	0.27	5.4	n=112	1.80	2.4	n=166	0.09
slit	[1118]	14.4	n=167	5.76*	8.9	n=112	4.80*	15.6	n=186	5.46*
stan	[19alpha]	0.8	n=122	0.52	7.7	n=91	3.73	1.6	n=63	0.44
wg	[Sp-1]	0.0	n=147	1.60	4.7	n=146	1.28	10.5	n=76	1.92

all mutant alleles obtained from BDSC;

NA – not analyzed;

the results were statistically compared using χ^2 test with one degree of freedom and Yates's correction, *p ≤ 0.05

[§]TMD - total muscle degeneration, EMD - extreme muscle degeneration,

^ØStatistics were calculated with one-way ANOVA and post Dannett's tests; the mean difference is significant at the 0.05 level,

					Statistical analysis ⁰ , p				
Experimental conditions		Genotype	Analyzed muscles, n	% of TMD (EMD) [§] , Mean±SE	Within "ex condi	perimental tions"	Within "experimental group"		
					TMD	EMD	TMD	EMD	
	25°C, normal food,	OregonR	743	6.03±1.58 (0)	control		control [◊]		
	13-15d old	w ¹¹¹⁸	461	6.01±0.34 (0)	p=1.000	-			
	18°C, normal food,	OregonR	1091	2.65±0.78 (0)	control		<i>p</i> =0.843	_	
p 1	13-15d old (10d)*	w ¹¹¹⁸	426	3.28±2.03 (0)	p=1.000	-			
groul	33°C, normal food,	OregonR	510	21.00±6.80 (1.50)	control		$p=2x10^{-6}$	<i>p</i> =0.450	
ıtal	13-15d old (10d)*	w ¹¹¹⁸	955	19.17±2.50 (1.02)	<i>p</i> =1.000 <i>p</i> =1.000				
imeı	25°C, normal food	OregonR	1213	4.10±2.29 (0)	control		n=0.832		
Experi	25 d old	w ¹¹¹⁸	395	2.50±1.51 (0)	<i>p</i> =0.716	-	p 0.052		
	25°C, Paraquat	OregonR	633	14.79±6.26 (10.95)	control		n=0.01	n=0.008	
	13-15d old (10d)*	w^{1118}	75	11.92±6.26 (10.07)	p=1.000	p=1.000	<i>p</i> 0.01	<i>p</i> 0.000	
	25°C,	OregonR	279	4.80±1.10 (0)	control		n=0.656	n=1,000	
	13-15d old (10d)*	w ¹¹¹⁸	685	6.17±1.07 (0)	<i>p</i> =0.999	<i>p</i> =0.978	p 0.050	p 1.000	
	25°C,	OregonR	518	0.90±0.20 (0)	con	trol	control for	OregonR	
	normal food,	DysDf	244	6.90±1.30 (0)	<i>p</i> =0.036	-	control f	or <i>DysDf</i>	
2	8-10d old	Dg ^{086/055}	101	4.50±1.10 (0)	<i>p</i> =0.129 -		control for	r <i>Dg</i> ^{086/055}	
Ino	18°C,	OregonR	303	1.90±1.90 (0)	control		<i>p</i> =0.524	-	
1 <u>9</u>	normal food,	DysDf	852	10.30 ± 0.70 (4.63)	<i>p</i> =0.004	<i>p</i> =0.166	<i>p</i> =0.348	<i>p</i> =0.050	
nta	8-100 010	Dg^{oourop}	256	7.90±2.20 (5.60)	<i>p</i> =0.049	p=0.1/2	p=0.1/9	p=0.076	
me	33°C,	DurDf	711	$4.10\pm0.70(1.20)$	CON	urol 7(2	p=0.127	p=0.232	
Deri	8-10d old (7d)*	DysDJ Da ^{086/055}	/11	$13.80\pm1.30(2.70)$	p=1x10	p=0.762	p=0.123	p=0.310	
ExJ	25°C	OragonR	201	$5.70\pm1.90(2.30)$	<i>p</i> =0.211	p=0.720	p=0.223	p=0.322	
	Paraquat	DvsDf	218	13.00 ± 4.00	n=0.163	-	p = 0.075		
	8-10d old (7d)*	Dg ^{086/055}	186	$10.50\pm 1.60(0)$	p = 0.105 p = 0.485	_	p = 0.162 p = 0.051	_	
	25°C	OregonR	166	$1.00\pm 1.00(0)$	con	itrol	control for	· OregonR	
33	normal food.	DvsDf	174	$4.80\pm2.50(0)$	n=0.087	-	control f	or DysDf	
Ino	5d old	Dg ^{086/055}	82	$3.70\pm1.70(0)$	<i>p</i> =0.007		control for DySDJ		
l gi	25°C,	OregonR	501	0.50±0.50 (0)	con	trol	p=0.466	-	
nta	sugar-free food,	DysDf	173	8.10±6.30 (0)	<i>p</i> =0.167	-	p=0.393	-	
me	5d old (4d)*	$Dg^{O86/O55}$	541	10.80±4.40 (5.60)	<i>p</i> =0.050	<i>p</i> =0.011	<i>p</i> =0.044	<i>p</i> =0.032	
Deri	25°C,	25°C, OregonR		3.00±3.00 (0)	control p=0.881		p=0.881		
ExI	normal food	DysDf	131	21.00±2.60 (1.70)	<i>p</i> =0.004	p=0.433	<i>p</i> =0.024	p=0.317	
	20d old	$Dg^{O86/O55}$	214	7.20±1.40 (3.65)	p=0.224	p=0.258	p=0.209	p=0.200	

^{\circ}since there is no a statistically significant difference between the two control lines (*OregonR* and w^{1118}) within "experimental conditions" groups these two genotypes were treated as one data set in further analysis,

*in parenthesis is shown the time flies were kept at the experimental conditions

Table S6. Metabolic rate of DGC mutants and *OregonR* line under the normal and sugar-free foodconditions

Genotype	CO ₂ production under the normal food conditions ¹ (μICO ₂ x hr ⁻¹ x fly ⁻¹)	Number of measure- mentsCO2 production under the sugar-free food conditions1 (µlCO2 x hr ⁻¹ x fly ⁻¹)		Number of measure- ments	Fold decrease in metabolic rate on sugar-free food ^{1,2}
OregonR	2.20±0.15	n=10	0.43 ± 0.14	n=3	5.12±0.46
DysDf	2.41±0.09	n=13	1.03 ± 0.09	n=7	2.34±0.13
$Dg^{O86/O55}$	2.36±0.18	n=6	1.46±0.19	n=7	1.60 ± 0.12

¹Mean±SE

 2 to determine the fold reduction in CO₂ production the amount of CO₂ generated under normal food conditions was divided by the amount of CO₂ generated under sugar-free food conditions for each genotype tested.

Supplementary Figure Legends

Supplementary Fig. 1. DGC is localized in the sarcolemma of different *Drosophila* muscle types. Schematic view of *Drosophila* reproductive system (A) and intestinal tract morphology (B). Squares show part of the organ analyzed for presence of DGC in muscle tissue. (C-R, T-W) Detection of Dg and Dys (red in C-R, T-W and white in C'-R', T'-W') in oviduct (C-F), uterus (G-J), midgut (K-N), hindgut (O-R) and rectal ampulla (T-W) muscles. Both Dg and Dys are localized to the sarcolemma. Dystroglycan can also be seen to a lesser extent in regions correlated with Z-discs as indicated by Kettin (green in C-D, G-H, K-I, O-P and T-U) localization in uterus muscles. Neither Dg nor Dys staining is detected in Dg^{086}/Dg^{055} (D, H, L, P, U) or *DysDf* (F, J, N, R, W) loss-of-function mutants. (S, S') The Dystroglycan antibody localization was seen in heart muscles. Nuclei are visualized with DAPI.

Supplementary Fig. 2. DGC mutants have age-dependant muscle degeneration and climbing defects. (A-J) H&E-stained transverse (A-F, J) and longitudinal (G-I) IFM sections from 10 day old (A-C) and 20 day old (G-J) *DysDf, Dg*⁰⁸⁶/*Dg*⁰⁵⁵ and *DysDf/Dg*⁰⁸⁶ mutants and wild type flies. Ten day old mutant flies exhibit mild changes in muscle tissue morphology, while 20 day old flies have more deteriorated muscles (arrows) and exhibit cases with severe loss of muscle tissue (arrowheads). Muscle degeneration is seen more often from the muscle termini (H); on transverse sections degenerated muscles are pale and form vacuoles indicating necrosis (I). Dystrophin homozygous viable (*DysDf*) flies and Dystroglycan semi-lethal transheterozygotes Dg^{086}/Dg^{055} show reduced ability to climb (K). Statistics were done using Student's t-test, **p≤0.01, *** p≤0.001. Oil red O-stained IFMs of *WT* (L) and *DysDf* (M) flies. Intramuscular lipid droplets are indicated with arrows. In addition, the different behavior in *Dys* and *Dg* mutants was noticed: while *Dys* deficient flies were shaking and not able to climb, the *Dg* mutant animals performed uncoordinated movements and jumped randomly.

