Post-translational phosphorylation of serine 74 of human deoxycytidine kinase favors the enzyme adopting the open conformation making it competent for nucleoside binding and release

${ }^{1}$ Saugata Hazra, ${ }^{2}$ Andrzej Szewczak, ${ }^{2}$ Stephan Ort, ${ }^{2}$ Manfred Konrad, and ${ }^{1 *}$ Arnon Lavie
Affiliations
${ }^{1}$ Department of Biochemistry and Molecular Genetics
University of Illinois at Chicago
900 S. Ashland Ave
Chicago, IL 60607, USA
${ }^{2}$ Max Planck Institute for Biophysical Chemistry
Am Fassberg 11
D-37077 Göttingen, Germany

Supplementary Information

Supplementary data include Table S1 and Figures S1, S2.

Nucleoside		WT dCK			R104M/D133A dCK			R104M/D133A + S74EdCK		
		$\mathrm{k}_{\mathrm{cat}}{ }^{\mathrm{a}}$	Km ${ }^{\text {a }}$	$\mathrm{k}_{\text {cat }} / \mathrm{Km}^{\text {b }}$	$\mathrm{k}_{\text {cat }}{ }^{\text {a }}$	Km ${ }^{\text {a }}$	$\mathrm{k}_{\text {cal }} / \mathrm{Km}^{\text {b }}$	$\mathrm{k}_{\text {cat }}{ }^{\text {a }}$	$\mathrm{Km}^{\text {a }}$	$\mathrm{k}_{\text {cal }} \mathrm{Km}^{\text {b }}$
A	D-dC	$0.040 \pm 0.001^{\text {c }}$	<3	>13.3	1.80 ± 0.04	5.70 ± 0.44	315.8	4.53 ± 0.1	19.5 ± 1.60	232
	D-dA	2.13 ± 0.35	115 ± 4	18.6	4.51 ± 0.33	1040 ± 117	4.3	3.56 ± 0.2	1415 ± 114	2.5
	D-dG	2.60 ± 0.10	231 ± 20	11.3	1.73 ± 0.12	1865 ± 211	0.9	0.37 ± 0.02	699 ± 63	0.50
C	Gem	0.39 ± 0.03	16.1 ± 3.5	24.2	2.68 ± 0.07	56 ± 17	47.7	9.44 ± 1.50	386 ± 83	24.4
	AraC	0.34 ± 0.01	13.1 ± 1.1	26.0	1.43 ± 0.03	137 ± 10	10.5	4.24 ± 0.78	616 ± 182	6.9
D	D-dT	-	-	-	1.74 ± 0.01	144 ± 10	12.1	5.60 ± 0.27	315 ± 34	17.7
	L-dT	-	-	-	3.13 ± 0.10	138 ± 10	22.7	8.60 ± 0.66	562 ± 80	15.3
E	BVdU	-	-	-	1.21 ± 0.08	108 ± 17	11.2	3.34 ± 0.19	728 ± 76	4.60
	L-dU	-	-	-	10.60 ± 1.44	1058 ± 242	10.0	6.78 ± 0.60	1103 ± 159	6.15
F	5-Met dC	$0.070 \pm 0.002^{\text {a }}$	7.8 ± 1.2	9.0	0.36 ± 0.02	4.16 ± 1.54	87	3.62 ± 0.42	38.38 ± 11.08	94
F	5-Pro-dC	-	-	-	0.59 ± 0.02	22.67 ± 3.80	26	3.33 ± 0.12	40.36 ± 5.54	82
	$5-\mathrm{Br}-\mathrm{dC}$	0.045 ± 0.002	22.0 ± 4.0	2.0	0.30 ± 0.01	5.87 ± 0.72	51	2.05 ± 0.05	8.21 ± 1.28	250
	$5-\mathrm{I}-\mathrm{dC}$	0.032 ± 0.001	58.9 ± 6.0	0.5	0.16 ± 0.01	7.10 ± 1.52	23	1.10 ± 0.04	10.32 ± 1.90	107

[^0]Gem: gemcitabine; AraC: cytarabine; BVdU: bromovinyl-deoxyuridine; 5-Met-dC: 5-methyl-deoxycytidine; 5-Pro-dC: 5-propinyl-deoxycytidine; 5-Br-dC: 5-bromo-deoxycytidine; 5-I-dC: 5-iodo-deoxycytidine

Figure Legends

Figure S1: Conformational plasticity of dCK's nucleotide and nucleoside binding sites. Shown is an overlay of the dCK structure solved in the presence of L-deoxythymidine (L-dT) and ADP (PDB ID 3HP1, blue), and that of the S74E variant that also contained L-dT but UDP instead of ADP (green). In both cases the enzyme also contained the double mutations (DM) of R104M+D133A - these mutations confer thymidine binding ability to dCK. Right zoom inset: The base-sensing loop adopts a different main-chain conformation that is determined by the nature of the base of the nucleotide. However, the phosphates of UDP and ADP overlay nearly perfectly. Left zoom inset: The structure with ADP is the closed state in which residues 63 to 77 of the insert region cannot be modeled. The structure of the S 74 E containing mutation adopted the open state that reveals extra residues of the insert. Notably, the insert in the open state has adopted a different angle of helix a2, and a longer helix a3 that is followed by a loop. The side chain of E74 is shown. The position of L-dT is different between the open and closed conformations. Only in the closed conformation can the 5^{\prime}-hydroxyl of L-dT (marked by black arrows) become activated by the carboxylic group of Glu53.

Figure S2: Sequence alignment of the human nucleoside kinases deoxycytidine kinase (hdCK), deoxyguanosine kinase (hdGK), thymidine kinase 2 (hTK2) and the Drosophila melanogaster deoxynucleoside kinase (dNK). The secondary structure of dCK is shown above the sequences, arrows depicting beta strands (numbered 1 through 5), and corkscrews depicting alpha helices (1 through 10). The Insert region that connects helix 2 to helix 3 is present in hdCK and hdGK, but not in hTK2 and dNK. In dNK, a short turn replaces the 12-15 residue long Insert region.

Figure S1

Figure S2

[^0]: ${ }^{a} \mathrm{k}_{\text {cat }}$ units are $\mathrm{sec}^{-1}, \mathrm{Km}$ units are in $\mu \mathrm{M}$.
 ${ }^{\mathrm{b}} \times 10^{3} \mathrm{sec}^{-1} / \mathrm{M}$
 ${ }^{\text {c }}$ standard deviation

 - activity undetectable or extremely weak

