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1 Introduction

Consider Einstein theory coupled to scalar fields parametrising a symmetric space G/K(G)

(where K(G) is the maximal compact subgroup of G), and n abelian vector fields such that

G ⊂ Sp(2n,R) acts linearly on them and their magnetic duals. This setup is typical for the

bosonic sector of various (ungauged) extended supergravity theories, and in particular for

the maximally extended N = 8 supergravity with duality group G = E7(7) ⊂ Sp(56,R) [1].

The purpose of this letter is to discuss the consistency of the action of this duality group,

when higher order local corrections to the tree level action (of the type appearing in the

string theory effective action or as counterterms in extended supergravities) are included.

Accordingly, we will consider n ‘electric’ vector fields Am
µ together with their ‘magnetic’

duals Am̄
µ , combining them into a 2n-plet of vectors Am

µ with 2n associated field strengths

Fm
µν , viz.

Am
µ ≡

(

Am
µ , Am̄

µ

)

⇔ Fm
µν ≡

(

Fm
µν , F m̄

µν

)

(1.1)

Note that the n magnetic duals Am̄
µ are only defined on shell, as non-local functionals of

the other fields of the theory. 1 Classically, this redundancy is reflected in the so-called

twisted selfduality constraint [1] for the 2n field strengths Fm
µν

Fm
µν = − 1

2
√

-g
εµν

σρJm
nFn

σρ , (1.2)

which simultaneously halves the number of degrees of freedom and puts the theory on-

shell, in such a way that the Bianchi identities for the electric vectors imply the equations

1In the literature [2–4] the magnetic field strengths are often denoted by the letter Gµν , so the relation

with our notation (which follows [5]) is established by making the identification (Fm
µν , F m̄

µν) ≡ (Fm
µν , Gm

µν).

Because the extension of our arguments to fermions is straightforward, we will not consider fermions in this

paper, but see e.g. [6].

– 1 –



J
H
E
P
0
8
(
2
0
1
1
)
0
7
4

of motion for the magnetic vectors, and vice versa. Here, Jm
n is a ‘complex structure’

built from the Sp(2n,R) invariant symplectic form Ωmn and the scalar field dependent

symmetric metric Gmn ∈ G

Jm
n ≡ ΩmpGpn ⇒ Jm

pJ
p
n = −δm

n (1.3)

The indices (m , m̄) correspond to the decomposition (1.1) of the 2n vectors in a Darboux

basis such that the symplectic form splits as

Ωmn = Ωm̄n̄ = 0 , Ωmn̄ = −Ωn̄m = δmn̄ , (1.4)

Defining Hm̄n̄ as the inverse of Gm̄ n̄ one directly obtains from (1.2)

F m̄
µν = Hm̄n̄

(

δn̄m
1

2
√

-g
εµν

σρFm
σρ − Gn̄mFm

µν

)

. (1.5)

The classical action is then re-obtained by solving the equation

F m̄
µν = −δm̄m

1

-g
εµνσρ

δS

δFm
σρ

, (1.6)

with the result

S ≡ S(0) = −1

4

∫

d4x

(√
-gHm̄ n̄δm̄mδn̄nFm µνF n

µν +
1

2
εµνσρHm̄ n̄Gn̄nδm̄mFm

µνF n
σρ

)

. (1.7)

As required, the tree level action S(0)[Fm
µν ] depends only on the electric vector potentials.

For more general actions S depending on the electric vector fields, the basic relations (1.6)

remain the same, and are usually referred to as constitutive relations [3]. As shown in [2, 3]

it is a general feature that the action itself is not duality invariant, but varies as

δgS[Fm
µν ] =

1

8

∫

d4x

(

εµνσρXm̄
nδm̄mFm

µνF n
σρ −

4

-g
εµνσρX

m
n̄δn̄n

δS

δFm
µν

δS

δF n
σρ

)

, (1.8)

under the duality transformations

δgGmn = Xm
pG

pn + Xn
pG

mp , δgFm
µν = Xm

nFn
µν . (1.9)

We have omitted the superscript (0) in (1.8) because, as shown in [2, 3], the equation (1.8)

is the consistency condition for any action S with associated duality invariant equations

of motion.2 In particular, it must also hold for actions including non-linear deformations

or higher order corrections, so that the duality transformations preserve the constitutive

relations (1.6).

Suppose now that we are given a classical action S(0) satisfying these requirements,

such as for instance the tree level action of N = 8 supergravity, whose vector part is just

given by (1.7) (for G = E7(7)). In perturbation theory, this action will be modified by higher

2Note that (1.8) is required for the duality transformations to make sense on the fields, and this is also

valid when they are not symmetries of the equations of motion, but nevertheless admit a representation on

the fields satisfying the equations of motion.
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order counterterms and corrections whose compatibility with duality transformations and

with (1.8) is not immediately obvious. The higher order corrections to the action are only

defined modulo the equations of motion of the classical action S(0). They are generally

given as functionals of the 2n electric and magnetic vectors Am
µ , that is, in the form

I (1) = I (1)[Fm
µν , F m̄

µν ].3 In particular, the higher order counterterms in N = 8 supergravity

appear generically in this manifestly covariant form with respect to the duality group in

terms of vector fields transforming in the linear 56 representation of E7(7) [7–9]. When

trying to express the original action together with the corrections as an actual new action

functional of the electric field strengths only, we are thus faced with the question what

expression to substitute for the magnetic field strengths F m̄
µν : after all, these will be given

by non-linear and possibly non-local functionals of the electric vector fields (as well as

the other fields) whose form is determined precisely by the new corrected action we are

looking for. A naive guess might be to substitute the tree level solution (1.5), but one

quickly sees that this ansatz solves the consistency condition (1.8) only to first order in

perturbation theory, and fails at higher orders. In other words, it could a priori appear

that the corrected action functional gives rise to inconsistencies with the action of the

duality transformations (1.9) [4, 10].

2 Deformed twisted selfduality constraint

To find the right action one must therefore adopt a different strategy, taking a deformed ver-

sion of the twisted selfduality constraint as the starting point. Namely, given a manifestly

duality covariant counterterm correction I (1) depending on the 2n field strengths Fm
µν and

their derivatives, we propose to replace (1.2) by the deformed twisted selfduality constraint

Fm
µν − 2√

-g
Gmngµσgνρ

δI (1)

δFn
σρ

= − 1

2
√

-g
εµν

σρJm
n

(

Fm
µν − 2√

-g
Gmngστgρω

δI (1)

δFn
τω

)

(2.1)

or, equivalently,

Fm
µν +

1

2
√

-g
εµν

σρJm
nFn

σρ =
2√
-g

Gmngµσgνρ
δI (1)

δFn
σρ

+ Ωmn 1

-2g
εµνσρ

δI (1)

δFn
σρ

. (2.2)

This equation is manifestly duality invariant if I (1) is a duality invariant functional. At the

same time it achieves the required halving of the number of physical degrees of freedom and

imposes the (deformed) equations of motion. To reconstruct a bona fide action depending

only on the physical fields (and only the electric vector fields, in particular) and satisfying

all consistency requirements, we now have two options.

• We first solve (2.1) for the magnetic field strengths F m̄
µν in function of the electric field

strengths Fm
µν and their derivatives (as well as all other fields) as a formal power series.

With the resulting expression for F m̄
µν as a functional of the physical fields, we then

solve (1.6) in a second step to obtain the full corrected action functional in terms

3For clarity of notation, we will use the letter S only for ‘true’ actions defined off shell, whereas I denotes

a general functional of both electric and magnetic fields.
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of the electric vectors only. This procedure manifestly preserves four-dimensional

space-time covariance.

• Alternatively, we can solve (2.1) for the time components (Fm
0i , F

m̄
0i), and again re-

construct the requisite action in a second step. The resulting action depends on

the spatial electric and magnetic vector components (Am
i , Am̄

i ), and therefore breaks

manifest space-time covariance. Nevertheless, we will see that there is a consistency

condition that guarantees full space-time covariance on-shell.

Due to the non-linear dependence of I (1) on the magnetic field strengths F m̄
µν and possibly

their derivatives, the resulting corrected action will include terms of arbitrarily high order

for any kind of counterterm correction, and this will be true in both approaches. In other

words, the ‘initial’ counterterm I (1), which is usually polynomial in the field strengths and

their derivatives, must be supplemented by an infinite string of higher order terms. This

completion of the ‘initial’ counterterm action will thus be non-polynomial, and also non-

local if the initial counterterm depends on derivatives.4 Yet, it will satisfy the consistency

condition (1.8).

Let us illustrate these claims with a simple example from Maxwell theory, adopting

the space-time covariant approach. For this purpose we combine the electric vector A1

µ

with its magnetic dual A2

µ ≡ A1̄

µ into a complex vector potential Aµ ≡ A1

µ + iA2

µ, with

corresponding complex field strength

Fµν = F 1

µν + iF 2

µν , (2.3)

Electromagnetic U(1) duality then acts on these fields simply as a global phase rotation. It

is furthermore easy to see that the original (free) Maxwell equations for A1

µ are recovered

from the twisted selfduality constraint

F−
µν = 0 , (2.4)

where we define the complex selfdual and anti-selfdual field strengths as

F±
µν :=

1

2
Fµν ± i

4
√

-g
εµν

σρFσρ . (2.5)

As an example of a non-trivial deformation let us consider the U(1) duality invariant

expression

I (1) = −1

4

∫

d4x
√

-g gρκT µνσλ ∇µF̄σρ ∇νFλκ , (2.6)

where T µνσρ is the Bel-Robinson tensor

T µνσρ ≡ CµκσλCν
κ
ρ
λ − 3

2
gµ[νCκλ]σϑCκλ

ρ
ϑ , (2.7)

with the Weyl tensor Cµνσρ. The Bel-Robinson tensor is fully symmetric and traceless

in its four indices and is conserved modulo the vacuum equations of motion. With the

4Note, however, that it will nevertheless remain local in a perturbative sense, i.e. involve only a finite

number of derivatives at any given order in the coupling constant.
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above notation, the deformed twisted selfduality constraint for our Maxwell example takes

the form

F−
µν + ∇σT[µ

σρλ∇ρF
+
ν]λ = 0 , (2.8)

Observe that the second term in (2.8) is complex anti-selfdual in the indices [µν], as it

should be, because the Bel-Robinson tensor is symmetric traceless and the torsion-free

covariant derivatives preserve complex (anti)selfduality.

Let us now construct a manifestly diffeomorphism covariant Lagrangian for the de-

formed equations of motion in terms of the real Maxwell field strengths F 1

µν only, following

the above procedure. To this aim we define the differential operator

(∆(f))µν ≡ ∆µν
ρσfρσ := ∇κT[µ

κλ[σ∇λδ
ρ]
ν]fρσ . (2.9)

acting on two-forms fµν . This operator is self-adjoint and satisfies

1

2
√

-g
εµν

κλ ∆κλ
σρ = −∆µν

κλ 1

2
√

-g
εκλ

σρ , (2.10)

thus converting selfdual into anti-selfdual tensors, and vice versa (this accounts for the

opposite duality phases on F+
νλ in (2.8)). Decomposing (2.8) one obtains

(

δσρ
µν + ∆µν

σρ
)

F 2

σρ =
(

δσρ
µν − ∆µν

σρ
) 1

2
εσρ

κλF 1

κλ , (2.11)

and inverting the operator on the left-hand side we get

F 2

µν =
1

2
εµν

κλ

(

δσρ
κλ + 2

∑

n≥1

(∆n)κλ
σρ

)

F 1

σρ , (2.12)

where ∆n is the nth power of ∆. This equation, in turn, simply follows as the Euler-

Lagrange equation of the action

S = −
∫

d4x
√−g

(

1

4
F 1µνF 1

µν +
1

2

∞
∑

n=1

F 1µν(∆n)µν
σρF 1

σρ

)

. (2.13)

The completion of the ‘initial’ Bel-Robinson counterterm I (1) from (2.6) is thus non-

polynomial and also non-local (depending on arbitrarily high powers of the derivative

operator ∇µ). To check the consistency condition (1.8) we first observe that

∫

d4x
2

-g
εµνσρ

δS

δF 1
µν

δS

δF 1
σρ

=

∫

d4x
1

2
εµνσρ

(

δκλ
µν + 2

∑

n≥1

∆nκλ
µν

)

F 1

κλ

(

δθτ
σρ + 2

∑

n≥1

∆nθτ
σρ

)

F 1

θτ

=

∫

d4x
1

2
εµνσρF 1

µν

(

δκλ
σρ + 2

∑

n≥1

(-∆)nκλ
σρ

)(

δθτ
κλ + 2

∑

n≥1

∆nθτ
κλ

)

F 1

θτ

=

∫

d4x
1

2
εµνσρF 1

µνF 1

σρ . (2.14)

Because X1
2 = −X2

1 for a U(1) duality rotation, this means that the two terms on the

right-hand side of (1.8) are the same, yielding twice the right-hand side of (2.14). Now

– 5 –
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using δu(1)F 1

µν = X1
2F

2

µν together with the constitutive relations (1.6), it is straightforward

to see that (1.8) is indeed satisfied for the completed action (2.13).

The counterterm (2.6) is actually a simplified version of a typical term appearing in

the supersymmetric completion of the R4 counterterm arising at three loops in N = 8

supergravity [11], 5 where it is proportional to (using SL(2, C) spinor notation)

CαβγδC α̇β̇γ̇δ̇∇
αδ̇

F ij
βγ∇δα̇F̄

β̇γ̇ ij
. (2.15)

with the SU(8) field strength F ij
αβ ≡ σµν

αβF ij
µν and its complex conjugate F̄α̇β̇ij . It is rather

straightforward to generalize the above calculation and to obtain the corresponding piece

of the corrected action of N = 8 supergravity to all orders. More specifically, with the

notation and the conventions of [15] we get

S = −1

2

∫

d4x
√−g

(

1

2
Re[2S − 1]IJ,KLF IJ µνFKL

µν (2.16)

+
1

2
√−g

εµνσρIm[S]IJKLF IJ
µν FKL

σρ

+ F IJ µν
∑

n

(∆n)µν
σρ IJ,KLRe[2S − 1]KL,PQFPQ

σρ

)

where F IJ
µν are the real field strengths associated with the 28 Maxwell vectors of N = 8

supergravity. The operator ∆IJ,KL is defined from (2.9) by covariantizing the differential

operator ∇µ also w.r.t. the local SU(8) symmetry of N = 8 supergravity, such that

∆µν
σρ IJ,KL = Re

[

KIJ
ij∆µν

σρ(uij
KL + vijKL)

]

+
1

2
√−g

εµν
κλIm

[

KIJ
ij∆κλ

σρ(uij
KL + vijKL)

]

(2.17)

with

KIJ
ij(u

ij
KL + vijKL) = δIJ

KL , SIJ,KL = KIJ
iju

ij
KL (2.18)

To be sure, this argument says nothing about the deformation of local supersymmetry

that must also be taken into account when counterterms are added to the original action

of N = 8 supergravity. To carry out such a computation in full and explicit detail appears

beyond reach, but in the following section we will present general arguments (based on the

absence of diffeomorphism and local supersymmetry anomalies in four dimensions) that a

fully invariant deformation simultaneously compatible with nonlinear supersymmetry and

E7(7) exists and can be obtained at least in principle in an order by order calculation.

3 Non-covariant formulation with manifest duality

In the foregoing section we showed how to restore the full duality invariance for the cor-

rected equations of motion. However, being on-shell, this formalism is not directly suited

5Note that the complete supersymmetry invariant is not actually duality invariant [12, 13], however its

non-perturbative completion arising in string theory is believed to be E7(7)(Z) invariant (see e.g. [14]), and

so it is important that it transforms covariantly with respect to E7(7).
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for quantisation because we cannot formulate the functional Ward identities for the duality

symmetry in that case. For that purpose one must instead make use of a non-covariant for-

mulation developed by Henneaux and Teitelboim [16], and worked out for N = 8 supergrav-

ity by Hillmann [6] (see also [5]). In that formalism one takes the 2n spatial three-vectors

Am
i as the fundamental fields, while their time components are only defined on-shell. As a

consequence, the action is manifestly duality invariant, but no longer manifestly invariant

under space-time diffeomorphisms. At tree level, it takes the form

S(0)
vec =

1

4

∫

d4x
(

Ωmnεijk
(

∂0A
m
i + NlFm

il

)

Fn
jk − N

√
hGmnhikhjlFm

ijF
n
kl

)

. (3.1)

It is invariant only with respect to a non-standard realisation of space-time diffeomorphisms

(but, of course, still invariant under spatial diffeomorphisms). The equation of motion for

the vector fields is

εijk∂jE
m
k

= 0 , (3.2)

with the abbreviation

E
m
i ≡ ∂0A

m
i + NjFm

ij −
N

2
√

h
hijε

jklJm
nFn

kl . (3.3)

(recall that we neglect fermionic terms). It is invariant with respect to the modified diffeo-

morphism transformation of the vector field

δξA
m
i ≡ ξjFm

ji + ξ0
(

∂0A
m
i − E

m
i

)

. (3.4)

Although the component Am
0

of the vector field does not appear in the action, its spatial

gradient can be identified from the equations of motion as

∂iA
m
0

= E
m
i , (3.5)

One then expresses the Lorentz field strength Fm
µν via Fm

ij and

Fm
0i = ∂0A

m
i − E

m
i . (3.6)

With this definition, one checks that the field strength Fm
µν transforms indeed as it should

with respect to diffeomorphisms modulo the equations of motion

δFm
µν = ξσ∂σFm

µν − 2Fσ[µ∂ν]ξ
σ + ξ0E m

µν , (3.7)

where E
m
µν is the twisted selfdual component of the equations of motion, i.e.

E
m
ij = Ωmnεijk

δS(0)

δAn
k

, E
m
0i = −Nj

E
m
ij +

N

2
√

h
hijε

jklJm
nE

n
kl

, (3.8)

in accord with the (undeformed) twisted selfduality constraint.

Next let us consider some higher order supersymmetric invariant I (1) defined on-shell as

a functional of Fm
µν and the other fields of the theory, which is invariant with respect to the

– 7 –
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ordinary action of diffeomorphisms. From this action we directly obtain the corresponding

off-shell action S(1) by substituting (3.6) for the time-components Fm
0i , viz.

S(1)[Fm
ij ] ≡ I (1)

[

Fm
ij , Fm

0i ≡ ∂0A
m
i − E

m
i

]

. (3.9)

Its variation under a time-like diffeomorphism with parameter ξ0 is 6

δS(1) =

∫

dx4Ωmnεijkξ0
δS(1)

δFm
ij

δS(0)

δAn
k

. (3.10)

It follows that, at the same order, the action S(0) + S(1) is invariant with respect to the

modified variation

δAm
i = ξjFm

ji + ξ0
(

∂0A
m
i − E

m
i − Ωmnεijk

δS(1)

δFn
jk

)

. (3.11)

At this order this result is precisely the expected one: the diffeormorphism transformation

of the vector field agrees with the ordinary transformation modulo the corrected equations

of motion. Of course, in order to obtain full agreement and to establish the consistency of

the deformed action one must now complete the corrected action by adding higher order

terms, just like for the covariant deformed Maxwell action in the previous section. That

is, we must determine the full invariant

S = S(0) + S(1) + S(2) + . . . (3.12)

with a corresponding all order corrected transformation of the vector fields. The possible

obstructions in carrying out this procedure are the solutions of the diffeomorphism Wess-

Zumino consistency conditions as functionals of Fm
µν and the other fields, identified modulo

the equations of motion [17]. Because the action of diffeomorphisms on Fm
µν is identical to

the conventional one modulo the equations of motion, this cohomology problem is identical

to the one of identifying algebraic diffeomorphism anomalies in four dimensions. Conse-

quently, the absence of such anomalies [18, 19] ensures the existence of a completed action

S which is invariant with respect to its associated diffeomorphism action.

Similar reasoning permits to argue that the same procedure applies to supersymmetry

invariants. The existence of a completed action invariant with respect to supersymme-

try relies on the absence of supersymmetry anomalies. However, the argument is less

straightforward in that case because the supersymmetry variation of the fermion fields

in the Henneaux-Teitelboim formulation coincides with their supersymmetry variation in

the conventional (covariant) formulation only modulo the ‘integrated’ classical equations

of motion (3.5). Although proving this is beyond the scope of this paper, we argue that

gauge invariance implies that this subtlety does not alter the proof and that the cohomology

groups associated to the supersymmetry anomaly are isomorphic in the two formalisms.

Equivalently, this would imply the absence of any obstruction in defining the all order

supersymmetric action as a formal power series.

6The covariance under spatial diffeomorphisms (with parameters ξi) is manifest.

– 8 –



J
H
E
P
0
8
(
2
0
1
1
)
0
7
4

We will now show how to compute the complete action S perturbatively by using the

invariance of the action as a first order functional derivative equation. To this aim we

consider the action 7

S =
1

4

∫

d4x
(

Ωmnεijk
(

∂0A
m
i + NlFm

il

)

Fn
jk

)

+ I
[

Fm
ij ,∇µFm

ij , . . .
]

, (3.13)

where the functional I depends on the vector fields via the spatial field strengths Fm
ij and

their derivatives (including time derivatives). For any such I the equations of motion of

the vector fields still take the form of a spatial divergence

δS

δAm
i

= −εijk∂j

(

Ωmn

(

∂0A
n
k

+ NlFn
kl

)

− εklh
δI

δFm
lh

)

= 0 , (3.14)

They are thus equivalent to the first order equation

Fm
0i = −NjFm

ij − Ωmnεijk
δI

δFn
jk

. (3.15)

Under the diffeomorphisms

δξA
m
i ≡ ξjFm

ji − ξ0
(

NjFm
ij + Ωmnεijk

δI

δFn
jk

)

, (3.16)

the full action S transforms as

δξS =

∫

d4xξ0
(

1

4
Ωmn∂l

(

N2hlhεijkFm
ihF

n
jk

)

+
(

∂0F
m
ij + 2∂iN

lFm
jk

) δI

δFm
ij

)

+ δξI

=

∫

d4xξ0∂l

(

1

4
ΩmnN2hlhεijkFm

ihF
n
jk + Ωmnεijk

δI

δFm
il

δI

δFn
jk

)

+ δ̄ξI , (3.17)

where δ̄ξ is defined to act on Fm
ij as an ordinary diffeomorphism according to (3.15)

δ̄ξF
m
ij = ξµ∂µFm

µν − 2Fk[i∂j]ξ
k + 2

(

NkFm
[i|k + Ωmnεkl[i

δI

δFn
kl

)

∂j]ξ
0 . (3.18)

The invariance of the action therefore follows from the vanishing of

δLδ̄ξI

δξ0
= ∂l

(

1

4
ΩmnN2hlhεijkFm

hiF
n
jk + Ωmnεijk

δI

δFm
li

δI

δFn
jk

)

. (3.19)

This relation can be viewed as the non-covariant analogue of the consistency condition (1.8),

but now ensuring space-time covariance of our manifestly duality invariant action.

The equation (3.19) defines a functional differential equation which permits to deter-

mine I perturbatively. This equation simplifies drastically when I contains no explicit

7The covariant derivative ∇µF m

ij must be defined perturbatively. At first order it is defined from the

ordinary covariant derivative ∇µ acting on F m

µν as defined in (3.6),

∇
(0)
µ F

m

ij = ∂µF
m

ij + 2Γk
µ[iF

m

j]k − 2Γ0

µ[i(∂0A
m

j] − E
m

j] )

.
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derivative terms, that is, when it is the integral of a polynomial function (‘potential’) V of

Fm
ij and the metric, which is invariant under spatial diffeomorphisms. In that case (3.19)

is no longer a functional differential equation, but reduces to the differential equation

1

4
ΩmnN2hlhεijkFm

hiF
n
jk = Ωmnεijk

δI

δFm
li

δI

δFn
jk

≡ ΩmnN2h εijk
∂V

∂Fm
li

∂V

∂Fn
jk

. (3.20)

4 Maxwell theory, once again

To illustrate how the procedure works in the non-covariant formulation we again study an

example generalising Maxwell theory. To keep things as simple as possible we consider a

modification that initially depends on the complex spatial field strength Fij polynomially,

but not on its derivatives (the inclusion of derivatives presents no problem of principle, but

renders the calculations substantially more tedious). The tree level Lagrangian is now a

function of the complex spatial vector field Ai = A1

i + iA2

i and reads

L = − i

2
εijk

(

∂0Ai + NlFil

)

F̄jk +
i

2
εijk

(

∂0 Āi + NlF̄il

)

Fjk − N
√

hV [F ] . (4.1)

with the tree level ‘potential’

V ≡ V (0) = hikhjlFijF̄kl = F abF̄ab . (4.2)

Here and in the remainder, we will mostly use flat indices

Fab ≡ eiae
j

bFij , (4.3)

where eia is the inverse dreibein such that hij = δabeiae
j

b . Generalising beyond tree level,

the potential V will be a more complicated function, but for any given V , the three vector

transforms as

δAi = (ξj + ξ0Nj)Fji − iξ0
N
√

h

2
εijk

∂V

∂F̄jk

, (4.4)

In order to ensure full diffeomorphism invariance, V must satisfy the consistency condi-

tion (3.19) which now reads
∂V

∂F a[b

∂V

∂F̄ cd]
= F̄a[bFcd] . (4.5)

The general procedure then starts from some ‘initial’ corrected potential of the form

V = V (0) + V (1) and exploits (4.5) in order to complete the potential V to a more general

SO(3) invariant function of the spatial field strengths Fab and F̄ab, such that

V = V (0) + V (1) + . . . (4.6)

satisfies the differential equation (3.19). As before we will thus find that, for consistency,

any ‘initial’ counterterm V (1) must be supplemented by an infinite string of higher order

corrections. As the simpest possible example we will consider the manifestly duality in-

variant expression V (1) ∝ 1
2FαβFαβF

α̇β̇
F α̇β̇ obtained by squaring the complex selfdual and

– 10 –
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anti-selfdual field strengths. In the present approach this invariant can be identified with

one half the duality invariant

Y ≡ F abFabF̄
cdF̄cd (4.7)

by using the equations of motion. Writing also

X ≡ F abF̄ab , (4.8)

we would thus like to solve (4.5) for

V (X,Y ) = F abF̄ab +
1

2
F abFabF̄

cdF̄cd + O(F 6) ≡ X +
1

2
Y + O(F 6) . (4.9)

First of all we note that (4.5) is trivially satisfied at first order because

Fa[bFcd] = 0 . (4.10)

After some further computation it is seen that V must be of the form

V (X,Y ) = X +
∞
∑

n=0

1

(2 + 2n)!
H (n)(X)Y 1+n . (4.11)

The condition (4.5) is satisfied provided (using F̄a[bFcd] = −Fa[bF̄cd])

(

1 +

∞
∑

n=0

Y 1+n

(2 + 2n)!

∂H (n)

∂X

)2

= Y

(

∞
∑

n=0

Y n

(1 + 2n)!
H (n)

)2

+ 1 . (4.12)

Observe that this ansatz is manifestly duality invariant. At first order in Y one gets

∂H (0)

∂X
=
(

H (0)
)2

, (4.13)

which implies (with the condition H (0)(0) = 1) that

H (0)(X) =
1

1 − X
. (4.14)

At order Y 2 we get
∂H (1)

∂X
− 4

1 − X
H (1) = − 3

(1 − X)2
, (4.15)

which gives

H (1)(X) =
1

1 − X
+

c(1)

(1 − X)4
, (4.16)

with an arbitrary constant c(1). This constant corresponds to the freedom of adding the

on-shell invariant

c(1)

24

(

FabFabF̄cdF̄cd

)2 ≈ c(1)

24

(

FαβFαβFα̇β̇F α̇β̇
)2

, (4.17)

to the invariant F 2F̄ 2, while preserving diffeomorphism invariance.
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It is now clear how to proceed perturbatively in Y and how to determine all the

functions H (n) by successively solving the hierarchy of first order equations 8

∂

∂X

(

(1 − X)2+2nH (n)

)

=

1

2
(1 − X)2+2n





n−1
∑

p=1

C1+2p
2+2nH (p)H (n−p) −

n−1
∑

p=0

C2+2p
2+2n

∂H (p)

∂X

∂H (n−p−1)

∂X



 . (4.18)

By construction the right-hand side is a finite Laurent series in (1 − X) with polynomial

coefficients in ln(1 − X) which can be integrated straightforwardly, modulo the definition

of the homogenous solution

H (n) =
c(n)

(1 − X)2+2n
+ H̃ (n) , (4.19)

H̃ (n) being a particular solution. Clearly, the constants c(n) correspond to the ambiguities

in defining a diffeormorphism invariant associated to the possibility of adding higher order

invariants corresponding on-shell to

c(n)

(2n)!

(

FαβFαβ
)n(

F
α̇β̇

F α̇β̇
)n ≈ c(n)

(2n)!

(

FabFab

)n(
F̄cdF̄cd

)n
. (4.20)

Setting c(1) = 5, the potential V reads

V (X,Y ) = X +
1

2
Y
(

1 + X + X2
)

+
1

4
Y 2 + O(F 10) . (4.21)

To establish the link of the above construction with the deformed twisted self-duality

constraint (2.1), we note that, by construction, the equations of motion are invariant with

respect to diffeomorphism invariance. Hence they can indeed be rewritten in this manifestly

diffeomorphism covariant form (for c(1) = 5 and higher c(n) chosen appropriately), viz.

Fµν − i

2
√

-g
εµν

σρFσρ +
1

8

(

FκλF κλ +
i

2
√

-g
εκλθτFκλFθτ

)(

F̄µν − i

2
√

-g
εµν

σρF̄σρ

)

= 0 .

(4.22)

Indeed, decomposing the corresponding equations into space and time components

F0a −
i

2
εabcFbc +

1

8

(

FdeFde − 2F0dF0d − 2iεdefF0dFef

)

(

F̄0a −
i

2
εabcF̄bc

)

= 0 , (4.23)

one can perturbatively solve for F0a in terms of Fab as

F0a =
i

2
εabcFbc

(

1 +
1

2
Y
(

1 + 2X
)

)

+
i

2
εa

bcF̄bcFefFef

(

1 + X + X2 + Y

)

+ O(F 10) , (4.24)

This solution coincides with the expression following from the corrected potential V ob-

tained above in (4.21) up to order F 10.

8Where Cp

n ≡
n!

p!(n−p)!
are the binomial coefficients.
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5 Conclusions

We have demonstrated for some typical examples by rather explicit computations that

the higher order counterterms and corrections arising in supergravity and the effective

string theory action are perfectly compatible with the full non-linear duality symmetries of

these theories, provided one completes the ‘initial’ correction terms by solving the requisite

consistency conditions. This can be done in either of two different formulations, in one

of which space-time covariance is manifest but the duality symmetry is realised only on-

shell, while it is the converse in the second formulation. We have exhibited the analogue

of the Gaillard-Zumino constraint for the Henneaux-Teitelboim formulation, and we have

furthermore shown that the two procedures give results which agree at lowest non-trivial

orders in a perturbative expansion.

We have shown that the absence of diffeormorphism anomalies in four dimensions

implies that one can always construct a diffeomorphism invariant corrected action func-

tional associated to an ‘on-shell’ invariant in the Henneaux-Teitelboim formulation. We

argued that the absence of supersymmetry anomalies similarly implies that one can al-

ways construct a supersymmetric corrected action functional associated to any given

‘on-shell’ invariant.

We conclude that the non-linear E7(7) symmetry is not sufficient to rule out all higher

order counterterms, hence divergences, of N = 8 supergravity. At this stage of our un-

derstanding of the theory, there is unfortunately no ‘royal path’ to finiteness cutting short

explicit calculations of the type performed in [20]. If N = 8 supergravity is UV finite to

all orders the reason must be sought beyond maximal supersymmetry and E7(7).
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A Deforming the NGZ identity

In this appendix we discuss the NGZ identities required for the invariance of the equations

of motion under duality [2–4] and their deformation when the original action is deformed

by higher order corrections. For ease of comparison we adopt the notation and conventions

of [4] throughout this appendix. Suppressing the dependence on other fields as well as all

indices for simplicity, we write the action as S = S[F ], where, as everywhere else in this

paper, the term ‘action’ always refers to a functional depending on n electric vectors and

their associated field strengths F only. We then define the magnetic field strengths via

G̃[F ] := 2
δS[F ]

δF
(A.1)
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as functionals of F in the standard way. If the equations of motion are to be duality

covariant under

∆F = AF + BG , ∆G = CF + DG (A.2)

with the usual Sp(2n, R) matrix relations AT = −D,B = BT and C = CT , the action

must satisfy the NGZ constraint [2] (≡ eq. (3.6) in [4]))

δ

δF

(

S[F ′] − S[F ] − 1

4

∫

(

F̃CF + G̃BG
)

)

= 0 (A.3)

This is necessary for the compatibility of the transformations (A.2) with the constitutive

relations (A.1), which imply

∆G[F ] =

∫

δG

δF
∆F (A.4)

Now assume that these conditions are satisfied for some initial (usually the tree level)

action S0[F ] with corresponding

G̃0[F ] := 2
δS0[F ]

δF
(A.5)

We wish to ‘deform’ this action and investigate how the duality symmetry is deformed with

it. To this aim we expand the full action S as

S[F ;λ] = S0[F ] + λS1[F ] + O(λ2) (A.6)

with some expansion parameter λ. Similarly,

G̃[F ;λ] := 2
δS[F ;λ]

δF
= G̃0[F ] + λG̃1[F ] + O(λ2) (A.7)

such that

G̃k[F ] := 2
δSk[F ]

δF
(A.8)

for the k-th order correction to the magnetic field strengths. The expansion of the varia-

tion is

∆(λ) = ∆0 + λ∆1 + O(λ2) (A.9)

Inserting this into (A.2) we get

(∆0 + λ∆1 + . . .)F = AF + B(G0 + λG1 + . . .) (A.10)

or

∆0F = AF + BG0 , ∆kF = BGk (A.11)

and

(∆0 + λ∆1 + . . .)(G0 + λG1 + . . .) = CF + D(G0 + λG1 + . . .) (A.12)

Similarly we can expand the NGZ relation (A.3)

δ

δF

{

S0

[

F + ∆F
]

+ λS1

[

F + ∆F
]

− S0[F ] − λS1[F ] − · · · − 1

4

∫

F̃CF

−1

4

∫

(

G̃0 + λG̃1 + . . .
)

B
(

G0 + λG1 + . . .
)

}

= 0

– 14 –
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By assumption this relation holds at 0-th order in λ. At first order in λ we get

∫
(

δS0

δF
∆1F +

δS1

δF
∆0F − 1

2
G̃0BG1

)

=

∫

δS1[F ]

δF
∆0F ≡ ∆0S1 (A.13)

where we used (A.5) and (A.11). Therefore, to this order duality can be maintained if and

only if the first order correction to the action is invariant under undeformed duality, or

δ

δF

(

∆0S1[F ]
)

= 0 ⇒ ∆0S1[F ] = 0. (A.14)

This can be arranged by starting from a manifestly duality invariant functional I = I[F,G]

obeying

∆I =

∫
(

δI
δF

(AF + BG) +
δI
δG

(CF + DG)

)

= 0 (A.15)

for arbitrary (hence independent) F and G, but in particular also for the special choice

G = G0[F ] and ∆ = ∆0. If we now take

S1[F ] := I
[

F,G0[F ]
]

(A.16)

the 0-th order variation comes from the varying F alone

∆0S1[F ] =

∫

(

δI
[

F,G0(F )
]

δF
+

δI
[

F,G0(F )
]

δG0

δG0

δF

)

∆0F (A.17)

Using (A.4) together with (A.15) we see that indeed ∆0S1 = 0 as required, and duality

is maintained at O(λ). Therefore, the first order correction is always invariant under the

undeformed duality, as borne out also by the examples from N = 8 supergravity.

Up to this point our analysis agrees with [4] . At second order, however, we disagree

with the conclusions of [4]. Collecting all terms of order O(λ2) in (A.13) we obtain

δ

δF

{
∫
(

δS0

δF
∆2F +

δS1

δF
∆1F +

δS2

δF
∆0F − 1

4
G̃1BG1 −

1

2
G̃2BG0

)}

=
δ

δF

{∫ (

δS2

δF
∆0F +

1

4
G̃1BG1

)}

= 0 (A.18)

(we drop all terms of higher order in any of the ∆’s because the matrices A,B,C,D are

assumed to be infinitesimal). In this derivation we made use again of (A.8) and (A.11) in

order to have only one unknown quantity (= S2) in this expression. It is now clear that we

must include a second order term S2 6= 0 (and correspondingly higher order corrections)

to salvage duality invariance at this order (and higher orders). Furthermore, unlike the

first order correction, S2 cannot be invariant under undeformed duality, but must break

undeformed duality in such a way as to cancel the second term on the r.h.s. of (A.18); that

is, we must have ∆0S2 6= 0. This also implies

∆0

(

λS1 + λ2S2 + . . . ) = O(λ2) 6= 0 (A.19)
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so (3.9) of [4] (stating ∆0Ŝ = 0) is only correct to first order in λ, but fails beyond. Let us

finally note that, assuming integrability of the resulting functional differential equations,

the expansion (A.6) offers an alternative method for constructing the deformed duality

invariant action order by order as a formal power series.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution Noncommercial License which permits any noncommercial use, distribution,

and reproduction in any medium, provided the original author(s) and source are credited.
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