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Abstract

We investigate and clarify the mutual compatibility of the higher order correc-

tions arising in supergravity and string theory effective actions and the non-linear

duality symmetries of these theories. Starting from a conventional tree level action

leading to duality invariant equations of motion, we show how to accommodate

duality invariant counterterms given as functionals of both electric and magnetic

fields in a perturbative expansion, and to deduce from them a non-polynomial bona

fide action satisfying the Gaillard–Zumino constraint. There exists a corresponding

consistency constraint in the non-covariant Henneaux–Teitelboim formalism which

ensures that one can always restore diffeomorphism invariance by perturbatively

solving this functional identity. We illustrate how this procedure works for the

R2∇F∇F and F 4 counterterms in Maxwell theory.
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1 Introduction

Consider Einstein theory coupled to scalar fields parametrising a symmetric spaceG/K(G)

(where K(G) is the maximal compact subgroup of G), and n abelian vector fields such

that G ⊂ Sp(2n,R) acts linearly on them and their magnetic duals. This setup is

typical for the bosonic sector of various (ungauged) extended supergravity theories,

and in particular for the maximally extended N = 8 supergravity with duality group

G = E7(7) ⊂ Sp(56,R) [1]. The purpose of this letter is to discuss the consistency of the

action of this duality group, when higher order local corrections to the tree level action

(of the type appearing in the string theory effective action or as counterterms in extended

supergravities) are included. Accordingly, we will consider n ‘electric’ vector fields Amµ
together with their ‘magnetic’ duals Am̄µ , combining them into a 2n-plet of vectors Am

µ

with 2n associated field strengths Fm
µν , viz.

Am
µ ≡

(

Amµ , A
m̄

µ

)

⇔ Fm
µν ≡

(

F mµν , F
m̄

µν

)

(1.1)

Note that the n magnetic duals Am̄µ are only defined on shell, as non-local functionals of

the other fields of the theory. 1 Classically, this redundancy is reflected in the so-called

twisted selfduality constraint [1] for the 2n field strengths Fm
µν

Fm
µν = − 1

2
√
-g
εµν

σρJm
nF

n
σρ , (1.2)

which simultaneously halves the number of degrees of freedom and puts the theory on-

shell, in such a way that the Bianchi identities for the electric vectors imply the equations

of motion for the magnetic vectors, and vice versa. Here, Jm
n is a ‘complex structure’

built from the Sp(2n,R) invariant symplectic form Ωmn and the scalar field dependent

symmetric metric Gmn ∈ G

Jm
n ≡ ΩmpGpn ⇒ Jm

pJ
p
n = −δmn (1.3)

The indices (m , m̄ ) correspond to the decomposition (1.1) of the 2n vectors in a Darboux

basis such that the symplectic form splits as

Ωm n = Ωm̄ n̄ = 0 , Ωm n̄ = −Ωn̄ m = δm n̄ , (1.4)

1In the literature [2, 3, 4] the magnetic field strengths are often denoted by the letter Gµν , so the

relation with our notation (which follows [5]) is established by making the identification (Fm
µν
, F m̄

µν
) ≡

(Fm
µν
, Gm

µν
). Because the extension of our arguments to fermions is straightforward, we will not consider

fermions in this letter, but see e.g. [7].
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Defining H m̄ n̄ as the inverse of Gm̄ n̄ one directly obtains from (1.2)

F m̄µν = H m̄ n̄
(

δn̄ m
1

2
√
-g
εµν

σρF mσρ −Gn̄ m F
m

µν

)

. (1.5)

The classical action is then re-obtained by solving the equation

F m̄µν = −δm̄ m
1

-g
εµνσρ

δS

δF mσρ
, (1.6)

with the result

S ≡ S(0) = −1

4

∫

d4x

(√
-gH m̄ n̄ δm̄ m δn̄ nF

m µνF nµν +
1

2
εµνσρH m̄ n̄Gn̄ n δm̄ m F

m

µνF
n

σρ

)

. (1.7)

As required, the tree level action S(0)[F mµν ] depends only on the electric vector potentials.

For more general actions S depending on the electric vector fields, the basic relations

(1.6) remain the same, and are usually referred to as constitutive relations [3]. As shown

in [2, 3] it is a general feature that the action itself is not duality invariant, but varies as

δgS[F mµν ] =
1

8

∫

d4x

(

εµνσρX m̄ n δm̄ m F
m

µνF
n

σρ −
4

-g
εµνσρX

m

n̄ δ
n̄ n

δS

δF mµν

δS

δF nσρ

)

, (1.8)

under the duality transformations

δgGmn = Xm
pG

pn +Xn
pG

mp , δgFm
µν = Xm

nF
n
µν . (1.9)

We have omitted the superscript (0) in (1.8) because, as shown in [2, 3], the equation (1.8)

is the consistency condition for any action S with associated duality invariant equations

of motion.2 In particular, it must also hold for actions including non-linear deformations

or higher order corrections, so that the duality transformations preserve the constitutive

relations (1.6).

Suppose now that we are given a classical action S(0) satisfying these requirements,

such as for instance the tree level action of N = 8 supergravity, whose vector part is

just given by (1.7) (for G = E7(7)). In perturbation theory, this action will be modified

by higher order counterterms and corrections whose compatibility with duality transfor-

mations and with (1.8) is not immediately obvious. The higher order corrections to the

action are only defined modulo the equations of motion of the classical action S(0). They

2Note that (1.8) is required for the duality transformations to make sense on the fields, and this is also

valid when they are not symmetries of the equations of motion, but nevertheless admit a representation

on the fields satisfying the equations of motion.
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are generally given as functionals of the 2n electric and magnetic vectors Am
µ , that is, in

the form I(1) = I(1)[F mµν , F
m̄

µν ].
3 In particular, the higher order counterterms in N = 8

supergravity appear generically in this manifestly covariant form with respect to the du-

ality group in terms of vector fields transforming in the linear 56 representation of E7(7)

[8, 9, 10]. When trying to express the original action together with the corrections as an

actual new action functional of the electric field strengths only, we are thus faced with

the question what expression to substitute for the magnetic field strengths F m̄µν : after all,

these will be given by non-linear and possibly non-local functionals of the electric vector

fields (as well as the other fields) whose form is determined precisely by the new corrected

action we are looking for. A naive guess might be to substitute the tree level solution

(1.5), but one quickly sees that this ansatz solves the consistency condition (1.8) only to

first order in perturbation theory, and fails at higher orders. In other words, it could a

priori appear that the corrected action functional gives rise to inconsistencies with the

action of the duality transformations (1.9) [4].

2 Deformed twisted selfduality constraint

To find the right action one must therefore adopt a different strategy, taking a deformed

version of the twisted selfduality constraint as the starting point. Namely, given a man-

ifestly duality covariant counterterm correction I(1) depending on the 2n field strengths

Fm
µν and their derivatives, we propose to replace (1.2) by the deformed twisted selfduality

constraint

Fm
µν −

2√
-g
Gmngµσgνρ

δI(1)

δF n
σρ

= − 1

2
√
-g
εµν

σρJm
n

(

Fm
µν −

2√
-g
Gmngστgρω

δI(1)

δF n
τω

)

(2.1)

or, equivalently,

Fm
µν +

1

2
√
-g
εµν

σρJm
nF

n
σρ =

2√
-g
Gmngµσgνρ

δI(1)

δF n
σρ

+ Ωmn 1

-2g
εµνσρ

δI(1)

δF n
σρ

. (2.2)

This equation is manifestly duality invariant if I(1) is a duality invariant functional. At the

same time it achieves the required halving of the number of physical degrees of freedom

and imposes the (deformed) equations of motion. To reconstruct a bona fide action

depending only on the physical fields (and only the electric vector fields, in particular)

and satisfying all consistency requirements, we now have two options.

3For clarity of notation, we will use the letter S only for ‘true’ actions defined off shell, whereas I
denotes a general functional of both electric and magnetic fields.

3



• We first solve (2.1) for the magnetic field strengths F m̄µν in function of the electric

field strengths F mµν and their derivatives (as well as all other fields) as a formal power

series. With the resulting expression for F m̄µν as a functional of the physical fields,

we then solve (1.6) in a second step to obtain the full corrected action functional

in terms of the electric vectors only. This procedure manifestly preserves four-

dimensional space-time covariance.

• Alternatively, we can solve (2.1) for the time components (F m0i, F
m̄

0i), and again

reconstruct the requisite action in a second step. The resulting action depends on

the spatial electric and magnetic vector components (Ami , A
m̄

i ), and therefore breaks

manifest space-time covariance. Nevertheless, we will see that there is a consistency

condition that guarantees full space-time covariance on-shell.

Due to the non-linear dependence of I(1) on the magnetic field strengths F m̄µν and possibly

their derivatives, the resulting corrected action will include terms of arbitrarily high order

for any kind of counterterm correction, and this will be true in both approaches. In other

words, the ‘initial’ counterterm I(1), which is usually polynomial in the field strengths

and their derivatives, must be supplemented by an infinite string of higher order terms.

This completion of the ‘initial’ counterterm action will thus be non-polynomial, and

also non-local if the initial counterterm depends on derivatives.4 Yet, it will satisfy the

consistency condition (1.8).

Let us illustrate these claims with a simple example from Maxwell theory, adopting

the space-time covariant approach. For this purpose we combine the electric vector A1µ
with its magnetic dual A2µ ≡ A1̄µ into a complex vector potential Aµ ≡ A1µ + iA2µ, with

corresponding complex field strength

Fµν = F 1µν + iF 2µν , (2.3)

Electromagnetic U(1) duality then acts on these fields simply as a global phase rota-

tion. It is furthermore easy to see that the original (free) Maxwell equations for A1µ are

recovered from the twisted selfduality constraint

F−
µν = 0 , (2.4)

where we define the complex selfdual and anti-selfdual field strengths as

F±
µν :=

1

2
Fµν ±

i

4
√
-g
εµν

σρFσρ . (2.5)

4Note, however, that it will nevertheless remain local in a perturbative sense, i.e. involve only a finite

number of derivatives at any given order in the coupling constant.
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As an example of a non-trivial deformation let us consider the U(1) duality invariant

expression

I(1) = −1

4

∫

d4x
√
-g gρκT µνσλ ∇µF̄σρ ∇νFλκ , (2.6)

where T µνσρ is the Bel–Robinson tensor

T µνσρ ≡ CµκσλCν
κ
ρ
λ −

3

2
gµ[νCκλ]σϑCκλ

ρ
ϑ , (2.7)

with the Weyl tensor Cµνσρ. The Bel–Robinson tensor is fully symmetric and traceless

in its four indices and is conserved modulo the vacuum equations of motion.

The counterterm (2.6) is a simplified version of a typical term appearing in the super-

symmetric completion of the R4 counterterm arising at three loops in N = 8 supergravity

[11], 5 where it is proportional to (using SL(2,C) spinor notation)

CαβγδC α̇β̇γ̇δ̇∇αδ̇F
ij
βγ∇δα̇F̄β̇γ̇ ij . (2.8)

with the SU(8) field strength F ij
µν . With the above notation, the deformed twisted

selfduality constraint for our Maxwell example takes the form

F−
µν +∇σT[µ

σρλ∇ρF
+
ν]λ = 0 , (2.9)

Observe that the second term in (2.9) is complex anti-selfdual in the indices [µν], as it

should be, because the Bel–Robinson tensor is symmetric traceless and the torsion-free

covariant derivatives preserve complex (anti)selfduality.

Let us now construct a manifestly diffeomorphism covariant Lagrangian for the de-

formed equations of motion in terms of the realMaxwell field strengths F 1µν only, following

the above procedure. To this aim we define the differential operator

(∆(f))µν ≡ ∆µν
ρσfρσ := ∇κT[µ

κλ[σ∇λδ
ρ]
ν]fρσ . (2.10)

acting on two-forms fµν . This operator is self-adjoint and satisfies

1

2
√
-g
εµν

κλ∆κλ
σρ = −∆µν

κλ 1

2
√
-g
εκλ

σρ , (2.11)

thus converting selfdual into anti-selfdual tensors, and vice versa (this accounts for the

± sign on F+
νλ in the second term of (2.9)). Decomposing (2.9) one obtains

(

δσρµν +∆µν
σρ
)

F 2σρ =
(

δσρµν −∆µν
σρ
) 1

2
εσρ

κλF 1κλ , (2.12)

5Note that the complete supersymmetry invariant is not actually duality invariant [12, 13], however

its non-perturbative completion arising in string theory is believed to be E7(7)(Z) invariant (see e.g.

[14]), and so it is important that it transforms covariantly with respect to E7(7).
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and inverting the operator on the left-hand side we get

F 2µν =
1

2
εµν

κλ

(

δσρκλ + 2
∑

n≥1

(∆n)κλ
σρ

)

F 1σρ , (2.13)

where ∆n is the nth power of ∆. This equation, in turn, simply follows as the Euler–

Lagrange equation of the action

S = −
∫

d4x
√−g

(

1

4
F 1 µνF 1µν +

1

2

∞
∑

n=1

F 1 µν(∆n)µν
σρF 1σρ

)

. (2.14)

The completion of the ‘initial’ Bel–Robinson counterterm I(1) from (2.6) is thus non-

polynomial and also non-local (depending on arbitrarily high powers of the derivative

operator ∇µ). To check the consistency condition (1.8) we first observe that

∫

d4x
2

-g
εµνσρ

δS

δF 1µν

δS

δF 1σρ
=

∫

d4x
1

2
εµνσρ

(

δκλµν + 2
∑

n≥1

∆nκλ
µν

)

F 1κλ

(

δθτσρ + 2
∑

n≥1

∆nθτ
σρ

)

F 1θτ

=

∫

d4x
1

2
εµνσρF 1µν

(

δκλσρ + 2
∑

n≥1

(-∆)nκλσρ

)(

δθτκλ + 2
∑

n≥1

∆nθτ
κλ

)

F 1θτ

=

∫

d4x
1

2
εµνσρF 1µνF

1

σρ . (2.15)

Because X 1 2 = −X 2 1 for a U(1) duality rotation, this means that the two terms on the

right-hand side of (1.8) are the same, yielding twice the right-hand side of (2.15). Now us-

ing δu(1)F 1µν = X 1 2F
2

µν together with the constitutive relations (1.6), it is straightforward

to see that (1.8) is indeed satisfied for the completed action (2.14).

3 Non-covariant formulation with manifest duality

In the foregoing section we showed how to restore the full duality invariance for the

corrected equations of motion. However, being on-shell, this formalism is not directly

suited for quantisation because we cannot formulate the functional Ward identities for

the duality symmetry in that case. For that purpose one must instead make use of a

non-covariant formulation developed by Henneaux and Teitelboim [6], and worked out

for N = 8 supergravity by Hillmann [7] (see also [5]). In that formalism one takes the

2n spatial three-vectors Am
i as the fundamental fields, while their time components are

only defined on-shell. As a consequence, the action is manifestly duality invariant, but
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no longer manifestly invariant under space-time diffeomorphisms. At tree level, it takes

the form

S(0)

vec
=

1

4

∫

d4x
(

Ωmnε
ijk
(

∂0A
m
i +NlFm

il

)

F n
jk −N

√
hGmnh

ikhjlFm
ijF

n
kl

)

. (3.1)

It is invariant only with respect to a non-standard realisation of space-time diffeomor-

phisms (but, of course, still invariant under spatial diffeomorphisms). The equation of

motion for the vector fields is

εijk∂jE
m
k

= 0 , (3.2)

with the abbreviation

E
m
i ≡ ∂0A

m
i +NjFm

ij −
N

2
√
h
hijε

jklJm
nF

n
kl
. (3.3)

(recall that we neglect fermionic terms). It is invariant with respect to the modified

diffeomorphism transformation of the vector field

δξA
m
i ≡ ξjFm

ji + ξ0
(

∂0A
m
i − E

m
i

)

. (3.4)

Although the component Am
0
of the vector field does not appear in the action, its spatial

gradient can be identified from the equations of motion as

∂iA
m
0
= E

m
i , (3.5)

One then expresses the Lorentz field strength Fm
µν via Fm

ij and

Fm
0 i = ∂0A

m
i − E

m
i . (3.6)

With this definition, one checks that the field strength Fm
µν transforms indeed as it should

with respect to diffeomorphisms modulo the equations of motion

δFm
µν = ξσ∂σF

m
µν − 2Fσ[µ∂ν]ξ

σ + ξ0E m
µν , (3.7)

where E
m
µν is the twisted selfdual component of the equations of motion, i.e.

E
m
ij = Ωmnεijk

δS(0)

δAn
k

, E
m
0 i = −Nj

E
m
ij +

N

2
√
h
hijε

jklJm
nE

n
kl

, (3.8)

in accord with the (undeformed) twisted selfduality constraint.

Next let us consider some higher order supersymmetric invariant I(1) defined on-

shell as a functional of Fm
µν and the other fields of the theory, which is invariant with

7



respect to the ordinary action of diffeomorphisms. From this action we directly obtain

the corresponding off-shell action S(1) by substituting (3.6) for the time-components Fm
0 i ,

viz.

S(1)
[

Fm
ij , F

m
0 i ≡ ∂0A

m
i − E

m
i

]

. (3.9)

Its variation under a time-like diffeomorphism with parameter ξ0 is 6

δS(1) =

∫

dx4Ωmnεijkξ0
δS(1)

δFm
ij

δS(0)

δAn
k

. (3.10)

It follows that, at the same order, the action S(0) + S(1) is invariant with respect to the

modified variation

δAm
i = ξjFm

ji + ξ0
(

∂0A
m
i − E

m
i − Ωmnεijk

δS(1)

δF n
jk

)

. (3.11)

At this order this result is precisely the expected one: the diffeormorphism transformation

of the vector field agrees with the ordinary transformation modulo the corrected equations

of motion. Of course, in order to obtain full agreement and to establish the consistency

of the deformed action one must now complete the corrected action by adding higher

order terms, just like for the covariant deformed Maxwell action in the previous section.

That is, we must determine the full invariant

S = S(0) + S(1) + S(2) + . . . (3.12)

with a corresponding all order corrected transformation of the vector fields. The possible

obstructions in carrying out this procedure are the solutions of the diffeomorphism Wess–

Zumino consistency conditions as functionals of Fm
µν and the other fields, identified modulo

the equations of motions [15]. Because the action of diffeomorphisms on Fm
µν is identical

to the conventional one modulo the equations of motion, this cohomology problem is

identical to the one of identifying algebraic diffeomorphism anomalies in four dimensions.

Consequently, the absence of such anomalies [16, 17] ensures the existence of a completed

action S which is invariant with respect to its associated diffeomorphism action.

We will now show how to compute the complete action S perturbatively by using the

invariance of the action as a first order functional derivative equation. To this aim we

6The covariance under spatial diffeomorphisms (with parameters ξi) is manifest.
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consider the action 7

S =
1

4

∫

d4x
(

Ωmnε
ijk
(

∂0A
m
i +NlFm

il

)

F n
jk

)

+ I
[

Fm
ij ,∇µF

m
ij , . . .

]

, (3.13)

where the functional I depends on the vector fields via the spatial field strengths Fm
ij and

their derivatives (including time derivatives). For any such I the equations of motion of

the vector fields still take the form of a spatial divergence

δS

δAm
i

= −εijk∂j

(

Ωmn

(

∂0A
n
k
+NlF n

kl

)

− εklh
δI

δFm
lh

)

= 0 , (3.14)

They are thus equivalent to the first order equation

Fm
0 i = −NjFm

ij − Ωmnεijk
δI

δF n
jk

. (3.15)

Under the diffeomorphisms

δξA
m
i ≡ ξjFm

ji − ξ0
(

NjFm
ij + Ωmnεijk

δI

δF n
jk

)

, (3.16)

the full action S transforms as

δξS=

∫

d4xξ0
(

1

4
Ωmn∂l

(

N2hlhεijkFm
ihF

n
jk

)

+
(

∂0F
m
ij + 2∂iN

lFm
jk

) δI

δFm
ij

)

+ δξI

=

∫

d4xξ0 ∂l

(

1

4
ΩmnN

2hlhεijkFm
ihF

n
jk + Ωmnεijk

δI

δFm
il

δI

δF n
jk

)

+ δ̄ξI , (3.17)

where δ̄ξ is defined to act on Fm
ij as an ordinary diffeomorphism according to (3.15)

δ̄ξF
m
ij = ξµ∂µF

m
µν − 2Fk[i∂j]ξ

k + 2

(

NkFm
[i|k + Ωmnεkl[i

δI

δF n
kl

)

∂j]ξ
0 . (3.18)

The invariance of the action therefore follows from the vanishing of

δLδ̄ξI

δξ0
= ∂l

(

1

4
ΩmnN

2hlhεijkFm
hiF

n
jk + Ωmnεijk

δI

δFm
li

δI

δF n
jk

)

. (3.19)

7The covariant derivative ∇µF
m

ij must be defined perturbatively. At first order it is defined from the

ordinary covariant derivative ∇µ acting on Fm

µν
as defined in (3.6),

∇(0)

µ
Fm

ij = ∂µF
m

ij + 2Γk
µ[iF

m

j]k − 2Γ0
µ[i(∂0A

m

j] − E
m

j] )

.
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This relation can be viewed as the non-covariant analogue of the consistency condition

(1.8), but now ensuring space-time covariance of our manifestly duality invariant action.

The equation (3.19) defines a functional differential equation which permits to deter-

mine I perturbatively. This equation simplifies drastically when I contains no explicit

derivative terms, that is, when it is the integral of a polynomial function (‘potential’) V of

Fm
ij and the metric, which is invariant under spatial diffeomorphisms. In that case (3.19)

is no longer a functional differential equation, but reduces to the differential equation

1

4
ΩmnN

2hlhεijkFm
hiF

n
jk = Ωmnεijk

δI

δFm
li

δI

δF n
jk

≡ ΩmnN2h εijk
∂V

∂Fm
li

∂V

∂F n
jk

. (3.20)

4 Maxwell theory, once again

To illustrate how the procedure works in the non-covariant formulation we again study an

example generalising Maxwell theory. To keep things as simple as possible we consider a

modification that initially depends on the complex spatial field strength Fij polynomially,

but not on its derivatives (the inclusion of derivatives presents no problem of principle,

but renders the calculations substantially more tedious). The tree level Lagrangian is

now a function of the complex spatial vector field Ai = A1i + iA2i and reads

L = − i

2
εijk

(

∂0Ai +NlFil

)

F̄jk +
i

2
εijk

(

∂0 Āi +NlF̄il

)

Fjk −N
√
hV [F ] . (4.1)

with the tree level ‘potential’

V ≡ V (0) = hikhjlFijF̄kl = F abF̄ab . (4.2)

Here and in the remainder, we will mostly use flat indices

Fab ≡ eiae
j

bFij , (4.3)

where eia is the inverse dreibein such that hij = δabeiae
j

b . Generalising beyond tree level,

the potential V will be a more complicated function, but for any given V , the three vector

transforms as

δAi = (ξj + ξ0Nj)Fji − iξ0
N
√
h

2
εijk

∂V

∂F̄jk

, (4.4)

In order to ensure full diffeomorphism invariance, V must satisfy the consistency condi-

tion (3.19) which now reads
∂V

∂F a[b

∂V

∂F̄ cd]
= F̄a[bFcd] . (4.5)

10



The general procedure then starts from some ‘initial’ corrected potential of the form

V = V (0) +V (1) and exploits (4.5) in order to complete the potential V to a more general

SO(3) invariant function of the spatial field strengths Fab and F̄ab, such that

V = V (0) + V (1) + . . . (4.6)

satisfies the differential equation (3.19). As before we will thus find that, for consistency,

any ‘initial’ counterterm V (1) must be supplemented by an infinite string of higher order

corrections. As the simpest possible example we will consider the manifestly duality

invariant expression V (1) ∝ 1
2
FαβF

αβFα̇β̇F
α̇β̇ obtained by squaring the complex selfdual

and anti-selfdual field strengths. In the present approach this invariant can be identified

with one half the duality invariant

Y ≡ F abFabF̄
cdF̄cd (4.7)

by using the equations of motion. Writing also

X ≡ F abF̄ab , (4.8)

we would thus like to solve (4.5) for

V (X, Y ) = F abF̄ab +
1

2
F abFabF̄

cdF̄cd +O(F 6) ≡ X +
1

2
Y +O(F 6) . (4.9)

First of all we note that (4.5) is trivially satisfied at first order because

Fa[bFcd] = 0 . (4.10)

After some further computation it is seen that V must be of the form

V (X, Y ) = X +

∞
∑

n=0

1

(2 + 2n)!
H (n)(X)Y 1+n . (4.11)

The condition (4.5) is satisfied provided (using F̄a[bFcd] = −Fa[bF̄cd])

(

1 +
∞
∑

n=0

Y 1+n

(2 + 2n)!

∂H (n)

∂X

)2

= Y

(

∞
∑

n=0

Y n

(1 + 2n)!
H (n)

)2

+ 1 . (4.12)

Observe that this ansatz is manifestly duality invariant. At first order in Y one gets

∂H (0)

∂X
=
(

H (0)
)2

, (4.13)
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which implies (with the condition H (0)(0) = 1) that

H (0)(X) =
1

1−X
. (4.14)

At order Y 2 we get
∂H (1)

∂X
− 4

1−X
H (1) = − 3

(1 −X)2
, (4.15)

which gives

H (1)(X) =
1

1−X
+

c(1)

(1−X)4
, (4.16)

with an arbitrary constant c(1). This constant corresponds to the freedom of adding the

on-shell invariant

c(1)

24

(

FabFabF̄cdF̄cd

)2 ≈ c(1)

24

(

FαβF
αβFα̇β̇F

α̇β̇
)2

, (4.17)

to the invariant F 2F̄ 2, while preserving diffeomorphism invariance.

It is now clear how to proceed perturbatively in Y and how to determine all the

functions H (n) by successively solving the hierarchy of first order equations 8

∂

∂X

(

(1−X)2+2nH (n)

)

=

1

2
(1−X)2+2n

(

n−1
∑

p=1

C1+2p
2+2nH

(p)H (n−p) −
n−1
∑

p=0

C2+2p
2+2n

∂H (p)

∂X

∂H (n−p−1)

∂X

)

. (4.18)

By construction the right-hand side is a finite Laurent series in (1−X) with polynomial

coefficients in ln(1−X) which can be integrated straightforwardly, modulo the definition

of the homogenous solution

H (n) =
c(n)

(1−X)2+2n
+ H̃ (n) , (4.19)

H̃ (n) being a particular solution. Clearly, the constants c(n) correspond to the ambiguities

in defining a diffeormorphism invariant associated to the possibility of adding higher

order invariants corresponding on-shell to

c(n)

(2n)!

(

FαβF
αβ
)n(

Fα̇β̇F
α̇β̇
)n ≈ c(n)

(2n)!

(

FabFab

)n(

F̄cdF̄cd

)n
. (4.20)

Setting c(1) = 5, the potential V reads

V (X, Y ) = X +
1

2
Y
(

1 +X +X2
)

+
1

4
Y 2 +O(F 10) . (4.21)

8Where Cp

n
≡ n!

p!(n−p)! are the binomial coefficients.
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To establish the link of the above construction with the deformed twisted self-duality

constraint (2.1), we note that, by construction, the equations of motion are invariant with

respect to diffeomorphism invariance. Hence they can indeed be rewritten in this mani-

festly diffeomorphism covariant form (for c(1) = 5 and higher c(n) chosen appropriately),

viz.

Fµν −
i

2
√
-g
εµν

σρFσρ +
1

8

(

FκλF
κλ +

i

2
√
-g
εκλθτFκλFθτ

)(

F̄µν −
i

2
√
-g
εµν

σρF̄σρ

)

= 0 .

(4.22)

Indeed, decomposing the corresponding equations into space and time components

F0 a −
i

2
εabcFbc +

1

8

(

FdeFde − 2F0 dF0 d − 2iεdefF0 dFef

)

(

F̄0 a −
i

2
εabcF̄bc

)

= 0 , (4.23)

one can perturbatively solve for F0 a in terms of Fab as

F0 a =
i

2
εabcFbc

(

1 +
1

2
Y
(

1 + 2X
)

)

+
i

2
εa

bcF̄bcFefFef

(

1 +X +X2 + Y
)

+O(F 10) , (4.24)

This solution coincides with the expression following from the corrected potential V

obtained above in (4.21) up to order F 10.

5 Conclusions

We have demonstrated for some typical examples by rather explicit computations that

the higher order counterterms and corrections arising in supergravity and the effective

string theory action are perfectly compatible with the full non-linear duality symmetries

of these theories, provided one completes the ‘initial’ correction terms by solving the

requisite consistency conditions. This can be done in either of two different formulations,

in one of which space-time covariance is manifest but the duality symmetry is realised

only on-shell, while it is the converse in the second formulation. We have exhibited the

analogue of the Gaillard–Zumino constraint for the Henneaux–Teitelboim formulation,

and we have furthermore shown that the two procedures give results which agree at lowest

non-trivial orders in a perturbative expansion.

We conclude that the non-linear E7(7) symmetry is not sufficent to rule out all higher

order counterterms, hence divergences, of N = 8 supergravity. There is unfortunately no

‘royal path’ cutting short the explicit calculations of [18]. If N = 8 supergravity is UV

finite to all orders the reason must be sought beyond maximal supersymmetry and E7(7).
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