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Based on recent work on simplicial diffeomorphisms in colored group field theories, we develop a

representation of the colored Boulatov model, in which the group field theory (GFT) fields depend on

variables associated to vertices of the associated simplicial complex, as opposed to edges. On top of

simplifying the action of diffeomorphisms, the main advantage of this representation is that the GFT

Feynman graphs have a different stranded structure, which allows a direct identification of subgraphs

associated to bubbles, and their evaluation is simplified drastically. As a first important application of this

formulation, we derive new scaling bounds for the regularized amplitudes, organized in terms of the

genera of the bubbles, and show how the pseudomanifold configurations appearing in the perturbative

expansion are suppressed as compared to manifolds. Moreover, these bounds are proved to be optimal.
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I. INTRODUCTION AND BACKGROUND

Group field theories (GFTs) [1–3] are a d-dimensional
generalization of matrix models for 2d gravity [4] in the
form of field theories over group manifolds. Moreover,
they enter conspicuously in the definition of the dynamics
of loop quantum gravity [5,6], and share many conceptual
and mathematical ingredients with simplicial quantum
gravity approaches, like quantum Regge calculus [7] and
dynamical triangulations [8], bringing them in the position
to profit from the achievements and insights of all these
other approaches [9].

As matrix models, they are characterized by a combina-
torial pattern of identifications of field arguments in the
interaction, such that the perturbative expansion of the
theory generates a sum over d-dimensional simplicial
complexes. For quantum gravity models, these simplicial
complexes represent discrete spacetimes and the perturba-
tive sum is expected to provide a definition of a covariant
dynamics of quantum gravity in d dimensions, i.e. a sum
over geometries. Matrix models [4] succeed in doing so, as
said, in the simple case of 2d Euclidean quantum gravity;
already in this simple case, it has been a rather nontrivial
task, which moreover led to development of very powerful
tools and a plethora of further applications. This success
rests on four main (sets of) achievements: (1) the Feynman
amplitudes that the models associate to the 2d simplicial
complexes generated in perturbative expansion can be
directly related to simplicial gravity path integrals (coupled
to matter) weighted by the Regge action for equilateral
triangulations; therefore a clear link with gravity and ge-
ometry is ensured already at the discrete level, and this
guides both the development and the interpretation of the

theory; (2) the perturbative sum over simplicial complexes
can be controlled in the sense that models can be written in
which only simplicial manifolds are generated (it is enough
to ensure orientability) and, most importantly, it can be
organized as a topological expansion; thanks to this, one
can identify a regime (large dimension N of the matrices)
in which simple topologies dominate; (3) a continuum
(thermodynamic) limit of the models can be defined,
both for trivial topologies only and admitting the contribu-
tion of all topologies, for appropriate critical values of the
parameters of the models; (4) in this continuum limit, one
is able to match the quantum dynamics of the matrix model
(transition amplitudes and their Schwinger-Dyson equa-
tions, critical exponents, thermodynamical quantities, etc.)
with quantum geometrodynamics (Wheeler-DeWitt equa-
tion, continuum path integral for given topology, etc.) and,
then, semiclassical gravity coupled to matter in two
dimensions.
The first attempt at a generalization led to tensor models

[10], based on the same basic idea, but with matrices
replaced by tensors, with index pairing in the interaction
such that their perturbative expansion would generate
d-dimensional simplicial complexes. However, while ten-
sor models are still being developed with interesting ap-
plications [11], they could not reproduce any of the above
crucial steps towards success as quantum gravity models,
as matrix models did. No direct link with discrete quantum
gravity and, most problematic, no control over the pertur-
bative expansion, meant that no continuum limit and no
link with continuum gravity could be obtained. In particu-
lar, concerning the sum over simplicial complexes gener-
ated in perturbation theory, one should notice that: (a) all
topologies are generated in the expansion and the classifi-
cation of topologies is an open mathematical problem in
3d, and a known impossibility in higher dimensions;
(b) alongside manifold configurations, tensor models
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generate all sorts of more pathological configurations
[10,12]. The big issue would be to discriminate between
all these structures and somehow show that only manifolds
of some nice topology dominate. This has not been pos-
sible for tensor models.

Two basic (somewhat complementary) attitudes can be
taken in front of this failure. One is to leave aside for the
moment the issue of generating the sum over simplicial
complexes by some field-theoretic mechanism and instead
define the model as a sum over (equilateral) triangulations
of a spherical topology weighted by the Regge action. This
leads to the (causal) dynamical triangulations approach [8].
The second identifies the source of the problems in the
lack, in tensor models, of enough degrees of freedom to
capture the greater complexity of higher-dimensional
spacetimes and geometries, and thus goes in the direction
of identifying first and then incorporating the correct addi-
tional degrees of freedom. This leads to group field
theories.

The kind of degrees of freedom to be included and the
way to do it is suggested by loop quantum gravity [5,6].
This is the most advanced canonical quantization of con-
tinuum gravity and, starting from a reformulation of grav-
ity as a gauge theory of the Lorentz connection, has
identified the kinematical states of quantum space to be
spin networks, i.e. graphs labeled by irreducible represen-
tations of the Lorentz group. The dynamics of the same
states is given covariantly in terms of spin foam amplitudes
[13], i.e. functions of the same representations, assigned to
2-cells of cellular complexes representing each a possible
discrete history of a spin network state, which should be
then summed over to recover the full dynamics, in the spirit
of a sum over geometries. Both at the level of quantum
states and at the level of their dynamics, then, the basic
variables of the theory are either group elements, inter-
preted as elementary parallel transports of a Lorentz con-
nection, or group representations, interpreted as quantum
numbers of geometric observables. These are then the
degrees of freedom that are added to tensor models in the
group field theory formalism, the basic field being indeed a
function on the corresponding group manifold, which
could be understood as a second quantization of an ele-
mentary spin network wave function [1,14]. In spin foam
models, the cellular complex defining a possible evolution
process of a spin network is usually taken to be topologi-
cally dual to a simplicial complex (which implies some
combinatorial restriction on both spin network states and
cellular complex itself). Remarkably, one can then show
that for any spin foam model, i.e. for any choice of dy-
namical amplitudes, there exists a group field theory which
generates it as a Feynman amplitude associated to the
simplicial complexes obtained in perturbative expansion.

Because of this choice of combinatorial structures and
because the most studied spin foam models themselves are
obtained by quantization of simplicial geometry, one

would expect a strict relation between the spin foam am-
plitudes, and thus the corresponding group field theory, and
simplicial gravity path integrals. This relation has been
clarified and strengthened by the recent noncommutative
metric representation of group field theories [15], based on
the so-called group Fourier transform [16–18], a very
natural construction on the type of phase space used in
loop quantum gravity [6,19,20], Chern-Simons theory
[21,22], and discrete BF theories [15,23,24]. In this repre-
sentation, group field theories are written as noncommuta-
tive field theories on Lie algebras and the corresponding
Feynman amplitudes take explicitly the form of simplicial
gravity path integrals, which proves an exact duality be-
tween such path integrals and spin foam models. This
formulation brings the (quantum) geometry of discrete
gravity and of spin foam models to the forefront, and
thus is a very convenient starting point for the construction
of new models as well as for the physical understanding of
existing ones. In fact, it has been crucial [25] in identifying
the GFT counterpart of the simplicial gravity transforma-
tions that are the discrete analogue of continuum diffeo-
morphisms in general relativity, i.e. translations of vertices
of the simplicial complex (in some embedding) that induce
transformations of the edge lengths or of the discrete triad
(depending on the specific formulation used) associated to
the same simplicial complex, and which leave the gravity
action (and solutions of the equations of motion) and
the discrete gravity path integral invariant. These are
well studied in discrete classical and quantum gravity
[7,26–28], and the main result of [25] has been to identify
field transformations of the GFT field that imply these
simplicial diffeomorphism transformations at the level of
the corresponding Feynman amplitudes, thus of the sim-
plicial gravity path integral. These symmetry transforma-
tions also suggest a reformulation of the same GFT model,
based on vertex variables on which they act naturally. In
this paper we detail further, in Sec. III, this noncommuta-
tive metric formulation in vertex variables, and then use it
extensively, from Sec. IV onwards, to analyze the depen-
dence of the GFT Feynman amplitudes on the combinato-
rial structure of the Feynman diagrams, in particular, their
subgraphs called ‘‘bubbles’’ and encoding the ‘‘manifold-
ness’’ of their dual simplicial complexes.
Thus, we see that the first kind of achievement of matrix

models (and the first failure of simple tensor models) is
dealt with successfully by the group field theory formal-
ism. The second type of issues, having to do with the
control over the sum over simplicial complexes, is much
more thorny, but can now be tackled with the very powerful
methods of quantum field theory, in particular, those used
to study perturbative renormalization, alongside purely
combinatorial methods from algebraic topology. In fact,
an impressive amount of new results has been obtained
recently in this respect, in particular, for so-called
‘‘colored’’ group field theories [29]. These go from exact
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power counting results [30–34] to perturbative scaling
bounds [35,36] and first steps in computing radiative cor-
rections [37], from properties of the combinatorial struc-
tures generated [38–40] to the important proof that
manifolds of spherical topology dominate in the limit of
large cutoff (the analogue of the large N limit of matrix
models) in any dimension, at least for topological models
(not yet for 4d gravity models) [41–43]. Finally, the critical
behavior of such models has been analyzed [44], including
a study of Schwinger-Dyson equations in this regime.
Much remains to be understood, in this respect, and the
more we understand even for simpler GFT models the
more we will be able to achieve for realistic 4d gravity
models [45]. However, it is already clear that GFTs can
solve also the second main failure of tensor models, and
achieve also the second main set of successes of matrix
models. It seems that the incorporation of the key insights
of loop quantum gravity and spin foam models was a good
move forward.

In this paper, we contribute further to addressing these
topological issues, by taking further advantage of the im-
proving geometric understanding of the GFT formalism.
We show, in Sec. IV, that the vertex rewriting of the
(colored) Boulatov GFT allows a direct identification of
the topology of the 3-cells dual to the vertices of the
simplicial complexes, the bubbles, which in turn character-
ize the manifoldness of the complex itself, and a straight-
forward evaluation of the associated contributions to the
GFT Feynman amplitudes. We derive, in Secs. IV, V, and
VIB, new scaling bounds for the regularized amplitudes,
organized in terms of the genera of the bubbles, and show
how the pseudomanifolds configurations appearing in the
perturbative expansion are suppressed as compared to
manifolds. Moreover, these bounds are proved to be
optimal, in Sec. VI.

All of the above is crucial for the general program of
GFT renormalization and thus for the problem of the

continuum limit in GFT quantum gravity [3,46]. This is
another big open issue, of course, and in many ways the
decisive one for considering GFT candidates for a com-
plete theory of quantum gravity and of quantum spacetime.
Some results have been obtained recently in this direction,
exploring the nonperturbative regime of the theory, in
particular, via mean field methods [47–52], but it is clear
that a more exact evaluation of the GFT partition function,
at least for some models, would be desirable and that this
will need a more detailed understanding of the combina-
torial properties of its perturbative expansion. We hope that
the results we present in this paper will also be of help in
this respect.

II. MODEL AND TRANSLATION SYMMETRY

A. Definition of the model

We consider a (slightly modified) version of the colored
bosonic Boulatov model defined in [36]. This is a field
theory of four complex scalar fields f~’‘; ‘ ¼ 1; . . . ; 4g over
three copies of SO(3), which respect the following gauge
invariance:

8h2SOð3Þ; ~’‘ðhg1;hg2;hg3Þ¼ ~’‘ðg1;g2;g3Þ: (1)

They are interpreted as quantum triangles, the SO(3) var-
iables being interpreted as parallel transports of an SO(3)
connection from the center of the triangle to the (center of
the) edges [see Fig. 1(a)]. We consider an action where the
interaction encodes the gluing of these triangles following
the pattern of an oriented tetrahedron [see Fig. 1(b)],1 and
the kinetic term is trivial, i.e. it contains only � functions
on the group manifold:

FIG. 1. Graphical representation of a field, and the interaction vertex in usual edge variables.

1The orientation chosen is the only difference between our
definition of the model and the one in [36]. This choice does not
modify any of the results. This interaction term was already
considered in [30], but in a noncolored model.
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S½~’� ¼ Skin½~’� þ Sint½~’�; (2)

Skin½~’� ¼
Z
½dgi�3

X4
‘¼1

~’‘ðg1; g2; g3Þ~’‘ðg1; g2; g3Þ; (3)

Sint½~’� ¼ �
Z
½dgi�6 ~’1ðg1; g2; g3Þ~’2ðg3; g5; g4Þ

� ~’3ðg5; g2; g6Þ~’4ðg4; g6; g1Þ
þ ��

Z
½dgi�6 ~’1ðg1; g2; g3Þ~’2ðg3; g5; g4Þ

� ~’3ðg5; g2; g6Þ~’4ðg4; g6; g1Þ: (4)

The ordering of the variables in the fields defines the
orientation of the triangles, which we will use shortly to
define a symmetry transformation for the fields, so that it is
relevant up to even permutations only. However, one could
repeat the whole construction with a different choice. The
orientability of the Feynman diagrams (simplicial com-
plexes) of the model is proven using the coloring of the
same [36,39] and does not make use of this ordering. Here
we oriented the four triangles of the tetrahedral interaction
inward (in a right-handed fashion).

Alternatively, we can work with (noncommuting) Lie
algebra variables x 2 suð2Þ � R3, by Fourier transform-
ing the fields as

~̂’‘ðx1;x2;x3Þ :¼
Z
½dgi�3 ~’‘ðg1;g2;g3Þeg1ðx1Þeg2ðx2Þeg3ðx3Þ;

(5)

where eg : suð2Þ � R3 ! Uð1Þ are noncommutative plane

waves [16–18], and functions on SO(3) are now identified
with functions on SU(2) invariant under g ! �g. The
definition of the plane waves involves a choice of coordi-
nates on the group. Following [15], we adopt

8 g 2 SUð2Þ; eg : x � ei TrðxjgjÞ; (6)

where for g 2 SUð2Þ we denote jgj � signðTr gÞg, and Tr
is the trace in the fundamental representation of SU(2). The
Lie algebra variables have a metric interpretation, as vec-
tors associated to the edges of the triangles [15]. The action
has the same combinatorial structure as in group variables,
except that the pointwise product for functions on SU(2) is
replaced by a noncommutative and nonlocal product for
functions on suð2Þ, noted ?. It is induced by the group
structure of SU(2), as dual to the convolution product for
functions on the group. Defined first on plane waves,

ðeg ? eg0 ÞðxÞ :¼ egg0 ðxÞ; (7)

it is then extended to the image of the noncommutative
Fourier transform by linearity.

We can define the quantum theory by the following path
integral:

Z ¼
Z

d�invð~’‘; ~’‘Þe�S½~’�; (8)

but since the Lebesgue measure �inv on the space of left
invariant fields is not even defined, this is only formal. The
strategy usually adopted (a detailed discussion can be
found in [35]) consists in two steps. First, the action is
rewritten in terms of generic fields, with constraints impos-
ing left invariance. Second, the nontrivial kinetic term thus
obtained is combined with the Lebesgue measure to give a
well-defined Gaussian measure. Integrating the exponen-
tial of the interaction part of the action with respect to this
measure makes sense of the previously ill-defined partition
function. This strategy will also be used in the construction
of a vertex representation of the model, so let us detail it
already in edge variables.
To begin with, we can impose the gauge invariant con-

dition (1) by group averaging a generic field ’‘ 2
L2ðSUð2Þ3Þ:

~’ ‘ðg1; g2; g3Þ ¼
Z

dh’‘ðhg1; hg2; hg3Þ
� ðPx’‘Þðg1; g2; g3Þ: (9)

In Lie algebra variables, this translates as

~̂’ ‘ ¼ dPx’‘ ¼ Ĉ ? ’̂‘; (10)

with

Ĉðx1; x2; x3Þ � �0ðx1 þ x2 þ x3Þ; (11)

�xðyÞ �
Z

dheg�1ðxÞegðyÞ: (12)

The functions �x play the role of Dirac distributions in the
sense that

Z
dyð�x ? fÞðyÞ ¼ fðxÞ (13)

for any function f in the image of the noncommutative
Fourier transform. Thus, we see that the gauge invariance
of the GFT field translates into the closure of the
triangle corresponding to it, ensuring geometricity, in ac-
cordance with and in confirmation of the interpretation of
the Lie algebra variables as edge vectors.
Writing the action in terms of the unconstrained fields

’‘, we notice that the projector P induces a nontrivial
kinetic term. It will therefore play the role of propagator at
the quantum level. Explicitly, the partition function is
defined with respect to the Gaussian measure �P of co-
variance P , or its equivalent in metric variables. Namely,

Z �
Z

d�P ð’‘; �’‘Þe�Sint½Px’�

¼
Z

d�Ĉð’̂‘; �̂’‘Þe�Sint½Ĉ?’̂�: (14)
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In the standard perturbative expansion in powers of the
coupling constant, this field theory generates Feynman
amplitudes labeled by colored graphs, which we describe
in the following. They are made of two types of four valent
nodes, which wewill call clockwise and anticlockwise, and
graphically represent by black and white dots, respectively.
Their lines have colors ‘ 2 f1; . . . ; 4g, and on each node
meet four lines with different colors. Moreover, a line is
always required to link a clockwise node to an anticlock-
wise one, so that the graph has no tadpole [36]. These
conditions ensure that colored graphs are dual to simplicial
complexes which triangulate orientable pseudomanifolds
[38], and this is the reason why these objects are well
known in combinatorial topology (see [39] and references
therein). In this picture lines are dual to triangles, and
nodes to tetrahedra of the triangulation. Connected com-
ponents of the graph made of lines of two different colors
are dual to edges, whereas the vertices of the simplicial
complex are obtained from the connected components
made of three different colors. In GFT this combinatorial
structure is usually encoded in a stranded substructure, to
which geometrical variables are attached. More precisely, a
line of color ‘, which represents the propagation of a field
of color ‘, is made of three strands. These strands are
themselves dual to the edges of the triangle the field
represent, and we attach to them the corresponding group
or Lie algebra variables. These strands are finally paired in
nodes, following the pattern of a tetrahedron, as repre-
sented in Fig. 1(b). In this picture edges of the triangulation
are dual to closed chains of strands. We give the simple
example of the so-called melon graph in Fig. 2. Its dual
triangulation is made of two tetrahedra whose faces are
identified pairwise, and has the topology of a sphere.

The amplitude of a given graph G can be given several
interpretations, depending on the representation one choo-
ses to work with. In metric variables, it has been shown in
[15] that it takes the form of a topological simplicial

gravity path integral on the simplicial complex dual to G.
In group variables, the amplitude is that of a gauge theory
on the dual 2-complex, imposing flatness of the gauge
connection. Finally, we can obtain a third picture by ex-
panding the functions on the group in irreducible represen-
tations using harmonic analysis. The amplitude of G takes
the form of a spin foam model, from which we can make
contact with quantum geometry and loop quantum gravity.
We refer to the literature for more details [1].

B. Translation symmetries

In the recent work [25], the model was shown to respect
(quantum) symmetries, given by actions of the Drinfel’d
double DSOð3Þ ¼ CðSOð3ÞÞ 2CSOð3Þ on the fields. We
will focus on the translational part of these actions, inter-
preted as (discrete) diffeomorphisms [7,26–28]. They have

four generators fT ‘0 ; ‘0 ¼ 1; . . . ; 4g, each T ‘0 acting non-
trivially on fields of color ‘ � ‘0. For instance, T 3 acts on
~’1 as

T 3
"x~’1ðg1; g2; g3Þ � ðeg�1

1
? eg3Þð"Þ~’1ðg1; g2; g3Þ

¼ eg�1
1

g3
ð"Þ~’1ðg1; g2; g3Þ: (15)

This can be interpreted as translations of the edges 1 and
3, respectively, by " and �", with a deformation given by
the ? product. This is clearer in metric variables, where the
previous equation can be (schematically) written as

T 3
"x ~̂’1ðx1; x2; x3Þ ¼ w" ~̂’1ðx1 � "; x2; x3 þ "Þ: (16)

As a result, the action of T 3 on the field of color 1 can
geometrically be interpreted as a deformed translation of
one of its vertices, as represented in Fig. 3. Furthermore,
we can assign colors to the vertices of the tetrahedron
defining the interaction term, with the convention that v‘

should be the vertex opposed to the triangle of color ‘. This
induces a color label for vertices of the different triangles.

FIG. 2. Combinatorial structure of the melon graph in edge variables.
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In this picture, the action of T 3 on ~’1 corresponds to a
translation of the vertex of color 3 in the triangle of color 1.

This geometrical interpretation generalizes to any gen-

erator and any field: T ‘0
" translates the vertex of color ‘0 in

~’‘ (if any) by a quantity ". With our conventions, the
symmetries are therefore given by the following equations:

T 1
"x~’1ðg1; g2; g3Þ :¼ ~’1ðg1; g2; g3Þ

T 1
"x~’2ðg3; g5; g4Þ :¼ eg�1

4 g5
ð"Þ~’2ðg3; g5; g4Þ

T 1
"x~’3ðg5; g2; g6Þ :¼ eg�1

5
g6
ð"Þ~’3ðg5; g2; g6Þ

T 1
"x~’4ðg4; g6; g1Þ :¼ eg�1

6
g4
ð"Þ~’4ðg4; g6; g1Þ

T 2
"x~’1ðg1; g2; g3Þ :¼ eg�1

2 g1
ð"Þ~’1ðg1; g2; g3Þ

T 2
"x~’2ðg3; g5; g4Þ :¼ ~’2ðg3; g5; g4Þ

T 2
"x~’3ðg5; g2; g6Þ :¼ eg�1

6
g2
ð"Þ~’3ðg5; g2; g6Þ

T 2
"x~’4ðg4; g6; g1Þ :¼ eg�1

1
g6
ð"Þ~’4ðg4; g6; g1Þ

T 3
"x~’1ðg1; g2; g3Þ :¼ eg�1

1
g3
ð"Þ~’1ðg1; g2; g3Þ

T 3
"x~’2ðg3; g5; g4Þ :¼ eg�1

3
g4
ð"Þ~’2ðg3; g5; g4Þ

T 3
"x~’3ðg5; g2; g6Þ :¼ ~’3ðg5; g2; g6Þ

T 3
"x~’4ðg4; g6; g1Þ :¼ eg�1

4
g1
ð"Þ~’4ðg4; g6; g1Þ

T 4
"x~’1ðg1; g2; g3Þ :¼ eg�1

3
g2
ð"Þ~’1ðg1; g2; g3Þ

T 4
"x~’2ðg3; g5; g4Þ :¼ eg�1

5
g3
ð"Þ~’2ðg3; g5; g4Þ

T 4
"x~’3ðg5; g2; g6Þ :¼ eg�1

2
g5
ð"Þ~’3ðg5; g2; g6Þ

T 4
"x~’4ðg4; g6; g1Þ :¼ ~’4ðg4; g6; g1Þ:

Note that the Hopf algebra deformations (i.e. the ? prod-
ucts) are defined such that the plane waves generating the
translations are always of the form eg�1

i gj
ð"Þ. This feature

has also a geometrical meaning: it guarantees that the
transformed fields stay invariant under diagonal left action
of SO(3), that is the triangles remain closed after trans-
lation of one of their vertices.
To be complete, we would need to specify how these

translations act on products of fields. This step, which
depends on the DSOð3Þ coproduct, again amounts to a
choice of ?-product orderings of the plane waves resulting
from the actions on individual fields. One result of [25] is
that it is possible to define them in such a way that the
action, and, in particular, its interaction term, are left
invariant. We postpone this task to the next section, where
the use of vertex variables will make the definitions more
geometrically transparent.
The interpretation of these symmetries is very nice. As

just mentioned, they are interpreted as translations of the
vertices of the triangulation, which at the level of simpli-
cial gravity are the discrete counterparts of the diffeomor-
phisms [26]. At the discrete gauge field theory level, that is
in group space, they impose triviality of the holonomy
around a loop encircling a vertex of the boundary triangu-
lation (this is apparent in the group representation of the
GFT interaction vertex), which is the content of the diffeo-
morphism constraints of 3d gravity. Finally, in the spin
foam formulation they generate the recurrence relations
satisfied by 6j symbols [53,54], which again encode the
diffeomorphism invariance of the theory in algebraic lan-
guage and the behavior under coarse graining. We refer to
[25] for a detailed discussion of these aspects.

III. TRANSFORMATION TO VARIABLES
ASSOCIATED TO VERTICES

In this section we explain in detail how the action can be
reexpressed in terms of fields with vertex variables, as
opposed to the usual edge variables. Such a formulation

FIG. 3. Action of T 3
" on the interaction term, and resulting transformation of ~’1.
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is suggested by the form of the translation symmetries, and
makes it easier to analyze them. We will also see that it
brings to the forefront some of the topological properties of
the simplicial complexes generated by the model in per-
turbative expansion. This will be the key to the bounds on
Feynman amplitudes we will derive in the following
sections.

A. From edge to vertex variables

Following the interpretation of the symmetries as vertex
translations, we write each edge Lie algebra variable as a
difference between the positions of its two end points (with
respect to some arbitrary reference point). Each triangle is
therefore described by the three positions of its vertices.
This amounts to representing quantized triangles by new

fields ~c ‘, defined as follows:

8 ‘ 2 f1; . . . ; 4g; ~c ‘ðu; v; wÞ
�

Z
dg1dg2dg3 ~’‘ðg1; g2; g3Þeg�1

2
g1
ðuÞeg�1

1
g3
ðvÞeg�1

3
g2
ðwÞ

¼ wuwvww ~̂’‘ðu� v;w� u; v� wÞ: (17)

The form of ~c ‘ is very specific, and we would not be able
to define a measure on this space of fields. As it was
already the case in edge variables, in order to define a
measure on the space of such fields, a first step towards

the definition of the dynamics is to write ~c ‘ as a function
of some generic field. More precisely, it can be defined
after Fourier transform in group representation, in terms of
new group variables Gu :¼ g�1

2 g1, Gv :¼ g�1
1 g3, Gw :¼

g�1
3 g2. This gives (using the invariance (1) of ~’‘)

~c ‘ðu; v; wÞ ¼
Z

dGvdGw’‘ðG�1
v ; Gw;1ÞeðGvGwÞ�1ðuÞeGv

ðvÞeGw
ðwÞ

¼
Z

dGudGvdGw�ðGuGvGwÞ’‘ðG�1
v ;Gw;1ÞeGu

ðuÞeGv
ðvÞeGw

ðwÞ

¼
Z

dGudGvdGw�ðGuGvGwÞc ‘ðGu;Gv;GwÞeGu
ðuÞeGv

ðvÞeGw
ðwÞ

¼
Z

dGudGvdGw

Z
d"w"c ‘ðGu;Gv;GwÞeGu

ðuþ "ÞeGv
ðvþ "ÞeGw

ðwþ "Þ

¼
Z

d"w" ĉ ‘ðuþ "; vþ "; wþ "Þ:

In the last three lines we introduced an auxiliary field c ‘

defined as

8 g1; g2; g3 2 SUð2Þ;
c ‘ðg�1

2 g1; g
�1
1 g3; g

�1
3 g2Þ � ’‘ðg1; g2; g3Þ; (18)

and the ? products have to be taken in the correct order,
namely, from left to right. The last line of the calculation
has again a nice geometric interpretation. In usual edge
variables, a triangle is specified by three edge vectors
which are constrained to close. Alternatively, here we
give the positions of the vertices up to a global translation,
which is irrelevant to the intrinsic geometry of the triangle.
The group variables Gu, Gv, and Gw are holonomies
associated to paths which go from the middle of one
edge to the center of the triangle, and then to the middle

of another edge. The triangle interpretation of the field
requires the triviality of the product GuGvGw, as shown
in Fig. 4.

B. GFT action in vertex variables

1. Action in terms of the constrained fields

As already proven in [25], the original Boulatov action

can be rewritten in terms of the new fields ~c ‘. With the
conventions of this paper, we have

Skin½ ~c �¼X
‘

Z
½d3vi�2 ~c ‘ðv1;v2;v3Þ? �~c ‘ðv1;v2;v3Þ; (19)

Sint½ ~c �¼�
Z
½d3vi�3 ~c 1ð�v2;v3;�v4Þ? ~c 2ð�v4;v3;v1Þ

? ~c 3ð�v4;v1;�v2Þ? ~c 4ðv1;v3;�v2Þ
þ ��

Z
½d3vi�3 �~c 1ðv2;�v3;v4Þ? �~c 2ðv4;�v3;�v1Þ

? �~c 3ðv4;�v1;v2Þ? �~c 4ð�v1;�v3;v2Þ: (20)

We notice that in all the integrals we have one free variable
which can be fixed to any value without changing the value
of the action; this amounts to a choice of origin from which
we measure the position of the vertices. This is alsoFIG. 4. Map from edge to vertex variables.
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reflected in the four translation symmetries not being in-
dependent, one of them being automatically verified when
the others are imposed; in other words, the model knows
about the intrinsic geometry of the triangles and of the
tetrahedra they form, and correctly does not depend on
their embedding in R3.

We remark also that, in the interaction, each vertex
variable appears in three different fields, so that we have
a ? product of three terms for each v‘. The extra signs
encode orderings of the ? products, which can again be
interpreted as defining the orientations of the triangles.
Consider, for example, the triangle of color 1. From
Fig. 3, its orientation is given by the cyclic ordering
ðx1; x2; x3Þ of its edge variables, which induces a natural
cyclic ordering of its vertices: ðv2; v3; v4Þ (notice that by
convention, we actually choose the reverse ordering). This
induces in turn an ordering of the triangles attached to the
vertex v1: (‘ ¼ 2, ‘ ¼ 3, ‘ ¼ 4) (see again the left part of
Fig. 3). This is the (cyclic) order in which, in the clockwise
interaction term, the ?v1

product of fields having v1 in their

arguments (that is ~c 2, ~c 3, and ~c 4) has to be computed. In
the anticlockwise interaction term, this has to be reversed.
That is why the variable v1 appears with a positive sign in
the first interaction term, and a minus sign in the second.
This discussion generalizes to any color, so that in the end
signs in front of variables v‘ are fully determined by the

ordering of variables in the field ~c ‘ of the same color.

2. Action in terms of the unconstrained fields

Anticipating the next section, where we will need a well-
defined measure on the space of fields, we now write the

same GFT action in terms of unconstrained fields ĉ ‘. At
this level it is easier to use group variables, that is actually
write everything in terms of c ‘. A direct computation
shows that

S½c �¼X
l

Z �Y3
i¼1

dGi

Y3
i¼1

d ~Gi

�
KðGi; ~GiÞ

�c ‘ðG1;G2;G3Þ �c ‘ð ~G1; ~G2; ~G3Þ
þ�

Z �Y
‘�‘0

dGl
l0

�
V ðGl

l0 Þc 234
1 c 431

2 c 412
3 c 132

4

þ ��
Z �Y

‘�‘0
dGl

l0

�
V ðGl

l0 Þ �c 234
1

�c 431
2

�c 412
3

�c 132
4 ; (21)

with c ijk
‘ � c ‘ðG‘

i ; G
‘
j ; G

‘
kÞ and

KðG1; G2; G3; ~G1; ~G2; ~G3Þ
¼ �ðG1G2G3Þ�ðG1

~G�1
1 Þ�ðG2

~G�1
2 Þ�ðG3

~G�1
3 Þ; (22)

V ðGl
l0 Þ ¼ �ðG1

2G
1
3G

1
4Þ�ðG2

4G
2
3G

2
1Þ�ðG3

4G
3
1G

3
2Þ�ðG4

1G
4
3G

4
2Þ

� �ðG4
2G

3
2G

1
2Þ�ðG4

3G
1
3G

2
3Þ�ðG1

4G
3
4G

2
4Þ: (23)

Recall that we previously assigned colors to the vertices
in the interaction tetrahedron, with the following simple
convention: the vertex v‘ is the one opposed to the triangle
of color ‘. We use this labeling in (23), where upper indices
correspond to colors of the triangles whereas lower ones
correspond to that of the vertices (see Fig. 5). The first four
� functions come from the translation invariance of the
triangles, and the three others encode their gluing through
the vertices. In the last line, the fact that there are only three
of the four possible � functions is again because the four
symmetries are not independent. We could alternatively
add a �ðG2

1G
3
1G

4
1Þ and remove one of the three other �

functions, a freedom which will prove useful in the com-
putation of the amplitudes.
For completeness, we finally give the action in the Lie

algebra setting:

S½ĉ � ¼ X
l

Z �Y3
i¼1

dvi

Y3
i¼1

d~vi

�
ðĉ ‘ðv1; v2; v3Þ �̂c ‘ð~v1; ~v2; ~v3ÞÞ ?Kðvi; ~viÞ

þ �
Z �Y

‘�‘0
dvl

l0

�
ðĉ 234

1 ĉ 431
2 ĉ 412

3 ĉ 132
4 Þ ?V ðvl

l0 Þ þ ��
Z �Y

‘�‘0
dvl

l0

�
ð �̂c 234

1
�̂c
431
2

�̂c
412
3

�̂c
132
4 Þ ?V ð�vl

l0 Þ;

with ĉ ijk
‘ � ĉ ‘ðv‘

i ; v
‘
j ; v

‘
kÞ, and

Kðv1; v2; v3; ~v1; ~v2; ~v3Þ ¼
Z

d"ð�0ð"� v1 þ ~v1Þ ?" �0ð"� v2 þ ~v2Þ ?" �0ð"� v3 þ ~v3ÞÞ;

V ðvl
l0 Þ ¼

Z �Y4
‘¼1

d"‘
�Z �Y4

‘0¼1

dv‘0

�
�0ðv‘0Þ ?v‘0 ð�0ð"1 � v1

2 � v2Þ ?"1 �0ð"1 � v1
3 þ v3Þ

?"1 �0ð"1 � v1
4 � v4ÞÞ ?v‘0 ð�0ð"2 � v2

4 � v4Þ ?"2 �0ð"2 � v2
3 þ v3Þ ?"2 �0ð"2 � v2

1 þ v1ÞÞ
?v‘0 ð�ð0"3 � v3

4 � v4Þ ?"3 �0ð"3 � v3
1 þ v1Þ ?"3 �0ð"3 � v3

2 � v2ÞÞ ?v‘0 ð�0ð"4 � v4
1 þ v1Þ

?"4 �0ð"4 � v4
3 þ v3Þ ?"4 �0ð"4 � v4

2 � v2ÞÞ:
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It is obtained from (21) by first expanding the fields c ‘ in
terms of their Fourier transforms ĉ ‘,

2 then decomposing
the group � functions in plane waves, and finally integrat-
ing the holonomies. Now the different gluings are encoded
by noncommutative � functions on the Lie algebra. For
example, the propagator determines the gluing of two
triangles through their vertices v and ~v, up to a global
translation parametrized by ". Likewise in the interaction,
the "‘ variables are associated to global translations of the
triangles of color ‘. As for the variables v‘0 , they give
3-valent interactions on strands of color ‘0. Note that the �
function appearing in the measure has v‘0 for argument,
with ‘0 any of the four colors. This is how the fact that the
four 3-valent interactions are not independent manifests
itself: once the triangles have been glued along three of the
vertices of the tetrahedron, the fourth gluing is automatic.

Finally, signs in front of variables v‘0 implement the cor-
rect ordering of ? products, that is the orientations of the
triangles.

C. Translation symmetries in vertex variables

Now we have a vertex representation of the classical
theory, it is interesting to revisit and discuss further the
translation symmetries. As expected, we have simpler for-
mulas in this representation.
Let us first discuss the action of translations on individ-

ual fields. We can equivalently work in a group or algebra
picture, and also with constrained or unconstrained fields,

this is irrelevant here. For definiteness we use the fields ĉ ‘.
The transformations read

T 1
"xĉ 1ðv2; v3; v4Þ ¼ ĉ 1ðv2; v3; v4Þ

T 1
"xĉ 2ðv4; v3; v1Þ ¼ ĉ 2ðv4; v3; v1 þ "Þ

T 1
"xĉ 3ðv4; v1; v2Þ ¼ ĉ 3ðv4; v1 þ "; v2Þ

T 1
"xĉ 4ðv1; v3; v2Þ ¼ ĉ 4ðv1 þ "; v3; v2Þ

T 2
"xĉ 1ðv2; v3; v4Þ ¼ ĉ 1ðv2 þ "; v3; v4Þ

T 2
"xĉ 2ðv4; v3; v1Þ ¼ ĉ 2ðv4; v3; v1Þ

T 2
"xĉ 3ðv4; v1; v2Þ ¼ ĉ 3ðv4; v1; v2 þ "Þ

T 2
"xĉ 4ðv1; v3; v2Þ ¼ ĉ 4ðv1; v3; v2 þ "Þ

T 3
"xĉ 1ðv2; v3; v4Þ ¼ ĉ 1ðv2; v3 þ "; v4Þ

T 3
"xĉ 2ðv4; v3; v1Þ ¼ ĉ 2ðv4; v3 þ "; v1Þ

T 3
"xĉ 3ðv4; v1; v2Þ ¼ ĉ 3ðv4; v1; v2Þ

T 3
"xĉ 4ðv1; v3; v2Þ ¼ ĉ 4ðv1; v3 þ "; v2Þ

T 4
"xĉ 1ðv2; v3; v4Þ ¼ ĉ 1ðv2; v3; v4 þ "Þ

T 4
"xĉ 2ðv4; v3; v1Þ ¼ ĉ 2ðv4 þ "; v3; v1Þ

T 4
"xĉ 3ðv4; v1; v2Þ ¼ ĉ 3ðv4 þ "; v1; v2Þ

T 4
"xĉ 4ðv1; v3; v2Þ ¼ ĉ 4ðv1; v3; v2Þ:

Thus, each field ĉ ‘ can be interpreted as living in the
representation space of (the translation part of) three cop-
ies of the deformed 3d Poincare group DSOð3Þ. This
makes the interpretation of these transformations as vertex
translations more explicit, and clarifies the very definition
of the GFT.

The deformation of the translations manifests itself
when acting on product of fields. This is a question we
left open in the previous sections, exactly because it is

more easily understood in the vertex formulation. To define
the action of the translations on a product of fields, we need
to interpret it as a tensor product. There is no canonical

choice: for example, the integrand c 234
1 c 431

2 c 412
3 c 132

4 in

the interaction term (20) can be interpreted as the evalu-

ation of c 234
1 � c 431

2 � c 412
3 � c 132

4 , but also of c 431
2 �

c 234
1 � c 412

3 � c 132
4 , and generally of any permutation of

the representation spaces. The Hopf algebra deformation

of the translations required to make the interaction invari-

ant will then depend on this additional convention. For

definiteness let us interpret the term c 234
1 c 431

2 c 412
3 c 132

4 as

the evaluation of c 234
1 � c 431

2 � c 412
3 � c 132

4 . The Hopf

2The inverse formula is given by fðgÞ ¼ 1
�

R
dxðf̂ ? eg�1 ÞðxÞ

for a function f on SO(3). We refer to [15,17] for details.
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algebra structure of the symmetries then has to be consis-
tent with orderings of ? products (i.e. signs) in Eq. (20).
This requires one to distinguish colors f1; 3g from f2; 4g,
since the corresponding variables have opposite signs
in (20). All this suggests the following definition of

translations, on products of fields, which we give in group
variables. If f�i; i ¼ 1; . . . ; Ng are living in the representa-
tion space of T ‘, then

T ‘
"xð�ðg1Þ � � � � ��ðgNÞÞ � eg1���gN ð"Þð�ðg1Þ � � � � ��ðgNÞÞ; if ‘ 2 f1; 3g (24)

T ‘
"xð�ðg1Þ � � � � ��ðgNÞÞ � egN���g1ð"Þð�ðg1Þ � � � � ��ðgNÞÞ; if ‘ 2 f2; 4g: (25)

With this definition, and the tensor product interpretation
of the interaction term we gave, the action is indeed
invariant under translations. For instance, in metric varia-
bles, the integrand of the interaction part of the action is
simply translated with respect to its variable of color ‘
under the transformation T ‘. As a result, and because it is
defined by integrals over the whole space suð2Þ, the in-
variance follows.3

D. Quantum theory

In this section we discuss the path integral quantiza-
tion of the model, via its perturbative expansion in
Feynman diagrams. The partition function of the
Boulatov model being divergent, we will regularize it
by introducing a suitable cutoff already at the level of
the action.

1. Cutoff and rescaling of the fields

There are of course several ways of regularizing the
action. Here we choose to regularize the � functions to
��, � being a sharp large spin cutoff in the harmonic
expansion of �:

��ðgÞ � X
j2ðN=2Þ;j��

ð2jþ 1Þ�jðgÞ; (26)

where �j are the characters of SU(2). The reason is that we
would like to make contact with all the bounds we know
for the amplitudes of the theory, which, in particular,
allowed one to define a 1=N expansion [41–43], and ex-
plore the critical behavior of simplified models [44,56]. An
alternative would be to use a heat kernel regularization, as,
for example, in [32–34]. The latter should be better adapted
to the metric variables, since it is equivalent to a regulari-
zation of the suð2Þ integrals compatible with the ? product
(the heat kernel becomes a noncommutative Gaussian
function in Lie algebra space). However, for actual com-
putations, the group picture looks better suited, and the
large spin cutoff is very natural.
In addition, we rescale the fields and the coupling

constant as

c ‘ �
c ‘ffiffiffiffiffiffiffiffiffiffiffiffiffi
��ð1Þ

p (27)

� �
�ffiffiffiffiffiffiffiffiffiffiffiffiffi

��ð1Þ
p : (28)

The first ensures that the kinetic function defines a projec-
tor, and the second allows one to obtain a uniform degree of
divergence for the maximally divergent graphs at all orders
[41]. The cutoff kinetic and interaction functions we will
use are then

K�ðG1; G2; G3; ~G1; ~G2; ~G3Þ ¼ ��ðG1G2G3Þ
��ð1Þ ��ðG1

~G�1
1 Þ��ðG2

~G�1
2 Þ��ðG3

~G�1
3 Þ;

V�ðGl
l0 Þ ¼ ð��ð1ÞÞ3=2 �

�ðG1
2G

1
3G

1
4Þ

��ð1Þ
��ðG2

4G
2
3G

2
1Þ

��ð1Þ
��ðG3

4G
3
1G

3
2Þ

��ð1Þ
��ðG4

1G
4
3G

4
2Þ

��ð1Þ
� ��ðG4

2G
3
2G

1
2Þ��ðG4

3G
1
3G

2
3Þ��ðG1

4G
3
4G

2
4Þ: (29)

2. Partition function and Feynman rules

As pointed out in [35], one can adopt the same strategy as in usual quantum field theory, and make sense of the partition
function as a well-defined Gaussian integral. Roughly, the ill-defined Lebesgue measure on the space of fields is combined
with the kinetic function, giving an integral of the exponential of the interaction term with respect to a Gaussian measure
whose covariance is the kinetic function:

3The theory can be made to be independent of any such choice, if one introduces an appropriate nontrivial braiding among GFT
fields, which intertwines the translation symmetry; this issue has been raised already in [25] (and in [55]) and it is currently under
investigation.

SYLVAIN CARROZZA AND DANIELE ORITI PHYSICAL REVIEW D 85, 044004 (2012)

044004-10



Z � ¼
Z

d�K�ðc ‘; �c ‘Þe�Sint½c �: (30)

The amplitudes are given by the usual colored graphs.
What differs is that now the stranded structure is associated
to the vertices of the corresponding triangulation. The
propagator being a projector, we can discard its contribu-
tion to the interaction function.4 We end up with the
Feynman rules represented in Fig. 6.

At this point we would like to stress again that the path
integral is strictly the same than the usual one written in
edge variables. The reason why it is so is that at the level of
gauge invariant fields, our construction amounts to a sim-
ple (and regular) change of variables in the fields.
Therefore the Jacobian of the transformation evaluates to
one. This ensures that when the cutoffs are removed, the
path integrals (and Feynman amplitudes) in edge and
vertex variables are the same. Moreover, we could equally
do the very same construction, starting instead from the
regularized path integral in edge variables. Knowing the
expression for the change of variables in group picture, we
could even avoid using metric variables altogether. Starting
with regularized �� functions in the path integral in edge
variables, we would end up with the regularized path
integral (30) in vertex variables. This is ensured by the
properties of the regularized �� functions, which behave as
Dirac distributions on the space of fields with cutoff �. As
a consequence, the vacuum amplitudes in vertex variables

will be the same as in edge variables, since in both cases
they are coefficients in the perturbative expansion of the
partition function in �. We would need more care in the
case of open graphs, since this would require to match
boundary states in both pictures. We do not address this
issue in this paper, and focus on vacuum amplitudes in the
following.

IV. QUANTUM AMPLITUDES

In this section we focus on the Feynman amplitudes of
the model, by first looking at the combinatorics of the
graphs in vertex variables. Then, we will factorize the
amplitudes in contributions coming from bubbles of a
given color. This will be the starting point for our deriva-
tion of new scaling bounds depending on the topology of
bubbles only, thus characterizing the manifoldness of the
corresponding simplicial complexes.

A. Explicit bubble structure

The first thing to notice at this point is that the (contri-
butions to the full) GFT interaction associated to a single
vertex are 3-valent, and only strands with the same (vertex)
color can interact. Each of them encodes the gluing of three
triangles on a vertex of the triangulation, or alternatively
the triviality of the holonomy around the wedge associated
to this vertex (see Fig. 8). Now look at a connected com-
ponent of the subgraph of color ‘. This is a graph of a
noncommutative �3 scalar field theory on a Lie algebra
spacetime suð2Þ, with momentum space SU(2), the inter-
action being essentially momentum conservation at each
vertex. From the simplicial perspective, it is dual to a
bubble around a vertex of color ‘, and encodes its topo-
logical structure. Precisely, each line of this 3-graph has a
color: that of the 4-graph line it is part of. Thus, we really
have a colored 3-graph, which is therefore dual to a closed
and orientable triangulated surface [25,30,57]: the bubble.
The overall amplitude associated to a 4-graph is therefore
given by �3 graphs encoding the structure of the bubbles,
glued to one another through propagators (associated to
triangles). We give a simple example in Fig. 7.

B. Flatness of the triangulation

Before writing the amplitudes in a nice compact form,
let us see what the geometrical meaning of the different
terms is. In Fig. 8 we represent a tetrahedron of the
triangulation, dual to an interaction vertex. The elementary
variables are holonomies on paths around the vertices of
the different triangles, as already shown in Fig. 4. We have
two types of constraints on these variables, coming respec-
tively from the propagators and the stranded interactions.
The first set of constraints ensures the fields can indeed be
interpreted as triangles. As for the interaction associated to
the gluing on a vertex v, it imposes flatness of the surface
formed by the three wedges around v.

FIG. 5. Combinatorics of the interaction function in vertex
variables. One of the four 3-valent interactions is redundant.
The arrow indicates the ordering of variables.

4This is the case at least as far as the scaling behavior of the
model is concerned. In this paper, we discard possible numerical
factors arising from Clebsch-Gordan conditions in the evaluation
of such redundant � functions.
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Before moving on, we give a final confirmation that we
recover the usual interpretation of BF amplitudes as mea-
suringmoduli spaces of flat connections, in terms of flatness
of holonomies around closed paths dual to edges of the
simplicial complex. To do so, we transform back to edge
variables at the level of the amplitudes, and prove that
holonomies around edges of the triangulation are trivial.
We give a sketchy proof for a single tetrahedron with
boundaries, by showing that its six wedges are flat. The
triviality of the propagator ensures that this translates into
flatness of face holonomies built by gluingwedges together.

Consider a single tetrahedron with boundary holonomies
fG‘

‘0 ; ‘ � ‘0g in vertex variables, with the same notations as

before. They verify constraints ensuring the triangle
interpretation of the boundary fields: for instance,
G1

2G
1
3G

1
4 ¼ 1. As a consequence, there exist variables g11,

g12, and g13 such that

G1
2¼ðg12Þ�1g11; G1

3¼ðg11Þ�1g13; G1
4¼ðg13Þ�1g12; (31)

and similarly for the other colors. Note that we label the
edges of the tetrahedron (lower indices of g variables) as in
Fig. 1(c). Discarding global prefactors, the amplitude is a
product of three � functions encoding flatness around the
vertices v1, v2, and v3:

FIG. 7. Combinatorial structure of the melon graph in vertex variables, and its four bubble graphs.

FIG. 6. Feynman rules for the clockwise vertex and the propagators. In the second picture, as a matter of convention, we attached the
left part of the propagator to a clockwise interaction vertex, and the right part to an anticlockwise one.
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A / ��ðG4
2G

3
2G

1
2Þ��ðG4

3G
1
3G

2
3Þ��ðG1

4G
3
4G

2
4Þ (32)

/ ��ððg41Þ�1g46ðg36Þ�1g32ðg12Þ�1g11Þ��ððg44Þ�1g41ðg11Þ�1g13ðg23Þ�1g24Þ��ððg13Þ�1g12ðg32Þ�1g35ðg25Þ�1g23Þ: (33)

On the other hand in usual edge variables, the amplitude is
given by

~A ¼
Z

dh1dh2dh3dh4�
�ðh1g11ðg41Þ�1h�1

4 Þ
� ��ðh4g46ðg63Þ�1h�1

3 Þ��ðh3g32ðg12Þ�1h�1
1 Þ

� ��ðh1g13ðg23Þ�1h�1
2 Þ��ðh3g35ðg25Þ�1h�1

2 Þ
� ��ðh4g44ðg24Þ�1h�1

2 Þ; (34)

where for each color ‘, h‘ is interpreted as the holonomy
from the center of the tetrahedron to the center of the
triangle of color ‘. Thus, the amplitude encodes flatness
of the six wedges of the tetrahedron. To show that the
amplitudes (32) and (34) are equivalent as they should
be, we can first integrate the auxiliary holonomies h2, h3,
and h4 in (34). The result does not depend on h1 so the last
integral is trivial, and we get:

~A ¼ ��ðg11ðg41Þ�1g46ðg36Þ�1g32ðg12Þ�1Þ��ðg11ðg41Þ�1

� g46ðg36Þ�1g35ðg25Þ�1g23ðg13Þ�1Þ��ðg11ðg41Þ�1

� g44ðg24Þ�1g23ðg13Þ�1Þ: (35)

But this is the same distribution as (32), as it can be easily
verified. This shows that amplitudes in vertex and edge
variables are equal, and both encode flatness of the
triangulation.

C. ‘‘Reduced’’ amplitude

Let us consider a graph G and compute its amplitude. In
each vertex we are free to choose the color of the three
strands which do not interact. A simple choice is to pick up
the same color in every vertex, say 1. Now because we have
no interaction for strands of color 1, we can use the variables
attached to them to integrate all the propagators of colors 2,
3, and 4 (see Fig. 9 for an example). Each of them gives a
contribution ð��ð1ÞÞ�1 coming from the normalization of
the propagator. We can absorb these factors in the interac-
tion terms. Since each integrated line is shared by two
interaction vertices, and each interaction vertex has three
integrated lines, this amounts to a rescaling of the interac-

tion function by a factor ð��ð1ÞÞ�3=2. The Feynman rule for
the reduced interaction vertex is represented in Fig. 10.
The only propagators left have color 1, and encode

gluings of bubbles of the same color. In each of these
bubbles we have now subgraphs of colors 2, 3, and 4
only, which interact through their external strands.
Let us call B1 the set of bubbles of color 1. Then for

b 2 B1 we note: Vb, Eb, Fb the sets of vertices, edges, and
faces of its triangulation; gb its genus;Gb its (disconnected
and open) graph, made of strands of colors 2, 3, and 4.
Finally, for v 2 Vb, we define4b

v the sets of triangles of b
containing v. The following combinatorial properties hold:
(1) Gb has 3jFbj external strands, and 3jFbj external

vertices (all its vertices have to be external since
each of them is connected to a propagator of color 1).

FIG. 8. Tetrahedron dual to an interaction vertex. The amplitude imposes two kinds of conditions: consistency conditions on
triangles, for instance G3

4G
3
1G

3
2 ¼ 1 in the triangle of color 3; and flatness conditions around vertices, for example G4

2G
3
2G

1
2 ¼ 1

around the vertex v2.
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(2) Each internal strand of Gb is dual to one of the end
points of an edge of b. There are 2jEbj such internal
strands.

(3) They form connected components of Gb, which are
dual to the vertices of b. We have therefore jVbj
connected components in Gb. The connected com-
ponent dual to v 2 Vb has j 4b

v j strands, which are
dual to the triangles of 4b

v.

From these considerations, we see that all the internal
strands of Gb can be integrated. This simply amounts to

integrating a loop in a �3 graph, reducing it to one single
vertex. We show an example in Fig. 11.
Each connected component of Gb is thus reduced to a

unique interaction vertex of valence j 4b
v j, dual to the

vertex of the triangulation v 2 Vb. We are left with only
one � function per vertex of b. Defining F 1 as the set of
lines of color 1, we obtain a general formula for the
amplitude:

AG ¼ ð� ��ÞN =2
Z
½dG�3N =2

� Y
b2B1

Y
v2Vb

��

� Y!
f24b

v

ðGf
vÞ�fv

��

�
� Y
f2F 1

��ðQ!
v2f G

f
vÞ

��ð1Þ
�
; (36)

where the products of holonomies are ordered according to

the initial orientations, and �fv ¼ 	1 depending on
whether the tetrahedron containing f and v is clockwise
or anticlockwise. Since the faces of the bubbles are dual to
half lines of color 1, the following relation holds:P

b2B1
jFbj ¼ 2jF 1j. This allows one to absorb the nor-

malizations of the remaining propagators into the bubbles:

AG ¼ ð� ��ÞN =2
Z
½dG�3N =2

�
� Y
b2B1

½��ð1Þ��jFbj=2
Y
v2Vb

��

� Y!
f24b

v

ðGf
vÞ�fv

��

�
� Y
f2F 1

��

�Y!
v2f

Gf
v

��
: (37)

But for a bubble b 2 B1 we have the two additional
relations:

2� 2gb � jVbj � jEbj þ jFbj 3jFbj ¼ 2jEbj: (38)
FIG. 11. Integration of the internal strands of a connected
component of Gb.

FIG. 10. Feynman rule for the reduced clockwise interaction
vertex.

FIG. 9. Integration of propagators of colors 2, 3, and 4 in the melon graph. A prefactor ð��ð1ÞÞ�3=2 can be absorbed in each vertex
function, which gives the modified Feynman rule shown in Fig. 10.
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Note that the first equality can be used safely, since 3-
graphs (i.e. 3-colored graphs) are dual to two-dimensional
manifolds.5 Combining these two relations, we obtain

� jFbj
2 ¼ 2� 2gb � jVbj. This gives a formula for the am-

plitude showing the explicit dependence on the genera of
the bubbles of color 1. Generalizing to any color ‘, we
obtain the final result of this section:

AG ¼ ð� ��ÞN =2
Z
½dG�3N =2

�
� Y
b2B‘

½��ð1Þ�2�2gb�jVbj
Y
v2Vb

��

� Y!
f24b

v

ðGf
vÞ�fv

��

�
� Y
f2F ‘

��

�Y!
v2f

Gf
v

��
: (39)

The interpretation of the different terms is the following.
The pseudomanifold associated toG is now built from jB‘j
cells, glued together through their triangulated boundaries
(the bubbles). Each bubble b contributes with jVbj �
functions imposing flatness of the holonomies around its
vertices, plus an overall factor depending on its genus and
its number of vertices. These bubbles are glued together

through N
2 � functions,6 washing out the nongeometric

data (that is embedding information of the triangles).
Before moving on, let us stress how convenient the

above expression for the quantum amplitude is, for analyz-
ing its dependence on the underlying simplicial complex.
The first contribution to it (in the first bracket) contains all
the information about manifoldness in the vicinity of ver-
tices of color ‘, as it only depends on the bubble structure
of color ‘, and in a way that is local at the level of each
bubble; the second term, on the other hand, encodes the
remaining dependence on the structure and topology of the
complex (including global topology), as it depends on how
the bubbles of color ‘, dual to vertices of color ‘ in the
simplicial complex, are glued to one another. All together,
the four different bubble factorizations (one for each color
‘) allow one to fully access the degree of manifoldness of
the simplicial complex. In the following, we will be only
concerned with the bubble structure and the issue of the
relative suppression of pseudomanifold configurations
over the regular manifolds, and we will thus focus only
on the first type of contributions, trying in a sense to
‘‘trivialize’’ the rest of the expression. However, we believe
that the above expression could be a natural starting point
also for studying the ‘‘complementary’’ issue of the
relative weight of different simplicial topologies, for given

structure of singularities. We leave this question for future
work.

D. First bound

From the previous formula we can easily derive a gen-
eral bound for the amplitude of G. First pick up one strand

in each propagator of color ‘, and integrate the N
2 corre-

sponding � functions with respect to the variables associ-
ated to these strands. The function �� being the �
distribution on the space of cutoff fields, but not on poly-
nomials of those, the exact evaluation of such integrations
can turn out to be very complicated, essentially because of
Clebsch-Gordan conditions. However, in the large � limit,
these conditions will only affect the amplitudes through
numerical prefactors. Therefore �� acts like a true �
distribution in the power counting sense. Since in this
paper we are interested in scaling properties of the model,
we will discard numerical prefactors, and as a conse-
quence, all the equations we will write in the following
will be equalities in the power counting sense only.
Namely, any formula of the form fð�Þ ¼ gð�Þ [respec-
tively, fð�Þ � gð�Þ] will be a shorthand notation for

9K>0; fð�Þ�Kgð�Þ ðresp:fð�Þ�Kgð�ÞÞ (40)

when� ! 1.7 A detailed study of the numerical factorsK
is beyond the scope of this paper, but will be of utmost
importance in order to determine the critical behavior of
the model. With this subtlety in mind, the integration of the
propagators previously mentioned change the arguments of
the � functions of the vertices connected to the strands
chosen, possibly in a very complicated way. Anyway, the
amplitude has now the form

AG ¼ ð� ��ÞN =2
Z
½dG�N

�
� Y
b2B‘

½��ð1Þ�2�2gb�jVbj
Y
v2Vb

��ð� � �Þ
�
; (41)

where the dots denote complicated products of holonomy
variables. Now using the rough bound ��ð� � �Þ � ��ð1Þ
for the jVbj remaining � functions8 per bubble b, together
with the normalization of the Haar measure, we get

AG � ð� ��ÞN =2½��ð1Þ�
P

b2B‘

ð2�2gbÞ
: (42)

Thus, we obtained a bound depending on the topology of
the bubbles of color ‘. This might seem a bit unnatural,
since formula (42) is not symmetric with respect to the
color labels. Note, however, that we have the same kind of
bound for any color, and we are completely free to choose

5This absence of topological singularities is specific to two
dimensions. The interested reader may refer to [57], in which
3-colored graphs are used to prove the usual classification of
compact and connected two-dimensional manifolds in terms of
orientability and the Euler characteristic.

6Note that in this sense we can have tadpole lines, which
identify two triangles in a same bubble.

7For clarity, we will still keep track of the powers in ð� ��Þ, even
if they are superfluous in this scheme.

8This is a simple consequence of the fact that the jth character
of SU(2) is bounded by its value at the identity 1.
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any of them. What the refined versions of this inequality
will show is exactly that discussing singularities of one
given color is relevant, in the sense that it allows one to
derive optimal bounds.

V. BOUNDING PSEUDOMANIFOLDS

The efficiency of the bound (42) depends on a competi-
tion between the number of bubbles and their topologies.
As a consequence, for a given singular topology, the bound
can always be made arbitrarily big by adding a large
number of planar bubbles (which do not change the singu-
larities). Instead it would be useful to obtain a bound which
only depends on the topology of singular bubbles. We thus
have to devise tools to get rid of as many planar bubbles as
possible. The so-called dipole moves used in combinatorial
topology are of this kind, and were successfully applied to
colored group field theory [39,41]. Especially, 1-dipole
contraction moves were used in [41] to study the large N
limit of the Boulatov model (see Fig. 12). The author
showed that any graph can be successively contracted so
as to obtain what is called a core graph, with the following
property: for any color ‘, there is either a unique bubble of
color ‘, or they are all nonplanar.

In this section, we will first rederive the 1-dipole con-
traction move formula, which in our framework amounts to
merge two different bubbles. This will then allow us to
apply formula (42) to core graphs and obtain sharper
bounds on pseudomanifolds.

A. Reduction to core graphs

In this paragraph we show that we can derive the prop-
erties of 1-dipole contractions from formula (39). This will
guarantee that the bound (42) can be applied to a core
graph equivalent to G instead of G itself. This will imply
bounds on pseudomanifolds, indexed by the type and
number of point singularities.
Let us consider two different bubbles b1 and b2 in B‘,

glued through a triangle f0 2 Fb1 \ Fb2 . We make in

addition the assumption that at least one of them, say b1,
is a sphere. The contribution of the two bubbles to the
amplitude is given by a factor of the form

�
½��ð1Þ�2�jVb1

j Y
v2Vb1

;v=2f0

��

� Y!
f24b1

v

ðGf
vÞ�fv

��

�
�
½��ð1Þ�2�2gb2�jVb2

j Y
v2Vb2

;v=2f0

��

� Y!
f24b2

v

ðGf
vÞ�fv

��

�
Z

dG
f0
u1dG

f0
u2dG

f0
u3�

�ðGf0
u1G

f0
u2G

f0
u3Þ

�Y3
i¼1

��

� Y!
f24b1

ui

ðGf
uiÞ�

f
v

�
��

� Y!
f24b2

ui

ðGf
uiÞ�

f
v

�
;

where u1, u2, and u3 are the vertices of f0. Before integrat-

ing with respect to G
f0
ui , we would like to get rid of

��ðGf0
u1G

f0
u2G

f0
u3Þ, which imposes closure of the triangle

f0. Using the other closure and flatness constraints in b1,
we see that it is equivalent to saying that the holonomy
along a path circling f0 in b1 has to be flat (see Fig. 13).
Iterating the process shows that this path can actually be
deformed arbitrarily. But b1 is a sphere, hence simply
connected. We can therefore contract the path around
another triangle of b1, and write the constraint

G
f0
u1G

f0
u2G

f0
u3 ¼ 1 as the closure condition in this triangle.

We see thus that ��ðGf0
u1G

f0
u2G

f0
u3Þ is redundant and can be

set to ��ð1Þ without changing the integral.9

We can now safely integrate the G
f0
ui variables, which

corresponds to removing f0 and taking the connected sum
of b1 and b2. We denote this connected sum b1#b2 and
refer to [39,57] for more details. This leads to

FIG. 13. Triangle f0 and its neighbors in b1. Using flatness
around u1, u2, u3, and constraints in the three triangles sharing

an edge with f0, we show that G
f0
u1G

f0
u2G

f0
u3 ¼ G1G2 � � �G9G10.

FIG. 12. 1-dipole move. This defines a homeomorphism when-
ever the two bubbles (of color 1) connected by the line of color 1
are different, and at least one of them is planar.

9Again, this is true only in the large � limit, up to a numerical
factor.
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�
½��ð1Þ�2�jVb1

jþ2�jVb2
j�2gb2

Y
v2Vb1#b2

��

� Y!
f24b1#b2

v

ðGf
vÞ�f

��

� ��ð1Þ:
But we also have that (the second equality crucially de-
pends on b1 being a sphere)

jVb1#b2 j ¼ jVb1 j þ jVb2 j � 3 gb1#b2 ¼ gb2 ; (43)

so that in the end the contribution of the two bubbles is that
of their connected sum. We recover the relation found in
[41], between the amplitude of the initial graph G and the
one after absorption of the planar bubble b1 in b2, noted
Gb1!b2 :

AG ¼ ð� ��ÞAGb1!b2 : (44)

This shows that amplitudes are invariant under 1-dipole
contractions in the power counting sense. But it was also
shown in [41] that, for each color, a complete set of
1-dipole contractions can be performed. We refer to this
work for a detailed proof, which relies on a bubble routing.
Thus, any graph amplitude can be computed from an
equivalent graph without 1-dipoles: a core graph.

B. A first hierarchy of bounds

We now use inequality (42) on core graphs10 to bound all
graphs which are in the same equivalent class under
1-dipole contractions. If Gp is a core graph with 2p verti-

ces, there are two possibilities for its bubbles of color ‘:
either there is just one of them, or they are all nonplanar. If
all the bubbles are planar, the graph is dual to an orientable
manifold [12,30,39]. In this case the previous inequality
gives, for any color,

AGp � ð� ��Þp½��ð1Þ�2: (45)

For a nonmanifold core graph, that is when at least one
bubble is nonplanar (and consequently all the bubbles of
the same color), the amplitude is shown to converge, and
even to decay to zero as soon as there exists a bubble of
genus 2. More precisely, if ‘ is the color of a nonplanar
bubble, we get

AGp � ð� ��Þp½��ð1Þ�
P

b2B‘

ð2�2gbÞ

� ð� ��Þp½��ð1Þ�2�2gmax � ð� ��Þp;
where in the second line gmax is defined as the maximal
genus in B‘. Now remark that the properties of a core
graph ensure that

P
b2B‘

ð2� 2gbÞ ¼ P
b2Bs

‘
ð2� 2gbÞ,

where Bs
‘ is the set of singular bubbles of color ‘. But

since a core graph has the same singularities as all the

graphs which are in the same class, the previous bounds
generalize to any graph G in the following sense:

AG � ð� ��ÞN =2½��ð1Þ�
P

b2Bs
‘

ð2�2gbÞ

� ð� ��ÞN =2½��ð1Þ�2�2gmax ; (46)

where N is the number of nodes of G, and gmax is the
maximal genus of its bubbles of color ‘. We have thus
obtained a hierarchy of bounds, indexed by the types and
number of point singularities.

VI. BOUNDING PSEUDOMANIFOLDS WITHOUT
REDUCING TO CORE GRAPHS

In this section we study whether the bound (46) is
optimal or not. We will show that it is, as long as we are
concerned with the most degenerate singularities of graphs
only. However, if we want to take several singularities into
account, we will show that they can be improved. As an
interesting by-product, we will see that the reduction to
core graphs becomes unnecessary for the purpose of
deriving optimal bounds.

A. Are the bounds optimal?

In order to address this question, we need to be able to
compute the exact power counting of amplitudes of a
sufficiently rich set of graphs. In this respect, we propose
to first design elementary pieces of graphs which have one
unique bubble of color ‘, and a certain number of external
legs. We will then be able to build connected vacuum
graphs with any kinds of bubbles out of these elementary
graphs. Of course we want to keep the combinatorics of
these elementary graphs rather simple, to be able to do
exact calculations.
It is then natural to start from minimal 3-graphs repre-

senting two-dimensional orientable surfaces of a given
topology. They are called canonical graphs in the mathe-
matical literature (see [57] and references therein). A
canonical graph of genus g has 2ð2gþ 1Þ nodes.
Figure 14 shows the canonical graphs of genus 0, 1 and
their generalization to any genus g. We refer to [57] for
proofs of these statements and further comments.

FIG. 14. Canonical graphs for orientable surfaces: the sphere
(g ¼ 0), the torus (g ¼ 1), and the general case of a genus g
surface.

10Strictly speaking, we do not need to contract all the 1-dipoles
in the graph, but only that of a given color.
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We are ready to build our elementary graphs. For a given
genus g 2 N we start from the canonical graph shown in
Fig. 14, and add external legs of color 1 on every node.
This gives a set of canonical bubbles with external legs,
from which we can in principle construct any topology that
is generated by the colored Boulatov model.

The first question we ask is whether the bound (46) in
terms of the maximal genus gmax is optimal or not. The
simplest graph we could think of to saturate this bound
consists in one unique canonical graph of genus gmax with a
pairing of external legs maximizing the amplitude. As a
first step, and also because this gives an interesting result
that we will use in next section, we first contract 2g pairs of
external legs, keeping two of them free. More precisely, for
each genus g we define the graph Cg as shown in Fig. 15.

The reason why these graphs are useful lies in the
following lemma (see Fig. 16).

Lemma 1.—Let G be a colored graph, with a subgraph
Cg for some g 2 N. Call GCg!C0 the graph obtained after

replacement of Cg by the graph C0. Then

AG ¼ ð� ��Þ2g½��ð1Þ��2gAGCg!C0 : (47)

Proof.—We first remark that a canonical triangulation of
a bubble of genus g has only three vertices. Indeed, dual of
vertices (of the triangulation) of color 2 are closed chains
of strands alternatively of color 3 and 4. It is easy to see that
there is only one such closed chain of strands in the
canonical graph of genus g. So the dual triangulation has
only one vertex of color 2, and similarly for colors 3 and 4.
This means that in the amplitude of G, the Cg subgraph

contributes with only three � functions associated to its
dual vertices, and 2g � functions associated to pairings of
lines of color 1. Moreover, these pairings are such that the
arguments in the � functions associated to the vertices
simplify, and the contribution of Gg to the amplitude of

G reads

ð� ��Þ2gþ1
Z
½dH�6gð½��ð1Þ�2�2g�3��ðG2

~G�1
2 Þ

���ðG3
~G�1
3 Þ��ðG4

~G�1
4 ÞÞ

�Y2g
i¼1

��ðHðiÞ
2 HðiÞ

3 HðiÞ
4 Þ

�
; (48)

where the variables G‘0 and ~G‘0 are that of the two external

legs of Gg. The HðiÞ
‘0 are associated to the 2g remaining

lines of color 1, and can be integrated. We obtain a term,

ð� ��Þ2gþ1½��ð1Þ��2g�1��ðG2
~G�1
2 Þ��ðG3

~G�1
3 Þ��ðG4

~G�1
4 Þ;
(49)

which reduces to

ð� ��Þ½��ð1Þ��1��ðG2
~G�1
2 Þ��ðG3

~G�1
3 Þ��ðG4

~G�1
4 Þ (50)

when g ¼ 0. These two terms differ by a factor ð� ��Þ2g �
½��ð1Þ��2g, which concludes the proof. h
This is all we need in order to prove the following

theorem.
Theorem 1.—If a vacuum graph G of order N contains

a bubble of genus g, then

AG � ð� ��ÞN =2½��ð1Þ�2�2g: (51)

Reciprocally, for any g 2 N, there exists a graph G with at
least one bubble of genus g, such that

AG ¼ ð� ��ÞN =2½��ð1Þ�2�2g; (52)

where N is the order of G.
Proof.—The first part is a consequence of inequality

(46). We just have to exhibit a graph that saturates the
bound. For g 2 N, consider the graph Cg and join its two

external legs. Lemma 1 ensures that the amplitude of such
a graph is ð� ��Þ2g½��ð1Þ��2g times the amplitude of the
analog graph obtained from C0. The latter is the melon
graph, dual to a sphere, and whose amplitude is ð� ��Þ�
½��ð1Þ�2, as can be verified by direct computation. The
amplitude we are looking for is therefore ð� ��Þ2gþ1 �
½��ð1Þ�2�2g, which concludes the proof, by suitable
matching of the genus g and the order N of the graph. h
One would now like to generalize this result, for

example, by constructing a connected graph with singular-
ities of genera g1; . . . ; gn which scales as

½��ð1Þ�
P

n
i¼1

ð2�2giÞ. Actually, one can show that this is not
possible. We will show, instead, that the bound (46) can be
made sharper, and explain how theorem 1 generalizes.
Moreover, the proof of this refined bound will not rely
anymore on dipole contractions and core graphs.

B. Optimal bounds

We start by a computation of the amplitudes of chains of
canonical graphs Cg. We call Cg1;...;gn the chain of n graphs

ðCg1 ; . . . ; CgnÞ as represented in Fig. 17. Chains of C0 graphs
being maximally divergent spheres [35], this suggests that
the chain Cg1;...;gn could be a dominant graph in the class of

FIG. 15. From left to right: C0, C1, and Cg.

FIG. 16. Graphical representation of lemma 1.
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graphs with singularities ðg1; . . . ; gnÞ. So let us first com-
pute these amplitudes.

Lemma 2.—Let n 2 N
, and g1; . . . ; gn 2 N. Then

ACg1 ;...;gn ¼ ð� ��Þ
P

n
i¼1

ð2giþ1Þ½��ð1Þ�2�2
P

n
i¼1

gi : (53)

Proof.—Lemma 1 ensures that Cg1;...;gn behaves like C0;...;0
times ½��ð1Þ��2

P
n
i¼1

gi . As proved in [35], C0;...;0 is dual to a
sphere and maximally divergent. A way to see it here is to
remark that with the scaling we chose for the coupling �, a
C0 subgraph whose two external strands are not paired
behaves like a propagator (straightforward calculation),
so that we can replace all subgraphs C0 but one by propa-
gators. We are left with the simplest graph corresponding
to a sphere, that is again the melon graph which behaves
like ½��ð1Þ�2. All in all, we get the right expression for the
amplitude of Cg1;...;gn . h

If we stick to the previous analogy, the maximal ampli-
tudes of graphs with bubbles of genera ðg1; . . . ; gnÞ should
be in ½��ð1Þ�2�2

P
n
i¼1

gi . In the remainder of this section we
will show it is indeed the case.

We need to improve the bound (42). Recall that it has
been obtained from formula (39) by first integrating all
propagators. Making more precise this step of the proce-
dure, it is possible to integrate more � functions in the
bubbles before using the bound ��ð� � �Þ � ��ð1Þ. This
allows one to prove the following proposition.

Proposition 1.—Let G be a connected vacuum graph of
orderN , and ð‘1‘2‘3‘4Þ a permutation of the colors. Then

AG�ð� ��ÞN =2½��ð1Þ�
jB‘2

jþjB‘3
jþ P

b2B‘1

ð2�2gb�jVbðl2Þj�jVbðl3ÞjÞ
;

(54)

where for any bubble b 2 B‘1 , and ‘i � ‘1, Vbð‘iÞ denotes
the set of vertices of color ‘i in b. We start from Eq. (39),
with ‘ ¼ ‘1. We then have to integrate all the � functions
associated to the triangles of color ‘1. Instead of using
arbitrary variables, we integrate all the variables of a given
color ‘4. Since there is initially one variable of color ‘4 per
propagator of color ‘1, it is possible to integrate all of them.
We get an expression of this form:

AG ¼ ð� ��ÞN =2
Z
½dG�N

� Y
b2B‘1

½��ð1Þ�2�2gb�jVbj

�
� Y
v2Vbð‘4Þ

��ð� � �Þ
�

�
� Y
v2Vbð‘2Þ[Vbð‘3Þ

��

� Y!
f24b

v

ðGf
vÞ�fv

���
: (55)

Here dots still denote complicated products of the holon-
omies and their inverses. Let us now focus on the parts of
the integrand involving only variables of colors ‘2 or ‘3.
For instance, for ‘2 it is

Y
b2B‘1

� Y
v2Vbð‘2Þ

��

� Y!
f24b

v

ðGf
vÞ�fv

��
: (56)

This term is represented by jB‘2 j connected graphs of color
‘2. Likewise we have a set of jB‘3 j connected graphs of

color ‘3. The key point is that all these graphs, which were
initially linked through propagators, have now independent
variables. Therefore integrating strands in one of them will
keep the others unchanged. Of course integrating strands in
these graphs will further complicate the remainder of the
integrand, that is the terms associated to the vertices of
color ‘4. But these are terms we will in the end bound by
their value in 1, so the precise expression of their argu-
ments is irrelevant.
Let S be one of the jB‘2 j þ jB‘3 j such connected

graphs. We can choose a maximal tree T with root r in
S, and integrate all the strands in this tree. Each of these
integrations just deletes a node of the graph, so that in the
end only the root remains. The contribution of S has been
reduced to one unique � function, with possibly a very
complicated argument, though. Repeating the procedure so
as to reduce all the connected graphs of color ‘2 and ‘3,
we get

AG ¼ ð� ��ÞN =2
Z
½dG�N

� YjB‘2
jþjB‘3

j

i¼1

��ð� � �Þ
�

�
� Y
b2B‘1

½��ð1Þ�2�2gb�jVbj
� Y
v2Vbð‘4Þ

��ð� � �Þ
��

� ð� ��ÞN =2½��ð1Þ�jB‘2
jþjB‘3

j

�
� Y
b2B‘1

½��ð1Þ�2�2gb�jVbjþjVbð‘4Þj
�
:

But for any b 2 B‘4 we have of course jVbj � jVbð‘4Þj ¼
jVbð‘2Þj þ jVbð‘3Þj, which concludes the proof. h
Starting from this proposition, we just need a bit of work

on the combinatorics of a colored graph to arrive at our
final result. We do so by proving the following.

FIG. 17. Chain Cg1;...;gn .
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Lemma 3.—Let G be a connected vacuum graph. Then

8 ‘ � ‘0; jB‘0 j þ jB‘j �
X

b2B‘

jVbð‘0Þj � 1: (57)

Proof.—Choose two colors ‘ � ‘0. From G we construct a
connectivity graph C‘;‘0 ðGÞ, whose elements are the bub-

bles of color ‘ and ‘0. Then for any b0 2 B‘0 and b 2 B‘

we draw a line between them if and only if b has a vertex
dual to b0 in its triangulation. We call L the number of lines
of C‘;‘0 ðGÞ, andN its number of elements. Now remark that

the fact that G is connected implies that C‘;‘0 ðGÞ is also

connected. In fact, the bubbles of color ‘0 are all connected
inG by lines of color ‘0. But these lines are themselves part
of bubbles of color ‘, which means that two bubbles of
color ‘0 are connected if and only if their dual vertices
appear in a same bubble of color ‘, that is if and only if they
are connected to a same element in the graph C‘;‘0 ðGÞ.
So C‘;‘0 ðGÞ is connected. A maximal tree in this graph

has N � 1 lines, which implies the simple inequality:
N � 1 � L. To conclude, first notice that by construction
N is equal to jB‘0 j þ jB‘j. Still by construction, for any
b 2 B‘, jVbð‘0Þj has to be greater than the number of lines
ending on b in C‘;‘0 ðGÞ. Therefore

jB‘0 j þ jB‘j �
X

b2B‘

jVbð‘0Þj � N � L � 1: (58)

h
The next concluding theorem follows easily from the

previous results. For what concerns bounds on quantum
amplitudes, it is the main result of this paper.

Theorem 2.—Let G be a connected vacuum graph of
order N . Then for any color ‘,

AG � ð� ��ÞN =2½��ð1Þ�
2�2

P
b2B‘

gb

: (59)

Reciprocally, for any integers ðg1; . . . ; gnÞ, there exists a
graphG whose bubbles of color ‘ have genera ðg1; . . . ; gnÞ,
and such that

AG ¼ ð� ��ÞN =2½��ð1Þ�2�2
P

n
i¼1

gi ; (60)

where N is the order of G.
Proof.—The first part of the theorem is a consequence of

proposition 1 and lemma 3, easily proven as follows: apply
formula (54) with ‘1 ¼ ‘, and any other colors ‘2 and ‘3;
then bound the exponent of ��ð1Þ using 2 times the in-
equality (57). As for the second part, this is exactly the
content of lemma 2. h

As already mentioned in the introduction of this section,
this result does not rely on 1-dipole contractions. Instead
the stranded structure of the graphs in vertex variables
allowed us to perform many integrals before using any
inequality. The bound so derived is optimal, which means
that this procedure fully captures the properties of the
bubbles (of a given color), in the sense that the result could
not be improved without taking the overall topology of the

pseudomanifold into account. Note finally that in order to
compare our results to previous ones in the literature, the
rescaling of the coupling (28) has to be taken into account.
With this in mind, formula (59) is indeed consistent with
the existing literature [30,31,34–36].

VII. CONCLUSIONS AND OUTLOOK

We have proven new scaling bounds for the amplitudes
of the (colored, bosonic) Boulatov group field theory for 3d
quantum gravity, dependent on the bubble structure of the
associated simplicial complexes. More precisely, the new
bounds depend on the number and type of the point singu-
larities of the same complex (higher-dimensional singular-
ities have been shown to be absent in these models), and
thus measure in a sense its degree of manifoldness.
Moreover, we have shown these bounds to be optimal.
Accordingly, manifold configurations dominate, for
large values of the cutoff, over pseudomanifold con-
figurations.
These results deepen our understanding of the GFT

perturbative expansion, and the associated sum over sim-
plicial complexes, and confirm that group field theories
have the potential, indeed, to realize in higher dimension
the success story of matrix models in two dimensions, with
the emergence of a smooth spacetime and gravity from a
more fundamental, pregeometric, quantum system.
This is thanks to the additional data turning simpler

tensor models into proper field theories, and to the insights
provided by loop quantum gravity and simplicial quantum
gravity concerning the nature of these additional data, as
encoding the properties of a quantum spacetime. In fact, in
this paper we have taken full advantage of the recently
developed noncommutative metric formulation of GFTs
[15], in turn motivated by results in loop quantum gravity
and spin foam models. In particular, we adopted and
applied to our task a rewriting of the same Boulatov GFT
model in terms of vertex variables, which was suggested by
the identification of simplicial diffeomorphism symmetry
at the GFT level [25].
Two immediate questions arise, concerning our results.

As we commented above, there are several indications (see
the discussion in [25]) that a nontrivial braiding could be, if
not needed, certainly natural in a GFT context. A priori this
could affect the structure and evaluation of the GFT am-
plitudes, and thus their scaling. It would be interesting to
check, in particular, how it could affect the relative weight
of manifolds and pseudomanifolds. Also interesting would
be to investigate whether our scaling bounds related to
manifoldness could be derived from the very nice power
counting results based on twisted cohomology [34], under
some assumption on the overall topology of the diagrams,
and conversely, whether our bounds, together with these
power counting results, allow one to understand in more
detail the scaling of the GFT amplitudes with the topology
of the diagrams, and thus improve the existing results on
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the large cutoff expansion [43]. As will be reported
elsewhere, it is already clear that the so-called ‘‘jacket
bounds,’’ essential to the previously mentioned work, as
well as to the analysis of the critical behavior of simpler
models [44,56], can be recovered in our formulation. We
moreover think that this new derivation could shed light on
the critical behavior of the Boulatov model, as well as on
first order corrections.

More generally, we expect the vertex reformulation of
GFTs to lend itself to more applications, and to be useful
for elucidating further the geometry of GFT models as well
as their effective dynamics, and, possibly, to be the basis
for a ‘‘first principles’’ definition of GFT models.

The main open question is whether and how this vertex
formulation of GFTs, and our results generalize to higher
dimensions, for topological models as well as, more im-
portantly, for 4d gravity models; progress along these lines
will have to proceed alongside progress in our understand-
ing of GFT symmetries for 4d gravity models. We believe

our results, and previous ones concerning these matters,
indicate a promising direction.
We have therefore reasons to hope that the rapidly

accumulating wealth of results concerning both the quan-
tum geometry behind GFT models and the GFT perturba-
tive expansion, together with the development of
appropriate nonperturbative tools, will trigger much fur-
ther progress in this area, in particular, concerning their
continuum limit, phase structure, and effective (quantum)
gravitational dynamics, toward a complete understanding
of quantum spacetime.
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