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Nothing in this world can take the place of

persistence. Talent will not; nothing is more

common than unsuccessful people with talent.

Genius will not; unrewarded genius is almost

a proverb. Education will not; the world is

full of educated derelicts. Persistence and de-

termination alone are omnipotent. The slogan

“press on” has solved and always will solve the

problems of the human race.
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Abstract

Mikhail Lemeshko,
Vector correlations in rotationally inelastic molecular collisions

The thesis presents an analytic model that describes scalar and vector properties
of molecular collisions, both field-free and in fields. The model is based on the sudden
approximation and treats molecular scattering as the Fraunhofer diffraction of matter
waves from the hard-core part of the interaction potential. The theory has no fitting
parameters and is inherently quantum, rendering fully state- and energy-resolved scattering
amplitudes and all the quantities that unfold from them in analytic form. This allows
to obtain complex polarization moments inherent to quantum stereodynamics, and to
account for interference and other non-classical effects. The simplicity and analyticity of
the model paves a way to understanding the origin of the features observed in experiment
and exact computations, such as the angular oscillations in the state-to-state differential
cross sections and the polarization moments, the rotational-state dependent variation of
the integral cross sections, and change of these quantities as a function of the applied
field.

The theory was applied to study the k− k′ vector correlation (differential cross
section) for the following collision systems: Ar–NO(X2Π) and Ne–OCS(X1Σ) in an
electrostatic field, Na+–N2(X1Σ) in a laser field, and He–CaH(2Σ), He–O2(X3Σ), and
He–OH(X2Π) in a magnetic field. The model was able to reproduce the behavior of the
differential cross sections and their variation with field strength.

Combining the Fraunhofer model with the quantum theory of vector correlations made
it possible to study three- and four-vector properties. The model results for the k− k′ − j′

vector correlation in Ar–NO(X2Π) and He–NO(X2Π) scattering were found to be in good
agreement with experiment and exact computations. This allowed to demonstrate that the
stereodynamics of such collisions is contained solely in the diffractive part of the scattering
amplitude which is governed by a single Legendre moment characterizing the anisotropy
of the hard-core part of the system’s potential energy surface. The alignment moments
obtained for He–OH(X2Π), He–O2(X3Σ), and He–CaH(X2Σ) allowed to identify the
fingerprints of diffraction, which can be used to discern diffraction-driven stereodynamics
in future experiments and exact computations. Analytic results for the Ne–NO(A2Σ)
system were found to be in good agreement with experiment and exact computations for
low rotational energy transfer; the discrepancy found for higher excitation channels could
be traced back to the breakdown of the sudden approximation. The model was also applied
to the k− j− k′ and k− j− k′ − j′ correlations in rotationally inelastic Ar–NO(X2Π)
scattering. It was shown that preparing the reagents with polarized angular momentum j
makes it possible to significantly alter the collision dynamics and stereodynamics.

In the final part of the thesis the analytic theory was extended to the study of
multiple scattering of matter waves propagating through atomic and molecular gases. The
combination of the Fraunhofer model with the semiclassical approximation to account,
respectively, for the repulsive and attractive part of the potential energy surface resulted
in a simple analytic formula, which agree well with experiment for the refraction of a Li
beam passing through Xe gas.





Zusammenfassung

Mikhail Lemeshko,
Vector correlations in rotationally inelastic molecular collisions

In dieser Doktorarbeit wird ein analytisches Model präsentiert, das die skalaren und
vektoriellen Eigenschaften von Molekülstößen beschreibt und auch auf die Einflüsse von
externen Felder berücksichtigt. Das Model basiert auf der Sudden-Approximation und
behandelt die molekulare Streuung als Beugung von Materiewellen am stark repulsiven
Teil des Wechselwirkungspotentials in der Fraunhofernäherung. In diese Theorie wer-
den keine Fitparameter eingebunden, sie ist rein analytisch auf der Quantenmechanik
basierend. Sie gibt das volle Spektrum der zustands- und energieaufgelösten Streuampli-
tuden wieder, aus denen alle weiteren physikalischen Eigenschaften abgeleitet werden. So
können zum Beispiel komplexe Polarisationsmomente berechnet werden, die allein von der
quantenmechanischen Stereodynamik herrühren, oder andere nichtklassische Effekte wie
Interferenzen. Aufgrund dessen, dass das Model einfach und analytisch lösbar ist, ebnet
es einen Weg den Ursprung von Verhaltensweisen zu verstehen, die in Experimenten und
in exakten numerischen Berechnungen zu Tage treten.

Die Theorie wurde angewendet, um die k− k′ Vektorkorrelationen des differentiellen
Wirkungsquerschnitts der folgenden Stoßsysteme zu untersuchen: Ar–NO(X2Π) und
Ne–OCS(X1Σ) in einem elektrostatischen Feld, Na+–N2(1Σ) in einem Laserfeld und
He–CaH(2Σ), He–O2(3Σ) und He–OH(2Π) in einem magnetischen Feld. Die Theorie war
in der Lage das Verhalten des differentiellen Querschnitts und dessen Veränderung durch
die Feldstärke wiederzugeben.

Die Erweiterung des Fraunhofer Models durch die Einführung der Quantentheorie der
Vektorkorrelationen machte es möglich Dreier- und Vierervektoreigenschaften zu unter-
suchen. Die Vorhersagen dieses Models für die k− k′ − j′ Vektorkorrelationen bei den
Stößen zwischen Ar–NO(X2Π) und He–NO(X2Π) stimmen sehr gut mit experimentellen
Daten und exakten Computersimulationen überein. Dies zeigte, dass die Stereodynamik
solcher Kollisionen allein vom gebeugten Teil der Streuamplitude herrührt. Die Momente,
die für verschiedene Ausrichtungen der Moleküle in den Systemen He–OH, He–O2 und He–
CaH ermittelt wurden, erlaubten es einen tieferen Einblick in den Beugungsmechanismus
zu bekommen, was dazu benutzt werden kann, um beugungsinduzierte Stereodynamik
zukünftiger Experimente und Computersimulationen zu verstehen. Resultate aus analytis-
chen Rechnungen für das System Ne–NO(A2Σ) stimmten mit experimentellen Daten und
exakten Simulationen für den rotationellen Energietransfer bei niedrigen Energien überein.
Die Abweichungen bei höheren Energien konnten darauf zurückgeführt werden, dass die
Sudden-Approximation keine gute Näherung mehr war. Das Model wurde auch auf die
Vektorkorrelationen k− j− k′ und k− j− k′ − j′ der rotationell, inelastischen Streuung
im Ar–NO(X2Π) System angewandt. Es wurde auch gezeigt, dass es die Präparation
der Reaktanden in einen bestimmten polarisierten Drehimpulszustand j ermöglicht, die
Stoßdynamik und die Stereodynamik signifikant zu erhöhen.

Im letzten Teil dieser Doktorarbeit wurde die analytische Theorie erweitert, um die
Mehrfachstreuung von Materiewellen untersuchen zu können, die durch ein atomares oder
molekulares Gas propagieren. Die Sythese des Fraunhofer Models mit einer semiklassichen
Näherung, die eingeführt wurde, um den respektive repulsiven und den attraktiven Teil
des PES, zu berücksichtigen, brachte eine einfache analytische Formel hervor, die gut mit
den experimentellen Daten der Streuung eines Li Atomstrahls in einem Xenongasreservoir
übereinstimmt.
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1 Introduction

I’ve heard people say that they don’t want to

learn Little Walter, or Sonny Boy, or anybody

else, because they want to have their own style.

And, some of them did have their own style –

but it wasn’t anything I would listen to without

a gun to my head.

Jerry Portnoy, “Blues harmonica masterclass”

1.1 Origin of vector correlations: nuclear reactions

and spectroscopy

Like many other branches of modern atomic, molecular, and chemical physics, the

field of vector correlations originated in nuclear physics. In 1940 Dunworth, a research

student at the Clare College in Cambridge, suggested that there might be some

correlations between the directions of successive emissions of two γ-quanta in a

cascade nuclear decay [1]. Although the method of coincidence counting did not allow

Dunworth to measure any significant correlation, in the appendix to his paper [1] he

mentioned that he “...hopes to make a more accurate test of the spatial correlation of

successively emitted γ-rays,” being inspired by discussions with his colleague Pryce,

who insisted that such a correlation should take place. The same year, the challenge

was taken up by Hamilton at Harvard University, who provided a theoretical evidence

for directional correlations in double γ-decays [2]. His effort was induced by discussions

with Getting, who tried to experimentally reveal the γ − γ coincidence in the Th

nucleus decay, but never published any results on it.

1



1 Introduction

In 1942 Kikuchi and collaborators from the University of Kaiserslautern experi-

mentally observed hints to the angular correlations in the double γ-decay of the 38Cl

nucleus, but almost no correlations in the case of 24Na [3]. However, these results

were not confirmed by subsequent experiments of Beringer at Yale University, who

showed that there is no correlations either for the 24Na or for 38Cl decays [4]. Another

unsuccessful attempt was undertaken in 1946 by Good at MIT, who investigated

the decay of 24Na, 60Co, and 88Y nuclei and found no asymmetry in the angular

distributions of γ-quanta [5]. The first conclusive proof of vector correlations in

nuclear spectroscopy was obtained one year later by Brady and Deutsch at MIT, who

experimentally observed pronounced anisotropy in γ-decay of 60Co and 46Sc nuclei [6].

The theory of this new phenomenon was thoroughly worked out in the late 40’s

in subsequent papers of Goertzel and Zinnes (New York University) [7, 8], Hamilton

(Princeton) [9], Gardner (University of Birmingham) [10, 11], and Falkoff (University

of Michigan) [12, 13, 14]. In 1951 Gulio Racah from the Institute for Advanced Study

in Princeton published an article that started as follows “It is the purpose of this paper

to show that the problem is much simpler than it seems, both from the algebraical and

from the geometrical point of view” [15]. Indeed, nine years earlier, Racah was involved

in the study of complex atomic spectra. For this purpose he generalized the vector

operators of Condon and Shortley [16] by developing tensor operator algebra, and

introduced what was later termed ‘Racah coefficients,’ used to switch between different

angular momentum coupling schemes [17]. When applied to collision studies, this

approach made it possible to separate the dynamical and geometrical properties, and

therefore became a natural and straightforward tool to treat the angular correlations

problem. About the same time similar theories were independently developed by

Lloyd, also working at the Institute for Advanced Study [18], and Fano (National

Bureau of Standards, Washington DC) [19]. In 1953 Biedenharn and Rose from

Oak Ridge National Laboratory combined different earlier theoretical developments

and formulated the general theory of angular correlations of nuclear radiations [20].

With an emphasis on interpretation of different formulations of the theory, Ref. [20]

2
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1 Introduction

is a classic source on vector correlations in nuclear spectroscopy until now. Later,

the theory was generalized to account for effects of external magnetic and electric

fields on the angular correlations by Abraham and Pound (Harvard) [21], Steffen

(Purdue) [22], and Coester (State University of Iowa) [23], and to treat triple nuclear

decays by Satchler (Oxford) [24]. In 1967 Rose and Brink developed a theory of angular

distributions of gamma-rays, based on phase-defined reduced matrix elements [25].

Theory of vector correlations in nuclear spectroscopy in its semiclassical and quantum

formulations was reviewed by Biedenharn in Ref. [26].

Racah’s approach separating geometry from dynamics was also used to develop

the theory of nuclear scattering. In 1952 Blatt and Biedenharn drastically simplified

formulae for nuclear reaction cross sections, by performing explicit summations

over magnetic quantum numbers [27]. The resulting expressions, involving Racah

coefficients, are applicable to spin-conserving and spin-changing collisions proceeding

via a scattering resonance, both for neutral and charged particles. In 1953 Simon and

Welton from Oak Ridge National Laboratory combined the S-matrix technique with

the Racah formalism to treat binary nuclear reactions, a+X → Y + b, with particle a

colliding with nucleus X to produce nucleus Y and particle b [28, 29]. Their approach

accounted for the polarization of reagents and products spin states, and therefore

amounted to the first theory of vector correlations in nuclear scattering. Later, the

theory was simplified by Satchler [30] and Kennedy and Sharp (Atomic Energy of

Canada Limited, Chalk River, Ontario) [31], and generalized to the relativistic case by

Jacob and Wick from Brookhaven National Laboratory (Upton, New York) [32]. Over

the next 20 years, a significant progress has been made in experimental investigation of

angular distributions of γ-rays emitted from oriented nuclei [33], angular correlations

in inelastic nucleon scattering [34], and vector correlations in collisions of polarized

particles and nuclei, such as polarization transfer and spin correlations [33, 35, 36, 37].

Nuclear theory of vector correlations came handy in atomic physics 20 years later

when Fano and Macek adapted it to study polarization of emitted light in atomic and

electronic collisions [38]. Later, vector correlations turned into a flourishing part of

4



1.2 Vector correlations in molecular dynamics

atomic physics. Extensively studied are shell polarization effects in collisions of atoms

with electrons, atoms, and ions [39, 40, 41, 42, 43], modifying atom-atom collisions

by laser fields [44], and electron-photon angular correlations resulting from electron

impact of atoms or molecules [45].

The geography of the development of vector correlations in nuclear reactions and

spectroscopy is illustrated in Fig. 1.1.

1.2 Vector correlations in molecular dynamics

The actual birth of the field of reaction dynamics is marked by the invention of the

crossed molecular beam technique [46, 47], which allowed to leap from measuring

macroscopic rate constants to detailed understanding of molecular collisions. The first

study was performed by Bull and Moon at Birmingham, who investigated the formation

of CsCl by impact of CCl4 on Cs [48], however their work remained disregarded for

a long time. One year later Taylor and Datz at Oak Ridge National Laboratory

performed a study for the K+HBr→KBr+H reaction, using the hot-wire surface

ionization detector [49]. Although the traditional surface ionization detector is about

equally sensitive to K and KBr, they found that a platinum alloy is much more effective

for K than for KBr. The difference in the signals from two separately heated wires

made it possible to distinguish very small amounts of KBr produced in the reaction

from the background of elastically scattered K atoms. Within the next decade, the

pioneering work of Taylor and Datz was followed by numerous scattering studies [50],

with the Herschbach group leading the ‘alkali age’ research.

In the end of the 1960’s Herschbach and co-workers designed the first ‘univer-

sal’ crossed-beam apparatus, provided with an electron-impact mass spectrometer

detector [51]. This made it possible to detect any chemical species and led reaction

dynamics out of the ‘alkali age’ into the ‘chemical age’ [52]. The study of vector

correlations in molecular dynamics rapidly became a flourishing field involving many

groups all over the globe, as illustrated in Fig. 1.2.

5



1 Introduction

Early crossed molecular beam experiments dealt almost solely with the most

readily accessible k− k′ vector correlations, or differential cross sections (DCS), which

were measured for a large number of reactions [53]. By that time the analysis of

chemical reactions largely profited from Newton diagrams, introduced into the field

by Herschbach and widely used until now. The diagrams were named in such a way

because for kinematic analysis Newton’s law suffice: in the asymptotic translational

states the beam molecules are too far apart to interact and therefore have constant

velocities [52].

In the early 70’s experimental techniques were already up to tackling more complex

vector properties [54]. For instance, deflection by electric field gradient (analogous to

the Stern-Gerlach magnet) was used to measure angular momentum polarization of

products (the k− j′ correlation) in K+HBr, Cs+HBr, Cs+HI, and Cs+CH3I reac-

tions [55, 56]. That technique also allowed the first experimental study of scattering-

angle resolved product polarization (the k− k′ − j three-vector correlation), which

was performed by Herschbach’s group in 1974 [57]. This showed that in the Cs+CH3I

reaction the CsI product’s j′ vector is not azimuthally symmetric about k, but rather

strongly aligned perpendicular to the k− k′ plane. The newly formed product molecule

thus tends to rotate in the plane containing the initial asymptotic trajectories of the

reactants and the final trajectories of the products. Successive model calculations

found that such an alignment is weak in the statistical regime [58] and becomes

stronger when impulsive repulsion occurs between the reaction products [59].

In 1975 Case and Herschbach adapted the theory of vector correlations used

in nuclear physics [26] to treat chemical stereodynamics [58]. Their theoretical ap-

proach was used to account for two-vector [61], three-vector [58], and four-vector

correlations [60, 62]. Herschbach and co-workers developed statistical [63] and impul-

sive [64, 65] methods to recover DCS’s and angular-resolved product polarization (the

k− k′ − j′ distribution), carried out trajectory calculations to illustrate the angular

momentum disposal in exchange reactions [66], and worked out classical and quantum

theory for resonance fluorescence measurements [67].

6
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1 Introduction

In the case of an atom-diatom collision, there are six vector directions that

can be specified or observed experimentally. These are the directions of the initial

and final relative velocity vectors, k and k′, initial and final orientations of the

molecular axis, r and r′, and the rotational angular momentum vectors of reagents

and products, j and j′. Although the directions of r and r′ can be controlled by

means of nonresonant electric, magnetic, or laser fields, most experiments deal with

correlations between the k, j, k′, j′ vectors, which form a ‘hierarchy pyramid,’ Fig. 1.3,

first established by Herschbach and co-workers [60]. Different pairs of the k, j, k′

and j′ vectors form six two-vector correlations, each a function of a single angle

between the vectors [61]. Most familiar is the product angular distribution in the

center-of-mass frame, k− k′, i.e. the differential cross section (DCS), which has been

obtained in many theoretical models and experimental results. The single angle in

this case is the center-of-mass scattering angle ϑ. Other two-vector correlations are,

e.g. the j− j′ correlation (rotational tilt), the k− j correlation (reagent-polarization-

dependent reaction probability), and the k− j′ correlation (product-polarization-

resolved reaction probability). The four vectors are also related by four three-vector

correlations, each specified by three angles. Among those, the reagent-polarization-

dependent differential reaction probability (the k− j− k′ correlation), the product-

polarization-resolved differential reaction probability (the k− k′ − j′ correlation), and

k – j – k’ – j’

k – j – k’ k – k’ – j’k – j – j’ j – k’ – j’

k – j j – k’ k – k’ j – j’ k – j’ k’ – j’

Figure 1.3: Hierarchy of angular correlations for
an arom+diatom collision. k and k′ denote initial
and final relative velocity vectors, j and j′ the ro-
tational angular momenta of reactant and product
molecules. Lines indicate how lower order correla-
tions represent special cases of higher order corre-
lations. Adapted from Ref. [60].

θj

θ

θj’ ϕj

ϕj’

k’

j’j

k   Z–––

Figure 1.4: Four-vector correlation
between k, j,k′, j′ vectors, described
by three polar and two dihedral an-
gles.
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1.2 Vector correlations in molecular dynamics

the approach-direction-dependent rotational tilt (the k− j− j′ correlation). Three-

vector correlations are characterized by three angles, one of them dihedral. Also, there

is a single k− j− k′ − j′ four-vector correlation given by three polar and two dihedral

angles which can be defined in a number of ways, e.g. as shown in Fig. 1.4.

An interest in measuring reactive DCS and the k− k′ − j′ correlation has been

stimulated by the development of rigorous spectroscopic techniques, so-called ‘pump-

probe’ methods, described in more detail in Chapter 2. In these methods, the ‘pump’

laser pulse prepares a reagent in an initial state, e.g. dissociating a precursor molecule

and thereby creating an atomic or molecular fragment with a well-defined velocity

k, or polarizing the initial angular momentum vector j via the electronic excitation.

After a collision with a target molecule, the second, ‘probe,’ laser is used to detect

the collision products via laser-induced fluorescence (LIF) or resonance-enhanced

multi-photon ionisation (REMPI). Being widely used to measure scalar properties, this

method was also applied to study differential cross sections for a number of reactions,

such as e.g. H+H2O/D2O→ OH/OD + H2/HD [68]. Brouard and co-workers used the

‘pump-probe’ technique to measure the k− j′ correlation in the O+N2O→NO+NO

reaction [69], showing that the rotational angular momentum of NO tends to align

perpendicularly to the relative velocity of the reagents. Hall and coworkers measured

the k′ − j′ correlation in H+O2→OH+O [70], observing substantially different angular

momentum polarization for two Λ-doublet states of the OH product: the j′ vector

tends to align perpendicularly to k′ for OH Π(A′), while its distribution is nearly

unpolarized for the A′′ level. A similar result was obtained by Brouard et al. for the

angular polarization of OH produced in the O+CH4→OH+CH3 reaction [71, 72]. At

the same time, measurements of the k− k′ − j′ correlation in the H+CO2→OH+CO

reaction showed the angular momentum polarization of OH to be significantly stronger

for the A′′ than for the A′ state [73, 74]. Zare and co-workers looked into the

DCS’s and k− k′ − j′ three-vector correlation in the Cl+CH4→HCl+CH3 reaction,

showing that the angular momentum j′ of the product HCl molecule tends to align

parallel to k′ for forward and sideways scattering, and perpendicular to k′ for the
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1 Introduction

backscattered HCl [75]. Zare’s group also measured a set of polarization moments for

the DCl molecule produced in the Cl+CD4→ DCl + CD3 and Cl+C2D6→DCl+C2D5

reactions [76, 77]. Wynn and co-workers undertook an attempt to look into the

k− j− k′ − j′ correlation in collisions of Li2 with Ar and Xe [78, 79] using two-

colour sub-Doppler circular dichroism, which is so far the only experiment pertaining

to a four-vector correlation. However, this technique did not allow to extract any

polarization moments from the experimental data and measurement of four-vector

correlations in molecular collisions still remains a challenging task.

Velocity-map imaging of scattering products (REMPI-VMI) [80, 81] was used by a

number of groups to measure the reactive DCS’s of such collision systems as H+D2 [82],

O+D2 [83], and Cl+C4H10 [84]. The REMPI-VMI technique was used by Chandler

and co-workers to observe state-resolved DCS’s in rotationally inelastic collisions of

Ne+CO [85], Ne+ND3 [86], and of HCl with rare gases and molecules [87]. A few

different groups investigated state-resolved DCS’s of Ar+NO collisions [88, 89, 90].

Using different laser polarizations in REMPI detection Chandler and coworkers

measured the scattering-angle resolved rotational alignment and orientation of the

NO(X2Π) molecule after a collision with Ar (the k− k′ − j′ correlation) [91, 92,

93]. Recently, Chandler’s group performed the first vector correlation experiment

with molecules in excited electronic states, looking into the collisions of Ne with

NO(A2Σ) [94]. The problem of the ground-state molecules is that the forward-

scattered products are indistinguishable from rotationally excited molecules of the

initial molecular beam which do not undergo collisions. This makes the background

extraction extremely difficult, rendering the small-angle scattering almost inaccessible

for ground-state molecules. On the other hand, the electronic excitation transfers the

molecules into a single rotational state, absent in the initial molecular beam, such as

the (A2Σ, N = 1/2, J = 0) state of NO, allowing for accurate measurements in the

forward scattering region. Liu and coworkers developed the three-dimensional ion

velocity imaging technique [95] that allowed to measure state-correlated pair-resolved

DCS’s for the F+CD4→DF+CD3 process [96]. Mapping of the CD+
3 ions resulted
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1.2 Vector correlations in molecular dynamics

in the 3D velocity distribution of the CD3 reaction products, and also yielded the

vibrational state and the preferred scattering direction of the coincidentally formed

DF fragment.

In usual collision experiments molecules rotate freely with the directions of the

internuclear axes being uniformly distributed, and restricting molecular rotations

was a long-term challenge. Experiments with symmetric top molecules, which can

be oriented by a weak electrostatic field of a hexapole, were pioneered by groups of

Brooks and Bernstein in the mid-1960’s [97, 98]. They used the hexapole technique

to study the k− r correlation in a number of reactions, e.g. showing that the reac-

tivity of K+CH3I [99] and Rb+CH3I [100, 101] is substantially larger if the atom

collides with the I end of the molecule. On the other hand, things were shown to

be different for K+CF3I [102], where the reaction favors the K atom hitting the

CF3 end of the molecule. Parker, Stolte and co-workers investigated steric effect in

He+CH3F (Ref. [103], pp. 41-50) and Ca+CH3F [104] collisions, and the influence

of an electrostatic field on the reactivity of NO+O3 [105] and Ba+N2O [106]. The

hexapole technique was used to probe the changes of the integral cross sections in

rotationally inelastic collisions with oriented reagents, i.e. the k− r correlation. By

selecting the initial states with a hexapole field, and then orienting the molecular axis

by a static electric field, ter Meulen and co-workers observed that O- and H-ended

collisions of OH(X) with Ar gave different preferences for yielding low and high j′

levels [107, 108]. Stolte and co-workers have observed an oscillatory dependence of

the steric asymmetry in collisions of NO(X) with He and Ar [109, 110]. Hexapole

state selection was also used by Stolte’s group to measure DCS for collisions of He

and D2 with NO in a single Λ-doublet level [111, 112].

For a long time orientation of molecules other than symmetric tops with an elec-

trostatic field was considered to be impractical, since it was believed that orientation

of a molecular dipole in the laboratory frame would require extremely high field

strengths [113]. A good example from those days is Brook’s paper, published in

Science in 1976 [114], one of whose sections is entitled ‘Brute force – how not to orient
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1 Introduction

molecules’. Brooks referred to attempts to orient molecular dipoles by strong fields as

to the ‘brute force’ methods, and estimated the field strength required to suppress

rotation and align HCl to be 12 MV/cm, which is experimentally unfeasible. The

‘brute force’ techniques were juxtaposed to the ‘smart’ orientation methods, based

on picking suitable molecules, such as symmetric tops whose dipole moments are not

averaged out by rotation.

Only in the 1990’s it was understood that orientation of any polar molecule

is possible upon rotational cooling to its ground state, J = 0. First experiments

were done by Loesch and Remscheid who investigated the steric effect in K+CH3I

collisions [115], and by Friedrich and Herschbach, who oriented a non-symmetric-top

molecule (ICl) for the first time [116]. Later the Loesch group investigated the influence

of the reagent orientation on velocity and angular distributions of the products in

K+CH3Br [117], K+ICl [118], Li+HF→LiF+H [119], and K+C6H5I [120] reactions

(for a review see Ref. [121]). Friedrich and co-workers looked into the effect of an

electrostatic field on Ar+ICl collisions and found that the field suppresses rotationally

inelastic scattering [122].

Alternatively, the polarization of the reactants’ angular momentum can be con-

trolled by the absorption of linearly polarized light, as proposed by Zare [123]. This

technique was used by Loesch and Stienkemeier to study the Sr+HF→SrF+H and

K+HF→KF+H reactions [124]. They found that at low energies reactivity of Sr with

HF is favored by the HF bond being perpendicular to the Sr approach direction,

whereas K+HF is favored by the HF bond being parallel to the approach direction.

However, at higher collision energies the reactivity of Sr+HF becomes better for the

‘parallel geometry,’ whereas the reactivity of K with HF is insensitive to the alignment

of the HF bond. Zare and co-workers studied the steric effect in reactions of Cl with

stretch-excited CH4 and CHD3 by varying the direction of approach of the Cl atom

relatively to the C–H stretching bond with different polarizations of the infrared

excitation laser [125].

Another way of polarizing reagents is to remove a part of the M manifold by
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1.2 Vector correlations in molecular dynamics

selective photodissociation of the molecule. It was pioneered by de Vries et al. who

polarized a beam of IBr and looked into its reaction with metastable Xe∗ to produce

XeI∗ and XeBr∗ [126]. It was found that the reaction cross section is larger when the

Xe∗ atom approaches parallel to the plane of rotation of IBr, and smaller for for the

perpendicular approach direction.

In the 1930’s it was predicted that the angular momentum of a molecule can

be aligned naturally due to collisions with surrounding gas [127, 128], or, as later

pointed by Ramsey, if a molecular beam crosses a gas target [129]. This effect was

demonstrated only many years later in supersonic expansions for such molecules

as Na2 [130], Li2 [131], I2 [132, 133], and CO2 [134], seeded in an excess of a light

carrier gas, and now is proved to be a general phenomenon. In 1995 Herschbach and

co-workers presented a model treatment and quasiclassical trajectory calculations of

collisional alignment, taking into account single collisions [135]. In 1994 Aquilanti

and co-workers provided the first experimental evidence for the strong dependence of

alignment on the final molecular speed, by measuring the variation of paramagnetism

of O2 seeded in different carrier gases [136, 137]. McKendrick and co-workers measured

polarization of the fluorescence emitted in collision-induced electronic relaxation of

SiCl and SiF, disclosing information on the j− j′ correlation [138]. Brouard and

co-workers proposed to use Zeeman quantum beat spectroscopy (see Chapter 2) to get

insight into changes of angular momentum polarization in molecular collisions, i.e. the

j− j′ correlation [139]. The technique was applied to study the angular momentum

depolarization of electronically excited NO(A2Σ) and OH(A2Σ) radicals in collisions

with a number of partners. It was found that for collisions of NO(A) with He and

Ar, collisional depolarization is a relatively minor process, compared to the rotational

energy transfer, due to very weak long-range forces in these systems [140]. On the

other hand, collisions of OH(A) with water molecules [141], as well as with Ar and

He atoms [142, 143] are accompanied by significant depolarization, whose rate is

comparable, if not larger, than the rate for the energy transfer. Both quasiclassical

and quantum theories were developed to describe depolarization of 2s+1Σ radicals in
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1 Introduction

collisions with closed-shell atoms by Aoiz, de Miranda and co-workers [144].

Substantial progress in the theoretical understanding of vector correlations was

made in the 1990’s with the advance of quantum mechanical (QM) and quasiclassical

trajectory (QCT) calculations (see Chapter 3). The first consistent QM description

of four-vector correlations in atom-diatom collisions was given by de Miranda and

Clary [145]. The main focus was on the reactive A+BC � AB + C collisions, but

the derived equations could also be used for inelastic scattering. In Ref. [145] the

relations between the alignment moments and scattering matrices were presented,

both in the angular momentum and helicity representations, which made it possible

to connect the stereodynamics treatments with the close-coupling scattering calcula-

tions and extract all the information about the stereodynamics from the latter. In

the subsequent years the quantum approach was applied to the H+D2 [146, 147],

Na+HF→NaF+H [148], Li+HF→LiF+H [149] collisions, to the four-atom reaction

H2+OH�H2O+H [150], and to reactive F+H2 and D+H2 scattering at low and

ultralow energies [151, 152]. In the mid-1990’s Aoiz and co-workers developed a

unified semiclassical description of the k− k′ − j′ three-vector correlation in photoini-

tiated bimolecular reactions [153]. The method was successfully applied to study the

stereodynamics of the F+H2 [154], O+H2 →OH+H [155], Cl+HD→HCl+D [156],

H+H2O→OH+H2 [157], O+H2 →OH+H [158], O+HD [159], Li+HF→LiF+H [160]

reactions, and the effect of molecular orientation on the reactivity of H+DCl [161]. In

addition, Aoiz, de Miranda, and co-workers developed a unified description of classical

and quantum stereodynamics [162, 163, 164], and investigated the effect of initial

molecular polarization on reactivity [165, 166, 167].

There is another broad field lying beyond studying scalar properties of chemical

reactions: vector correlations in molecular photodissociation, a process that can be

viewed as the second half of a full collision. An atom-diatom reaction, A + BC →

AB + C, usually proceeds via an intermediate complex (ABC)∗, later decaying into

the reaction products:
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1.2 Vector correlations in molecular dynamics

A+BC → (ABC)∗ → AB + C (1.1)

The ‘second half’ of the reaction might be simulated using photodissociation of

the ABC molecule via the same (ABC)∗ excited state:

ABC + ~ω → (ABC)∗ → AB + C (1.2)

The decay of the (ABC)∗ complex in these two processes is driven by the same

Hamiltonian, the only difference is how the complex was formed. In the case of thermal

collisions, many partial waves take part in the process, and averaging over those is

unavoidable. On the other hand, an excitation by a photon obeys the dipole selection

rule, ∆J = 0,±1. As a consequence, the number of angular momentum states needed

to describe the photodissociation process is substantially smaller than in the case of

a full-collision. Also, the decay of a complex can be understood much better in a

photodissociation than in a collision experiment, e.g. the energy of an intermediate

complex can be easily controlled by variation of the photolysis wavelength, which is

more problematic in scattering studies.

Three vectors are involved into the photolysis process: the transition dipole moment

of the parent molecule, µ, the relative velocity vector of the fragments, k, and the

rotational angular momentum of the fragment, j. In a photodissociation experiment

the polarization vector of the photolysis laser, E, defines a direction in the laboratory

frame, relatively to which all other vectors are measured.

The most familiar vector correlation is the one between the recoil velocity k and

the polarization vector E, first described by Herschbach and Zare in 1963 [168]:

dσ

dθ
(θ) =

σ

4π
[1 + βP2(cos θ)] , (1.3)

where −1 ≤ β ≤ 2 is the anisotropy parameter, and θ is the angle between E and k,

dσ/dθ and σ are differential and integral photodissociation cross sections.

A more complicated vector correlation is the E − µ − k one. The transition
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1 Introduction

dipole moment µ of a diatomic molecule can point in either parallel or perpendicular

direction to the molecular axis. These cases correspond to parallel and perpendicular

transitions. In the dipole approximation, the probability for absorbing a photon is

proportional to cos2 θ, with θ being the angle between µ and E. Therefore, photons

preferentially excite the molecules with dipole moments parallel to the polarization

vector, and the resulting excited molecules are aligned in the laboratory frame. Since

the relative velocity of the fragments k is normally directed along the internuclear

axis, molecular alignment after the absorption of a photon also implies the alignment

of k. Therefore, the angular distribution of the photofragments, I(θ), is proportional

to cos2 θ for a parallel transition and to sin2 θ for a perpendicular transition. More

generally:

I(θ) ∝ 1

4π
[1 + βP2(cos θ)] , (1.4)

where the anisotropy parameter β ranges between −1 for a perpendicular transition

and +2 for a parallel transition.

Another possible correlation describes the orientation or alignment of the angular

momentum j of the photofragment relatively to E and µ. The E− µ− j correlation

was first observed by van Brunt and Zare in 1968 [169]. As an example we can consider

a triatomic molecule, such as H2O, with µ perpendicular to the plane defined by three

atoms. In such a case the photon will mainly excite molecules that lie in the plane

perpendicular to E. Since the recoil directions of the H and OH fragments also lie in

a plane, the angular momentum vector of OH will be preferentially directed parallel

to E.

While both k and j correlate with µ and E, they also correlate with each other,

giving rise to the k− j correlation. A peculiar feature of the k− j correlation is

that it completely belongs to the molecular frame and is independent of the choice

of the laboratory frame. While E− k and E− j correlations are diminished by

overall rotation in the lab frame before a molecule dissociates, the k− j correlation

is not established before the bond breaks, rendering the molecular rotation before

dissociation irrelevant. This allows to gather additional information about the bond
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1.3 Scope and outline of the present thesis

rupture and the dissociation dynamics. The k− j correlation was first observed in

1986 independently in four different laboratories [170, 171, 172, 173].

By applying external fields, one can orient or align the molecular axis r in the

laboratory frame, which allows to look at the r− k correlation and explore the

photodissociation in the molecular frame. Using electric fields to orient molecules

prior to photodissociation was proposed and demonstrated for N2–HF and HF–HCl

complexes by Roger Miller and co-workers [174, 175, 176]. In 1997 Stolte and co-

workers combined hexapole state selection and orientation with two-dimensional ion

imaging, which allowed to study photodissociation dynamics of fully-state selected

oriented molecules [177].

In his 1986 Nobel lecture, Dudley Herschbach mentioned that about 500 review

articles and definitely more than 5000 research papers have been published in the field

of reaction dynamics by that time [52]. Having no opportunity to cover all the subjects

of theory and experiment in this section, we provide a list of recent reviews on vector

correlations in molecular dynamics, by different subjects: chemical reactions [178,

179, 180, 181, 182]; rotationally inelastic collisions [183]; orientation and alignment in

stereochemistry and photodynamics [137, 184, 185, 186]; photodissociation [187, 188,

189, 190, 191, 192].

1.3 Scope and outline of the present thesis

Observing correlations among the vectors that characterize a collision can disclose all

there is to know about how the collision proceeds [183]. Dudley Herschbach likened

vector correlations to “forbidden fruit” whose “tasting” reveals what would otherwise

remain hidden [181]. An example he frequently cites is the undoing of the azimuthal

averaging about the initial relative velocity vector via a three-vector correlation, which

reveals stereodynamical features lost by averaging over the initial distribution of

impact parameters. The pioneering work of Herschbach and coworkers [58, 60, 67] on

vector correlations in the domain of molecular collisions spurred an effort to extract
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1 Introduction

the information hidden in molecular dynamics computations, both quasiclassical and

quantum, as these contain vector correlations as a default bonus [182]. However,

even when characterized to the full by vector correlations, the why of collision

stereodynamics can only be answered as well as the theoretical method applied to

treat the collisions allows.

In this work we develop an analytic model of vector correlations in rotationally

inelastic molecular collisions. The collision model is based on the Fraunhofer model

of nuclear scattering of Drozdov and Blair [193, 194, 195], and was recently extended

to treat molecular collisions in nonresonant fields [196, 197, 198, 199] and vector

correlations in atom-diatom collisions [200, 201]. The Fraunhofer model has no

fitting parameters and is inherently quantum, being able to account for interference,

angular momentum selection rules, and other nonclassical effects. The complex

scattering amplitudes furnished by the model allow to extract the characteristics

of vector correlations that reflect the quantum stereodynamics, while its analiticity

provides a particularly simple, yet perspicacious insight into experimentally observed

dependences.

In Chapter 2 we survey the experimental techniques used to measure vector

correlations, in particular the crossed molecular beam and pump-probe methods.

Chapter 3 deals with the theory of molecular collisions. We present the concept of

the potential energy surface, describe the close-coupling methods used to rigorously

describe the field-free and field-dressed collision dynamics, and discuss different models

employed to approximately solve the scattering problem. In Chapter 4 we present

the theory of vector correlations, both in its quantum and semiclassical incarnations.

The Fraunhofer model of molecular collisions and vector correlations is described

in Chapters 5 and 6. We show that the molecular collision problem can be greatly

simplified by means of the diffractive model, derive the expressions for elastic and

inelastic scattering amplitudes, and discuss the limits of applicability of the Fraunhofer

theory.

In Chapter 7 we extend the Fraunhofer theory to calculate differential and integral
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1.3 Scope and outline of the present thesis

cross sections of collisions of 2Π molecules with closed-shell atoms, and exemplify it

with the Ar–NO(X2Π) collisions. In Chapter 8 we study the effect of nonresonant

fields on collisions of closed-shell molecules with closed shell atoms. In particular,

we look into the simplest vector correlation, the differential cross section, in the Ne–

OCS(X1Σ) scattering in an electrostatic field and Na+–N2(X1Σ) collisions in a laser

field. In Chapter 9 we extend the Fraunhofer theory to the collisions of closed-shell

atoms with 2Σ, 3Σ, and 2Π molecules in a magnetic field, and exemplify it with the

encounters of He with CaH(2Σ), O2(3Σ), and OH(2Π).

Chapter 10 deals with a more complicated case of the k− k′ − j′ correlation. We

use the model to obtain the alignment moments describing the polarization of the j′

vector and compare them with experiment and exact computations. In Chapter 11

we look into the stereodynamics of He–NO (X2Π), He–OH (X2Π), He–O2(X3Σ), and

He–CaH(X2Σ) collisions. Comparison of the model and exact results allows to get

insight into the mechanisms driving collisional stereodynamics and reveal diffractive

contributions to scattering. In Chapter 12 we study vector correlations in collisions

of Ne atoms with the electronically excited NO(A2Σ) molecule. By comparing our

results with experiment and exact computations we show that the physical mechanisms

behind the stereodynamics of the ground-state and excited-state NO molecules are

substantially different. We discuss the k− j− k′ and k− j− k′ − j′ correlations in

Chapter 13.

In Chapter 14 we apply the model to treat multiple scattering of matter waves.

We extend the theory to account for the long-range attractive potential and derive

analytic expressions for the refractive index of atomic and molecular gases. The main

conclusions of this thesis are drawn in Chapter 15.
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2 Experimental techniques

A fool is a man who never tried an experiment

in his life.

Erasmus Darwin

In this section we briefly survey the state-of-the-art experimental techniques used

to study vector correlations in molecular collisions. They can be broadly divided

into two classes: crossed molecular beams (CMB) and pump-probe methods. In each

case the molecules are prepared in well-defined state distributions with known vector

properties, and then those properties are measured after the collision under controlled

conditions.

Crossed molecular beams

In the CMB method the first step is to introduce or create the molecule of interest.

While stable molecules such as CO, NO, NH3, or I2, can come out of a bottle, many

nonstable species important in combustion and atmospheric chemistry, such as OH,

NH, CN, or CH, are usually created using microwave or electric discharges, or laser

photolysis of suitable precursors. Molecular beams are formed by expanding the

molecular gas, usually seeded in an excess of a noble gas, into high vacuum [46].

Collisions in the expansion region result in rotational cooling of molecules, which

is very efficient: rotational temperatures of a few Kelvin are achieved routinely.

The rotational cooling comes along with the squeezing of transverse translational

motion, with the energy redistributed into translation away from the nozzle. Thus,

the CMB method restrain the rotational motion to a few lowest rotational states,

without real state selection, which can be achieved by applying hexapole [99, 100] or

quadrupole [202] focusing as the next step. Advantages of the CMB method include
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an initial velocity selection and a small angular divergence which make it conductive

to measurements of DCS.

After a collision, the molecular state population can be probed in a number of ways.

The classic detection method is a rotatable mass spectrometer using electron impact

ionization, with the time-of-flight (TOF) of the products from the scattering centre

being recorded. Measuring the kinetic energy distribution via TOF spectroscopy for

one of the reaction products recovers information about the undetected product due to

energy and momentum conservation. However, providing very high resolution in the

product scattering angle, TOF is not sensitive enough to the internal molecular state to

observe state-resolved DCS, apart from some exceptional cases [203]. An alternative is

to use spectroscopic detection techniques, such as laser-induced fluorescence (LIF) [204]

or resonance-enchanced multi-photon ionization (REMPI) [205, 206], which allow to

resolve product state populations. In principle, angle-resolved detection of products

should be possible using a rotatable laser spectroscopic detector, but unfortunately

the product densities in single quantum states are too low to allow for state-resolved

DCS measurements with LIF or REMPI.

In the 1990’s Welge and co-workers have developed a novel technique to detect

H-atoms, which are often among the products of chemical reactions. This method

has very high sensitivity and resolution and it was applied to study of the H+D2 →

HD+D reaction in crossed molecular beams [207]. In the experiment, a narrow velocity

spread of H is achieved by pulsed laser photolysis of HI. The detection scheme is based

on laser excitation of H (or D) atoms to a highly lying Rydberg state, immediately

after they appear as reaction products and prior to escaping the collision volume.

Afterwards, the translational and angular distributions of the nascent fragments is

monitored by field ionization of the Rydberg atoms and TOF spectroscopy.

A very efficient way to resolve angular distributions and other vector properties of

collisions is to apply the REMPI-Velocity Map Imaging method (REMPI-VMI) [81].

VMI is the extension of ion detection in which an ion lens is used to create a 2D

image of the motions in the scattering plane. It was pioneered by Chandler and
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Houston to measure 2D images of photodissociation, which can be thought of as a

‘half-collision’ [208]. REMPI-VMI was used in molecular beam experiments to measure

DCS’s of such reactions as H+D2 [82], O+D2 [83], and Cl+C4H10 [84]. Chandler

and co-workers used REMPI imaging to observe state-resolved DCS for rotationally

inelastic collisions of a number of systems, such as e.g. Ne–CO [85], HCl with rare

gases and molecules [87], and Ne–ND3 [86]. State-resolved DCS’s of Ar–NO collisions

were investigated by a number of groups [88, 89, 90]. Combining different probe

laser polarizations Chandler and coworkers also measured k− k′ − j′ three-vector

correlations (scattering-angle resolved rotational alignment and the orientation) of Ar–

NO(X2Π) collisions [91, 92, 93]. Liu and coworkers developed a three-dimensional ion

velocity imaging technique [95] that allowed to measure state-correlated pair-resolved

DCS’s for the F+CD4 →DF+CD3 process [96]. Mapping the CD+
3 ions they obtained

the 3D velocity distribution of CD3 reaction products, whose analysis also enabled to

find out the vibrational state and the preferred scattering direction of coincidentally

formed DF.

Combining molecular beams with Stark, Zeeman, Rydberg or optical decelera-

tion [209] makes it possible to achieve complete state selection and beam velocity

control. So far the Stark deceleration technique was employed to study scalar proper-

ties (integral cross-sections) of rotationally inelastic collisions of OH(X2Π) radicals

with Xe, Ar, and He atoms, and D2 molecules [210, 211, 212].

Control of chemical reactions is usually performed either by selecting a proper

initial state (translational, vibrational, or rotational), or by orienting or aligning

reacting molecules, thereby controlling their approach geometry with hexapole or

quadrupole electric fields [213]. Experimental results on collisions with controlled

reagents are surveyed in Sec. 1.2.

The achievement of higher number densities of molecular beams allowed to study

photoinitiated reactions in CMB experiments. Polarized laser photolysis is used to

create translationally aligned atoms in the beam, which subsequently exhibit collisions

with molecules. The probe laser pulse measures the velocity distribution of products,
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by making use of the Doppler effect, which allows to extract state-specific DCS’s.

Using this technique results in higher signal levels than traditional CMB experiments,

but at the expense of greater uncertainty in the collision energy. This approach

turned out to be ideally suited for three-atom reactions, A+BC → AB +C, and was

developed in groups of Simons and Brouard [214, 215], Hancock [216], Dagdigian [217],

Zare [218, 219], and Hall [70].

Pump-probe techniques

Another broad class of experiments are the so-called ‘pump-probe’ experiments, which

are usually carried out in a ‘bulb’ environment. The ‘pump’ laser pulse prepares

a required initial state of a reagent, which subsequently undergoes collisions with

surrounding ‘target’ molecules. After the collision with a target molecule, the second,

‘probe,’ laser is used to detect collision products via LIF of REMPI spectroscopy.

Vector properties were widely studied by the pump-probe technique for photoini-

tiated chemical reactions [220]. In this case the ‘pump’ laser pulse dissociates a

precursor molecule, creating a fast atomic fragment with a well defined velocity k,

which then collides with a thermalized bath of the other reagent:

AX + hν → A+X (2.1)

A+BCD → AB + CD (2.2)

The product velocity is usually probed by the laser-induced fluorescence (LIF)

technique. Products moving towards or away from the detection laser experience a blue

or red Doppler shift in their LIF lines, which correspond to one-dimensional projection

of the product velocity along the probe laser propagation direction. By repeating

the experiment for different pump-probe laser geometries, one can reconstruct full

3D velocity distribution, and thereby obtain DCS. Since the transition probability at

the probe step depends on the relative orientation of the laser polarization and the

total angular momentum of the product, the method also provides information about
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product angular momentum alignment. This method, combined with a formalism for

transforming experimental data from the center-of mass to the laboratory frame [218,

220, 221], was applied to study vector properties of a number of reactions. Among

them DCS’s of H+H2O and H+D2O [68], k− j′ correlation in O+N2O→NO+NO [69],

k′ − j′ correlation in H+O2 →OH+O [70] and O+CH4 →OH+CH3 [71, 72], and

k− k′ − j′ correlation in H+CO2 →OH+CO [73, 74] reactions. A more sophisticated

technique, the two-colour sub-Doppler circular dichroism, was used by Wynn and

co-workers to look into the k− j− k′ − j′ correlation in collisions of Li2 with Ar and

Xe [78, 79] which, however, did not allow to extract any alignment moments from the

experimental data.

Zare and co-workers developed the so-called core extraction method based on

REMPI-TOF spectroscopy [222], which allows to measure three-dimensional projec-

tions of product velocity distributions. This technique was used to look into DCS’s

and k− k′ − j three-vector correlation in Cl+CH4, Cl+CD4, Cl+CHD3, and Cl+C2D6

reactions [75, 76, 77, 125, 223].

Employing the REMPI-VMI technique within the pump-probe method has several

advantages over laser-induced fluorescence detection. REMPI allows to detect a much

wider range of species with higher velocity resolution than the Doppler-resolved LIF,

and data acquisition times are shorter since each measurement is two-dimensional

rather than one-dimensional. On the other hand the experiments must be carried

out in a molecular beam and the density of products formed is much less than in

the LIF experiments, leading to problems with sensitivity. So far applied only to

photofragmentation studies, the pump-probe REMPI-VMI method might become a

useful tool for studying reaction stereodynamics in the future [224].

Brouard and coworkers proposed to use the Zeeman quantum beat spectroscopy

(ZQBS) to get insight into the polarization of angular momentum in molecular collisions,

i.e. the j− j′ correlation, see e.g. Ref. [139] and Refs. therein. In this technique,

a molecule placed in a weak magnetic field is excited to a coherent superposition

of Zeeman levels by a short laser pulse. Precession of the excited state angular
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momentum vector about the magnetic field direction leads to beats in the LIF decay

of the excited species if the photon emission is detected through an appropriate

linear polarizer. The Fourier transform of the LIF signal then gives information

about angular momentum polarization. ZQBS was applied to study depolarization of

electronically excited OH(A2Σ) radicals in collisions with water molecules [141], Ar

and He atoms [142, 143], and also to depolarization of NO(A2Σ) in collisions with Ar

and He [140]. Collisional depolarization was also studied by populating highly excited

levels with Raman pumping and detecting final scattering states using LIF [225, 226].

Polarization spectroscopy (PS) [227] was recently adapted by McKendrick and

coworkers to measure collisional depolarization [228]. In this technique pump and

probe laser beams are tuned to the same transition (e.g. A2Σ−X2Π (0,0) in OH), but

their linear polarizations are rotated by 45◦ relatively to each other. While the pump

pulse generates an alignment of the rotational angular momentum in the sample, the

probe pulse generates a signal beam that co-propagates but has an orthogonal linear

polarization. Any collision that affects the sample polarization will then result in a

loss of the PS signal. The PS technique has been used by the McKendrick group to

study the loss of alignment (j− j′ correlation) of OH(X2Π) in collisions with He and

Ar [229, 230, 231].

The pump-probe technique, used for measuring DCS’s in chemical reactions, was

recently extended to look into the inelastic collision dynamics [232]. In the experiment,

the molecules are first transferred to an isolated state by pump laser excitation. After

the collision, the velocity distribution of scattering products is detected via REMPI-

TOF/VMI or sub-Doppler LIF. While in practice the former detection method is

limited to a few molecules by the viability of REMPI schemes, LIF suffers from poor

velocity resolution due to the significant bandwidth of commercially available pulsed

lasers. Using continuous-wave probe lasers for absorption spectroscopy allows for

a high resolution, but is relatively insensitive compared to LIF and doesn’t allow

to measure very low product number densities. This may be overcome by using

frequency-modulated spectroscopy (FMS). In this method the velocity distribution
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of scattering products is measured by stimulated emission due to transitions to the

electronic ground state, which in equivalent to absorption. The Doppler lineshapes

are obtained by sweeping the laser frequency through the probe transition. Using

two orthogonal photolysis laser polarizations makes it possible to extract Doppler

profiles that are sensitive both to the speed and anisotropy of angular distribution.

The DCS’s are then obtained by fitting these Doppler profiles. This approach was

used by Alagappan et al. to study DCS’s of Ar–CN(A2Π) collisions [232].

Because of space limitations we refer the reader to recent reviews of experimental

techniques employed in the field of collisional stereodynamics, by subject: crossed

molecular beams [46, 47, 50]; pump-probe methods [179, 180, 215, 219, 233, 234, 235];

orientation and alignment [97, 121]; quantum beat spectroscopy [139, 236, 237].
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3 Theory of molecular collisions

I have yet to see any problem, however compli-

cated, which, when you looked at it in the right

way, did not become still more complicated.

Poul Anderson

3.1 General theory

3.1.1 Potential energy surfaces

Historically, the concept of the potential energy surface (PES) emerged from the 1929

paper by London, who presented a semiempirical formula for the potential of the

simplest reaction H+H2→ H2+H [238]. Two years later Eyring and Polanyi extended

London’s approach to calculate PES’s of several systems [239], and in 1936 Hirschfelder

and co-workers performed a classical trajectory study of the reaction dynamics with

the London surface [240]. It is worth mentioning that although started about 80

years ago, the dynamics of the simplest H+H2→ H2+H reaction is not completely

understood even today [241].

Theoretical treatment of molecular collisions requires the solution of the Schrö-

dinger equation for the combined electronic and nuclear motions. However, in the

limit when the two collision partners come together slowly, the electronic and nuclear

motions can be separated, which constitutes the Born-Oppenheimer approximation

– a key in the definition of PES. In this case, the total Hamiltonian of the system

consists of the unperturbed molecular Hamiltonian, kinetic energy of relative motion,
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3 Theory of molecular collisions

and interaction potential:

H(r, ξ1, ξ2) = H0(ξ1, ξ2)− ~2

2µ
∇2
r + V (r, ξ1, ξ2), (3.1)

with ξ1 and ξ2 the internal coordinates of the two molecules, r ={r, θ, ϕ} the relative,

center-of-mass coordinates of the two molecules, and µ the reduced mass. Being much

lighter, electrons of two molecules move much faster than nuclei and ‘adapt’ to the

slowly changing internal and relative coordinates, thereby enabling the intermolecular

potential V (r, ξ1, ξ2) to be determined independently for different values of (r, ξ1, ξ2).

Analogously, giving that the timescale of molecular vibrations is much shorter than

either the rotational period or the collision time, in most cases intermolecular potentials

can be calculated with internuclear distances and bond angles fixed to their equilibrium

values.

The PES’s can be theoretically calculated in a variety of ways, with the ultimate

level being a full ab initio quantum mechanical (QM) electronic structure calculation,

which aims to be an ‘exact’ description of a particular system. Although recent

development of computer technologies lead to tremendous progress in calculating ab

initio PES’s both for non-reactive [242, 243, 244] and reactive [245, 246, 247, 248]

collisions, accurate potentials still represent a bottleneck of chemical reaction dynamics.

For instance, no PES is available in the literature for rotationally inelastic collisions of

two 2Π molecules, such as OH or NO, not to mention scattering of two asymmetric tops

or reactions of polyatomics. Another crucial point is that an analytic representation of

the PES, obtained by fitting to calculated ab initio points, is usually a more difficult

task than calculating the PES grid itself [248].

On the other hand, semiempirical or even simpler model surfaces are usually

intended to capture the key features of the surface, with the benefits of simplicity and

less computational expense. Simplified scattering models, e.g. those taking into account

only the ‘hard-shell’ part of the molecular potential, not only require substantially less

computational effort, but also provide qualitative insight into the scattering process.

With a PES in hand one can calculate all the quantities observable in a scattering
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experiment, either ‘exactly’ by quantum mechanical (QM) methods, or approximately

by classical mechanics, the most rigorous level of which is a quasi-classical trajectory

(QCT) calculation. Before introducing the Fraunhofer model of molecular collisions,

which lies in the core of this thesis, we briefly survey exact and model techniques

commonly used to describe molecular scattering.

3.1.2 Quantum theory of molecular collisions

The field-free case

The Hamiltonian, H, of a molecular system undergoing a binary molecular collision,

A+B→A+B, consists of the Hamiltonian, H0, of the individual molecules A and B,

the kinetic energy term T , and the intermolecular interaction potential V :

H(r, ξ1, ξ2) = H0(ξ1, ξ2) + T + V (r, ξ1, ξ2), (3.2)

with ξ1 and ξ2 the internal coordinates of the two molecules, T = −~2/(2µ)∇2
r,

r ={r, θ, ϕ} the relative, center-of-mass coordinates of the two molecules, and µ the

reduced mass. The Schrödinger equations pertaining to H and H0 are

HΦ(r, ξ1, ξ2) = EΦ(r, ξ1, ξ2) (3.3)

H0φn(ξ1, ξ2) = Enφn(ξ1, ξ2) (3.4)

In the close-coupling formalism, the wavefunction is usually expanded in some complete

orthogonal set of functions of molecular internal coordinates, ξ1, ξ2, angles θ, ϕ, and

some unknown radial functions:

Φ(r, ξ1, ξ2) =
∑
n

Ψn(r)

r
φn(θ, ϕ, ξ1, ξ2) (3.5)

The subscript n designates all the state labels of the system, such as angular momenta

of the molecules, angular momentum of their relative motion, and projections thereof.
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3 Theory of molecular collisions

The sum in Eq. (3.5) is in principle infinite, but in practice it has to be truncated to

a finite number of terms. Schrödinger equation (3.3) of the colliding system can be

then recast as

[
d2

dR
− l(l + 1)

R2
+ k2

n

]
Ψn(r) =

∑
n′

Vn,n′(r)Ψn′(r), (3.6)

with kn the absolute value of the wavevector, such that k2
n = 2m(E−En)/~2 ≥ 0, and

Vn,n′(r) =
2µ

~2

∫
φ∗n(θ, ϕ, ξ1, ξ2)V (r, ξ1, ξ2)φn′(θ, ϕ, ξ1, ξ2)dτr, (3.7)

where dτr indicates integration over all the variables except r.

The expansion set φn can be chosen in a number of different ways; however,

it it convenient to use the functions that are eigenfunctions of the total angular

momentum, which makes the potential matrix (3.7) block-diagonal. For two molecules

with rotational eigenfunctions χj1m1Ω1
(ξ1) and χj2m2Ω2

(ξ2) the functions φn can be chosen

as:

φJMj1Ω1j2Ω2j12l
(θ, ϕ, ξ1, ξ2) =

∑
m12m

∑
m1m2

 j1 j2 j12

m1 m2 −m12

χj1m1Ω1
(ξ1)χj2m2Ω2

(ξ2)

×

 j12 l J

m12 m −M

Ylm(θ, ϕ)(−1)−j1+j2−m12−j12+l−M [(2j12 + 1)(2J + 1)]1/2 ,

(3.8)

with (. . . ) 3j-symbols and Ylm(θ, ϕ) the spherical harmonics. In the case of a closed-

shell atom–molecule collision, j2 = m2 = Ω2 = 0, and Eq. (3.8) becomes:

φJMj1Ω1l
(θ, ϕ, ξ1) =

∑
m1m

 j1 l J

m1 m −M

χj1m1Ω1
(ξ1)

× Ylm(θ, ϕ)(−1)−j1+l−M(2J + 1)1/2 (3.9)
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For the basis sets given by Eqs. (3.8) or (3.9) the field-free potential matrix (3.7)

becomes diagonal in J and independent of M , which saves a lot of computational

time. Substituting Eq. (3.8) into Eq. (3.7) we obtain the potential matrix:

Vn,n′(r) = V J
j1Ω1j2Ω2j12l;j′1Ω′1j

′
2Ω′2j12′l′(r)

=
∑

p1p′1p2p
′
2p

(−1)j1−j2+j12−l−j′1+j′2−j′12+l′ [(2j12 + 1)(2j′12 + 1)(2l + 1)(2l′ + 1)]
1/2

×

 j1 j2 j12

p1 p2 p

 j′1 j′2 j′12

p′1 p′2 p

 j12 l J

−p 0 p

 j′12 l′ J

−p 0 p


× V ′j1p1Ω1j2p2Ω2;j′1p

′
1Ω′1j

′
2p
′
2Ω′2

(r), (3.10)

with

V ′j1p1Ω1j2p2Ω2;j′1p
′
1Ω′1j

′
2p
′
2Ω′2

(r)

=

∫
χj1∗p1Ω1

(ξ1)χj2∗p2Ω2
(ξ2)V (r, 0, 0, ξ1, ξ2)χ

j′1
p′1Ω′1

(ξ1)χ
j′2
p′2Ω′2

(ξ2)dξ1dξ2 (3.11)

Thus, for the field-free case the system of close-coupled equations (3.6) can be separated

into a number of smaller systems corresponding to each J , which are then solved

numerically with the following boundary condition:

Φ(r, ξ1, ξ2) ∼
r→∞

eiknzχn(ξ1)χn(ξ2) +
∑
n′

χn′(ξ1)χn′(ξ2)
eikn′r

r
fn→n′(θ, ϕ), (3.12)

where fn→n′(θ, ϕ) is the scattering amplitude, which in computations is often expressed

via the scattering matrix Sn,n′ :

fnn′(θ) =
1

2i(knkn′)1/2

∞∑
`=0

(2`+ 1)
[
S

(`)
nn′ − δnn′

]
Pl(cos θ) (3.13)

The computational effort needed to solve systems of close-coupled equations can be

reduced by using different decoupling schemes, such as centrifugal sudden or infinite-

order sudden approximatons, see Ref. [249] for details. However modern computers
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are powerful enough to tackle collisional problems exactly for small molecules, even at

thermal energies.

Effect of external fields

An external field breaks the spherical symmetry of the system, rendering the total

angular momentum J no longer conserved, which does not allow to reduce the

dimension of the collision problem. Volpi and Bohn were first to develop a quantum

mechanical theory of field-dressed molecular collisions and to apply it to ultracold
17O2–3He scattering in magnetic fields [250]. Later Krems and Dalgarno extended the

theory to 1S-atom – 2Σ-molecule, 1S-atom – 3Σ-molecule, 2Σ-molecule – 2Σ-molecule,

and 3Σ-molecule – 3Σ-molecule collisions, proposing the fully uncoupled space-fixed

basis representation of the wave function as the most convenient to treat molecular

collisions in fields [251, 252]. This method was used by Krems, Tscherbul, and

colleagues to study the He–NH3(X3Σ) collisions in a magnetic field [253], collisions of

CaD(X2Σ), ND(X3Σ), and OH(2Π) with helium in parallel and tilted electrostatic

and magnetic fields [254, 255, 256], and He–CaH(X2Σ) collisions in a microwave laser

field [257]. For review of recent developments in computations of molecular collisions

in fields see Ref. [186].

Unfortunately, the tremendous computational effort needed to calculate molecular

collisions in fields limits the exact computations to the cold and ultracold energy

range where only few excitation channels are open, and simpler models are of great

value in providing insight into the collision dynamics at thermal and hyperthermal

energies.

3.2 Models of molecular collisions

3.2.1 Semiclassical approximation

Semiclassical models of molecular collisions have been widely used in the 1960’s, when

the computational power was insufficient for tackling scattering problems exactly.
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The first study was undertaken by Lawley and Ross who applied the semiclassical

theory to the problem of rotational excitation of a diatomic molecule by an atom [258].

The formalism was applied to the K–HBr system, in the regime when the energy

transfer is a substantial fraction of the kinetic energy. They used different schemes for

coupling of quantized angular momenta, treating the translational motion within the

WKB approximation. Cross and Gordon applied semiclassical theory and the Born

approximation to calculate total integral cross sections for dipole-dipole scattering

at large impact parameters, exemplifying it by collisions of CH3I molecules with

CsBr, CsCl, and KCl [259]. This theory was later extended by Cross to small

impact parameters [260]. Rabitz and Gordon derived explicit equations for first-

and second-order rotationally inelastic transition probability for the general case of

multipole potentials, and applied those to investigate energy and angular momentum

transfer in HCN-HCN and ICN-ICN collisions [261]. Gislason and Herschbach used

the semiclassical approximation to calculate small-angle differential cross sections

in molecular collisions. Their results were found to be in a good agreement with

experiment on CsCl–SbCl3 scattering [262].

3.2.2 Quasiclassical trajectories methods

Quasiclassical trajectory (QCT) methods used to treat atom-diatom collisions are

nowadays very similar to those developed in the mid-1960’s by Karplus [263], and

numerous reviews can be found in literature, see e.g. Refs. [264, 265]. The QCT

method is based on calculating classical trajectories of atoms and molecules taking

part in a collision by integrating classical equations of motion starting from some

initial conditions. Many trajectories are calculated in this way and then averaged

using the Monte-Carlo method; energy quantization is taken into account by a

selection of initial and analysis of final trajectory conditions, therefore the method

is “quasiclassical.” Final distributions of coordinates and momenta, obtained as an

outcome, give information about scalar and vector properties of a collision. Vector

properties obtained within the QCT method are analyzed using classical probability
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distributions and polarization moments. In the case of non-reactive scattering, the

QCT approach was used e.g. to study low-temperature rotational relaxation of N2

and CO molecules in collisions with He and Ne [266, 267, 268], and stereodynamics

of inelastic Ar–NO collisions [269]. Semiclassical theory of vector correlations was

extensively elaborated by Aoiz, de Miranda and coworkers and is described in detail

in Refs. [162, 163, 164, 182].

3.2.3 Hard-shell models

Many of the key features of inelastic scattering are captured by even the most

rudimentary ‘hard shell’ models. Such models are usually based on classical mechanics

and vector properties of collisions are analyzed using classical probability density

functions, as described in Sec. 3.2.2. The hard-shell models treat the PES as being

infinitely repulsive inside and zero outside of the hard core part of the potential, as

illustrated in Fig. 3.1. A fundamental premise is that no rotational energy can be

exchanged if the collision does not exert torque on the diatomic molecule. In a hard

(or ‘sudden’) collision the forces act along the surface normal of the hard shell, and

the capacity to cause a rotational state change is related to the impact parameter.

Within the hard-shape models the oscillatory shape of the DCS is usually considered

to be arising from interference between different scattering trajectories.

The phase difference between trajectories arises due to different recoil points on

the elliptical surface of the hard shell, and the position and frequency of the DCS

oscillations is expressed in terms of the anisotropy of the ellipsoidal PES. Such an

approach was used to calculate differential cross sections for a number of atom-molecule

collision systems [270, 271, 272, 273], including the explanation of recent experimental

results for Ar–NO(X2Π) collisions [274].

Khare et al. [275] developed a classical hard-shell model based on the conservation

of the angular momentum projection on the ‘kinematic apse,’ which is defined as

a unit vector of transferred momentum, ak = (k′ − k)/|k′ − k|, see Fig. 3.1. For

a hard shell, the kinematic apse points along the normal to the elliptical surface.
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k’

k

ak

Figure 3.1: Hard-shell collision
model. The kinematic apse, ak,
points along the transferred momen-
tum, ak = (k′ − k)/|k′ − k|.

The kinematic apse model along with QCT

computations was used by Pullman et al. to study

the collisional relaxation and alignment of molecu-

lar rotation in atom-diatom collisions [135]. Con-

servation of the transferred momentum along the

kinematic apse was recently used by Stolte and

coworkers, who developed the so-called ‘quasi-

quantum treatment’ (QQT) of molecular colli-

sions [276, 277, 278]. The QQT method combines

quantum wavefunctions with phase factors orig-

inating from different classical trajectories. Using

this method the Stolte group described steric asymmetry (a particular case of k− r

correlation) and parity propensities in collisions of NO with He, Ar, and D2.

Another ‘hard-shell’ model worth mentioning is the linear-to-angular momentum

conversion model developed by McCaffery [279], which allowed to achieve good

agreement with experiment for collision rates of rotationally inelastic Na2+H2 and

C2H2O2–Ne collisions, vibrationally inelastic Cl2–He collisions, and vibrationally-

rotationally inelastic Li2–Ne collisions.

A disadvantage of classical models is that they furnish scattering cross sections

instead of scattering amplitudes, needed to obtain polarization moments, characterizing

collisional stereodynamics. In 50’s Drozdov [193] and Blair [194] came up with the

idea to describe nuclear collisions as a Fraunhofer diffraction of matter waves, which

makes the model inherently quantum. Later the Fraunhofer model was adapted by

Faubel [195] to account for rotationally inelastic thermal atom-molecule collisions, and

was extended by Lemeshko and Friedrich to account for collisions in electrostatic [196,

199], magnetic [198], and radiative [197] fields. The model can be also used to treat

vector correlations in molecular collisions [200, 201] and is described in detail in the

Chapters 5 and 6.
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4 Theory of vector correlations

Life is hard but, fortunately, short.

Russian saying

4.1 Quantum theory of vector correlations

The first general quantum mechanical (QM) description of four-vector correlations

in atom-diatom collisions was given by de Miranda and Clary [145]. The main focus

was on the reactive collisions A+BC � AB + C, but the derived equations can be

also used for inelastic scattering. In Ref. [145] relations between alignment moments

and scattering matrices were presented, both in angular momentum and helicity

representations, which made it possible to connect stereodynamics treatments with

close coupling scattering calculations and to extract all the information about the

stereodynamics from the latter. The quantum approach was applied to H+D2 [146,

147], Na+HF→NaF+H [148], Li+HF→LiF+H [149] collisions, to the four-atom

reaction H2+OH�H2O+H [150], and to reactive F+H2 and D+H2 scattering at

low and ultralow energies [151, 152]. In addition, Aoiz, de Miranda, and co-workers

developed a unified description of classical and quantum stereodynamics [162, 163, 164],

and investigated the effect of initial molecular polarization on reactivity [165, 166, 167].

The quantum theory of vector correlations was also applied to describe rotationally

inelastic scattering, in particular to reveal DCS’s and k− k′ − j′ vector correlations

in Ar–NO [93] and to He–NO collisions [201], and collisional depolarization of 2s+1Σ

radicals in collisions with closed-shell atoms [144]. Both QM and QCT theories were

developed to calculate DCS of He–NO collisions [280] and to tackle the problem of

collisional depolarization of 2s+1Σ radicals in collisions with closed shell atoms [144].
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4 Theory of vector correlations

Pure state of a linear molecule

The rotational wavefunction of a linear molecule with the angular momentum j can

be written in general form as:

|Ψ〉 =

j∑
m=−j

cm|jm〉, (4.1)

where m is the projection of j on the Z axis of the chosen reference frame and cm are

complex expansion coefficients. The states |jm〉 are eigenstates of j2 and jZ operators,

and usually the cm coefficients are normalized such that:

∑
m

|cm|2 ≡ 1 (4.2)

The density operator corresponding to the pure, fully coherent state (4.1), is given

by [281]:

ρ̂ = |Ψ〉〈Ψ| =
∑
mamb

cmac
∗
mb
|jma〉〈jmb|, (4.3)

with the corresponding density matrix,

ρm1m2 = 〈jm1|ρ̂|jm2〉 = 〈jm1|Ψ〉〈Ψ|jm2〉 = cmac
∗
mb
, (4.4)

obeying the normalization condition,

Tr(ρ) =
∑
m

ρmm ≡ 1 (4.5)

Mixed state of an ensemble of linear top molecules

If an ensemble of molecules is a mixture of N independently-prepared (i.e. incoherent)

molecular states, no single wavefunction can describe the state of the ensemble, and

there is a need to introduce the density matrix for the mixed system [281]. If the

various pure molecular states, n = 1, 2, . . . , N , appear in the final mixture with (real)
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4.1 Quantum theory of vector correlations

statistical weights wn = w1, w2, . . . , wN , then the ensemble density matrix is given

by [281]:

ρm1m2 =
N∑
n=1

wnρ
(n)
m1m2

=
∑
n

wnc
(n)
m1
c(n)∗
m2

(4.6)

The usual normalization of the density matrix assumes Eq. (4.2) and
∑

nwn ≡ 1,

which implies

Tr(ρ) =
∑
m

ρmm =
∑
mn

wnρ
(n)
mm =

∑
n

wnTr
(
ρ(n)
mm

)
= 1 (4.7)

Multipolar expansion of a density matrix

In this thesis we use the convention of de Miranda et al. [282] to define polarization

moments akq pertaining to vector correlations. The density matrix can be expanded

as:

ρm1m2 =
∑
kq

akq
2k + 1

2j + 1
C(jkj,m1qm2) (4.8)

=
∑
kq

akq
2k + 1

2j + 1
(−1)qC(jkj,m2 − qm1) (4.9)

=
∑
kq

akq

(
2k + 1

2j + 1

)1/2
[

(−1)q
(

2k + 1

2j + 1

)1/2

C(jkj,m2 − qm1)

]
(4.10)

=
∑
kq

akq

(
2k + 1

2j + 1

)1/2

〈jm1|(−1)qT̂k−q|jm2〉 (4.11)

=
∑
kq

akq

(
2k + 1

2j + 1

)1/2

〈jm1|T̂ †kq|jm2〉, (4.12)

where T̂kq are the multipole operators and C(j1j2j,m1m2m) are Clebsch-Gordan

coefficients. Here we used a symmetry property of the Clebsch-Gordan coefficients and

Fano operators [283, 284], and we note that the multipoles differ from those defined

by Fano [285] by a factor of [(2k + 1)/(2j + 1)]1/2.

Since the expansion of Eq. (4.8) is written in terms of adjoints of the multipole
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4 Theory of vector correlations

operators, the expansion is covariant. This means that if the polarization moments

are rotated to a different reference frame, they change in exactly the same way as the

|jm〉 basis sets.

Inversion of Eq. (4.8) leads to expression for the multipole moments:

akq =
∑
m1m2

ρm1m2C(jkj,m1qm2), (4.13)

and the fact that C(j0j,m10m2) = δm1m2 implies:

a0
0 =

∑
m

ρmm = Tr(ρ) (4.14)

In the case of collision studies, polarization of angular momentum j is described

by the density matrix with components consisting of scattering amplitudes for the

states with different projections m:

ρm1m2 =
1

dσ/dω
fi→f,jm1(θ)f

∗
i→f,jm2

(θ) (4.15)

Since we are interested in angular dependence of the alignment moments, we normalized

Eq. (4.15) by the differential cross section, which gives Tr(ρ) = 1 at any scattering

angle. The relations between the alignment moments obtained within the conventions

of de Miranda and Zare [180, 283] are presented in Section 16.1.

4.2 Semiclassical theory of vector correlations

The classical description of vector correlations starts from defining the probability

density function (PDF). The most familiar case is the k− k′ correlation, corresponding

to product angular disctribution. It is proportional to DCS:

P (θ) =
2π

σ

dσ

dω
, (4.16)
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4.2 Semiclassical theory of vector correlations

where σ and dσ/dω are the integral and differential cross sections. The PDF is

normalized as: ∫ π

0

P (θ) sin θdθ = 1 (4.17)

Since the k and k′ vectors are not quantized, classical and quantum descriptions

of DCS coincide. However, the spatial distribution of quantized quantities, such as

angular momenta, can be also described by PDF’s within the classical approach.

The PDF P (θj, ϕj) gives the probability of the angular momentum vector j lying

along the direction specified by the spherical angles θj and ϕj, as shown in Fig. 1.4.

The PDF can be expanded in terms of spherical harmonics Ykq(θj, ϕj), or more

conveniently, in terms of complex conjugates of the modified spherical harmonics

Ckq(θj, ϕj) = [4π/(2k + 1)]1/2Ykq(θj, ϕj):

P (θj, ϕj) =
∞∑
k=0

k∑
q=−k

2k + 1

4π
akq(j)C

∗
kq(θj, ϕj), (4.18)

where the expansion coefficients akq(j) are the polarization moments, which can be

obtained by inverting Eq. (4.18):

akq(j) =

∫ 2π

0

∫ 1

−1

P (θj, ϕj)Ckq(θj, ϕj)d(cos θj)dϕj (4.19)

Another PDF expansion, used e.g. in Ref. [182], is given by:

P (θj, ϕj) =
∞∑
k=0

k∑
q=−k

2k + 1

4π
akq(j)C(jkj, j0j)C∗kq(θj, ϕj) (4.20)

An analogous, ‘symmetric’ expression might be written for polarization of the internu-

clear axis r:

P (θr, ϕr) =
∞∑
k=0

k∑
q=−k

2k + 1

4π
akq(j)C(jkj, 000)C∗kq(θr, ϕr) (4.21)
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4 Theory of vector correlations

Please note that the same akq(j) moments feature in Eqs. (4.20) and (4.21). In the

case of collisions involving molecules oriented or aligned by external fields [286], it

is convenient to introduce r-polarization moments akq(r), which are related to the

j-polarization moments akq(j) as:

akq(r) = akq(j)C(jkj, 000) (4.22)

Semiclassical description of angular momentum polarisation combined with the

QCT calculations was extensively used by Aoiz, de Miranda, and coworkers, and is

described in detail in Refs. [162, 163, 164, 182].
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5 The Fraunhofer model of

molecular collisions

Essentially, all models are wrong, but some are

useful.

George Box

The field-free Fraunhofer model was developed by Drozdov [193] and generalized by

Blair [194] in the late 1950s to treat inelastic nuclear scattering. The model provided

a much-sought explanation of the experimentally observed phase shifts between

oscillations in the elastic and inelastic differential cross sections for the scattering of

protons or α particles by medium-sized nuclei, later referred to as the “Blair phase

rule.” In 1984, the field-free Fraunhofer model was adapted by Faubel [195] to account

for rotationally inelastic thermal collisions between helium atoms and N2 and CH4

molecules.

The Fraunhofer model relies on two approximations: (i) sudden approximation,

that allows to express inelastic scattering amplitude in therms of the elastic one, and

(ii) the elastic scattering amplitude is substituted by the amplitude of the Fraunhofer

diffraction from a two-dimensional ‘shadow’ of the scatterer, as shown in Fig. 5.1.

The Fraunhofer model takes into account only the sharp-edged hard-core part of the

potential energy surface, comes close to the rigid shell approximation widely used

in classical [287], [288, 289], [290], quantum [291], and quasi-quantum [276, 277, 278]

treatments of field-free molecular collisions, where the collision energy by far exceeds

the depth of any potential energy well. However, the Fraunhofer model is purely

quantum and furnishes complex scattering amplitudes necessary to study quantum

stereodynamics.

45



5 The Fraunhofer model of molecular collisions

X

Y

Z
k

r
R

ϕ

ϑ

Figure 5.1: Schematic of Fraunhofer diffraction by an impenetrable, sharp-edged obstacle as
observed at a point of radius vector r(X,Z) from the obstacle. Relevant is the shape of the
obstacle in the XY plane, perpendicular to the initial wave vector, k, itself directed along
the Z-axis of the space-fixed system XY Z. The angle ϕ is the polar angle of the radius
vector R which traces the shape of the obstacle in the X,Y plane and ϑ is the scattering
angle. See text.

In optics, Fraunhofer (i.e. far-field) diffraction [292] occurs when the Fresnel

number is small,

F ≡ a2

rλ
� 1 (5.1)

Here a is the dimension of the obstacle, r ≡ |r| is the distance from the obstacle to

the observer, and λ is the wavelength, cf. Fig. 5.1. Condition (5.1) is well satisfied

for nuclear scattering at MeV collision energies as well as for molecular collisions at

thermal and hyperthermal energies. In the latter case, inequality (5.1) is fulfilled due

to the compensation of the larger molecular size a by a larger de Broglie wavelength

λ pertaining to thermal molecular velocities.

In this chapter we derive the equations involved in the Fraunhofer model for elastic

and inelastic scattering and discuss the model limitations.

5.1 Formal theory for the elastic scattering

We consider a scattering target placed in the path of the beam described by a plane

wave, exp (ikr), as sketched in Fig. 5.1. The wavefunction, which is the solution of
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5.1 Formal theory for the elastic scattering

the Schrödinger equation with the scattering potential, has the asymptotic form:

ψ(r) = eikr + ψsc(r) (5.2)

It consists of the transmitted plane wave and of the scattered wave, which is a diverging

spherical wave:

ψsc(r) = f(θ, φ)
eikr

r
, (5.3)

with f(θ, φ) the scattering amplitude [293]. Here and hereafter we use the notion of

initial and final wavevectors, k and k′, whose absolute values in the case of elastic

scattering are equal to one another, |k| = |k′| = k.

On the other hand the wavefunction everywhere to the right of the absorber is

completely specified by the value of the wavefunction and its derivative on a plane

perpendicular to the beam placed immediately after the target. This connection is

established via the free-space Green’s function g(r1, r2), which satisfies the differential

equation:

(∇2
1 + k2)g(r1, r2) = δ(r1 − r2), (5.4)

where ∇2
1 is the Laplace operator in the r1 coordinates, and δ(r1 − r2) ≡ δ(x1 −

x2)δ(y1 − y2)δ(z1 − z2) is the three-dimensional Dirac’s delta-function. The free-space

Green’s function corresponding to an outgoing wave is:

g(r1, r2) = − 1

4π

eik|r1−r2|

|r1 − r2|
(5.5)

Our goal to obtain the scattering wavefunction to the right from the obstacle,

ψsc(r2), in terms of the wavefuncion on the plane perpendicular to the beam just after

the obstacle, ψsc(r1). To do this, we multiply Eq. (5.4) by ψsc(r1) and integrate:

∫
dr1ψsc(r1)(∇2

1 + k2)g(r1, r2) =

∫
dr1ψsc(r1)δ(r1 − r2) ≡ ψsc(r2) (5.6)

Analogously, we multiply by g(r1, r2) and integrate the free-space Schrödinger
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5 The Fraunhofer model of molecular collisions

equation for ψsc(r1):

∫
dr1g(r1, r2)(∇2

1 + k2)ψsc(r1) = 0 (5.7)

The difference between the two equations may be converted into a surface integral

by means of the Gauss theorem:

ψsc(r2) =

∫
dr1

[
ψsc(r1)∇2

1g(r1, r2)− g(r1, r2)∇2
1ψsc(r1)

]
=

∫
dS1 [ψsc(r1)n∇1g(r1, r2)− g(r1, r2)n∇1ψsc(r1)] (5.8)

It is convenient to integrate over the surface of the semisphere, whose origin is

chosen to be immediately after the scatterer and whose radius is much larger than

both r2 and the scatterer dimensions, cf. Fig. 5.2. We can then use asymptotic forms

for the scattering wavefunction and Green’s function along the surface:

ψsc(r1)→ f(θ1, φ1)
eikr1

r1

, (5.9)

and

g(r1, r2)→ − 1

4π

eikr1

r1

e−ik(r1/r1)r2 (5.10)

In this case the two contributions to the surface integral cancel since the radial gradient

k

n

n
r1

r2

Figure 5.2: The semispherical sur-
face used to evaluate the integral of
Eq. (5.8)

of Eqs. (5.9) and (5.10) is the same. This means

that ψsc(r2) is given solely by its value at the

surface of the plane behind the scatterer.

We note that equation (5.8) for ψsc(r2) is an

exact one. The Fraunhofer approximation is a

result of the single assumption that r2 � r1 for

any point on the plane which gives a non-negligible

contribution to the integral. This allows us to use

the asymptotic form of the Green function (5.5)
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5.1 Formal theory for the elastic scattering

in the integral along the plane:

g(r1, r2)→ − 1

4π

eikr2

r2

e−ik
′r1 (5.11)

Substituting (5.11) into (5.8) we obtain:

ψsc(r2) =
eikr2

r2

{
− 1

4π

∫
plane

dS1

[
ψsc(r1)n∇1e

−ik′r1 − e−ik′r1n∇ψsc(r1)
]}

, (5.12)

where the quantity in the curly brackets is by definition the scattering amplitude

f(θ2, φ2). We will use the convention in which k defines the space-fixed Z axis, and k′

points in the direction of r2 lying in the XZ plane, i.e. k′ ≡ kr2/r2. In this case the

azimuthal scattering angle φ2 = 0 and we will denote the elastic scattering amplitude

simply as f(ϑ).

To calculate the surface integral (5.12) we use ψsc(r1) from Eq. (5.2)

ψsc(r1) = ψ(r1)− eikr1 (5.13)

We assume that the obstacle is absolutely impenetrable, has sharp edges, and there is

no diffraction near the edges. In this case ψ(r1) coincides with a plane wave outside of

the obstacle, and is zero within its ‘shadow’. Consequently, ψsc(r1) is zero everywhere

on the plane, except in the shadow, where it equals −eikr1 . In this way the scattering

occurs according to the Babinet principle: except for an overall change of phase, the

scattering amplitude from a black absorber is equivalent to the amplitude resulting

from an aperture of the same shape and size. Substituting (5.13) into (5.12) we obtain:

f(ϑ) =
1

4π

∫
shadow

dS1 {(−nik′)− (nik)} e−ik′r1

=
ik

4π
(1 + cosϑ)

∫
shadow

dS1e
−ik′r1 , (5.14)

since n points in the negative Z direction and k ⊥ r1. We denote the two-dimensional

coordinate in the plane of the obstacle by R, with the shape of the shadow given by
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5 The Fraunhofer model of molecular collisions

R(ϕ). For the scattering amplitude we obtain:

f(ϑ) =
ik

4π
(1 + cosϑ)

∫ 2π

0

dϕ

∫ R(ϕ)

0

e−ikR sinϑ cosϕRdR (5.15)

If we consider only the small-angle scattering, we can set sinϑ = ϑ and cosϑ = 1.

Although this approximation looks quite rough, it does not lead to any significant

errors even at ϑ = 90◦. The final expression for the Fraunhofer scattering amplitude

reads:

f(ϑ) =
ik

2π

∫ 2π

0

dϕ

∫ R(ϕ)

0

e−ikRϑ cosϕRdR (5.16)

We note that the Fraunhofer scattering amplitude, Eq. (5.16), is quite similar to

the amplitude for Born scattering [293]. Either amplitude is a Fourier transform

of the target’s spatial characteristic – either its shape or its potential. Both the

Fraunhofer and Born amplitudes comprise averages of the phase factor, exp(ikR),

over the target’s surface or volume [294].

We exemplify calculation of the elastic scattering amplitude by choosing an obstacle

to be a black sphere/disk, characterized by the radius R0. In this case Eq. (5.16)

becomes:

f(ϑ) =
ik

2π

∫ R0

0

RdR

∫ 2π

0

dϕ e−ikRϑ cosϕ (5.17)

The ntegral over φ amounts to the definition of the zero-order Bessel function [295]:

∫ 2π

0

dϕ e−ikRϑ cosϕ = 2πJ0(kRϑ) (5.18)

The ntegral over R can be evaluated using the following property [295]:

∫
dz′z′J0(z′) = zJ1(z), (5.19)

which results in the following expression for the scattering amplitude for the black

disk,

f0(ϑ) = i(kR2
0)
J1(kR0ϑ)

(kR0ϑ)
(5.20)
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5.2 The sudden approximation

5.2 The sudden approximation

The theoretical technique that allows to connect elastic and inelastic scattering is the

energy sudden approximation. It is valid when the collision time is much smaller than

the rotational period, as embodied by the inequality ξ � 1, where

ξ =
∆ErotkR0

2Ecoll
≈ BkR0

Ecoll
, (5.21)

is the Massey parameter, see e.g. Refs. [296],[297]. Here ∆Erot is the rotational level

spacing, B the rotational constant, Ecoll the collision energy, k ≡ (2mEcoll)
1/2/~ the

wavenumber, m the reduced mass of the collision system,

and R0 the radius of the scatterer. As a consequence, the actual scattering problem

with non-degenerate energies can be replaced by one with degenerate levels, as shown

in Fig. 5.3.

We assume every state to be the function of some internal coordinates, rint. The

statement that the collision time is much shorter than the rotational period means

that the values of internal coordinates stay frozen during the collision. Since the

internal coordinates do not change and there is no energy transfer, the scattering is

characterized by an elastic scattering amplitude, fel(ϑ, rint), for a fixed value of rint.

Figure 5.3: Replacing non-degenerate levels by degenerate ones, as a consequence of the
sudden approximation.
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Although different states are degenerate in energy, they still correspond to different

internal coordinates, i.e. they have different wavefunctions. Therefore the scattering

amplitude acting on the initial state |i〉, fel(ϑ, rint)|i(rint)〉, will project onto final states

|f〉, which may differ from the initial state. This allows to represent the inelastic

amplitude,

fi→f(ϑ) = 〈f|fel(ϑ, rint)|i〉, (5.22)

for scattering into an angle ϑ from an initial, |i〉, to a final, |f〉, state in terms of the

elastic scattering amplitude fel(ϑ, rint) at fixed values of the internal coordinates.

Eq. (5.22) can be rigorously derived within the Lippmann-Schwinger formalism as

follows. The two-particle collision is driven by the Hamiltonian

H = Tkin + V (r, rint) +H0(rint), (5.23)

where Tkin is the kinetic energy operator, H0(rint) is the Hamiltonian of the internal

states of the free collision partners, and V (r, rint) is the interaction potential, which

is both the function of internal coordinates rint and of the distance and relative

orientation r between the collision partners.

The formal expression for the transition amplitude from state |i〉 to state |f〉 is

fi→f = − 2m

4π~2

(
k′

k

)1/2

〈f| 〈k′|V + V
1

E − T − V −H0(rint) + iε
V |k〉 |i〉 , (5.24)

with 1/(E − T − V −H0(rint) + iε) the Green function of the intermediate state. The

negligible change in internal coordinates during the collision is equivalent to omitting

the H0(rint) term in Eq. (5.24). However, the inner bracket expression 〈k′| . . . |k〉 with

H0(rint) = 0 is by definition the elastic scattering amplitude, corresponding to fixed

internal coordinates rint:

fi→f = − 2m

4π~2
〈f| 〈k′|V + V

1

E − T − V + iε
V |k〉 |i〉 ≡ 〈f|fel(k′,k, rint)|i〉 (5.25)

Here we also considered the absolute values of k and k′ to be equal.
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5.3 The inelastic scattering amplitude

Now we will use Eq. (5.22) to calculate the scattering amplitude for non-spherical

obstacles. As was shown in Sec. 5.1, the elastic scattering amplitude is given by:

f(ϑ) ≈
∫
e−ikRϑ cosϕdR, (5.26)

where ϕ is the polar angle of the radius vector R which traces the shape of the

obstacle, R ≡ |R|, and k ≡ |k| with k the initial wave vector. Relevant is the shape

of the obstacle in the space-fixed XY plane, perpendicular to k, itself directed along

the space-fixed Z axis, cf. Fig. 5.1.

We consider nearly-circular targets, with a boundary R(ϕ) = R0 + δ(ϕ) in the XY

plane, with the anisotropy parameter δ � R0. In this case the scattering amplitude

reads:

f(ϑ) =
ik

2π

∫ 2π

0

dφ

∫ R0+δ(φ)

0

e−ikRϑ cosϕRdR (5.27)

The radial integral yields:

∫ R(ϕ)

0

eixRRdR =
R(ϕ)

ix
eiR(ϕ)x +

1

x2

[
eixR(ϕ) − 1

]
, (5.28)

where we set x = −kϑ cosϕ. If the deformation δ(ϕ) is small, we can expand

integral (5.28) in its powers of:

∫ R(ϕ)

0

eixRRdR =
R0 + δ(ϕ)

ix
eiR0x

(
1 + iδ(ϕ)x− δ2(ϕ)x2

2
+ · · ·

)
+

1

x2

[
eiR0x

(
1 + iδ(ϕ)x− δ2(ϕ)x2

2
+ · · ·

)
− 1

]
=
R0 e

R0x

ix
+

1

x2

[
eiR0x − 1

]
+ δ(ϕ)R0e

iR0x

+ δ2(ϕ)

[
eiR0x

(
−R0x

2i
+ 1

)
− eiR0x

2

]
+ · · · (5.29)

In such a way the Fraunhofer scattering amplitude, Eq. (5.26), can be evaluated and
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5 The Fraunhofer model of molecular collisions

expanded in a power series in the deformation δ(ϕ),

f(ϑ) = f0(ϑ) + f1(ϑ, δ) + f2(ϑ, δ2) + · · · , (5.30)

with f0(ϑ) the amplitude for scattering by a disk of radius R0, as given by Eq. (5.20),

f0(ϑ) = i(kR2
0)
J1(kR0ϑ)

(kR0ϑ)
, (5.31)

f1(ϑ) the lowest-order anisotropic amplitude,

f1(ϑ) =
ik

2π

∫ 2π

0

δ(ϕ)e−i(kR0ϑ) cosϕdϕ, (5.32)

and f2(ϑ) the second order anisotropic amplitude:

f2(ϑ) =
ik

4π

∫ 2π

0

δ2(ϕ) (1− ikR0ϑ cosϕ) e−i(kR0ϑ) cosϕdϕ

=
ik

4π

[
1 + x

d

d(kR0ϑ)

] ∫ 2π

0

δ2(ϕ)e−i(kR0ϑ) cosϕdϕ (5.33)

In our model we employ only the first-order anisotropic amplitude f1(ϑ); the second-

order contribution (5.33) is given for reference purposes.

A key step required to maintain the analyticity of the Fraunhofer scattering

amplitude, Eq. (5.32), is to present the shape of the atom-molecule potential in terms

of a series in spherical harmonics,

R′(θ′, φ′) =
∑
κν

ΞκνYκν(θ
′, ϕ′), (5.34)

with Ξκν the Legendre moments. The polar and azimuthal angles θ′ and ϕ′ pertain to

the body-fixed frame, defined, e.g., by the target’s principal axes of inertia. However,

what matters is the target’s shape in the space fixed frame, see Fig. 5.1, which is

given by

R(α, β, γ; θ, ϕ) =
∑
κνρ

ΞκνD
κ
ρν(αβγ)Yκρ(θ, ϕ), (5.35)

54



5.3 The inelastic scattering amplitude

where (α, β, γ) are the Euler angles through which the body-fixed frame is rotated

relative to the space-fixed frame, (θ, ϕ) are the polar and azimuthal angles in the

space-fixed frame, and Dκ
ρν(αβγ) are the Wigner rotation matrices. We note that

Blair [194] and Faubel [195] used the wrong rotation direction of Edmonds [298] (active

vs. passive rotations). Here we use the correct convention, as, e.g. in Refs. [283, 284].

The term with ν = 0 corresponds to a disk of radius R0,

R0 ≈
Ξ00√

4π
(5.36)

Since of relevance is the shape of the target in the XY plane, we set θ = π
2
in Eq. (5.35).

As a result,

δ(ϕ) = R(α, β, γ; π
2
, ϕ)−R0 = R(ϕ)−R0 =

∑
κνρ

κ6=0

ΞκνD
κ
ρν(αβγ)Yκρ(

π
2
, ϕ) (5.37)

To calculate the integral (5.32) using Eq. (5.37), we use the expression for spherical

harmonics at fixed θ = π/2 [284]:

Yκρ =


(−1)

κ+ρ
2 eiρϕ

(
2κ+1

4π

) 1
2 [(κ+ρ)!(κ−ρ)!]

1
2

(κ+ρ)!!(κ−ρ)!!
for κ+ ρ even

0 otherwise

(5.38)

And the integral representation of the Bessel function [295]:

∫ 2π

0

cos(ρϕ)e−i(kR0ϑ) cosϕdϕ = 2π(−i)ρJρ(kR0ϑ), for ρ ≥ 0 (5.39)

In such a way we obtain the following expression for the first-order scattering amplitude:

f1(α, β, γ;ϑ) =
ikR0

2π

∑
κνρ

κ6=0

ΞκνD
κ
ρν(αβγ)FκρJ|ρ|(kR0ϑ) (5.40)
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5 The Fraunhofer model of molecular collisions

with the coefficient Fκρ defined by

Fκρ =


(−1)ρ2π

(
2κ+1

4π

) 1
2 (−i)κ [(κ+ρ)!(κ−ρ)!]

1
2

(κ+ρ)!!(κ−ρ)!!
for κ+ ρ even and κ ≥ ρ

0 otherwise
(5.41)

For negative values of ρ, the factor (−i)κ is to be replaced by iκ. Finally, by making

use of Eq. (5.22), we obtain the inelastic scattering amplitude as

fi→f(ϑ) ≈ 〈f|f0 + f1|i〉 = 〈f|f1|i〉 =
ikR0

2π

∑
κνρ

κ6=0
κ+ρ even

Ξκν〈f|Dκ
ρν |i〉FκρJ|ρ|(kR0ϑ) (5.42)
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6 The Fraunhofer model of vector

correlations

Although this may seem a paradox, all exact

science is dominated by the idea of approxima-

tion.

Bertrand Russell

Measurements and exact calculations of vector correlations allow to extract di-

rectional information on the angular momentum disposal, and thereby to obtain a

complete information on how a given collision proceeds [66, 163, 164, 165]. However,

even when characterized to the full by vector correlations, the why of collision dy-

namics can only be answered as well as the theoretical method applied to treat the

collision allows [26, 179, 183]. Therefore, to understand the results of experiments

and exact computations one needs to develop simple models, that allow to decompose

a complicated scattering problem into smaller parts and figure out which of those

govern the collision dynamics.

In this thesis we implement an analytic model of collision dynamics, capable of

answering the why for a class of collisions in detail, and use it to develop an analytic

model of vector correlations in such collisions [200, 201]. The collision model is based

on the Fraunhofer scattering of matter waves [193, 194, 195] and is discussed in detail in

Chapter 5. In short, the Fraunhofer model relies on the sudden approximation, which

treats the rotational motion as frozen during the collision and thereby allows to replace

the inelastic scattering amplitude with the elastic one. The elastic scattering amplitude

itself is approximated by the amplitude for Fraunhofer diffraction of matter waves

from a sharp-edged, impenetrable obstacle acting in place of the molecular scatterer
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6 The Fraunhofer model of vector correlations

and captures forward scattering. At collision energies of hundreds of cm−1, consistent

with the sudden approximation, the shape of the scatterer is approximated by the

repulsive core of the atom–molecule potential, with the attractive part disregarded.

The Fraunhofer model renders fully state- and energy-resolved scattering amplitudes

and all the quantities that unfold from them in analytic form. In this chapter we

discuss the advantages and drawbacks of the Fraunhofer model of vector correlations.

In contrast to the widely used hard-shell models (cf. Sec. 3.2.3), the Fraunhofer

model is entirely quantum and furnishes complex scattering amplitudes. With a

realistic molecular wavefunction as an input, the model is able to account for the

electronic state and quite involved energy level structure that some open-shell molecules

have due to spin-rotation, spin-orbit, and spin-spin interactions. The model has no

fitting parameters and is very simple, but only accounts for diffractive contributions

to molecular scattering. In this way, a comparison of model results with exact

theory and experiment allowed us to demonstrate that diffraction of matter waves

from the 2D ‘shadow’ of the potential completely governs the stereodynamics of

Ar–NO(X2Π) and He–NO(X2Π) collisions, see Chapters 10 and 11. On the other

hand, analyzing discrepancies between model and exact results immediately reveals the

effects originating from the breakdown of the sudden approximation, non-diffractive

contributions to scattering, and the effect of the long-range branch of the potential.

While the sudden approximation works better, and the effect of the attractive part

of the PES becomes weaker at higher energies, the non-diffractive contributions to

scattering don’t vary much, since the ‘hard egg’ size and shape don’t change drastically

with the collision energy. Looking into the behavior of model and exact polarization

moments at different collision energies allowed us to demonstrate the breakdown of

the sudden approximation for Ne–NO(A2Σ) collisions at 470 cm−1, see Chapter 12.

In optics, the diffractive oscillations scale with the size of the slit and the wavelength

of light. The Fraunhofer differential cross sections and alignment moments originate

completely from diffraction of matter waves, and so also scale with R0/λ, where

R0 is the molecular size, and λ is the de Broglie wavelength. On the other hand,
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the alignment moments coming from experiment or exact computations at different

scattering energies do not coincide completely upon scaling, and the difference between

those reveals the non-diffractive contribution to scattering.

Since, within the Fraunhofer model, the scatterer is two-dimensional, the model

can only account for even-k (alignment) polarization moments with even q [200, 201].

The “extra symmetry” of the model causes odd-k (orientation) moments as well as

odd-q alignment moments to vanish.

Interaction of open-shell molecules, such as OH(X2Π), with closed-shell atoms is

described by two potential surfaces, corresponding to two projections of molecular

electronic angular momentum onto the collision plane. Usually those potential energy

surfaces are combined into a half-sum, Vsum, and half-difference, Vdiff, potentials. In

this case the former accounts for spin-conserving collisions, whereas the latter is

responsible for the change of the spin state. The Fraunhofer model is able to account

only for the Vsum potential, and is therefore limited to spin-conserving collisions.

Comparing model and exact results allows to reveal the role of the electron spin for

spin-conserved and parity-resolved channels.
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7 Differential cross sections:

the k− k′ vector correlation

An ounce of action is worth a ton of theory.

Friedrich Engels

7.1 Scattering of 2Π molecules by closed-shell atoms

To exemplify the k− k′ vector correlation we consider a symmetric top-equivalent

linear polar molecule, such as OH(2Π) or NO(2Π), colliding with a closed-shell atom,

such as Ar or He. We treat the molecule as a pure Hund’s case (a) species, characterized

by a non-zero projection, Ω, of the electronic angular momentum on the molecular

axis, whose definite-parity rotational wavefunction is given by

|j,m, |Ω|, ε〉 =
1√
2

[
|j,m, |Ω|〉+ ε|j,m,−|Ω|〉

]
, (7.1)

where the symmetry index ε distinguishes between the members of a given Ω doublet.

The symmetry index takes the value of +1 for e levels and of −1 for f levels. The

parity of the wave function is given by ε(−1)j−
1
2 [299].

Interaction of a 2Π molecule with a closed-shell atom is described by two potential

energy surfaces, A′ and A′′, corresponding to two different orientations of molecules

electronic angular momentum relatively to the collision plane [300]. For convenience

the interaction is usually described by half-sum and half-difference of these potentials,

Vsum and Vdiff. While Vsum drives the inelastic scattering within the same spin-orbit

manifold, Ω′ = Ω, the difference potential Vdiff is responsible for spin-changing collisions,
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7 Differential cross sections: the k− k′ vector correlation

with Ω′ 6= Ω. Since the Fraunhofer model is based on a single potential curve, Vsum,

in this Chapter we focus only on the spin-conserving collisions. We consider a 2Π

molecule to be initially in the ε = −1(f) parity state,

|i〉 =
1√
2

[
|j,m, |Ω|〉 − |j,m,−|Ω|〉

]
, (7.2)

and the final state of either e or f parity:

〈f| = 1√
2

[
〈j′,m′, |Ω||+ ε′〈j′,m′,−|Ω||

]
, (7.3)

with the symmetric top wavefunctions given by Wigner rotation matrices:

|j,m,Ω〉 =

√
2j + 1

4π
D j∗
mΩ(ϕ, θ, γ = 0) (7.4)

Substituting Eqs. (7.2), (7.3), and (7.4) into Eq. (5.42) we obtain the Fraunhofer

scattering amplitude:

fi→f(ϑ) =
ikR0

4π

√
2j + 1

2j′ + 1
J|∆m|(kR0ϑ)

×
∑
κ6=0

κ+∆m even

Ξκ0Fκ,∆mC(jκj′;m∆mm′)C(jκj′; |Ω|0|Ω|)



[
(−1)κ − (−1)∆j

]
[
(−1)κ + (−1)∆j

]

,

(7.5)

where the first or second row of the expression in the curly brackets corresponds to a

final state of, respectively, e or f parity. We note that within the Fraunhofer model

e → e and f → f scattering amplitudes are equal to each other (so are f → e and

e→ f ones). Therefore Eq. (7.12) can be employed to molecules in the initial e-state.
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7.2 Effect of an electrostatic field

7.2 Effect of an electrostatic field

The rotational states of a Hund’s case (a) molecule with j > 0 and m > 0 can be

oriented by coupling the opposite-parity members of an Ω doublet via the electric-

dipole interaction. Such a coupling creates precessing states, in which the body-fixed

electric dipole moment µ precesses about the field vector. As a result, molecular

rotation does not average out the dipole moment in first order. A precessing state is

a hybrid of the two opposite-parity members of an Ω-doublet, and can be written as

|j,m, |Ω|, w〉 = α(w)|j,m, |Ω|, ε = −1〉+ β(w)|j,m, |Ω|, ε = 1〉, (7.6)

with w ≡ µε/∆ an interaction parameter which measures the maximum potential

energy of the electric dipole in terms of the Ω-doublet splitting, ∆, for j = |Ω|. For a

precessing state with w � 1, the coefficients |α(w)| = |β(w)| = 2−
1
2 , and the mixing

of the states within an Ω doublet is perfect. A less perfect mixing, |α(w)| 6= |β(w)|,

obtains when w ≤ 1. The wavefunction, Eq. (7.6), reduces for a precessing state with

a perfect mixing to |j,m, |Ω|〉. It is the inherent orientation of the precessing states

along with their mixed parity that enters the Fraunhofer model for the scattering of

Hund’s case (a) molecules in an electric field. The directionality of the precessing

states is illustrated in Figure 7.1. We assume the hybridization of j-states for a

symmetric-top state to be negligible.

To account for an arbitrary direction of the electric field with respect to the initial

wave vector k, we introduce a field-fixed coordinate system X]Y ]Z], whose Z]-axis is

defined by the direction of the electric field vector ε. The symmetric top states are

thus given by Wigner rotation matrices whose arguments are the angles (ϕ], θ], γ]) in

the field-fixed frame:

|j,m,Ω〉 =

√
2j + 1

4π
D j∗
mΩ(ϕ], θ], γ] = 0) (7.7)

In order to be able to apply Eq. (5.42) to collisions in the electrostatic field, we have
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7 Differential cross sections: the k− k′ vector correlation

(a) (b) (c)

ε

Figure 7.1: The moduli of the symmetric-top wavefunction for j = m = Ω = 1
2 . Panel (a)

shows the field-free wavefunctions, Eq. (7.1), for ε = 1 (blue line) and ε = −1 (red line).
Panels (b) and (c) show the wavefunctions of the precessing states in the field, Eq. (7.6), for,
respectively, an incomplete (α = 0.832, β = 0.555) and perfect (α = β = 1√

2
) mixing of the

Ω doublet states. See text.

to transform Eq. (8.1) to the space-fixed frame XY Z. If the electric field vector is

specified by the Euler angles (ϕε, θε, 0) in the XY Z frame, the symmetric top states

take the form

D j∗
mΩ(ϕ], θ], 0) =

∑
ξ

D j
ξm(ϕε, θε, 0)D j∗

ξΩ(ϕ, θ, 0) (7.8)

For transitions with |Ω| = |Ω′|, the initial and final precessing states can, therefore,

be written as

|i〉 =

√
2j + 1

4π

∑
ξ

D j
ξm(ϕε, θε, 0)

1√
2

{
[α(w) + β(w)] D j∗

ξ|Ω|(ϕ, θ, 0)

+ [−α(w) + β(w)] D j∗
ξ−|Ω|(ϕ, θ, 0)

}
, (7.9)

〈f| =
√

2j′ + 1

4π

∑
ξ′

D j′∗
ξ′m′(ϕε, θε, 0)

1√
2

{
[α′(w) + β′(w)] D j′

ξ′|Ω|(ϕ, θ, 0)

+ [−α′(w) + β′(w)] D j′

ξ′−|Ω|(ϕ, θ, 0)

}
(7.10)

By substituting from Eqs. (7.9) and (7.10) into Eq. (5.42), we finally obtain the

scattering amplitude for inelastic collisions of symmetric-top molecules in precessing
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7.3 Scattering cross sections

states:

fwi→f(ϑ) =
ikR0

4π

√
2j + 1

2j′ + 1

∑
κρ

κ6=0
κ+ρ even

Dκ∗
−ρ,∆m(ϕε, θε, 0)Ξκ0FκρJ|ρ|(kR0ϑ)

× C(jκj′; |Ω|0|Ω|)C(jκj′;m∆mm′)

{
[α(w)α′(w) + β(w)β′(w)]

[
(−1)κ + (−1)∆j

]

+ [α(w)β′(w) + α′(w)β(w)]

[
(−1)κ − (−1)∆j

]}
(7.11)

We note that if both the initial and final precessing states are perfectly mixed, the

term in the curly brackets of Eq. (7.11) reduces to 2(−1)κ. The scattering amplitudes

for different orientations of the electrostatic field ε with respect to the initial wave

vector k are obtained from Eq. (7.11) by substituting the appropriate values of the

angles: θε = 0;ϕε = 0 for ε ‖ k, and θε = π
2
;ϕε = 0 for ε ⊥ k. Eq. (7.11) implies

that the integral cross-sections, cf. Eqs. (8.14), for j → j′ transitions are the same in

the parallel and perpendicular fields. However, the partial integral cross sections for

j,m→ j′,m′ transitions do depend on whether the field is parallel or perpendicular

to k.

7.3 Scattering cross sections

We now consider the excitation of NO(j = |Ω| = 1
2
, f → j′, |Ω|, e/f) by collisions with

Ar, under conditions similar to those defined in Refs. [301, 302, 303, 304]: a hexapole

state selector selects the ε = −1(f) state, Eq. (7.1), which adiabatically evolves into a

partially oriented state, Eq. (7.6), when the collision system enters the electric field.

The electric field of 16 kV/cm, directed parallel to the initial wave vector, ε ‖ k,

creates a precessing state, Eq. (7.6), whose hybridization coefficients are α = 0.832

and β = 0.555. Next, a collision with an Ar atom excites the NO molecule to a final,

field-free state, |j′,m′, |Ω|, ε′〉. The final, excited state is considered to be exempt from

any effects of the electric field, as its Ω-doubling is large and hence w < 1. As a result,
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7 Differential cross sections: the k− k′ vector correlation

β′(w) = 1 or α′(w) = 1 for a final state of e or f parity, respectively. For a collision

so defined, the scattering amplitude, Eq. (7.11) for ε ‖ k, takes the form:

f
w,‖
i→f(ϑ) =

ikR0

4π

√
2

2j′ + 1
J|∆m|(kR0ϑ)

×
∑
κ6=0

κ+∆m even

Ξκ0Fκ,∆mC(jκj′;m∆mm′)C(jκj′; |Ω|0|Ω|)

×


β(w)

[
(−1)κ + (−1)∆j

]
+ α(w)

[
(−1)κ − (−1)∆j

]

α(w)

[
(−1)κ + (−1)∆j

]
+ β(w)

[
(−1)κ − (−1)∆j

]

, (7.12)

where the first or second row of the expression in the curly brackets corresponds to a

final state of, respectively, e or f parity. The coefficients Ξκ0 of the Ar-NO interaction

potential, extracted from the data of Sumiyoshi et al. [305], are listed in Table 8.1

of the next Chapter. According to Ref. [305], the Ar-NO potential surface exhibits

a global minimum of −115.4 cm−1 and, thus, the Fraunhofer model should be valid

at collision energies Ecoll > 400 cm−1. In Refs. [276, 277], the rigid shell QQT model

was also used at these energies.

The state-to-state integral cross sections for spin-conserving collisions (|Ω′| =

|Ω| = 1
2
) at a collision energy of 442 cm−1 are shown in Fig. 7.2, along with the close

coupling calculations of Refs. [301, 302] and [303]. The analytic Fraunhofer model

provides a simple interpretation of the features exhibited by the cross sections. First,

let us consider the field-free case for an initial f state, i.e., for α(w = 0) = 1 and

β(w = 0) = 0 which corresponds to the scattering amplitude,

fw=0
i→f (ϑ) ∼ J|∆m|(kR0ϑ)

×
∑
κ6=0

κ+∆m even

Ξκ0Fκ,∆mC(jκj′;m∆mm′)C(jκj′; |Ω|0|Ω|)


[
(−1)κ − (−1)∆j

]
[
(−1)κ + (−1)∆j

]


(7.13)
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Figure 7.2: Integral cross sections for the excitation of NO(j = |Ω| = 1
2 , f) in collisions

with Ar to higher rotational levels of the |Ω| = 1
2 manifold. Panels (a) and (b) pertain,

respectively, to parity-conserving and parity-breaking Ar-NO collisions. The results obtained
from the Fraunhofer model are shown by blue curves, those obtained from the close-coupling
calculations of Ref. [303] by red curves. Dashed lines pertain to field-free scattering, solid
lines to scattering in an electric field ε = 16 kV/cm.

Eq. (7.13) immediately reveals that if the potential energy surface is governed by

terms with κ even, parity-conserving transitions, f → f , will dominate for ∆j even,

while parity-changing transitions, f → e, will dominate for ∆j odd. This propensity

can be seen in Fig. 7.2. It was explained previously in Ref. [306] by a rather involved

analysis of the close-coupling matrix elements.

The qualitative features of the scattering in an electric field can also be readily

explained by the Fraunhofer model. If the field is present and the target molecule

oriented, both even and odd ∆j’s in the curly brackets of Eq. (7.12) contribute to

the scattering for any value of κ. For a potential energy surface governed by even-κ

terms, the electric field will enhance the parity-conserving transitions for ∆j odd, and

suppress them for ∆j even; parity-breaking collisions will prevail for ∆j even and

subside for ∆j odd.
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7 Differential cross sections: the k− k′ vector correlation
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Figure 7.3: Differential cross sections for the
excitation of NO(j = |Ω| = 1

2 , f) in collisions
with Ar to the j′ = 5

2 ,Ω = 1
2 state. Panels

(a) and (b) pertain, respectively, to parity-
conserving and parity-breaking Ar-NO colli-
sions. Green lines pertain to field-free scatter-
ing, red lines to scattering in an electric field
ε = 16 kV/cm.

From Fig. 7.2 one could see that for

∆j > 2 the Fraunhofer model yields an in-

tegral cross section which is significantly

smaller than the one obtained from a

close-coupling calculation. This is sup-

ported by the work of Aoiz et al. [307],

who found that the diffractive contribu-

tion to the differential cross sections of Ar-

NO collisions is much greater for ∆j = 2

than for ∆j = 3.

Eqs. (7.12) and (7.13) also reveal the

angular dependence of the scattering. In

particular, by making use of the asymp-

totic forms of the Bessel functions [295],

we see that for a potential energy sur-

face governed either by even- or odd-κ

terms, the differential cross sections for

parity-conserving and parity-breaking transitions will be out of phase.

This is illustrated for scattering from |j = 1
2
, |Ω| = 1

2
, f〉 to |j′ = 5

2
, |Ω| = 1

2
, e/f〉

states in Fig. 7.3 (full curves). We also note that the parity-breaking cross section is

much smaller than the parity-conserving one, since the Ar–NO potential is dominated

by even κ-terms, cf. Table 8.1. When the field is on, the initial parity is no longer

defined. Moreover, both even and odd Bessel functions J|ρ|(kR0ϑ) contribute to the

cross section. As a result, the differential cross sections corresponding to the final e

and f states (dashed curves) become similar to one another.

We see that the field-free differential cross sections, presented in Fig. 7.3, are

qualitatively similar to the results of close-coupling calculations presented in Fig.

4 of Ref. [308], which also show a phase shift between parity-changing and parity

conserving cross sections. When the field is turned on, the close coupling calculations
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7.3 Scattering cross sections

also reveal that the cross sections corresponding to final e-states exhibit a phase shift

and become similar to the cross sections for the final f -states, see Fig. 8 of Ref. [308].

Since the Fraunhofer model accounts only for small-angle scattering, it leads to

integral cross sections much smaller than in exact calculations, see Fig. 7.2. Neverthe-

less, model cross sections and their field-dependence are in qualitative agreement with

exact results.
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8 Collisions of closed-shell molecules

with closed-shell atoms in electric

fields

It can change as much as it likes. As long as it

stays the same.

Adrian Mourby

In this chapter we study collisions of closed-shell atoms with closed-shell molecules

in electrostatic and laser fields, using the Fraunhofer scattering model described in

Chapter 5. While an electrostatic field orients a polar molecule in the space fixed frame,

a nonresonant laser field aligns the molecular axis due to induced-dipole interaction.

In both cases the effective shape of the molecular target alters in the scattering frame,

resulting in changes in magnitude and shape of the differential cross sections. On

the other hand, an electrostatic or radiative field hybridizes rotational states of a

molecule, affecting the collision dynamics: some of the selection rules become relaxed

in a field. We exemplify our theory with collisions of Ne with OCS(X1Σ), and of Na+

ion with N2(X1Σ).

8.1 Collisions of 1Σ molecules with 1S atoms in an

electrostatic field

When a polar 1Σ molecule enters an electrostatic field, its rotational states undergo hy-

bridization (coherent linear superposition), induced by the interaction of the molecule’s
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8 Collisions of closed-shell molecules with closed-shell atoms in electric fields

body-fixed electric dipole moment, µ, with the electric field, ε [115], [116]. Because of

the cylindrical symmetry about the electric field vector, the permanent-dipole interac-

tion couples free-rotor basis states, |j,m〉, with a fixed value of the good quantum

number, m, but a range of j’s. Thus the hybrid wavefunctions take the general form

|j̃, m, ω〉 =
∑
j

aj̃jm(ω)|j,m〉, (8.1)

where the expansion coefficients aj̃jm depend solely on a dimensionless interaction

parameter,

ω ≡ µε/B, (8.2)

which measures the maximum potential energy, µε, of the dipole in terms of the

molecule’s rotational constant, B. The symbol j̃ denotes the nominal value of j that

pertains to the field-free rotational state which adiabatically correlates with the hybrid

state,

|j̃, m, ω → 0〉 → |j,m〉, (8.3)

and µ ≡ |µ|, ε ≡ |ε|.

The free-rotor states in the field-fixed coordinate system X]Y ]Z] are thus given by

spherical harmonics whose arguments are the angles θ] and ϕ] in the field-fixed frame,

|j,m〉 = Yjm(θ], ϕ]) (8.4)

Apart from possessing a sui generis energy level pattern, the |j̃, m, ω〉 eigenstates

have an indefinite (mixed) parity and are directional, exhibiting a varying degree of

orientation, which depends on the values of j̃, m, and ω. In the oriented states, the

body-fixed dipole (and thus the internuclear axis) librates about the field direction like

a pendulum, and so the hybrid states are referred to as pendular. It is the directionality

of the pendular states along with their mixed parity that enters the field-dependent

Fraunhofer model and distinguishes it from the field-free model, which assumes an
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8.1 Collisions of 1Σ molecules with 1S atoms in an electrostatic field

J=0

(a)

J=1 J=2 J=3

J=0~

(b)

J=1~ J=2~ J=3~

ε

Figure 8.1: A comparison of the moduli of the free rotor wavefunctions
∣∣|j,m = 0〉

∣∣, panel
(a), with the moduli of the pendular wavefunctions

∣∣|j̃,m = 0, ω = 5〉
∣∣, panel (b). Also shown

is the direction of the electric field vector, ε.

isotropic distribution of the molecular axes and a definite parity. The directional

properties of pendular states are exemplified in Fig. 8.1, which shows polar diagrams

of the field-free and pendular wave functions at ω = 5.

Hence the scattering process in the field comprises the following steps: A molecule

in a free-rotor state |j,m〉 enters adiabatically the field where it is transformed into

a pendular state |j̃, m, ω〉. This pendular state may be changed by the collision in

the field into another pendular state, |j̃′,m′, ω〉. As the molecule leaves the field, the

latter pendular state is adiabatically transformed into a free-rotor state |j′,m′〉. Thus

the net result is, in general, a rotationally inelastic collision, |j,m〉 → |j′,m′〉.

In order to be able to apply Eq. (5.42) to collisions in the electrostatic field,

we transform Eq. (8.1) to the space-fixed frame XY Z. If the electric field vector

is specified by the Euler angles (ϕε, θε, 0) in the XY Z frame, the initial and final

pendular states take the form

|i〉 ≡ |j̃, m, ω〉 =
∑
j

aj̃jm(ω)
∑
ξ

D j
ξm(ϕε, θε, 0)Yjξ(θ, ϕ), (8.5)

〈f| ≡ 〈j̃′,m′, ω| =
∑
j′

bj̃
′∗
j′m′(ω)

∑
ξ′

D j′∗
ξ′m′(ϕε, θε, 0)Y ∗j′ξ′(θ, ϕ), (8.6)
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8 Collisions of closed-shell molecules with closed-shell atoms in electric fields

which is seen to depend solely on the angles θ and ϕ (and not the angles θ] and ϕ]

pertaining to the field-fixed frame).

On substituting from Eqs. (8.5) and (8.6) into Eq. (5.42) and its integration, we

obtain a general expression for the Fraunhofer scattering amplitude in the field,

fωi→f(ϑ) =
ikR0

2π

∑
κρ

κ6=0
κ+ρ even

Dκ∗
−ρ,∆m(ϕε, θε, 0)Ξκ0FκρJ|ρ|(kR0ϑ)

×
∑
jj′

aj̃jm(ω)bj̃
′∗
j′m′(ω)

√
2j + 1

2j′ + 1
C(jκj′; 000)C(jκj′;m∆mm′), (8.7)

where ∆m ≡ m′ −m and C(j1, j2, j3;m1,m2,m3) are Clebsch-Gordan coeffients [283].

Since the atom-linear molecule potential is axially symmetric, only the Ξκ0 coefficients

contribute to the scattering amplitude.

Eq. (8.7) can be simplified by limiting our considerations to special cases. A first

such simplification arises when we let the initial free-rotor state to be the ground

state, |j,m〉 ≡ |0, 0〉. A second simplification is achieved by restricting the orientation

of the electric field in the space-fixed frame to a particular geometry.

(i) For an electric field parallel to the initial wave vector, ε � k, we have θε → 0,

ϕε → 0. As as result, the Wigner matrix becomes Dκ∗
−ρ,∆m(0, 0, 0), which equals

a Kronecker delta, δ−ρ∆m. Hence only the ρ = −∆m′ term yields a nonvanishing

contribution to the scattering amplitude of Eq. (8.7),

f
ω,‖
0,0→j̃′,m′(ϑ) = J|m′|(kR0ϑ)

ikR0

2π

∑
κ6=0

κ+m′ even

Ξκ0Fκm′

×
∑
jj′

a0
j0(ω)bj̃

′∗
j′m′(ω)

√
2j + 1

2j′ + 1
C(jκj′; 000)C(jκj′; 0m′m′) (8.8)

We see that the angular dependence of the scattering amplitude for the parallel case

is simple, given by a single Bessel function, J|m′|.

(ii) For an electric field perpendicular to the initial wave vector, ε ⊥ k, we have
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8.2 Results for Ne–OCS(1Σ, j = 0→ j′) scattering in an electrostatic field

θε → π
2
, ϕε → 0. Hence

fω,⊥
0,0→j̃′,m′(ϑ) =

ikR0

2π

∑
κρ

κ6=0
κ+ρ even

dκ−ρ,m′
(π

2

)
Ξκ0FκρJ|ρ|(kR0ϑ)

×
∑
jj′

a0
j0(ω)bj̃

′∗
j′m′(ω)

√
2j + 1

2j′ + 1
C(jκj′; 000)C(jκj′; 0m′m′), (8.9)

where dκ−ρ,m′(θ) are the real Wigner rotation matrices. Since the summation mixes

different Bessel functions (for a range of ρ’s), the angular dependence of the scattering

amplitude in the perpendicular case is more involved than in the parallel case.

We note that, unfortunately, the Fraunhofer model does not distinguish between

the parallel and antiparallel orientations of the field with respect to the initial wave

vector, as can be seen by substituting Dκ∗
−ρ,∆m(0, π, 0) = δρ∆m(−1)κ−ρ into Eq. (8.7).

This defect is inherent to the Fraunhofer model, since the diffraction occurs on a

two-dimensional obstacle in the XY plane, which looks the same from either side of

the plane, no matter whether ε � k or ε ↑↓ k.

8.2 Results for Ne–OCS(1Σ, j = 0 → j′) scattering in

an electrostatic field

We now proceed with the presentation of the collisional model with a concrete collision

system in mind, namely Ne–OCS(1Σ, j = 0→ j′). The OCS molecule has been widely

used in experiments with helium nanodroplets [309]. The electric dipole moment

µ = 0.709 D, rotational constant B = 0.2039 cm−1, and spectroscopic amicability make

the OCS molecule a suitable candidate for an experiment to test the field-dependent

Fraunhofer model for a 1Σ molecule.

According to Ref. [310], the ground-state Ne–OCS potential energy surface has a

global minimum of a depth of −81.26 cm−1. In order to diminish the effect of this

attractive well in the collision, we choose a collision energy Ecoll = 500 cm−1, which
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8 Collisions of closed-shell molecules with closed-shell atoms in electric fields

corresponds to a wave number k = 21.09 Å−1. The “hard shell” of the potential energy

surface at this collision energy, shown in Fig. 8.2, we found by a fit to Eq. (5.34)

for κ ≤ 6. The coefficients Ξκ0 obtained from the fit are listed in the Table 8.1.

According to Eq. (5.36), the Ξ00 coefficient determines the hard-sphere radius R0,

which is responsible for elastic scattering.

We start by analyzing the field-free state-to-state differential cross section, which

is given by

I f-f0,0→j′,m′(ϑ) = |f0,0→j′,m′(ϑ)|2 = Φj′|m′|Ξ
2
j′0J

2
|m′|(kR0ϑ), (8.10)

with

Φj′|m′| =


(kR0)2

4π

√
(j′+|m′|)!(j′−|m′|)!

(j′+|m′|)!!(j′−|m′|)!! for j′ + |m′| even,

0 otherwise,

(8.11)

see Eq. (5.42) and Ref. [195]. We see that the state-to-state differential cross section

is proportional to the square of the Ξj′0 coefficient, which means that the shape of the

repulsive potential provides a direct information about the relative probabilities of

the field-free transitions and vice versa. For the Ne-OCS system, the Ξ2,0 coefficient

dominates the anisotropic part of the potential, see Table 8.1. As a result, the

corresponding j = 0→ j′ = 2 transition is expected to dominate the inelastic cross

section.

Recalling the properties of the Bessel functions [295], we see that for kR0ϑ &
πj′

2

(which corresponds to ϑ & j′ degrees for the system under investigation), the differential

cross-section has the following angular dependence:

I f-f0,0→j′,m′(ϑ) ∼


cos2

(
kR0ϑ− π

4

)
for m′ even,

sin2
(
kR0ϑ− π

4

)
for m′ odd

(8.12)

By averaging over m′ and taking into account that Φj′|m′| vanishes for j′+ |m′| odd, we
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8.2 Results for Ne–OCS(1Σ, j = 0→ j′) scattering in an electrostatic field

obtain the angular dependence of the differential cross-section for a 0→ j′ transition:

I f-f0→j′(ϑ) ∼


cos2

(
kR0ϑ− π

4

)
for j′ even,

sin2
(
kR0ϑ− π

4

)
for j′ odd

(8.13)

The “phase shift” of π
2
predicted by Eq. (8.13) for the oscillations in the differential

cross sections corresponding to even and odd field-free transitions is shown in Fig. 8.3.

The elastic scattering amplitude, given by Eq. (5.20), has a sin2
(
kR0ϑ− π

4

)
asymptote, and so is out of phase with even-j′-transitions. This latter effect, which is

known as the “Blair phase rule,” can be also seen in Fig. 8.3.

Table 8.1: Hard-shell Legendre mo-
ments Ξκ0 for the Ne–OCS potential
at a collision energy of 500 cm−1 and
for the Ar–NO potential at a collision
energy of 442 cm−1.

Ξκ0 (Å)

κ Ne-OCS Ar-NO

0 14.7043 11.0407

1 -0.0968 0.1744

2 0.9455 0.5757

3 0.0540 0.0040

4 -0.0384 -0.0713

5 -0.0131 -0.0013

6 0.0012 0.0106

0
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R♭
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Figure 8.2: Equipotential line R[(θ[)
for the Ne–OCS potential energy sur-
face at a collision energy of 500 cm−1.
We note that the equipotential line
for the Ar–NO collision system looks
similar and is not shown. The Leg-
endre moments for either potential
energy surface are listed in Table 8.1.
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8 Collisions of closed-shell molecules with closed-shell atoms in electric fields

The state-to-state differential cross sections for scattering in a field parallel (‖)

and perpendicular (⊥) to k are given by

Iω,(‖,⊥)
0→j′ (ϑ) =

∑
m′

Iω,(‖,⊥)
0,0→j′,m′(ϑ), (8.14)

with

Iω,(‖,⊥)
0,0→j′,m′(ϑ) =

∣∣∣fω,(‖,⊥)

0,0→j̃′,m′(ϑ)
∣∣∣2 , (8.15)

and are shown for the Ne–OCS collisions at ε = 50 and 100 kV/cm in Fig. 8.3. The

figure reveals that an electrostatic field on the order of 10 kV/cm dramatically alters the

cross-sections. (i) For a parallel field, ε ‖ k, the differential cross section, Eq. (8.15), has

the same explicit angular dependence as for the field-free case, Eq. (8.12). However, the

field suppresses the selection rule (8.11) and so the summation in Eq. (8.14) comprises

all m′-states. Therefore, the resulting cross section is a field-dependent mixture of the

sine- and cosine-contributions given by Eq. (8.12). The angular dependence of the

differential cross sections in the left panel of Fig. 8.3 can be gleaned from Eq. (8.8).

The first sum in Eq. (8.8) extends over even κ for even m′, and over odd κ for odd m′.

Therefore, the Ξκ0 coefficients, Table 8.1, determine not only the relative contributions

of different j′ states, but also of different m′ states in Eq. (8.14). Since the Ξ20

coefficient eclipses the others, transitions to even m′ states dominate whenever the

field is high enough, and the field-free cross-section (8.13) has a cos2 ϑ asymptote.

This can be clearly seen in the left panel of Fig. 8.3: for odd j′, there is a field-induced

phase shift of the differential cross section, which is absent for transitions to even j′.

(ii) For a perpendicular field, ε ⊥ k, several Bessel functions contribute to the

scattering amplitude. However, since the summation in Eq. (8.9) requires that κ+ ρ

be even, it is the even Bessel functions which, like in the case of a parallel field,

can be expected to dominate the cross section. Indeed, the cross sections shown

in Fig. 8.3 for parallel and perpendicular fields are, for j′ = 1, 2, 3, similar to one

another. However, the j = 0→ j′ = 4 differential cross section in the perpendicular

field exhibits an additional phase shift. This cross section represents a special case
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Figure 8.3: Differential cross sections for the Ne–OCS (j = 0 → j′) collisions in an
electrostatic field ε=50 kV/cm (red dashed line) and 100 kV/cm (blue dotted line), parallel
(left) and perpendicular (right) to the relative velocity vector. The field-free cross sections are
shown by the green solid line. The dashed vertical line serves to guide the eye in discerning
the angular shifts of the partial cross sections.
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8 Collisions of closed-shell molecules with closed-shell atoms in electric fields

as it is not dominated by the Ξ20 coefficient. The Ξ20 coefficient fails to dominate

the j = 0 → j′ = 4 cross section because of the selection rule, j′ = j; j ± 2, that

the Clebsch-Gordon coefficients C(j2j′, 000) impose on the κ = 2 term. However,

the products of the hybridization coefficients, a0
j0(ω)b4̃∗

j0(ω) and a0
j0(ω)b4̃∗

j±2,0(ω) that

occur in the term are very small, due to a tiny overlap of the a0
j0(ω) and b4̃∗

j′0(ω)

hybridization coefficents. Therefore, a superposition of both even and odd Bessel

functions contributes to the j = 0→ j′ = 4 differential cross section. A more detailed

discussion of the overlaps of the hybridization coefficients is given in Ref. [196].

8.3 Collisions of 1Σ molecules with 1S atoms and ions

in a laser field

When subject to an external electric field, the electronic distribution of any molecule

becomes polarized to some extent. This interaction, governed by the molecular

polarizability, results in an induced dipole moment. While for the experimentally

feasible static fields such induced moments are very weak, sizable dipole moments can

be induced by a radiative field. If the induced-dipole interaction is anisotropic and

sufficiently strong, the molecular rotational states undergo hybridization (coherent

linear superposition) which aligns the molecular axis along the field vector [311, 312,

313]. The strength of the interaction is characterized by a dimensionless parameter

∆ω,

∆ω ≡ 2π∆αI

Bc
=

∆αε2

4B
, (8.16)

with ∆α = α‖ − α⊥ the polarizability anisotropy, α‖,⊥ the polarizability components

parallel and perpendicular to the molecular axis, B the rotational constant of the

molecule, I the radiation intensity, and ε the amplitude of the corresponding oscillating

electric field. The induced-dipole interaction couples states of the free-rotor basis set

with same m but with j’s that differ by 0,±2. Thus the resulting hybrid states take
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8.3 Collisions of 1Σ molecules with 1S atoms and ions in a laser field

the form:

|j̃, m; ∆ω〉 =
∑
j=2n

aj̃jm(∆ω)|j,m〉 for j̃ even, (8.17)

|j̃, m; ∆ω〉 =
∑

j=2n+1

aj̃jm(∆ω)|j,m〉 for j̃ odd, (8.18)

where 2n = m+ |m| and 2n+ 1 = m+ |m| with m either 0, 2, 4 . . . or 1, 3, 5 . . . . The

hybridization coefficients aj̃jm(∆ω) depend solely on the interaction parameter ∆ω.

The symbol j̃ denotes the nominal value of j that pertains to the field-free rotational

state which adiabatically correlates with the hybrid state,

|j̃, m,∆ω → 0〉 → |j,m〉 (8.19)

Since the hybrid wavefunctions, Eqs. (8.17) and (8.18), comprise either even or

odd j’s, the states have definite parity, (−1)j̃.

Apart from possessing a particular energy level pattern, the |j̃, m,∆ω〉 eigenstates

are aligned along the electric field vector, ε. The degree of alignment depends on the

values of j̃, m, and ∆ω.

In such states, the molecular axis librates about the field direction like a pendulum,

and so the hybrid states are referred to as pendular. It is the directionality of the

pendular states that enters the field-dependent Fraunhofer model and distinguishes it

from the field-free model, which assumes an isotropic distribution of the molecular

axes. The directional properties of pendular states are exemplified in Fig. 8.4, which

shows polar diagrams of both field-free and pendular wave functions at ∆ω = 25.

The scattering process in the field consists of the following steps: A molecule in a

free-rotor state |j,m〉 enters adiabatically the radiative field where it is transformed

into a pendular state |j̃, m,∆ω〉. This pendular state may be changed by the collision

in the field into another pendular state, |j̃′,m′,∆ω〉. As the molecule leaves the field,

the latter pendular state is adiabatically transformed into a free-rotor state |j′,m′〉.

Thus the net result is, in general, a rotationally inelastic collision, |j,m〉 → |j′,m′〉.
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ε

Figure 8.4: A comparison of the moduli of the free rotor wavefunctions |j,m = 0〉, panel
(a), with the moduli of the pendular wavefunctions |j̃,m = 0; ∆ω = 25〉, panel (b). The
polarization vector ε of the radiative field is also shown.

In order to be able to apply Eq. (5.42) to collisions in the radiative field, we have

to transform Eqs. (8.17) and (8.18) to the space-fixed frame XY Z. If the electric field

vector is specified by the Euler angles (ϕε, θε, 0) in the XY Z frame, the initial and

final pendular states take the form:

|i〉 ≡ |j̃, m; ∆ω〉 =
∑
j

aj̃jm(∆ω)
∑
ξ

D j
ξm(ϕε, θε, 0)Yjξ(θ, ϕ), (8.20)

〈f| ≡ 〈j̃′,m′; ∆ω| =
∑
j′

bj̃
′∗
j′m′(∆ω)

∑
ξ′

D j′∗
ξ′m′(ϕε, θε, 0)Y ∗j′ξ′(θ, ϕ), (8.21)

which is seen to depend solely on the angles θ and ϕ.

On substituting from Eqs. (8.20) and (8.21) into Eq. (5.42) and its integration, we

obtain a general expression for the Fraunhofer scattering amplitude in the field,
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8.3 Collisions of 1Σ molecules with 1S atoms and ions in a laser field

fωi→f(ϑ) =
ikR0

2π

∑
κ,ρ

κ6=0
κ+ρ even

Dκ∗
−ρ,∆m(ϕε, θε, 0)Ξκ0FκρJ|ρ|(kR0ϑ)

×
∑
jj′

aj̃jm(∆ω)bj̃
′∗
j′m′(∆ω)

√
2j + 1

2j′ + 1
C(jκj′; 000)C(jκj′;m∆mm′), (8.22)

where ∆m ≡ m′ −m and C(j1, j2, j3;m1,m2,m3) are Clebsch-Gordan coeffients [283].

Since the ion-linear molecule potential is axially symmetric, only the Ξκ0 coefficients

contribute to the scattering amplitude.

Eq. (8.22) simplifies for special cases. If we limit our considerations to homonuclear

diatomics, only the Ξκ0 coefficients for even κ contribute to the expansion, Eq. (5.35),

and, consequently, to the scattering amplitude, Eq. (8.22). Furthermore, if we fix the

initial molecular state to the ground state, |j,m〉 ≡ |0, 0〉, and restrict the polarization

of the radiation in the space-fixed frame to a particular geometry, the problem

simplifies as follows:

(i) For a polarization vector collinear with the initial wave vector, ε ‖ k, we

have θε → 0, ϕε → 0. As as result, only the ρ = −∆m′ term yields a nonvanishing

contribution and so

f
ω,‖
0,0→j̃′,m′(ϑ) = J|m′|(kR0ϑ)

ikR0

2π

∑
κ even
κ6=0

Ξκ0Fκm′

×
∑
jj′

a0
j0(ω)bj̃

′∗
j′m′(ω)

√
2j + 1

2j′ + 1
C(jκj′; 000)C(jκj′; 0m′m′) (8.23)

We see that the angular dependence of the scattering amplitude for the parallel case

is simple, given by a single Bessel function, J|m′|.

(ii) If the polarization vector is perpendicular to the initial wave vector, ε ⊥ k, we

have θε → π
2
, ϕε → 0.
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8 Collisions of closed-shell molecules with closed-shell atoms in electric fields

Hence

fω,⊥
0,0→j̃′,m′(ϑ) =

ikR0

2π

∑
κ,ρ even
κ6=0

dκ−ρ,m′
(π

2

)
Ξκ0FκρJ|ρ|(kR0ϑ)

×
∑
jj′

a0
j0(ω)bj̃

′∗
j′m′(ω)

√
2j + 1

2j′ + 1
C(jκj′; 000)C(jκj′; 0m′m′), (8.24)

where dκ−ρ,m′ are the real Wigner rotation matrices. Since the summation mixes

different Bessel functions (for a range of ρ’s), the angular dependence of the scattering

amplitude in the perpendicular case is more involved than in the parallel case.

The Clebsch-Gordan coefficient C(jκj′; 000) in Eqs. (8.23) and (8.24) is nonzero

only if j + j′ is even, since the summation includes only even-κ terms. Moreover,

given the definite parity of the pendular states, we see that only parity-conserving

transitions are allowed, namely j = 0→ j′ = 2, 4, 6, . . . for our choice of the initial

state.

We can also see that, for either geometry, only the partial cross sections for the

j = 0,m = 0 → j′,m′ collisions with m′ even contribute to the scattering. This is

particularly clear in the ε ‖ k case, where the Fκm′ coefficients vanish for m′ odd.

In the ε ⊥ k case, a summation over ρ arises. Since for κ even and m′ odd the real

Wigner matrices obey the relation dκ−ρ,m′
(
π
2

)
= −dκρ,m′

(
π
2

)
, the sum over ρ is zero and

so are the partial cross sections with m′ odd.

8.4 Rotationally inelastic Na+–N2 collisions in a ra-

diative field

Here we apply the model to the Na+–N2(j = 0 → j′) collisions. The polarization

anisotropy ∆α = 0.93 Å3 and rotational constant B = 1.9982 cm−1 make the

N2 molecule a suitable candidate for an experiment on laser-assisted ion-molecule

collisions.
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8.4 Rotationally inelastic Na+–N2 collisions in a radiative field

Table 8.2: Hard shell Legendre
moments Ξκ0, Eq. (5.35), for the
Na+ −N2 potential at a collision en-
ergy of 5 eV. All odd moments are
zero.

κ Ξκ0 (Å)

0 6.1221

2 0.5301

4 -0.0359

6 0.0022

8 0.0002

0
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2.2
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240o
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330o

R 
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)

θ

Figure 8.5: Equipotential line R(θ)
for the Na+– N2 potential energy sur-
face at a collision energy of 5 eV. The
Legendre moments, Eq. (5.35), of the
potential energy surface are listed in
Table 8.2.

According to Ref. [314], the ground-state Na+–N2 potential energy surface has

a global minimum −2712 cm−1 deep. The effect of this attractive well is negligible

for low-energy collisions; we chose a collision energy of 5 eV, which corresponds to

a wave number k = 173.8 Å−1. The “hard shell” of the potential energy surface at

this collision energy is shown in Fig. 8.5. We found it by a fit to Eq. (5.35). The

Ξκ0 coefficients are listed in Table 8.2. Due to the D2v symmetry of the potential

energy surface, only even-κ terms arise. According to Eq. (5.36), the Ξ00 coefficient

determines the hard-sphere radius R0, responsible for elastic scattering.

The field-free state-to-state differential cross section,

I f-f0,0→j′,m′(ϑ) = |f0,0→j′,m′(ϑ)|2, (8.25)

see Eq. (5.42), is proportional to Ξ2
j′0, which means that the shape of the repulsive

potential provides direct information about the relative probabilities of the field-

free transitions and vice versa. Since for the Na+–N2 system the Ξ2,0 coefficient

dominates the anisotropic part of the potential, see Table 8.2, the corresponding

j = 0→ j′ = 2 collisions are expected to dominate the inelastic cross section. Because
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8 Collisions of closed-shell molecules with closed-shell atoms in electric fields

of the D2h symmetry, there are no parity-breaking j = 0 → odd j′ collisions in the

Na+–N2(j = 0→ j′) system.

After averaging over m′ and invoking the asymptotic properties of the Bessel

functions [295], we obtain for the parity-conserving j = 0→ even j′ collisions:

I f-f0→j′(ϑ) ∼ cos2
(
kR0ϑ−

π

4

)
(8.26)

The elastic differential scattering cross section, cf. Eq. (5.20), has a sin2
(
kR0ϑ− π

4

)
asymptote, and so is seen to be shifted with respect to the differential cross sections

for even-j′ transitions by a quarter of a wavelength. Known as the “Blair phase rule,”

the shift is a conspicuous feature of Fig. 8.6.

The state-to-state differential cross sections for scattering in a radiative field

parallel (ε ‖ k) and perpendicular (ε ⊥ k) to the initial wave vector are given by

Iω,(‖,⊥)
0→j′ (ϑ) =

∑
m′

Iω,(‖,⊥)
0,0→j′,m′(ϑ), (8.27)

with

Iω,(‖,⊥)
0,0→j′,m′(ϑ) =

∣∣∣fω,(‖,⊥)

0,0→j̃′,m′(ϑ)
∣∣∣2 (8.28)

The differential cross sections for the Na+–N2 collisions are presented in Fig. 8.6

for an interaction parameter ∆ω = 10 and 25, corresponding to laser intensities of

2.15 × 1012 W/cm2 and 5.37 × 1012 W/cm2, respectively. The figures show that a

radiative field on the order of 1012 W/cm2 dramatically alters the magnitudes of

the differential cross sections, but does not produce any “phase shift” of the angular

oscillations. Such a “phase shift” is absent because only even Bessel functions, which

have a cos2
(
kR0ϑ− π

4

)
asymptote, contribute to the scattering at any field strength,

see Eqs. (8.23) and (8.24).

86



1

100

10000 (a)  J'=0

0.1

1

10

100 (b)  J'=2

0.1

1

10

100 (c)  J'=4

0.0001

0.01

1

0o 2o 4o 6o 8o 10o

(d)  J'=6

ϑ

D
iff

er
en

tia
l c

ro
ss

-s
ec

tio
n 

(Å
2 /s

te
ra

d)

1

100

10000 (a)  J'=0

0.1

1

10

100 (b)  J'=2

0.1

1

10

100 (c)  J'=4

0.0001

0.01

1

0o 2o 4o 6o 8o 10o

(d)  J'=6

ϑ

D
iff

er
en

tia
l c

ro
ss

-s
ec

tio
n 

(Å
2 /s

te
ra

d)

Figure 8.6: Differential cross sections for the Na+ + N2 (j = 0→ j′) collisions in a radiative
field for ∆ω = 10 (red dashed line) and ∆ω = 25 (blue solid line), parallel (left) and
perpendicular (right) to the initial wave vector. The field-free cross sections are shown by
the green solid line.
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9 Effect of a magnetic field on

differential cross sections

A grocer is attracted to his business by a mag-

netic force as great as the repulsion which ren-

ders it odious to artists.

Honoré de Balzac

In this chapter we apply the Fraunhofer model described in Chapter 5 to treat

collisions of closed-shell atoms with open-shell molecules in 2Σ, 3Σ and 2Π electronic

states, whose magnetic moment is on the order of 1 Bohr magneton. The magnetic field

affects the collision dynamics by aligning the molecular axis with respect to the relative

velocity vector, and thereby changing the effective shape of the target. Also, the field

hybridizes different rotational states of a molecule, which alters collision dynamics

by relaxing some of the selection rules. We exemplify our theory by investigating

collisions of CaH(X2Σ+), O2(X3Σ−), and OH(X2ΠΩ) with a helium atom, which is

a favorite buffer gas, used to thermalize molecules and radicals produced by laser

ablation and other entrainment techniques [315].
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9 Effect of a magnetic field on differential cross sections

9.1 Scattering of 2Σ molecules by closed-shell atoms

in a magnetic field

9.1.1 A 2Σ molecule in a magnetic field

The field-free Hamiltonian of a rigid 2Σ molecule,

H0 = BN2 + γN · S, (9.1)

is represented by a 2× 2 matrix, diagonal in the Hund’s case (b) basis, |N, j,m〉. Here

N and S are the rotational and (electronic) spin angular momenta, B is the rotational

constant and γ the spin-rotation constant. Its eigenfunctions,

Ψ±(j,m) =
1√
2

[∣∣S, 1
2

〉∣∣j,Ω,m〉± ∣∣S,−1
2

〉∣∣j,−Ω,m
〉]
, (9.2)

are combinations of (electronic) spin functions |S,mS〉 with Hund’s case (a) (i.e.,

symmetric top) functions |j,Ω,m〉 pertaining to the total angular momentum j = N+S,

whose projections on the space- and body-fixed axes are m and Ω = ±1
2
, respectively.

The Hund’s case (a) wavefunctions are given by:

|j,m,Ω〉 =

√
2j + 1

4π
D j∗
mΩ(ϕ, θ, γ = 0) (9.3)

The Ψ+ and Ψ− states are conventionally designated as F1 and F2 states, for which

the rotational quantum number N = j− 1
2
and N = j+ 1

2
, respectively. Equation (9.2)

can be recast in terms of N instead of j:

|Ψε(N,m)〉 =
1√
2

[∣∣S, 1
2

〉∣∣N + ε
2
,Ω,m

〉
+ ε
∣∣S,−1

2

〉∣∣N + ε
2
,−Ω,m

〉]
, (9.4)

with ε = ±1. The eigenvalues corresponding to states F1 and F2 are given by:

E+

(
N + 1

2
,m;F1

)
= BN(N + 1) +

γ

2
N, (9.5)
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9.1 Scattering of 2Σ molecules by closed-shell atoms in a magnetic field

E−

(
N − 1

2
,m;F2

)
= BN(N + 1)− γ

2
(N + 1), (9.6)

whence we see that the spin-rotation interaction splits each rotational level into a

doublet separated by ∆E ≡ E+ − E− = γ(N + 1
2
).

In a static magnetic field, H , directed along the space-fixed Z axis, the Hamiltonian

acquires a magnetic dipole potential which is proportional to the projection, SZ , of S

on the Z axis,

Vm = SZωmB, (9.7)

with

ωm ≡
gSµBH

2B
, (9.8)

a dimensionless interaction parameter involving the electron gyromagnetic ratio

gS ' 2.0023, the Bohr magneton µB, and the rotational constant B.

The Zeeman eigenproperties of a 2Σ molecule can be readily obtained in closed

form, since the Vm operator couples states that differ in N by 0 or ±2 and, therefore,

the Hamiltonian matrix, H = H0 + Vm, factors into 2× 2 blocks for each N :

H = −ωmB


− m

2N+1
+ E−

ωmB
1
2
[1− m2

(N+1/2)2
]
1
2

1
2
[1− m2

(N+1/2)2
]
1
2

m
2N+1

+ E+

ωmB

 (9.9)

As a result, the Zeeman eigenfunctions of a 2Σ molecule are given by a linear

combination of the field-free wavefunctions (9.4),

ψ(Ñ , j̃,m;ωm) = a(ωm)
∣∣Ψ−(N,m)

〉
+ b(ωm)

∣∣Ψ+(N,m)
〉
, (9.10)

with the hybridization coefficients a(ωm) and b(ωm) obtained by diagonalizing Hamil-

tonian (9.9). Although N and j are no longer good quantum numbers in the magnetic

field, they can be employed as adiabatic labels of the states: we use Ñ and j̃ to denote

the angular momentum quantum numbers of the field-free state that adiabatically

correlates with the given state in the field.
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9 Effect of a magnetic field on differential cross sections
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Figure 9.1: Expectation values of the align-
ment cosine 〈cos2 θ〉 for the Zeeman states of
CaH(X2Σ+) as a function of the magnetic field
strength parameter ωm. States are labeled as
Ñ , j̃,m, see text.

Since the Zeeman eigenfunction com-

prises rotational states with either N

even or N odd, the parity of the eigen-

states remains definite even in the pres-

ence of the magnetic field; it is given by

(−1)Ñ .

The degree of mixing of the Hund’s

case (b) states that make up a 2Σ Zeeman

eigenfunction is determined by the split-

ting of the rotational levels measured in

terms of the rotational constant, ∆E/B:

for ωm ≤ ∆E/B the mixing (hybridiza-

tion) is incomplete, while it is perfect in

the high-field limit, ωm � ∆E/B. We

note that in the high-field limit, the eign-

evectors can be found from matrix (9.9)

with E±/ωmB → 0. As an example, Ta-

ble 9.1 lists the values of the hybridiza-

tion coefficients a(ωm) and b(ωm) for the

N = 2, j = 5
2
,m states of the CaH

molecule in the high-field limit, which

is attained at ωm � 0.025.

The degree of molecular axis align-

ment is given by the alignment cosine,

〈cos2 θ〉, which, in the 2Σ case, can be

obtained in closed form. To the best of

our knowledge, this result has not been

presented in the literature before; therefore, we give it in Appendix 16.2. The de-

pendence of the alignment cosine on the magnetic field strength parameter ωm is
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9.1 Scattering of 2Σ molecules by closed-shell atoms in a magnetic field

Table 9.1: The hybridization coefficients a(ωm) and b(ωm) for the N = 2, j = 5
2 ,m state in

the high-field limit, ωm � ∆E/B, which arises for ωm � 0.025 for the N = 2 level of the
CaH(X2Σ+) molecule. See text.

m a(ωm) b(ωm)

1
2

√
2
5

√
3
5

-1
2

√
3
5

√
2
5

3
2

1√
5

2√
5

-3
2

2√
5

1√
5

±5
2

0 1

shown in Fig. 9.1 for the two lowest N states of the CaH molecule. One can see

that for ωm � ∆E/B, the alignment cosine smoothly approaches a constant value,

corresponding to as good an alignment as the uncertainty principle allows.

9.1.2 The field-dependent scattering amplitude

In what follows, we consider scattering from the N = 0, j = 1/2 state to some N ′, j′

state in a magnetic field. Since the N = 0 state of a 2Σ molecule is not aligned, the

effects of the magnetic field on the scattering arise solely from the alignment of the

final state.

In order to account for an arbitrary direction of the electric field with respect to

the initial wave vector k, we introduce a field-fixed coordinate system X]Y ]Z], whose

Z]-axis is defined by the direction of the electric field vector ε. By making use of the

relation

D j∗
mΩ(ϕ], θ], 0) =

∑
ξ

D j
ξm(ϕε, θε, 0)D j∗

ξΩ(ϕ, θ, 0) (9.11)

we transform the wavefunctions (9.10) to the space-fixed frame. For the initial and
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9 Effect of a magnetic field on differential cross sections

the final states we have:

|i(N,m)〉 =
1√
4π

∑
ξ

{
a(ωm)

√
ND

N−1
2

ξm (ϕε, θε, 0)

[
D
N−1

2
∗

ξΩ (ϕ, θ, 0)−D
N−1

2
∗

ξ−Ω (ϕ, θ, 0)

]

+ b(ωm)
√
N + 1D

N+
1
2

ξm (ϕε, θε, 0)

[
D
N+

1
2
∗

ξΩ (ϕ, θ, 0)−D
N+

1
2
∗

ξ−Ω (ϕ, θ, 0)

]}
, (9.12)

〈f(N ′,m′)| = 1√
4π

∑
ξ′

{
a′(ωm)

√
N ′D

N ′−1
2

ξ′m′ (ϕε, θε, 0)

[
D
N ′−1

2
∗

ξ′Ω (ϕ, θ, 0)−D
N ′−1

2
∗

ξ′−Ω (ϕ, θ, 0)

]

+ b′(ωm)
√
N ′ + 1D

N ′+
1
2

ξ′m′ (ϕε, θε, 0)

[
D
N ′+

1
2
∗

ξ′Ω (ϕ, θ, 0)−D
N ′+

1
2
∗

ξ′−Ω (ϕ, θ, 0)

]}
, (9.13)

where Ω = 1
2
for a 2Σ molecule.

By substituting from Eqs. (9.12) and (9.13) into Eq. (5.42), we finally obtain the

scattering amplitude for inelastic collisions of 2Σ molecules with closed-shell atoms in

a magnetic field:

fωm
i→f(ϑ) =

ikR0

4π

∑
κρ

κ6=0
κ+ρ even

Ξκ0D
κ∗
−ρ,∆m(ϕε, θε, 0)FκρJ|ρ|(kR0ϑ)

[
(−1)κ + (−1)∆N

]

×

{
a(ωm)a′(ωm)

√
N

N ′
C
(
N − 1

2
, κ,N ′ − 1

2
; Ω0Ω

)
C
(
N − 1

2
, κ,N ′ − 1

2
;m∆mm′

)
+ a(ωm)b′(ωm)

√
N

N ′ + 1
C
(
N − 1

2
, κ,N ′ + 1

2
; Ω0Ω

)
C
(
N − 1

2
, κ,N ′ + 1

2
;m∆mm′

)
+ a′(ωm)b(ωm)

√
N + 1

N ′
C
(
N + 1

2
, κ,N ′ − 1

2
; Ω0Ω

)
C
(
N + 1

2
, κ,N ′ − 1

2
;m∆mm′

)
+ b(ωm)b′(ωm)

√
N + 1

N ′ + 1
C
(
N + 1

2
, κ,N ′ + 1

2
; Ω0Ω

)
C
(
N + 1

2
, κ,N ′ + 1

2
;m∆mm′

)}
(9.14)

As noted above, there is no hybridization of the initial state for the N = 0, j =

1
2
→ N ′, j′ collisions, i.e., a(ωm) = 0, b(ωm) = 1 in Eq. (9.14). By making use of
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9.1 Scattering of 2Σ molecules by closed-shell atoms in a magnetic field

the properties of the Clebsch-Gordan coefficients [283],[284], the expression for the

scattering amplitude from the N = 0, j = 1
2
,m = ±1

2
state to an N ′, j′,m′ state

simplifies to

fωm

0,
1
2
,±1

2
→N ′,j′,m′

(ϑ) =
ikR0

2π

ΞN ′0

2N ′ + 1
XN ′m′(ωm)

∑
ρ

ρ+N ′even

dN
′

−ρ,∆m(θε)FN ′ρJ|ρ|(kR0ϑ),

(9.15)

with the field-dependent coefficient,

XN ′m′(ωm) = ±a′(ωm)
√
N ′ ∓m′ + 1

2
+ b′(ωm)

√
N ′ ±m′ + 1

2
(9.16)

The amplitude is seen to be directly proportional to the ΞN ′0 Legendre moment. We

note that the cross section for the N, j,m→ N ′, j′,m′ transition differs from that for

the N, j,−m→ N ′, j′,−m′ scattering. This is because the magnetic field completely

lifts the degeneracy of the m states, in contrast to the electric field case [196].

9.1.3 Results for He–CaH(X2Σ, j = 1/2 → j′) scattering in a

magnetic field

Here we apply the analytic model scattering to the He–CaH(2Σ+, j = 1
2
→ j′) collision

system. The CaH molecule, employed previously in thermalization experiments with

a He buffer gas [316], [317], has a rotational constant B = 4.2766 cm−1 and a spin-

rotational interaction parameter γ = 0.0430 cm−1 [318]. Such values of molecular

constants result in an essentially perfect mixing (and alignment) of the molecular

states for field strengths H ≥ 0.1 Tesla, see Sec. 9.1.1.

According to Ref. [243], the ground-state He–CaH potential energy surface has a

global minimum of −10.6 cm−1. Such a weak attractive well can be neglected at a col-

lision energy as low as 200 cm−1 (which corresponds to a wave number k = 6.58 Å−1).

The corresponding value of the Massey parameter, ξ ≈ 0.5, warrants the validity of

the sudden approximation to the He–CaH collision system from this collision energy on.
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9 Effect of a magnetic field on differential cross sections

Table 9.2: Hard-shell Legendre moments Ξκ0

for He–CaH (X2Σ+) and He–O2 (X3Σ−) po-
tential energy surfaces at a collision energy of
200 cm−1, and for He–OH (X2Π 3

2
) potential

at 1000 cm−1.

Ξκ0 (Å)

κ He–CaH He–O2 He–OH

0 13.3207 9.5987 7.7941

1 -0.4397 0 0.1380

2 1.0140 0.5672 0.1625

3 0.6147 0 0.0961

4 0.0337 -0.1320 0.01789

5 -0.1475 0 -0.0032

6 -0.0653 0.0250 -0.0034

7 0.0265 0 -0.0008

8 0.0277 -0.0060 0.0002
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Figure 9.2: Equipotential lines R(θ)
for the He–CaH (X2Σ+) and He–O2

(X3Σ−) potential energy surfaces at
a collision energy of 200 cm−1, and
for the He–OH (X2ΠΩ) potential at
1000 cm−1. The Legendre moments
for the potential energy surfaces are
listed in Table 9.2.

The “hard shell” of the potential energy surface was found by a fit to Eq. (5.35) for

κ ≤ 8, and is shown in Fig. 9.2. The coefficients Ξκ0 obtained from the fit are listed

in Table 9.2. According to Eq. (5.36), the Ξ00 coefficient determines the hard-sphere

radius R0, which is responsible for elastic scattering.

The state-to-state differential cross sections for scattering in a field parallel (‖)

and perpendicular (⊥) to k are given by:

Iωm,(‖,⊥)
0→j′ (ϑ) =

∑
m′

Iωm,(‖,⊥)
0,0→j′,m′(ϑ), with Iωm,(‖,⊥)

0,0→j′,m′(ϑ) =
∣∣∣fωm,(‖,⊥)

0,0→j̃′,m′(ϑ)
∣∣∣2 (9.17)

They are presented in Fig. 9.3 for He–CaH collisions at zero field, ωm = 0, as well as at

high field, ωm = 0.3 (corresponding to H =2.75 T for CaH), where the hybridization

and alignment are as complete as they can get.
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Figure 9.3: Differential cross sections for the He–CaH (N = 0, j = 1
2 → N ′, j′) collisions in

a magnetic field ωm = 0.3 (blue dashed line) parallel to the relative velocity vector, H ‖ k
(left) and perpendicular to the relative velocity vector, H ⊥ k (right). The field-free cross
sections are shown by the green solid line. The collision energy is 200 cm−1. The dashed
vertical line serves to guide the eye in discerning the angular shifts of the partial cross
sections.
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9 Effect of a magnetic field on differential cross sections

From Eq. (9.15) for the scattering amplitude, we see that the differential cross

section for the N = 0→ N ′ transitions is proportional to the ΞN ′0 Legendre moment.

According to Table 9.2, the Legendre expansion of the He–CaH potential energy

surface is dominated by Ξ20. Therefore, the transition N = 0→ N ′ = 2 provides the

largest contribution to the cross section.

The field dependence of the scattering amplitude, Eq. (9.15), is encapsulated in

the coefficients a′(ωm) and b′(ωm), whose values cannot affect the angular dependence,

as this is determined solely by the Bessel functions, J|ρ|(kR0ϑ). Furthermore, the

summation in Eq. (9.15) includes only even ρ for even N ′, and odd ρ for odd N ′.

From the asymptotic properties of Bessel functions [295], we have for large angles

such that ϑ� πρ/2kR0:

J|ρ|(kR0ϑ) ∼


cos
(
kR0ϑ− π

4

)
for ρ even,

sin
(
kR0ϑ− π

4

)
for ρ odd

(9.18)

For the He–CaH system, the phase shift between the J0 and J2 Bessel functions, which

contribute to the N = 0→ N ′ = 1, 2 transitions, is negligibly small at angles up to

about 30◦. Therefore there is no field-induced phase shift, neither in the parallel nor

in the perpendicular case, as illustrated by Fig. 9.3.

Fig. 9.3 shows that the magnetic field induces only small changes in the amplitudes

of the cross sections, without shifting their oscillations. The amplitude variation is

so small because the magnetic field fails to mix contributions from the different Ξκ,0

Legendre moments, in contrast to scattering in electrostatic [196] and radiative [197]

fields. The changes in the amplitudes of the differential cross sections are closely

related to the field dependence of the partial integral cross sections, which are analyzed

in Ref. [198].
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9.2 Scattering of 3Σ molecules by closed-shell atoms in a magnetic field

9.2 Scattering of 3Σ molecules by closed-shell atoms

in a magnetic field

9.2.1 A 3Σ molecule in a magnetic field

The field-free Hamiltonian of a 3Σ electronic state consists of rotational, spin-rotation,

and spin-spin terms:

H0 = BN2 + γN · S + 2
3
λ(3S2

z − S2), (9.19)

where γ and λ are the spin-rotation and spin-spin constants, respectively. In the Hund’s

case (b) basis, the field-free Hamiltonian (9.19) consists of 3× 3 matrices pertaining

to different j values (except for j=0). The matrix elements of Hamiltonian (9.19) can

be found, e.g., in Ref. [319] (see also [320] and [321, 322]). The eigenenergies of H0

are (in units of the rotational constant B):

E1(j)/B = j(j + 1) + 1− 3γ′

2
− λ′

3
−X,

E2(j)/B = j(j + 1)− γ′ + 2λ′

3
,

E3(j)/B = j(j + 1) + 1− 3γ′

2
− λ′

3
+X,

(9.20)

with

X ≡

[
j(j + 1)(γ′ − 2)2 +

(
γ′ + 2λ′ − 2

2

)2
]1/2

, γ′ ≡ γ/B, λ′ ≡ λ/B

The eigenenergies (9.20) correspond to the three ways of combining rotational and

electronic spin angular momenta N and S for S = 1 into a total angular momentum

j; the total angular momentum quantum number takes values j = N + 1, j = N , and

j = N−1 for states which are conventionally designated as F1, F2, and F3, respectively.
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Figure 9.4: Expectation values of the
alignment cosine 〈cos2 θ〉 for the lowest
Zeeman states of 16O2(X3Σ−) as a func-
tion of the magnetic field strength param-
eter ωm. States are labeled by Ñ , j̃,m.

For the case when N = 1, j = 0, the sign

of the X term should be reversed [323]. The

parity of the states is (−1)N .

The interaction of a 3Σ molecule with a

magnetic field H is given by Eq. (9.7) with

a dimensionless parameter characterizing the

strength of the Zeeman interaction given by:

ωm ≡
gSµBH

B
, (9.21)

cf. Eq. (9.8). We evaluated the Zeeman effect

in Hund’s case (b) basis,

|N, j,m〉 = c1
Nj|j, 1,m〉

+ c0
Nj|j, 0,m〉+ c−1

Nj|j,−1,m〉, (9.22)

using the matrix elements of the SZ operator

as given in Appendix 16.3.

The Zeeman eigenfunctions are hybrids of

the Hund’s case (b) basis functions (9.22):

∣∣∣Ñ , j̃,m;ωm

〉
=
∑
Nj

aÑ j̃Nj(ωm) |N, j,m〉

(9.23)

and are labeled by Ñ and j̃, which are the

angular momentum quantum numbers of the

field-free state that adiabatically correlates

with a given state in the field. Since Vm cou-

ples Hund’s case (b) states that differ in N

by 0 or ±2, the parity remains definite in the

100



9.2 Scattering of 3Σ molecules by closed-shell atoms in a magnetic field

presence of a magnetic field, and is given by (−1)Ñ . However, the Zeeman matrix

for a 3Σ molecule is no longer finite, unlike the 2× 2 Zeeman matrix for a 2Σ state.

Using the Hund’s case (b) rather than Hund’s case (a) basis set makes it possible

to directly relate the field-free states and the Zeeman states, via the hybridization

coefficients aÑ j̃Nj.

The alignment cosine, 〈cos2 θ〉, of the Zeeman states can be evaluated from the

matrix elements of Appendix 16.4. The dependence of 〈cos2 θ〉 on the magnetic field

strength parameter ωm is exemplified in Fig. 9.4 for Ñ = 1, 3 Zeeman states of the
16O2 molecule.

9.2.2 The field-dependent scattering amplitude

We consider scattering from an initial N, j state to a final N ′, j′ state. We transform

the wavefunctions (9.23) to the space-fixed frame by making use of Eq. (9.11) – cf.

Section 9.1.2. As a result, the initial and final states become:

|i〉 ≡
∣∣∣Ñ , j̃,m, ωm

〉
=
∑
Nj

√
2j + 1

4π
aÑ j̃Nj(ωm)

∑
Ω

cΩ
Nj

∑
ξ

D j
ξm(ϕε, θε, 0)D j∗

ξΩ(ϕ, θ, 0),

(9.24)

〈f| ≡ 〈Ñ ′, j̃′,m′, ωm| =
∑
N ′j′

√
2j′ + 1

4π
bÑ
′j̃′

N ′j′(ωm)
∑
Ω′

cΩ′

N ′j′

∑
ξ′

D j′

ξ′m′(ϕε, θε, 0)D j′∗
ξ′Ω′(ϕ, θ, 0)

(9.25)

On substituting from Eqs. (9.24) and (9.25) into Eq. (5.42) and some angular momen-

tum algebra, we obtain a general expression for the scattering amplitude:

fωm
i→f(ϑ) =

ikR0

4π

∑
κρ

κ6=0
κ+ρ even

Ξκ0D
κ∗
−ρ,∆m(ϕε, θε, 0)FκρJ|ρ|(kR0ϑ)YÑ ′,j̃′,m

′;κ

Ñ,j̃,m
(ωm), (9.26)
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9 Effect of a magnetic field on differential cross sections

where the field-dependent part is

YÑ ′,j̃′,m
′;κ

Ñ,j̃,m
(ωm) =

∑
Nj

N ′j′

√
2j + 1

2j′ + 1
aÑ j̃Nj(ωm)bÑ

′j̃′

N ′j′(ωm)C(jκj′;m∆mm′)
∑

Ω

cΩ
Njc

Ω
N ′j′C(jκj′; Ω0Ω)

(9.27)

9.2.3 Results for He–O2(X
3Σ, N = 0, j = 1 → N ′, j′) scattering

in a magnetic field

The 16O2(3Σ−) molecule has a rotational constant B = 1.4377 cm−1, a spin-rotation

constant γ = −0.0084 cm−1, and a spin-spin constant λ = 1.9848 cm−1 [324]. Ac-

cording to Ref. [325], the ground state He–O2 potential energy surface has a global

minimum of −27.90 cm−1, which can be neglected at a collision energy 200 cm−1 (cor-

responding to a wave number k = 6.49 Å−1). A small value of the massey parameter,

ξ ≈ 0.1, ensures the validity of the sudden approximation. The “hard shell” of the

potential energy surface at this collision energy is shown in Fig. 9.2, and the Legendre

moments Ξκ0, obtained from a fit to the potential energy surface of Ref. [325], are

listed in Table 9.2. Since the He–O2 potential is of D2h symmetry, only even Legendre

moments are nonzero.

Furthermore, since the nuclear spin of 16O is zero and the electronic ground state

antisymmetric (a 3Σ−g state), only rotational states with an odd rotational quantum

number N are allowed. We will assume that the O2 molecule is initially in its rotational

ground state, |N = 1, j = 0,m = 0〉.

Expression (9.26) for the scattering amplitude further simplifies for particular

geometries. In what follows, we will consider two such geometries.

(i) Magnetic field parallel to the initial wave vector, H ‖ k, in which case the

scattering amplitude becomes:

f
ωm,‖
1,0,0→N ′,j′,m′(ϑ) =

ikR0

4π
J|m′|(kR0ϑ)

∑
κ6=0
κ even

Ξκ0Fκm′YÑ
′,j̃′,m′;κ

1,0,0 (ωm) (9.28)
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9.2 Scattering of 3Σ molecules by closed-shell atoms in a magnetic field

(ii) Magnetic field perpendicular to the initial wave vector, H ⊥ k, in which case

Eq. (9.26) simplifies to:

fωm,⊥
1,0,0→N ′,j′,m′(ϑ) =

ikR0

4π

∑
κ,ρ even
κ6=0

Ξκ0 d
κ
−ρ,m′(

π
2
)FκρJ|ρ|(kR0ϑ)YÑ ′,j̃′,m

′;κ
1,0,0 (ωm) (9.29)

Eqs. (9.28) and (9.29) imply that for either geometry, only partial cross sections

for the N = 1, j = 0,m = 0 → N ′, j′,m′ collisions with m′ even can contribute to

the scattering. This is particularly easy to see in the H ‖ k case, where the Fκm′

coefficients vanish for m′ odd as Fκρ vanishes for odd κ + ρ. In the H ⊥ k case, a

summation over ρ arises. Since for κ even and m′ odd the real Wigner matrices obey

the relation dκ−ρ,m′
(
π
2

)
= −dκρ,m′

(
π
2

)
, the sum over ρ vanishes and so do the partial

cross sections for m′ odd.

The differential cross sections of the He–O2 (N = 1, j = 0 → N ′, j′) collisions,

calculated from Eq. (9.17), are presented in Fig. 9.5. Also shown is the elastic cross

section, obtained from the scattering amplitude (5.20). The differential cross sections

are shown for the field-free case, ωm = 0, as well as for ωm = 5, which for O2

corresponds to a magnetic field H =7.7 T.

The angular dependence of the differential cross sections is determined by the

Bessel functions appearing in the scattering amplitudes (9.28) and (9.29). In the

parallel case, the angular dependence is given expressly by J|m′|(kR0ϑ), and is not

affected by the magnetic field. Since only even-κ terms contribute to the sum in the

scattering amplitude and the coefficients Fκρ vanish for κ + ρ odd, the differential

cross sections are given solely by even Bessel functions. This is the case for both

parallel and perpendicular geometries. As the elastic scattering amplitude is given by

an odd Bessel function, Eq. (5.20), the elastic and rotationally inelastic differential

cross sections oscillate with an opposite phase.

According to the general properties of Bessel functions [295], at large angles the

phase shift between different even Bessel functions disappears and their asymptotic
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Figure 9.5: Differential cross sections for the He–O2 (N = 1, j = 0→ N ′, j′) collisions in a
magnetic field ωm = 5 (red dashed line) parallel to the relative velocity vector, H ‖ k (left)
and perpendicular to the relative velocity vector, H ⊥ k (right). The field-free cross sections
are shown by the green solid line. The collision energy is 200 cm−1. The dashed vertical
line serves to guide the eye in discerning the angular shifts of the partial cross sections. The
field-free cross sections for the scattering to final states with j′ = N ′ vanish, see text.
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9.2 Scattering of 3Σ molecules by closed-shell atoms in a magnetic field

form is given by Eq. (9.18). For the system under consideration, the phase shift

between J0(kR0ϑ) and J2(kR0ϑ) functions becomes negligibly small at angles about

40◦, while the shift between J4(kR0ϑ) and either J0(kR0ϑ) or J2(kR0ϑ) can only be

neglected at angles about 120◦. Therefore, if the cross section is comprised only of J0

and J2 contributions, it will not be shifted with respect to the field-free case, while

there may appear a field-iduced phase shift if the J4 Bessel function also contributes.

Indeed, in the parallel case, the 1, 0→ 3, 4 cross section, presented in the left panel

of Fig. 9.5 (e), exhibits a slight phase shift. In the perpendicular case, the Bessel

functions J|ρ|(kR0ϑ) for a range of ρ’s are mixed, see Eq. (9.29), which results in a

field-induced phase shift for both the 1, 0→ 1, 2 and 1, 0→ 3, 4 transitions. Fig. 9.5

shows the differential cross sections only up to 60◦, since this angular range dominates

the integral cross sections. However, the phase shifts disappear only at larger angles,

of about 120◦.

The most dramatic feature of the magnetic field dependence of the differential

cross sections is the onset of inelastic scattering for channels that are closed in the

absence of the field: these involve the transitions N = 1, j = 0→ N ′, j′ with j′ = N ′.

That these channels are closed in the field-free case can be gleaned from the scattering

amplitude (9.28) for ωm = 0, which reduces to

fFF1,0,0→N ′,j′,m′(ϑ) =
ikR0

4π
J|m′|(kR0ϑ)

Ξj′0√
2j′ + 1

Fj′m′c
0
N ′j′ (9.30)

This field-free amplitude vanishes because the c0
N ′j′ coefficients are zero for N ′ = j′,

as can be shown by the diagonalization of the field-free Hamiltonian (9.19). As a

result, the field-free cross sections for the transitions to 1, 1 and 3, 3 states vanish. The

hybridization by a magnetic field brings in coefficients c±1
N ′j′ which are nonvanishing

for N ′ = j′. The feature manifests itself in the integral cross sections as well.
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9 Effect of a magnetic field on differential cross sections

9.3 Scattering of 2Π molecules by closed-shell atoms

in magnetic fields

9.3.1 The 2Π molecule in magnetic field

In this Section, we consider a Hund’s case (a) molecule, equivalent to a linear symmetric

top. A good example of such a molecules is the OH radical in its electronic ground

state, X2ΠΩ, whose electronic spin and orbital angular momenta are strongly coupled

to the molecular axis. Each rotational state within the 2ΠΩ ground state is equivalent

to a symmetric-top state |j,Ω,m〉 with projections Ω and m of the total angular

momentum j on the body- and space-fixed axes, respectively. Due to a coupling of

the Π state with a nearby Σ state [326], the levels with the same Ω are split into

nearly-degenerate doublets whose members have opposite parities. The Ω doubling of

the 2Π 3
2
state of OH increases as j3, whereas that of the 2Π 1

2
state increases linearly

with j [283]. In our study, we used the values of the Ω doubling listed in Table 8.24

of Ref. [326].

The definite-parity rotational states of a Hund’s case (a) molecule can be written

as:

|j,m,Ω, ε〉 =
1√
2

[
|j,m,Ω〉+ ε|j,m,−Ω〉

]
, (9.31)

where the symmetry index ε distinguishes between the members of a given Ω doublet.

Here and below we use the definition Ω ≡ |Ω|. The symmetry index takes the value of

+1 or −1 for e or f levels, respectively. The parity of wave function (9.31) is equal to

ε(−1)j−
1
2 [299]. The rotational energy level structure of the OH radical in its X2ΠΩ

state is reviewed in Sec. 2.1.4 of Ref. [327].

When subject to a magnetic field, a Hund’s case (a) molecule acquires a Zeeman

potential,

Vm = jZωmB, (9.32)

with jZ the Z component of the total angular momentum (apart from nuclear spin),
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Figure 9.6: Expectation values of the alignment cosine 〈cos2 θ〉 for the 3/2, f (a) and 5/2, f
(b) states of the OH molecule, as a function of the magnetic field strength parameter ωm.

j, and

ωm ≡ (gLΛ + gSΣ)µBH /B (9.33)

Here Λ and Σ are projections of the orbital, L, and spin, S, electronic angular

momenta on the molecular axis, and gL = 1 is the electronic orbital gyromagnetic

ratio, cf. Eqs. (9.8) and (9.21). The matrix elements of Hamiltonian (9.32) in the

definite-parity basis (9.31) are

〈j′m′ε′|Vm|jmε〉 = ωmB

(
1 + εε′(−1)j+j

′+2Ω

2

)
(−1)j+j

′+m−1/2

×
√

(2j + 1)(2j′ + 1)

 j 1 j′

−Ω 0 Ω′

 j′ 1 j

m 0 −m′

 , (9.34)

where the last two factors are 3j-symbols [283], [284]. The matrix elements (9.34) are
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9 Effect of a magnetic field on differential cross sections

a generalization of Eqs. (16.13)–(16.18), and were presented, e.g., in Ref. [328]. For

an OH molecule in its ground 2Π3/2 state, the parity factor, (1 + εε′(−1)j+j
′+2Ω)/2,

reduces to δεε′ , which means that the Zeeman interaction preserves parity. The Zeeman

eigenstates are hybrids of the field-free states (9.31):

∣∣j̃, m,Ω, ε;ωm
〉

=
∑
j

aj̃jm(ωm)|j,m,Ω, ε〉, (9.35)

where j̃ designates the angular momentum quantum number of the field-free state

that adiabatically correlates with a given state in the field. The coefficients aj̃jm(ωm)

can be obtained by the diagonalization of the Hamiltonian (9.32) in the basis (9.31).

The dependence of the alignment cosine, 〈cos2 θ〉, on the field strength parameter

ωm is shown in Fig. 9.6 for the 3/2, f and 5/2, f states of the OH molecule. The

matrix elements of the 〈cos2 θ〉 operator are listed in Appendix 16.4.

9.3.2 The field-dependent scattering amplitude

We consider scattering from the initial j = 3/2, e state to some j′, e/f state. As

in the previous Sections, we use Eq. (9.11) to transform the wavefunctions (9.31).

Considering only the Ω-conserving transitions (Ω′ = Ω), the initial and final states

are:

|i〉 ≡
∣∣j̃, m,Ω, ε, ωm

〉
=

1√
2

∑
j

√
2j + 1

4π
aj̃jm(ωm)

∑
ξ

D j
ξm(ϕε, θε, 0)

[
D j∗
ξΩ(ϕ, θ, 0) + εD j∗

ξ−Ω(ϕ, θ, 0)
]
,

(9.36)

〈f| ≡
〈
j̃′,m′,Ω, ε′, ωm

∣∣
=

1√
2

∑
j′

√
2j′ + 1

4π
bj̃
′

j′m′(ωm)
∑
ξ′

D j′∗
ξ′m′(ϕε, θε, 0)

[
D j′

ξ′Ω′(ϕ, θ, 0) + ε′D j′

ξ′−Ω′(ϕ, θ, 0)
]

(9.37)
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9.3 Scattering of 2Π molecules by closed-shell atoms in magnetic fields

By substituting Eqs. (9.36) and (9.37) into Eq. (5.42), we obtain a closed expression

for the scattering amplitude:

fωm
i→f(ϑ) =

ikR0

4π

∑
κρ

κ6=0
κ+ρ even

Ξκ0D
κ∗
−ρ,∆m(ϕε, θε, 0)FκρJ|ρ|(kR0ϑ)Z j̃′,m

′,ε′;κ

j̃,m,ε;Ω
(ωm), (9.38)

where

Z j̃′,m
′,ε′;κ

j̃,m,ε;Ω
(ωm) =

∑
jj′

√
2j + 1

2j′ + 1
aj̃jm(ωm)bj̃

′

j′m′(ωm)

× C(jκj′;m∆mm′)C(jκj′; Ω0Ω)
[
1 + εε′(−1)κ+∆j

]
(9.39)

Eq. (9.38) simplifies for parallel or perpendicular orientations of the magnetic field

with respect to the relative velocity vector.

(i) For H ‖ k we have:

f
ωm,‖
i→f (ϑ) =

ikR0

4π
J|∆m|(kR0ϑ)

∑
κ6=0

κ+∆m even

Ξκ0Fκ∆mZ j̃
′,m′,ε′;κ

j̃,m,ε;Ω
(ωm), (9.40)

(ii) and for H ⊥ k we obtain:

fωm,⊥
i→f (ϑ) =

ikR0

4π

∑
κρ

κ6=0
κ+ρ even

Ξκ0d
κ∗
−ρ,∆m(π

2
)FκρJ|ρ|(kR0ϑ)Z j̃′,m

′,ε′;κ

j̃,m,ε;Ω
(ωm) (9.41)

9.3.3 Results for He–OH(X2Π 3
2
, j = 3

2 , f → j′, e/f) scattering in

a magnetic field

According to Ref. [329], the ground state He–OH potential energy surface has a

global minimum of −30.02 cm−1, which could be considered negligible with respect

to a collision energy on the order of 100 cm−1, as for the He–CaH and He–O2

systems treated above. However, the OH molecule has a large rotational constant,
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9 Effect of a magnetic field on differential cross sections

B = 18.5348 cm−1, and so the Massey parameter (5.21) becomes significantly smaller

than unity only at higher energies. Therefore, in order to ensure the validity of

the sudden approximation, we had to work with a collision energy of 1000 cm−1

(k = 13.86 Å−1; Massey parameter ξ ≈ 0.5). The corresponding equipotential line

of the He–OH (2Π) potential energy surface is shown in Fig. 9.2, and the Legendre

moments, Ξκ0, obtained by fitting the surface, are listed in Table 9.2.

Because of the negative spin-orbit constant, A = −139.051 cm−1 [326], the Ω

doublet of the OH(X2ΠΩ) molecule is inverted, with the paramagnetic 2Π3/2 state

as its ground state. Since |A| � |B|, we can see why the OH molecule can be well

described by the Hund’s case (a) coupling scheme.

In what follows, we consider OH (2Π) radicals prepared in the v = 0,Ω = 3
2
, j = 3

2
, f

state by hexapole state selection, like, e.g., in Ref. [107]. The molecules enter a

magnetic field region where they collide with 4He atoms. The scattered molecules are

state-sensitively detected in a field-free region.

We note that due to a large rotational constant, the Zeeman effect in the case of

the OH radical is very weak, and so are the field-induced changes of the scattering.

The differential cross sections for the He–OH collisions, as obtained from Eq. (9.17),

are shown in Fig. 9.7, together with the elastic scattering cross section obtained from

Eq. (5.20). The differential cross sections are presented for the field-free case, ωm = 0,

as well as for ωm = 5, which for the OH radical corresponds to an extreme field

strength of H =99.2 T. First, let us consider the field-free scattering amplitude

fw=0
i→f (ϑ) =

√
2j + 1

2j′ + 1
J|∆m|(kR0ϑ)

×
∑
κ6=0

κ+∆m even

Ξκ0Fκ,∆mC(jκj′;m∆mm′)C(jκj′; Ω0Ω)
[
1 + εε′(−1)κ+∆j

]
(9.42)

We see that the angular dependence of the amplitude is given by the Bessel

function J|∆m|. The term in the square brackets and the Fκ,∆m coefficient provide a

selection rule: ∆m+ ∆j must be even for parity conserving (f → f) transitions, and

odd for parity breaking (f → e) transitions.
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Figure 9.7: Differential cross sections for the He–OH (j = 3/2, f → j′, e/f) collisions in a
magnetic field ωm = 5 (red dashed line) parallel to the relative velocity vector, H ‖ k (left)
and perpendicular to the relative velocity vector, H ⊥ k (right). The field-free cross sections
are shown by the green solid line. The collision energy is 1000 cm−1. The dashed vertical
line serves to guide the eye in discerning the angular shifts of the partial cross sections. See
text.
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9 Effect of a magnetic field on differential cross sections

The effect of this selection rule can be seen in Fig. 9.7. The elastic cross section,

Fig. 9.7 (a), is proportional to an odd Bessel function, cf. Eq. (5.20). Therefore, it is

in phase with the 3/2, f → 5/2, f and 3/2, f → 7/2, e cross sections, but out of phase

with 3/2, f → 5/2, e and 3/2, f → 7/2, f cross sections.

For a magnetic field parallel to the relative velocity, H ‖ k, the angular dependence

is given explicitly by J|∆m|(kR0ϑ), and is seen to be independent of the field, cf.

Eq. (9.40). Therefore, as the left panel of Fig. 9.7 shows, no field-induced phase

shift of the differential cross sections takes place. For H ⊥ k, a mix of Bessel

functions, J|ρ|(kR0ϑ), contribute to the sum. However, since the Zeeman effect is so

weak for the OH molecule, it is the aj̃jm(ωm), bj̃
′

j′m′(ωm) hybridization coefficients with

j = j̃ which provide the main contribution to the sum, even at ωm ≈ 5. As a result,

no contributions from higher Bessel functions are drawn in, and so no significant

field-induced phase shift is observed for the perpendicular case either.
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10 The k− k′ − j′ vector correlation

in Ar–NO(X2Π) collisions

Anticipate the difficult by managing the easy.

Laozi

10.1 Alignment moments: comparison with experi-

ment and exact theory

In this section we apply the Fraunhofer model of vector correlations, Sec. 6, to the

investigation of inelastic collisions of closed-shell atoms with rotationally polarized

symmetric-top-equivalent linear molecules.

For this case study, we chose the k− k′ − j′ three-vector correlation in the Ar–

NO (j = Ω = 1/2→ j′,Ω′ = 1/2) collisions, as this can be compared with the results

of experiments and close-coupling calculations of Wade et al. [93]. We restrict our

considerations to the two lowest rotational channels, j′ = 9/2 and 17/2, reported in

Ref. [93], and average over the e/f parity states as these have not been resolved in the

experiment. We take into account the energy spread of the molecular beams, Ecoll =

520± 70 cm−1, by averaging our results over three collision energies corresponding to

the most probable energy and to energies at half-maximum of an essentially Gaussian

collision energy distribution. In determining the Ar–NO potential, we rely on the most

recent potential energy surface (PES) obtained by Sumiyoshi et al. [305] and make

use of only the average potential, Vsum, since the differential and depolarization cross

sections are found to be only weakly affected by the difference PES, Vdif [307, 330].
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10 The k− k′ − j′ vector correlation in Ar–NO(X2Π) collisions

Table 10.1: The physical meaning and range of the a2
0(j′) and a2

2+(j′) alignment polarization
moments. The Z axis points along the initial relative velocity k. The final relative velocity k′

lies in the X > 0 half of the XZ plane. The a2
0(j′) moment accounts for alignment of j′ with

respect to k. Positive (negative) values of a2
0(j′) correspond to j′ ‖ k (j′ ⊥ k, in which case j′

lies in the XY plane). The positive (negative) values of the a2
2+(j′) moment correspond to

alignment of j′ along the X-axis (Y -axis). The a2
2−(j′) moment vanishes identically. The

indicated ranges of the moments correspond to the high-j limit.

Moment a2
0(j′) a2

2+(j′)

Meaning j′ along Z j′ along Y or X

Range j′ ⊥ Z → −1/2 j′ ‖ Y → −
√

3/2

j′ ‖ Z → 1 j′ ‖ X →
√

3/2

The PES of Ref. [305] comes close to that of Alexander [308] and both PES’s yield

essentially the same polarization moments.

In order to characterize the k− k′ − j′ three-vector correlation, we make use of

the alignment moments a2
0(j
′) and a2

2+(j′) of the diatomic’s final rotational angular

momentum j′ with respect to the XY plane. The a2
0(j′) moment accounts for alignment

of j′ with respect to the initial relative velocity k and, in the high-j′ limit, ranges

between −1/2 and 1. Positive (negative) values of a2
0(j′) correspond to j′ ‖ k (j′ ⊥ k),

in which case j′ lies in the XY plane). The a2
2+(j′) moment varies from −

√
3/2 to

√
3/2 (in the high-j′ limit). Its positive (negative) values correspond to alignment of

j′ along the X-axis (Y -axis). This is summarized in Table 10.1.

Figure 10.1 display the a2
0(j
′) and a2

2+(j′) moments obtained in analytic form

from the Fraunhofer model along with the results of experiment and close-coupling

calculations of Wade et al. [93]. The agreement between the Fraunhofer model and

the close-coupling calculation is compelling.

Unfortunately, only two experimental points are available for the scattering angles

concerned. Therefore, it is not clear whether the oscillatory behavior at small-angles

would indeed show up in an experiment. We hope that the present work will inspire

an experiment whose resolution will suffice to clarify this issue.

One can see that for zero scattering angle, ϑ = 0, a2
0 = −1/2 and a2

2+ = 0. The
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10.1 Alignment moments: comparison with experiment and exact theory
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Figure 10.1: Polarization moments pertaining to the k− k′ − j′ three-vector correlation
in Ar–NO (j = Ω = 1/2,→ j′,Ω′ = 1/2) collisions at 520±70 cm−1, for j′ = 9/2 (left) and
j′ = 17/2 (right). The analytic results furnished by the Fraunhofer model (red solid line)
are compared with the experiment (black dots) and close-coupling calculations (blue dashed
line) of Ref. [93].
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Figure 10.2: Distribution of final angular momentum vector, j′, and internuclear axes,
r′, when the initial distributions of j and r are unpolarized, illustrating the k− k′ − j′

three-vector correlation.

reason is geometric: in pure forward scattering, the j′ vector must be perpendicular to

k. Also, since k is roughly parallel to k′ for very small ϑ, the j′ vector is approximately

perpendicular to k′. For small but nonzero scattering angles, ϑ ∼ 5◦, the a2
0 moment

becomes positive, both for j′ = 9/2 and 17/2, indicating that j′ tends to align along k.

The a2
2+ moment, on the other hand, exhibits narrow positive oscillations at very

small angles (ϑ ≈ 1◦), but is in general negative, which corresponds to alignment of j′

along the Y -axis.

Figure 10.2 shows the distribution of the j′ and r′ vectors of the NO molecule after
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10 The k− k′ − j′ vector correlation in Ar–NO(X2Π) collisions

a collision with Ar, obtained with Eq. (4.20), (4.21).

Interestingly, the polarization moments presented in this paper are in a quantitative

agreement with the accurate, close-coupling calculations, while the differential cross

sections for the Ar–NO scattering, presented in Chapter 7, agree only qualitatively.

From this we draw the conclusion that the polarization moments are mainly due

to the hard-core part of the potential. This conclusion is also supported by purely

classical arguments based on the conservation of the projection of angular momentum

on the collision’s kinematic apse, see, e.g., Ref. [275]. The phase shift of the moment’s

oscillations as derived from the model with respect to those obtained from the close-

coupling calculation is likely due to the non-diffractive contributions to scattering,

attractive part of the Ar–NO potential, and breakdown of the sudden approximation.

The alignment moments of Fig. 10.1 were normalized by the differential cross

sections obtained from the Fraunhofer model. Since the Fraunhofer differential

cross sections decrease faster with the scattering angle than their close-coupling

counterparts [196], the oscillations of the analytic polarization moments are left

relatively undamped at large scattering angles.

The Fraunhofer model readily explains the above results: the analytic scattering

amplitudes are proportional to the Bessel functions, which is a signature feature of

diffraction. It is thus a diffractive oscillatory pattern that determines the angular

dependence of the polarization moments. While the shape and frequency of the angular

oscillations are entirely determined by the hard core of the PES, their position is

somewhat influenced by the PES’s attractive branch and non-diffractive contributions

to the scattering, neglected within the model. The Clebsch-Gordan coefficients that

appear in the scattering amplitude bring about selection rules that constrain the final

parity of the states and the projections of the angular momentum j′ on k. Within the

model, the shape of the scatterer enters through the Legendre moments of a series

expansion of the hard-core PES in terms of Legendre polynomials, Pκ(cos θ). The

angular momentum algebra that the model entails gives rise to additional selection

rules which allow for nonzero contributions to the polarization moments to arise only
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10.1 Alignment moments: comparison with experiment and exact theory

from Legendre moments of order κ ≥ j′ − j. Therefore, the vector correlations for

the j = 1/2, 3/2 → j′ = 9/2 channels are governed by the Legendre moment with

κ = 4, whereas the κ = 8 Legendre moment governs the polarization moments of the

j = 1/2, 3/2→ j′ = 17/2 channels.

Moreover, since the Fraunhofer model can account for collisions in an electrostatic

field [196, 199], we investigated the effect of the field on the polarization moments. A

field of 16 kV/cm, sufficient to significantly orient the NO molecule in the space-fixed

frame, was found to cause only a tiny difference in the parity-resolved polarization

moments as compared with the field-free ones. Upon averaging over the e/f states,

the effect of the field was found to be altogether negligible.

In summary, we made use of the Fraunhofer model of direct rotationally inelastic

atom–diatom collisions to study vector correlations in such collisions analytically.

The vector correlations obtained from the model closely reproduce those extracted

from close-coupling calculations which, in turn, agree well with experiment. The

Fraunhofer model of vector correlations demonstrates that the stereodynamics of the

Ar–NO rotationally inelastic collisions is contained solely in the diffractive part of the

scattering amplitude which is governed by a single Legendre moment characterizing

the anisotropy of the hard-core part of the system’s PES. Given the “geometric” origin

of this behavior – ordained by the angular momentum algebra – we expect to find a

similar behavior in other systems.
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10 The k− k′ − j′ vector correlation in Ar–NO(X2Π) collisions

10.2 Influence of higher-order polarization moments

The left panel of Fig. 10.3 shows the a4
q±(j′) moments to the k− k′ − j′ three-vector

correlation in Ar–NO (j = Ω = 1/2,→ j′,Ω′ = 1/2) collisions at 520 cm−1. All

the moments oscillate about zero, with a4
0(j
′) and a4

4+(j′) being in general slightly

positive, and a4
2+(j′) slightly negative. Although the values of these moments are small,

taking them into account in Eqs. (4.20), (4.21) slightly changes the distributions of

j′ and r′ vectors shown in Fig. 10.4, the j′ distribution becomes peaked in Y and Z

directions at larger scattering angles. The right panel of Fig. 10.3 shows the a6
q±(j′)

moments describing the k− k′ − j′ three-vector correlation. The average values of

these moments are very small and they don’t alter the distributions of j′ and r′ vectors

presented in Fig. 10.4.
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Figure 10.3: Polarization moments a4
q±(j′) and a6

q±(j′) pertaining to the k− k′ − j′ three-
vector correlation in Ar–NO (j = Ω = 1/2,→ j′,Ω′ = 1/2) collisions at 520 cm−1. There is
no a6

6+(j′) moment for j′ = 9/2.
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Figure 10.4: Distribution of final angular momentum vector, j′, and internuclear axes, r′,
when the initial distributions of j and r are unpolarized, as in Fig. 10.2, but with a4

q±(j′)
moments included.
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11 The k− k′ − j′ vector correlation

in other systems: the fingerprints of

diffraction

The moment of glory comes with the discovery

of a new theory that does not solve any of the

old problems, but renders them irrelevant.

Gian-Carlo Rota, “Indiscrete thoughts”

Here we follow the previous line of research for Ar–NO to investigate the k− k′ − j′

three-vector correlation in collisions of He with NO, O2, OH, and CaH, which allows

us to identify the form factors (“fingerprints”) of diffraction-driven stereodynamics.

First, we focus on vector correlations in the He–NO system, for different scattering

channels and collision energies. We compare analytic model results with fully quan-

tum close-coupling calculations performed using the HIBRIDON suite of computer

codes [331] on the PES of K los et al. [332] by Pablo Jambrina and Marcelo de Miranda.

As before, in order to characterize the k− k′ − j′ three-vector correlation, we make

use of the alignment moments a2
0(j′) and a2

2+(j′), which physical meaning and range

moments is given in Table 10.1.

Figure 11.1 shows the a2
0(j
′) and a2

2+(j′) moments for different channels of the

He–NO (j = Ω = 1/2→ j′,Ω′ = 1/2) system at a collision energy of 520 cm−1. All

the alignment moments we present below were obtained for unresolved initial and

final lambda-doublet states. The compelling agreement of the Fraunhofer model with

the exact calculations for the He–NO as well as for Ar–NO [200] systems attests to the

predominant role of diffraction in shaping the stereodynamics of rotationally inelastic
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11 The k− k′ − j′ vector correlation in other systems: the fingerprints of diffraction
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Figure 11.1: Polarization moments pertaining to the He–NO (j = Ω = 1/2→ j′,Ω′ =
1/2) system at 520 cm−1. Model results are shown by lines, exact computations – by
symbols. Form factors of the alignment moments are shown by thick semitransparent
lines.

collisions at thermal and hyperthermal energies. Furthermore, the agreement with

the model shows that what matters the most – as far as the PES is concerned – is

the 2D contour of its repulsive core. Save for the moments’ oscillatory structure,

which differs for different final states (as these arise due to different sets of the PES’s

Legendre moments), the diffraction manifests itself in the same way in all the scattering

channels, i.e., it leaves behind the same fingerprints, shown in Fig. 11.1 by the thick

semi-transparent lines: whereas the a2
0 moments are negative for a purely forward

scattering and increase at larger scattering angles where they approach a constant

positive value, the a2
2+ moments drop from a zero for forward scattering and tend

to a constant negative value at larger scattering angles. This means that, due to

geometric reasons, j′ aligns perpendicular to k for a purely forward scattering. At

larger scattering angles, j′ aligns along the Z and Y axes, indicating that the molecular

axis aligns preferentially in the X direction.
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He–NO (j = Ω = 1/2 → j′ = 9/2,Ω′ = 1/2) system at different collision energies.
The Fraunhofer moments coincide exactly. Form factors of the alignment moments
are shown by thick semitransparent lines. See text.

If the oscillations of the alignment moments are due to diffraction, they should

scale with the de Broglie wavelength of the collision system and the size of the

molecular scatterer, in analogy with the wavelength of light and the obstacle size in

optics. Indeed, Figure 11.2 reveals such a scaling of the a2
0(j′) and a2

2+(j′) moments

for the He–NO (j = Ω = 1/2→ j′ = 9/2,Ω′ = 1/2) channel and a range of collision

energies. The scaling was implemented by the transformation ϑ→ ϑR0/λ, where ϑ

is the scattering angle, R0 is the molecular size and λ is the de Broglie wavelength.

Whereas the alignment moments furnished by the Fraunhofer model coincide exactly

upon scaling in ϑ (black solid line), such a scaling brings the exact moments (filled

circles, squares, and triangles) quite close to one another, but does not result in

their exact matching. The remaining differences among the scaled exact moments

corresponding to different collision energies attest to non-diffractive contributions to

scattering, the influence of the attractive branch of the PES, and a breakdown of the
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Figure 11.3: Polarization moments pertaining to the He–NO (j = Ω = 1/2→ j′ =
3/2,Ω′ = 1/2) system at 10 cm−1. Model results (black solid line) are compared with
exact computation (blue circles). Form factors of the alignment moments are shown
by thick semitransparent lines.

sudden approximation. For instance, the scaled exact moments corresponding to 520

and 1000 cm−1 come close to one another, while the oscillations for 150 cm−1 are quite

off, especially for the a2
0(j′) moment. We ascribe this discrepancy to the potential well

of 25 cm−1 [332] that brings about non-diffractive contributions to the stereodynamics

while, at the same time, diminishing the role of the PES’s “repulsive core.” However,

the form factor of the alignment moments (thick semitransparent line) is quite similar

to the ones shown in Figure 11.1, indicating that diffraction leaves behind the same

“fingerprint” for different collision energies and scattering channels. Interestingly, at

low collision energies (10 cm−1), the oscillations of the alignment moments fall further

out of phase, but the form factors still remain in place. This is exemplified by Fig. 11.3

which shows the alignment moments for He–NO (j = Ω = 1/2→ j′ = 3/2,Ω′ = 1/2)

scattering at 10 cm−1.

In order to see how the diffraction patterns change from one scattering system to

another, we also examined the He–O2, He–OH, and He–CaH systems at a collision
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Figure 11.4: Polarization moments versus scaled scattering angle pertaining to the
He–NO (j = Ω = 1/2→ j′ = 9/2,Ω′ = 1/2), He–O2 (j = 0, N = 1,→ j′ = 4, N ′ = 5),
He–OH (j = Ω = 1/2,→ j′ = 9/2,Ω′ = 1/2), and He–CaH (j = 1/2, N = 0,→ j′ =
11/2, N ′ = 6) systems at 520 cm−1. The moments were obtained using the Fraunhofer
model. Form factors of the alignment moments are shown by thick semitransparent
lines. See text.

energy of 520 cm−1 and similar channels, using potential energy surfaces of refs. [243,

325, 329].

Figure 11.4 shows the dependence of the polarization moments on the scaled

scattering angle obtained from the Fraunhofer model, pertaining to the He–NO (j =

Ω = 1/2→ j′ = 9/2,Ω′ = 1/2), He–O2 (j = 0, N = 1,→ j′ = 4, N ′ = 5), He–OH (j =

Ω = 1/2,→ j′ = 9/2,Ω′ = 1/2), and He–CaH (j = 1/2, N = 0,→ j′ = 11/2, N ′ = 6)

systems. One can see that the shape of the oscillations differs for different collision

partners. Going from the most symmetric scatterer, O2, through NO and OH to the

most asymmetric one, CaH, one can see that the oscillations become increasingly

asymmetric too, and their amplitudes decrease. This suggests relating the asymmetry

and amplitude of the oscillations to the asymmetry of the repulsive core of the PES.

However, the form factors (shown by the semi-transparent curves) that capture the
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11 The k− k′ − j′ vector correlation in other systems: the fingerprints of diffraction

alignment moments are very similar to one another, indicating that the “fingerprints”

of diffraction barely depend on the collision system.

In summary, in order to gain insight into the stereodynamics of rotationally

inelastic atom-molecule collisions, we compared polarization moments obtained from

an analytic model with those extracted from exact close-coupling calculations for the

He–NO collisions. The model alignment moments were found to come as close to

exact results as for the previously examined Ar–NO system, which reveals that the

collision stereodynamics in question is governed by diffraction of matter waves from

a 2D contour of the repulsive core of the potential (flat sharp-edged obstacle). The

oscillatory patterns of the alignment moments due to diffraction scale with the de

Broglie wavelength and the molecular size. Therefore, deviations from such patterns

single out other contributions to the scattering which are mainly non-diffractive.

Furthermore, diffraction leaves behind the same fingerprints for different channels

and collision energies for a range of systems, including He–NO, He–O2, He–OH, and

He–CaH. These fingerprints can be used to identify diffraction-driven stereodynamics

in future experiments and exact computations.
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12 The k− k′ − j′ vector correlation

in Ne–NO(A2Σ) collisions

It’s not enough that we do our best; sometimes

we have to do what’s required.

Winston Churchill

12.1 Comparison of model and exact results

In experiment with ground state molecules, forward scattered species are hardly

distinguishable from unscattered molecular beam coming through. As presented

in Chapter 10, at small scattering angles very few points could be extracted from

measurements of Wade et al. of the j′-alignment in Ar–NO(X2Π) collisions. This

problem might be overcame by colliding molecules preliminary excited into a higher

electronic state. Recently Kay et al. performed accurate measurements of the

k− k′ − j′ vector correlation in Ne–NO(AΣ) collisions. In the experiment, the pump

laser populates the A2Σ, N = 0, J = 1/2 molecular states, that are then rotationally

excited to N ′ = 4, 5, 7, 9 due to collisions with Ne. Two probe lasers are used to excite

the scattering products into the E2Σ state and subsequently ionize the molecules.

Velocity-mapped ion imaging measurements for different polarizations of the probe

laser (within or perpendicular to the collision plane) allow to reveal the a2
0(j′), a2

2+(j′)

alignment moments pertaining to the k− k′ − j′ vector correlation [94]. In this section

we compare analytic alignment moments furnished by the Fraunhofer model with

exact computations for the collision energies and channels relevant to the experiment

of Kay et al.
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12 The k− k′ − j′ vector correlation in Ne–NO(A2Σ) collisions

Figures 12.1, 12.2 show differential cross sections and a2
0(j′), a2

2+(j′), a4
0(j′) polar-

ization moments for Ne–NO (A2Σ;N = 0, J = 1/2→ N ′) collisions with the values of

N ′ = 4, 5, 7, 9 relevant to experiment of Kay et al.

Exact computations were performed by Jacek K los and Millard Alexander using

the HIBRIDON package [331]. The DCS’s and polarization moments were averaged

over the spin-rotation splitting, J ′ = N ′ ± 1/2, not resolved in experiment, and the

spread of molecular beam, which was ±7% of the center-of-mass collision energy.

The Fraunhofer model takes accounts only for diffractive contributions, therefore

the magnitudes of model DCS’s are systematically smaller than exact ones. Also, since

diffraction takes place only in the forward-scattering region, the agreement becomes

worse for larger angles. One can see that the model alignment moments are in good

agreement with the exact ones, for N ′ = 4 and 5, but the agreement is worse for

higher N ′, especially for the a2
0(j′) moment.

To figure out the origin of this disagreement in Figure 12.3 we compare model and

exact a2
0(j′) moments computed for N ′ = 1 . . . 8 at the experimental energy of 470 cm−1.

One can see that the larger rotational transfer the worse is the agreement with exact

results. We attribute this effect to the breakdown of the sudden approximation

for higher N ′s. Indeed, model alignment moments, computed at higher energy of

1000 cm−1 are in much better agreement with exact computations, cf. Fig. 12.4.
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Figure 12.1: Differential cross sections and polarization moments pertaining to the
k− k′ − j′ three-vector correlation in Ne–NO (A2Σ;N = 0, J = 1/2→ N ′ = 4, 5) collisions
at 470±33 cm−1. The analytic results furnished by the Fraunhofer model (black solid line)
are compared with close-coupling calculations (blue dots).
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Figure 12.2: Differential cross sections and polarization moments pertaining to the
k− k′ − j′ three-vector correlation in Ne–NO (A2Σ;N = 0, J = 1/2→ N ′ = 7, 9) collisions
at 470±33 cm−1. The analytic results furnished by the Fraunhofer model (black solid line)
are compared with close-coupling calculations (blue dots).
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0(j′) polarization moments pertaining to the k− k′ − j′ three-vector

correlation in Ne–NO (A2Σ;N = 0, J = 1/2 → N ′) collisions at 470 cm−1. The analytic
results furnished by the Fraunhofer model (black solid line) are compared with close-coupling
calculations (blue dots).
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Figure 12.4: The a2
0(j′) polarization moments pertaining to the k− k′ − j′ three-vector

correlation in Ne–NO (A2Σ;N = 0, J = 1/2→ N ′) collisions at 1000 cm−1. The analytic
results furnished by the Fraunhofer model (black solid line) are compared with close-coupling
calculations (blue dots).
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12.2 Effect of a magnetic field

12.2 Effect of a magnetic field

The Fraunhofer model allows to easily account for the effect of external fields. In

this section we investigate the effect of a magnetic field on differential cross sections

and alignment moments of Ne–NO (A2Σ;N = 0, J = 1/2→ N ′) collisions. Here we

employ the theory for collisions of closed-shell atoms with 2Σ molecules in magnetic

fields, described in detail in Chapter 9.

Figure 12.5 shows the comparison of cross sections and alignment moments for

the field-free and field-dressed cases, for the field strength of 1 Tesla. One can see

that the magnitudes of the DCS’s show quite strong field dependence, that will affect

integral cross sections, more easily measurable experimentally. At the same time, the

alignment moments characterizing the k− k′ − j′ vector correlation are not influenced

by the field.
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Figure 12.5: Differential cross sections and the a2
0(j′), a2

2+(j′) polarization moments for
Ne–NO (A2Σ;N = 0, J = 1/2→ N ′) collisions at 470 cm−1. Field free model results (red
dotted line are compared) with the collisions in a magnetic field of 1 Tesla (black solid line).
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13 The k− j− k′ and k− j− k′ − j′

vector correlations

These parts of the work should be called:

“a [sic] best means for getting a headache!”

Lenin, Conspectus of Hegel’s Logic (1914)

Here we illustrate the scope of the model by treating the k− j− k′ and

k− j− k′ − j′ correlations in the Ar–NO (X2Π, j = Ω = 3/2 → j′,Ω′ = 3/2)

scattering which, to date, have not been measured or evaluated. Since the j vector

with j = 1/2 can only be oriented but not aligned, the only-to-alignment-sensitive

Fraunhofer model cannot handle vector correlations involving the j-vector with j = 1/2.
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Figure 13.1: Polarization moments pertain-
ing to the k− j− k′ three-vector correlation
in Ar–NO (j = Ω = 3/2,→ j′,Ω′ = 3/2) col-
lisions at 520 cm−1 obtained from the Fraun-
hofer model.

However, since the j vector with j =

3/2 can be aligned, we worked out the

k− j− k′ and k− j− k′ − j′ vector cor-

relations for the Ar – NO (X2Π, j =

3/2,Ω,→ j′,Ω) scattering within the

Ω = 3/2 manifold

Figure 13.1 displays the a2
0(j) polar-

ization moment for the k− j− k′ three-

vector correlation. One can see that the

small-angle scattering is favored by pos-

itive values of the a2
0(j) moment, which

corresponds to j ‖ k, i.e., to a “broad-

side” approach of NO with respect to k,

which enhances the scattering cross sec-
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13 The k− j− k′ and k− j− k′ − j′ vector correlations

tion. However, for larger scattering angles, the a2
0(j) moment becomes slightly negative,

attesting to a preference for an “edge-on” approach with j ⊥ k.

Figure 13.2 exemplifies the k− j− k′ − j′ four-vector correlation in terms of the

alignment moment a2
0(j′) of the final j′ for different polarizations a2

0(j) of the initial

j. For an unpolarized initial state (black line), j′ tends to align perpendicular to k

(“broadside” recoil) for very small ϑ, but reverses to a slight alignment in the parallel

direction (“edge-on” recoil) for larger scattering angles. Initial polarization of NO

such that j ⊥ k is seen to result in only small changes of the final alignment (blue

dashed line). However, in the case of a “broadside” approach, j ‖ k, the stereodynamics

changes significantly (red dotted line). The a2
0(j′) moment remains slightly negative

throughout the range of scattering angles, indicating a propensity for an “edge-on”

recoil, with j′ ⊥ k.

Although the k− j− k′ and k− j− k′ − j′ vector correlations in rotationally

inelastic scattering of Ar–NO have not been revealed in up-to-date experiments, such

measurements are possible by preparing polarized reagents in a supersonic expansion

or by electronic excitation of the NO molecules with polarized laser light which results

in the unequal population of the rotational m states due to selection rules.
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Figure 13.2: The k− j− k′ − j′ four-vector correlation in the Ar–NO (j = Ω = 3/2,→
j′,Ω′ = 3/2) collisions at 520 cm−1 in terms of the dependence of the final polarization
moments a2

0(j′), a2
2+(j′) on the initial alignment a2

0(j) = 0 (black line), a2
0(j) = −0.4 (blue

dashed line), and a2
0(j) = 0.4 (red dotted line), with a2

2+(j) = 0 in each case. Obtained
analytically from the Fraunhofer model.
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14 Extensions of the Fraunhofer

model: multiple scattering of matter

waves

A physicist is just an atom’s way of looking at itself.

Niels Bohr

Multiple scattering of matter waves arises in a broad variety of contexts, rang-

ing from gas transport [333] to the scattering of subatomic particles by atoms or

molecules [334, 335] to cosmic ray showers [336]. Inherent to the concept of multiple

matter wave scattering is the notion of a refractive index, n, which, by the optical

theorem [293], is proportional to the forward scattering amplitude, f(0). While

Im[f(0)] and thus Im[n] are related to the total integral scattering cross section and so

can be measured in a standard beam scattering experiment, Re[f(0)] and thus Re[n]

reflect the change of the wave’s phase velocity and can only be accessed by matter

wave interferometry. The first such interferometric measurement was carried out in

1995 by Schmiedmayer et al. [337, 338], who determined both the attenuation and the

phase velocity change of sodium atom waves propagating through a number of gases.

Subsequently, the Pritchard group was able to observe glory-type oscillations in the

dependence of the refractive index on the sodium beam velocity [339, 340, 341]. In

2007, Jacquey et al. [342] implemented an improved, Mach-Zehnder type of an atom

interferometer and measured the index of refraction of lithium waves passing through

noble gases. In 2008, Champenois et al. [343] and, independently, Hornberger and

Vaccini [344], provided an analysis of how the motion of the scatterers affects the

measured refractive index. This work showed that the formulae used to extract the
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14 Extensions of the Fraunhofer model: multiple scattering of matter waves

refractive index from the experimental data [338, 345] and in the related theoretical

treatments [346, 347, 348, 349] lacked consistency with the Beer-Lambert law and

thus were incorrect.

According to the scenario of Ref. [343], an atomic or ionic beam of “projectiles” p

of mass mp and the laboratory velocity vp propagates through a gas of density Nt

made out of “target” particles t of mass mt and laboratory velocity vt. For plane

matter waves, the velocities vp,t are related to the laboratory wave vectors kp,t by

~kp,t = mp,tvp,t. The relative motion of the target and projectile particles is described

by the relative wave vector kr = µvr/~, where vr = vp − vt is the relative velocity,

and µ = mpmt/(mp + mt) the reduced mass. Taking this scenario into account,

Champenois et al. [343] derived a new formula for the refractive index of a matter

wave propagating through a dilute gas:

n = 1 + 2πNt
mp +mt

mt

〈f(kr, 0)〉
k2
p

, (14.1)

where f(kr, 0) ≡ f(0) is the forward scattering amplitude pertaining to the scattering

angle ϑ = 0. The averaging in Eq. (14.1) is carried out over the relative wave vectors,

kr, corresponding to a normalized relative velocity distribution [343], see below.

Previous theoretical treatments of the refractive index of atomic waves, surveyed

in Ref. [343], were based on WKB [338] or eikonal [341, 350] approximations, which

become analytic only if the repulsive, short-range interaction, is neglected, cf. also

Refs. [338, 343]. In this Chapter, we combine the WKB treatment of scattering

for the long-range attraction with the Fraunhofer approximation for the short-range

repulsion and thereby obtain an analytic model of the refractive index which accounts

for both short- and long-range multiple matter-wave scattering. The resulting analytic

refractive index provides an additional insight into multiple scattering and facilitates

data analysis.

After briefly introducing the model, we apply it to the refractive index of Li atom

waves propagating through Ar, Kr, and Xe gases and compare the results with the

measurements of Jacquey et al. [342]. In addition, we exemplify the model’s scope by
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14.1 Model of matter-wave refraction

examining the refraction of a Na+ ionic beam passing through a dilute N2 gas.

14.1 Model of matter-wave refraction

In the model introduced herein, we consider the scattering amplitude to consist of

two parts:

f(kr, 0) = fshort(kr, 0) + flong(kr, 0) (14.2)

The short range part, fshort(kr, 0), arises from the scattering by the “hard core,”

repulsive branch of the potential, and can be evaluated in closed form within the

Fraunhofer model of matter wave scattering. The Fraunhofer model was introduced

by Drozdov [193] and generalized by Blair [194] in the late 1950s to treat inelastic

nuclear scattering, and adapted by Faubel [195] to account for rotationally inelastic

thermal collisions between helium atoms and N2 and CH4 molecules. Recently, we

generalized the Fraunhofer model to treat atom-molecule collisions in electric [196, 199],

magnetic [198], and laser fields [197], and also to gain insight into the stereodynamics

of molecular collisions [200, 201].

Within the Fraunhofer model, the hard core part of the potential amounts to a

two-dimensional, impenetrable obstacle with sharp boundaries. The elastic scattering

amplitude is given by the amplitude for the Fraunhofer diffraction of matter waves by

such an obstacle [196],

fshort(kr, ϑ) = ikrR
2
0(kr)

J1[krR0(kr)ϑ]

krR0(kr)ϑ
, (14.3)

where J1 is the Bessel function [295] and R0 is the radius of the interaction which, for

an atom-atom potential, is given by the solution of the equation V (R0) = ~2k2
r/(2µ),

with V (r) the interaction potential. For forward scattering, the amplitude of Eq. (14.3)

becomes:

fshort(kr, 0) =
ikrR

2
0(kr)

2
(14.4)

Hence the Fraunhofer amplitude is purely imaginary and, therefore, contributes only
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14 Extensions of the Fraunhofer model: multiple scattering of matter waves

to the imaginary part of the refractive index.

In order to account for the long-range part of the scattering amplitude, flong(kr, 0),

we make use of the WKB approximation, which is accurate for thermal collisions

dominated by partial waves with large angular momenta l. We consider the general

case of the inverse-power long-range potential,

Vlong(r) = −Cβ
rβ
, (14.5)

with Cβ > 0 and β > 3. For an atom-atom interaction, β = 6, while β = 4 for an

ion interacting with an atom or molecule. For the potential of Eq. (14.5), the WKB

phase shift for the l-th partial wave is given by [293]:

δ
(β)
l =

µCβk
β−2
r

2~2lβ−1

Γ(1
2
)Γ(β−1

2
)

Γ(β
2
)

(14.6)

The WKB forward scattering amplitude [293],

f
(β)
WKB(kr, 0) =

1

ikr

∫ ∞
0

l
(
e2iδ

(β)
l − 1

)
dl, (14.7)

then becomes, on substituting from Eq. (14.6):

f
(β)
long(kr, 0) = k

β−3
β−1
r

(√
π

2

) β+1
β−1

[
µCβ
~2

Γ(β−1
2

)

Γ(β
2
)

] 2
β−1
[

Γ( 3−β
2−2β

)

Γ( 1
1−β )

+ i
Γ(β−2

β−1
)

Γ( β+1
2β−2

)

]
(14.8)

14.2 Refraction of atom matter waves

In the case of an atom beam passing through an atomic gas, β = 6 and the forward

scattering amplitude becomes

fatom(kr, 0) = fshort(kr, 0) + f
(6)
long(kr, 0)

=
ikrR

2
0(kr)

2
+

(
ikr
2

)3/5

Γ

(
3

5

)(
3π

16

µC6

~2

)2/5

(14.9)

138



14.2 Refraction of atom matter waves
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Figure 14.1: Upper panel shows the real and imaginary parts of the reduced refractive
index η ≡ (n − 1)/Nt [m3] multiplied by 1025v

7/5
p for Li beam propagating through Xe

gas, in dependence of the beam velocity vp. Lower panel shows the corresponding ratio
Re (η)/Im (η). Model results (solid curves) are compared with experimental data of Ref. [342].
Dashed curves show the results of the model with the short-range potential excluded.

By substituting from Eq. (14.9) into Eq. (14.1) and making use of the distribution

function given by Eq. (A3) of Ref. [343],

P (vr) =
2vr

π1/2αvp
exp

[
−
v2
p + v2

r

α2

]
sinh

[
2vpvr
α2

]
, (14.10)

with α =
√

2kBT/mt, kB Boltzmann’s constant, and T the temperature, we obtain

the following expression for the reduced index of refraction,

ηatom ≡
n− 1

Nt

=
2π~
mpv2

p

[
i〈vr〉R2

0 + 〈v3/5
r 〉

(
i

2

)3/5

Γ

(
3

5

)(
3π

16

C6

~

)2/5
]
, (14.11)

where the velocity averages are given by

〈vr〉 =

∫ ∞
0

vrP (vr)dvr; 〈v3/5
r 〉 =

∫ ∞
0

v3/5
r P (vr)dvr (14.12)

139



14 Extensions of the Fraunhofer model: multiple scattering of matter waves

Table 14.1: Reduced index of refraction, η ≡ (n− 1)/Nt [m3], for a Li beam propagating
through different noble gases with a mean velocity vp = 1075 m/s.

Experiment Model Model
of Ref. [342] fshort(kr, 0) ≡ 0

Ar

1029Re(η) 1.20± 0.11 0.97 0.97

1029Im(η) 2.11± 0.06 1.65 1.33

Re(η)/Im(η) 0.56± 0.05 0.58 0.73

Kr

1029Re(η) 1.57± 0.10 1.25 1.25

1029Im(η) 1.99± 0.07 2.04 1.71

Re(η)/Im(η) 0.78± 0.04 0.61 0.73

Xe

1029Re(η) 1.82± 0.07 1.52 1.52

1029Im(η) 2.40± 0.06 2.42 2.08

Re(η)/Im(η) 0.70± 0.03 0.62 0.72

In general, the R0 value depends on the relative velocity vr, but for narrow

velocity distributions, such as those implemented in the experiments of Jacquey et al.

[342], the dependence is found to be negligible. We could thus simplify the resulting

expression by fixing R0(vr) to a constant value pertaining to the mean relative velocity,

R0 ≡ R0(〈vr〉).

While Table 14.1 compares the experimental values of ηatom obtained by Jacquey

et al. [342] with our model results for Li matter waves propagating through Ar, Kr,

and Xe gases, Figure 1 singles out the Li–Xe system and compares the experimental

and theoretical dependence of the refractive index on the Li velocity. As an input

for the analytic model we used potential energy curves of Ahokas et al. [351]. The

analytic refractive index is seen to be in a compelling agreement with the experiment.

Also presented in both Table 14.1 and Figure 1 are the values of the refractive index
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14.3 Refraction of ion matter waves

for the long range potential included but the short-range interaction excluded, i.e., for

f(kr, 0) = flong(kr, 0), cf. Eq. (14.2). One can see that in such a case the imaginary

part of the refractive index is substantially less than in the experiment.

In the limit of a cold atomic gas, i.e., for T → 0, the velocity distribution (14.10)

becomes a δ-function, which simplifies Eq. (14.11), since then 〈vr〉 → vp and 〈v3/5
r 〉 →

v
3/5
p . In this case, Re[ηatom] is proportional to v

−7/5
p , while Im[ηatom] is proportional to

both v−1
p and v−7/5

p . However, since the v−1
p term arises from the diffraction of matter

waves from the hard core of the potential, it dominates Im [ηatom] at large collision

energies at the expense of the v−7/5
p term, which arises from the long-range attraction.

14.3 Refraction of ion matter waves

For an ion beam passing through an atomic or molecular gas, β = 4 and the scattering

amplitude becomes

fion(kr, 0) = fshort(kr, 0) + f
(4)
long(kr, 0)

=
ikrR

2
0(kr)

2
+

(
ikr
2

)1/3

Γ

(
1

3

)(
π

4

µC4

~2

)2/3

(14.13)

leading to a reduced refractive index for an ionic beam:

ηion ≡
n− 1

Nt

= 2π
~

mpv2
p

[
i〈vr〉R2

0 + 〈v1/3
r 〉

(
i

2

)1/3

Γ

(
1

3

)(
π

4

C4

~

)2/3
]
, (14.14)

with

〈v1/3
r 〉 =

∫ ∞
0

v1/3
r P (vr)dvr (14.15)

We note that in the case of an anisotropic interaction of, say, an ion or atom with

a linear molecule given by a potential V (r, θ), the R0 value is given by the spherical

part of the hard core of the potential [196]. In order to extract R0, we first solve the
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14 Extensions of the Fraunhofer model: multiple scattering of matter waves

Table 14.2: Reduced index of refraction, η ≡ (n− 1)/Nt [m3], for a Na+ beam propagating
through N2 gas with a mean velocity vp = 5000 m/s.

Model Model
fshort(kr, 0) ≡ 0

1029Re(η) 0.25 0.25

1029Im(η) 0.16 0.14

Re(η)/Im(η) 1.60 1.73

equation V (R(θ), θ) = ~2k2
r/(2µ) to obtain the hard core shape R(θ), which we then

expand in a Legendre series,

R(θ) = R0P0(cos θ) +R1P1(cos θ) +R2P2(cos θ) + . . . , (14.16)

from which we deduce the R0 value.

The values of the refractive index for an ion beam passing through a molecular

gas, as exemplified by the Na+–N2 system, are listed in Table 14.2 at an ion projectile

velocity vp = 5000 m/s. The requisite value of R0 was extracted from the potential

energy surface of Ref. [244]. We see that the refractive index is less affected by

switching off the repulsive part of the potential for the ion–molecule system than

for the atom–atom system, cf. section 14.2. This is due to the greater strength of

the −C4r
−4 interaction compared with that of the −C6r

−6 potential and the more

dominant role it thus plays in determining n.

We note that in the limit of zero temperature, vr → vp, the real part of the

refractive index (14.14) becomes proportional to v−5/3
p . The imaginary part of the

refractive index is determined by two terms, one of which is proportional to v−1
p and

the other to v−5/3
p .
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15 Summary and outlook

Everybody knows that a tomato consists of 99%

of water and only one percent of tomato!

Ray Magliozzi, the NPR Car Talk show

In this thesis we presented an analytic model that furnishes scalar and vector

properties of molecular collisions, both field-free and in fields. The model is based on

the sudden approximation and treats molecular scattering as the Fraunhofer diffraction

of matter waves from the hard-core part of the potential. As described in Chapters 5, 6,

the theory has no fitting parameters and is inherently quantum, rendering fully state-

and energy-resolved scattering amplitudes and all the quantities that unfold from

them in analytic form. This allows to obtain complex polarization moments inherent

to quantum stereodynamics, and account for interference and other non-classical

effects. The simplicity and analyticity of the model paves the way to understanding

the origin of the features observed in experiment and exact computations, such as the

angular oscillations in the state-to-state differential cross sections and polarization

moments, the rotational-state dependent variation of the integral cross sections, and

change of these quantities as a function of the applied field.

In Chapter 7 we used the Fraunhofer model to derive analytic expressions for

differential and integral cross sections for collisions of 2Π molecules with closed-shell

atoms, and applied them to the case of Ar–NO(X2Π). Analyzing the closed-form

expressions for the scattering amplitudes we were able to explain the changes of

differential and integral cross sections in dependence of the parity-resolved final

rotational state and the strength of the electrostatic field.

Chapter 8 studied the effect of nonresonant electric fields on collisions of 1Σ

molecules with closed-shell atoms and ions. We focused on the k− k′ vector correlation,
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15 Summary and outlook

i.e. the differential cross section, in collisions of Ne with OCS(X1Σ) in an electrostatic

field and Na+ with N2(X
1Σ) in a laser field. In the case of Ne–OCS, the model

provided an easy explanation for the “phase shifts” of the differential cross sections

due to the external field. Although no such shifts take place for Na+–N2, even a small

field-induced alignment of the molecules was shown to cause a large alteration of the

magnitudes of the differential cross-sections.

Chapter 9 dealed with collisions of closed-shell atoms with paramagnetic molecules

in a magnetic field. We considered the cases of 2Σ, 3Σ, and 2Π species that exhibit

significantly different rotational-level structure due to spin-rotation, spin-orbit, and

spin-spin terms in the Hamiltonian, which results in distinct mechanisms of the

molecule-field interaction. We applied the model to the He–CaH(2Σ, j = 1/2→ j′),

He–O2(X3Σ, N = 0, j = 1→ N ′, j′), and He–OH(X2Π, J = 3/2, f → j′, e/f) systems.

The CaH molecule has a non-magnetic ground state and, therefore, all the field-induced

changes of the He–CaH scattering are due to the Zeeman effect in the final state, which

leads to weak variations of the cross sections between the zero-field and field-dressed

regimes. In contrast to the 2Σ case, where a magnetic field couples only the members

of the spin-rotation doublet, the Hamiltonian matrices of the 3Σ and 2Π molecules

in a magnetic field are in principle infinite, resulting in a stronger field-effect. The

He–O2 collision system exhibits a dramatic feature: in the absence of a magnetic

field, the scattering vanishes for channels leading to the F2 manifold, i.e., final states

with j′ = N ′. However, in the presence of the field, such transitions become allowed,

and, although weak, should be observable. The OH molecule has a large rotational

constant and is, therefore, only weakly aligned by the magnetic field. As a result, the

field-induced changes of the scattering cross sections are tiny. Unlike the He–CaH and

He–O2 systems, the hard core of the He–OH potential energy surface is dominated by

odd Legendre moments, which gives rise to scattering features which are qualitatively

different from those of the other systems. Among all the three systems studied, the

strongest field-induced changes of the differential cross sections – such as angular

shifts of their oscillations – were found for the N = 1, j = 0 → N ′ = 1, j′ = 2 and
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N = 1, j = 0 → N ′ = 3, j′ = 4 transitions in He–O2. These occur for scattering

in a magnetic field perpendicular to the relative velocity vector, and are due to a

field-induced mixing of terms containing higher Bessel-functions into the scattering

amplitude.

It was the goal of Chapter 10 to merge the Fraunhofer model with the quantum

theory of vector correlations, described in Chapter 4, in order to study a more

complicated case of the k− k′ − j′ three-vector correlation. We used the model to

obtain the alignment moments describing the polarization of the j′ vector and compare

them with experiment and exact computations. The a2
0(j′) and a2

2+(j′) moments were

found to be in excellent agreement with experimental and exact results, which lead us

to conclude that the stereodynamics of the Ar–NO rotationally inelastic collisions is

contained solely in the diffractive part of the scattering amplitude which is governed

by a single Legendre moment characterizing the anisotropy of the hard-core part of

the system’s PES. At the same time, the contribution of the higher a4
q±(j′) and a6

q±(j′)

moments to stereodynamical portraits was found to be negligible. A field of 16 kV/cm,

sufficient to significantly orient the NO molecule in the space-fixed frame, was found

to cause a very small effect both on the parity-resolved and averaged polarization

moments.

In Chapter 11 we investigated vector correlations in He–NO(X2Π), He–OH(X2Π),

He–O2(X3Σ), and He–CaH(X2Σ) collisions. The model alignment moments for He–

NO were found to come as close to exact results as for the previously examined Ar–NO

system which revealed that the collision stereodynamics in question is governed by

diffraction of matter waves from a 2D contour of the repulsive core of the potential.

Scaling of the oscillatory patterns of the alignment moments with the de Broglie

wavelength and the molecular size allowed to single out non-diffractive contributions to

the exact results. Interestingly, the form-factors of the model alignment moments look

very similar for all the studied systems. This allowed us to identify the fingerprints

of diffraction, which can be used to determine diffraction-driven stereodynamics in

future experiments and exact computations.
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In Chapter 12 we looked into the polarization of angular momentum of the

electronically excited NO(A2Σ) molecule due to collisions with Ne. By comparing our

results with exact computations, we showed that the physical mechanisms behind the

stereodynamics of the ground-state and excited-state NO molecules are substantially

different. At the collision energy of 470 cm−1 the model results were found to be in

compelling agreement with the exact theory in the case of a small rotational transfer,

N = 0 → N ′ = 1 . . . 4 , while the agreement became worse for N = 0 → N ′ > 4

transitions. We found out that such a discrepancy is due to the breakdown of

the sudden approximation, which holds much better at higher collision energy of

1000 cm−1. We also investigated the effect of a magnetic field on the stereodynamics

of Ne–NO(A2Σ) collisions. We found that a field of 1 Tesla causes significant changes

in the magnitudes of differential cross sections, but has a negligible effect on a2
0(j
′)

and a2
2+(j′) alignment moments.

In Chapter 13 we applied the Fraunhofer theory to look into other types of vector

correlations, considering the k− j− k′ and k− j− k′ − j′ correlations in rotationally

inelastic Ar–NO (X2Π) scattering as an example. It was shown that preparing the

reagents with polarized angular momentum j makes it possible to significantly alter the

collision dynamics and stereodynamics. Although the k− j− k′ and k− j− k′ − j′

vector correlations in Ar–NO have not been determined in experiment yet, such

measurements are possible by preparing polarized reagents in a supersonic expansion

or by electronic excitation of the NO molecules with polarized laser light.

In Chapter 14 we presented an analytic model of the refraction of atom or ion

matter waves passing through atomic or molecular gases, based on the extension

of the Fraunhofer model of molecular collisions described in Chapter 5. The values

of the refractive index furnished by the model were found to be in good agreement

with experiment. Our analysis has shown that in order to appraise the imaginary

part of the refractive index correctly, we need to account for the diffraction by the

repulsive hard core part of the interaction potential. This was achieved by combining

the WKB treatment of the scattering by the attractive branch of the potential with
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the Fraunhofer model applied to the hard core part, which preserves the analyticity

of the theory. Since the refractive index depends on the elastic scattering amplitude,

given by the spherical part of the potential, it is independent on external fields in the

model treatment.

The strength of the analytic model lies in its ability to separate dynamical and

geometrical effects and to qualitatively explain the resulting scattering features. In

the face of the absence of any other analytic model of vector correlations in molecular

collisions, the Fraunhofer model is apt at providing a touchstone for understanding

collisional stereodynamics and developing new ways of controlling scattering outcomes

by means of external fields. We hope that the results presented in this thesis will inspire

new experiments on vector correlations in molecular collisions, and manipulation of

collisional stereodynamics with nonresonant fields.
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16 Appendices

You know, I love angular momentum. I even

blame my parents for not naming me “Angular

momentum”!

Dudley Herschbach,

Faraday Discussions 142:

Cold and Ultracold molecules

16.1 Different conventions used to define alignment

moments

Unfortunately, the density matrix normalization condition, Eq. (4.5), has not been

universally adopted. Other normalization conventions include, for instance:

Tr(ρ) ≡ 2j + 1 (16.1)

Tr(ρ) ≡ dσ

dω
(16.2)

Tr(ρ) ≡ 2π

σ

dσ

dω
(16.3)

Here σ and dσ/dω represent respectively a collision’s integral and differential cross

sections. When comparing two sets of polarization moments, one must ensure that

they refer to density matrices defined within the same normalization convention.

There are various ways in which one can expand a density matrix in terms

of its multipolar components. The variations relate to the following: (i) whether

the expansion is covariant or contravariant, (ii) how the multipoles are normalized.
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Unfortunately, there is no widely adopted convention. Here we present the relations

between the convention that we use and the one of Zare [180, 283]. The expansion

used in Zare’s book [283] is:

ρm1m2 =

2j∑
k=0

k∑
q=−k

ρkq〈jm1|T̂kq|jm2〉 (16.4)

=
∑
kq

ρkq(−1)j−m2C(jjk,m1 −m2q) (16.5)

=
∑
kq

ρkq(−1)j−m2(−1)j−m2

(
2k + 1

2j + 1

)1/2

C(jkj,m2qm1) (16.6)

=
∑
kq

ρkq

(
2k + 1

2j + 1

)1/2

C(jkj,m2km1), (16.7)

where ρkq are Zare’s polarization moments and the T̂kq are Fano’s multipole opera-

tors [285].

Since the expansion of Eq. (16.4) is written in terms of multipole operators, the

expansion is contravariant. This means that if Zare’s polarization moments are rotated

to a different reference frame, they don’t change in the same way as the |jm〉 basis

states. Instead, they transform in what can be seen as the opposite way, hence the

“contravariance”. The multipoles in Eq. (16.4) are as defined by Fano.

Inversion of Eq. (16.4) leads to:

ρkq =
∑
m1m2

(
2k + 1

2j + 1

)1/2

ρm1m2C(jkj,m2qm1), (16.8)

and the fact that C(j0j,m20m1) = δm1m2 implies:

ρ00 =
1√

2j + 1

∑
m

ρmm =
Tr(ρ)√
2j + 1

(16.9)

Ref. [162] contains a table showing the relations between sets of polarization moments

defined according to various conventions.
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16.2 The alignment cosine of a 2Σ molecule in a magnetic field

16.2 The alignment cosine of a 2Σ molecule in a mag-

netic field

Within the Hund’s (b) basis functions, Eq. (9.4), the expectation value of the alignment

cosine takes the form:

〈cos2 θ〉 = a2(ωm)
〈
N − 1

2
,Ω,m

∣∣ cos2 θ
∣∣N − 1

2
,Ω,m

〉
+b2(ωm)

〈
N+1

2
,Ω,m

∣∣ cos2 θ
∣∣N+1

2
,Ω,m

〉
+2a(ωm)b(ωm)

〈
N−1

2
,Ω,m

∣∣ cos2 θ
∣∣N+1

2
,Ω,m

〉
,

(16.10)

where the matrix elements of the cos2 θ operator in the Hund’s case (a) basis can be

obtained from (16.20) and (16.22):

〈
j,Ω,m

∣∣ cos2 θ
∣∣j,Ω,m〉 =

1

3
+

2

3

[j(j + 1)− 3m2] [j(j + 1)− 3Ω2]

j(j + 1)(2j − 1)(2j + 3)
(16.11)

〈
j,Ω,m

∣∣ cos2 θ
∣∣j + 1,Ω,m

〉
= 2Ωm

√
[(j + 1)2 −m2] [(j + 1)2 − Ω2]

j(j + 1)(j + 2)
√

(2j + 1)(2j + 3)
(16.12)

The coefficients a(ωm) and b(ωm) are given by the solution of the Zeeman problem,

Eqs. (9.9)–(9.10).

16.3 Matrix elements of the jZ operator

In general, the Zeeman operator is proportional to the projection, jZ , of the total

electronic angular momentum, j, on the space-fixed field axis, Z, see e.g. Eq. (9.32).

In this Appendix we present the matrix elements of the jZ operator, employed in this

work. For Σ electronic states, jZ reduces to SZ .

We transform the angular momentum projection operator from the body-fixed to

the space-fixed coordinates using the direction cosines operator, Φ:

jZ = 1
2

(
Φ+
Zj
− + Φ−Zj

+
)

+ Φz
Zj

z (16.13)
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The matrix elements of the body-fixed spin operator in the Hund’s case (a) basis,

|j,Ω,m〉, are given by the standard relations [293]:

〈j,Ω,m| j± |j,Ω∓ 1,m〉 =
√

(j ± Ω)(j ∓ Ω + 1) (16.14)

〈j,Ω,m| jz |j,Ω,m〉 = Ω (16.15)

The matrix elements of the direction cosine operator can be obtained from Table 6

of Ref. [352]. Some of them are also given in Refs. [321, 322]. Here we list all

non-vanishing matrix elements for m′ = m:

〈j′,Ω,m|Φz
Z |j,Ω,m〉 =



Ωm
j(j+1)

j′ = j

√
(j+Ω+1)(j−Ω+1)(j+m+1)(j−m+1)

(j+1)
√

(2j+1)(2j+3)
j′ = j + 1

√
(j+Ω)(j−Ω)(j+m)(j−m)

j
√

(2j+1)(2j−1)
j′ = j − 1

(16.16)

〈j′,Ω− 1,m|Φ+
Z |j,Ω,m〉 =



m
√

(j+Ω)(j−Ω+1)

j(j+1)
j′ = j

√
(j−Ω+1)(j−Ω+2)(j+m+1)(j−m+1)

(j+1)
√

(2j+1)(2j+3)
j′ = j + 1

−
√

(j+Ω)(j+Ω−1)(j+m)(j−m)

j
√

(2j+1)(2j−1)
j′ = j − 1

(16.17)

〈j′,Ω + 1,m|Φ−Z |j,Ω,m〉 =



m
√

(j−Ω)(j+Ω+1)

j(j+1)
j′ = j

−
√

(j+Ω+1)(j+Ω+2)(j+m+1)(j−m+1)

(j+1)
√

(2j+1)(2j+3)
j′ = j + 1

√
(j−Ω)(j−Ω−1)(j+m)(j−m)

j
√

(2j+1)(2j−1)
j′ = j − 1

(16.18)
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16.4 Matrix elements of the (Φz
Z)2 operator

The matrix elements of the alignment cosine can be reduced to the matrix elements

of the Φz
Z operator by means of the full basis set:

〈cos2 θ〉 = 〈j′,Ω,m|(Φz
Z)2|j,Ω,m〉 =

∑
j′′

〈j′,Ω,m|Φz
Z |j′′,Ω,m〉〈j′′,Ω,m|Φz

Z |j,Ω,m〉

(16.19)

By taking into account that the matrix elements (16.16) are nonzero only for ∆j =

0,±1, we obtain the matrix elements of the direction cosine operator:

〈j,Ω,m|(Φz
Z)2|j,Ω,m〉 = |〈j − 1,Ω,m|Φz

Z |j,Ω,m〉|
2

+ |〈j,Ω,m|Φz
Z |j,Ω,m〉|

2 + |〈j + 1,Ω,m|Φz
Z |j,Ω,m〉|

2 (16.20)

〈j − 1,Ω,m|(Φz
Z)2|j,Ω,m〉 = 〈j − 1,Ω,m|Φz

Z |j,Ω,m〉
{
〈j,Ω,m|Φz

Z |j,Ω,m〉

+ 〈j − 1,Ω,m|Φz
Z |j − 1,Ω,m〉

}
(16.21)

〈j + 1,Ω,m|(Φz
Z)2|j,Ω,m〉 = 〈j + 1,Ω,m|Φz

Z |j,Ω,m〉
{
〈j,Ω,m|Φz

Z |j,Ω,m〉

+ 〈j + 1,Ω,m|Φz
Z |j + 1,Ω,m〉

}
(16.22)

〈j − 2,Ω,m|(Φz
Z)2|j,Ω,m〉 = 〈j − 2,Ω,m|Φz

Z |j − 1,Ω,m〉〈j − 1,Ω,m|Φz
Z |j,Ω,m〉

(16.23)

〈j + 2,Ω,m|(Φz
Z)2|j,Ω,m〉 = 〈j + 2,Ω,m|Φz

Z |j + 1,Ω,m〉〈j + 1,Ω,m|Φz
Z |j,Ω,m〉

(16.24)
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to help me, no matter whether concerning work or the bureaucratic issues I had to

solve in the beginning of my stay in Germany.

I thank Frauke for the kitty picture and for ‘our deal’ (you know) and Peter Kupser

184



for the ‘magenta t-shirt.’ We had a lot of fun with Ana Isabel ‘you don’t want to see
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