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Villringer1,2, Osama Sabri3, Matthias L. Schroeter1,2

1 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany, 2 Day Clinic of Cognitive Neurology, University of Leipzig, Leipzig, Germany,

3 Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany

Abstract

Introduction: Various biomarkers have been reported in recent literature regarding imaging abnormalities in different types
of dementia. These biomarkers have helped to significantly improve early detection and also differentiation of various
dementia syndromes. In this study, we systematically applied whole-brain and region-of-interest (ROI) based support vector
machine classification separately and on combined information from different imaging modalities to improve the detection
and differentiation of different types of dementia.

Methods: Patients with clinically diagnosed Alzheimer’s disease (AD: n = 21), with frontotemporal lobar degeneration (FTLD:
n = 14) and control subjects (n = 13) underwent both [F18]fluorodeoxyglucose positron emission tomography (FDG-PET)
scanning and magnetic resonance imaging (MRI), together with clinical and behavioral assessment. FDG-PET and MRI data
were commonly processed to get a precise overlap of all regions in both modalities. Support vector machine classification
was applied with varying parameters separately for both modalities and to combined information obtained from MR and
FDG-PET images. ROIs were extracted from comprehensive systematic and quantitative meta-analyses investigating both
disorders.

Results: Using single-modality whole-brain and ROI information FDG-PET provided highest accuracy rates for both,
detection and differentiation of AD and FTLD compared to structural information from MRI. The ROI-based multimodal
classification, combining FDG-PET and MRI information, was highly superior to the unimodal approach and to the whole-
brain pattern classification. With this method, accuracy rate of up to 92% for the differentiation of the three groups and an
accuracy of 94% for the differentiation of AD and FTLD patients was obtained.

Conclusion: Accuracy rate obtained using combined information from both imaging modalities is the highest reported up
to now for differentiation of both types of dementia. Our results indicate a substantial gain in accuracy using combined
FDG-PET and MRI information and suggest the incorporation of such approaches to clinical diagnosis and to differential
diagnostic procedures of neurodegenerative disorders.
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Introduction

In recent research, various biomarkers have been reported to

differentiate between early stages of dementia and healthy control

subjects or between different types of neurodegenerative disorders,

suggesting an integration of these would improve diagnostic

accuracy of dementia [1]–[9].

For the detection of dementia, accuracy rates significantly above

90% have recently been reported using univariate and multivar-

iate statistical approaches in magnetic resonance imaging (MRI)

and [F18]fluorodeoxyglucose positron emission tomography

(FDG-PET) [1],[10]–[14]. However, the differentiation of the

two most common types of dementia, namely Alzheimer’s disease

(AD) and frontotemporal lobar degeneration (FTLD), is still

problematic. For this differentiation, accuracy rates ranging

between 84 and 89% are still in need of improvement, especially

due to a substantially lower sensitivity compared with specificity of

actual methods [10],[12],[15]. Nevertheless, the use of biomarkers

has significantly helped to improve diagnostic accuracy compared

with diagnoses based solely on clinical and neuropsychological

evaluation [16],[17]. For these reasons, recent studies have

suggested to incorporate imaging findings into criteria for

diagnosis of dementia [17],[18].

For AD patients imaging studies have shown reduced glucose

consumption mainly in parietotemporal and posterior cingulate

cortices [9],[20],[21] and structural changes in the hippocampus

and entorhinal area relative to healthy controls [9],[21],[22]. In

FTLD patients, atrophy and reduced metabolic rate for glucose
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have been reported to be predominately located in the medial

thalamus, amygdala and in frontotemporal and anterior cingulate

cortices [4],[8],[20],[21],[23].

For multivariate differentiation of different types of dementia

support vector machine classification (SVM) is used based on

whole-brain voxel information [10] or most frequently on ROI

values [6],[12]–[13],[24]–[26]. A major problem of the ROI-

based approach is the limited generalizability of the trained

classifier, because the ROIs are selected based on features showing

a between-group differentiation in the same groups in a univariate

analysis. Although ROIs selected with this method provide a good

discrimination between groups used in these specific studies, they

might show significantly reduced discrimination power when

applied to new data sets. This could be the case if the selected

regions just detect differences between groups, which are not

necessarily attributed to the specific neurodegenerative disorder.

Furthermore, AD and FTLD patients have been shown to develop

a differential regional pattern of glucose hypometabolism and

atrophy [21],[27]. However, the previously proposed approaches

only used single modality information for the classification

algorithms loosing this way the differential information which

various biomarkers might provide for a better detection and

differentiation of dementia syndromes.

Here, we apply SVM as the most frequently used multivariate

approach to evaluate its contribution for detection and differen-

tiation of dementia in multimodal imaging. To increase the

validity of our method we apply SVM classification on data

extracted from ROIs based on disorder-specific metabolic

reductions and atrophy reported in comprehensive meta-analyses

investigating AD and FTLD. This method allows a better

generalization of our classification algorithms to other clinical

centers and ensures that only disorder-specific changes are used for

SVM based discrimination. We hypothesize that common use of

different imaging modalities might substantially improve early

detection and differentiation of dementia.

Methods

Ethics Statement
The research protocol was approved by the Ethics Committee

of the University of Leipzig, and was in accordance with the latest

version of the Declaration of Helsinki. Informed consent was

obtained from all subjects.

Subjects
We analyzed FDG-PET and T1-weighted MRI data of 21

patients (Table 1) with an early stage of probable AD, 14 patients

with an early stage of FTLD and 13 control subjects. Patients were

recruited from the Day Clinic of Cognitive Neurology at the

University of Leipzig. Probable AD was diagnosed according to

NINCDS-ADRDA criteria [28]. Although all AD subjects also

fulfilled the revised NINCDS-ADRDA criteria suggested by

Dubois et al. [17] the fulfillment of the original McKhann criteria

was sufficient for the inclusion into the study. Diagnosis of FTLD

was based on criteria suggested by Neary et al. [29]. The control

group included subjects who visited the Day Clinic with subjective

cognitive complaints, which were not objectively confirmed by a

comprehensive neuropsychological and clinical evaluation. FDG-

PET and MRI for these subjects was conducted for diagnostic

reasons within the clinical assessment. This control group was

chosen because, in clinical practice, it is crucial to discriminate

between these subjects showing a normal age-related decrease in

cognitive performance and patients with an early stage of

dementia. Patients were excluded if structural imaging revealed

lesions due to stroke, traumatic head injury, brain tumor or

inflammatory diseases.

Data acquisition
MRI data. For each subject, a high-resolution T1-weighted

MRI scan was obtained, consisting of 128 sagittal slices adjusted to

AC-PC line and a with slice thickness of 1.5 mm and pixel size of

161 mm2. MRI was performed on two different 3T scanners

(MedSpec 30/100, Bruker Biospin, Ettlingen Germany and

Magnetom Trio, Siemens, Erlangen, Germany) using two

different T1-weighted sequences (MDEFT or MP-RAGE with

TR = 1300 ms, TI = 650 ms, TE = 3.93 ms or TE = 10 ms; FOV

25625 cm2; matrix = 2566256 voxels). On the MedSpec

scanner, only the MDEFT-sequence and on the Magnetom Trio

scanner, either MDEFT or MP-RAGE sequences were used. The

distribution of scanner types and sequences used to obtain the

MRI data was random across subjects and did not differ

significantly in its distribution between the groups nor for

scanner type nor for sequence.

PET data. Each subject also underwent FDG-PET imaging

either a few a weeks before or after the MRI scan. All PET data

were acquired on a Siemens ECAT EXACT HR+ scanner (CTI/

Siemens, Knoxville, TN, USA) under a standard resting condition

in 2-dimensional (2D) mode. The 2D acquisition mode was used

because it allows a better quantification of the PET data due to

lower scatter radiation. Sixty-three slices were simultaneously

collected with an axial resolution of 5 mm full width at half

maximum (FWHM) and in-plane resolution of 4.6 mm. After

correction for attenuation, scatter, decay and scanner-specific

dead-time, images were reconstructed by filtered back-projection

using a Hann-filter of 4.9 mm FWHM. The 63 transaxial slices

obtained had a matrix of 1286128 voxels with an edge length of

2.45 mm.

Image processing and statistical analysis
The procedure described below has been specifically designed

for this study, aiming at a most accurate co-processing of FDG-

PET and MRI data to obtain a more precise between subject

anatomical overlap (Figure 1). All image-processing steps were

carried out using the SPM5 software package (Statistical

Parametric Mapping software: http://www.fil.ion.ucl.ac.uk/

spm/) implemented in Matlab 7.7 (MathWorks Inc., Sherborn,

MA). SVM classification was conducted with the LIBSVM

software [30] using the Matlab interface.

MR images. The MR images were first interpolated to get an

isotropic resolution of 16161 mm3. The resultant MR images

Table 1. Subject group characteristics.

Controls AD FTLD
ANOVA
(df,F,P)

Number 13 21 14 –

Male/Female 7/6 9/12 7/7 –

Age (years) 53.966.0 61.166.7 60.866.4 2, 5.76, 0.006

CDR (score) 0.2360.26 0.7160.25 0.8260.42 2, 13.93, 0.000

MMSE (score) n.a. 23.263.9 24.464.2 –

Education (years) 12.363.1 10.763.1 11.663.8 2,1.02,0.368

Mean 6 standard deviation. AD Alzheimer’s disease, ANOVA analysis of
variance, CDR Clinical Dementia Rating Scale, FTLD frontotemporal lobar
degeneration, MMSE Mini Mental State Examination, n.a. not available.
doi:10.1371/journal.pone.0018111.t001
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were coregistered on their respective FDG-PET images and bias

corrected for inhomogeneity artifacts using the Unified

Segmentation Approach described in detail by Ashburner and

Friston [31]. This specific method performs a better coregistration

of images from different modalities and allows a more accurate

segmentation due to the bias correction. A further reason to use

this approach was that the straightforward coregistration

implemented in the PVElab software described later sometimes

failed. We used this software for automatic partial volume

correction of the FDG-PET images. The coregistered MR

images were processed using the DARTEL (Diffeomorphic

Anatomical Registration Through Exponentiated Lie algebra)

approach [32] to enable a more accurate spatial normalization.

This approach registers all gray matter (GM) and white matter

(WM) images to an averaged-size template created from all

subjects used in this study and modulates the images to preserve

the total amount of signal from each region in the images.

Subsequently, the images were smoothed using a Gaussian kernel

of 12 mm FWHM. This smoothing factor, although higher then

usual MR kernels, was selected based on extensive tests, because it

allows the optimal coevaluation with lower resolution FDG-PET

images.

FDG-PET data. Within the common registration with MRI

data using the Unified Segmentation Approach described above,

PET images were interpolated to the same voxel size as the MR

images, namely 16161 mm3. This processing does not introduce

any additional noise into the PET images. However, in our

experience, it substantially improves the subsequent partial volume

effect (PVE) correction of voxels representing GM intensities using

the modified Müller-Gärtner method [33],[34]. Due to the

interpolation, they are exactly overlaid with the MR tissue class

images of the same subject obtained from the segmentation step in

the PVE approach. Thus, the within-voxel correction is done only

for those voxels directly overlaying the GM structures in the MR

images. Instead of smoothing the MR data to the resolution of

PET data and thus loosing the exact quantitative and qualitative

information of GM distribution, which is usually done in the PVE

correction, the interpolation of FDG-PET preserves this

information. This allows a more accurate correction of atrophy

effects onto glucose utilization. The subsequent PVE correction

including all image processing steps was done by using the

automatic algorithm implemented in the PVElab software package

[35]. Because the modified Müller-Gärtner method sets all WM

voxel values to the mean WM intensity value, these regions do not

contain any further valuable regional information after the PVE

correction. For this reason, all voxels belonging to WM were

masked using the ImCalc function in the SPM5 software package

by filtering this specific intensity in the whole image. After the PVE

correction, the DARTEL flow fields calculated from the MR

images were applied to their respective PET images to obtain an

anatomically exact overlap between GM and PET images of all

subjects with modulation to preserve the total amount of signal

from each region. In the same way as the MR data, the PET data

were smoothed by a Gaussian kernel of 12 mm FWHM. Finally,

the FDG-PET data were intensity normalized using cerebellar

ROIs to account for individual differences in global PET

measures. This region has been shown to be least affected in

mild to moderate stages of AD [36]. Additionally, normalization to

Figure 1. Schematic representation of the procedure for FDG-PET and MRI data handling and processing steps. FDG-PET
[F18]fluorodeoxyglucose positron emission tomography, MRI magnetic resonance imaging, MNI Montreal Neurological Institute, PVE partial volume
effect correction.
doi:10.1371/journal.pone.0018111.g001
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this region improves the statistical discrimination between

dementia patients and control subjects in comparison to other

regions reported in the literature [37]–[39].

Masking. The MR and PET images obtained as described

above were masked to avoid contamination by misclassified voxels.

Voxels lying between WM and ventricular cerebrospinal fluid tend

to be misclassified as GM voxels due to their similar intensity. The

mask was obtained after extensive testing by excluding all voxels in

the first and the last template created by the DARTEL approach

with a probability of below 0.2 for belonging to GM and including

only the voxels that exceed this threshold in both templates. This

mask was applied twice: firstly prior to smoothing to avoid

misclassification, and secondly, after the smoothing to avoid big

edge effects. WM images were exclusively masked using the same

mask to avoid overlaps between GM and WM voxels due to

smoothing. The masked images were used for the subsequent

SVM analysis of the data.

ROI extraction. ROI coordinates (Table 2) were extracted

from two comprehensive, systematic and quantitative meta-

analyses investigating biomarkers of AD and FTLD in MR and

FDG-PET images. The meta-analyses included a total number of

1618 patients (AD/FTLD: 1351/267) and 1448 healthy control

subjects (1097/351) [8],[9]. These meta-analyses extracted the

prototypical networks of AD and FTLD by applying what is

currently the most sophisticated and best-validated of coordinate-

based voxel-wise meta-analyses, anatomical likelihood estimate. In

the FTLD meta-analyses [8] only coordinates which are common

to all subgroups of FTLD patients were used. In total, 10 regions

from MRI and 6 regions from FDG-PET were used from the

FTLD meta-analysis. From AD meta-analysis, 6 regions were used

from both, MRI and FDG-PET. The AD meta-analysis also

identified one additional region in the fornix which was

differentiating between early-onset AD patients (age,65 years)

and control subjects but not between late-onset AD patients and

control subjects. This region was not included into the ROI-based

classification to avoid a discrimination bias towards early-onset

AD patients. Although unequal numbers of ROIs were used from

both imaging modalities, this number is also a highly important

information as it also provides a measurement for the amount of

changes present in a specific modality. Because the coordinates in

both meta-analyses were reported in the Talairach space, they

were transformed to MNI space according to a formula proposed

by Matthew Brett (published on the Internet: http://www.mrccbu.

cam.ac.uk/Imaging/Common/mnispace.shtml). DARTEL prepro-

cessed data are registered to an averaged size template created from

all subjects in this study. To transform these data to the MNI space we

normalized them to an a priori MNI template in SPM by using affine-

only spatial normalization. Due to the affine-only transformation, our

images still differed in shape from the MNI template, so some reported

coordinates were slightly outside of the anatomic regions in our

imaging data. In this case, the center coordinates for the ROIs were

moved slightly towards the closest point of the corresponding

anatomical region reported in the meta-analyses. ROIs were selected

using the 3D fill tool in the MRIcron software package (http://www.

sph.sc.edu/comd/rorden/mricron). Separate ROI masks were created

for MR and FDG-PET images based on the origin of the peak values

reported in the meta-analyses and using all regions reported for AD

and FTLD in a single mask for each modality. Each ROI was

restricted to a sphere with a radius of 5 mm around the reported

coordinate (Figure 2). Additionally, to increase the signal-to-noise ratio,

all zero voxels and edge voxels with an intensity deviation of 13

intensity units in the MRIcron 3D fill tool were excluded from the

ROI. The edge voxel restriction excludes all voxels at the edge of the

smoothed GM structures within the sphere. These voxels carry much

less information due to their further distance from the GM structures in

the unsmoothed data and so decrease the signal-to-noise ratio in the

corresponding ROI.

SVM. Multivariate pattern classification, as described in

Klöppel et al. [10], was performed with a linear kernel by

identifying a separating hyperplane that maximizes the distance

Table 2. Coordinates of ROIs used for SVM classification.

FTLD vs. Controls

FDG-PET BA Lat x y z

Pregenual anterior cingulate gyrus 24/32 L 25 34 21

Lentiform nucleus; Caudate head L 220 3 23

Medial thalamus L 22 219 6

Anterior insula 15/16 L 247 10 27

Anterior medial frontal cortex 10 R 1 54 0

Amygdala R 25 22 225

MRI BA Lat x y z

Anterior medial frontal cortex 9 L 25 49 25

Pregenual anterior cingulate gyrus 24/32 L 25 34 21

Inferior frontal gyrus, pars opercularis 44 L 254 11 20

Lentiform nucleus; Caudate head L 220 3 23

Anterior insula 15/16 L 247 10 27

Subcallosal/septal area 25 L 22 10 210

Amygdala R 25 22 225

Amygdala; Ento-and perirhinal cortex L 226 25 225

Temporal pole 38 L 229 11 243

Temporal pole 38 L 247 8 244

AD vs. Controls

FDG-PET BA Lat x y z

Angular gyrus 39 L 238 268 37

Angular gyrus 39 R 43 268 33

Posterior superior temporal sulcus 21/22

Anterior medial frontal cortex 9/10 R 1 31 31

Pregenual anterior cingulate gyrus 32

Inferior precuneus 31 R 1 236 27

Dorsal posterior cingulate cortex 23

Posterior superior temporal sulcus 21/22 L 251 261 23

Middle inferior temporal sulcus 20/21 R 59 231 223

MRI BA Lat x y z

Posterior insula 13 L 238 225 15

Medial thalamus L 25 213 3

Hippocampal body/tail R 31 238 26

Middle temporal gyrus/superior temporal
sulcus

21/22 L 263 221 25

Amygdala, anterior hippocampal formation,
uncus, (trans-) entorhinal area

28/34 R 25 28 218

Amygdala, anterior hippocampal formation,
uncus, (trans-) entorhinal area

28/34 L 226 28 218

Coordinates are in MNI space (L left, R right). AD Alzheimer’s disease, BA
Brodmann area, FDG-PET [18F]fluorodeoxyglucose positron emission
tomography, MRI magnetic resonance imaging, ROI region-of-interest, SVM
support vector machine.
doi:10.1371/journal.pone.0018111.t002
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between different clinical groups based on whole-brain or ROIs

information. The cross-validation of the trained SVM was

performed by using the leave-one-out method. This procedure

iteratively leaves out the information of each subject and trains the

model on the remaining subjects for subsequent class assignation

of the person that was not included in the training procedure. This

validation method enables the generalization of the trained SVM

to data that have never been presented to the SVM algorithms

previously. The reported accuracy is the percentage of subjects

correctly assigned to the clinical diagnosis. Usually SVM

classification is performed without smoothing of the data,

because single voxels are assumed to contain information, for

example, for prediction of future action based on functional MR

images. However, in neurodegenerative disorders single voxels are

unlikely to contain generalizable information due to a limited

across-subject registration of MR and FDG-PET images.

Although SVM classification based on unsmoothed data has

been shown to differentiate reasonably between different groups

(Klöppel et al., 2007), an additional smoothing should make this

approach more reliable and generalizable to new data. To control

for the effect of smoothing we ran the same whole-brain

classification twice for GM, PET and for integration of GM and

PET in the same vector with and without smoothing.

We performed the whole-brain SVM classification using GM,

WM or FDG-PET images separately and by combining

information from different modalities. For the SVM classification,

all data of a subject are transformed into a vector, with

information of an additional modality simply attached by

extending the vector. Additionally, we repeated the whole-brain

SVM classification by adding MR to FDG-PET information

combining both modalities in a single image. ROI-based SVM

classification was performed on data extracted from smoothed

images separately for GM and FDG-PET images and also by

integrating information from both modalities in a single vector. In

order to reduce the number of voxels in the ROI-based

classification, only nonzero voxels were included in the vector.

This was done because otherwise the whole-brain SVM

classification is a highly memory-consuming approach. To ensure

that our classification results were not based on factors randomly

discriminating between groups, we reran the whole-brain and

ROI-based classification for comparison 30 times by randomly

assigning all subjects to the three groups independently from the

clinical diagnosis and calculating the classification accuracy by

using the leave-one-out procedure described above.

Statistical analysis. Group comparisons for age, education

and CDR (Clinical Dementia Rating Scale) [40] were performed

by conducting ANOVAs (analyses of variance). If an ANOVA

revealed a significant between-group effect, a Bonferroni t-test was

calculated with a significance threshold of p,05 (corrected for

multiple comparisons, two-tailed). MMSE (Mini Mental State

Examination) [41], was only present for 20 patients with AD and

11 patients with FTLD. MMSE scores of these two groups were

compared to each other using an independent samples t-test.

Group differences regarding sex were evaluated using a chi-square

test for independent samples. The statistical analysis was

performed with the commercial software package SPSS 17.0

(http://www.spss.com/statistics/).

Results

Clinical characteristics
The chi-square test for independent samples did not reveal any

statistical differences in sex between the groups [x2(2) = 0.42;

p = 0.809]. The three groups did not differ in education (Table 1).

CDR scores differed significantly in the three groups. The post-hoc

test revealed no differences in the mean CDR scores between both

groups of dementia patients [t(33) = 0.94;p = 0.977]. As expected,

both early AD [t(32) = 5.36;p,0.001] and early FTLD

[t(25) = 4.35;p,0.001] had significantly higher CDR scores com-

pared to the control subjects. MMSE scores also did not differ

between both groups of dementia patients indicating a similar severity

of dementia syndrome [t(29) = 281;p = 0.95]. The ANOVA also

revealed a significant group difference in age. The two groups of

dementia patients did not differ significantly in age

[t(33) = 0.16;p = 1.0]. There was a minor but significant difference

between AD patients and controls [t(32) = 3.18;p = 008] and FTLD

patients and controls [t(25) = 2.86; p = 024].

SVM – Whole-brain analysis
Multivariate classification of the data using SVM at the whole-

brain level revealed the best discrimination accuracy for all three

groups using FDG-PET, with 81% (chance level 33%), in comparison

to GM and WM information, with lowest accuracy using WM

information on its own (Table 3). The combination of metabolism

and GM values in a single image revealed a similar accuracy for

differentiation of the three groups, with higher accuracy for

differentiation between both types of dementia, however, with

slightly lower discrimination between dementia patients and control

subjects. Whole-brain SVM classification for the three groups without

smoothing revealed lower accuracy rates in all classifications in

comparison to differentiation based on smoothed images. The

accuracy increase due to smoothing ranged between 2 (GM) and 6%

(FDG-PET). Figure 3 displays regions that were most influential in

making binary classification between the AD, FTLD and control

subjects based on smoothed whole-brain information.

SVM – ROI analysis
Accuracy based on ROIs from both meta-analyses using only

GM information was substantially lower for differentiation

between AD and FTLD patients in comparison with whole-brain

classification. However, it was comparable to the whole-brain

Figure 2. Regions of interest extracted from gray matter (left)
and FDG-PET (right) data for AD and FTLD patients and used
for support vector machine classification projected onto a
glass brain (top) and onto an axial slice (bottom). AD Alzheimer’s
disease, FDG-PET [F18]fluorodeoxyglucose positron emission tomogra-
phy, FTLD frontotemporal lobar degeneration, GM gray matter, ROIs
regions of interest.
doi:10.1371/journal.pone.0018111.g002
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approach in differentiating between patients with both types of

dementia and control subjects. ROIs extracted from FDG-PET

data showed slightly lower discrimination accuracy compared to

whole-brain information. The best accuracy rates of all SVM

classifications were obtained using combined information extract-

ed from FDG-PET and GM data. This approach resulted in a

classification accuracy of 92% for the differentiation of all three

groups and an accuracy rate of 94% for differentiation between

AD and FTLD patients. Sensitivity of this ROI-based classification

ranged between 85.7% for FTLD and 100% for AD and

specificity of 100% for discrimination of both types of dementia

from control subjects (Table 4).

The classification accuracy in the 30 trials randomly assigning

all subjects to the three groups resulted in a mean accuracy rate of

3467.7% (mean 6 standard deviation), ranging between 21 and

52% for the ROI-based SVM classification, and 33.768.2%

ranging between 12 and 50% for the whole-brain classification.

Discussion

In this study we performed a multimodal comparison and

discrimination of dementia patients using FDG-PET and MRI. To

enable a more accurate coevaluation of both imaging modalities,

we developed a new preprocessing algorithm. This algorithm was

designed to enable an accurate anatomical registration of both

modalities. All processing steps were performed as far as possible

simultaneously by applying the same deformations and prepro-

cessing parameters to both modalities of the same subject. This

procedure resulted in an accurate anatomical overlap of both

imaging modalities and in an accurate between-subject registra-

tion, with both images having the same voxel size and

approximately the same effective smoothness.

SVM
SVM classification is a very promising tool for detection and

differentiation of different dementia syndromes, as has been shown

by previous studies [10],[12],[13],[24]. It not only captures

univariate relationships of a single voxel across all subjects but is

also able to detect multivariate relationships over a large group of

information, as, for example, between different structures and

modalities in the brain. Furthermore, this tool provides an easy

way to use this information for classifying imaging data of new

subjects to a specific condition.

Here, we systematically compared different information pro-

vided by FDG-PET and MRI to enable the most accurate

detection and differentiation of dementia. The diagnosis was based

on comprehensive clinical and neuropsychological testing. Al-

though the data are not histopathologically confirmed to be sure of

assigning them to the correct condition, generally higher

conformity with the clinical diagnosis should also result in more

accurate classification of histopathologically validated data.

The whole-brain SVM classification provided the most accurate

classification using only FDG-PET information. GM and WM

based classification accuracy was lower for all comparisons

indicating a lower sensitivity for detection of dementia-relevant

information. Nonetheless, classification based on GM, WM and

FDG-PET separately or combining them revealed a discrimina-

tion accuracy which was above chance level for the correct

categorization of the three groups. All classification results

substantially exceeded the best classification accuracy obtained

by randomly assigning all subjects to different groups. Addition-

ally, smoothing of the data improved the classification accuracy in

both imaging modalities as expected.

However, in whole-brain classification noise is introduced by

using a great deal of information for classification that does not

differentiate between the groups. Recent comprehensive meta-

analyses identified the ‘‘prototypical’’ networks for both disorders

in both modalities using VBM [8],[9]. The involved regions have

been shown to be affected in AD and FTLD patients most

consistently in all studies investigating these disorders. By using this

information, we ruled out the possibility that our classification

results are dependent to our group of patients. Although this

Table 3. Accuracy rates for whole-brain and ROI-based SVM classification for FDG-PET and MRI.

AD, FTLD and Controls AD vs FTLD AD vs Controls FTLD vs Controls

GM
whole-brain

72.9% 80.0% 88.2% 77.8%

WM
whole-brain

66.7% 74.3% 79.4% 77.8%

FDG-PET
whole-brain

81.3% 82.9% 94.1% 92.6%

GM/ FDG-PET
whole-brain

79.2% 82.9% 94.1% 88.9%

GM/WM/FDG-PET
whole-brain

77.1% 82.9% 91.2% 85.2%

GM + FDG-PET
whole-brain

81.3% 88.6% 91.2% 88.9%

GM
ROIs

56.3% 60.0% 82.4% 85.2%

FDG-PET
ROIs

75.0% 80.0% 94.1% 85.2%

GM/FDG-PET
ROIs

91.7% 94.3% 100.0% 92.6%

Accuracy represents the percentage of subjects correctly assigned to the correct condition. AD Alzheimer’s disease, FDG-PET [18F]fluorodeoxyglucose positron emission
tomography, FTLD frontotemporal lobar degeneration, GM gray matter, MRI magnetic resonance imaging, ROI region-of-interest, SVM support vector machine, WM
white matter.
doi:10.1371/journal.pone.0018111.t003
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method provides lower accuracy rates for GM or FDG-PET

information on their own, it shows a significantly higher

discrimination rate by combining both information modalities

into a single vector. This ROI-based discrimination is superior to

whole-brain classification with the highest accuracy gain for the

differentiation of both types of dementia, which, with 94%, is the

highest differentiation rate reported up to now. Accordingly, we

suggest this method as a diagnostic standard for the classification

of dementia syndromes.

Nonetheless, some limitations should be considered regarding

the results of the present study. First of all, the number of subjects

used for classification is too low to allow a generalizable conclusion

for patients from other clinical centers. This is especially a problem

because the accuracy of the clinical diagnosis for specific dementia

syndromes, which was used here for validation, strongly varies

between different clinical centers. Therefore, in a future work this

approach should be validated using a larger and more general-

izable dataset like the data provided by the Alzheimer’s disease

Neuroimaging Initiative (ADNI: www.adni-info.org). A further

limitation of the present work is the significantly younger age of

the control group in comparison to the patient cohort. However,

this aspect might only have contributed to the discrimination

between dementia patients and control subjects but not to the high

classification accuracy of AD and FTLD patients as these were

very similar in their age range. If age contributed to the

classification accuracy there should be lower classification

accuracy for young dementia patients and older control subjects

as they did not differ in age. For comparison of both types of

dementia patients and control subjects the classification accuracy

did not differ for younger and older dementia patients although

half of the patients were in the same age range as the control

group. In AD group all patients were classified correctly. In FTLD

group one younger and one older patient were misclassified.

Independently of age, all control subjects were classified correctly

for both comparisons. These results indicate that the slight mean

age differences is not the decisive factor for the high discrimination

accuracy using combined information from FDG-PET and MRI.

Furthermore, if age still slightly contributed to the high

discrimination of dementia patients and control subjects this

contribution was also present in all other single modality and

multimodal whole-brain and ROI-based SVM classifications

applied in this study. Therefore, age cannot account for increased

differentiation accuracies when combined ROI information from

FDG-PET and MRI are used for differentiation of dementia

patients and control subjects.

Another point is that subjects in the control group in our study

reported subjective cognitive complaints which might have limited

the interpretation of the results of our study. However, only

subjects were included whose cognitive complaints were not

confirmed by comprehensive neuropsychological evaluation. The

CDR is a semi-structural interview and is highly dependent on the

subjectively perceived memory impairment which resulted in a

CDR score of 0.5 for these control subjects in our study. In recent

literature it has been shown that the CDR stage of 0.5 has a poor

discriminative value for healthy control subjects and subjects with

Mild Cognitive Impairment (MCI) [42],[43]. Meguro et al. [42]

have shown that about 30% of a normal population older then 65

got a CDR score of 0.5 while the prevalence of MCI in the same

population was only about 5% which suggests that CDR score of

0.5 is not a good indicator of MCI. Due to the absence of any

objective cognitive impairment in all neuropsychological tests for

all subjects included in the control group in our study this group of

subjects can be regarded as cognitively unimpaired.

Conclusion and perspectives
In our study, we investigated the advantages of SVM

classification using combined information from FDG-PET and

MRI to improve detection and differentiation of dementia.

Table 4. Differentiation rates for combined region-of-interest
information from FDG-PET and MRI.

Accuracy Sensitivity Specificity

AD vs FTLD 94.3% 95.2%* 92.9%

AD vs Controls 100.0% 100.0% 100.0%

FTLD vs Controls 92.6% 85.7% 100.0%

*Considering a correctly identified AD as a true positive. AD Alzheimer’s disease,
FDG-PET [18F]fluorodeoxyglucose positron emission tomography, FTLD
frontotemporal lobar degeneration, MRI magnetic resonance imaging.
doi:10.1371/journal.pone.0018111.t004

Figure 3. Weights of voxels most relevant for classification of
both groups of patients and control subjects in FDG-PET and
MRI after SVM training. Weights are relative, and have no applicable
units. AD and FTLD vs Controls: Blue and light blue indicate decreased
gray matter intensity (upper row) or reduced metabolic rate (lower row)
that increase the likelihood of classification into a dementia group. Red
and yellow indicate the opposite. AD vs FTLD: Blue and light blue
indicate decreased gray matter intensity (upper row) or reduced
metabolic rate (lower row) that increase the likelihood of classification
into the AD group. Red and yellow indicate the opposite. Regions with
bright colors (yellow and light blue) have a higher importance for
separation than regions with dark colors (blue and red). AD Alzheimer’s
disease, FTLD frontotemporal lobar degeneration. MRI magnetic
resonance imaging, PET positron emission tomography.
doi:10.1371/journal.pone.0018111.g003
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Furthermore, based on affected regions reported in previous

studies, investigating Alzheimer’s disease and frontotemporal lobar

degeneration with univariate approaches and summarized in two

meta-analyses, we applied linear support vector machine classifi-

cation algorithm using information from both imaging modalities.

Combining region-of-interest information from FDG-PET and

MRI resulted in a substantial gain in accuracy compared to whole-

brain and to single modality classification for both detection and

differentiation of Alzheimer’s disease and frontotemporal lobar

degeneration. Our results indicate that integration and combina-

tion of results from different imaging modalities might provide a

new way to improve the diagnostic accuracy of these dementia

disorders.
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