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ZUSAMMENFASSUNG

In der vorliegenden Arbeit untersuchen wir durch starke Felder hervorgerufene relativistische Prozesse
in hochgeladenen Ionen. Im ersten Teil der Arbeit studieren wir die Resonanzfluoreszenz von Laser-
getriebenen Ionen im relativistischen Bereich, indem wir die zeitabhängige Master-Gleichung in einem
Mehrniveaumodell lösen. Unser ab initio Ansatz, basierend auf der Dirac-Gleichung, ermöglicht es
hochrelativistische Ionen zu untersuchen und liefert folglich eine präzise Methode, um korrelierte rel-
ativistische Dynamik, Phänomene der Quantenelektrodynamik gebundener Zustände und Kerneffekte
durch die Anwendung von kohärentem Röntgenlicht zu überprüfen. Atomare Dipol- oder Multipolmo-
mente können bis zu nie da gewesener Genauigkeit bestimmt werden, indem das durch Interferenz ver-
schmälerte Fluoreszenzspektrum gemessen wird. Desweiteren untersuchen wir die Niveaustruktur von
schweren Wasserstoff-ähnlichen Ionen in Laserfeldern. Die Wechselwirkung mit dem Lichtfeld führt zu
dynamischen Verschiebungen der elektrischen Energieniveaus, was relevant ist für Spektroskopieexperi-
mente. Die elektrischen Zustände werden vollständig relativistisch behandelt durch die Dirac-Gleichung.
Unser Formalismus geht über die Dipolapproximation hinaus und berücksichtigt Nicht-Dipoleffekte wie
Retardierung und die Wechselwirkung mit den Magnetfeldkomponenten des Laserfeldes. Wir konnten
Wirkungsquerschnitte für die zwischen-Schalen trielektrische Rekombination (TR) und den quadru-
elektrischen Rekombinationsprozess vorhersagen, welche experimentell mit Hilfe von Elektronenstrahl-
Ionenfallen bestätigt wurden, hauptsächlich für C-artige Ionen von Ar, Fe und Kr. Für Kr30+ wurden
Zwischen-Schalen TR-Beiträge von nahezu 6% zur gesamten resonanten Photorekombinationsrate ge-
funden.

ABSTRACT

In this thesis we investigate strong-field relativistic processes in highly charged ions. In the first part,
we study resonance fluorescence of laser-driven highly charged ions in the relativistic regime by solving
the time-dependent master equation in a multi-level model. Our ab initio approach based on the Dirac
equation allows for investigating highly relativistic ions, and, consequently, provides a sensitive means
to test correlated relativistic dynamics, bound-state quantum electrodynamic phenomena and nuclear ef-
fects by applying coherent light with x-ray frequencies. Atomic dipole or multipole moments may be
determined to unprecedented accuracy by measuring the interference-narrowed fluorescence spectrum.
Furthermore, we investigate the level structure of heavy hydrogenlike ions in laser beams. Interaction
with the light field leads to dynamic shifts of the electronic energy levels, which is relevant for spec-
troscopic experiments. We apply a fully relativistic description of the electronic states by means of the
Dirac equation. Our formalism goes beyond the dipole approximation and takes into account non-dipole
effects of retardation and interaction with the magnetic field components of the laser beam. We predicted
cross sections for the inter-shell trielectronic recombination (TR) and quadruelectronic recombination
processes which have been experimentally confirmed in electron beam ion trap measurements, mainly
for C-like ions, of Ar, Fe and Kr. For Kr30+, inter-shell TR contributions of nearly 6% to the total
resonant photorecombination rate were found.
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INTRODUCTION

In the present thesis, we theoretically investigate strong-field dynamical processes in highly charged ions.
Highly charged ions (HCI) are atomic ions in very high charge states due to the loss of many or most of
their bound electrons by energetic collisions or high-energy photon absorption. An example of a highly
charged ion is e.g. carbonlike (C-like) krypton (see Fig. 1.1), which was also studied in this work and in
our experimental collaboration (see Chapter 4). Research with these exotic ions is motivated by several
areas of science. The strong Coulomb field of the nucleus allows tests of quantum electrodynamics in the
strongest electromagnetic fields accessible. Due to the large overlap of the electronic probability density
with the nuclear matter, nuclear effects on the electronic shell can also be effectively investigated in
such species, and nuclear properties can be inferred through experiments with ions in high charge states.
Furthermore, such ions are found in astrophysical objects such as stellar coronae, in active galactic nuclei,
in supernova remnants, and in accretion disks. Most of the visible matter found in the universe consists
of highly charged ions. High-temperature Tokamak plasmas used for nuclear fusion energy research also
contain ions in high charges generated by the plasma-wall interaction. In the laboratory, highly charged
ions are investigated by means of heavy ion particle accelerators or storage rings, and by the use of
electron beam ion traps (EBITs).

Quantum electrodynamics (QED) is the best confirmed field theory in physics. QED has an enormous
success in predicting the electron properties in weak fields. Approximately 50 years ago, Lamb and
Rutherford observed for the first time a shift, the Lamb shift, in the atomic structure scheme of the
hydrogen atom. Since than, more and more precise Lamb-shift measurements have been performed
determining QED effects in light atomic systems to high accuracies. Now, a precise test in the strong-
field limit where novel phenomena might show up, is still pending. The atomic structure of an ion
is primarily determined by the strength of the nuclear Coulomb field which increases with the atomic
number Z. Thus, a primary goal of research with HCI is to explore the behavior of electrons in the
strongest electromagnetic fields accessible to experimental investigation. Precision measurements of
electron binding energies are best suited to deduce characteristic QED phenomena in intense fields.
Therefore, the comparison of predicted with experimentally determined level energies of strongly bound
electrons provides a critical test of QED in strong fields. This also requires an extention of QED as known
from, e.g., particle physics: the strong Coulomb nuclear field of HCI can not be treated perturbatively,
since its magnitude, characterized by the dimensionless product of the nuclear charge number and the
fine structure constant, i.e., Zα, is comparable to unity. Therefore, one needs to turn to a non-perturbative
treatment and apply the exact wave functions and propagators corresponding to the strong central nuclear
field. Also, the appearance of poles in the Green’s functions due to bound states and the presence of the
negative Dirac continuum introduces further issues that need to be accounted for in a rigorous theoretical

11



12 I 1. INTRODUCTION

Figure 1.1: An example of a highly charged atomic ion: carbon-like krypton. Its charge number is Z=36,
just like that of the neutral krypton atom, and its shell consists of six electrons just like in the case of the
carbon atom. The ions net charge is therefore q = +30e, with e being the elementary charge, and the
ion is denoted as Kr30+.

treatment of such systems.

Uranium is the heaviest element in which QED effects can be studied in the laboratory: the transura-
nium elements are radioactive and usually short lived, forbidding a conclusive experimental study of the
electron shell. For the case of hydrogen-like uranium, where the ground-state binding energy amounts to
132 keV, a measurement of the 1s Lamb shift (465.8 eV) with an accuracy of 1 eV and below still remains
one of the most important tests of QED in strong fields. In addition, the development and understanding
of bound-state QED in strong fields can be improved significantly for many-body systems by measuring,
e.g., the 2s1/2 − 2p1/2 splitting in lithium-like uranium. Heavy lithium-like ions are particularly well
suites because the electron-electron interaction contributions can be calculated reliably and the relatively
low atomic excitation energies are strongly influenced by QED effects.

HCI are naturally rare on earth, but they are very common in the universe, because stars and other
massive bodies are in most cases at extreme temperatures. This motivates to investigate HCI from an
astrophysical point of view. Those elements of the periodic table heavier than hydrogen are born under
nuclear fusion conditions at extreme temperatures. Supernova explosions are believed to be the main
mechanism for the production of elements heavier as iron (Fe, Z=26). As new nuclei are formed, they
are bare, and may remain so for extended periods of time. Their radiation emission is strongly affected
by the ionic charge state. As their environment cools down, ions gradually recombine by capturing
free electrons, eventually becoming neutral atoms. But other energetic processes, as those occurring in
active galactic nuclei, stellar cores and coronae, accretion disks and shocks can cause again ionization
up to very high stages. Since heavy atoms tend to emit more radiation than light atoms, and highly
charged ions even more so, the radiation from these exotic ions is very strong and therefore may even be
observed on the Earth or in space laboratories. As an example, the most intense line in the solar corona
is produced by 13-fold ionized iron, Fe13+. The radiation produced by HCI at different energy ranges of
the electromagnetic spectrum can be used to diagnose and thus to better understand such astrophysical
processes.

Research with HCI is also motivated by its interest for controlled nuclear fusion, which may be the dom-
inant source of energy used by mankind in the future. In Tokamak plasmas, atoms from the wall of the
chamber are constantly ionized to high charge states. Also, gases such as argon and krypton are artifically
injected into the plasma: through energetic collisions within the electron beam, they lose most of their
shell electrons, and become highly charged. During this process, and through photorecombination, x rays
are emitted, which works to cool the plasma. This gives one an additional degree of freedom to control
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Figure 1.2: Level scheme of an atomic three-level system driven by two different laser fields. In the
relativistic ionic systems studied in our work, the transition between the uppermost level 3 and the ground
state 1 has energies in the keV range and is driven by an x-ray laser (frequency ωx). Level 1 and 2 are
hyperfine-split ground state sublevels with transition energies in the eV range, and are connected by an
optical laser (frequency ωo). The thick arrows represent fast (electric dipole) spontaneous decay channels
and the thin arrows represent slow (magnetic dipole) decay transitions.

the thermodynamics of the hot plasma. Furthermore, the emission lines originating from HCI provide
an important plasma diagnostic tool. In the case when HCI are embedded in a plasma environment,
the balance between collisional excitation and ionization on the one hand and radiative and collisional
de-excitation and recombination on the other hand strongly depends on the composition, density and
temperature of the host plasma. Such a situation can only very approximately be described by plasma
models and is nowadays treated by involved numerical simulations, for which respective precise atomic
data from theoretical calculations or experiments is a prerequisite.

The discovery of the parity non-conservation (PNC) in the beta decay of 60Co by Wu and co-workers
about forty years ago marked an important landmark in the history of physics. This phenomenon which
suggests the lack of left-right mirror symmetry has now been observed in several physical systems. An
important case in this field is parity non-conservation in atomic systems. Indeed, parity non-conservation
has now been observed in several heavy atoms. The latest measurement on cesium has yielded a result of
unprecedented accuracy (0.35%) and has lead to the discovery of the nuclear anapole moment. It appears
that the atomic parity non-conservation can serve as an important probe of physics beyond the standard
model of particle physics if the present accuracy of the atomic theory is improved, or the uncertainties
associated with it can be removed by comparing very accurate parity non-conservation measurements on
several isotopes of the same element. A further increase in sensitivity to PNC phenomena are expected
from theoretical and experimental studies involving highly charged ions: the inner-shell electrons mostly
influenced by PNC effects can be most effectively addressed in heavy few-electron systems. Experiments
with highly charged uranium ions to explore this field are currently planned at FAIR to be constructed as
an extension of the GSI facility at Darmstadt, Germany.

After this general overview about the relevance of HCI in physics, in the following we give a more
detailed summary of the topics discussed in this thesis:

In Chapter 2, we develop a fully relativistic theory of resonance fluorescence. The phenomenon of
resonance fluorescence provides an interesting manifestation of the quantum theory of light. In this
process, a multi-level atomic system is driven by a resonant continuous-wave laser field and the spectral
and quantum statistical properties of the fluorescent light emitted by the atom are measured. If the
driving field is monochromatic, at low excitation intensity the atom or ion absorbs and reemits it at the
same frequency as a consequence of conservation of energy. The situation, however, is considerably more
complicated when the excitation intensity increases and the Rabi frequency associated with the driving
field becomes comparable to, or larger than, the atomic linewidth. At such intensity levels, the Rabi
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Figure 1.3: Diagrams illustrating the second-order light shift effect with bound relativistic electrons.
The double lines represent Furry-picture electronic wave functions and propagators, i.e. solutions of the
Dirac equation with the Coulomb nuclear potential. The wavy lines represent emitted or absorbed real
photons from the laser field.

oscillations show up as a modulation of the quantum transition moment and sidebands start emerging in
the spectrum of emitted radiation (dynamic Stark splitting).

In the case of atomic systems with higher nuclear charges or in the case of certain transitions, the usual
non-relativistic treatment is not valid. Not only do the electronic wave functions differ significantly from
the Schrödinger wave functions, but also the interaction with the light field is modified. Therefore, we
formulate an ab initio description that is inherently relativistic, i.e. it is based on the Dirac equation.
Such a formalism is especially needed in the case of inner-shell transitions of highly charged ions. These
transitions can nowadays or in the near future be driven by x-ray lasers or coherent x-ray light created by
high harmonic generation schemes, therefore, the understanding of the relativistic resonance fluorescence
spectrum is mandatory.

The theoretical description of resonance fluorescence is not only interesting on its own but it also lays
the foundation of laser spectroscopic methods. High-precision optical laser spectroscopy is a versa-
tile tool to investigate correlated relativistic quantum dynamics, the testing of fundamental theories like
quantum electrodynamics (QED) [BCTT05, GSB+05] or parity non-conservation in atomic systems, as
summarized previously. In the regime of heavy few-electron systems, however, the accuracy of optical
spectroscopy can seldom be exploited due to the scarcity of low-frequency transitions. With the advent
of modern short-wavelength laser systems, the accuracy and versatility of laser spectroscopy may be
combined with the increased sensitivity to relativistic and QED effects and nuclear properties at higher
nuclear charges and for inner-shell transitions. Brilliant x-ray light has recently enabled to study tran-
sitions in the x-ray regime. Coherent light with photon energies over 10 keV becomes experimentally
accessible in the near future [XFE, LCL], allowing for an extension to heavier systems and the exploita-
tion of coherence properties.

We study resonance fluorescence of laser-driven highly charged ions in the relativistic regime by solv-
ing the time-dependent master equation in a multi-level model. Our ab initio approach may provide a
sensitive spectroscopic tool by applying coherent light with x-ray frequencies. In the scheme we put for-
ward, atomic dipole or multipole moments may be determined to unprecedented accuracy by measuring
the interference-narrowed fluorescence spectrum. To this end, we develop a theoretical formalism for
relativistic resonance fluorescence of a three-level atomic configuration driven by two fields, namely, a
short-wavelength laser and a long-wavelength light source in the optical regime. This scheme is illus-
trated in Fig. 1.2. In such a three-level setting, the linewidth of the spontaneous transition of interest may
be rendered much narrower than the natural linewidth, with the simultaneous increase of the total emitted
intensity by orders of magnitude. Due to this effect, the determination of atomic multipole moments by
means of the detection of the fluorescence spectrum is anticipated to largely increase in accuracy.

Furthermore, we investigate in Chapter 3 the level structure of heavy hydrogenlike ions in laser beams
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Figure 1.4: Scheme of resonant electron recombination processes in a six-electron ion: In DR (blue
diagram) one bound electron is excited by the captured electron, in TR (red diagram) two and in QR
(green diagram) three electrons are promoted by the captured electron.

with off-resonant frequencies. In heavy ions, the electrons are tightly bound by the Coulomb potential
of the nucleus, which prohibits ionization even by strong lasers. However, interaction with the light field
leads to dynamic shifts of the electronic energy levels. The dominant diagrams are illustrated in Fig. 1.3.
Here we again apply a relativistic description of the electronic states by means of the Dirac equation.
Theoretical investigation so far apply non-relativistic approaches and are restricted to electric dipole
transitions. Our relativistic generalization allows one to extend the field of investigations to stronger laser
fields, higher frequencies – e.g., x-ray lasers [ECB+07] –, and to the highest nuclear charges. Interaction
with the monofrequent laser field is treated by time-dependent perturbation theory. Our formalism goes
beyond the Stark long-wavelength dipole approximation and takes into account non-dipole effects of
retardation and interaction with the magnetic field components of the laser beam. The resulting level
shifts are relevant for experiments at present and near-future laser facilities.

In Chapter 4, we develop a relativistic theoretical formalism and summarize the computational scheme
used for the description of resonant many-body recombination processes. Such processes provide a vi-
able alternative to laser spectroscopy: the ions are excited by beams of electrons rather than photons,
which allows the experimental study of transitions with keV energies even without the use of large-scale
x-ray sources such as synchrotrons or free electron lasers. The most fundamental resonant recombination
process is dielectronic recombination (DR). In this two-step process, a free electron is captured into a
bound state of the ion with the simultaneous excitation of a second, bound electron. This inverse Auger
process is followed by a radiative de-excitation of the so-formed state, completing the photorecombina-
tion process. This process is illustrated in the first panel of Fig. 1.4. DR often represents the dominant
pathway for populating excited states in plasmas and, consequently, for inducing easily observable x-
ray emission lines which are used as diagnostic tools for fusion plasmas (whereby Kr as well as Ar
were chosen as ideal candidates) [CCH+90, WBD+95], triggering a range of DR studies with highly
charged Kr ions [BHB+93, FBR98, RBF+00]. From a more fundamental point of view, the selectivity
of DR [BKM+03] allows testing stringently sophisticated atomic structure and dynamics calculations, in
particular of relativistic and QED effects in strong electromagnetic fields.

Beyond the well-known DR, resonant recombination processes involving higher-order correlations are
relevant, too. Here, as displayed in Fig. 1.4, two or even three bound electrons can be simultaneously
excited by the resonantly captured electron in trielectronic or even quadruelectronic recombination (TR
and QR, respectively). It is important to mention that in general TR and QR offer new photorecombina-
tion channels and their contribution to the radiative cooling of Tokamak and astrophysical plasmas needs
to be considered in the theoretical modeling. We calculated TR and QR resonance energies and cross
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sections in the framework of the multiconfiguration Dirac-Fock (MCDF) method, which can be regarded
as a relativistic generalization of the Hartree-Fock scheme and will be also briefly described in Chapter 4.

We investigate trielectronic recombination with simultaneous excitation of a K-shell and a L-shell elec-
tron, hence involving three active electrons. Our theoretical prediction triggered experimental activities
at the electron beam ion trap facility of the Max Planck Institute for Nuclear Physics. The TR process
was identified in the x-ray emission spectrum of recombining highly charged Kr, Fe and Ar ions trapped
in the EBIT. An energy resolution three times higher than any reported for this collision energy range
around 10 keV resulted in the separation of the associated lines from the stronger dielectronic resonances.
For Kr30+, inter-shell TR contributions of nearly 6% to the total resonant photorecombination rate were
found, and even higher contributions in the case of the lighter elements of Ar and Fe are deduced from
both theoretical and experimental spectra.

In Chapter 5, conclusions and a brief outlook including proposals concerning possible future theoretical
and experimental work are given. Some additional derivations and intermediate results are presented in
the Appendix.



–II–

RELATIVISTIC THEORY OF RESONANCE

FLUORESCENCE IN A TWO- AND THREE-LEVEL

SYSTEM

2.1 Introduction

High-precision laser spectroscopy has resulted in crucial advancements in our understanding of nature. In
particular, optical laser spectroscopy (OS) is a versatile tool to investigate correlated relativistic quantum
dynamics, the testing of fundamental theories like quantum electrodynamics (QED) [BCTT05,GSB+05]
or parity non-conservation in atomic systems. The determination of atomic dipole or multipole moments
via lifetime measurements by means of, e.g., visible emission spectroscopy [LJC+05], approaching the
accuracy of one per thousand, sheds light on QED effects like the electron anomalous magnetic mo-
ment. Isotope shifts (IS) in atomic spectra which has been providing valuable insight into the collective
structure of nuclei: for example, recently, isotope shifts were determined two-photon Doppler-free spec-
troscopy and by collinear laser spectroscopy [SNE+06, GNA+08]. Beyond purely nuclear effects, the
interaction of the correlated motion of electrons and that of the nucleus can be studied in IS measure-
ments: recently, relativistic effects on nuclear recoil [Sha98] have been measured in visible forbidden
transitions of the few-electron argon ions by a trapped-ion method [SHC+06].

In the regime of heavy few-electron systems, however, the accuracy of optical spectroscopy can sel-
dom be exploited due to the scarcity of low-frequency transitions. Therefore, one has to apply other
techniques. Measuring the 2s↔2p x-ray emission lines of highly charged uranium ions confined in an
electron beam ion trap allowed testing strong-field QED on the two-loop level [BCTT05] and delivered a
new value for the radius of the radioactive isotope 235U [EBC96]. Recently, a method based on the stor-
age ring measurement of dielectronic recombination spectra has yielded the change of the mean square
charge radius for Nd isotopes [BKH+08, cHSG04].

With the advent of modern short-wavelength laser systems, the accuracy and versatility of laser spec-
troscopy may be combined with the increased sensitivity to relativistic and QED effects and nuclear
properties at higher nuclear charges and for inner-shell transitions. Brilliant x-ray light has recently en-
abled to study transitions in the soft x-ray regime in the intermediate range of nuclear charges [ECB+07].
Coherent light with photon energies over 10 keV becomes experimentally accessible in the near fu-
ture [XFE], allowing for an extension to heavier systems and the exploitation of coherence properties.
This would also ask for the validity of numerous quantum control schemes of resonance fluorescence
[NSO+90, ZS96b, ZS96a, PK98, SZ98, Kei99] for concrete systems in the relativistic regime.

17
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Figure 2.1: Schematic setup of a resonance fluorescence experiment with trapped highly charged ions:
the ions are trapped in the electromagnetic potential of an EBIT, Paul trap or Penning trap, and a laser
beam is directed through the ion cloud. Emitted photons (not shown) are registered with a detector or
spectrometer.

In the present work, we investigate the possibility of measuring atomic transition dipole – or multipole
– moments and transition energies via relativistic resonance fluorescence of a three-level atomic config-
uration driven by two fields, namely, a short-wavelength laser and a long-wavelength light source in the
optical regime. In such a three-level setting, the linewidth of the spontaneous transition of interest may
be rendered much narrower than the natural linewidth, with the simultaneous increase of the total emit-
ted intensity by orders of magnitude. Due to this effect, the determination of atomic multipole moments
by means of the detection of the fluorescence spectrum is anticipated to increase in accuracy by several
orders of magnitude.

As relativistic effects on the bound electronic wave function increase rapidly with the nuclear charge
number Z, one needs to formulate a fully relativistic theory of coherent laser-atom interaction based
on the Dirac equation [Dir28]. Not only do the electronic wave functions differ significantly from the
Schrödinger wave functions, but also the interaction with the laser light is modified. For example, mag-
netic dipole transitions, which are non-relativistically forbidden even in the visible range, can only be
explained by a relativistic theory. An approach via the time-dependent numerical solution of the Dirac
equation was recently employed to describe ionization phenomena [HK09]. For our purposes, one needs
to go beyond this approach and incorporate radiative relaxation in bound-bound transitions. These tran-
sitions can nowadays or in the near future be driven by x-ray or soft x-ray lasers, therefore, the under-
standing of the relativistic resonance fluorescence spectrum is indispensable.

2.2 The spectrum of resonance fluorescence in two-level approximation

The phenomenon of resonance fluorescence provides an interesting manifestation of the quantum theory
of light. In this process, a two- or many-level atomic system is driven by a resonant continuous-wave
laser field and the spectral and quantum statistical properties of the fluorescent light emitted by the atom
are measured. Experimentally this can be achieved by scattering a laser off a collimated beam or a
trapped ensemble of atoms.

If the driving field is monochromatic, at low excitation intensity the atom or ion absorbs and reemits it
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at the same frequency as a consequence of conservation of energy. The spectral width of the fluorescent
light is given by the natural decay width of the upper state. The situation, however, is considerably more
complicated when the excitation intensity increases and the Rabi frequency associated with the driving
field becomes comparable to, or larger than, the transition linewidth. At such intensity levels, the Rabi
oscillations show up as a modulation of the quantum dipole – or multipole – moment and sidebands start
emerging in the spectrum of emitted radiation. This so-called dynamic Stark splitting is an interesting
feature of the atom-light field interaction.

2.2.1 Description of the model and equations of motion

In this section, we are interested in the evolution of a two-level system driven by an incident field of
arbitrary strength whose carrier frequency ω is resonant or nearly resonant with the atomic transition.
The aim is to calculate the complete power spectrum of the radiation spontaneously emitted by the
atomic system (’atom’). The atom is assumed to be isolated and fixed in position.

Consider the interaction of a single-mode radiation field of frequency ω with a two-level atom. Let |a〉
and |b〉 represent the upper and lower levels of the atom, i.e., they are eigenstates of the unperturbed part
of the Hamiltonian H0 with the eigenvalues ~ωa and ~ωb, respectively. The wave function of a two-level
system can be written in the form

|Ψ(t)〉 = Ca(t)|a〉+ Cb(t)|b〉 , (2.1)

where Ca and Cb are the probability amplitudes of finding the atom in states |a〉 and |b〉, respectively.
The corresponding Hamiltonian is H = H0 + H1, where H0 and H1 represent the unperturbed and
the interaction parts, respectively. By using the closure property |a〉〈a|+ |b〉〈b| = 1, we can write H0 as

H0 = (|a〉〈a|+ |b〉〈b|)H0(|a〉〈a|+ |b〉〈b|) (2.2)

= ~ωa|a〉〈a|+ ~ωb|b〉〈b| ,

where we use H0|a〉 = ~ωa|a〉 and H0|b〉 = ~ωb|b〉. Similarly, the part of the Hamiltonian H1 that
represents the interaction of the atom with the radiation field can be written as

H1 = −exE(t) (2.3)

= −e(|a〉〈a|+ |b〉〈b|)x(|a〉〈a|+ |b〉〈b|)E(t)
= −(γab|a〉〈b|e−iωt + γba|b〉〈a|e−iωt)E ,

where γab = e〈a|x|b〉 is the matrix element of the transition and E(t) = E (e−iωt + eiωt) is the field at
the location of the atom. We kept just the conservative terms, all other being neglected in the rotating
wave approximation. Here, we assume that the electric field is linearly polarized along the x-axis. Thus,
the Hamiltonian of two-level system interacting with one classical field is given by

H =
2∑

i=1

εi|i〉〈i|+ ΩR(e−iωt|2〉〈1|+ eiωt|1〉〈2|) , (2.4)

where εi (i=1,2) are the energies of the two stationary states of the atom, and ΩR is the Rabi frequency
of the driving field.

There exists a state vector |Ψ〉 which contains all possible information about the given physical system.
If we want to extract a piece of the system’s information, we have to calculate the quantum mechanical
(QM) expectation value of the corresponding operator O,

〈O〉QM = 〈Ψ|O|Ψ〉 . (2.5)
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In many situations we may not know |Ψ〉; we may only know the probability PΨ that the system is in the
state |Ψ〉. For such a situation, we not only need to take the quantum mechanical average but also the
ensemble average over many identical systems that have been similarly prepared. Instead of Eq. (2.5),
we now have

〈〈O〉QM〉ensemble = Tr(Oρ) , (2.6)

where the density operator ρ is defined by

ρ =
∑
Ψ

PΨ|Ψ〉〈Ψ| . (2.7)

It can be seen that Tr(Oρ) = Tr(ρO). In the particular case where all PΨ are zero except the one for a
state |Ψ0〉, then ρ = |Ψ0〉〈Ψ0|, and the state is called a pure state. It follows from the conservation of
probability that Tr(ρ) = 1. Also, for a pure state, Tr(ρ2) = 1.

We can obtain the equation of motion for the density matrix from the Schrödinger equation,

|Ψ̇〉 = − i
~
H |Ψ〉 . (2.8)

Taking the time derivative of ρ (Eq. (2.7)) we have

ρ̇ =
∑
Ψ

PΨ(|Ψ̇〉〈Ψ|+ |Ψ〉〈Ψ̇|) , (2.9)

where PΨ is time independent. Using Eq. (2.8) to replace |Ψ̇〉 and 〈Ψ̇| in Eq.(2.9) we get

ρ̇ = − i
~
[H , ρ] . (2.10)

Equation Eq. (2.10) is often called the reversible part of the Liouville or von Neumann equation of
motion for the density matrix. It is more general than the Schrödinger equation since it uses the density
operator instead of a specific state vector and can therefore give statistical as well as quantum mechanical
information.

Consider first the reversible part of the Liouville equation in the interaction representation:

ρ̇′ = − i
~
[H ′

1 , ρ
′] , (2.11)

where

H ′
1 = ~ΩR(|2〉〈1|ei∆t + |1〉〈2|e−i∆t) , (2.12)

and ∆ = ω21 − ω. The prime denotes the interaction representation and ω21 is the atomic transition
frequency. The matrix elements of ρ′ according to Eq. (2.12) satisfy linear coupled equations of motion
containing explicit time-dependent factors of the complex exponential type. These can be removed with
the transformation

Rii = ρii (i = 1, 2), R12 = ρ12e
i∆t , (2.13)

whose effect is to produce autonomous equations for matrix elements Rij ; we would like to stress that
the absence of explicit time dependence in the equations of motion plays an important role for the im-
plementation of the procedure. Next we consider the irreversible part of the atomic dynamics. This is
described by the master equation for the arbitrary multilevel system [NSO+90, MDLMNO91]

ρ̇′irrev ≡ Λρ′ =
∑
i,j

[|i〉〈j|ρ′|j〉〈i|(Ajiij +A∗jiij)− |j〉〈j|ρ′Ajiij − ρ′|j〉〈j|A∗jiij ] , (2.14)
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where Ajiij are complex rate constants related to the decay rates Γij , polarization decay rates µij , and
the frequency shifts ∆Ωij given by

Γij = Ajiij +A∗jiij , (2.15)

µij =
∑

k

<(Aikki +A∗jkkj) =
1
2

∑
k

(Γik + Γjk) ,

∆Ωij = −
∑

k

=(Ajkkj +A∗ikki) .

In the following we shall ignore both level shifts and pure phase relaxation effects due to elastic collisions
(i.e., we assume Aiiii = 0). Note in addition that

<Aijji = <Ajiij exp
(

~ωij

kT

)
, (2.16)

where ωij is the transition frequency between the levels i and j and T is the absolute temperature. From
the above equation it follows that the rates of excitation from a lower to a higher level due to (incoherent)
collisional effects can be safely ignored as long as the energy separation between the levels is much larger
than kT . Because one may encounter situations where this condition is not fulfilled, for completeness
we continue to include the rate coefficient Γij with i < j. The full master equation is

ρ̇′ = − i
~
[H ′

1 , ρ
′] + Λρ′ . (2.17)

In terms of the variable Rij , Eq. (2.17) takes the explicit form

dR12

dτ
= (i∆̃− γ̃12)R12 + 2iβR22 − iβ , (2.18)

dR22

dτ
= −iβR12 + iβR21 − (1 + Γ̃12)R22 + 1 ,

where

R11 = 1−R22and R21 = R∗
12 . (2.19)

In arriving at Eqs. (2.18) we have introduced the dimensionless time τ = Γ21t and the scaled Rabi fre-
quency β = ΩR/Γ21. The remaining rate constants are scaled to Γ21 and are labeled with a tilde. For the
purpose of the following development it is convenient to represent the set of three linearly independent
equations for the matrix Rij in the compact form

d

dτ
Ψ = LΨ + I , (2.20)

where the three components of the vector Ψ are defined by

Ψ1 = R12 , Ψ2 = R21 , Ψ3 = R22 , (2.21)

and L is the (3× 3) matrix

L =

 i∆̃− γ̃12 0 2iβ
0 −i∆̃− γ̃21 −2iβ
−iβ iβ −(1 + Γ̃12)

 . (2.22)
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The vector I is an inhomogeneous term with components

I1 = −iβ , I2 = iβ , I3 = 1 . (2.23)

Because our calculation of the quantities of interest involves the quantum regression theorem, we will
need explicit expressions for the variables Ψi (i = 1, 2, 3) in terms of their initial values. This is done
conveniently in the Laplace space. Thus, if τ0 denotes an arbitrary initial time, the Laplace transform of
Eq. (2.20) yields

Ψ̂(z) = M(z)Ψ(τ0) +
1
z
M(z)I , (2.24)

or in component form

Ψ̂i(z) =
∑

j

Mij(z)Ψj(τ0) +
1
z

∑
j

Mij(z)Ij , (2.25)

where

M = (z − L)−1 . (2.26)

For the steady state (Eq. (2.20)) we then have

Ψ(∞) = −L−1I , (2.27)

or, explicitly, in component form

Ψi(∞) = −
∑

j

(L−1)ijIj . (2.28)

2.2.2 Electric field operator for spontaneous emission from a single atom

We first discuss the interaction of the quantized radiation field with the two- or three-level atomic system
described by a Hamiltonian in the dipole approximation. For a single-mode field it reduces to a partic-
ularly simple form. This Hamiltonian provides the simplest illustration of spontaneous emission and an
explanation of effects of various kind.

The spontaneous decay of an atomic level is treated by considering the interaction of the atomic levels
with the modes in the vacuum state. We examine the state of the field that is generated in the process of
emission of a quantum of energy equal to the energy difference between the atomic levels. Such a state
may be regarded as a single-photon state.

The interaction of the radiation field E with a single-electron atom can be described by the following
Hamiltonian in the dipole approximation:

H = HA + HF − erE. (2.29)

Here, HA and HF are the Hamiltonian operators of the atom and the radiation field, respectively, in the
absence of interaction, and r is the position vector of the electron. For relativistic atomic systems, e.g.
for a single-electron ion, the Hamiltonian is given by

HA = cαp + βm0c
2 − Ze2

4πε0r
. (2.30)
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In the above equation, α and β are the usual Dirac matrices and p is the three-momentum of the electron.
We note here that the above treatment can be extended to many-electron atoms in a rather straightforward
way.

The energy operator of the free field, HF , is given in terms of the creation and annihilation operator by

HF =
∑

k

~νk

(
a†kak +

1
2

)
. (2.31)

We can express HA and er in terms of the atomic transition operators

σij = |i〉〈j| . (2.32)

The states {|i〉} represent a complete set of atomic energy eigenstates, i.e.
∑

i |i〉〈i| = 1. It then follows
from the eigenvalue equation HA|i〉 = Ei|i〉 that

HA =
∑

i

Ei|i〉〈i| =
∑

i

Eiσii . (2.33)

In the dipole approximation, the field is assumed to be uniform over the whole atom. The dipole moment
can be rewritten as

er =
∑
i,j

e|i〉〈i|r|j〉〈j| =
∑
i,j

γijσij , (2.34)

where γij = e〈i|r|j〉 is the electric-dipole transition matrix element. The electric field operator is eval-
uated in the dipole approximation at the position of the point-like atom. For the atom at the origin, we
have

E =
∑

k

ε̂kEk(ak + a†k) , (2.35)

where Ek = (~νk/2ε0V )1/2. Here, for simplicity, we have taken a linear polarization basis and the
polarization vectors to be real.

It now follows by making some substitutions, that

H =
∑

k

~νka
†
kak +

∑
i

Eiσii + ~
∑
i,j

∑
k

gij
k σij(ak + a†k) , (2.36)

where

gij
k = −γij ε̂kEk

~
. (2.37)

In Eq. (2.36), we have omitted the zero-point energy from the first term. For the sake of simplicity, we
assume γij to be real throughout.

We now proceed to the case of a two-level atomic system. For γab = γba we write

gk = gab
k = gba

k . (2.38)

The following form of the Hamiltonian is obtained:

H =
∑

k

~νka
†
kak + (Eaσaa + Ebσbb) + ~

∑
k

gk(σab + σba)(ak + a†k) . (2.39)
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The second term in Eq. (2.39) can be rewritten as

Eaσaa + Ebσbb =
1
2

~ω(σaa − σbb) +
1
2
(Ea − Eb) , (2.40)

where we use (Ea − Eb) = ~ω and σaa + σbb = 1. The constant energy term (Ea + Eb)/2 can be
ignored. If we use the notation

σz = σaa − σbb = |a〉〈a| − |b〉〈b|, (2.41)

σ+ = σab = |a〉〈b|,
σ− = σba = |b〉〈a| ,

the Hamiltonian (2.39) takes the form

H =
∑

k

~νka
†
kak +

1
2

~ωσz + ~
∑

k

gk(σ+ + σ−)(ak + a†k) . (2.42)

It follows from the identity

[σij , σkl] = σilδjk − σkjδil, (2.43)

that σ+, σ− and σz satisfy the spin-1/2 algebra of the Pauli matrices, i.e.,

[σ−, σ+] = −σz , (2.44)

[σ−, σz] = 2σ− ,
[σ+, σz] = 2σ+ .

In the matrix notation, σ−, σ+ and σz are given by

σ− =
(

0 0
1 0

)
,

(
0 1
0 0

)
,

(
1 0
0 −1

)
. (2.45)

The σ− operator takes an atom in the upper state into a lower state whereas σ+ promotes an atom in the
lower state into the upper state.

The interaction energy in Eq. (2.42) consists of four terms. The term a†kσ− describes the process in
which the atom is taken from the upper state into the lower state and a photon of mode k is created.
The term akσ+ describes the opposite process. The term akσ− describes the process in which the atom
makes a transition from the upper to the lower level and a photon is annihilated, resulting in the loss
of approximately 2~ω in energy. Similarly, a†kσ+ results in the gain of 2~ω. Dropping the energy non-
conserving terms corresponds to the rotating-wave approximation. The resulting simplified Hamiltonian
is

H =
∑

k

~νka
†
kak +

1
2

~ωσz + ~
∑

k

gk(σ+ak + a†kσ−) . (2.46)

Let us consider a two-level atom located at a point r0 which is driven by a strong continuous-wave (cw)
laser field. The driven atom is excited to the higher energy state and then radiates spontaneously in all
directions. The field operator at point r, associated with this fluorescent radiation field is related to the
appropriate atomic operator at retarded time in order to allow the field to propagate from the position r0

to r.
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The interaction of a two-level atomic system with the radiation field is described by the following
rotating-wave approximation Hamiltonian (see Eq. 2.46):

H =
~ω
2
σz +

∑
k,λ

~νκa
†
k,λak,λ +

∑
k,λ

~gk,λ

(
ak,λσ+e

ikr0 + a†k,λσ−e
−ikr0

)
. (2.47)

Here we include the interaction between the atom and all the field modes characterized by the wave
vector k and polarization λ. We proceed by introducing the slowly varying operators ãk,λ and σ̃− such
that

ak,λ(t) = ãk,λ(t)e−iνκt, (2.48)

σ−(t) = σ̃−(t)e−iωt .

The Heisenberg equations of motion for these are

˙̃ak,λ(t) = −igk,λσ̃−(t)e−i(ω−νκ)t−ikr0 , (2.49)
˙̃σ−(t) =

∑
k,λ

igk,λσz(t)ãk,λ(t)ei(ω−νκ)t+ikr0 .

These equations can be formally integrated to yield

ãk,λ(t) = ãk,λ(0)− igk,λe
−i(ω−νκ)t−ikr0

∫ t

0
dt′σ̃−(t′)ei(ω−νκ)(t−t′), (2.50)

σ̃−(t) = σ̃−(0) +
∑
k,λ

igk,λe
i(ω−νκ)t+ikr0

∫ t

0
dt′σz(t′)ãk,λ(t′)e−i(ω−νκ)(t−t′) .

The first term in these equations represents the free evolution of the field and atomic operators in the ab-
sence of interaction. In the following, we shall focus on the contribution to the field due to its interactions
with the atom. The positive frequency part of the electric field operator is

E(+)(r, t) =
∑
k,λ

Ekε̂
(λ)
k ak,λ(t)eikr , (2.51)

where Ek = (~νκ/2ε0V )1/2. Substituting ak,λ(t) by Eqs. (2.48) and (2.50), we obtain

E(+)(r, t) =
(

i

16π3ε0

)
e−iωt

∫
d3k

∑
λ

ε̂
(λ)
k [ε̂λk · γ̂]νκe

ik(r−r0) (2.52)

×
∫ t

0
dt′σ̃−(t′)ei(ω−νκ)(t−t′), (2.53)

where we have recalled the definitions of gk from Eq. (2.37) and replaced the sum by an integral via∑
k

→ V

(2π)3

∫
d3k. (2.54)

It is very easy to show that ∑
λ

ε̂
(λ)
k ε̂

(λ)
k = 1− kk

k2
, (2.55)
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Figure 2.2: The atomic dipole γ and the k-vector of the electric field in polar coordinates. η denotes the
angle of the dipole with the z axis.

and thus we have the vector field operator in the useful form

E(+)(r, t) =
(

i

16π3ε0

)
e−iωt

∫
dkdθdϕk2 sin θ

[
γ̂ − k(k · γ̂)

k2

]
νκe

ik(r−r0) (2.56)

×
∫ t

0
dt′σ̃−(t′)ei(ω−νκ)(t−t′) .

Next we assume that the line joining the atom to the observation is along the z-axis, which is parallel to
r− r0, and the electric dipole is in the x− z plane making an angle η with the z-axis, see Fig. 2.2. Then
the vectors k and γ̂ are defined in polar coordinates by

k = k(x̂ sin θ cosϕ+ ŷ sin θ sinϕ+ ẑ cos θ), (2.57)

γ̂ = γ(x̂ sin η + ẑ cos η).

Consider first the angular integrations in Eq. (2.56). The ϕ-integration yields for the x-component∫ 2π

0
dϕ

[
x̂ · γ̂ − (x̂ · k)(k · γ̂)

k2

]
=
∫ 2π

0
dϕγ[sin η − sin θ cosϕ(sin η sin θ cosϕ+ cos η cos θ)]

= 2πγ sin η(1− 1
2 sin2 θ) , (2.58)

for the y-component∫ 2π

0
dϕ

[
ŷ · γ̂ − (ŷ · k)(k · γ̂)

k2

]
=
∫ 2π

0
dϕγ[0− sin θ sinϕ(sin η sin θ cosϕ+ cos η cos θ)] = 0 ,

(2.59)

and for the z-component∫ 2π

0
dϕ

[
ẑ · γ̂ − (ẑ · k)(k · γ̂)

k2

]
=
∫ 2π

0
dϕγ[cos η − cos θ(sin η sin θ cosϕ+ cos η cos θ)]

= 2πγ cos η(1− cos2 θ) = 2πγ cos η sin2 θ . (2.60)

Thus the y-component of the electric field vanishes. Next we consider the θ-integration in Eq. (2.56). By
writing

eik(r−r0) = eik|r−r0| cos θ , (2.61)
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and using cos θ as a new variable µ = cos θ, we obtain for the x-component

2πγ sin η
∫ π

0
dθ sin θ

(
1− 1

2 sin2 θ
)
eik(r−r0) = 2πγ sin η

∫ 1

−1
dµ
[
1− 1

2(1− µ2)
]
eik|r−r0|µ

= 2πγ sin η

[
eik|r−r0| − e−ik|r−r0|

ik|r− r0|
+O

(
1

|r− r0|2

)]
, (2.62)

and for the z-component

2πγ cos η
∫ π

0
dθ sin3 θeik(r−r0) = 2πγ cos η

∫ 1

−1
dµ(1− µ2)eik|r−r0|µ ∼ O

(
1

|r− r0|2

)
, (2.63)

where we have used the results (2.58) and (2.60). In the far-field region, the terms proportional to
O(1/|r − r0|2) can be neglected, and the z-component of the electric field also vanishes. Combining
Eqs. (2.56) and (2.62), we obtain

E(+)(r, t) =
(

cγ sin ηx̂
8π2ε0|r− r0|

)
e−iωt

∫ ∞

0
dkk2

(
eik|r−r0| − e−ik|r−r0|

)
(2.64)

×
∫ t

0
dt′σ̃−(t′)ei(ω−νk)(t−t′) .

We proceed by replacing k2 → (ω/c)2, extended the limit of k-integration to −∞ and upon performing
the k-integration, and obtain

E(+)(r, t) =
(

ω2γ sin ηx̂
4πε0c2|r− r0|

)[
e−iω(t−|r−r0|/c)

∫ t

0
dt′σ̃−(t′)δ

(
t− t′ − |r− r0|

c

)
(2.65)

− e−iω(t+|r−r0|/c)

∫ t

0
dt′σ̃−(t′)δ

(
t− t′ +

|r− r0|
c

)]
.

Ignoring the incoming wave contribution and going back to σ−(t), see Eq. (2.49), we find

E(+)(r, t) =
ω2γsin(η)

4πε0c2|r− r0|
x̂σ−

(
t− |r− r0|

c

)
(2.66)

with a similar expression for E(−)(r, t). Equation (2.66) indicates that the positive frequency part of the
field operator is proportional to the atomic lowering operator at retarded time.

2.2.3 The spectrum of resonance fluorescence

In this section, we evaluate the complete power spectrum of radiation scattered by a two-level atom
driven by an incident field of arbitrary strength. The atom is assumed to be isolated and fixed in position.
We look for the field emitted along the x-axis. The field operator in Eq. (2.66) can therefore be treated as
a scalar. The power spectrum S(r, ω0) of the fluorescent light at some suitable chosen point r in the far
field is obtained by taking the Fourier transform of the normally-ordered correlation function of the field
〈E(−)(r, t)E(+)(r, t + τ)〉 with respect to τ . According to the Wiener-Khintchine theorem, the power
spectrum S(ω0) is given as

S(ω0) =
1
2π

lim
T→∞

1
T

∫ T

0
dt

∫ T

0
dt′〈E(−)(t)E(+)(t′)〉e−iω0(t−t′) . (2.67)
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Under the stationary condition, the correlation function 〈E(−)(t)E(+)(t′)〉 depends only on the time
difference τ = t− t′ and Eq. (2.67) becomes

S(ω0) =
1
2π

lim
T→∞

1
T

∫ T

0
dt

(∫ t

0
dt′ +

∫ T

t
dt′
)
〈E(−)(t)E(+)(t′)〉e−iω0(t−t′) (2.68)

=
1
2π

lim
T→∞

1
T

∫ T

0
dt

[∫ t

0
dτ〈E(−)(τ)E(+)(0)〉e−iω0(τ) +

∫ T−t

0
dτ〈E(−)(0)E(+)(τ)〉eiω0τ

]
.

Provided that the field operators are correlated only over a short period of time, we can extend the upper
limit of the τ -integrations to infinity with no significant change. Since we have

〈E(−)(τ)E(+)(0)〉 = 〈E(−)(0)E(+)(τ)〉∗, (2.69)

it follows from Eq. (2.68) that

S(ω0) =
1
π

Re
∫ ∞

0
dτ〈E(−)(0)E(+)(τ)〉eiω0τ . (2.70)

It follows from Eq. (2.66) that

〈E(−)(r, t)E(+)(r, t+ τ)〉 = I0(r)〈σ+(t)σ−(t+ τ)〉, (2.71)

where we introduced the quantity

I0(r) =
(

ω2γ sin η
4πε0c2|r− r0|

)2

. (2.72)

2.2.4 Calculation of the fluorescence spectrum

The polarization operator of the two-level atom is given by

P (τ) = γ12(|1〉〈2|+ |2〉〈1|) , (2.73)

where γij are the moduli of the induced transition dipole (multipole) moments. The positive and negative
parts of the polarization operator are given by

P (+)(τ) = γ12|1〉〈2| , P (−)(τ) = γ21|2〉〈1| . (2.74)

The quantum regression theorem states that if M , Q and N are members of a complete set of system
operators {Sµ}, and if the one-time averages can be expressed in the form

〈M(τ)〉 =
∑

µ

Oµ(τ, τ ′)〈Sµ(τ ′)〉 , τ ′ < τ , (2.75)

where Oµ(τ, τ ′) are c-number functions of time, than the two-time expectation values take the form

〈Q(τ ′)M(τ)N(τ ′)〉 =
∑

µ

Oµ(τ, τ ′)〈Q(τ ′)Sµ(τ ′)N(τ ′)〉 , τ ′ < τ . (2.76)

In particular, Q or N can be identified with the identity operator. The starting point is the one-time
average

〈P (−)(τ1)〉 = Tr[ρ(τ1)γ12|2〉〈1|] , (2.77)
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which can be written in terms of Ψ1 as follows:

〈P (−)(τ1)〉 = γ12e
iωτ1Ψ1(τ1) . (2.78)

At this point the essential step is to express each of the matrix elements Ψi(τ1) that appear in Eq. (2.78)
in terms of their initial values τ = τ0. While this could be done beginning with the formal integration of
Eq.(2.20), here we operate in the space of the Laplace transform. Thus, Eq. (2.78) yields

〈P̂ (−)(z)〉 = γ12Ψ̂1(z′) , (2.79)

where z′ = z − iω. By the help of the Eq. (2.25), Eq. (2.79) can be cast into the required form

〈P̂ (−)(z)〉 = γ12

∑
j

M1j(z′)Ψj(τ0) +
γ12

z′

∑
j

M1j(z′)Ij . (2.80)

Next we have to express Ψj(τ0) and Ij in the form of expectation values of system operators at τ = τ0.
This can be done directly from the definition of Ψj(τ0) as illustrated by the following example:

Ψ1(τ0) = e−iωτ0ρ12(τ0) = e−iωτ0〈|2〉〈1|〉τ0 . (2.81)

The regression theorem gives

〈P̂ (−)(z)P (+)(τ0)〉τ0 = γ2
12M11(z′)Ψ3(τ0)e−iωτ0 +

γ2
12

z′

∑
j

M1j(z′)Ψ2(τ0)Ij . (2.82)

In the limiting case of τ0 →∞, the above expression becomes

〈P̂ (−)(z)P (+)(∞)〉 = γ2
12M11(z′)Ψ3(∞) +

γ2
12

z′

∑
j

M1j(z′)Ψ2(∞)Ij . (2.83)

Eq. (2.83) shows that the spectrum of resonance fluorescence has a structure with a center located at ω,
and a magnitude proportional to the atomic transition matrix element. The spectrum has the form

f(z) =
A

z
+ g(z) , (2.84)

where A is a constant and g(z) is an analytic function of z for <z ≤ 0. The singularity reflects the
existence of a coherent Rayleigh peak whose origin can be traced to the elastic scattering of the driving
fields, while g(z) describes the incoherent part of the spectrum of the emitted radiation. If we denote the
full correlation function with

Γ̂(z) ≡ 〈P̂ (−)(z)P (+)(∞)〉 , (2.85)

the incoherent part can be determined according to the simple algorithm

Γ̂incoh(z) = Γ̂(z)− 1
z′

lim
z′→0

z′Γ̂(z) . (2.86)

Finally, the required emission spectrum is given by

S(ω) = <Γ̂incoh(z)|z=iω , (2.87)

where

Γ̂incoh(z) = γ2
12M11(z′)Ψ3(∞) + γ2

12

∑
j

N1j(z′)Ψ2(∞)Ij , (2.88)

and

Nij(z) = (L−1(z − L)−1)ij . (2.89)
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2.2.5 Analytic calculation of the spectra in the strong field approximation

In this section we show that a convenient set of dressed atomic states allows a much more natural de-
scription of the atomic dynamics and that, in the limit of a strong effective Rabi frequency, this allows
the calculation of the required correlation functions and spectra in a closed analytic form. The benefit
of this procedure is that explicit expressions for the line shapes, line widths, and peak heights become
available.

We consider the following atomic states:

|s〉 =
1√

1 + (ΩR/2 +
√

1 + (ΩR/2)2)2
|1〉+

ΩR/2 +
√

1 + (ΩR/2)2√
1 + (ΩR/2 +

√
1 + (ΩR/2)2)2

|2〉 , (2.90)

|t〉 =
1√

1 + (ΩR/2−
√

1 + (ΩR/2)2)2
|1〉+

ΩR/2−
√

1 + (ΩR/2)2√
1 + (ΩR/2−

√
1 + (ΩR/2)2)2

|2〉 ,

where ∆R ≡ ∆
ΩR

. In order to minimize the algebraic effort we limit our considerations to the first order
in ∆R,

|s〉 = (1/
√

2− ΩR/
√

32)|1〉+ (1/
√

2 + ΩR/
√

32)|2〉 , (2.91)

|t〉 = (1/
√

2 + ΩR/
√

32)|1〉+ (−1/
√

2 + ΩR/
√

32)|2〉 .

These states are eigenstates of H ′
1 , i.e.,

H ′
1 |s〉 = ~

√
Ω2

R + ∆2/4|s〉 , (2.92)

H ′
1 |t〉 = −~

√
Ω2

R + ∆2/4|t〉 .

Because of the diagonal nature of H ′
1 in this representation, the new matrix L, which is responsible

for the atomic dynamics, contains the effective Rabi frequency along the main diagonal and is zero
elsewhere. The irreversible decay process breaks this symmetry. However, if the effective Rabi frequency
is sufficiently large, it is possible to introduce an accurate approximation that allows to calculate the
spectral features analytically.

We consider again the master equation in the interaction picture

ρ̇′ = − i
~
[H ′

1 , ρ
′] + Λρ′ . (2.93)

The reversible part of Eq. (2.93) in the dressed-state representation takes a very simple form owing to
the fact that states (2.91) are exact eigenstates of H ′

1 . Thus we have

(
d

dt

)
rev

 ρ′st
ρ′ss
ρ′tt

 =

 −2IΩRρ
′
st

0
0

 . (2.94)

Again, the trace condition ρ′ss = 1− ρ′tt, and the Hermitian symmetry relation ρ′st = (ρ′ts)
∗ hold.

The penalty one pays for using this representations is that the irreversible part of the master equation
becomes complicated. In fact, the original irreversible part of the master equation is(

d

dt

)
irrev

ρ′ij =
∑
pq

Λijpqρ
′
pq , (2.95)
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where Λijpq are the various decay rates that appear explicitly in Eq. (2.14). From the transformation
equation between the two pictures ρ′µν =

∑
ij〈µ|i〉ρ′ij〈j|ν〉, it is easy to obtain(

d

dt

)
irrev

ρ′µν =
∑
στ

∑
ijpq

〈µ|i〉〈j|ν〉〈p|σ〉〈τ |q〉Λijpq

 ρ′στ ≡
∑
στ

Γµνστρ
′
στ , (2.96)

where the transformation matrix elements 〈µ|i〉 can be read immediately from Eq. (2.91). We now
consider the limit when the Rabi frequency is much larger than the relaxation rates. We focus on the
derivation of an expression for resonance fluorescence for the response of the system around steady state
with an accuracy of order 1/ΩR. We introduce the vector Ψ with the components

Ψ1 = ρ′st , Ψ2 = ρ′ss , Ψ3 = ρ′ts . (2.97)

This vector is a solution of the linear equation

d

dt
Ψ = LΨ + I , (2.98)

with the matrix L defined as

L =

 Γstst − 2IΩR Γstss − Γsttt Γstts

Γssst Γssss − Γsstt Γssts

Γtsst Γtsss − Γtstt Γtsts + 2IΩR

 , (2.99)

and the vector

I1 = Γsttt , I2 = Γsstt , I3 = Γtstt . (2.100)

In the steady state, it takes the form Ψ(∞) = −L−1I . It is not difficult to see that

L−1(O(1/ΩR)) =

 0 0 0
0 1

Γssss−Γsstt
0

0 0 0

 , (2.101)

so the solution is

Ψ1(∞) = Ψ3(∞) = 0 , Ψ2(∞) =
Γsstt

Γsstt − Γssss
. (2.102)

We define the deviation from the steady state as

δΨ = Ψ(t)−Ψ(∞) , (2.103)

which satisfies the equation

d

dt
δΨ = LδΨI . (2.104)

In the asymptotic limit of interest, however, we replace the matrixL in the fluctuation equation Eq. (2.104)
with a diagonal approximation L0 witch is accurate up to corrections of order 1/ΩR. In order to under-
stand the nature of this approximation, let us consider the explicit form of equations for δρ′µν :

d

dt
δρ′st = (Γstss − Γsttt)δρ′ss + (Γstst − 2IΩR)δρ′st + Γsttsδρ

′
ts , (2.105)

d

dt
δρ′ss = (Γssss − Γsstt)δρ′ss + Γssstδρ

′
st + Γsstsδρ

′
ts ,

d

dt
δρ′ts = (Γtsss − Γtstt)δρ′ss + Γtsstδρ

′
st + (Γtsts + 2IΩR)δρ′ts .
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Introducing the notations

δρ′st = e−2IΩRRst , δρ′ts = e2IΩRRts , δρ′ss = Rss , (2.106)

we obtain

d

dt
Rst = ΓtsttRst + O(1/ΩR) , (2.107)

d

dt
Rss = (Γssss − Γsstt)Rss + O(1/ΩR) ,

d

dt
Rts = ΓtstsRst + O(1/ΩR) ,

where O(1/ΩR) denotes rapidly oscillating terms. In the view of the assumed large value of ΩR, we
drop the oscillating contributions so that, in terms of the original variable, we have

d

dt
Rst = (Γtstt − 2IΩR)Rst , (2.108)

d

dt
Rss = (Γssss − Γsstt)Rss ,

d

dt
Rts = (Γtsts + 2IΩR)Rst .

Hence, by neglecting the rapidly oscillating components, the new matrix L0 can be obtained from the
original matrix L after ignoring the off-diagonal elements

L0 =

 Γstst − 2IΩR 0 0
0 Γssss − Γsstt 0
0 0 Γtsts + 2IΩR

 . (2.109)

In terms of the original vector Ψ [see Eq. (2.103)]

d

dt
Ψ(t) = L0Ψ(t) + I∞ , (2.110)

where I∞ = −L0Ψ(∞), with the components

I∞1 = I∞3 = 0 , I∞2 =
Γsstt

Γsstt − Γssss
, (2.111)

we get I∞ ≡ I∞2 = Γsstt.

One can express the Γµνστ in terms of the Λµνστ as

Γstst = 1
4(Λ1111 − Λ1112 + Λ1121 − Λ1122 − Λ1211 + Λ1212 − Λ1221 + Λ1222 + Λ2111

− Λ2112 + Λ2121 − Λ2122 − Λ2211 + Λ2212 − Λ2221 + Λ2222) ,
Γssss = 1

4(Λ1111 + Λ1112 + Λ1121 + Λ1122 + Λ1211 + Λ1212 + Λ1221 + Λ1222 + Λ2111

+ Λ2112 + Λ2121 + Λ2122 + Λ2211 + Λ2212 + Λ2221 + Λ2222) , (2.112)

where

Λ1211 = 0 , Λ1212 = −µ12 , Λ1221 = 0 , Λ1222 = 0 , (2.113)

Λ2111 = 0 , Λ2112 = −µ12 , Λ2121 = 0 , Λ2122 = 0 ,
Λ1111 = −Γ21 , Λ1112 = 0 , Λ1121 = 0 , Λ1122 = Γ12 ,

Λ2211 = Γ21 , Λ2212 = 0 , Λ2221 = 0 , Λ2222 = −Γ12 .
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It is easy to see that

Γstst = 1
4(−2Γ21 + γx) + Γ21∆R/8 , Γssss = −1

4(Γ21 + γx) + Γ21∆R/4 (2.114)

Γsstt = 1
4(Γ21 + γx) + Γ21∆R/4 , Γtsts = −1

2(Γ21 + γx/2)− 1
4(Γ21/2 + γx/2)∆R/4 ,

where γx is the laser’s decoherence rate. It was added in the theory to the corresponding polarization
decay rate.

The solution of Eq. (2.111) in Laplace space is

Ψ̂(z) = M0(z)Ψ(t0) +
1
z
M0(z)I∞ , (2.115)

where the matrix M0 is given as

M0(z) = (z − L0)−1 . (2.116)

The polarization operator is defined as

P (+) = γ12|1〉〈2| , P (−) = γ12|2〉〈1| . (2.117)

Its single-time average is

〈P (−)(t1)〉 = γ12Tr[ρ′(0)|2〉〈1|]eiωt1 . (2.118)

In terms of the dressed states we have

|2〉〈1|s〉 = 1
2 |s〉+

(
−1

2 + ∆R/4
)
|t〉 , |2〉〈1|t〉 =

(
1
2 + ∆R/4

)
|s〉 − 1

2 |t〉 , (2.119)

so that, in Laplace space, it follows that

〈P̂ (−)(z)〉 = 1
2 [2Ψ̂2(z′)− (1−∆R/2) Ψ̂1(z′) + (1 + ∆R/2) Ψ̂3(z′)]−

1
2z′

, (2.120)

where z′ = z − iω. It is easy to express then the matrix M0:

M0 =

 1
2iΩR+z−Γstst

0 0
0 1

z−Γssss+Γsstt
0

0 0 1
−2iΩR+z−Γtsts

.

 (2.121)

Using Eq. (2.115), one can write

Ψ̂1(z) = M0
11(z)Ψ1(t0) , Ψ̂2(z) = M0

22(z)Ψ2(t0) +
1
z
M0

22(z)I∞2 , (2.122)

Ψ̂3(z) = M0
33(z)Ψ3(t0) ,

and then

〈P̂ (−)(z)〉 = 1
2 [2M0

22(z
′)Ψ2(t0)− (1−∆R/2)M0

11(z
′)Ψ1(t0) (2.123)

+ (1 + ∆R/2)M0
33(z

′)Ψ3(t0)] +
1

2z′
[M0

22(z
′)I∞2 − 1] .

The regression theorem gives

Ψ1(t0) → γ12Tr[ρ′(t0)|t〉〈s|1〉〈2|] = γ12Tr[ρ′(t0)|t〉〈s|1〉〈2|] (2.124)

= γ12 exp(−iωt0)1
2

(
ρ′st − (1−∆R/2)ρ′tt

)
,

Ψ2(t0) → γ12 exp(−iωt0)1
2

(
ρ′ss − (1−∆R/2)ρ′ts

)
,

Ψ3(t0) → γ12 exp(−iωt0)1
2

(
(1 + ∆R/2)ρ′ss − ρ′ts

)
,



34 II 2. RELATIVISTIC THEORY OF RESONANCE FLUORESCENCE

where the over-bars indicate that the operators are in the interaction picture. In the stationary limit, the
off-diagonal elements of ρµν vanish and the only nonzero element is ρ′ss = Ψ∞, as given by Eq. (2.102).
In this way, Eq. (2.124) becomes

Ψ1(t0) → −1
2γ12(1−∆R/2)(1−Ψ2(∞))e−iωt0 , Ψ2(t0) → 1

2γ12Ψ2(∞)e−iωt0 , (2.125)

Ψ3(t0) → 1
2γ12(1 + ∆R/2)Ψ2(∞)e−iωt0 .

For the inhomogeneous part of the equation, we get

〈1〉t0 → 〈|1〉〈2|〉t0 = Tr[ρ′(t0)1〉〈2] (2.126)

= 1
2 [2ρss + (1 + ∆R/2)ρst − (1−∆R/2)ρts − 1]e−iωt0 ,

therefore, we arrive at the result:

〈P̂ (−)(z)P (+)(∞)〉 = γ12

4 [2M0
22Ψ2(∞) + (1−∆R/2)M0

11(1−∆R/2)(1−Ψ2(∞)) (2.127)

+ (1 + ∆R/2)M0
33(1 + ∆R/2)Ψ2(∞)]− γ12

4z′ (2M
0
22I∞2 − 1)(1− 2Ψ2(∞)) .

We obtain the final results in the first order of ∆R as

〈P̂ (−)(z)P (+)(∞)〉 =
γ12

2

[
1

2z + Γ21 + γx
+

1
4z + 2Γ21 + γx − 8IΩR

(2.128)

+
1

4z + 2Γ21 + γx + 8IΩR

]
+
γ12

4

[
2Γ21

(Γ21 + γx)(2z + Γ21 + γx)
− Γ21 + 2γx

(4z + 2Γ21 + γx − 8IΩR)2

+
2(2Γ21 + γx)

(Γ21 + γx)(4z + 2Γ21 + γx − 8IΩR)
+

Γ21 + 2γx

(4z + 2Γ21 + γx + 8IΩR)2

− 2(2Γ21 + γx)
(Γ21 + γx)(4z + 2Γ21 + γx + 8IΩR)

]
∆R + O(∆R) .

In the case of a resonant interaction (∆R = 0), and an ideal laser without decoherence (γx = 0), we get
the well-known formula

〈P̂ (−)(z)P (+)(∞)〉 =
γ12

2

[
1

2z + Γ21
+

1
4z + 2Γ21 − 8IΩR

+
1

4z + 2Γ21 + 8IΩR

]
. (2.129)

The emission spectrum will be given by the real part of this expression with the corresponding substitu-
tion of the complex energy variable:

S(ω0) = <〈P̂ (−)(z)P (+)(∞)〉|z=i(ω0−ω) . (2.130)

2.2.6 Appearance of sidebands in the strong field limit

As depicted in Fig 2.3, a field of spectral width D and central frequency ν is incident on an atom with
spectral width Γ and central frequency ω. The field induces a dipole or multipole moment in the atom
which governs the emitted or scattered light.

When the Rabi frequency associated with the driving field, ΩR, becomes comparable to or larger than
the spectral width of the atom Γ, sidebands start emerging in the spectrum of fluorescent light, leading
to a three-peak spectrum. The emergence of the sidebands at frequencies ν + ΩR and ν − ΩR is due to
the modulation of the dipole moment by the Rabi oscillations.
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ω υυ

in atom scatt

Light in Atomic profile Light scattered

Figure 2.3: The incident light has a spectrum centered at a frequency ν and bandwidth D. The scattered
light has a bandwidth D, it is centered at ν for Γ � D.

ω

Ω

Ω

ω-Ω ω ω+Ω

n+1 quanta

n quanta

Figure 2.4: Splitting of the atomic states by the dynamic Stark effect. See text for notations and further
explanations.

A physical understanding of this interesting behavior can be achieved by considering a dressed- atom
picture of the atom-field interaction. The interaction Hamiltonian of a quantized field mode interacting
resonantly with a two-level atom, in the rotating-wave approximation, is (see Eq. (2.46))

H = H0 + H1 =
~ω
2
σz + ~νa†a+ ~g(σ+a+ a†σ−), . (2.131)

We will consider the case in which ω = ν and we are therefore concerned only with the interaction
picture Hamiltonian

H ′
1 = ~g(σ+a+ a†σ−) . (2.132)

As can be verified by direct substitution, the eigenstates of the Hamiltonian (2.132) are

|±, n〉 =
1√
2
(|a, n〉 ± |b, n+ 1〉) , (2.133)

with eigenvalues +~Ωn/2 and−~Ωn/2, respectively, where the ”generalized” Rabi frequency is defined
by Ωn = 2g

√
n+ 1. Thus, the previously degenerate state |a, n〉 and |b, n + 1〉 are split into a doublet

of dressed states separated by Ωn as shown in Fig. 2.4. This is called dynamic Stark splitting. The
dynamic Stark split doublets have almost equal spacing for n � 1. As indicated in the Fig. 2.4, the
single-photon spontaneous decay spectrum consist of a triplet of lines by the Rabi frequency Ωn, with
the central component being made of two equal contributions.

2.3 Calculation of transition matrix elements

The expression for the fluorescence spectrum is now known. What remains is to calculate the corre-
sponding non-relativistic and relativistic matrix elements, i.e. the matrix elements of the radiation field
with the Schrödinger or Dirac wave functions which determine the Rabi frequencies and the radiative
decay widths. In this section we derive analytical formulas for these quantities.
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2.3.1 Electric dipole interaction matrix elements with Schrödinger wave functions

The interaction of a radiation field with a single-electron atom in dipole approximation has the matrix
element

γab = e〈Φa|ε̂ · r|Φb〉 , (2.134)

where Ψa and Ψb are non-relativistic wave functions, solutions of the Schrödinger equation in a Coulomb
potential, e is the elementary charge, and ε̂ is a unit vector defining the polarization of the electric field
component. The subscript a stands collectively for the principal quantum number na as well as the
angular momentum quantum number la and the magnetic quantum number Ma: a ≡ (na, la,Ma),
and the index b plays a similar role. The electric-dipole matrix elements depend on the electric field
polarization, thus we need to discuss the linear, left circular and right circular cases.

1◦ Linear polarization

First we consider linear polarization along the z axis, and we calculate this matrix elements in spherical
coordinates, z = r cosφ. In this case the transition matrix element has the form

γz
ab = e〈Φa|ε̂z · r|Φb〉 = e

∫
drΦ†

a(r)r cos θΦb(r) = eRKz . (2.135)

1◦ Circular polarization

The definition of right- and left-handed polarization is ε̂± = 1√
2
(ε̂x ± iε̂y). In spherical coordinates, i.e.

x = r sin θ cosφ and y = r sin θ sinφ, the transition matrix elements are

γ+
ab = e〈Φa|ε̂+ · r|Φb〉 = e√

2

∫
drΦ†

a(r)r · (ε̂x + iε̂y)Φb(r) = e√
2
R[Kx + iKy] , (2.136)

γ−ab = e〈Φa|ε̂− · r|Φb〉 = e√
2

∫
drΦ†

a(r)r · (ε̂x − iε̂y)Φb(r) = e√
2

e√
2
R[Kx − iKy] .

The integral expression of the radial matrix element R is

R =
∫
drr3Rnala(r)Rnblb(r) . (2.137)

For the Coulomb potential of a point-like nucleus with charge Z|e|, the bound radial function Ra(r) can
be given in an analytical form by means of the generalized Laguerre polynomials:

Ra(r) = − 2Z3/2

n2
aa

3/2
0

√
(na − la − 1)!

(na + la)!

(
2rZ
a0na

)la

e−rZ/a0naL2la+1
na−la−1

(
2rZ
a0na

)
. (2.138)

The Bohr radius a0 is defined a0 = ~
mcα , with α being the fine structure constant. The angular matrix

elements have the integral representation

Kx =

√
2π
3

∫
dorY

†
laMa

(r̂)(Y1−1 − Y11)YlbMb
(r̂) , Kz =

√
2π
3

∫
dorY

†
laMa

(r̂)Y10YlbMb
(r̂) ,

Ky =

√
2π
3

∫
dorY

†
laMa

(r̂)(Y1−1 + Y11)YlbMb
(r̂) , (2.139)
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which can be reduced to the result

Kx
1 =

(−1)Ma

√
2

√
(2la + 1)(2lb + 1)

(
la 1 lb
0 0 0

)[(
la 1 lb
−Ma −1 −Mb

)
−
(
la 1 lb
−Ma 1 Mb

)]
,

Ky
1 =

(−1)Ma

√
2

√
(2la + 1)(2lb + 1)

(
la 1 lb
0 0 0

)[(
la 1 lb
−Ma −1 −Mb

)
+
(
la 1 lb
−Ma 1 Mb

)]
,

Kz
1 = (−1)Ma

√
(2la + 1)(2lb + 1)

(
la 1 lb
0 0 0

)(
la 1 lb
−Ma 0 Mb

)
. (2.140)

The final analytical result of radial integration can be expressed in terms of generalized hypergeometric
functions as

R =
4Z3

n2
an

2
ba

3
0

√
(na + la)!

(na − la − 1)!

√
(nb + lb)!

(nb − lb − 1)!

(
2Z
a0na

)la ( 2Z
a0nb

)lb 1
(2la + 1)

1
(2lb + 1)

×
na−la−1∑

p=0

(−na + la + 1)p

(2la + 2)p

1
p!

(
2Z
a0n0

)p

(3 + la + lb + p)!
(

a0nanb

Z(na + nb)

)4+la+lb+p

× 2F1

(
−nb + lb + 1, 4 + la + lb + p, 2lb + 2;

a0nanb

Z(na + nb)

)
. (2.141)

2.3.2 Relativistic dipole interaction matrix elements in the length gauge

We will work first in the so-called length gauge, where the transition matrix elements γab are defined,
similarly to the non-relativistic case, as

γab = e〈Φa|ε̂ · r|Φb〉 , (2.142)

where Ψa and Ψb are relativistic wave functions, solutions of the Dirac equation in a Coulomb potential,
and e is the elementary charge. Because the laser field has a certain polarization, we should again
consider all three possibilities.

1◦ Linear polarization

Let us consider the polarization along the z axis, and calculate the matrix elements in spherical coordi-
nates, z = r cosφ. In this case the transition matrix element has the form

γz
ab = e〈Φa|ε̂z · r|Φb〉 = e

∫
drΦ†

a(r)r cos θΦb(r) = e[R1K
z
1 +R2K

z
2 ] . (2.143)

2◦ Circular polarization

We consider the right (ε̂+) and left (ε̂−) circular polarization, defined with the polarization unit vectors
ε̂± = 1√

2
(ε̂x ± iε̂y). In spherical coordinates, i.e. x = r sin θ cosφ and y = r sin θ sinφ, the transition

matrix elements are

γ+
ab = e〈Φa|ε̂+ · r|Φb〉 = e√

2

∫
drΦ†

a(r)r · (ε̂x + iε̂y)Φb(r)

= e√
2
[R1K

x
1 +R2K

x
2 + iR1K

y
1 + iR2K

y
2 ] ,

γ−ab = e〈Φa|ε̂− · r|Φb〉 = e√
2

∫
drΦ†

a(r)r · (ε̂x − iε̂y)Φb(r)

= e√
2
[R1K

x
1 +R2K

x
2 − iR1K

y
1 − iR2K

y
2 ] . (2.144)
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The radial matrix elements are denoted as

R1 =
∫
drr3Gnaκa(r)Gnbκb

(r) , R2 =
∫
drr3Fnaκa(r)Fnbκb

(r) , (2.145)

and

Kx
1 =

∫
dorΩ

†
κaMa

(r̂) sin θ cosφΩκbMb
(r̂) , Kx

2 =
∫
dorΩ

†
−κaMa

(r̂) sin θ cosφΩ−κbMb
(r̂) ,

Ky
1 =

∫
dorΩ

†
κaMa

(r̂) sin θ sinφΩκbMb
(r̂) , Ky

2 =
∫
dorΩ

†
−κaMa

(r̂) sin θ sinφΩ−κbMb
(r̂) ,

Kz
1 =

∫
dorΩ

†
κaMa

(r̂) cos θΩκbMb
(r̂) , Kz

2 =
∫
dorΩ

†
−κaMa

(r̂) cos θΩ−κbMb
(r̂) . (2.146)

To bring the angular part to a simpler form we use the formula [BS88]∫
dorΩ

†
κaMa

(r̂)Ylm(r̂)ΩκbMb
(r̂) =

(−1)Ma−1/2

√
4π

√
(2ja + 1)(2jb + 1)(2l + 1)(2la + 1)(2lb + 1)(

la lb l
0 0 0

)(
ja jb l
−Ma Mb m

){
ja jb l
lb la 1/2

}
. (2.147)

Applying Euler’s formula, it is easy to see that

sin θ sinφ = i

√
2π
3

(Y1−1 + Y11) , sin θ cosφ =

√
2π
3

(Y1−1 − Y11) , cos θ = 2
√
π

3
Y10 , (2.148)

and the final result for the angular parts are

Kx
1 =

(−1)Ma−1/2

√
2

√
(2ja + 1)(2jb + 1)(2la + 1)(2lb + 1)

(
la lb 1
0 0 0

)
(2.149)

×
[(

ja jb 1
−Ma Mb −1

)
−
(
ja jb 1
−Ma Mb 1

)]{
ja jb 1
lb la 1/2

}
,

Kx
2 =

(−1)Ma−1/2

√
2

√
(2ja + 1)(2jb + 1)(2l′a + 1)(2l′b + 1)

(
l′a l′b 1
0 0 0

)
(2.150)

×
[(

ja jb 1
−Ma Mb −1

)
−
(
ja jb 1
−Ma Mb 1

)]{
ja jb 1
l′b l′a 1/2

}
,

Ky
1 = i

(−1)Ma−1/2

√
2

√
(2ja + 1)(2jb + 1)(2la + 1)(2lb + 1)

(
la lb 1
0 0 0

)
(2.151)

×
[(

ja jb 1
−Ma Mb −1

)
+
(
ja jb 1
−Ma Mb 1

)]{
ja jb 1
lb la 1/2

}
,

Ky
2 = i

(−1)Ma−1/2

√
2

√
(2ja + 1)(2jb + 1)(2l′a + 1)(2l′b + 1)

(
l′a l′b 1
0 0 0

)
(2.152)

×
[(

ja jb 1
−Ma Mb −1

)
+
(
ja jb 1
−Ma Mb 1

)]{
ja jb 1
l′b l′a 1/2

}
,
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Kz
1 = (−1)Ma−1/2

√
(2ja + 1)(2jb + 1)(2la + 1)(2lb + 1)

(
la lb 1
0 0 0

)
(2.153)

×
(
ja jb 1
−Ma Mb 0

){
ja jb 1
lb la 1/2

}
,

Kz
2 = (−1)Ma−1/2

√
(2ja + 1)(2jb + 1)(2l′a + 1)(2l′b + 1)

(
l′a l′b 1
0 0 0

)
(2.154)

×
(
ja jb 1
−Ma Mb 0

){
ja jb 1
l′b l′a 1/2

}
.

The radial integrals can be calculated to yield

R1 =
(

1 +
Ea

mc2

)1/2(
1 +

Eb

mc2

)1/2

UaUb[R1
1 −R2

1 −R3
1 +R4

1] , (2.155)

R2 =
(

1− Ea

mc2

)1/2(
1− Eb

mc2

)1/2

UaUb[R1
1 +R2

1 +R3
1 +R4

1] ,

where we introduced the following shorthand notations:

R1
1 = nr

an
r
b(2λa)γa−1(2λb)γb−1

nr
a−1∑

m=0

(−nr
a + 1)m

(2γa + 1)m

(2λa)m

m!
Γ(m+ γa + γb + 2)
(λa + λb)m+γa+γb+2

(2.156)

× 2F1

(
m+ γa + γb + 2,−nr

b + 1, 2γb + 1;
2λb

λa + λb

)
,

R2
1 = nr

a(Nb − κb)(2λa)γa−1(2λb)γb−1

nr
a−1∑

m=0

(−nr
a + 1)m

(2γa + 1)m

(2λa)m

m!
Γ(m+ γa + γb + 2)
(λa + λb)m+γa+γb+2

× 2F1

(
m+ γa + γb + 2,−nr

b , 2γb + 1;
2λb

λa + λb

)
,

R3
1 = (Na − κa)nr

b(2λa)γa−1(2λb)γb−1

nr
a∑

m=0

(−nr
a)m

(2γa + 1)m

(2λa)m

m!
Γ(m+ γa + γb + 2)
(λa + λb)m+γa+γb+2

× 2F1

(
m+ γa + γb + 2,−nr

b + 1, 2γb + 1;
2λb

λa + λb

)
,

R4
1 = (Na − κa)(Nb − κb)(2λa)γa−1(2λb)γb−1

nr
a∑

m=0

(−nr
a)m

(2γa + 1)m

(2λa)m

m!
Γ(m+ γa + γb + 2)
(λa + λb)m+γa+γb+2

× 2F1

(
m+ γa + γb + 2,−nr

b , 2γb + 1;
2λb

λa + λb

)
.

Again, for Coulomb potentials, we used the representation of bound radial functions Ga(r) and Fa(r) in
terms of confluent hypergeometric functions with negative-integral first argument (see, e.g. Ref. [BS88]):

Ga(r) =
(

1 +
Ea

mc2

)1/2

Ua(Aa −Ba) , (2.157)

Fa(r) = −
(

1− Ea

mc2

)1/2

Ua(Aa +Ba) ,
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where the eigenenergies are given by the Sommerfeld formula

Ea = mc2

1 +
(Zα)2(

na − ja − 1/2 +
√

(ja + 1/2)2 − (Zα)2
)2


−1/2

. (2.158)

In the above equations, furthermore, the following functions are used:

Ua =
(2λa)3/2

Γ(2γa + 1)

(
Γ(2γa + nr

a + 1)
4Na(Na − κa)nr

a!

)1/2

, (2.159)

Aa(r) = nr
a1F1(−nr

a + 1, 2γa + 1; 2λar)e−λar(2λar)γa−1 ,

Ba(r) = (Na − κa)1F1(−nr
a, 2γa + 1; 2λar)e−λar(2λar)γa−1 .

Here, 1F1 is the confluent hyper-geometric function defined by its expansion [AS72] with coefficients
involving Gamma functions:

1F1(−n, b; z) =
n∑

m=0

(−n)m

(b)m

zm

m!
, (2.160)

(a)m =
Γ(a+m)

Γ(a)
, (a)0 ≡ 1 ,

and its parameters are

λa =

√
m2c4 − E2

a

~c
, Na =

(nr
a + γa)mc2

Ea
, (2.161)

γa =
√
κ2

a − (Zα)2, nr
a = na − |κa| ,

κa =
{
−(la + 1) if ja = la + 1

2 ,
la if ja = la − 1

2 .

As the first argument of the confluent hypergeometric function is an integer, it can be written as a poly-
nomial [AS72], simplifying the numerical evaluation of the wave function. The spin-angular part of the
Dirac wave function is defined by the spherical spinors

ΩκaMa (r̂) =
la∑

ma=−la

∑
µa=±1/2

C

(
la

1
2
ja;maµaMa

)
Ylama(θ, φ)χµa . (2.162)

Here, χµa denotes the usual two-component Pauli spinors:

χ1/2 =
(

1
0

)
, χ−1/2 =

(
0
1

)
. (2.163)

2.3.3 Relativistic dipole interaction matrix elements in the transverse gauge

The transverse gauge (also called Coulomb gauge) can be regarded as the relativistic generalization of
the familiar velocity form. In the following we formulate the atom-field interaction in this gauge. As in
the case of the form r ·E, in the case of the α ·A interaction, the transition matrix element can be defined
as

γab =
ec

ω
〈Φa|ε̂ ·α|Φb〉 . (2.164)
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One should consider also the two cases of linear and circular polarization for the laser field.

1◦ Linear polarization

For the polarization along the z axis, the matrix elements have the form

γz
ab =

ec

ω
〈Φa|αz|Φb〉 =

ec

ω

∫
drΦ†

a(r)αzΦb(r) = −iec
ω

[R1K
z
1 −R2K

z
2 ] . (2.165)

2◦ Circular polarization

For the right- and left-circular polarization, the matrix elements are

γ+
ab =

ec

ω
〈Φa|α · ε̂+|Φb〉 =

1√
2
ec

ω

∫
drΦ†

a(r)α · (ε̂x + iε̂y)Φb(r) (2.166)

= − i√
2
ec

ω
{R1[Kx

1 + iKy
1 ]−R2[Kx

2 + iKy
2 ]} ,

γ−ab =
ec

ω
〈Φa|α · ε̂−|Φb〉 =

1√
2
ec

ω

∫
drΦ†

a(r)α · (ε̂x − iε̂y)Φb(r)

= − i√
2
ec

ω
{R1[Kx

1 − iKy
1 ]−R2[Kx

2 − iKy
2 ]} ,

with the radial parts

R1 ≡
∫
drr2Gnbκb

(r)Fnaκa(r), R2 ≡
∫
drr2Fnbκb

(r)Gnaκa(r), (2.167)

and angular parts

Kx
1 =

∫
dorΩ

†
−κaMa

(r̂)σxΩκbMb
(r̂), Kx

2 =
∫
dorΩ

†
κaMa

(r̂)σxΩ−κbMb
(r̂) , (2.168)

Ky
1 =

∫
dorΩ

†
−κaMa

(r̂)σyΩκbMb
(r̂), Ky

2 =
∫
dorΩ

†
κaMa

(r̂)σyΩ−κbMb
(r̂) ,

Kz
1 =

∫
dorΩ

†
−κaMa

(r̂)σzΩκbMb
(r̂), Kz

2 =
∫
dorΩ

†
κaMa

(r̂)σzΩ−κbMb
(r̂) .

After some lengthy but straightforward calculation, we get the final results for the angular parts:

Kx
1 = (−1)ja+jb−Mb+3/2

√
(2ja + 1)(2jb + 1)(2l′a + 1)(2lb + 1)

(
l′a lb 0
0 0 0

)
(a1

1 − a1
2) ,

Kx
2 = (−1)ja+jb−Mb+3/2

√
(2ja + 1)(2jb + 1)(2la + 1)(2l′b + 1)

(
la l′b 0
0 0 0

)
(a2

1 − a2
2) ,

Ky
1 = −i(−1)ja+jb−Mb+3/2

√
(2ja + 1)(2jb + 1)(2l′a + 1)(2lb + 1)

(
l′a lb 0
0 0 0

)
(a1

1 + a1
2) ,

Ky
2 = −i(−1)ja+jb−Mb+3/2

√
(2ja + 1)(2jb + 1)(2la + 1)(2l′b + 1)

(
la l′b 0
0 0 0

)
(a2

1 + a2
2) ,

Kz
1 = (−1)ja+jb−Mb+3/2

√
(2ja + 1)(2jb + 1)(2l′a + 1)(2lb + 1)

(
l′a lb 0
0 0 0

)
(b11 + b12) ,

Kz
2 = (−1)ja+jb−Mb+3/2

√
(2ja + 1)(2jb + 1)(2la + 1)(2l′b + 1)

×
(
la l′b 0
0 0 0

)
(b21 + b22) , (2.169)
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where the following notations were used:

a1
1 =

(
l′a ja 1/2

Ma − 1/2 −Ma 1/2

)(
lb jb 1/2

Mb + 1/2 −Mb −1/2

)(
l′a lb 0

−Ma + 1/2 Mb + 1/2 0

)
,

a1
2 =

(
l′a ja 1/2

Ma + 1/2 −Ma −1/2

)(
lb jb 1/2

Mb − 1/2 −Mb 1/2

)(
l′a lb 0

−Ma − 1/2 Mb − 1/2 0

)
,

b11 =
(

l′a ja 1/2
Ma − 1/2 −Ma 1/2

)(
lb jb 1/2

Mb − 1/2 −Mb 1/2

)(
l′a lb 0

−Ma + 1/2 Mb − 1/2 0

)
,

b12 =
(

l′a ja 1/2
Ma + 1/2 −Ma −1/2

)(
lb jb 1/2

Mb + 1/2 −Mb −1/2

)(
l′a lb 0

−Ma − 1/2 Mb + 1/2 0

)
,

a2
1 =

(
la ja 1/2

Ma − 1/2 −Ma 1/2

)(
l′b jb 1/2

Mb + 1/2 −Mb −1/2

)(
la l′b 0

−Ma + 1/2 Mb + 1/2 0

)
,

a2
2 =

(
la ja 1/2

Ma + 1/2 −Ma −1/2

)(
l′b jb 1/2

Mb − 1/2 −Mb 1/2

)(
la l′b 0

−Ma − 1/2 Mb − 1/2 0

)
,

b21 =
(

la ja 1/2
Ma − 1/2 −Ma 1/2

)(
l′b jb 1/2

Mb − 1/2 −Mb 1/2

)(
la l′b 0

−Ma + 1/2 Mb − 1/2 0

)
,

b22 =
(

la ja 1/2
Ma + 1/2 −Ma −1/2

)(
l′b jb 1/2

Mb + 1/2 −Mb −1/2

)
×
(

la l′b 0
−Ma − 1/2 Mb + 1/2 0

)
. (2.170)

For the radial part we find the final expressions

R1 = −
(

1− Ea

mc2

)1/2(
1 +

Eb

mc2

)1/2

UaUb[R1
1 +R2

1 −R3
1 −R4

1] ,

R2 = −
(

1 +
Ea

mc2

)1/2(
1− Eb

mc2

)1/2

UaUb[R1
1 −R2

1 +R3
1 −R4

1] , (2.171)

where the following polynomials need to be inserted:

R1
1 = nr

an
r
b(2λa)γa−1(2λb)γb−1

nr
b−1∑

m=0

(−nr
b + 1)m

(2γb + 1)m

(2λb)m

m!
Γ(m+ γa + γb + 1)
(λa + λb)m+γa+γb+1

× 2F1

(
m+ γa + γb + 1,−nr

a + 1, 2γa + 1;
2λa

λa + λb

)
, (2.172)

R2
1 = (Na − κa)nr

b(2λa)γa−1(2λb)γb−1

nr
b−1∑

m=0

(−nr
b + 1)m

(2γb + 1)m

(2λb)m

m!
Γ(m+ γa + γb + 1)
(λa + λb)m+γa+γb+1

× 2F1

(
m+ γa + γb + 1,−nr

a, 2γa + 1;
2λa

λa + λb

)
, (2.173)

R3
1 = nr

a(Nb − κb)(2λa)γa−1(2λb)γb−1

nr
b∑

m=0

(−nr
b)m

(2γb + 1)m

(2λb)m

m!
Γ(m+ γa + γb + 1)
(λa + λb)m+γa+γb+1

× 2F1

(
m+ γa + γb + 1,−nr

a + 1, 2γa + 1;
2λa

λa + λb

)
, (2.174)
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R4
1 = (Na − κa)(Nb − κb)(2λa)γa−1(2λb)γb−1

nr
b∑

m=0

(−nr
b)m

(2γb + 1)m

(2λb)m

m!
Γ(m+ γa + γb + 1)
(λa + λb)m+γa+γb+1

× 2F1

(
m+ γa + γb + 1,−nr

a, 2γa + 1;
2λa

λa + λb

)
. (2.175)

Now, we have all analytical expressions needed to calculate the transition matrix elements.

2.3.4 Magnetic dipole interaction in the transverse gauge

We follow the procedure applied in the previous two subsections. Here we are going beyond the electric
dipole approximation, which allows us to describe magnetic transitions and electric transitions of higher
multipolarity. We expand the exponential e±ikr in a sum of the electric and magnetic dipole terms (the
first two terms)

〈Φa|α ·A|Φb〉 ' 〈Φa|α · ε̂kAk

(
ak + ik · rak + a†k − ik · ra†k

)
|Φb〉 (2.176)

= 〈Φa|α · ε̂kAk

(
ak + a†k

)
|Φb〉+ 〈Φa|α · ε̂kAkik · r

(
ak − a†k

)
|Φb〉.

We recognize the first term as the term for the E1 transition, for which

γE1
ab =

ec

ω
〈Φa|ε̂λ ·α|Φb〉 . (2.177)

The second term corresponds to a magnetic transition, and the corresponding γab matrix is defined as

γM1
ab =

ec

ω
〈Φa|ε̂λ ·αik · r|Φb〉 . (2.178)

As in the previous calculations, we need to analyze the problem considering the laser polarization.

1◦ Linear polarization

First we take the polarization along the z direction:

γz
ab = −e〈Φa|ε̂z ·αr cos θ|Φb〉 = −e

∫
drΦ†

a(r)αzr cos θΦb(r) = ie[R1K
z
1 −R2K

z
2 ] . (2.179)

2◦ Circular polarization

In this case, the matrix elements are

γ+
ab = −e〈Φa|ε̂+ ·αr cos θ|Φb〉 = − e√

2

∫
drΦ†

a(r)α · (ε̂x + iε̂y)r cos θΦb(r) (2.180)

= −i e√
2
{R1[−iKx

1 +Ky
1 ] +R2[iKx

2 +Ky
2 ]} ,

γ−ab = −e〈Φa|ε̂− ·αr cos θ|Φb〉 = − e√
2

∫
drΦ†

a(r)α · (ε̂x − iε̂y)r cos θΦb(r)

= −i e√
2
{R1[−iKx

1 −Ky
1 ] +R2[iKx

2 −Ky
2 ]} ,

with the radial integrals

R1 =
∫
drr3Gnbκb

(r)Fnaκa(r), R2 =
∫
drr3Fnbκb

(r)Gnaκa(r) , (2.181)
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and angular parts

Kx
1 =

∫
dorΩ

†
−κaMa

(r̂)σx cos θΩκbMb
(r̂) , Kx

2 =
∫
dorΩ

†
κaMa

(r̂)σx cos θΩ−κbMb
(r̂) ,

Ky
1 =

∫
dorΩ

†
−κaMa

(r̂)σy cos θΩκbMb
(r̂) , Ky

2 =
∫
dorΩ

†
κaMa

(r̂)σy cos θΩ−κbMb
(r̂) ,

Kz
1 =

∫
dorΩ

†
−κaMa

(r̂)σz cos θΩκbMb
(r̂) ,

Kz
2 =

∫
dorΩ

†
κaMa

(r̂)σz cos θΩ−κbMb
(r̂) . (2.182)

The integrations can again be performed using group theoretic methods, and yield

Kx
1 = (−1)ja+jb−Mb+3/2

√
(2ja + 1)(2jb + 1)(2l′a + 1)(2lb + 1)

(
l′a lb 1
0 0 0

)
(a1

1 − a1
2) ,

Kx
2 = (−1)ja+jb−Mb+3/2

√
(2ja + 1)(2jb + 1)(2la + 1)(2l′b + 1)

(
la l′b 1
0 0 0

)
(a2

1 − a2
2) ,

Ky
1 = −i(−1)ja+jb−Mb+3/2

√
(2ja + 1)(2jb + 1)(2l′a + 1)(2lb + 1)

(
l′a lb 1
0 0 0

)
(a1

1 + a1
2) ,

Ky
2 = −i(−1)ja+jb−Mb+3/2

√
(2ja + 1)(2jb + 1)(2la + 1)(2l′b + 1)

(
la l′b 1
0 0 0

)
(a2

1 + a2
2) ,

Kz
1 = (−1)ja+jb−Mb+3/2

√
(2ja + 1)(2jb + 1)(2l′a + 1)(2lb + 1)

(
l′a lb 1
0 0 0

)
(b11 + b12) ,

Kz
2 = (−1)ja+jb−Mb+3/2

√
(2ja + 1)(2jb + 1)(2la + 1)(2l′b + 1)

×
(
la l′b 1
0 0 0

)
(b21 + b22) , (2.183)

with the expressions

a1
1 =

(
l′a ja 1/2

Ma − 1/2 −Ma 1/2

)(
lb jb 1/2

Mb + 1/2 −Mb −1/2

)(
l′a lb 1

−Ma + 1/2 Mb + 1/2 0

)
,

a1
2 =

(
l′a ja 1/2

Ma + 1/2 −Ma −1/2

)(
lb jb 1/2

Mb − 1/2 −Mb 1/2

)(
l′a lb 1

−Ma − 1/2 Mb − 1/2 0

)
,

b11 =
(

l′a ja 1/2
Ma − 1/2 −Ma 1/2

)(
lb jb 1/2

Mb − 1/2 −Mb 1/2

)(
l′a lb 1

−Ma + 1/2 Mb − 1/2 0

)
,

b12 =
(

l′a ja 1/2
Ma + 1/2 −Ma −1/2

)(
lb jb 1/2

Mb + 1/2 −Mb −1/2

)(
l′a lb 1

−Ma − 1/2 Mb + 1/2 0

)
,

a2
1 =

(
la ja 1/2

Ma − 1/2 −Ma 1/2

)(
l′b jb 1/2

Mb + 1/2 −Mb −1/2

)(
la l′b 1

−Ma + 1/2 Mb + 1/2 0

)
,

a2
2 =

(
la ja 1/2

Ma + 1/2 −Ma −1/2

)(
l′b jb 1/2

Mb − 1/2 −Mb 1/2

)(
la l′b 1

−Ma − 1/2 Mb − 1/2 0

)
,

b21 =
(

la ja 1/2
Ma − 1/2 −Ma 1/2

)(
l′b jb 1/2

Mb − 1/2 −Mb 1/2

)(
la l′b 1

−Ma + 1/2 Mb − 1/2 0

)
,

b22 =
(

la ja 1/2
Ma + 1/2 −Ma −1/2

)(
l′b jb 1/2

Mb + 1/2 −Mb −1/2

)
×

(
la l′b 1

−Ma − 1/2 Mb + 1/2 0

)
. (2.184)



2.3. CALCULATION OF TRANSITION MATRIX ELEMENTS 45

The analytical results for radial integrals can be written in the rather concise form as

R1 = −
(

1− Ea

mc2

)1/2(
1 +

Eb

mc2

)1/2

UaUb[R1
1 −R2

1 +R3
1 −R4

1] , (2.185)

R2 = −
(

1 +
Ea

mc2

)1/2(
1− Eb

mc2

)1/2

UaUb[R1
1 +R2

1 −R3
1 −R4

1] ,

where the quantities Ri
1, i ∈ {1, 2, 3, 4}, have been given previously in the Eqs. (2.156).

2.3.5 Multipole interaction matrix elements in the transverse gauge

We start using the expansion

eikr = 4π
∑
lm

iljl(kr)Y ∗
lm(k̂)Ylm(r̂) . (2.186)

Taking the photons direction along the z-axis, we get

Y ∗
lm(θ = 0 , φ = 0) = Y ∗

l0(0, 0) =

√
2l + 1

4π
(2.187)

Y ∗
lm,m6=0(0, 0) = 0 ,

and with this geometry the expansion of the exponential function simplifies to

eikr = 4π
∑

l

il
√

2l + 1jl(kr)Yl0(r̂) . (2.188)

The matrix element γab = ec
ω 〈Φa|ε̂λ ·αeikr|Φb〉 can then be written in the form

γab = i
√

4π
ec

ω

∑
l

il
√

2l + 1〈Φa|ε̂λ ·αjl(kr)Yl0(r̂)|Φb〉 . (2.189)

1◦ Linear polarization

For the polarization in the z direction, the matrix element takes the form

γz
ab =

√
4π
ec

ω

∑
l

il+1
√

2l + 1〈Φa|ε̂z ·αjl(kr)Yl0(r̂)|Φb〉 (2.190)

= i
√

4π
ec

ω

∑
l

il+1
√

2l + 1
∫
drΦ†

a(r)αzjl(kr)Yl0(r̂)Φb(r)

= −
√

4π
ec

ω

∑
l

il
√

2l + 1[−R1K
z
1 +R2K

z
2 ] .

1◦ Circular polarization
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For the case of right- and left-circular polarization, we can express the matrix elements as

γ+
ab =

√
4π
ec

ω

∑
l

il+1
√

2l + 1〈Φa|ε̂+ ·αjl(kr)Yl0(r̂)|Φb〉 (2.191)

= i
√

2π
ec

ω

∑
l

il+1
√

2l + 1
∫
drΦ†

a(r)(ε̂x + iε̂y)αjl(kr)Yl0(r̂)Φb(r)

= −
√

2π
ec

ω

∑
l

il
√

2l + 1{−R1[Kx
1 + iKy

1 ] +R2[Kx
2 + iKy

2 ]} ,

γ−ab =
√

4π
ec

ω

∑
l

il+1
√

2l + 1〈Φa|ε̂− ·αjl(kr)Yl0(r̂)|Φb〉

= i
√

2π
ec

ω

∑
l

il+1
√

2l + 1
∫
drΦ†

a(r)(ε̂x − iε̂y)αjl(kr)Yl0(r̂)Φb(r)

= −
√

2π
ec

ω

∑
l

il
√

2l + 1{−R1[Kx
1 − iKy

1 ] +R2[Kx
2 − iKy

2 ]} ,

with the radial integrals

R1 =
∫
drr2Fnaκa(r)jl(kr)Gnbκb

(r) , R2 =
∫
drr2Gnaκa(r)jl(kr)Fnbκb

(r) , (2.192)

and the angular parts

Kx
1 =

∫
dorΩ

†
−κaMa

(r̂)σxYl0ΩκbMb
(r̂), Kx

2 =
∫
dorΩ

†
κaMa

(r̂)σxYl0Ω−κbMb
(r̂) , (2.193)

Ky
1 =

∫
dorΩ

†
−κaMa

(r̂)σyYl0ΩκbMb
(r̂), Ky

2 =
∫
dorΩ

†
κaMa

(r̂)σyYl0Ω−κbMb
(r̂) ,

Kz
1 =

∫
dorΩ

†
−κaMa

(r̂)σzYl0ΩκbMb
(r̂), Kz

2 =
∫
dorΩ

†
κaMa

(r̂)σzYl0Ω−κbMb
(r̂) .

The results of the integration are

Kx
1 =

(−1)ja+jb−Mb+3/2

√
4π

√
(2ja + 1)(2jb + 1)(2l + 1)(2l′a + 1)(2lb + 1)

×
(
l′a lb l
0 0 0

)
(a1

1 − a1
2) , (2.194)

Kx
2 =

(−1)ja+jb−Mb+3/2

√
4π

√
(2ja + 1)(2jb + 1)(2l + 1)(2la + 1)(2l′b + 1)

(
la l′b l
0 0 0

)
(a2

1 − a2
2) ,

Ky
1 = −i(−1)ja+jb−Mb+3/2

√
4π

√
(2ja + 1)(2jb + 1)(2l + 1)(2l′a + 1)(2lb + 1)

(
l′a lb l
0 0 0

)
(a1

1 + a1
2) ,

Ky
2 = −i(−1)ja+jb−Mb+3/2

√
4π

√
(2ja + 1)(2jb + 1)(2l + 1)(2la + 1)(2l′b + 1)

(
la l′b l
0 0 0

)
(a2

1 + a2
2) ,

Kz
1 =

(−1)ja+jb−Mb+3/2

√
4π

√
(2ja + 1)(2jb + 1)(2l + 1)(2l′a + 1)(2lb + 1)

(
l′a lb l
0 0 0

)
(b11 + b12) ,
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Kz
2 =

(−1)ja+jb−Mb+3/2

√
4π

√
(2ja + 1)(2jb + 1)(2l + 1)(2la + 1)(2l′b + 1)

(
la l′b l
0 0 0

)
(b21 + b22) ,

with the angular coefficients defined as

a1
1 =

(
l′a ja 1/2

Ma − 1/2 −Ma 1/2

)(
lb jb 1/2

Mb + 1/2 −Mb −1/2

)
(2.195)

×
(

l′a lb l
−Ma + 1/2 Mb + 1/2 0

)
,

a1
2 =

(
l′a ja 1/2

Ma + 1/2 −Ma −1/2

)(
lb jb 1/2

Mb − 1/2 −Mb 1/2

)(
l′a lb l

−Ma − 1/2 Mb − 1/2 0

)
,

b11 =
(

l′a ja 1/2
Ma − 1/2 −Ma 1/2

)(
lb jb 1/2

Mb − 1/2 −Mb 1/2

)(
l′a lb l

−Ma + 1/2 Mb − 1/2 0

)
,

b12 =
(

l′a ja 1/2
Ma + 1/2 −Ma −1/2

)(
lb jb 1/2

Mb + 1/2 −Mb −1/2

)(
l′a lb l

−Ma − 1/2 Mb + 1/2 0

)
,

a2
1 =

(
la ja 1/2

Ma − 1/2 −Ma 1/2

)(
l′b jb 1/2

Mb + 1/2 −Mb −1/2

)(
la l′b l

−Ma + 1/2 Mb + 1/2 0

)
,

a2
2 =

(
la ja 1/2

Ma + 1/2 −Ma −1/2

)(
l′b jb 1/2

Mb − 1/2 −Mb 1/2

)(
la l′b l

−Ma − 1/2 Mb − 1/2 0

)
,

b21 =
(

la ja 1/2
Ma − 1/2 −Ma 1/2

)(
l′b jb 1/2

Mb − 1/2 −Mb 1/2

)(
la l′b l

−Ma + 1/2 Mb − 1/2 0

)
,

b22 =
(

la ja 1/2
Ma + 1/2 −Ma −1/2

)(
l′b jb 1/2

Mb + 1/2 −Mb −1/2

)(
la l′b l

−Ma − 1/2 Mb + 1/2 0

)
.

For the radial parts, the results are

R1 = −
√
π

(
1− Ea

mc2

)1/2(
1 +

Eb

mc2

)1/2

UaUb

∞∑
α=0

(−1)αω2α+l

22α+l+1α!Γ(α+ l + 3/2)
(2.196)

×[R1
1 −R2

1 +R3
1 −R4

1] ,

R2 = −
√
π

(
1 +

Ea

mc2

)1/2(
1− Eb

mc2

)1/2

UaUb

∞∑
α=0

(−1)αω2α+l

22α+l+1α!Γ(α+ l + 3/2)

×[R1
1 +R2

1 −R3
1 −R4

1] ,
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with the quantities

R1
1 = nr

an
r
b(2λa)γa−1(2λb)γb−1

nr
a−1∑

m=0

(−nr
a + 1)m

(2γa + 1)m

(2λa)m

m!
Γ(m+ γa + γb + 1 + 2α+ l)

(λa + λb)m+γa+γb+1+2α+l
(2.197)

2F1

(
m+ γa + γb + 1 + 2α+ l,−nr

b + 1, 2γb + 1;
2λb

λa + λb

)
,

R2
1 = nr

a(Nb − κb)(2λa)γa−1(2λb)γb−1

nr
a−1∑

m=0

(−nr
a + 1)m

(2γa + 1)m

(2λa)m

m!
Γ(m+ γa + γb + 1 + 2α+ l)

(λa + λb)m+γa+γb+1+2α+l

2F1

(
m+ γa + γb + 1 + 2α+ l,−nr

b , 2γb + 1;
2λb

λa + λb

)
,

R3
1 = (Na − κa)nr

b(2λa)γa−1(2λb)γb−1

nr
a∑

m=0

(−nr
a + 1)m

(2γa + 1)m

(2λa)m

m!
Γ(m+ γa + γb + 1 + 2α+ l)

(λa + λb)m+γa+γb+1+2α+l

2F1

(
m+ γa + γb + 1 + 2α+ l,−nr

b + 1, 2γb + 1;
2λb

λa + λb

)
,

R4
1 = (Na − κa)(Nb − κb)(2λa)γa−1(2λb)γb−1

nr
a∑

m=0

(−nr
a + 1)m

(2γa + 1)m

(2λa)m

m!
Γ(m+ γa + γb + 1 + 2α+ l)

(λa + λb)m+γa+γb+1+2α+l

2F1

(
m+ γa + γb + 1 + 2α+ l,−nr

b , 2γb + 1;
2λb

λa + λb

)
.

For the matrix elements in the case of driving between hyperfine-split atomic levels, which will be
necessary later, we are using the formula [LL91]

〈n′1j′1J ′||f
(1)
k ||n1j1J〉 = (−1)j1,max+j2+Jmin+k

√
(2J + 1)(2J ′ + 1)

×
{
j′1 J ′ j2
J j1 k

}
〈n′1j′1||f

(1)
k ||n1j1〉 , (2.198)

where f1,max = max {j1, j′1}, and (n′1n
′
2j
′
1j
′
2J) ≡ (n′1j

′
1J), i.e. the n′2, j

′
2 are omitted. It is then easy to

find the transition matrix element

γab(nbjbIFb → najaIFa) = (−1)jmax+I+Fmin+J
√

(2Fa + 1)(2Fb + 1) (2.199)

×
(
Fa J Fb

−MFa MFa −MFb
MFb

)
/

(
ja J jb
−Ma Ma −Mb Mb

){
ja Fa I
Fa jb J

}
×γab(nbjb → naja) ,

where Fa = ja + I, with I being the nuclear angular momentum.

2.4 Calculation of relativistic decay widths

In this section we derive formulas for the width of radiative decay involving relativistic electrons. Let us
consider the effect of adding the interaction Hamiltonian HI to the sum of the electronic Hamiltonian
– in general, a many-electronic atomic Hamiltonian – H0 + VI and the electromagnetic Hamiltonian
HEM ,

H = H0 + VI + HEM . (2.200)
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We let Ψk represent an eigenfunction of H0 + VI with the eigenvalue Ek,

(H0 + VI)Ψk = EkΨk , (2.201)

and let |nk〉 be an nk-photon eigenstate of HEM with the eigenvalue nk~ω,

HEM |nk〉 = nk~ω|nk〉 . (2.202)

An eigenstate of H corresponding to a many-electron atom in the state Ψk and nk photons is the product
state

Φk ≡ Ψk|nk〉 . (2.203)

This is an eigenstate of H with the eigenvalue Ek + nk~ω. We are interested in radiative transitions
between such stationary states induced by the interaction HI . In the interaction representation, the
Schrödinger equation for a state Φ(t) is written as

i~
∂Φ(t)
∂t

= ĤI(t)Φ(t) , (2.204)

where ĤI(t) is the time-dependent interaction Hamiltonian

ĤI(t) = eiH t/~HIe
−iH t/~ . (2.205)

Let us introduce the unitary operator U(t, t0) describing the evolution of stationary states Φk prepared at
t = t0,

Φk(t) = U(t, t0)Φk . (2.206)

It follows from Eq. (2.204) that U(t, t0) satisfies

i~
∂U(t, t0)

∂t
= ĤIU(t, t0) , (2.207)

U(t0, t0) = I ,

where I is the identity operator. These equations can be rewritten as an equivalent integral equation

U(t, t0) = I − i

~

∫ t

t0

dt1ĤI(t1)U(t1, t0) . (2.208)

The iterative solution of Eq. (2.208) is

U(t, t0) = I − i

~

∫ t

t0

dt1ĤI(t1) +
(−i)2

~2

∫ t

t0

dt1ĤI(t1)
∫ t1

t0

dt2ĤI(t2)U(t2, t0) (2.209)

=
∞∑

n=0

(−i)n

~n

∫ t

t0

dt1ĤI(t1)
∫ t1

t0

dt2ĤI(t2) · · ·
∫ tn−1

t0

dtnĤI(tn).

The S operator is the unitary operator that transforms states prepared at times in the remote past (t =
−∞), when the interaction HI(t) is assumed to vanish, into states in the remote future (t = ∞), when
HI(t) is also assumed to vanish. Thus

S = U(∞,−∞). (2.210)
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Expanding S in power of HI(t), we have

S = I +
∞∑

n=1

S(n) , (2.211)

where

S(n) =
(−i)n

~n

∫ ∞

−∞
dt1ĤI(t1)

∫ t1

−∞
dt2ĤI(t2) · · ·

∫ tn−1

−∞
dtnĤI(tn) . (2.212)

To first order in HI(t) we have

S ≈ I − i

~

∫ ∞

−∞
dtĤI(t) . (2.213)

The first-order transition amplitude for a state Φi prepared in the remote past to evolve into a state Φf in
the remote future is

S
(1)
fi = 〈Φf |S(1)|Φi〉 = − i

~

∫ ∞

−∞
dt〈Φ†

f |e
iH t/~HIe

−iH t/~|Φi〉 . (2.214)

Let us consider an atomic system in an initial state Ψi, interacting with ni photons. The initial state is 5

Φi = Ψi|ni〉 . (2.215)

The operator ci in HI(t) will cause transitions to states with ni − 1 photons, while the operator c†i will
lead to states with ni + 1 photons. Thus, we must consider two possibilities: (i) photon absorption,
leading to a final state

Φf = Ψf |ni − 1〉 , (2.216)

and (ii) photon emission, leading to a final state

Φf = Ψf |ni + 1〉 . (2.217)

For the case of photon absorption, using the fact that

〈ni − 1|ci|ni〉 =
√
ni , (2.218)

we may write

S
(1)
fi = − i

~
√
ni

∫ ∞

−∞
dtei(Ef−Ei−~ω)t/~〈Ψf |HI |Ψi〉 (2.219)

= −2πiδ(Ef − Ei − ~ω)
√
ni〈Ψf |HI |Ψi〉 .

Similarly, for the case of photon emission, we find

S
(1)
fi = − i

~
√
ni + 1

∫ ∞

−∞
dtei(Ef−Ei−~ω)t/~〈Ψf |H †

I |Ψi〉 (2.220)

= −2πiδ(Ef − Ei + ~ω)
√
ni + 1〈Ψf |H †

I |Ψi〉 .

We introduce the transition amplitude

Tfi =
{
〈Ψf |HI |Ψi〉, for absorption of radiation,
〈Ψf |H †

I |Ψi〉, for emission of radiation.
(2.221)
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We treat the two cases simultaneously using

Sfi = −2πδ(Ef − Ei ∓ ~ω)Tfi

( √
ni√

ni + 1

)
, (2.222)

where the upper contribution refers to absorption and the lower refers to emission. The probability of
a transition from state Ψi to state Ψf is just the square of S(1)

fi . In evaluating the square, we replace
one factor of 2πδ(Ef − Ei ± ~ω) by T/~, where T is the total interaction time. Thus, we find that the
transition probability per unit time Wfi is given by

Wfi =
2π
~
δ(Ef − Ei ∓ ~ω)|Tfi|2

(
ni

ni + 1

)
. (2.223)

In an interval of wave numbers d3k, there are

d3ni =
V

(2π)3
d3k =

V

(2πc)3
ω2dωdΩk (2.224)

photon states of given polarization. The corresponding number of transitions per unit time d3wfi is thus
given by

d3wfi = Wfid
3ni =

V

(2π)2c3~
δ(Ef − Ei ∓ ~ω)ω2dωdΩk|Tfi|2

(
ni

ni + 1

)
. (2.225)

Integrating over ω, we obtain

d3wfi =
V

(2π~)2c3
ω2dΩk|Tfi|2

(
ni

ni + 1

)
, (2.226)

where ni is now the number of photons with energy ~ω = Ef − Ei for absorption and Ei − Ef for
emission. Factoring −ec

√
~/2ε0ωV from the interaction Hamiltonian, we obtain

d2wfi =
α

2π
ωdΩk|Tfi|2

(
ni

ni + 1

)
, (2.227)

where the single-particle interaction Hamiltonian is now replaced by

hI(r, ω) → α · ε̂λeik·r . (2.228)

Let us assume that we have a collection of atoms in equilibrium with a radiation field. Further, let us
assume that the photons of frequency ω in the radiation field are distributed isotropically and that the
number of photons in each of the two polarization states is equal. In this case, the photon number n can
be related to the spectral density function ρ(ω) which is defined as the photon energy per unit volume in
the frequency interval dω. One finds from Eq. (2.224) that

ρ(ω) = 2n~ω
4πω2

(2πc)3
=

~ω3

π2c3
n . (2.229)

The Hamiltonian governing the electromagnetic field is

HEM =
ε0
2

∫
d3rE(r, t) ·E(r, t) +

1
2µ0

∫
d3rB(r, t) ·B(r, t) (2.230)

=
1
4

∑
i

~ω
(
ε̂∗λ · ε̂λ + [k̂ × ε̂λ] · [k̂ × ε̂∗λ]

)(
cic

†
i + c†ici

)
=

∑
i

~ω
(

Ni +
1
2

)
,
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where Ni = c†ici is the photon number operator.

For isotropic, unpolarized radiation, we can integrate Eq. (2.230) over angles Ωk and sum over polar-
izations ε̂λ, treating n as a multiplicative factor. The resulting absorption probability per second, wb→a,
leading from an initial (lower energy) state a to final (higher energy) state b in presence of n photons of
energy ~ω is given in terms of the spectral density function ρ(ω) as

wab
a→b =

π2c3

~ω3
ρ(ω)

α

2π
ω
∑

λ

∫
dΩk|Tba|2 . (2.231)

Similarly, the emission probability per second leading from state b to state a in presence of n photons of
energy ~ω is given in terms of ρ(ω) by

wem
b→a =

(
1 +

π2c3

~ω3
ρ(ω)

)
α

2π
ω
∑

λ

∫
dΩk|Tba|2 . (2.232)

The emission probability consists of two parts, a spontaneous emission contribution, wsp
b→a, that is in-

dependent of ρ(ω), and an induced or stimulated emission contribution, wie
b→a that is proportional to

ρ(ω).

The transition amplitude for a one-electron atom is

Tba =
∫
d3rΨ†

bα ·A(r, ω)Ψa , (2.233)

where A(r, ω) is the transverse-gauge vector potential

A(r, ω) = ε̂eik·r . (2.234)

The multipole expansion of the vector potential leads to a corresponding multipole expansion of the
transition operator

Tba = 4π
∑
JMλ

iJ−λ
[
Y(λ)

JM (k̂) · ε̂
] [
T

(λ)
JM

]
ba
, (2.235)

where [
T

(λ)
JM

]
ba

=
∫
d3rΨ†

bα · a
(λ)
JM (r)Ψa . (2.236)

To obtain the transition probability, we must square the amplitude, sum over polarization states, and
integrate over photon directions. On squaring the amplitude, we encounter terms of the form[

Y(λ)
JM (k̂) · ε̂ν

] [
ε̂ν ·Y(λ′)

J ′M ′(k̂)
]
, (2.237)

to be summed over polarization directions ε̂ν . Using the fact that the vector spherical harmonics with
λ = 0, 1 are orthogonal to k̂, the polarization sum becomes∑

ν

[
Y(λ)

JM (k̂) · ε̂ν
] [
ε̂ν ·Y(λ′)

J ′M ′(k̂)
]

=
[
Y(λ)

JM (k̂) ·Y(λ′)
J ′M ′(k̂)

]
. (2.238)

This expression is easily integrated over photon directions leading to∫
dΩk

[
Y(λ)

JM (k̂) ·Y(λ′)
J ′M ′(k̂)

]
= δJJ ′δMM ′δλλ′ . (2.239)
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We therefore obtain for the transition rate

wba =
α

2π
ω
∑

ν

∫
dΩk|Tba|2 = 8παω

∑
JMλ

∣∣∣[T (λ)
JM

]
ba

∣∣∣2 . (2.240)

We see that the rate is an incoherent sum of all possible multipoles. Angular momentum selection rules,
of course, limit the type and number of contributing multipoles.

A gauge transformation leaves single-particle amplitudes invariant, provided the energy difference be-
tween the initial and final states equals the energy carried off by the photon. The transformed multipole
potential can be written as

a(λ)
JM (r) → a(λ)

JM (r) +∇χJM (r), (2.241)

ΦJM (r) → iωχJM (r) ,

where the gauge function χJM (r) is a solution to the Helmholtz equation. We choose the gauge function
to be

χJM (r) = −1
k

√
J + 1
J

jJ(kr)YJM (r̂) , (2.242)

to cancel the lowest-order (in powers of kr) contribution to the interaction. The resulting transformation
has no effect on the magnetic multipoles, but transforms electric multipole potentials to the form

a(1)
JM (r) = −jJ+1(kr)

[
Y(1)

JM (r̂)−
√
J + 1
J

Y(−1)
JM (r̂)

]
, (2.243)

Φ(1)
JM (kr) = −ic

√
J + 1
J

jJ(kr)YJM (r̂) .

The resulting potentials reduce to the length-form multipole potentials in the non-relativistic limit.

In either gauge, the multipole-interaction can be written in terms of a dimensionless multipole-transition
operator t(λ)

JM (r) defined by[
α · a(λ)

JM (r)− 1
c
ΦJM (r)

]
= i

√
(2J + 1)(J + 1)

4πJ
t
(λ)
JM (r) . (2.244)

The one-electron reduced matrix elements 〈i||t(λ)
J ||j〉 are given in the transverse gauge:

〈κi||t(0)J ||κj〉 = 〈−κi||CJ ||κj〉
∫ ∞

0
dr
κi + κj

J + 1
jJ(kr) [Gi(r)Fj(r) + Fi(r)Gj(r)] , (2.245)

〈κi||t(1)J ||κj〉 = 〈κi||CJ ||κj〉
∫ ∞

0
dr

{
−κi − κj

J + 1

[
j′J(kr) +

jJ(kr)
kr

]
×

[Fi(r)Gj(r) +Gi(r)Fj(r)] + J
jJ(kr)
kr

[Fi(r)Gj(r)−Gi(r)Fj(r)]
}
,

and in the Babushkin gauge:

〈κi||t(1)J ||κj〉 = 〈κi||CJ ||κj〉
∫ ∞

0
dr

{
jJ(kr) [Fi(r)Fj(r) +Gi(r)Gj(r)] + (2.246)

+jJ+1(kr)
[
κi − κj

J + 1
[Fi(r)Gj(r) +Gi(r)Fj(r)] + [Fi(r)Gj(r)−Gi(r)Fj(r)]

]}
.
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The functions Fi(r) and Gi(r) in the above equations are the large and small components, respectively,
of the radial Dirac wave functions for the orbital with quantum numbers (ni, κi).

Using the Wigner-Eckart theorem

〈Φb|t
(λ)
JM |Φa〉 = (−1)(jb−mb)

(
jb J ja
−Mb M Ma

)
〈Φb||t

(λ)
J ||Φa〉 (2.247)

we can find the final expression of the decay rate, i.e. the transition probability per unit time:

Γba = 2αω
(2J + 1)(J + 1)

J

∑
Jλ

|〈Φb||t
(λ)
J ||Φa〉|2

∑
Mmb

(
jb J ja
−Mb M Ma

)2

. (2.248)

In a two-level approximation, we know all quantum numbers of the initial state, therefore, no averaging
over unresolved quantum numbers has to be performed as in the usual case.

We can express, using the formula (2.198), the decay rate between hyperfine components (Fa,MFa),
(Fb,MFb

) as

Γab(najaIFa → nbjbIFb) = (2Fa + 1)(2Fb + 1)
(
Fb J Fa

−MFb
MFb

−MFa MFa

)2

/

(
jb J ja
−Mb Mb −Ma Ma

)2{
jb Fb I
Fa ja J

}2

Γab(naja → nbjb) , (2.249)

2.5 Nuclear proton distributions explored by relativistic resonance fluo-
rescence

A promising application of relativistic resonance fluorescence employing x-ray lasers is the determina-
tion of isotope shifts in highly charged ions. In these species, the large mutual overlap of the nuclear
matter with inner-shell electrons ensures a large sensitivity of ionic transition energies to the protonic
charge distribution. First we summarize the phenomenology of isotope shifts, then, as an application of
the relativistic theory of resonance fluorescence in two-level systems presented in the previous sections
we discuss our results on isotope shift measurements via x-ray lasers.

2.5.1 Isotope shifts and nuclear charge distribution parameters

Isotope shifts are slight variations of the electron energies without their splitting like in the case of
hyperfine structure effects. The isotope shifts are caused by two effects, which lead to the mass shift
(MS) and the field or volume shift (FS).

The first effect appears due to the fact that the nuclear mass is finite. In the lowest order, it is taken into
account by replacing the electron mass (me) with the reduced mass

µ =
meMnuc

me +Mnuc
, (2.250)

so the energy of an atomic state will become

E =
µ

me
E∞ . (2.251)
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E∞ is the energy value corresponding to infinite nuclear mass (Mnuc = ∞). This replacement is only
valid for the non-relativistic case, when the center of the mass can be defined geometrically. In the case
of relativistic electrons, precise nuclear recoil corrections are more elaborate to calculate. For atoms with
more than one electron, further corrections, the so-called specific mass shifts arise due to the correlated
motion of the electrons. These relativistic and many-body effects can be taken into account by, e.g.,
perturbative means by the use of the relativistic recoil operator for a general atomic system of electrons
with indices i, j (see Refs. [SA95, Pal87], in relativistic units, ~ = c = ε0 = 1):

Rij =
pi · pj

2M
− Zα

2Mri

(
αi +

(αi · ri)ri

r2i

)
· pj . (2.252)

Here, ri and pi are the position vector and the momentum operator of the ith electron, respectively, and
αi is the vector of Dirac matrices acting on its bispinor wave function. The isotope-dependent nuclear
mass is denoted by M and α is the fine-structure constant. There is no summation convention on i and j.
The normal mass shift correction to a given atomic state is obtained as the expectation value 〈

∑
iRii〉,

whereas the specific mass shift term is given by 〈
∑

i6=j Rij〉. The first term in Eq. (2.252) corresponds
to the mass shift operator also known in the non-relativistic theory.

The second effect is caused by the fact that the nuclear charge is distributed within a finite volume and
by the distinct isotope-dependent nuclear properties, like different distributions of protons in the nuclear
volume. The electrostatic potential induced by the protonic distribution influences the motion of the
electrons at short distances on the order of the nuclear radius, i.e. a few femtometers.

In order to have a good approximation of the nuclear volume effect, one may use a spherical nuclear
charge distribution. However, not all the nuclei have a spherical shape. The deviation from a spherical
charge distribution in a nucleus determines the electric quadrupole and higher order moments. The
electric multipole moments of higher order than monopole electric moments contribute to the splitting
of the energy levels in an atom, the so-called hyperfine structure effects.

Starting with electron scattering experiments on the nuclei, the most studied nuclear charge density func-
tion is the Fermi distribution. Most published data on nuclear parameters employ this type of distribution,
which is given by the expression

ρnuc(r) =
ρ0

1 + e(r−c)/a
, (2.253)

where c is the half-density radius. For the case of a spherical distribution, the Fermi charge distribution
depends on two parameters. In this case, c is a constant and it is defined as the radius at witch the density
reaches the half of its maximum value. We may express the distance in the surface layer over whitch the
density decreases from 90% to 10% of its maximum by

t = 4a ln 3. (2.254)

Here, t represents the surface thickness of the distribution. The normalization condition is∫ ∞

0
ρnuc(r)4πr2dr = Ze . (2.255)

For c� a, the density is essentially ρ0. When the difference r− c becomes larger than a, it starts to fall
into negligible values with the distance, determined by a and independent of c. The Fermi distribution is
illustrated in Fig. 2.5.

For deformed nuclei, one may use a four-parameter Fermi charge distribution. The angular dependence
of c can be written as [ZST+84]

c = R0[1 + β2Y20(θ, φ) + β4Y40(θ, φ)] , (2.256)
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Figure 2.5: The two-parameter Fermi charge distribution normalized by the constant ρ0 (see text). The
half-density radius c and the surface thickness t are indicated.

where R0 is the monopole radius and the parameters β2 and β4 are the quadrupole and hexadecapole
deformation parameters, respectively. The root mean square (RMS) radius is defined by

rRMS =

√
1
Ze

∫ ∞

0
r2ρnuc(r)4πr2dr . (2.257)

In general, the energy shift depends on other radial moments

〈rn〉 =
1
Ze

∫ ∞

0
ρnuc(r)4πrn+2dr . (2.258)

For light nuclei, the energy shift depends essentially on the mean square radius 〈r2〉 = r2RMS .

The relation between the density distribution and the corresponding nuclear potential is given by Pois-
son’s equation

∇2Vnuc(r) = −4πρnuc(r) . (2.259)

For a spherically symmetrical distribution with the boundary condition Vnuc → 0 for r → ∞, the
potential is given by the identity:

−rVnuc(r) = 4π
(∫ r

0
ρnuc(s)s2ds+ r

∫ ∞

r
ρnuc(s)sds

)
. (2.260)

We consider three different types of nuclear charge distribution

1. For point-like nucleus we will have the Coulomb potential given by

−rVnuc(r) = Z . (2.261)

2. The homogeneous distribution is described by

ρnuc(r) =
{
ρ0 , for r ≤ rnuc

0 , otherwise
, (2.262)

where rnuc is the nuclear radius. On can calculate the nuclear radius using the formula

rnuc = (1.0793A1/3 + 0.73587)fm . (2.263)
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3. In the case of the Fermi charge distribution for a spherical symmetric nucleus we can consider

rRMS = (0.836A1/3 + 0.570)fm , (2.264)

and the thickness parameter
t = 2.30fm , (2.265)

unless some other value is provided.

There are four electromagnetic methods sensitive to the different properties of the nuclear ground-state
charge distributions: elastic electron scattering, optical spectroscopy, K x-ray spectroscopy and muonic
atom spectroscopy. Some nuclear parameters can be obtained with high precision from a combined
analysis using data from different types of experiments.

1. Elastic electron scattering

Since in our present discussion the only interaction of importance between the electrons and nucleons
is the electromagnetic one, the electron is an ideal probe particle. If the electrons have sufficient energy
not to be affected by the atomic electrons in the target and to penetrate the nucleus, they will have their
motion influenced by the nuclear charge distribution. The measured quantity in elastic electron scattering
is the differential cross section. The deviation from the cross section of a point charge distribution is given
by the form factor F (q) through the formula [FBH+95]

dσ

dΩ

∣∣∣∣
exp

=
dσ

dΩ

∣∣∣∣
Mott

|F (q)|2 , (2.266)

where q is the momentum transfer in the collision and it has the magnitude

q =
2E
~c

sin
θ

2
, (2.267)

where E � mec
2. The Mott cross section for a point-like nucleus is given by

dσ

dΩ

∣∣∣∣
Mott

=
Z2e4

4E4

cos2 θ
2

sin4 θ
2

, (2.268)

for the scattering of an electron of energy E through an angle θ. The form factor is related to the nuclear
charge distribution through a Bessel-Fourier transform

F (q) = 4π
∫ ∞

0
ρnuc(r)j0(qr)r2dr , 0 < q <∞ , (2.269)

where j0(qr) = sin(qr)
qr denotes the spherical Bessel function of order zero. With the Fourier transform

of the previous relation one can obtain the nuclear charge distribution density

ρnuc(r) =
1

2π2

∫ ∞

0
F (q)j0(qr)q2dq . (2.270)

The electron scattering offers the only possibility of determining the radial dependence of the charge
distribution ρnuc(r), the other methods only deliver integral quantities of ρnuc(r). One of the principal
results of the electron scattering experiment was the conclusion that the nucleus does not have sharp
edges and that the most likely distribution is of Fermi type.

However, the accuracy of this experiment is limited by the systematic errors (more than 1%), by the q
range accessible to experiment, and by the dispersion correction that takes into account virtual excitations
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of the nucleus during the scattering process, which might modify the charge distributions. Usually, the
RMS radius determined using the electron scattering technique has an approximate error of 0.2%.

2. Optical spectroscopy

As in the case of all the other spectroscopic methods, from the analysis of the optical transitions only
information about the nuclear charge parameters can be obtained. This type of spectroscopy and the K x-
ray method are sensitive to the isotopic variation of the mean-square radii δ〈r2〉, with small contributions
from higher radial moments like δ〈r4〉 and δ〈r6〉.
The isotope shift of optical transitions as a small energy shift of the gravity centers of the spectral com-
ponents for different isotopes. The shift observed between two isotopes in an atomic spectral line is the
sum of the field effect and the mass effect. Considering the mass number for two isotopes A and A′ in a
spectral line i of frequency ν the shift will be

δνAA′
i = δνAA′

i,MS + δνAA′
i,FS . (2.271)

The FS reflects the isotopic variation of the root mean square radius. For a transition i we have

δνAA′
i,FS = Fiλ

AA′
, (2.272)

where

λAA′
= δ〈r2〉AA′

+
C2

C1
δ〈r4〉AA′

+
C3

C1
δ〈r6〉AA′

+ ... , (2.273)

The coefficients C1, C2, C3,... are tabulated in the literature and δ〈r2〉AA′
= 〈r2〉A − 〈r2〉A′

. Fi

represents the electronic factor and is proportional to the change of the electronic charge density in the
nucleus, in the studied transition i. In order to determine λAA′

from the FS, the electronic factor has to
be known. There are several possibilities to calculate it: semi-empirical, using Goudsmit-Fermi Segre
method, theoretical with a multiconfiguration Dirac-Fock method or experimental with the King plot.
References concerning these methods can be found in [FBH+95].

3. K x-ray spectroscopy

For K x-ray spectroscopy, similar parameters as the ones for the optical spectroscopy are determined.
The expressions (2.271) and (2.273) describing the shifts are the same for the x-ray experiments, and
for the nuclear parameter λAA′

the same determination methods can be used. The transition implied
in this experiment are to the K level, while the optical transitions are in the upper levels, therefore the
calculations are more precise in the case of the x-ray transitions. Due to the equipment constrains, the
experimental errors can range from a few 50%, while in optical-laser measurements they are smaller by
at least one order of magnitude.

4. Muonic atom spectroscopy

The µ meson or the muon is a particle having the same properties as the electron, except for its larger
mass: mµ = 207me (mec

2 = 0.511004MeV; mµc
2 = 105.655MeV). Since the muon has also spin 1

2
and negative charge, it can be bound by a nucleus to form a muonic atom and it obeys the Dirac equation.
Some effects negligible for normal atoms are important for muonic atoms. These effects are related to
the large mass and to the fact that the Bohr radius of the muon is approximately 207 times smaller than
the one for the electron. This makes all the nuclear size effects relatively larger.

The transitions between internal muonic shells are followed by γ-emissions, which will be detected. The
binding energies and the measured γ energies depend on the nuclear charge distribution. This provides
a tool for the determination of nuclear parameters by the comparison of the experimental and theoretical
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Figure 2.6: Spectrum of fluorescence photons for the 2s–2p3/2 circular (m=3/2–1/2) transition in Li-like
U as a function of the fluorescence photon frequency ωf and the detuning of the laser frequency ωl from
the ionic transition with ωtr = 4106.6 eV. The laser intensity is 1012 W/cm2. The dashed curve shows
the frequency-integrated detected signal as a function of the detuning.

spectra [FBH+95]. The energy measurements provide only integral quantities of the nuclear charge
distribution, so they do not give detailed information about the shape of the radial dependence.

In the heavy nuclei, the µ-mesic x-ray studies give values of parameters, which differ from those obtained
from electron scattering, making the knowledge about the charge distribution more precise, while for
light nuclei they give an independent measure of the RMS radius. The measurement error is determined
mainly by statistics and to a minor part by the subtraction of the background of the spectrum. The
main errors come from the uncertainty of the calculated nuclear polarization correction. An additional
independent method such as measuring IS by employing x-ray free electron lasers will be by no doubt of
great use in extending our knowledge on nuclear electromagnetic properties.

2.5.2 Isotope shifts investigated by means of relativistic resonance fluorescence

In Fig. 2.6 we plot the power spectrum of resonance fluorescence for the case of the 2s → 2p3/2 E1
transition in Li-like uranium (Z=92) ions. The dynamic (AC) Stark shift leads to a splitting of the central
peak. At an intensity of 1012 W/cm2, the Rabi frequency of 150 meV is only slightly larger than the
natural line width of Γ = 45 meV. As the figure shows, this leads to a rapid decrease of the fluorescence
signal as function of the laser detuning from the transition frequency of the ion, especially when the
central peak is considered. This enables the determination of ionic resonance energies with a resolution
on the order of the natural line width of the transition. At higher intensities, however, the Rabi frequency
which dominates the width of the detected signal peak (see dashed curve on Fig. 2.6) increases, thus
corrupting the energy resolution.

In order to deduce nuclear proton distribution parameters via resonance fluorescence spectra, the iso-
tope shifts for a pair of isotopes shall preferably be larger or at least comparable to the width of the
fluorescence peaks.

The structure of the relativistic spectra is different from the non-relativistic one due to the spin-orbit
interaction and the velocity-dependent electron mass only accounted for in the relativistic theory: the
Rabi frequencies depend on the relativistic magnetic sublevels of the upper and lower states, leading to
a complex splitting of the usual three-peak Mollow structure.

Current x-ray laser systems such as the LCLS possess a photon beam bandwidth of 200 meV, which is
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Figure 2.7: Shift of the relativistic resonance fluorescence spectrum as a function of the mean square
proton radius variation δ〈r2〉 for the case of the 2s–2p3/2 transition in Li-like uranium. The spectrum
at the bottom corresponds to the reference isotope A=238 and is plotted against the fluorescence photon
frequency ωf around the transition frequency ωtr of 4106.6 eV. The laser intensity is 1012 W/cm2 and
the laser detuning is assumed to be 0 for any isotope. See text for more details.

expected to yield an accuracy on the 1 meV level for the IS of the transition mentioned above, thus poten-
tially outperforming the∼50 meV precision of emission spectroscopy techniques [EBC96] by more than
an order of magnitude. Since the only theoretical limitation in our scheme is the rather small natural line
width, anticipated improvements of the bandwidth of short-wavelength lasers in the immediate future
will allow to push these boundaries even further. Besides the radius, further properties of the nuclear
charge distribution such as higher moments, deformation parameters [Coo06] and nuclear polarization
contributions may even be accessible. In the optical range, the superior frequency resolution and inten-
sity of existing lasers may be exploited by addressing, e.g., hyperfine transitions in few-electron highly
charged ions.

In order to infer nuclear proton radii from experimental IS values, the dependence of the complete flu-
orescence spectrum on the variation δ〈r2〉 of the mean square charge radius (averaged over the nuclear
volume) is needed. Given the relative simplicity of such few-electron atomic states, this dependence can
be calculated to higher precision than in the case of light elements [SNE+06]. Such a spectrum is shown
in Fig. 2.7 for the case of uranium, delivering directly the radius with respect to that of the 238U isotope.

Laser systems with photon energies of up to a few keV (in the range of Li-like transitions) are presently
available [ABB+06, ECB+07], allowing to excite elements as heavy as U. Future laser facilities are
expected to increase the frequency limit to the order of tens of keVs, permitting to directly address the
most relativistic very heavy H-like systems. E.g. for the case of Fig. 2.7, experimental photon emission
rates are estimated to be on the order of 107 1/s per ion at a laser intensity of 1012 W/cm2, providing
sufficient count statistics for a high-precision determination of the IS value. Table 2.1 lists values for
further elements and charge states.
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Table 2.1: Parameters for H-like (1s–2p1/2) and Li-like (2s–2p3/2) ions. Transition energies, line widths
Γ, laser intensities I, and isotope shifts ∆ωIS , are given. x(y) stands for x× 10y.

Z charge state ωtr [eV] Γ [eV] I [ W/cm2] ∆ωIS [eV]
54 H 3.0904(4) 3.03(0) 1(15) 2.96(-2)

Li 3.6406(2) 1.07(-4) 1(7) 3.44(-3)
60 H 3.8521(4) 5.47(0) 1(16) 3.00(-1)

Li 5.7763(2) 3.38(-4) 1(8) 3.65(-2)
92 H 9.8065(4) 1.81(1) 1(17) 1.07(0)

Li 4.1066(3) 4.48(-2) 1(12) 1.70(-1)

2.6 The spectrum of resonance fluorescence in three-level approximation

Resonance fluorescence in a two-level system discussed sofar constitutes the simplest model of bound
atomic dynamics. A whole range of new phenomena becomes possible if one extends this picture with
a third level and an additional coherent driving. In particular, the quantum manipulation of the system
dynamics becomes possible when using a second laser field. In the following we develop a consistent
relativistic theory of resonance fluorescence in an atomic three-level system.

2.6.1 Description of the model and equations of motion

The state function of a three-level atom can be written in the form

|Ψ(t)〉 = Ca(t)|a〉+ Cb(t)|b〉+ Cc(t)|c〉 . (2.274)

It is easy to see following the calculations of two-levels atoms that the Hamiltonian of the three-level
system interacting with two classical fields is given by

H =
3∑

i=1

εi|i〉〈i|+ Ω13
R (e−iω1t|3〉〈1|+ eiω1t|1〉〈3|) + Ω12

R (e−iω2t|2〉〈1|+ eiω2t|1〉〈2|) , (2.275)

where εi (i ∈ {1, 2, 3}) are the energies of the three stationary states of the atom, Ω12
R and Ω13

R are the
Rabi frequencies of the driving field and |j〉〈i| are fermion operators that describe the creation of an
electron in level i and annihilation in level j. ω1 and ω2 are the field frequencies between the levels
1 → 3 respectively 1 → 2. The reversible part of the master equation in the interaction picture has the
form

ρ̇′ = − i
~
[H ′

1 , ρ
′] , (2.276)

where

H ′
1 = ~Ω13

R (|3〉〈1|ei∆1t + |1〉〈3|e−i∆1t) + ~Ω12
R (|2〉〈1|ei∆2t + |1〉〈2|e−i∆2t) , (2.277)

and

∆1 = ω31 − ω1 , ∆2 = ω21 − ω2 . (2.278)
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Figure 2.8: Level scheme of an (a) V -system, (b) Λ-system, and (c) Ξ-system. Here, ω1 and ω2 are laser
frequencies, and ∆1 and ∆2 are the corresponding detunings from the atomic transition frequencies.

The prime denotes quantities in the interaction representation and ω31 and ω21 are atomic transition fre-
quencies. The matrix elements of ρ′ according to Eq. (2.276) satisfy coupled linear equations of motion
containing explicit time-dependent factors of the complex exponential type. These can be removed with
the transformation

Rii = ρ′ii (i = 1, 2, 3), R12 = ρ′12e
i∆2t, R13 = ρ′13e

i∆1t, R23 = ρ′23e
i(∆2−∆2)t , (2.279)

whose effect is to produce autonomous equations for the matrix elements Rij .

The full master equation reads

ρ̇′ = − i
~
[H ′

1 , ρ
′] + Λρ′ , (2.280)

where the irreversible part of Eq. (2.280) is given by Eq. (2.14). Written in terms of the variable Rij ,
Eq. (2.280) takes the explicit form

dR12

dτ
= i∆̃2R12 − iβ1R32 − iβ2(R22 −R11)− γ̃12R12 , (2.281)

dR13

dτ
= i∆̃1R13 − iβ1(R33 −R11)− iβ2R23 − γ̃13R13 ,

dR22

dτ
= −iβ2(R12 −R21) + Γ̃12R11 + Γ̃32R33 − (Γ̃21 + Γ̃23)R22 ,

dR23

dτ
= i(∆̃1 − ∆̃2)R23 + iβ1R21 − iβ2R13 − γ̃23R23 ,

dR33

dτ
= −iβ1(R13 −R31) + Γ̃13R11 + Γ̃23R22 − (1 + Γ̃32)R33 ,

where R11 = 1−R22 −R33, R21 = R∗
12, R31 = R∗

13 R32 = R∗
23. In arriving at Eqs. (2.281) we

have introduced the dimensionless time τ = Γ31t and the scaled Rabi frequencies β1 = Ω13
R /Γ31 and

β2 = Ω12
R /Γ31. The remaining rate constants are scaled to Γ31 and are labeled with a tilde.

It is convenient to represent the set of eight linearly independent equation for the matrix elements Rij in
the compact form

d

dτ
Ψ = LΨ + I , (2.282)

where the eight components of the vector Ψ are defined by

Ψ1 = R12 , Ψ2 = R13 , Ψ3 = R21 , Ψ4 = R22 ,

Ψ5 = R23 , Ψ6 = R31 , Ψ7 = R32 , Ψ8 = R33 , (2.283)
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The vector I is an inhomogeneous term with the components

I1 = iβ2 , I2 = iβ1 , I3 = −iβ2 , I4 = Γ̃12 ,

I5 = 0 , I6 = −iβ1 , I7 = 0 , I8 = Γ̃13 . (2.285)

2.6.2 The calculation of the spectrum

Like in the case of the two-level atom, in the calculation of the spectra we only need to limit our consid-
erations to the atomic correlation function

Γ(τ1, τ0) = 〈P (−)(τ1)P (+)(τ0)〉 . (2.286)

The total polarization operator of the three-level atom is given by

P (τ) = γ12(|1〉〈2|+ |2〉〈1|) + γ13(|1〉〈3|+ |3〉〈1|) , (2.287)

where γij are the moduli of the induced transition matrix elements and we have assumed γ23 = 0, i.e. the
2–3 transition is not driven with a third laser field. The positive and the negative parts of the polarization
operator are given by

〈P (+)(t)〉 = γ12|1〉〈2|+ γ13|1〉〈3| , P (−)(t) = [P (+)(t)]† . (2.288)

The starting point is the one-time average

P (−)(τ1) = Tr[ρ(τ1)(γ12(|2〉〈1|+ γ13|3〉〈1|)] , (2.289)

which can be written in terms of Ψi(τ1) as follows:

〈P (−)(τ1)〉 = γ12e
iω2τ1Ψ1(τ1) + γ13e

iω1τ1Ψ2(τ1) . (2.290)

At this point the essential step is to express each of the matrix elements Ψi(τ1) that appear in Eq. (2.290)
in terms of their initial values τ = τ0. While this could be done beginning with the formal integration
of Eq. (2.282), here we operate in the space of the Laplace transform. Thus, Eq. (2.290) yields

〈P̂ (−)(z)〉 = γ12Ψ̂1(z2) + γ13Ψ̂2(z1) , (2.291)

where z1 = z − iω1 and z2 = z − iω2.

Using Eq. (2.25), Eq. (2.291) can be cast into the required form

〈P̂ (−)(z)〉 =
∑

j

[γ12M1j(z2) + γ13M2j(z1)]Ψj(τ0) +
∑

j

[
γ12

z2
M1j(z2) +

γ13

z1
M2j(z1)

]
Ij . (2.292)

In the following, we need to express Ψj(τ0) and Ij in the form of expectation values of system operators
at τ = τ0. Applying the regression theorem yields

〈P̂ (−)(z)P (+)(τ0)〉τ0 = γ12[γ12M11(z2) + γ13M21(z1)]Ψ4(τ0)e−iω2τ0 (2.293)

+ γ13[γ12M11(z2) + γ13M21(z1)]Ψ7(τ0)e−iω1τ0

+ γ12[γ12M12(z2) + γ13M22(z1)]Ψ5(τ0)e−iω2τ0

+ γ13[γ12M12(z2) + γ13M22(z1)]Ψ8(τ0)e−iω1τ0

+
∑

j

[
γ12

z2
M1j(z2) +

γ13

z1
M2j(z1)]Ij [γ12Ψ3(τ0)e−iω2τ0 + γ13Ψ6(τ0)e−iω1τ0 ] .
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Since we consider the laser fields with perpendicular polarization, we are not keeping the terms with
γ12γ13. In the limiting case τ0 →∞ one has then

〈P̂ (−)(z)P (+)(∞)〉τ0 = γ2
12

M11(z2)Ψ4(∞) +M12(z2)Ψ5(∞) +
1
z2

∑
j

M1j(z2)Ψ3(∞)Ij


+γ2

13

M21(z1)Ψ7(∞) +M22(z1)Ψ8(∞) +
1
z1

∑
j

M2j(z1)Ψ6(∞)Ij

 . (2.294)

Eq. (2.294) shows that the spectrum of resonance fluorescence is composed of two separate structures
with center frequencies located at ω2 and ω1, respectively, and magnitudes proportional to the transition
matrix elements of the two atomic transitions. The incoherent part can be calculated according to the
prescription

Γ̂incoh
V (z) = Γ̂(z)− 1

z1
lim

z1→0
z1Γ̂(z)− 1

z2
lim

z2→0
z2Γ̂(z) . (2.295)

Finally, the required emission spectrum is given by

S(ω) = <Γ̂incoh
V (z)|z=iω , (2.296)

where

Γ̂incoh
V (z) = γ2

12[M11(z2)Ψ4(∞) +M12(z2)Ψ5(∞) +
∑

j

N1j(z2)Ψ3(∞)Ij ] (2.297)

+ γ2
13[M21(z1)Ψ7(∞) +M22(z1)Ψ8(∞) +

∑
j

N2j(z1)Ψ6(∞)Ij ] ,

and the matrix N is defined as

Nij(z) = (L−1(z − L)−1)ij . (2.298)

The result of the calculation in the case of the 3 → 1 transition in a Λ system (see Fig. 2.8 b)) is

Γ̂incoh
Λ1 (z) = γ2

13[M21(z1)Ψ7(∞) +M22(z1)Ψ8(∞) +
∑

j

N2j(z1)Ψ6(∞)Ij ] . (2.299)

The same procedure can be applied to the three polarization operators, with the results (for the 3 → 2
emission):

Γ̂incoh
Λ2 (z) = γ2

23[M53(z2)Ψ6(∞) +M56(z2)Ψ7(∞) +M55(z2)Ψ8(∞)

+
∑

j

N5j(z2)Ψ7(∞)Ij ] , (2.300)

where z1 = z − iω̃1, and z2 = z − iω̃2.

In the case of the Ξ (or ladder-type) system (see Fig. 2.8 c)), the 2 → 1 power spectrum is

Γ̂incoh
Ξ1 (z) = γ2

12[M11(z1)Ψ4(∞) +M12(z1)Ψ5(∞) +
∑

j

N1j(z1)Ψ3(∞)Ij ] , (2.301)

and the 3 → 2 emission spectrum is given as

Γ̂incoh
Ξ2 (z) = γ2

23[M53(z2)Ψ6(∞) +M54(z2)Ψ7(∞) +M55(z2)Ψ8(∞)

+
∑

j

N5j(z2)Ψ7(∞)Ij ] . (2.302)
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2.6.3 Analytic calculation of the spectra in the strong field approximation

In what follows we only consider the case of a resonant interaction of a laser with the 1 → 2 transition,
i.e. the detuning is ∆̃1 = 0 (see Fig.2.8(a)) and we study the emission spectrum of the 3 → 1 transition.
We employ the interaction Hamiltonian of Eq. (2.277) assuming ∆̃1 = 0. We consider the dressed
atomic states

|r〉 =

[
λ2

1

Ω2
2

+ 1 +
(

λ2
1

Ω1Ω2
− Ω2

Ω1

)2
]−1/2 [

λ1

Ω2
|1〉+ |2〉+

(
λ2

1

Ω1Ω2
− Ω2

Ω1

)
|3〉
]
, (2.303)

|s〉 =

[
λ2

2

Ω2
2

+ 1 +
(

λ2
2

Ω1Ω2
− Ω2

Ω1

)2
]−1/2 [

λ2

Ω2
|1〉+ |2〉+

(
λ2

2

Ω1Ω2
− Ω2

Ω1

)
|3〉
]
,

|t〉 =

[
λ2

3

Ω2
2

+ 1 +
(

λ2
3

Ω1Ω2
− Ω2

Ω1

)2
]−1/2 [

λ3

Ω2
|1〉+ |2〉+

(
λ2

3

Ω1Ω2
− Ω2

Ω1

)
|3〉
]
,

with the λi defined as

λ1 =
~Ω2

2∆1

Ω2
1 + Ω2

2

+ O(∆1)2 , (2.304)

λ2 = ~
√

Ω2
1 + Ω2

2 +
~Ω2

1∆1

2(Ω2
1 + Ω2

2)
+ O(∆1)2 ,

λ3 = −~
√

Ω2
1 + Ω2

2 +
~Ω2

1∆1

2(Ω2
1 + Ω2

2)
+ O(∆1)2 .

In the first order of ∆1, the dressed atomic states become

|r〉 =
∆1

Ω2
sin θ2 cos θ|1〉+ cos θ|2〉 − sin θ|3〉 , (2.305)

|s〉 =
(

1√
2
− 1√

32
∆1

Ω2
sin θ cos θ2

)
|1〉+

(
sin θ√

2
− 3√

32
∆1

Ω2
sin θ cos θ2

)
|2〉

+
(

cos θ√
2

+
1√
32

∆1

Ω2
sin θ cos θ(1 + 3 sin θ2)

)
|3〉 ,

|t〉 =
(
− 1√

2
− 1√

32
∆1

Ω2
sin θ cos θ2

)
|1〉+

(
sin θ√

2
+

3√
32

∆1

Ω2
sin θ cos θ2

)
|2〉

+
(

cos θ√
2
− 1√

32
∆1

Ω2
sin θ cos θ(1 + 3 sin θ2)

)
|3〉 ,

with the angle θ abstractly defined by tan θ = Ω2/Ω1. These states are eigenstates of H ′
1 , i.e.,

H ′
1 |r〉 = sin θ2∆1|r〉 , (2.306)

H ′
1 |s〉 = ~(ΩR + cos θ2∆1)|s〉 ,

H ′
1 |t〉 = ~(−ΩR + cos θ2∆1|t〉 ,

and ΩR = (Ω1 + Ω2)1/2 represents the effective applied Rabi frequency. In fact we show that, while ΩR

must be large for this approximation to hold, no restrictions are posed on the individual magnitudes of
the two Rabi frequencies Ω1 and Ω2.

We consider again the master equation of the density operator in the interaction picture:

ρ̇′ = − i
~
[H ′

1 , ρ
′] + Λρ′ . (2.307)
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The reversible part of Eq. (2.307) takes a very simple form owing to the fact that the states are exact
eigenstates of H ′

1 . Thus we have

(
d

dt

)
rev


ρ′st
ρ′sr
ρ′rt

ρ′ss
ρ′tt

 =


−2iΩRρ

′
st

−i(ΩR + cos 2θ∆1)ρ′sr
−i(ΩR − cos 2θ∆1)ρ′rt

0
0

 . (2.308)

Again, we have the trace condition

ρ′rr = 1− ρ′ss − ρ′tt , (2.309)

and the Hermitian symmetry

ρ′rs = (ρ′sr)
∗ , ρ′tr = (ρ′rt)

∗ , ρ′ts = (ρ′st)
∗ . (2.310)

It is interesting to observe that of the eight independent components ρ′µν of the density operator (we use
Greek indices to denote the matrix elements in the dresses state representation, and Latin indices for
the standard energy representation), two are associated with the frequency +iΩR, and two with −iΩR,
two with zero frequency, and one each with ±2iΩR (when ∆1 = 0). These grouping reflect the various
contributions of the density operator to the five spectral components.

In this representations the irreversible part of the master equation becomes rather complex. In fact, the
original irreversible part of the master equation is(

d

dt

)
irrev

ρ′ij =
∑
pq

Λijpqρ
′
pq , (2.311)

where Λijpq are the various decay rates that appear explicitly in Eq. (2.14). From the transformation
equation between the two pictures ρ′µν =

∑
ij〈µ|i〉ρ′ij〈j|ν〉, it is easy to obtain

(
d

dt

)
irrev

ρ′µν =
∑
στ

∑
ijpq

〈µ|i〉〈j|ν〉〈p|σ〉〈τ |q〉Λijpq

 ρ′στ ≡
∑
στ

Γµνστρ
′
στ , (2.312)

where the transformation matrix elements 〈µ|i〉 can be taken with comparision with Eq. (2.305).

We now focus on the derivation of an expression for the fluorescence spectrum in the limit in which ΩR

is much larger than all the decay rates. Following a procedure that accounts for the approach to steady
state and for the response of the system around the steady state with an accuracy of order 1/ΩR, we
introduce the usual vector Ψ with the components

Ψ1 = ρ′st , Ψ2 = ρ′sr , Ψ3 = ρ′rt , Ψ4 = ρ′ss ,

Ψ5 = ρ′tt , Ψ6 = ρ′rs , Ψ7 = ρ′tr , Ψ8 = ρ′ts , (2.313)

and ρ′rr = 1− ρ′ss − ρ′tt = 1−Ψ4 −Ψ5. This vector is a solution of the linear equation

d

dt
Ψ = LΨ + I , (2.314)

and, in steady state, it takes the form

Ψ(∞) = −L−1I . (2.315)
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Normally we would solve Eq. (2.315) by numerical techniques. However, we are interested in an ap-
proximate asymptotic solution, we note that in the steady state the off-diagonal elements of ρ′ are of the
order of 1/ΩR, while the diagonal elements are of the order of unity. In this limit the dominant matrix
elements are

Ψ4(∞) =
ΓssttΓttrr − ΓssrrΓtttt)

Γsstt(Γttrr − Γttss) + Γssrr(Γttss − Γtttt + Γssss(−Γttrr + Γtttt)
, (2.316)

Ψ5(∞) =
ΓssssΓttrr − ΓssrrΓttss)

Γsstt(Γttrr − Γttss) + Γssrr(Γttss − Γtttt + Γssss(−Γttrr + Γtttt)
.

We now define the deviation from the steady state as

δΨ = Ψ(t)−Ψ(∞) , (2.317)

which satisfies the equation

d

dt
δΨ(t) = LδΨ(t) . (2.318)

In the asymptotic limit of interest, however, we can replace the matrix L in Eq. (2.318) with a block-
diagonal approximation L0 which is accurate up to corrections of order 1/ΩR. This step allows the
analytic calculation of the spectrum.

In order to understand the nature of this approximation, let us consider the explicit form of the equations
for δρ′µν , for simplicity just when ∆1 = 0. Similar analysis may be performed for ∆1 6= 0. Here we only
focus on the first three of the eight independent equations because this will be sufficient for our purposes.
We have

d

dt
δρ′st = − 2iΩRδρ

′
st + Γstrsδρ

′
rs + Γstrtδρ

′
rt + Γstsrδρ

′
sr + Γststδρ

′
st + Γsttrδρ

′
tr (2.319)

+ Γsttsδρ
′
ts + (Γstss − Γstrr)δρ′ss + (Γsttt − Γstrr)δρ′tt ,

d

dt
δρ′sr = − iΩRδρ

′
sr + Γsrrsδρ

′
rs + Γsrrtδρ

′
rt + Γsrsrδρ

′
sr + Γsrstδρ

′
st + Γsrtrδρ

′
tr

+ Γsrtsδρ
′
ts + (Γsrss − Γsrrr)δρ′ss + (Γsrtt − Γsrrr)δρ′tt ,

d

dt
δρ′rt = − iΩRδρ

′
rt + Γrtrsδρ

′
rs + Γrtrtδρ

′
rt + Γrtsrδρ

′
sr + Γrtstδρ

′
st + Γrttrδρ

′
tr

+ Γrttsδρ
′
ts + (Γrtss − Γrtrr)δρ′ss + (Γrttt − Γrtrr)δρ′tt .

If we let

δρ′st = e−2iΩRtRst , δρ′sr = e−iΩRtRsr , δρ′rt = e−iΩRtRrt , δρ′ss = Rss , (2.320)

δρ′tt = Rtt , δρ′rs = eiΩRtRrs , δρ′tr = eiΩRtRtr , δρ′ts = e2iΩRtRts ,

we obtain

dRst

dt
= ΓststRst + O(1/ΩR) , (2.321)

dRsr

dt
= ΓsrrtRrt + ΓsrsrRsr + O(1/ΩR) ,

dRrt

dt
= ΓrtrtRrt + ΓrtsrRsr + O(1/ΩR) ,

where O(1/ΩR) denotes rapidly oscillating terms.
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In view of the assumed large value of ΩR, it is reasonable to drop the oscillating contributions so that, in
terms of the original variable, we have

d

dt
δρ′st = (Γstst − 2iΩR)δρ′st , (2.322)

d

dt
δρ′sr = (Γsrsr − iΩR)δρ′sr + Γsrrtδρ

′
rt ,

d

dt
δρ′rt = Γrtsrδρ

′
sr + (Γrtrt − iΩR)δρ′rt .

Hence, by neglecting the rapidly oscillating components, the new matrix L0 can be obtained from the
original matrix L after ignoring the elements outside the block-diagonal structure composed of five sub-
matrices:

L0 =


(1× 1)

(2× 2)
(2× 2)

(2× 2)
(1× 1)

 . (2.323)

The result of this procedure is a fluctuation equation of the form

d

dt
δΨ(t) = L0δΨ(t) , (2.324)

or, in terms of the original vector Ψ,

d

dt
Ψ(t) = L0Ψ(t) + I∞ , (2.325)

where I∞ = −L0Ψ(∞). The diagonal blocks of L0, denoted by (L0)i are given explicitly by

(L0)1 = Γstst − 2iΩR , (2.326)

(L0)2 =
(

Γsrsr − i(ΩR + ∆1 cos 2θ) Γsrrt

Γstsr Γrtrt − i(ΩR −∆1 cos 2θ)

)
,

(L0)3 =
(

Γssss − Γssrr Γsstt − Γssrr

Γttss − Γttrr Γtttt − Γttrr

)
,

(L0)4 =
(

Γrsrs + i(ΩR + ∆1 cos 2θ) Γrstr

Γtrrs Γtrtr + i(ΩR −∆1 cos 2θ)

)
,

(L0)5 = Γtsts + 2iΩR .

The quantities Γµνστ are calculated in the first order of ∆1

Γstst = 1
8(−4Γ31 cos θ2 − 2Γ32 cos θ2 − γ1 cos θ2 − 2Γ31 cos θ4 − 2Γ32 cos θ4 − 4Γ21 sin θ2

− 2Γ21 cos θ2 sin θ2 − 2Γ31 cos θ2 sin θ2 − 2Γ21 sin θ4) + O(∆1) , (2.327)

Γtsts = 1
8(−4Γ31 cos θ2 − 2Γ32 cos θ2 − γ1 cos θ2 − 2Γ31 cos θ4 − 2Γ32 cos θ4 − 4Γ21 sin θ2

− 2Γ21 cos θ2 sin θ2 − 2Γ31 cos θ2 sin θ2 − 2Γ21 sin θ4) + 1
16(−γ1 cos θ2 sin θ − γ1 cos θ4 sin θ

− 3γ1 cos θ2 sin θ3)
∆1

Ω2
+ O(∆1)2 ,
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Γsrsr = 1
4(−Γ21 cos θ2 − Γ21 cos θ4 − Γ31 cos θ4 − Γ32 cos θ4 − Γ31 sin θ2 − Γ32 sin θ2

− γ1 sin θ2 − 2Γ21 cos θ2 sin θ2 − 2Γ31 cos θ2 sin θ2 − 4Γ32 cos θ2 sin θ2 − Γ21 sin θ4 − Γ31 sin θ4

− Γ32 sin θ4) + 1
8(−Γ31 cos θ4 sin θ − Γ32 cos θ4 sin θ + 6Γ21 cos θ4 sin θ2 + 3Γ32 cos θ4 sin θ2

+ 4Γ21 cos θ2 sin θ3 − 5Γ31 cos θ2 sin θ3 − 2Γ32 cos θ2 sin θ3 + γ1 cos θ2 sin θ3 − 3Γ21 cos θ4 sin θ3

− 3Γ31 cos θ4 sin θ3 − 3Γ32 cos θ4 sin θ3 + 3Γ21 cos θ2 sin θ4 + 3Γ31 cos θ2 sin θ4 + 3Γ32 cos θ2 sin θ4

− 6Γ31 cos θ2 sin θ5 − 9Γ32 cos θ2 sin θ5)
∆1

Ω2
+ O(∆1)2 ,

Γtrtr = 1
4(−Γ21 cos θ2 − Γ21 cos θ4 − Γ31 cos θ4 − Γ32 cos θ4 − Γ31 sin θ2 − Γ32 sin θ2

− γ1 sin θ2 − 2Γ21 cos θ2 sin θ2 − 2Γ31 cos θ2 sin θ2 − 4Γ32 cos θ2 sin θ2 − Γ21 sin θ4 − Γ31 sin θ4

− Γ32 sin θ4)− 1
8(−Γ31 cos θ4 sin θ − Γ32 cos θ4 sin θ + 6Γ21 cos θ4 sin θ2 + 3Γ32 cos θ4 sin θ2

+ 4Γ21 cos θ2 sin θ3 − 5Γ31 cos θ2 sin θ3 − 2Γ32 cos θ2 sin θ3 + γ1 cos θ2 sin θ3 − 3Γ21 cos θ4 sin θ3

− 3Γ31 cos θ4 sin θ3 − 3Γ32 cos θ4 sin θ3 + 3Γ21 cos θ2 sin θ4 + 3Γ31 cos θ2 sin θ4 + 3Γ32 cos θ2 sin θ4

− 6Γ31 cos θ2 sin θ5 − 9Γ32 cos θ2 sin θ5)
∆1

Ω2
+ O(∆1)2 ,

Γrtrt = 1
4(−Γ21 cos θ2 − Γ21 cos θ4 − Γ31 cos θ4 − Γ32 cos θ4 − Γ31 sin θ2 − Γ32 sin θ2

− 2Γ21 cos θ2 sin θ2 − 2Γ31 cos θ2 sin θ2 − 4Γ32 cos θ2 sin θ2 − Γ21 sin θ4 − Γ31 sin θ4

− Γ32 sin θ4)− 1
8(−Γ31 cos θ4 sin θ − Γ32 cos θ4 sin θ + 6Γ21 cos θ4 sin θ2 + 3Γ32 cos θ4 sin θ2

+ 4Γ21 cos θ2 sin θ3 − 5Γ31 cos θ2 sin θ3 − 2Γ32 cos θ2 sin θ3 − 3Γ21 cos θ4 sin θ3

− 3Γ31 cos θ4 sin θ3 − 3Γ32 cos θ4 sin θ3 + 3Γ21 cos θ2 sin θ4 + 3Γ31 cos θ2 sin θ4 + 3Γ32 cos θ2 sin θ4

− 6Γ31 cos θ2 sin θ5 − 9Γ32 cos θ2 sin θ5)
∆1

Ω2
+ O(∆1)2 ,

Γrsrs = 1
4(−Γ21 cos θ2 − Γ21 cos θ4 − Γ31 cos θ4 − Γ32 cos θ4 − Γ31 sin θ2 − Γ32 sin θ2

− 2Γ21 cos θ2 sin θ2 − 2Γ31 cos θ2 sin θ2 − 4Γ32 cos θ2 sin θ2 − Γ21 sin θ4 − Γ31 sin θ4

− Γ32 sin θ4) + 1
8(−Γ31 cos θ4 sin θ − Γ32 cos θ4 sin θ + 6Γ21 cos θ4 sin θ2 + 3Γ32 cos θ4 sin θ2

+ 4Γ21 cos θ2 sin θ3 − 5Γ31 cos θ2 sin θ3 − 2Γ32 cos θ2 sin θ3 − 3Γ21 cos θ4 sin θ3

− 3Γ31 cos θ4 sin θ3 − 3Γ32 cos θ4 sin θ3 + 3Γ21 cos θ2 sin θ4 + 3Γ31 cos θ2 sin θ4 + 3Γ32 cos θ2 sin θ4

− 6Γ31 cos θ2 sin θ5 − 9Γ32 cos θ2 sin θ5)
∆1

Ω2
+ O(∆1)2 ,

Γsrrt = −1
2Γ32 cos θ2 sin θ2 + 1

8(3Γ32 cos θ4 sin θ2 + 4Γ21 cos θ2 sin θ3 − 4Γ31 cos θ2 sin θ3

+ Γ32 cos θ2 sin θ3 + 2γ1 cos θ2 sin θ2 + 3Γ32 cos θ2 sin θ5)
∆1

Ω1
+ O(∆1)2 ,

Γrtsr = −1
2Γ32 cos θ2 sin θ2 + 1

8(−3Γ32 cos θ4 sin θ2 − 4Γ21 cos θ2 sin θ3 + 4Γ31 cos θ2 sin θ3

+ −Γ32 cos θ2 sin θ3 + 2γ1 cos θ2 sin θ2 − 3Γ32 cos θ2 sin θ5)
∆1

Ω2
+ O(∆1)2 ,

Γrstr = −1
2Γ32 cos θ2 sin θ2 + 1

8(3Γ32 cos θ4 sin θ2 + 4Γ21 cos θ2 sin θ3 − 4Γ31 cos θ2 sin θ3

+ Γ32 cos θ2 sin θ3 − 2γ1 cos θ2 sin θ3 − 3Γ32 cos θ2 sin θ5)
∆1

Ω2
+ O(∆1)2 ,
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Γtrrs = −1
2Γ32 cos θ2 sin θ2 + 1

8(−3Γ32 cos θ4 sin θ2 − 4Γ21 cos θ2 sin θ3 + 4Γ31 cos θ2 sin θ3

− Γ32 cos θ2 sin θ3 − 2γ1 cos θ2 sin θ3 − Γ32 cos θ2 sin θ5)
∆1

Ω2
+ O(∆1)2 ,

Γssss − Γssrr = 1
8(−4Γ21 cos θ2 − 2Γ32 cos θ2 − γ1 cos θ2 − 2Γ31 cos θ4 − 2Γ32 cos θ4 − 4Γ31 sin θ2

− 2Γ21 cos θ2 sin θ2 − 2Γ31 cos θ2 sin θ2 − 2Γ21 sin θ4 − 4Γ32 sin θ4)
+ 1

16(−2Γ32 cos θ2 sin θ − γ1 cos θ2 sin θ + 4Γ21 cos θ4 sin θ − 4Γ31 cos θ4 sin θ
− 2Γ32 cos θ4 sin θ + γ1 cos θ4 sin θ + 12Γ31 cos θ4 sin θ2 + 6Γ32 cos θ4 sin θ2

+ 4Γ21 cos θ2 sin θ3 − 4Γ31 cos θ2 sin θ3 − 12Γ32 cos θ2 sin θ3 − 7γ1 cos θ2 sin θ3

− 12Γ31 cos θ4 sin θ3 − 12Γ32 cos θ4 sin θ3 + 12Γ21 cos θ2 sin θ4 + 12Γ32 cos θ2 sin θ4

− 12Γ21 cos θ2 sin θ5 + 6Γ32 cos θ2 sin θ5)
∆1

Ω2
+ O(∆1)2 ,

Γtttt − Γttrr = 1
8(−4Γ21 cos θ2 − 2Γ32 cos θ2 − γ1 cos θ2 − 2Γ31 cos θ4 − 2Γ32 cos θ4 − 4Γ31 sin θ2

− 2Γ21 cos θ2 sin θ2 − 2Γ31 cos θ2 sin θ2 − 2Γ21 sin θ4 − 4Γ32 sin θ4)
− 1

16(−2Γ32 cos θ2 sin θ − γ1 cos θ2 sin θ + 4Γ21 cos θ4 sin θ − 4Γ31 cos θ4 sin θ
− 2Γ32 cos θ4 sin θ + γ1 cos θ4 sin θ + 12Γ31 cos θ4 sin θ2 + 6Γ32 cos θ4 sin θ2

+ 4Γ21 cos θ2 sin θ3 − 4Γ31 cos θ2 sin θ3 − 12Γ32 cos θ2 sin θ3 − 7γ1 cos θ2 sin θ3

− 12Γ31 cos θ4 sin θ3 − 12Γ32 cos θ4 sin θ3 + 12Γ21 cos θ2 sin θ4 + 12Γ32 cos θ2 sin θ4

− 12Γ21 cos θ2 sin θ5 + 6Γ32 cos θ2 sin θ5)
∆1

Ω2
+ O(∆1)2 ,

Γsstt − Γssrr = 1
8(−4Γ21 cos θ2 + 4Γ31 cos θ2 + γ1 cos θ2 + 2Γ32 cos θ2 − 2Γ31 cos θ4 − 2Γ32 cos θ4

+ 4Γ21 sin θ2 − 4Γ31 sin θ2 − 2Γ21 cos θ2 sin θ2 − 2Γ31 cos θ2 sin θ2 − 2Γ21 sin θ4

− 4Γ32 sin θ4) + 1
8(−Γ31 cos θ2 sin θ + 2Γ21 cos θ4 sin θ − Γ31 cos θ4 sin θ

+ 3Γ21 cos θ2 sin θ2 − 3Γ21 cos θ4 sin θ2 + 3Γ31 cos θ4 sin θ2 + 2Γ21 cos θ2 sin θ3

− 4Γ31 cos θ2 sin θ3 − 4Γ32 cos θ2 sin θ3 − 2γ1 cos θ2 sin θ3 + 6Γ32 cos θ2 sin θ4

− 3Γ21 cos θ2 sin θ5 + 3Γ31 cos θ2 sin θ5)
∆1

Ω2
+ O(∆1)2 ,

Γttss − Γttrr = 1
8(−4Γ21 cos θ2 + 4Γ31 cos θ2 + γ1 cos θ2 + 2Γ32 cos θ2 − 2Γ31 cos θ4 − 2Γ32 cos θ4

+ 4Γ21 sin θ2 − 4Γ31 sin θ2 − 2Γ21 cos θ2 sin θ2 − 2Γ31 cos θ2 sin θ2 − 2Γ21 sin θ4

− 4Γ32 sin θ4)− 1
8(−Γ31 cos θ2 sin θ + 2Γ21 cos θ4 sin θ − Γ31 cos θ4 sin θ

+ 3Γ21 cos θ2 sin θ2 − 3Γ21 cos θ4 sin θ2 + 3Γ31 cos θ4 sin θ2 + 2Γ21 cos θ2 sin θ3

− 4Γ31 cos θ2 sin θ3 − 4Γ32 cos θ2 sin θ3 − 2γ1 cos θ2 sin θ3 + 6Γ32 cos θ2 sin θ4

− 3Γ21 cos θ2 sin θ5 + 3Γ31 cos θ2 sin θ5)
∆1

Ω2
+ O(∆1)2 ,

where γ1 is the decoherence rate of the laser having the ω1 frequency.

The only nonzero elements of the vector I∞ (to order 1/ΩR) are

I∞4 = I∞5 = Γssrr . (2.328)
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The solution of Eq. (2.325) in Laplace space is

Ψ̂(z) = M0(z)Ψ(t0) +
1
z
M0(z)I∞ , (2.329)

where M0(z) = (z − L0)−1. For simplicity we consider only the emission process for 3 → 1 transition
so that

P (+) = γ13|1〉〈3| , P (−) = γ13|3〉〈1| . (2.330)

As usual, we need the single-time average

〈P (−)(t1)〉 = γ13Tr[ρ′(t1)|3〉〈1|] exp(Iω31t1) . (2.331)

In terms of dressed states, we have

|3〉〈1|r〉 =
∆1

Ω2
sin θ2 cos θ

(
− sin θ|r〉+

1√
2

cos θ|s〉+
1√
2

cos θ|t〉
)
, (2.332)

|3〉〈1|s〉 =
1
2

cos θ(|s〉+ |t〉)− 1√
2

sin θ|r〉

+
1√
32

∆1

Ω2
sin 2θ(

√
2 sin 2θ|r〉+ 8 sin θ2|s〉 − 4(1 + sin θ2)|t〉) ,

|3〉〈1|t〉 = −1
2

cos θ(|s〉+ |t〉) +
1√
2

sin θ|r〉

+
1√
32

∆1

Ω2
sin 2θ(

√
2 sin 2θ|r〉+ 8 sin θ2|s〉 − 4(1 + sin θ2)|t〉) ,

so that, in Laplace space, it follows that

〈P (−)(z)〉 =
1
2

cos θ(Ψ̂4(z1) + Ψ̂1(z1)− Ψ̂8(z1)− Ψ̂5(z1))−
1√
2

sin θ(Ψ̂2(z1)− Ψ̂7(z1)) (2.333)

+
∆1

Ω2
sin θ2 cos θ

[
sin θ(− 1

z1
+ Ψ̂4(z1) + Ψ̂5(z1)) +

1√
2

cos θ(Ψ̂6(z1) + Ψ̂3(z1) +
1
4
Ψ̂2(z1)

+
1
4
Ψ̂7(z1)) + cos θ sin θ2(Ψ̂4(z1) + Ψ̂8(z1))−

1
2

cos θ(Ψ̂1(z1) + Ψ̂5(z1))
]
,

where z1 = z − iω31, and the components of Ψ are defined according to Eqs. (2.313). After replacing
Ψ̂i(z1) by the appropriate expressions in terms of Ψi(t0), we only need to cast the various Ψi(t0) in the
form of expectation values and to carry out the standard replacements required by regression theorem.
Thus, for example, we have

Ψ1(t0) → γ13Tr[ρ(t0)|t〉〈s|1〉〈3|] = γ13Tr[ρ′(t0)|t〉〈s|1〉〈3|] (2.334)

= γ13 exp(−iω31t0)〈s|1〉〈3|ρ′(t0)|t〉 ,

Ψ1(t0) → γ13exp(−iω31t0)
(

1
2 cos θ(ρ′st + ρ′tt)−

1√
2

sin θρ′rt

)
(2.335)

+γ13
∆1

Ω2
exp(−iω31t0)

(
1√
32

sin θ3 cos θ2ρ′rt +
1
2

sin θ3 cos θρ′st −
1
4

sin θ cos θ(1 + sin θ2)ρ′tt

)
,
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where the over-bars indicate that the operators are in interaction picture. Similar expressions hold for the
remaining components of Ψ(t0).

Ψ2(t0) → γ13 exp(−iω31t0)
(

1
2 cos θ(ρ′sr + ρ′tr)−

1√
2

sin θρ′rr

)
(2.336)

+γ13
∆1

Ω2
exp(−iω31t0)

(
1√
32

sin θ2 cos θ2ρ′rr +
1
2

sin θ3 cos θρ′sr −
1
4

sin θ cos θ(1 + sin θ2)ρ′tr

)
,

Ψ3(t0) → γ13
∆1

Ω2
exp(−iω31t0)

(
− sin θ3 cos θρ′rt +

1√
2

sin θ2 cos θ2ρ′st +
1√
2

sin θ2 cos θ2ρ′tt

)
,

Ψ4(t0) → γ13 exp(−iω31t0)
(

1
2 cos θ(ρ′ss + ρ′ts)−

1√
2

sin θρ′rs

)
+γ13

∆1

Ω2
exp(−iω31t0)

(
1√
32

sin θ3 cos θ2ρ′rs +
1
2

sin θ2 cos θρ′ss −
1
4

sin θ cos θ(1 + sin θ2)ρ′ts

)
,

Ψ5(t0) → γ13 exp(−iω31t0)
(
−1

2 cos θ(ρ′st + ρ′tt) +
1√
2

sin θρ′rt

)
+γ13

∆1

Ω2
exp(−iω31t0)

(
1√
32

sin θ cos θ2ρ′rt −
1
4

sin θ cos θ(1 + sin θ2)ρ′st +
1
2

sin θ3 cos θρ′tt

)
,

Ψ6(t0) → γ13
∆1

Ω2
exp(−iω31t0)

(
− sin θ3 cos θρ′rs +

1√
2

sin θ2 cos θ2ρ′ss +
1√
2

sin θ2 cos θ2ρ′ts

)
,

Ψ7(t0) → γ13 exp(−iω31t0)
(
−1

2 cos θ(ρ′sr + ρ′tr) +
1√
2

sin θρ′rr

)
+γ13

∆1

Ω2
exp(−iω31t0)

(
1√
32

sin θ2 cos θ2ρ′rr −
1
4

sin θ cos θ(1 + sin θ2)ρ′sr +
1
2

sin θ3 cos θρ′tr

)
,

Ψ8(t0) → γ13 exp(−iω31t0)
(
−1

2 cos θ(ρ′ss + ρ′ts) +
1√
2

sin θρ′rs

)
+γ13

∆1

Ω2
exp(−iω31t0)

(
1√
32

sin θ2 cos θ2ρ′rs −
1
4

sin θ cos θ(1 + sin θ2)ρ′ss +
1
2

sin θ3 cos θρ′ts

)
.

Note that in the stationary limit the off-diagonal elements of ρ′µν vanish and the only nonzero elements
are

ρ′ss = Ψ4∞ ρ′tt = Ψ5∞ , (2.337)

as given by Eq. (2.316). In this way, Eq. (2.334) becomes

Ψ1(t0 →∞) = γ13 exp(−iω31t0)
(

1
2

cos θ − 1
4

∆1

Ω2
sin θ cos θ(1 + sin θ2)

)
Ψ5(∞) , (2.338)

Ψ2(t0 →∞) = −γ13 exp(−iω31t0)
(

1√
2

sin θ − 1√
32

∆1

Ω2
sin θ2 cos θ2

)
(1−Ψ4(∞)−Ψ5(∞)) ,

Ψ3(t0 →∞) = γ13 exp(−iω31t0)
1√
2

∆1

Ω2
sin θ2 cos θ2Ψ5(∞) ,

Ψ4(t0 →∞) = γ13 exp(−iω31t0)
(

1
2

cos θ +
1
2

∆1

Ω2
sin θ2 cos θ2

)
Ψ5(∞) ,
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Ψ5(t0 →∞) = −γ13 exp(−iω31t0)
(

1
2

cos θ − 1
2

∆1

Ω2
sin θ3 cos θ

)
Ψ5(∞) ,

Ψ6(t0 →∞) = γ13 exp(−iω31t0)
1√
2

∆1

Ω2
sin θ2 cos θ2Ψ4(∞) ,

Ψ7(t0 →∞) = γ13 exp(−iω31t0)
(

1√
2

sin θ +
1√
32

∆1

Ω2
sin θ2 cos θ2

)
(1−Ψ4(∞)−Ψ5(∞)) ,

Ψ8(t0 →∞) = −γ13 exp(−iω31t0)
(

1
2

cos θ +
1
4

∆1

Ω2
sin θ cos θ(1 + sin θ2)

)
Ψ5(∞) ,

in the first order of 1/ΩR. The result of these manipulations is the correlation function

〈P̂ (−)(z)P (+)(∞)〉 = γ2
13

32z1
[16(I∞4M44 + I∞5M45 − I∞4M54 − I∞5M55) cos θ (2.339)

+ 8z(M44Ψ4(∞)−M54Ψ4(∞) +M88Ψ4(∞) +M11Ψ5(∞)−M45Ψ5(∞) +M55Ψ5(∞)) cos θ2

− 16(M22 +M77)z1(−1 + Ψ4(∞) + Ψ5(∞)) sin θ2] + γ2
13

32z1
{−8M54z1Ψ4(∞) cos θ3 sin θ2

− 8M11z1Ψ5(∞) cos θ3 sin θ2 + 32[−1 + I∞4(M44 +M54) + I∞5(M45 +M55)] cos θ sin θ3

+ 4 cos θ2[M88z1Ψ4(∞) sin θ −M11z1Ψ5(∞) sin θ − z1(M22 + (M11 + 2M45)Ψ5(∞)
+ 2M77(−1 + Ψ4(∞) + Ψ5(∞))) sin θ3 + (8I∞4M44 + 8I∞5M45 +M22z1(−1 + Ψ4(∞)
+ Ψ5(∞))) sin θ4] + (−4I∞4M54 − 4I∞5M55 + 2M44z1Ψ4(∞)− 2M54z1Ψ4(∞)
+ 2M55z1Ψ5(∞) cos θ) sin 2θ2 + z1 sin θ sin 2θ2[4M67 +M22Ψ4(∞) + 4M44Ψ4(∞) + 4M54Ψ4(∞)
− 4M67Ψ4(∞) + 4M76Ψ4(∞) +M88Ψ4(∞) +M22Ψ5(∞)− 4M23Ψ5(∞)− 6M55Ψ5(∞)
− 4M67Ψ5(∞) + 4M32(−1 + Ψ4(∞) + Ψ5(∞)) + 2(M44Ψ4(∞)−M88Ψ4(∞)

− M45Ψ5(∞)) sin 2θ]}∆1

Ω2
+ O(∆1)2

〈P̂ (−)(z)P (+)(∞)〉 = γ2
13
4 cos2 θΨ∞(M0

11 +M0
44 −M0

54 +M0
55 +M0

88) (2.340)

+γ2
13
4 sin2 θ(1− 2Ψ∞)(M0

22 +M0
77) .

At this point we need to calculate the explicit expressions for the matrix elements M0
ij . This task is made

easy by the fact that the first and last blocks of theM0 matrix are trivial, while the remaining three blocks
have the generic form (

a b
b a

)−1

→ 1
a2 − b2

(
a −b
−b a

)
. (2.341)

After a few simple calculations Eq. (2.340) becomes

〈P̂ (−)(z)P̂ (+)(∞)〉 = γ2
13
4 cos2 θΨ∞

(
1

z1 − γ1 + 2iΩR
+

2
z1 − γ4 + γ5

+
1

z1 − γ1 − 2iΩR

)
+γ2

13
2 sin2 θ(1− 2Ψ∞)

(
z1 − γ2 + iΩR

(z1 − γ2 + iΩR)2 − γ2
3

+
z1 − γ2 − iΩR

(z1 − γ2 − iΩR)2 − γ2
3

)
, (2.342)

and the emission spectrum will be given by

S(ω) = Re〈P̂ (−)(z)P̂ (+)(∞)〉|z=i(ω−ω31) . (2.343)
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We list the set of constants that are needed to discuss this result:

Γstst = Γtsts = γ1 , (2.344)

Γsrsr = Γrtrt = Γrsrs = Γtrtr = γ2 ,

Γsrrt = Γrtsr = Γrstr = Γtrrs = γ3 ,

Γssss − Γssrr = Γtttt − Γttrr = γ4 ,

Γsstt − Γssrr = Γttss − Γttrr = γ5 ,

with the γ-s given as

γ1 = −Γ32
1
4 cos2 θ(1 + cos2 θ)− Γ31

3
4 cos2 θ − Γ21

3
4 sin2 θ , (2.345)

γ2 = −Γ32
1
4 [1 + sin2 θ(1 + 2 cos2 θ)]− Γ31

1
4(1 + sin2 θ)− Γ21

1
4(1 + cos2 θ) ,

γ3 = −Γ32
1
2 sin2 θ cos2 θ ,

γ4 = −Γ32(1
4 cos2 θ + 1

4 cos4 θ + 1
2 sin4 θ)− Γ31

1
4(1 + sin2 θ)− Γ21

1
4(1 + cos2 θ) ,

γ5 = Γ32
1
2 sin2 θ(1

2 cos2 θ − sin2 θ) + Γ31(1
4 cos2 θ − 1

2 sin2 θ) + Γ21(1
4 sin2 θ − 1

2 cos2 θ) .

The main features of the spectrum whose analytic representation is given by Eq. (2.343) can be sum-
marized as follows: In general, the emission spectrum of the 3 → 1 transition is composed of five
contributions. One is centered at the transition frequency ω31 and has a Lorentzian shape, and two side-
bands are moved by an amount ±ΩR from the central peak. The outermost sidebands are the ones that
also appear in the Mollow spectrum of a strongly driven two-level atom. The inner sidebands are instead
a feature of the three-level system, although they disappear if the rate of decay of the 3 → 2 transition
approaches zero because their weighting factor is proportional to Γ32.

The peak heights of the central component and of the outer sidebands are given by

P (0) = γ2
13
4 cos2 θ

2
γ5 − γ4

Ψ∞ , P (±ΩR) = γ2
13
2 sin2 θ(1− 2Ψ∞)

|γ2|
|γ2

2 − γ2
3 |
, (2.346)

P (±2ΩR) = γ2
13
4 cos2 θ

1
|γ1|

Ψ∞ .

The full widths of the spectral features are given in an analytic representation by

∆ω(0) = 2(γ5 − γ4) = Γ32 cos2 θ + Γ31 cos2 θ + Γ21 sin2 θ , (2.347)

∆ω(±ΩR) = 2{[4γ4
3 + (γ2

2 − γ2
3)]1/2 − 2γ2

3}1/2 ,

∆ω(±2ΩR) = 2|γ1| = Γ32
1
2 cos2 θ(1 + cos2 θ) + Γ31

3
2 cos2 θ + Γ21

3
2 sin2 θ .

Now, we consider only the emission process for the 2 → 1 transition so that

P (+) = γ12|1〉〈2| , P (−) = γ12|2〉〈1| . (2.348)

The single-time average is

〈P (−)(t1)〉 = γ12Tr[ρ′(t1)|2〉〈1|] exp(iω21t1) . (2.349)

In terms of dressed states we have

|2〉〈1|r〉 = 0 , (2.350)

|2〉〈1|s〉 =
1
2

sin θ(|s〉+ |t〉) +
1√
2

cos θ|r〉 ,

|2〉〈1|t〉 = −1
2

sin θ(|s〉+ |t〉)− 1√
2

cos θ|r〉 ,
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so that, in Laplace space, it follows that

〈P (−)(z)〉 =
γ12

2
sin θ(Ψ̂4(z2) + Ψ̂1(z2)− Ψ̂8(z2)− Ψ̂5(z2))

+
γ12√

2
cos θ(Ψ̂2(z2)− Ψ̂7(z2)) , (2.351)

where z2 = z− iω21. After replacing Ψ̂i(z1) by the appropriate expressions in terms of Ψi(t0), we need
to write the various Ψi(t0) in the form of expectation values and to carry out the standard replacements
as required by the regression theorem. Thus, we have

Ψ1(t0) → γ12 exp(−iω21t0)
(

1
2 sin θ(ρ′st + ρ′tt)−

1√
2

cos θρ′rt

)
, (2.352)

Ψ2(t0) → γ12 exp(−iω21t0)
(

1
2 sin θ(ρ′sr + ρ′tr) +

1√
2

cos θρ′rr

)
,

Ψ3(t0) → 0 ,

Ψ4(t0) → γ12 exp(−iω21t0)
(

1
2 sin θ(ρ′ss + ρ′ts) +

1√
2

cos θρ′rs

)
,

Ψ5(t0) → −γ12 exp(−iω21t0)
(

1
2 sin θ(ρ′st + ρ′tt) +

1√
2

cos θρ′rt

)
,

Ψ6(t0) → 0 ,

Ψ7(t0) → −γ12 exp(−iω21t0)
(

1
2 sin θ(ρ′sr + ρ′tr) +

1√
2

cos θρ′rr

)
,

Ψ8(t0) → −γ12 exp(−iω21t0)
(

1
2 sin θ(ρ′ss + ρ′ts) +

1√
2

cos θρ′rs

)
.

Similar expressions hold for the remaining components of Ψ(t0). Note that in the stationary limit, the
off-diagonal elements of ρ′µν vanish and the only nonzero elements are

ρ′ss = ρ′tt = Ψ∞ , (2.353)

as given by Eq. (2.316). In this way, Eqs. (2.352) become

Ψ1(t0 →∞) = γ12 exp(−iω21t0)1
2 sin θρ′tt + O(1/ΩR) , (2.354)

Ψ2(t0 →∞) = γ12 exp(−iω21t0) 1√
2
cos θρ′rr + O(1/ΩR) ,

Ψ4(t0 →∞) = γ12 exp(−iω21t0)1
2 sin θρ′ss + O(1/ΩR) ,

Ψ5(t0 →∞) = γ12 exp(−iω21t0)1
2 sin θρ′tt + O(1/ΩR) ,

Ψ7(t0 →∞) = −γ12 exp(−iω21t0) 1√
2
cos θρ′rr + O(1/ΩR) ,

Ψ8(t0 →∞) = −γ12 exp(−iω21t0)1
2 sin θρ′ss + O(1/ΩR) .

As a result, one obtains the correlation function

〈P̂ (−)(z)P̂ (+)(∞)〉 = γ2
12
4 sin2 θΨ∞(M0

11 +M0
44 −M0

54 −M0
45 +M0

55 +M0
88) (2.355)

+ γ2
12
4 cos2 θ(1− 2Ψ∞)(M0

22 +M0
77) .

After a few calculations, Eq. (2.355) becomes

〈P̂ (−)(z)P̂ (+)(∞)〉 = γ2
12
4 sin2 θΨ∞

(
1

z2 − γ1 + 2iΩR
+

2
z2 − γ4 + γ5

+
1

z2 − γ1 − 2iΩR

)
+γ2

12
2 cos2 θ(1− 2Ψ∞)

(
z2 − γ2 + iΩR

(z2 − γ2 + iΩR)2 − γ2
3

+
z2 − γ2 − iΩR

(z2 − γ2 − iΩR)2 − γ2
3

)
. (2.356)
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and the emission spectrum is given by

S(ω) = Re〈P̂ (−)(z)P̂ (+)(∞)〉|z=i(ω−ω21) . (2.357)

The emission spectrum of the 2 → 1 transition is in general composed of five contributions. One is
centered at the transition frequency ω21 and has a Lorentzian shape, and two sidebands are moved by
an amount of ±ΩR from the central peak. The peak heights of the central component and of the outer
sidebands are given by

P (0) = γ2
12
4 sin2 θ

2
γ5 − γ4

Ψ∞ , P (±ΩR) = γ2
12
2 cos2 θ(1− 2Ψ∞)

|γ2|
|γ2

2 − γ2
3 |
, (2.358)

P (±2ΩR) = γ2
12
4 sin2 θ

1
|γ1|

Ψ∞ ,

and the widths of the spectral features are as follows:

∆ω(0) = 2(γ5 − γ4) = Γ32 cos2 θ + Γ31 cos2 θ + Γ21 sin2 θ , (2.359)

∆ω(±ΩR) = 2{[4γ4
3 + (γ2

2 − γ2
3)]1/2 − 2γ2

3}1/2 ,

∆ω(±2ΩR) = 2|γ1| = Γ32
1
2 cos2 θ(1 + cos2 θ) + Γ31

3
2 cos2 θ + Γ21

3
2 sin2 θ .

In the following, for completeness, we consider the Λ model (see Fig. 2.8 b)). The emission spectrum of
the 3 → 1 transition is assigned by the correlation function

Γ̂incoh
Λ1 (z) = γ2

13
4 cos2 θΨ∞

(
1

z1 − γ1 + 2iΩR
+

2
z1 − γ4 + γ5

+
1

z1 − γ1 − 2iΩR

)
(2.360)

+ γ2
13
2 sin2 θΨ∞

(
z1 − γ2 + iΩR

(z1 − γ2 + iΩR)2 − γ2
3

+
z1 − γ2 − iΩR

(z1 − γ2 − iΩR)2 − γ2
3

)
,

and the one for the 3 → 2 transition by

Γ̂incoh
Λ2 (z) = γ2

12
4 cos2 θΨ∞

(
1

z2 − γ1 + 2iΩR
+

2
z2 − γ4 + γ5

+
1

z2 − γ1 − 2iΩR

)
(2.361)

+ γ2
12
2 sin2 θΨ∞

(
z2 − γ2 + iΩR

(z2 − γ2 + iΩR)2 − γ2
3

+
z2 − γ2 − iΩR

(z2 − γ2 − iΩR)2 − γ2
3

)
,

where

Ψ∞ =
Γ21 cos4 θ

Γ21(sin4 θ + 2 cos4 θ) + Γ32 cos2 θ + Γ31 sin2 θ
, (2.362)

and

γ1 = −1
4 [Γ21 sin2 θ(1 + sin2 θ) + Γ32(2 + sin2 θ) + Γ31(2 + cos2 θ)] , (2.363)

γ2 = −1
4{Γ21[1 + cos2 θ(1 + 2 sin2 θ)] + Γ32 + Γ31} ,

γ3 = −1
2Γ21 cos2 θ sin2 θ ,

γ4 = −1
4{Γ21[sin2 θ(1 + sin2 θ) + 2 cos2 θ] + Γ32(1 + cos2 θ) + Γ31(1 + sin2 θ)} ,

γ5 = 1
4 [Γ21(cos2 θ sin2 θ − 2 cos4 θ) + Γ32 sin2 θ + Γ31 cos2 θ] .

Both the 3 → 1 and 3 → 2 emission spectra consists of five well-resolved components. The central
peak and the ±2ΩR sidebands have Lorentzian shapes, while the ±ΩR sidebands have a slightly more
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complicated structure. The full widths at half maximum of the central peak and the sidebands of 3 → 1
spectrum are identical to the corresponding widths of the 3 → 2 profiles and are given by

∆ω(0) = 2|γ5 − γ4| = Γ21 sin2 θ + Γ32 + Γ31 , (2.364)

∆ω(±ΩR) = 2{−2γ2
3 + [4γ4

3 + (γ2
2 − γ2

3)2]1/2}1/2 ,

∆ω(±2ΩR) = 2|γ1| .

The peak heights of 3 → 1 emission spectrum are given by

P (0) = γ2
13
4 cos2 θ

2
|γ5 − γ4|

Ψ∞ , P (±ΩR) = γ2
13
2 sin2 θ

∣∣∣∣ γ2

γ2
2 − γ2

3

∣∣∣∣Ψ∞ , (2.365)

P (±2ΩR) = γ2
13
4 cos2 θ

1
|γ1|

Ψ∞ .

Those of the 3 → 2 spectrum are identical except for the replacements of sin θ with cos θ, and vice versa,
and γ13 with γ12.

The formulas for the Ξ model (see Fig. 2.8 c)) are quite similar to those of the Λ, with some differences,
however, it is necessary to summarize them separately. The emission spectrum of the 2 → 1 transition is
given by the correlation function

Γ̂incoh
Ξ1 (z) = γ2

13
4 cos2 θΨ∞

(
1

z1 − γ1 + 2iΩR
+

2
z1 − γ4 + γ5

+
1

z1 − γ1 − 2iΩR

)
(2.366)

+ γ2
13
2 sin2 θΨ∞

(
z1 − γ2 − iΩR

(z1 − γ2 − iΩR)2 − γ2
3

+
z1 − γ2 + iΩR

(z1 − γ2 + iΩR)2 − γ2
3

)
.

For the 3 → 2 decay we have instead

Γ̂incoh
Ξ2 (z) = γ2

12
4 sin2 θΨ∞

(
1

z2 − γ1 + 2iΩR
+

2
z2 − γ4 + γ5

+
1

z2 − γ1 − 2iΩR

)
(2.367)

+ γ2
12
2 cos2 θ(1− 2Ψ∞)

(
z2 − γ2 − iΩR

(z2 − γ2 − iΩR)2 − γ2
3

+
z2 − γ2 + iΩR

(z2 − γ2 + iΩR)2 − γ2
3

)
,

where

Ψ∞ =
1
2(Γ31 cos4 θ + Γ32 cos2 θ)

Γ31(1
2 sin4 θ + cos4 θ) + 1

2Γ21 sin2 θ + Γ32 cos2 θ
, (2.368)

and

γ1 = −1
4 [Γ31 sin2 θ(1 + sin2 θ) + 3Γ32 sin2 θ + Γ21(2 + cos2 θ)] , (2.369)

γ2 = −1
4{Γ31[1 + cos2 θ(1 + 2 sin2 θ)] + Γ32(1 + cos2 θ) + Γ21} ,

γ3 = −1
2Γ31 cos2 θ sin2 θ ,

γ4 = −1
4 [Γ31(sin2 θ + sin4 θ + 2 cos4 θ) + Γ32(1 + cos2 θ) + Γ21(1 + sin2 θ)] ,

γ5 = 1
4 [Γ31 cos2 θ(sin2 θ − 2 cos2 θ) + Γ32(sin2 θ − 2 cos2 θ) + Γ21 cos2 θ] .

Again, the 2 → 1 and 3 → 2 emission spectra consists of five symmetric components. The central
peak and the outer sidebands have a Lorentzian shape and the inner sidebands are non-Lorentzian. The
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full width at half maximum of these spectral components are the same for both the 2 → 1 and 3 → 2
fluorescence processes and they are given by

∆ω(0) = Γ31 sin2 θ + Γ32 sin2 θ + Γ21 , (2.370)

∆ω(±ΩR) = 2{−2γ2
3 + [4γ4

3 + (γ2
2 − γ2

3)2]1/2}1/2 ,

∆ω(±2ΩR) = 1
2 [Γ31 sin2 θ(1 + sin2 θ) + 3Γ32 sin2 θ + Γ21(2 + cos2 θ)] .

Their peak heights are given by the expressions

P21(0) = γ2
13
4 cos2 θ

2
|γ5 − γ4|

Ψ∞ , P21(±ΩR) = γ2
13
2 sin2 θ

∣∣∣∣ γ2

γ2
2 − γ2

3

∣∣∣∣Ψ∞ , (2.371)

P21(±2ΩR) = γ2
13
4 cos2 θ

1
|γ1|

Ψ∞ , P32(0) = γ2
12
4 sin2 θ

2
|γ5 − γ4|

Ψ∞ ,

P32(±ΩR) = γ2
12
2 cos2 θ(1− 2Ψ∞)

∣∣∣∣ γ2

γ2
2 − γ2

3

∣∣∣∣ , P32(±2ΩR) = γ2
12
4 sin2 θ

1
|γ1|

Ψ∞ .

2.7 Total fluorescence and steady-state population

Now, we compute the total fluorescence of transition 1− 3 which is defined, following Ref. [KNS95], as

I13 =
∫ ∞

−∞
dωS(ω) . (2.372)

From Eq. (2.342) and (2.343) we obtain

I13 =
γ2

13

4
cos2 θΨ∞(π + 2π + π) +

γ13

2
sin2 θ(1− 2Ψ∞)(π + π) , (2.373)

or, by using the expression (2.316) for the Ψ∞, one may gets the following:

I13 =
γ132π

2
cos2

Γ32 sin2 θ + Γ31 sin2 θ + Γ21 cos2 θ
Γ32(1

2 cos4 θ + sin4 θ) + Γ31 sin2 θ + Γ21 cos2 θ
. (2.374)

In the case of the 1 − 2 transition, starting with the formulas (2.356) and (2.357), and using the same
procedure, we get

I12 =
γ2

12π

2
Γ32(sin6 θ + cos6 θ) + Γ31 sin4 θ + Γ21 sin2 θ cos2 θ

Γ32(1
2 cos4 θ + sin4 θ) + Γ31 sin2 θ + Γ21 cos2 θ

. (2.375)

Applying Eq. (2.313) and (2.305) it is easy to see that

I13
ρ33

= πγ2
13 ,

I12
ρ22

= πγ2
12 . (2.376)

2.8 High-precision metrology of highly charged ions via relativistic reso-
nance fluorescence

2.9 High-precision metrology of highly charged ions

As an application of our relativistic formalism for describing resonance fluorescence in a three-level
setting, we describe line narrowing phenomena obsevable in highly charged ions and its application for
the accurate metrology of properties of highly charged ions.
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Figure 2.9: Fluorescence photon spectrum for the 2s↔2p3/2 transition in Li-like 209Bi as a function of
the fluorescence photon frequency ωf . (a) Dashed (red) curve: An x-ray laser (Ix = 5× 1011 W/cm2) is
in resonance with the ionic electric dipole (E1) transition at ωx = 2788.1 eV between the hyperfine-split
ground state 1 (2s with F = 4, MF = 4) and the uppermost state 3 (2p3/2 with F = 5, MF = 5). This
curve is multiplied by a factor of 5× 1011. Thick (thin) dashed arrows represent fast E1 x-ray (slow M1
optical) decays. (b) Continuous (blue) curve: an additional optical driving (Io = 1014 W/cm2) is applied
on the ωo = 0.797 eV [SST+98] M1 transition between the hyperfine-split magnetic sublevels 1 (F = 4,
MF = 4) and 2 (F = 5, MF = 5). The inner sidebands are suppressed. See text for more details.

In Fig. 2.9 (a) we plot the power spectrum of resonance fluorescence for the case of the 2s↔2p3/2

electric dipole transition in Li-like 209Bi (Z=83) ions. The dynamic (AC) Stark shift leads to a splitting
of the central peak, giving rise to a Mollow spectrum. Due to the long lifetime of the upper level of the
hyperfine-split ground state, level 2, almost 100 % of the population is trapped in this level if only the
3↔1 transition is driven coherently with an x-ray laser. The calculation yields for the population of the
uppermost state a value of approx. Γ21/(Γ32 + 2Γ21) ≈ 10−12 � 1, resulting in a negligibly small total
x-ray fluorescence 1. This undesirable effect may be reversed if additionally the 2↔1 optical transition
is coherently driven (see Fig. 2.9), leading to an efficient re-population of level 3.

Furthermore, the spectral lines become substantially narrower due to coherence and interference effects
(see [NSO+90] for the pioneering non-specific treatment). The width of the central peak and the outer
sidebands are given, following our derivations in the previous sections, by ΓC = (Γ31 + Γ32 + γD)R+
Γ21(1 − R) and ΓSB = |32(Γ31 − 1

3γD)R + 1
2Γ32(R + R2) + 3

2Γ21(1 − R)|, respectively, with the
ratio R being g2

31/(g
2
31 + g2

21). This effect is shown in Fig. 2.9 (b). Further increasing the intensity of
the long-wavelength driving field and thus g21 could even assign the narrow linewidth of 7.7 · 10−15

eV of the M1 hyperfine transition to the E1 x-ray transition of interest. The above line width formulas
also imply that the dephasing width γD – typically on the order of 0.1 eV for XFELs [XFE] – does not
hamper the observation of sub-natural linewidths in the x-ray regime as their contribution scales with the
same factor R.

Transition lifetimes – and related quantities like the atomic dipole or multipole moments – are of great
interest for astrophysical applications and for testing fundamental theories. Measurements of these
quantities are particularly necessary since they are especially sensitive to the long-range behavior of
atomic wave functions. Currently, even the best measurements do not exceed the 10−3 level of accu-
racy [LJC+05]. In our scheme, the narrowed central and outer lines enable in principle an even more
accurate determination of the atomic Rabi frequencies: the outer sideband peaks’ distance is given by

1Our current discussion is valid in the secular limit G =
p

g2
31 + g2

21 � max {Γ31, Γ32, Γ21}. If the effective Rabi
frequency G can not be rendered high enough for a sufficient applicability of this approximation, one has to work with the more
accurate and lengthy expressions of the spectral features.
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Figure 2.10: (a) Density plot of the fluorescence spectrum (logarithmic scale, arb. units) as a function
of the fluorescence photon frequency ωf with respect to the x-ray transition frequency ω31 (abscissa)
and the laser detuning ∆ = ωx − ω31 (ordinate), with the frequencies normalized by the Γ31 rate. The
parameters are for Bi as in Fig. 2.9. (b) Continuous (blue) curve: ratio of the interference-narrowed
width ΓSB of the outer sideband peaks to their distance Ds(0) = 4G = 4

√
g2
31 + g2

21 as a function of
the optical Rabi frequency g21, with further parameters for the Bi three-level system as given in the third
line of Table 2.2. Dashed (red) curve: deviation of the sideband distance Ds, with ∆ = Γ31. Dotted
(green) curve: deviation of the exact sideband distance D from its value in the secular limit Ds.

Ds(0) = 4G = 4
√
g2
31 + g2

21 (in the secular limit and when the x-ray laser is on resonance, i.e. its
detuning ∆ = ωx − ω31 from the transition frequency is 0). In this formula, the optical Rabi frequency
g21 is usually known, therefore, determining its counterpart g31 for the x-ray transition is only limited
by the accuracy of measuring the peak distance D. Fig. 2.10 (b) shows the ratio of the width of the
narrowed outer lines to their distance Ds(0). As shown, this ratio, characterizing the relative accuracy
for the determination of atomic multipole moments, can be improved by several orders of magnitude for
higher optical laser intensities.

Our calculation shows that the detuning dependence of the outer sideband distance is given by Ds(∆) =
4G+ G

2

(
4R− 3R2

)
(∆/G)2 +O

(
(∆/G)4

)
. This weak dependence is also illustrated in Fig. 2.10 (a).

Hence, the experimental sensitivity on the potentially inaccurately known detuning may be reduced by
orders of magnitude by increasing the optical intensity (Rabi frequency), as also shown on Fig. 2.10
(b). The multipole matrix elements of the ionic transitions can thus be determined in principle to a
high accuracy on the order of 10−4–10−6, once the intensity of the driving field is accurately known.
Conversely, the intensity may be measured to high accuracy if the multipole moments are reliably known
from an independent experiment (e.g. lifetime measurements). At the same time, knowing the Rabi
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Table 2.2: Parameters for 2s↔2p3/2 transitions in the Li-like ions 203Tl78+ (ω31=2236.5 eV), 209Bi80+

(2788.1 eV) and 235U89+ (4459.4 eV). Optical transition energies (ω21), natural line widths (Γ31, Γ21)
and Rabi frequencies (g31, g21) as well as the interference-narrowed outer sideband width (ΓSB) of the
x-ray transition are given for the laser intensities Ix, Io. x(y) stands for x× 10y.

ω21 Γ31 ΓSB Γ21 g31 g21 Ix Io
[meV] [W/cm2]

Tl 499 6.6 7.1(-2) 1.1(-12) 1.8(2) 2.1(3) 1(12) 1(16)
7.2(-4) 1.8(2) 2.1(4) 1(12) 1(18)

Bi 797 7.2(1) 9.7(-2) 7.7(-12) 8.3(1) 2.9(3) 5(11) 1(16)
1.9(-1) 1.2(3) 2.9(4) 1(14) 1(18)

U 136 2.4(1) 3.7(-2) 3.7(-14) 7.7(1) 2.8(3) 5(11) 1(16)
1.3 3.3(4) 1.9(5) 9(16) 5(19)

frequencies, the dependence of sideband positions on the x-ray detuning could allow to measure in
principle the ionic x-ray transition energy in an independent way. Table 2.2 lists values for some elements
and atomic transitions.

Our above results have been demonstrated on the example of highly charged ions with non-vanishing
nuclear spins, i.e. when hyperfine splitting of the electronic ground state occurs. However, certainly, the
results may be applied to further three-level configurations. For example, such configurations may also
be prepared by applying (strong) external magnetic fields, which gives rise to a large Zeeman splitting
of the ground-state level, addressable by long-wavelength coherent radiation such as masers (or even
CO2 lasers). Furthermore, the results can be generalized to other physical systems with high transition
energies, such as electromagnetic transitions in nuclei. In this setting, nuclear multipole moments and
transition energies may in principle be determined by an independent method.

2.10 Experimental aspects

Laser systems with photon energies of up to a few keV (in the range of Li-like transitions) are presently
available [ABB+06, LCL], allowing to excite elements as heavy as U and observing emission lines of
sub-natural linewidths. In the following we briefly summarize the operational principles of free-electron
lasers in the x-ray domain, and further devices such as electron beam ion traps and storage rings which
are in principle capable of performing relativistic resonance fluorescence spectroscopy as put forward in
this work.

A free-electron laser, or FEL, is a laser that shares the same optical properties as conventional lasers such
as emitting a beam consisting of coherent electromagnetic radiation which can reach high power. Unlike
gas, liquid, or solid-state lasers such as diode lasers, in which electrons are excited in bound atomic or
molecular states, FELs use a relativistic electron beam as the lasing medium which moves freely through
a magnetic structure. The free-electron laser has the widest frequency range of any laser type, and can
be widely tunable, currently ranging in wavelength from microwaves, through terahertz radiation and
infrared, to the visible spectrum, to ultraviolet and x-rays.

To create a FEL, a beam of electrons is accelerated to almost light velocity. The beam passes through
an FEL oscillator in the form of a periodic, transverse magnetic field, produced by arranging magnets
with alternating poles within a laser cavity along the beam path (see Fig.2.11). This array of magnets
is called an undulator, or a ”wiggler”, because it forces the electrons in the beam to follow a sinusoidal
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Figure 2.11: Scheme of a free electron laser. A fast electron beam is sent through the periodic, transverse
magnetic field of the undulator, which creates coherent radiation.

path. The acceleration of the electrons along this path results in the release of photons (synchrotron
radiation). Since the electron motion is in phase with the field of the light already emitted, the fields
add together coherently. Whereas conventional undulators would cause the electrons to radiate indepen-
dently, instabilities in the electron beam resulting from the interactions of the oscillations of electrons in
the undulators and the radiation they emit leads to a bunching of the electrons, which continue to radiate
in phase with each other. The wavelength of the light emitted can be readily tuned by adjusting the en-
ergy of the electron beam or the magnetic field strength of the undulators. Upcoming laser facilities are
expected to increase the frequency limit to the order of tens of keVs (e.g. [XFE]), permitting to directly
address the most relativistic heavy H-like systems or even nuclear transitions.

An electron beam ion trap (EBIT), see Fig. 2.12, is an electromagnetic trap that produces and confines
highly charged ions. An EBIT uses an electron beam focused by means of a powerful magnetic field
to ionize by repeated electron impact atoms injected into the apparatus to very high charge states. The
vacuum device requires intense electron beam currents of tens up to hundreds of milliamps accelerated by
means of high voltages (up to 200,000 V) applied to special electrodes. The positive – and, mostly, highly
charged – ions produced in the region where the atoms intercept the electron beam are tightly confined
in their motion by the strong attraction exerted by the negative charges flowing in the electron beam.
Therefore, their paths orbit around the electron beam crossing it frequently, thus giving rise to further
collisions and continued ionization. To keep their motion restricted in the direction of the electron beam
axis, trapping electrodes carrying positive voltages with respect to the central electrode are used. The
resulting ion trap can hold the ions for many seconds and even minutes, and conditions for reaching the
highest charge states, up to bare uranium (U92+) are achieved in this way. To avoid spoiling the produced
ions by collisions with neutral atoms from which they can capture electrons, the vacuum in the apparatus
is usually maintained at ultra high vacuum (UHV) levels.

EBITs are used to investigate the fundamental properties of highly charged ions e. g. by photon spec-
troscopy in particular in the context of relativistic atomic structure theory and quantum electrodynamics
(QED). Their suitability to prepare and reproduce in a microscopic volume the conditions of high tem-
perature astrophysical plasmas and magnetic confinement fusion plasmas make them very appropriate
research tools. Fluorescence spectroscopy in the soft x-ray range has been already performed by employ-
ing ions trapped in an EBIT as described in Ref. [ECB+07], suggesting that the schemes to manipulate
x-ray resonance fluorescence as described in this thesis are feasible in the near future.

An other device to allow for experiments with highly charged ions is a storage ring, represented in Fig.
2.13, which is a type of circular particle accelerator in which a continuous or pulsed particle beam may be
kept circulating for a long period of time, up to many hours. Technically speaking, a storage ring is a type
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Figure 2.12: Logical scheme of an electron beam ion trap. See the text for a brief explanation of the
EBIT operation.

of synchrotron. However, a conventional synchrotron serves to accelerate particles from a low to a high
energy with the aid of radio-frequency accelerating cavities; a storage ring, as the name suggests, keeps
particles stored at a constant energy, and radio-frequency cavities are only used to replace energy lost
through synchrotron radiation and other processes. Emission spectroscopic studies with highly charged
ions as heavy as uranium in the hard x-ray range has been performed at the Experimental Storage Ring
(ESR) facility of the Gesellschaft für Schwerionenforschung (GSI) by Gumberidze et al. [GSB+05],
demonstrating that storage rings may serve as good candidates for performing resonance fluorescence
experiments with x-ray lasers.

Figure 2.13: Scheme of the Experimental Storage Ring (ESR) of the GSI. See the text for a general
summary of storage ring operation.
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RELATIVISTIC LIGHT SHIFTS IN HYDROGENIC IONS

Energy shifts of atomic levels due to laser fields play an important role in high-precision laser spec-
troscopy. The dynamic Stark shift is one of the inherent systematic effects that shifts atomic energy
levels in a laser spectroscopic experiment. In contrast to other shifting effects which may in principle be
experimentally controllable, the dynamic Stark shift is due to the probing laser field itself and as such it
cannot be eliminated. For this reason, it received considerable attention. The dynamic (AC) Stark shift
is also present in laser-induced processes like ionization [SBF+07, Cos07, KHK06, BK06]. Theoretical
investigations so far apply nonrelativistic approaches and are restricted to electric dipole transitions.

In this Chapter we calculate light field shifts in a fully relativistic manner. This allows one to extend the
field of investigations to stronger laser fields, higher frequencies – e.g., x-ray lasers [ECB+07] –, and to
the highest nuclear charges.

3.1 Dynamic shift by means of perturbation theory

Let us consider the effect of adding the interaction Hamiltonian V (ε, t) to the sum of relativistic hydrogen-
like ion H0:

H = H0 + V (ε, t) , (3.1)

H0 = cαp + βm0c
2 − Ze2

4πε0r
,

V (ε, t) = −
(
A0αε̂νe

ikr−iωt + c.c.
)
eεt .

Here, ε is an infinitesimal damping parameter [Sak94]. The introduction of an adiabatic damping param-
eter is a key element of time-dependent perturbation theory. In the interaction picture (denoted by the
subscript I), the interaction V is represented by [BJ89]:

VI(ε, t) = e
i
~ H0tV (ε, t)e−

i
~ H0t . (3.2)

We calculate the time evolution operator UI up to second order in VI from the Dyson series:

UI = lim
t→∞

UI(ε, t) , (3.3)

UI(ε, t) = 1− i

~

∫ t

−∞
dt′VI(ε, t) +(

− i
~

)2 ∫ t

−∞
dt′
∫ t′

−∞
dt′′VI(ε, t′)VI(ε, t”) .

85
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Let Φn represent an eigenfunction of the unperturbed Hamiltonian H0 with an eigenvalue En. We
denote the complete set of eigenstates of H0 by {|Φn〉}. |ΦI(t)〉 is a time-dependent atomic state in the
interaction picture. The state function before interaction is an eigenstate of H0: |ΦI(t = −∞)〉 = |Φa〉,
where Φa is an eigenstate of the unperturbed Hamiltonian H0. Thus the state function at any time can be
constructed by applying the evolution operator as

|ΦI(t)〉 = UI(ε, t)|ΦI(t = −∞)〉 =
∑

n

cn(t)|Φn〉 . (3.4)

This condition is also true for the degenerate case [BJ89] without loss of generality. The time-dependent
expansion coefficients cn(t) are given as the projections

cn(t) = 〈Φn|ΦI(t)〉 . (3.5)

For calculating the light shift of a given atomic state a, we are interested in the projection [Sak94]

ca(t) = 〈Φa|ΦI(t)〉 = 〈Φa|UI(ε, t)|Φa〉 . (3.6)

The first-order perturbation 〈Φa|V |Φa〉 vanishes. Substituting UI(ε, t) from Eq. (3.3), the leading order
of the perturbation expansion is V 2 and the problem reduces to calculating the matrix element

M =
∫ t

−∞
dt′
∫ t′

−∞
dt′′〈Φa|VI(ε, t′)VI(ε, t′′)|Φa〉 = (3.7)

∑
n

∫ t

−∞
dt′
∫ t′

−∞
dt′′〈Φa|VI(ε, t′)|Φn〉〈Φn|VI(ε, t′′)|Φa〉 .

The index n counts all bound and continuum states of the unperturbed hydrogen-like ion. After carrying
out the time integration, the matrix element is given as

M = −~
i

∑
n

(
A2

0

〈Φa|V1|Φn〉〈Φn|V1|Φa〉e2t(ε−iω)

2(ε− iω)(Ea − En + ~ω − i~ε)

+|A0|2
〈Φa|V2|Φn〉〈Φn|V1|Φa〉

2ε(Ea − En − ~ω − i~ε)
e2εt

+|A0|2
〈Φa|V1|Φn〉〈Φn|V2|Φa〉

2ε(Ea − En + ~ω − i~ε)
e2εt

+(A∗0)
2 〈Φa|V2|Φn〉〈Φn|V2|Φa〉e2t(ε+iω)

2(ε+ iω)(Ea − En − ~ω − i~ε)

)
. (3.8)

For simplicity the notation V1 = −αε̂νe
ikr and V2 = −α∗ε̂∗νe

−ikr is introduced above. In the second
order of perturbation theory one can write

ca(t) = − i
~
M ′(t) , (3.9)

withM ′ = − i
~M . Neglecting higher-order terms, the logarithmic derivative of the expansion coefficient

is
d

dt
ln(ca(t)) = − i

~
dM ′

dt
. (3.10)
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In the limit ε→ 0, the time derivative of the matrix element is

dM ′

dt
=

∑
n

(
A2

0

〈Φa|V1|Φn〉〈Φn|V1|Φa〉
Ea − En + ~ω

e−2iωt

+ |A0|2
〈Φa|V2|Φn〉〈Φn|V1|Φa〉

Ea − En − ~ω

+ |A0|2
〈Φa|V1|Φn〉〈Φn|V2|Φa〉

Ea − En + ~ω

+ (A∗0)
2 〈Φa|V2|Φn〉〈Φn|V2|Φa〉

Ea − En − ~ω
e2iωt

)
. (3.11)

In the static limit ω → 0 of the electromagnetic field, this expression simplifies to

dM ′
(ω=0)

dt
=

∑
n

(
A2

0

〈Φa|V1|Φn〉〈Φn|V1|Φa〉
Ea − En

+ |A0|2
〈Φa|V2|Φn〉〈Φn|V1|Φa〉

Ea − En

+ |A0|2
〈Φa|V1|Φn〉〈Φn|V2|Φa〉

Ea − En

+ (A∗0)
2 〈Φa|V2|Φn〉〈Φn|V2|Φa〉

Ea − En

)
. (3.12)

For ω 6= 0 we use the property e2iωt = 1
2iω

∫ t
0 dt

′e2iωt′ . Using relation (3.3) (see Ref. [Joh]) to form the
Dyson series, we get

dM ′
ω 6=0

dt
=

∑
n

(
|A0|2

〈Φa|V2|Φn〉〈Φn|V1|Φa〉
Ea − En − ~ω

+ |A0|2
〈Φa|V1|Φn〉〈Φn|V2|Φa〉

Ea − En + ~ω

)
. (3.13)

Because
dM ′

ω 6=0

dt and
dM ′

(ω=0)

dt are time independent, one can make the ansatz [Sak94]

ċa
ca

= − i
~
∆AC

a (3.14)

and define the energy shift of the state a due to interaction with the light field as

∆AC
a = |A0|2

∑
n

(
〈Φa|V2|Φn〉〈Φn|V1|Φa〉

Ea − En − ~ω

+
〈Φa|V1|Φn〉〈Φn|V2|Φa〉

Ea − En + ~ω

)
. (3.15)

A0 is given as |A0|2 = |E|2c2

ω2 , with E being the electric field strength. On Fig. 3.1, the diagrams
representing the two terms in the above equations are shown.

3.2 Evaluation of matrix elements

In this section we describe how the relativistic wave functions, the vector potential of the electromagnetic
field and the interaction matrix elements in Eq. (3.15) are treated. Our description is fully relativistic and
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Figure 3.1: Diagrams representing the lowest-order perturbative light shift corrections. The Coulomb-
dressed electron is depicted by a double line and the wavy lines represent photons.

accounts for spin and magnetic field effects. A similar description is used for the relativistic theoretical
study of the spontaneous emission in Refs. ( [Joh, BS88, Gra74, Gra06]).

The principal task in calculating the light shift is the evaluation of the matrix element

M =
∑

n

〈Φa|α̂∗ε̂∗νe−ikr|Φn〉〈Φn|α̂ε̂νeikr|Φa〉
Ea − En − ~ω

. (3.16)

We apply the multipole decomposition of the transverse electromagnetic plane wave as

α̂ε̂νe
ikr = 4πα̂

∑
lm

1∑
λ=0

il−λ
(
Y

(λ)
lm (k̂) · ε̂ν

)†
a

(λ)
lm (r) , (3.17)

thus M becomes

M = 16π2
∑

nlmλl′m′λ′

〈Φa|α̂∗iλ−l(ε̂νY
(λ)

lm (k̂))a(λ)†
lm (r)|Φn〉

×
〈Φn|α̂(i∗)l′−λ′(Y (λ′)

l′m′ (k̂)ε̂ν)†a
(λ′)
l′m′(r)|Φa〉

Ea − En − ~ω
. (3.18)

To obtain the level shift, a summation over polarization states and integration over photon directions has
to be performed:

M =
1
2

∑
ν

1
4π

∫
dΩkM . (3.19)

Using the orthogonality property∑
ν

∫
dΩk

(
Y

(λ′)
l′m′ (k̂)ε̂ν

)† (
ε̂νY

(λ)
lm (k̂)

)
= δll′δmm′δλλ′ , (3.20)

the expression above simplifies to

M = 2π
∑
nlmλ

〈Φa|α̂∗a(λ)†
lm (r)|Φn〉〈Φn|α̂a

(λ)
lm (r)|Φa〉

Ea − En − ~ω
. (3.21)

Using the spectral representation of Green’s function

G(r, r′; z) =
∑

n

Φn(r)Φn(r)†

En − z
, (3.22)
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and splitting Eq. (3.21) into an electric (λ = 1) and a magnetic (λ = 0) part we get:

M = −2π
∑
lm

∫
drdr′Φ†

a(r)α̂∗a(0)†
lm (r)G(r, r′; z)

×α̂a
(0)
lm(r)Φa(r′)

−2π
∑
lm

∫
drdr′Φ†

a(r)α̂∗a(1)†
lm (r)G(r, r′; z)

×α̂a
(1)
lm(r)Φa(r′) , (3.23)

where the energy variable is z = Ea − ~ω.

We perform a gauge transformation of the matrix elements. The transformed multipole potential can be
written as

aλ
JM (r̂) −→ aλ

JM (r̂) +∇χJM (r̂) ,
ΦJM (r̂) −→ iωχJM (r̂) . (3.24)

where the gauge function χJM (r̂) (and the multipole potential) is a solution to the Helmholtz equation.
We choose the gauge function to be

χJM (r̂) = −1
k
GJjJ(kr)YJM (r̂) . (3.25)

With the choice of GJ =
√
J + 1/J , the so-called Babushkin gauge, i.e. a relativistic generalization of

the length form interaction, is adopted [Gra74, Gra06, Bab62]. This transformation has no effect on the
magnetic multipole potentials, but transforms electric potentials to the form

a
(1)
JM (r̂) = −jJ+1(kr)

(
Y

(1)
JM (r̂)−

√
J + 1
J

Y
(−1)

JM (r̂)

)
,

Φ(1)
JM (r̂) = −ic

√
J + 1
J

jJ(kr)YJM (r̂) . (3.26)

The electric multipole potentials can be rewritten as

a
(1)
JM (r̂) = −

√
2J + 1
J

aJJ+1M (r̂) , (3.27)

with aJJ+1M (r̂) given by Eq. (B.7) in the Appendix.

Denoting with Mm the magnetic part and with M e the electric part and after some algebraic manipula-
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tions we obtain

Mm =
4π
~c
∑
lmκn

{
(Rm

1 +Rm
4 )Kκn−κa

JJM K−κnκa
JJM

−Rm
2

(
K−κnκa

JJM

)2 −Rm
3

(
Kκn−κa

JJM

)2 }
,

M e =
4π
~c
∑
lmκn

{
2J + 1
J

[
(Re

1 +Re
4)K

κn−κa
JJ+1MK

−κnκa
JJ+1M

−Re
2

(
K−κnκa

JJ+1M

)2 −Re
3

(
Kκn−κa

JJ+1M

)2 ]
−J + 1

J

[
Re

1′
(
Kκnκa

JM

)2 + (Re
2′ +Re

3′)K
κnκa
JM K−κn−κa

JM

+Re
4′
(
K−κn−κa

JM

)2 ]}
. (3.28)

We shall refer to the K’s as the angular matrix elements and to the R’s as the radial matrix elements.

The matrix element

M ′ =
∑

n

〈Φa|α̂ε̂νeikr|Φn〉〈Φn|α̂∗ε̂∗νe−ikr|Φa〉
Ea − En + ~ω

(3.29)

can readily be found from Eq. (3.28) by the substitutions Kκn−κa → K−κa−κn , Kκnκa → Kκa−κn ,
Kκnκa → Kκaκn and K−κn−κa → K−κa−κn . In the radial part, the energy variable z = Ea + ~ω has
to be substituted.

3.2.1 Radial matrix elements

The following notations are introduced for the two-dimensional radial integrals:

Rm
1 =

∫
drdr′r2r′2Fa(r)jJ(kr)g12(r, r′;E)jJ(kr′)Ga(r′) ,

Rm
2 =

∫
drdr′r2r′2Ga(r)jJ(kr)g22(r, r′;E)jJ(kr′)Ga(r′) ,

Rm
3 =

∫
drdr′r2r′2Fa(r)jJ(kr)g11(r, r′;E)jJ(kr′)Fa(r′) ,

Rm
4 =

∫
drdr′r2r′2Ga(r)jJ(kr)g21(r, r′;E)jJ(kr′)Fa(r′) ,

Re
1′ =

∫
drdr′r2r′2Ga(r)jJ(kr)g11(r, r′;E)jJ(kr′)Ga(r′) ,

Re
2′ =

∫
drdr′r2r′2Fa(r)jJ(kr)g21(r, r′;E)jJ(kr′)Ga(r′) ,

Re
3′ =

∫
drdr′r2r′2Ga(r)jJ(kr)g12(r, r′;E)jJ(kr′)Fa(r′) ,

Re
4′ =

∫
drdr′r2r′2Fa(r)jJ(kr)g22(r, r′;E)

×jJ(kr′)Fa(r′) . (3.30)
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In these integrals, jJ(kr) is the spherical Bessel function [AS72] and the gij (i, j = 1, 2) are the radial
components of the Coulomb-Dirac Green’s function.

All radial matrix elements can be evaluated analytically by the help of the substitution

jl(kr) =
( π

2kr

)1/2
Jl+1/2(kr) (3.31)

and the Taylor expansion of the Bessel functions Jl+1/2:

jl(kr) =√
π

2kr

∑
n=0

(−1)n

22n+l+1/2n!Γ(n+ l + 3/2)
(kr)2n+l+1/2 . (3.32)

The final results are as follows:

Rm
1 =

(
1− E2

a

m2c4

)1/2

U2
a

1
2
(2λn)(2γn)

∑
n

(3.33)(
− (κn + ν/εn)

n!(I2
A1J − I2

B1J)
Γ(2γn + 1 + n)(n+ γn + 1− ν)

−(κn − ν/εn)
n!(I2

A1J − I2
B1J)

Γ(2γn + 1 + n)(n+ γn − ν)

− n!2
Γ(2γn + n)(n+ γn − ν)

(IA2JIB1J − IA1JIB2J)

)
,

Rm
2 =

(
1 +

Ea

mc2

)
U2

a

ε

2
(2λn)(2γn)

∑
n

(3.34)(
(κn + ν/εn)

n!′(IA1J − IB1J)2

Γ(2γn + 1 + n)(n+ γn + 1− ν)
−

[(κn − ν/εn)− 2(γn + ν)]
n!(IA1J − IB1J)2

Γ(2γn + 1 + n)(n+ γn − ν)

− n!2
Γ(2γn + n)(n+ γn − ν)

×(IA2JIA1J − IA1JIB2J − IA2JIB1J + IB1JIB2J)

)
,

Rm
3 =

(
1− Ea

mc2

)
U2

a

1
2ε

(2λn)(2γn)
∑

n

(3.35)(
(κn + ν/εn)

n!(IA1J + IB1J)2

Γ(2γn + 1 + n)(n+ γn + 1− ν)
−

[(κn − ν/εn) + 2(γn + ν)]
n!(IA1J + IB1J)2

Γ(2γn + 1 + n)(n+ γn − ν)

+
n!2

Γ(2γn + n)(n+ γn − ν)

×(IA2JIA1J + IA1JIB2J + IA2JIB1J + IB1JIB2J)

)
,
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Rm
4 =

(
1− E2

a

m2c4

)
U2

a

1
2
(2λn)(2γn)

∑
n

(3.36)(
− (κn + ν/εn)

n!(I2
A1J − I2

B1J)
Γ(2γn + 1 + n)(n+ γn + 1− ν)

−(κn − ν/εn)
n!(I2

A1J − I2
B1J)

Γ(2γn + 1 + n)(n+ γn − ν)

− n!2
Γ(2γn + n)(n+ γn − ν)

(IA2JIB1J − IA1JIB2J)

)
,

Re
1′ =

(
1 +

Ea

mc2

)
U2

a

1
2ε

(2λn)(2γn)
∑

n

(3.37)(
(κn + ν/εn)

n!(IA1J − IB1J)2

Γ(2γn + 1 + n)(n+ γn + 1− ν)
−

[(κn − ν/εn) + 2(γn + ν)]
n!(IA1J − IB1J)2

Γ(2γn + 1 + n)(n+ γn − ν)

+
n!2

Γ(2γn + n)(n+ γn − ν)

×(IA2JIA1J − IA1JIB2J − IA2JIB1J + IB1JIB2J)

)
,

Re
2′ =

(
1− E2

a

m2c4

)1/2

U2
a

1
2
(2λn)(2γn)

∑
n

(3.38)(
− (κn + ν/εn)

n!(I2
A1J − I2

B1J)
Γ(2γn + 1 + n)(n+ γn + 1− ν)

−(κn − ν/εn)
n!(I2

A1J − I2
B1J)

Γ(2γn + 1 + n)(n+ γn − ν)

+
n!2

Γ(2γn + n)(n+ γn − ν)
(IA2JIB1J − IA1JIB2J)

)
,

Re
3′ =

(
1− E2

a

m2c4

)1/2

U2
a

1
2
(2λn)(2γn)

∑
n

(3.39)(
− (κn + ν/εn)

n!(I2
A1J − I2

B1J)
Γ(2γn + 1 + n)(n+ γn + 1− ν)

−(κn − ν/εn)
n!(I2

A1J − I2
B1J)

Γ(2γn + 1 + n)(n+ γn − ν)

+
n!2

Γ(2γn + n)(n+ γn − ν)
(IA2JIB1J − IA1JIB2J)

)
,
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Re
4′ =

(
1− Ea

mc2

)
U2

a

ε

2
(2λn)(2γn)

∑
n

(3.40)(
(κn + ν/εn)

n!(IA1J + IB1J)2

Γ(2γn + 1 + n)(n+ γn + 1− ν)
−

[(κn − ν/εn)− 2(γn + ν)]
n!(IA1J + IB1J)2

Γ(2γn + 1 + n)(n+ γn − ν)

− n!2
Γ(2γn + n)(n+ γn − ν)

× (IA2JIA1J + IA1JIB2J + IA2JIB1J + IB1JIB2J)

)
.

For the one-dimensional radial integrals we obtain the following analytical results:

IA1J =
( π

2k

)∑
α,p

ar(−1)α

α!Γ(α+ l + 3/2)
(−ar + 1)p

(2γa + 1)p

×Γ(γan + l + 2α+ p+ 1)Γ(2γn + n+ 1)
n!Γ(2γn + 1)

×
(
k

2

)2α+l+1/2 (2λa)p+γa−1

p!
λ−(γan+p+2)

an

×2F1(−n, γan + l + 2α+ p+ 1, 2γn + 1,
2λn

λan
) , (3.41)

IA2J =
( π

2k

)∑
α,p

ar(−1)α

α!Γ(α+ l + 3/2)
(−ar + 1)p

(2γa + 1)p

×Γ(γan + l + 2α+ p+ 1)Γ(2γn + n)
n!Γ(2γn)

×
(
k

2

)2α+l+1/2 (2λa)p+γa−1

p!
λ−(γan+p+2)

an

×2F1(−n, γan + l + 2α+ p+ 1, 2γn,
2λn

λan
) , (3.42)

IB1J =
( π

2k

)∑
α,p

(Na − κa)(−1)α

α!Γ(α+ l + 3/2)
(−ar)p

(2γa + 1)p

×Γ(γan + l + 2α+ p+ 1)Γ(2γn + n+ 1)
n!Γ(2γn + 1)

×
(
k

2

)2α+l+1/2 (2λa)p+γa−1

p!
λ−(γan+p+2)

an

×2F1(−n, γan + l + 2α+ p+ 1, 2γn + 1,
2λn

λan
) , (3.43)
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IB2J =
( π

2k

)∑
α,p

(Na − κa)(−1)α

α!Γ(α+ l + 3/2)
(−ar)p

(2γa + 1)p

×Γ(γan + l + 2α+ p+ 1)Γ(2γn + n)
n!Γ(2γn)

×
(
k

2

)2α+l+1/2 (2λa)p+γa−1

p!
λ−(γan+p+2)

an

×2F1(−n, γan + l + 2α+ p+ 1, 2γn,
2λn

λan
) . (3.44)

Here we introduced the notations λan = λa + λn and γan = γa + γn for simplicity. The remaining
radial matrix elements can be calculated from the ones given in Eq. (3.33-3.36) by the substitutions
Re

i = Rm
i (J → J + 1) for all i ∈ {1, 2, 3, 4}.

3.2.2 Angular matrix elements

The equations (3.28) contain angular integrals of the form

Kκnκa
JkM =

∫
dorΩ†

κn
(r̂)σ̂YJkM (r̂)Ωκa(r̂) . (3.45)

The direct product of the spin operator σ̂ and the vector spherical harmonic is a spherical tensor operator
and thus its matrix element can be rewritten as

Kκnκa
JkM = 〈ln

1
2
jn|TJ(Ykσ1)|la

1
2
ja〉 . (3.46)

The reduced matrix elements of the tensor T can be calculated using the formula

〈l1
1
2
j||TK(Ckσ1)||l′1

1
2
j′〉 =

= aK(−1)J ′−K−1/2(2j′ + 1)1/2

(
j j′ K
1
2 −1

2 0

)
, (3.47)

where the coefficients are [BS02]

ak = (κ− κ′)/
√
k(k + 1) ,

ak−1 = −(k + κ+ κ′)/
√

2k(k + 1) ,
ak+1 = (k + 1− κ− κ′)/

√
(k + 1)(2k + 1) . (3.48)

These formulas are derived in detail in the Appendix. For the integrals containing the scalar spherical
harmonics,

Kκnκa
JM =

∫
dorΩ†

κn
(r̂)YJM (r̂)Ωκa(r̂)

= 〈ln
1
2
jn|YJM |la

1
2
ja〉 , (3.49)

one can compute the reduced matrix elements as [BS02]

〈l1
1
2
j||CK ||l′1

1
2
j′〉 =

= (−1)j′−K−1/2(2j′ + 1)1/2

(
j j′ K
1
2 −1

2 0

)
. (3.50)
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Table 3.1: Comparision of non-relativistic (NR) and relativistic (R) light shifts for K and L shell states
in hydrogenic ions, at an optical laser frequency. Eb denotes the binding energy of the orbital and ∆E
stands for the light shift contribution.

Z = 54 Z = 92
Eb ∆E Eb ∆E

NR 1s −39674.2 −1.02586(−4) −115159 −1.21763(−5)
R 1s1/2 −41347.0 −8.17337(−5) −132280 −5.63212(−6)
NR 2s −9918.55 −2.73564(−3) −28789.6 −3.24700(−4)
R 2s1/2 −10443.5 −4.94986(−2) −34215.5 −1.40870(−3)
NR 2p −9918.55 −4.92415(−3) −28789.6 −5.84460(−4)
R 2p1/2 −10443.5 −3.17409(−3) −34215.5 −2.17374(−4)
R 2p3/2 −10016.7 +4.31087(−2) −29649.8 +7.88416(−4)

3.3 Numerical results

To start our discussion on relativistic results of light shifts, we present results for an atom in a laser
field at an infrared frequency (λ = 1054 nm, ~ω = 1.176 eV) and with the widely accessible intensity of
I = 1018 W/cm2. We calculate the light shifts in eV, both in relativistic and nonrelativistic treatments, for
some heavy elements (Z = 54, 92, i.e. Xe and U). Results are shown in Table 3.1. As it is well known, the
AC stark shifts, calculated in a non-relativistic way, follow an exact ∝ Z−4 scaling. It is also intuitively
understandable that external field effects in general have a smaller effect if the electrons are bound by
stronger central potentials. Still, even for elements as heavy as Xe and U, and for orbitals of the L shell,
the light shift exceeds or approaches to the meV range. This is anticipated to be noticeable in near-future
experiments. For measurements with lighter elements, the effects are certainly more pronounced.

As the table also clearly shows, the relativistic and nonrelativistic results greatly differ. For these rela-
tivistic systems, the non-relativistic calculation can only serve as an order-of-magnitude approximation,
since not even the first digits of the results calculated in the two different approaches agree. In some
cases, e.g. for the 2p3/2 state, even the sign of the shift is different, which is originated in the different
level structure as described by the relativistic theory.

For soft x-ray frequencies (~ω = 50 eV), for the same intensity, we display the shifts for the elements
Z = 10, 54 and 92 in Table 3.2. At the heaviest system studied, namely, for U, these results almost
coincide with the light shifts calculated with optical laser frequencies. This illustrates that retardation
effects are only relevant when the photon energy is comparable to the atomic binding energy: in the case
of U, where the binding energies exceed the 10 keV-range, even a photon frequency of 50 eV is negligible
in the description of the dynamic Stark shift. However, for lighter systems such as Xe (Z = 54), the
difference between the optical and the soft x-ray light field is noticeable. This is especially the case for
excited states.

In order to avoid a discussion about the intensity I and for a better comparison with existing non-
relativistic literature data, in the following we introduce the dynamic Stark shift coefficient β:

∆AC
a = hβaI, (3.51)

where ∆AC
a is the Stark shift of the atomic level |Φa〉. In Tables 3.3, 3.4 and 3.5, the nonrelativistic

and relativistic Stark shift coefficients βNR and βR are compared for 1s − ns two-photon resonance
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Table 3.2: Comparison of nonrelativistic (NR) and relativistic (R) light shifts for K and L shell states in
hydrogenic ions at a soft x-ray laser frequency. Notations as in Table 3.1.

Z = 10 Z = 54 Z = 92
Eb ∆E Eb ∆E Eb ∆E

1s −1360.57 −8.74042(−2) −39674.2 −1.02587(−4) −115159 −1.21763(−5)
1s1/2 −1362.39 −8.6767(−2) −41347.0 −8.17339(−5) −132280 −5.63212(−6)
2s −340.142 −2.47409 −9918.55 −2.73583(−3) −28789.6 −3.24703(−4)
2s1/2 −340.710 −2.33842 −10443.5 −5.01577(−2) −34215.5 −1.40885(−3)
2p −340.142 −4.47426 −9918.55 −4.92452(−3) −28789.6 −5.84465(−4)
2p1/2 −340.710 −3.61534 −10443.5 −3.17429(−3) −34215.5 −2.17375(−4)
2p3/2 −340.256 −4.16667 −10016.7 +4.37674(−2) −29649.8 +7.88564(−4)

Table 3.3: Comparison of nonrelativistic (NR) and relativistic (R) light shifts for 1s–ns two-photon
transitions for Z=1.

Z = 1 βNR [Hz(W/m2)−1] βR [Hz(W/m2)−1]
1s− ns 1s1/2 − ns1/2

1s− 2s −2.67827(−5) −2.67808(−5)
1s− 3s −3.02104(−5) −3.02082(−5)
1s− 4s −3.18301(−5) −3.18278(−5)
1s− 5s −3.26801(−5) −3.26778(−5)
1s− 6s −3.31724(−5) −3.31701(−5)
1s− 7s −3.34805(−5) −3.34781(−5)
1s− 8s −3.36851(−5) −3.36827(−5)
1s− 9s −3.38277(−5) −3.38252(−5)

transitions for nuclear charge numbers Z = 1, 10 and 54. The light shift calculated in the non-relativistic
limit of the formulas derived in this thesis agree perfectly with the calculations of Haas et al. [HJK+06].
Also, they show an exact ∝ Z−4 scaling with the atomic number Z. However, for the relativistic results,
a clear deviation from this law is observable, especially for the highest atomic charge numbers. These
tables also illustrate that the light shifts are most relevant for highly excited, weakly bound states, i.e. for
Rydberg levels.

As we can see from the Eqs. (3.23,3.26), in the final expression of dipole light shifts we have the follow-
ing possible combinations of electromagnetic potentials: matrix elements of scalar-scalar, vector-vector
and scalar-vector potentials. Because of the selection rules incorporated in the angular matrix elements,
the scalar-vector part is zero. In the following tables we give some values of the dynamic Stark shift
coefficient β for scalar-scalar and vector-vector parts and for the interaction with the magnetic field com-
ponent of the laser field, including the retardation contribution caused by the dependence on the photons
frequency. If we calculate the Stark shifts with the rE potential, we get for the scalar-scalar part the same
results as in Eq. (3.2) for dipole approximation, without including the frequency-dependent retardation.
The tables shows that the scalar-scalar contribution is by far the dominant part of the interaction. Thus
we can conclude that the rE form is a rather good approximation of the total relativistic interaction op-
erator. At high nuclear charges and frequencies, the dependence of the scalar-scalar term on the photon
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Table 3.4: Comparison of nonrelativistic (NR) and relativistic (R) light shifts for 1s–ns two-photon
transitions for Z=10.

Z = 10 βNR [Hz(W/m2)−1] βR [Hz(W/m2)−1]
1s− ns 1s1/2 − ns1/2

1s− 2s −2.67827(−9) −2.65885(−9)
1s− 3s −3.02104(−9) −2.99941(−9)
1s− 4s −3.18301(−9) −3.16030(−9)
1s− 5s −3.26801(−9) −3.24471(−9)
1s− 6s −3.31724(−9) −3.29360(−9)
1s− 7s −3.34805(−9) −3.32418(−9)
1s− 8s −3.36851(−9) −3.34449(−9)
1s− 9s −3.38277(−9) −3.35863(−9)

Table 3.5: Comparison of nonrelativistic (NR) and relativistic (R) light shifts for 1s–ns two-photon
transitions for Z=54.

Z = 54 βNR [Hz(W/m2)−1] βR [Hz(W/m2)−1]
1s− ns 1s1/2 − ns1/2

1s− 2s −3.14978(−12) −2.51398(−12)
1s− 3s −3.55288(−12) −2.84491(−12)
1s− 4s −3.74337(−12) −3.00038(−12)
1s− 5s −3.84334(−12) −3.08132(−12)
1s− 6s −3.90124(−12) −3.12789(−12)
1s− 7s −3.93747(−12) −3.15688(−12)
1s− 8s −3.96153(−12) −3.17606(−12)
1s− 9s −3.97829(−12) −3.18937(−12)
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Table 3.6: Different relativistic electric dipole (E1) contributions to the light shift for 1s-ns two-photon
transitions: scalar-scalar (s-s), vector-vector (v-v), and magnetic field contributions, with or without
frequency-dependent retardation (ret.) contributions. The results are given for Z = 10.

Z = 10 s-s s-s, ret. v-v v-v, ret. Mag. Mag., ret.
1s− 2s −2.6588(−9) −2.6579(−9) −6.7879(−16) −6.7848(−16) −9.2665(−13) −9.2635(−13)
1s− 3s −2.9994(−9) −2.9978(−9) −1.0200(−15) −1.0193(−15) −1.0973(−12) −1.0968(−12)
1s− 4s −3.1603(−9) −3.1584(−9) −1.1667(−15) −1.1658(−15) −1.1753(−12) −1.1746(−12)
1s− 5s −3.2447(−9) −3.2427(−9) −1.2402(−15) −1.2393(−15) −1.2156(−12) −1.2149(−12)
1s− 6s −3.2936(−9) −3.2915(−9) −1.2818(−15) −1.2808(−15) −1.2387(−12) −1.2380(−12)
1s− 7s −3.3241(−9) −3.3220(−9) −1.3075(−15) −1.3064(−15) −1.2531(−12) −1.2524(−12)
1s− 8s −3.3444(−9) −3.3423(−9) −1.3243(−15) −1.3233(−15) −1.2627(−12) −1.2619(−12)
1s− 9s −3.3586(−9) −3.3564(−9) −1.3360(−15) −1.3349(−15) −1.2693(−12) −1.2685(−12)

Table 3.7: Different relativistic electric dipole (E1) contributions to the light shift for 1s-ns two-photon
transitions: scalar-scalar (s-s), vector-vector (v-v), and magnetic field contributions, with or without
frequency-dependent retardation (ret.) contributions. The results are given for Z = 54.

Z = 54 s-s s-s, ret. v-v v-v, ret. Mag. Mag., ret.
1s− 2s −2.5139(−12) −2.4873(−12) −6.2890(−16) −6.2032(−16) −2.8362(−14) −2.8093(−14)
1s− 3s −2.8449(−12) −2.8013(−12) −9.5338(−16) −9.3473(−16) −3.3758(−14) −3.3284(−14)
1s− 4s −3.0003(−12) −2.9488(−12) −1.0922(−15) −1.0683(−15) −3.6223(−14) −3.5646(−14)
1s− 5s −3.0813(−12) −3.0255(−12) −1.1615(−15) −1.1347(−15) −3.7490(−14) −3.6859(−14)
1s− 6s −3.1278(−12) −3.0697(−12) −1.2004(−15) −1.1720(−15) −3.8214(−14) −3.7552(−14)
1s− 7s −3.1568(−12) −3.0972(−12) −1.2243(−15) −1.1949(−15) −3.8664(−14) −3.7982(−14)
1s− 8s −3.1760(−12) −3.1153(−12) −1.2400(−15) −1.2099(−15) −3.8960(−14) −3.8266(−14)
1s− 9s −3.1893(−12) −3.1280(−12) −1.2508(−15) −1.2202(−15) −3.9166(−14) −3.8462(−14)

frequency starts to show up; however, the vector-vector and magnetic terms are still orders of magnitude
smaller.

For completeness, in the Tables 3.8-3.9 we present values for the quadrupole contributions to the level
shift. These terms are also approx. 3 orders of magnitude weaker than the dominant electric dipole
interaction. However, with the improvement of experimental accuracy, the thorough understanding of
relativistic light shift effects becomes increasingly stringent.
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Table 3.8: Different relativistic electric quadrupole (E2) contributions to the light shift for 1s-ns two-
photon transitions: scalar-scalar (s-s), vector-vector (v-v), and magnetic field contributions, with or with-
out frequency-dependent retardation (ret.) contributions. The results are given for Z = 10.

Z = 10 s-s s-s, ret. v-v v-v, ret. Mag. Mag., ret.
1s− 2s −7.4262(−14) −7.4227(−14) −2.2189(−20) −2.2178(−20) −2.6903(−17) −2.6891(−17)
1s− 3s −1.1060(−13) −1.1053(−13) −4.7669(−20) −4.7635(−20) −4.4819(−17) −4.4790(−17)
1s− 4s −1.2604(−13) −1.2594(−13) −6.1152(−20) −6.1104(−20) −5.3336(−17) −5.3298(−17)
1s− 5s −1.3374(−13) −1.3363(−13) −6.8463(−20) −6.8406(−20) −5.7793(−17) −5.7749(−17)
1s− 6s −1.3808(−13) −1.3797(−13) −7.2755(−20) −7.2693(−20) −6.0368(−17) −6.0320(−17)
1s− 7s −1.4075(−13) −1.4064(−13) −7.5459(−20) −7.5394(−20) −6.1975(−17) −6.1926(−17)
1s− 8s −1.4251(−13) −1.4239(−13) −7.7263(−20) −7.7195(−20) −6.3042(−17) −6.2991(−17)
1s− 9s −1.4372(−13) −1.4360(−13) −7.8522(−20) −7.8452(−20) −6.3784(−17) −6.3732(−17)

Table 3.9: Different relativistic electric quadrupole (E2) contributions to the light shift for 1s-ns two-
photon transitions: scalar-scalar (s-s), vector-vector (v-v), and magnetic field contributions, with or with-
out frequency-dependent retardation (ret.) contributions. The results are given for Z = 54.

Z = 10 s-s s-s, ret. v-v v-v, ret. Mag. Mag., ret.
1s− 2s −2.1019(−15) −2.0727(−15) −6.0334(−19) −5.9420(−19) −2.4280(−17) −2.3956(−17)
1s− 3s −3.1586(−15) −3.0960(−15) −1.3122(−18) −1.2840(−18) −4.0816(−17) −4.0029(−17)
1s− 4s −3.6054(−15) −3.5255(−15) −1.6853(−18) −1.6449(−18) −4.8642(−17) −4.7588(−17)
1s− 5s −3.8269(−15) −3.7378(−15) −1.8859(−18) −1.8384(−18) −5.2707(−17) −5.1505(−17)
1s− 6s −3.9511(−15) −3.8566(−15) −2.0028(−18) −1.9511(−18) −5.5040(−17) −5.3750(−17)
1s− 7s −4.0272(−15) −3.9294(−15) −2.0761(−18) −2.0217(−18) −5.6489(−17) −5.5144(−17)
1s− 8s −4.0771(−15) −3.9770(−15) −2.1248(−18) −2.0686(−18) −5.7447(−17) −5.6065(−17)
1s− 9s −4.1115(−15) −4.0099(−15) −2.1587(−18) −2.1012(−18) −5.8112(−17) −5.6704(−17)
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–IV–

HIGHER-ORDER RESONANT RECOMBINATION

PROCESSES

In the dielectronic recombination process involving two interacting electrons, as sketched in Fig. 4.1,
the kinetic energy of the recombined electron is transferred to a single bound electron by a radiationless
excitation to an intermediate autoionizing state. The recombination is completed by its radiative stabi-
lization. For the case of highly charged ions (HCIs), radiative transition probabilities are high, and the
competition of radiative deexcitation and Auger decay of the intermediate state is biased towards the first
mechanism.

Beyond the well-known DR, resonant recombination processes involving higher-order correlations are
relevant, too. Here, as displayed in Fig. 4.1, two or even three bound electrons can be simultaneously
excited by the resonantly captured electron in trielectronic or even quadruelectronic recombination (TR
and QR, respectively). The higher-order recombination mechanisms can be summarized by the equation

Aq+ + e− →
[
A(q−1)+

](n+1)∗
→ A(q−1)+ + photons , (4.1)

where n represents the number of simultaneously excited bound electrons, respectively the order of the
resonant capture process.

Resonant mechanisms are highly efficient in either ionizing or recombining ions and hence already DR
is of paramount importance for the physics of outer planetary atmospheres and interstellar clouds as
well as an important radiative cooling mechanism in astrophysical and laboratory high-temperature plas-
mas [MB42,Bur64,CWP+90]. DR often represents the dominant pathway for populating excited states in
plasmas and, consequently, for inducing easily observable x-ray lines which are used as diagnostic tools
for fusion plasmas (whereby Kr as well as Ar were chosen as ideal candidates) [CCH+90, WBD+95],
triggering a range of DR studies with highly charged Kr ions [BHB+93,FBR98,RBF+00]. From a more
fundamental point of view, the selectivity of DR [BKM+03] allows testing stringently sophisticated
atomic structure and dynamics calculations, in particular of relativistic and quantum electrodynamic
(QED) effects in bound electronic systems.

Investigating HCIs with DR offers additional important advantages including large cross sections and the
magnification of relativistic and QED contributions by several orders of magnitude. These have been ex-
ploited in experiments both at electron beam ion traps (EBITs) (see, e.g., [KBC+95,GCB+05,GCB+06,
HTA+06, ZCU03, N+08]) and in storage rings (SRs). The 2s1/2 − 2p1/2 splitting in lithiumlike ions
was determined in a SR with an accuracy capable of testing second-order QED corrections [BKM+03].
Direct EBIT spectroscopic measurements have achieved even higher precision [BCTT05]. Similarly,
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using DR in an ultra-cold electron target at a SR, the same splitting in Li-like Sc18+ has been indirectly
determined with a precision of 4.6 ppm [LLO+08]. DR measurements have recently become sensitive
to isotopic shifts in Li-like 142,150Nd [BKH+08] and to the contribution of the generalized Breit interac-
tion [N+08].

It is important to mention that in general TR and QR offer new photorecombination channels and their
contribution to the radiative cooling of plasmas needs to be considered in the theoretical modeling. How-
ever, very scarce experimental data are available. At interaction energies of less than 52 eV, intra-shell
TR resonances involving L-shell electrons of Cl13+ ions were observed at the TSR [SGB+03]. Contri-
butions of roughly 10% to the total photorecombination rate at temperatures Te ≈ 1 to 100 eV (a range
interesting for astrophysical photoionized plasmas) were found.

Figure 4.1: Scheme of correlated resonant electron recombination processes: In dielectronic recombina-
tion (blue) one bound electron is excited by the captured electron, in trielectronic recombination (red)
two and in quadruelectronic recombination (green) three electrons are promoted to higher states by the
captured electron (K-LL, KL-LLL and KLL-LLLL processes, respectively, where the initial and final
shells of the bound and active electrons are specified).

4.1 Total cross section for resonant recombination processes

Cross section formulas for dielectronic recombination have been derived in the framework of several
formalisms, including non-relativistic [Hah85] and relativistic [Zim96,Sha02] approaches. These results
can be generalized to describe the higher-order correlated processes of trielectronic, quadruelectronic
etc. processes as well. One can express the differential cross section in the solid angle Ωk of the emitted
photon as

dσi→f

dΩk
=

2π
Fi

∑
dd′

〈Φf |Her|Φd〉〈Φd|Vcapt|Φi〉
E − Ed + iΓd/2

〈Φf |Her|Φ′
d〉∗〈Φ′

d|Vcapt|Φi〉∗

E − Ed′ − iΓd′/2
ρf , (4.2)

with Her being the electron-radiation field interaction Hamiltonian and Vcapt being the sum of the
Coulomb and Breit interactions. In the above formula, E is the total initial energy of the system, and Φi,
Φd and Φf (just as their counterparts with primed indices) denote the initial, intermediate and final states
of a given recombination channel. Ed denotes the energy of the intermediate state including radiative
corrections, and Γd is total decay width of that state. Fi and ρf stand for the incoming electron flux and
the density of final photonic states, respectively. In the isolated resonances – or two-level – approxima-
tion the non-diagonal elements of the double sum above are neglected, thus the differential cross section



4.1. TOTAL CROSS SECTION FOR RESONANT RECOMBINATION PROCESSES 103

simplifies to
dσi→f

dΩk
=

2π
Fi

∑
d

|〈Φf |Her|Φd〉|2|〈Φd|Vcapt|Φi〉|2

(E − Ed)2 + Γ2
d/4

ρf , (4.3)

For evaluating the total cross section, this expression has to be averaged over the initial states and summed
over the final states. This includes an averaging over the magnetic sub-statesMi of the target ion and over
the two spin projections ms of the incoming electron. One has to sum over the magnetic sub-states Mf

of the final state ion, integrate over the directions Ωk and sum over the polarizations λ of the outgoing
photon. The total cross section does not depend on the direction of the electron to be captured, so an
extra averaging over the electron solid angle can be performed. This results in a simple formula for the
total cross section [Hah85]

σDR
i→f =

2π2

p2

Ar

Γd
Ld(E − Ed −∆Ed)Va , (4.4)

with the radiative decay rate from the intermediate state d to f

Ar =
2π

2Jd + 1

∑
Mf λ

∑
Md

∫
dΩk|〈Ψf ;JfMf ,k, λ|Her|Ψd;JdMd〉|2ρf , (4.5)

where the total angular momentum of the intermediate state, Jd was introduced, and the normalized
Lorentz resonance profile

Ld(E − Ed) =
Γd/2π

(E − Ed)2 + Γ2
d/4

. (4.6)

The rate of resonant capture into the state d is given by

Va =
p2

4π2Fi

1
2(2Ji + 1)

∑
MimsMd

∫
dΩp|〈Ψd;JdMd|Vcapt|Ψi;JiMi,pms〉|2 , (4.7)

with the initial state total angular momentum Ji, and it is connected to its time-reversed analogue, the
Auger (autoionization) rate Aa, by the principle of detailed balance

Va =
2Jd + 1

2(2Ji + 1)
Aa . (4.8)

The Auger rate is defined as

Aa =
2π

2Jd + 1

∑
MimsMd

∫
dΩp|〈Ψd;JdMd|Vcapt|Ψi;JiMi,pms〉|2ρi . (4.9)

Here, we have made use of the relation Fiρi = p2/(2π)3.

The appearance of higher-order processes, i.e. the trielectronic and quadruelectronic recombination
channels with more than two active electrons can be understood as follows: Let us consider recom-
bination with an initially C-like ion in its ground state, labeled by the dominant |1s22s22p2

1/2〉 configu-
ration. When describing TR, the autoionizing state can be approximated as a minimal linear combina-
tion of two configurations sharing total angular momentum and parity, |TR〉 = c1|1s2s22p1/22p3

3/2〉 +
c2|1s2s22p2

1/22p
2
3/2〉. Here, the first term is the dominant one, as represented in the simplified scheme of

Fig. 4.1. The neglect of the second term, i.e. the independent-particle (e.g. Hartree-Fock) approximation,
would in the first order lead to a vanishing transition amplitude, 〈1s2s22p1/22p3

3/2|VCoul|1s22s22p2
1/2〉 =

0. Only the inclusion of configuration mixing, a means of accounting for all-order electron correlation,
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leads to a non-vanishing amplitude 〈TR|VCoul|1s22s22p2
1/2〉 = c2〈1s2s22p2

1/22p
2
3/2|VCoul|1s22s22p2

1/2〉.
Thus higher-order processes appear only if correlation effects are taken into account and their measure-
ment can benchmark more thoroughly their theoretical description both in terms of structure and dynam-
ics. In spite of their relevance, the exact quantitative description of such correlations and their scaling
with the number of involved electrons remains an open theoretical problem.

The resonance strength, which is defined as the integrated area under the peak for a given resonance, can
be expressed as follows – provided the fluorescence x-rays are observed at 90◦ to the incoming electron
beam as in case of a typical EBIT experiment:

SDR
idf =

π~3

2p2

(
1−

βdf

2

)
2Jd + 1

2(2Ji + 1)
Adf

r Adi
a∑

f A
df
r +Adi

a

. (4.10)

In Eq. (4.10), the dipole angular distribution factor for photon detection perpendicular to the electron
beam direction was taken into account by means of the anisotropy parameter βdf [GGS98].

4.2 Description of the relativistic many-body system: the multiconfigura-
tion Dirac-Fock method

In the following, we present a brief overview of the MCDF approximation for the calculation of atomic
states, level energies and transition data. We use the GRASP suite of codes (General Relativistic Atomic
Structure Package) for the generation of these many-electron wave functions [DGJ+89]. Atomic units
with e = ~ = me = 1;α = 1/c, where e is the charge of photon, ~ is the reduced Planck’s constant, me

is the electron’s rest mass, α is the fine-structure constant, and c is the speed of light in vacuum, will be
used throughout.

4.2.1 Relativistic one-particle orbitals

A relativistic (or Dirac) orbital Φ → |nκm〉 is an eigenfunction of the angular-momentum operators ĵ2

(̂j = l̂ + ŝ) and ĵz ,

ĵ2Φ = j(j + 1)Φ, ĵzΦ = mΦ, m = −j, ..., j, (4.11)

and of the relativistic parity operator p̂ = βπ̂ (π̂ is the usual parity operator; the matrix β will be defined
in Eq. (4.24))

p̂Φ = (−1)lΦ (4.12)

In (4.11) and (4.12) we have n the principal quantum number, and κ the relativistic angular quantum
number, κ = ±(j + 1

2) for l = j ± 1
2 ; thus j = |κ| − 1

2 .

Each of the ≤ 2j + 1 orbitals with the same (nκ) but differing m quantum numbers (referred to as a
subshell) are assumed to have the same radial form. An explicit representation in spherical coordinates
is

Φ(r) =
1
r

(
Gnκ(r)ΩκM (r̂)
iFnκ(r)Ω−κM (r̂)

)
(4.13)
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Here, Gnκ(r) and Fnκ(r) are, respectively, the large and small component radial wavefunctions, and the
functions ΩκM (r̂) are the spinor spherical harmonics

ΩκM (r̂) =
l∑

m=−l

∑
µ=±1/2

C
(
l 12j;mµM

)
Ylm(θ, φ)χµ, (4.14)

ĵ2ΩκM (r̂) = j(j + 1)ΩκM (r̂),
ĵzΩκM (r̂) = mΩκM ,

l̂2ΩκM (r̂) = l(l + 1)ΩκM (r̂),
ŝ2ΩκM (r̂) = 3

4ΩκM (r̂),

π̂ΩκM (r̂) = (−1)lΩκM (r̂),

where C
(
l 12j;mµM

)
is a Clebsch-Gordon coefficient, Ylm(θ, φ) is a spherical harmonic, and χµ de-

notes the usual two-component Pauli spinors:

χ1/2 =
(

1
0

)
, χ−1/2 =

(
0
1

)
.

The angular-momentum algebra is simplest when the orbitals are chosen to form an orthonormal set,∫
drΦa(r)Φb(r) = δab (4.15)

hence it is necessary to impose

N(ab) =

{
0, when a 6= b but κa = κb,

1, when a = b,
(4.16)

N(ab) ≡
∫ ∞

0
dr (Gnaκa(r)Gnbκb

(r) + Fnaκa(r)Fnbκb
(r)) .

4.2.2 Configuration state functions

A configuration state function (CSF), |γPJM〉, of an N -electron system is formed by taking linear
combinations of Slater determinants of order N constructed from the orbitals (4.13) so as to obtain
normalized (〈γPJM |γPJM〉 = 1) eigenfunction of parity operator P̂ , and total angular-momentum
operators Ĵ2 and Ĵz:

P̂ |γPJM〉 = P |γPJM〉, (4.17)

ĵ2|γPJM〉 = J(J + 1)|γPJM〉
ĵz|γPJM〉 = M |γPJM〉, M = −J, ..., J.

The label γ represent all information such as orbital occupation numbers, subshell orbital couplings,
etc., required to define the CSF uniquely. The standard coupling scheme for a CFS is defined as follows.
Firstly, the electrons are assigned to subshells by specifying the orbital occupation numbers, q(a) ≤
2ja + 1. For each shell a the electrons are jj-coupled to give a seniority, va, and angular momentum,
ja,Ma, ∣∣∣(ja)q(a)vaJaMa

〉
. (4.18)
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Table D.1 in the Appendix lists the allowed values of the quantum numbers v and J for given occupations
jq. Next, subshell angular momenta J1 and J2 are coupled to give an intermediate angular momentum,
X1, which in turn is coupled to J3 to give an X2 and so on until all shells have been coupled to give a
total angular momentum J :

(...((J1J2)X1J3)X2...)J. (4.19)

CFSs formed by redistributing electrons among the subshells and changing the coupling sequence are
orthogonal.

4.2.3 Atomic state functions

Atomic state functions (ASFs) are linear combinations of CFSs sharing common values of P , J , and M ,

|ΓPJM〉 =
nc∑

r=1

crΓ|γrPJM〉. (4.20)

The mixing coefficients, crΓ, may be combined in a column vector, cΓ ≡ {crΓ, r = 1, ..., nc}, the
representation of the atomic state |ΓPJM〉 with respect to the CSF basis set |γrPJM〉, r = 1, ..., nc.
The ASFs will be chosen to be orthogonal, so that

(cΓi)
†cΓj = δij ; (4.21)

the dagger denotes the Hermitian conjugate.

4.2.4 The Dirac-Coulomb Hamiltonian

All the dominant interactions in an N -electron atom or ion are included in the Dirac-Coulomb Hamilto-
nian,

ĤDC =
N∑

i=1

Ĥi +
N−1∑
i=1

N∑
j=i+1

|r̂i − r̂j |−1. (4.22)

In the first term,

Ĥ = c

3∑
i=1

αip̂i + (β − 1)c2 + Vnuc(r̂) , (4.23)

is the one-body contribution for an electron due to its kinetic energy and interaction with the nucleus - the
rest energy, c2, has been subtracted out. The nuclear potential, Vnuc(r), has been discussed in Chapter 2
already. In the standard representation the Dirac matrices, αi, β, are given as

αi =
(

0 σi

σi 0

)
, i = 1, ..., 3, β =

(
1 0
0 −1

)
, (4.24)

where the σi are the usual Pauli matrices. The two-body instantaneous Coulomb interactions between
the electrons comprise the second term in (4.22). Higher-order (QED) modifications to (4.22) and (4.23)
due to the transverse electromagnetic interaction and the radiative corrections are treated via perturbation
theory.
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The matrix of the Hamiltonian (4.22) with respect to a basis of CSFs plays a central role in all relativistic
atomic structure calculations. Making use of the expansion (4.20), in this approximation the energy of
the atomic state Γ is

EDC
Γ = 〈ΓPJM |ĤDC|ΓPJM〉 ≡

(
cDC
Γ

)†
HDCcDC

Γ . (4.25)

The Hamiltonian matrix, HDC, has the elements

HDC
rs = 〈γrPJM |ĤDC|γsPJM〉. (4.26)

Requiring EDC
Γ (4.25) to be stationary with respect to variations in the mixing coefficient subject to

(4.21) leads to the eigenvalue problem for the mixing coefficients:

(HDC − EDC
Γ 1)cDC

Γ = 0. (4.27)

Here, 1 is the nc × nc unit matrix.

4.2.5 Elements of the Hamiltonian matrix

The matrix elements (4.26) can be expressed in terms of angular coefficients and radial integrals [Gra70].
One-body interactions give rise to the I(ab) integrals,

I(ab) = δκaκb

∫ ∞

0
dr
[
c
(
Qnaκa(r)P

′
nbκb

(r)− Pnaκa(r)Q
′
nbκb

(r)
)

(4.28)

− 2c2Qnaκa(r)Qnbκb
(r) +

cκb

r
(Pnaκa(r)Qnbκb

(r) +Qnaκa(r)Pnbκb
(r))

+ Vnuc(r) (Pnaκa(r)Pnbκb
(r) +Qnaκa(r)Qnbκb

(r))] ,

where f ′ ≡ df/dr; two-body interactions yield relativistic Slater integrals,

Rk(abcd) =
∫ ∞

0
dr

[
(Pnaκa(r)Pncκc(r) +Qnaκa(r)Qncκc(r))

1
r
Y k(bd; r)

]
; (4.29)

the relativistic Hartree Y -functions are defined by the equation

Y k(ab; r) = r

∫ ∞

0
ds

rk
<

rk+1
>

(Pnaκa(s)Pnbκb
(s) +Qnaκa(s)Qnbκb

(s)) . (4.30)

Here r> (r<) denotes the greater (lesser) of the radial variables r and s.

A diagonal contribution to the Hamiltonian matrix can be written as

HDC
rr =

nw∑
a=1

qr(a)I(aa) +
nw∑
b≥a

k0∑
k=0,2,...

fk
r (ab)F k(ab) +

nw∑
b>a

k2∑
k=k1,k1+2,...

gk
r (ab)Gk(ab)

 . (4.31)

In this expression F k(ab) and Gk(ab) are special case of (4.29):

F k(ab) = Rk(abab), Gk(ab) = Rk(abba) . (4.32)



108 IV 4. HIGHER-ORDER RESONANT RECOMBINATION PROCESSES

qr(a) is the occupation number of orbital a in the CSF r, and the summation limits k0, k1, and k2 are
given by

k0 = (2ja − 1)δab; (4.33)

k1 =

{
|ja − jb|, if κaκb > 0,
|ja − jb|+ 1, if κaκb < 0;

k2 =

{
ja + jb, if ja + jb − k1 is even,
ja + jb − 1, otherwise.

The angular coefficients fk
r (ab) and gk

r (ab) have the form

f0
r (aa) = 1

2qr(a)(qr(a)− 1), f0
r (ab) = qr(a)qr(b), (4.34)

always, whereas for k > 0 and qr(a) = 2ja + 1 or qr(b) = 2jb + 1,

fk
r (ab) = −1

2(qr(a)C(a, k, a))2δab, gk
r (ab) = −qr(a)qr(b)C2(a, k, b), (4.35)

C(a, k, b) =
(
ja k jb
1
2 0 −1

2

)
.

If k > 0 and qr(a) < 2ja + 1 and qr(b) < 2jb + 1, one has

fk
r (ab) = V k

rr(abab), gk
r (ab) = V k

rr(abba). (4.36)

Off-diagonal (r 6= s) matrix elements are obtained as

HDC
rs =

∑
abcd

∑
k

V k
rs(abcd)R

k(abcd) +
∑
ab

Trs(ab)I(ab). (4.37)

The configuration coupling coefficients V k
rs(abcd) and Trs(ab) are discussed further.

4.2.6 Generation of the radial functions

A pair of bound-state radial wavefunctions Gnaκa(r), Fnaκa(r), for a subshell a may be obtained, in
general, by solving a pair of radial Dirac equations,(

d

dr
+
κa

r

)
Gnaκa(r)−

(
2c− εa

c
+
Ya(r)
cr

)
Fnaκa(r) = −χ

(G)
a (r)
r

, (4.38)(
d

dr
− κa

r

)
Fnaκa(r) +

(
−εa
c

+
Ya(r)
cr

)
Gnaκa(r) =

χ
(F )
a (r)
r

,

with εa > 0 subject to boundary conditions

Gnaκa(r = 0) = 0, Fnaκa(r = 0) = 0, (4.39)

Gnaκa(r →∞) → 0, Fnaκa(r →∞) → 0,
G′naκa(r → 0) > 0 .

and the orthonormalization condition (4.16). The asymptotic form of, and the relation between, the
large and small-component functions near the origin are dependent upon the behavior of the potential
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energy functions, Ya(r), which dominates the inhomogeneous terms χ(G)
a (r), and χ(F )

a (r) in this neigh-
borhood [GQ87].

The equation (4.38) along with its boundary conditions (4.39) define an eigenvalue problem for the
orbitals Gnaκa(r), Fnaκa(r), and the energies εa, a = 1, ..., nw when Ya(r) = Yκa(r) (i.e. orbitals with
the same angular quantum number, κ are generated in the same potential ), and χ(G)

a (r), χ(F )
a (r) ≡ 0.

We treat three simple, but important, cases of this general nature.

(i) In the instance where Yκa(r) = Z, the Coulomb central field, the solution may be obtained analyt-
ically. Such solutions have been presented in the previous chapters of this thesis. Screened Coulomb
functions are obtained by using Zeff = Z − σ in place of the actual atomic number, Z, of the system
under consideration. If different screening numbers, σa, are used for different subshells, (4.16) will not
be satisfied in general. In such instances, the Gram-Schmidt orthogonalization procedure,(

Gnaκa(r)
Fnaκa(r)

)
→
(
Gnaκa(r)
Fnaκa(r)

)
−
∑
b<a

δκaκb
N(ab)

(
Gnbκb

(r)
Fnbκb

(r)

)
, (4.40)

by normalization performed after each subtraction, may be used to obtain an orthonormal set of basis
functions.

(ii) In many cases, orbitals calculated in a potential based upon the nonrelativistic Thomas-Fermi theory,

Yκa(r) → Y TF (r) = Z∞ − (rVnuc(r) + Z∞)f2(x), (4.41)

Z∞ = Z + 1−
nw∑
a=1

qav(a),

f(x) =
0.60112x2 + 1.181061x+ 1

0.04793x5 + 0.21465x4 + 0.77112x3 + 1.39515x2 + 1.81061x+ 1
,

x =

[
(Z − Z∞)1/3r

0.8853

]1/2

,

where the average occupation number qav(a) is defined by

qav(a) =
nc∑

r=1

(2Jr + 1)qr(a)

/
nc∑

r=1

(2Jr + 1) , (4.42)

are better estimates than screened Coulomb functions. This is because the Thomas-Fermi potential
provides an estimate of the radial variation of screening of the nuclear field.

(iii) Calculations based on density-functional theory may be considered to be the next level in sophisti-
cation, as they include an estimate of certain exchange and correlation effects. Now the potential Yκa(r)
includes a term that is also a function of the spherically-average particle density, ρ(r),

Yκa(r) → Yκa(r)− Y xc
κa

(ρ; r), ρ(r) =
1

4πr2

nw∑
a=1

qav
(
G2

naκa
(r) + F 2

naκa
(r)
)
. (4.43)

The Slater exchange approximation consists in setting Y xc
κa

(ρ(r); r) ≈ Y Six(ρ; r),

Y Six(ρ; r) =
3
2

(
3
π
ρ(r)

)1/3

. (4.44)
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Unlike the form of (4.38) for cases (i) and (ii), the dependence of Yκa(r) on Gκbκb
(r), Fκbκb

(r), b =
1, ..., nw renders (4.38) nonlinear in case (iii). Such systems are solved by a self-consistent-field (SCF)
procedure:

1. The potential Yκa(r) is calculated from an estimated set of radial functions Gest
κbκb

(r), F est
κbκb

(r),
b = 1, ..., nw.

2. Equations (4.38) are solved using this potential to obtain a new set of radial functions Gnew
κbκb

(r),
F new

κbκb
(r), b = 1, ..., nw.

3. An improved estimated set of radial functions is obtained from(
Gest

nbκb
(r)

F est
nbκb

(r)

)
→ (1− ηb)

(
Gnew

nbκb
(r)

F new
nbκb

(r)

)
+ ηb

(
Gest

nbκb
(r)

F est
nbκb

(r)

)
. (4.45)

where 0 ≤ ηb < 1 are damping or accelerating factors. If the improved estimated set agrees to within a
specified tolerance with the original estimated set, convergence has been achieved. If not, steps 1-3 are
executed again.

When different orbitals with the same angular quantum number are generated in different potentials, we
no longer have an eigenvalue problem: condition (4.16) is enforced by introducing the inhomogeneous
terms

χ

0@G
F

1A
a (r) =

r

cqav(a)

∑
b6=a

δκaκb
εab

(
Gnbκb

Fnbκb

)
(r), (4.46)

and the required Lagrange multipliers εab are determined from either of

εab

qav(a)
=
∫ ∞

0

dr

r

(
Ya(r) + rVnuc(r)

) (
Gnbκb(r)Gnaκa(r) + Fnbκb(r)Fnaκa(r)

)
− I(ab),(4.47)

εab

qav(b)
=
∫ ∞

0

dr

r

(
Yb(r) + rVnuc(r)

) (
Gnbκb(r)Gnaκa(r) + Fnbκb(r)Fnaκa(r)

)
− I(ab),

or their difference or sum.

Koopmans has shown [Koo33], quite generally, that Lagrange multipliers need to be included only be-
tween pairs of orbitals (a, b) that vary subject to (4.16) if either q̄(a) < 2ja + 1 or q̄(b) < 2jb + 1.
(For pairs involving one fixed orbital Lagrange multipliers must always be included. Pairs in which both
orbitals are fixed are assumed orthogonal.)

It is now necessary to calculate the inhomogeneous term (4.46) also in step one of SCF procedure given
above. This is applicable also to the forms of (4.38) discussed below.

The most general form of (4.38) arises when such equations are derived from a variational principle.
Consider the energy functional

WDC =
nc∑

r,s=1

drsH
DC
rs +

nw∑
a=1

q̄(a)εaN(aa) +
nw−1∑
a=1

nw∑
b=a+1

δκaκb
εabN(ab), (4.48)

with generalized weights,

drs =
nL∑
i=1

(2Ji + 1)crΓicsΓi

/
nL∑
i=1

(2Ji + 1). (4.49)
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This is simply equivalent to

WDC =
nL∑
i=1

(2Ji + 1)EDC
Γi

/
nL∑
i=1

(2Ji + 1), (4.50)

a weighted sum over a certain subset of atomic levels with Lagrange multipliers εa and εab introduced
to enforce the restriction (4.16). The generalized occupation numbers, q̄(a), are defined in terms of the
diagonal coefficients

q̄(a) =
nc∑

r=1

drrqr(a). (4.51)

The requirement that WDC be stationary with respect to variations in the functions Gnaκa(r), Fnaκa(r)
leads to equations of the form (4.38), with the direct potential Ya(r),

Ya(r) = −rVnuc(r)−
∑

k

 nw∑
b=1

yk(ab)Y k(aa; r)−
∑
b,d

yk(abad)Y k(bd; r)

 , (4.52)

yk(ab) =
(

1 + δab

q̄(a)

) nc∑
r=1

drrf
k
r (ab), yk(abad) =

1
q̄(a)

∑
r,s

drsV
k
rs(abad),

and the inhomogeneous terms

χ

0@G
F

1A
a (r) = X

0@G
F

1A
a (r) +

r

cq̄(a)

∑
b6=a

δκaκb
εab

(
Gnbκb

Fnbκb

)
(r) , (4.53)

cX

0@G
F

1A
a (r) =

∑
k

∑
b6=a

xk(ab)Y k(ab; r)
(
Gnbκb

Fnbκb

)
(r)−

∑
b,c,d;c 6=a

xk(abcd)Y k(bd; r)
(
Gncκc

Fncκc

)
(r)

 ,

xk(ab) =
1
q̄(a)

nc∑
r=1

drrg
k
r (ab), xk(abcd) =

1
q̄(a)

∑
r,s

drsV
k
rs(abcd) .

The second term in the equation for χ

0@G
F

1A
a (r) is similar to right-hand side of (4.46), and also arises from

the introduction of Lagrange multipliers to enforce (4.16). The Lagrange multipliers are determined from
either of

εab

q̄(a)
= c

∫ ∞

0

dr

r

(
Gnbκb

(r)X(F )
a (r)− Fnbκb

(r)X(G)
a (r)

)
(4.54)

+
∫ ∞

0

dr

r
(Ya(r) + rVnuc(r)) (Gnbκb

(r)Gnaκa(r) + Fnbκb
(r)Fnaκa(r))− I(ab),

εab

q̄(a)
= c

∫ ∞

0

dr

r

(
Gnaκa(r)X

(F )
b (r)− Fnaκa(r)X

(G)
b (r)

)
+
∫ ∞

0

dr

r
(Yb(r) + rVnuc(r)) (Gnbκb

(r)Gnaκa(r) + Fnbκb
(r)Fnaκa(r))− I(ab),
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or their difference or sum.

The choice (4.49) yields the optimal-level (OL) [GMP76] formalism when nL = 1, and an extended-
optimal-level (EOL) calculation when nL > 1. The freedom in choosing the nL ASFs which con-
tribute to the energy functional in EOL calculations can be considerable advantage in certain situations.
However, the user should be aware that the optimization applies only to the nL ASFs involved, so that
the orbitals cannot be assumed to be of equal quality in evaluating quantities connected with the other
(nc − nL) ASFs generated by the Hamiltonian matrix eigenvectors. Simultaneous solution of (4.27)
and (4.38) must be achieved, requiring three more steps (numbered 0, 4, and 5) in the SCF procedure
described above:

4. The coefficients drs are calculated from an estimated set of mixing-coefficient vectors cest
Γ , i =

1, ..., nL.

5. Equation (4.27) is solved using the Hamiltonian obtained with the improved estimated radial functions
to calculate a new estimated set of mixing-coefficient vectors cnew

Γi
, ,1 = i, ..., nL.

6. An improved estimated set of mixing coefficient vectors is obtained from

cest
Γi
→ (1− ξi)cnew

Γi
+ ξicest

Γi
(4.55)

where 0 ≤ ξi < 1 are also damping or accelerating factors. If the improved estimated set agrees to
within a specified tolerance with the original estimated set, convergence has been achieved. If not, steps
0-5 are executed again.

Convergence for E/OL calculations is often difficult to achieved, and is invariably computationally ex-
pensive when compared with the straightforward alternative, more approximate, method described in the
next paragraph.

The average-level (AL) [GMP76] formalism obviates the need to obtain the coefficients drs iteratively
by setting

drs =

{
(2Jr + 1)/

∑nc
t=1(2Jt + 1), if r = s,

1, otherwise
(4.56)

(whence q̄(a) → qav(a)). An extended-average-level (EAL) calculation differs from the AL case in
that weights chosen by the user replace (2Jr + 1) in (4.56). Steps 0, 4, and 5 of the iterative procedure
are once again unnecessary. The object of the E/AL options is to determine a set of orbitals which are
optimal for average energy of a set of CFSs.

4.2.7 The transverse electromagnetic interaction

The lowest-order correction to Coulomb interaction between two electrons, labelled 1 and 2, due to
exchange of a single transverse photon, is given by

ĤTransv = −
3∑

i,j=1

α1iα2j

(
δij

cos(ωR)
R

+
δ2

δR1iδR2j

cos(ωR)− 1
ω2R

)
, (4.57)

where R = |r1 − r2| and ω = |ε1 − ε2|/c. This interaction is sometimes referred to as the generalized
Breit interaction, as in the long-wavelength limit (ω → 0) it reduces to the well-known Breit interaction.
In the context of MCDF theory, this contributes the matrix elements [GM80, GP76, MJ71]

HTransv
rs =

∑
abcd

∑
kτ

V kτ
rs (abcd)Skτ (abcd), (4.58)
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Figure 4.2: Self-energy and self-energy screening diagrams in many-electron systems. The double lines
represent Furry-picture electronic wave functions or propagators for Dirac particles moving in a Coulomb
field. Wavy lines represent (virtual) photons. In the case of the screening contribution, the electronic
wave function is perturbed by interaction with other electrons, which is mediated by the exchange of
virtual photons.

where the index τ which takes the values 1, ..., 6, enumerates the six types of radials integrals Skr(abcd)
that occur. The integrals can all be expressed as combinations of two integrals, R̄k(abcd;ω) and S̄k(abcd;ω):

R̄k(abcd;ω) =
∫ ∞

0
dr

[
ρbd(r)Φk(ωr)

1
r
Ȳ k(ac; Φk;ω; r)

]
,

S̄k(abcd;ω) = Σk
1(abcd;ω)− Σk

2(abcd;ω),

Σk
1(abcd;ω) =

∫ ∞

0
dr

[
ρbd(r)

(
2k + 1
ωr

)2 1
r

(
Ȳ k−1(ac; 1; 1; r)− Φk+1(ωr)Ȳ k−1(ac; Φk−1;ω; r)

)]
,

Σk
2(abcd;ω) =

∫ ∞

0
dr

[
ρac(r)

ω2r2

(2k + 3)(2k − 1)
Φk−1(ωr)Ȳ k+1(bd; Φk+1;ω; r)

]
,

Ȳ k(ab; f ;ω; r) =
∫ r

0
ds

[
ρab(s)

(s
r

)k
f(ωs)

]
,

ρab(r) = Gnaκa(r)Fnbκb
(r), Φk(z) =

(2k + 1)!!
zk

jk(z), Ψk(z) = − zk+1

(2k − 1)!!
yk(z).

We have adopted the conventions of Ref. [AS72] for the spherical Bessel functions, jk(z), yk(z), of
the first and second kind, respectively. The calculation of the angular coefficients V kr

rs (abcd) will be
discussed in subsection 4.2.9.

4.2.8 Quantum electrodynamic radiative corrections

The inclusion of interactions due to fluctuation in the electron-positron and electromagnetic fields pro-
duces the radiative corrections of QED. The Furry-picture Feynman diagrams of the self-energy and
vacuum polarization contributions is shown on Fig. 4.2 and 4.3, respectively.

Known simply as the self-energy, the dominant radiative correction to the energy arises from the lowest-
order modification to an electron’s interaction with the quantized ambient electromagnetic field when
in the presence of the field due to the nucleus and the other atomic electrons. In terms of a function
Mnκ(Z/c) that varies slowly with respect to its argument, the self-energy in hydrogenlike systems in
given by

ESE
nκ (Z/c) =

Z4

πc3n3
Mnκ(Z/c). (4.59)
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Figure 4.3: Vacuum polarization and vacuum polarization screening diagrams in many-electron systems.
Notations as for the previous figure.

Tabulations of Mnκ(Z/c) for the 1s, 2s, 2p1/2, and 2p3/2 states in these one-electron system are given
in the literature [Moh92, JS85]. We obtain an estimate of the screened self-energy by setting

HSE
rr =

nw∑
a=1

qr(a)ESE
naκa

, (4.60)

ESE
naκa

=

(
Zeff

a

)4
πc3n3


Mnaκa

(
Zeff

a /c
)
, for 1s, 2s, 2p1/2, and 2p3/2 orbitals,

M2κa

(
Zeff

a /c
)
, for ns, , np1/2, and np3/2 orbitals,

0, otherwise.

The use of Zeff to roughly correct for electron screening is an expedient intended for inner shells where
the orbitals are most likely to be nearly hydrogenic. It is likely to be increasingly less realistic as n
increases. Calculations based more rigorously on QED are those of Johnson and coworkers [CJ76,DJ71].
A fully rigorous practical computational scheme for taking screening effects on the self-energy into
account is one of the major unsolved challenges in atomic structure theory.

Next in order of importance is vacuum polarization correction. To lowest order, this is the short-range
modification of the nuclear field due to screening by virtual electron-positron pairs. Expressions for the
second-order perturbation potential – also known as the Uehling potential [Ueh35] – and the fourth-
order potential that take finite nuclear size into account have been given in the literature, for example in
Ref. [FR76]. The diagonal contributions,

HVP
rr =

nw∑
a=1

qr(a)
∫ ∞

0
drV VP(r)

(
G2

naκa
(r) + F 2

naκa
(r)
)
, (4.61)

from these potentials have been included in our calculations.

4.2.9 The angular coefficients

The configuration coupling coefficients, V k
rs(abcd) of (4.36) and (4.37), for the Coulomb interaction have

the general form ∑
(−1)PS ·R · C ·Xk. (4.62)

The factor (−1)P S arises from the operation of Pauli’s exclusion principle, and depends entirely on
subshell occupation number qr(a). R represents an angular momentum recoupling coefficient which
appears when integration over polar angles in the matrix element are performed, and which contains all
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the information on the angular momentum coupling structure of the participating CSF. C is a product
of four-one-electron coefficients of fractional parentage. Xk is a quantity which depends on the orbital
labels appearing in the associated radial integral and a parameter k. The latter arises from the standard
expansion of |r1 − r2|−1 in terms of Legendre polynomials, each term of which is a scalar product of
irreducible tensor operators of rank k. The summation goes over all possible parent states which may
contribute when the ”active” electrons, whose labels appear in the radial matrix element, are removed
from the CSFs |γrPJM〉 and |γsPJM〉.
The structure of the coefficient V kτ

rs (abcd) is very similar, differing only in the replacement of Xk by
more complex expressions.

Operators of the type
∑

i f̂
k(ri), where f̂k(r) is a rank-k irreducible one-body tensor operator, have

matrix elements with respect to |γrPJM 〉 and |γsP
′J ′M ′〉 which can, in general, be written

〈γrPJM |
∑

i

f̂k(ri)|γsP
′J ′M ′〉 =

∑
T k

rs(ab)(naκa|f̂k(r)|nbκb)(−1)J−M

(
J k J ′

M q −M ′

)
,

where (naκa|f̂k(r)|nbκb) is a radial matrix element between orbitals a and b. The Trs(ab) coefficients
of (4.37) are special cases with k = 0, appropriate to scalar operators.

4.3 Evaluation of Coulomb-Dirac continuum wave functions

The initial state of the recombination process can be represented by an antisymmetrized product of the
bound many-particle wave function and the continuum state

Ψ(γiJiMipms) = A [Ψ(γiJiMi)⊗ ψpms(r)] . (4.63)

Here, Ψ(γiJiMi) denotes the wave function of the bound electrons of the ion, and ψpms(r) is the wave
function of the incoming electron. The symbol γi summarizes all information necessary to specify the
orbital occupation and the coupling.

The continuum solutions can not be given in a closed form. One can use a partial wave expansion for the
electron with asymptotic momentum p and the spin projection ms [EM95]

ψpms(r) =
∑
κµ

ilei∆κ
∑
ml

Y ml∗
l (p̂)C(l 12j;mlmsµ)ψpκµ(r) . (4.64)

Here, the phases ∆κ ensure that the wave function satisfies the boundary condition of an incoming plane
wave and an outgoing spherical wave.

The Dirac bispinor ψpκµ(r) is calculated numerically by solving the Dirac equation with the nuclear
potential screened by the bound electrons in the initial state. This procedure is referred to as the frozen
orbital approximation, in which the ionic states are assumed to be weakly influenced by the continuum
electron. In the case of highly charged ions studied in this thesis, this is a valid assumption. The con-
tinuum radial functions Fpκp(r) and Gpκp(r) will be generated by integrating the radial Dirac equations
with the screened potential Yp and with the positive continuum energy εp(

d

dr
+
κp

r

)
Fpκp(r)−

(
2c+

εp
c

+
Yp(r)
cr

)
Gpκp(r) = 0 , (4.65)(

d

dr
− κp

r

)
Gpκp(r) +

(
εp
c

+
Yp(r)
cr

)
Fpκp(r) = 0 ,
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and imposing the boundary conditions

Fpκp(0) = 0 , Gpκp(0) = 0 . (4.66)

The solutions also have to satisfy the following normalization condition:∫ ∞

0
dr
(
Gpκp(r)Gp′κ′p(r) + Fpκp(r)Fp′κ′p(r)

)
= δκpκ′pδ(E − E′) . (4.67)

4.4 Calculation of Auger rates

The Auger decay rate of the autoionizing intermediate state d is, as defined previously,

Aa =
2π

2Jd + 1

∑
MimsMd

∫
dΩp|〈Ψd;JdMd|Vcapt.|Ψi;JiMi,pms〉|2ρi , (4.68)

with the capture operator being the sum of the Coulomb and Breit interactions. For the coordinate
representation of the initial state |Ψi;JiMi,pms〉, after substituting the partial wave expansion (4.64) of
the continuum orbital we get

Ψ(γiJiMipms) =
∑
κµ

ilei∆κ
∑
ml

Y ml∗
l (p̂)C(l 12j;mlmsµ) (4.69)

×
∑
JM

C(JijJ ;MiµM)Ψ(γiJiMi, pκ;JM) .

Here, the configuration state function Ψ(γiJiMi, pκ;JM) differs from the CSFs for bound states by
the replacement of a bound orbital by one belonging to the continuous spectrum. After carrying out the
reduction of (4.68), we arrive to the following simpler formula for the Auger rate:

Aa = 2π
∑

κ

|〈Ψd;Jd||Vcapt||Ψi;Ji, pκ;Jd〉|2 . (4.70)

Here we have made use the fact that for energy-normalized wave functions ρi = 1. The reduced matrix
element 〈Ψd;Jd||Vcapt||Ψi;Ji, pκ;Jd〉, which does not depend on the magnetic quantum numbers of the
states by definition, is defined as in Ref. [BS02]. The numerical evaluation of these matrix elements are
performed by an adopted version of the AUGR module [Zim92], which is an extension module of the
GRASP 1.0 suite of codes [DGJ+89].

The matrix elements of the Coulomb and Breit interactions contain angular and radial integrals. The
former can be calculated algebraically by means of the Racah algebra, resulting in angular coefficients.
The matrix element of the Coulomb interaction between two CSFs has the form [DGJ+89]

〈γrJr|
∑
i<j

1
|ri − rj |

|γsJs〉 =
∑
abcd

∑
k

V k
rs(abcd)R

k(abcd) , (4.71)

where the first sum goes over the orbitals occupied in the configuration r and s. The radial integrals read

Rk(abcd) =
∫ ∞

0
dr

[
(Fnaκa(r)Fncκc(r) +Gnaκa(r)Gncκc(r))

1
r
Y k(bd; r)

]
. (4.72)

Here, the relativistic Hartree Y -functions are defined as

Y k(ac; r) = r

∫ ∞

0
ds

rk
<

rk+1
>

[Fnaκa(r)Fncκc(r) +Gnaκa(r)Gncκc(r)] . (4.73)
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The angular coefficients V k
rs(abcd) are calculated by the program MCP by Grant [Gra76].

Similarly to the Coulomb matrix elements, the matrix elements of the generalized Breit interaction oper-
ator between two electrons with indices 1 and 2,

VBreit(1, 2) = −α1α2
cos(ωR)

R
+ (α1∇1)(α2∇2)

cos(ωR)− 1
ω2R

, (4.74)

where ω is the frequency of the exchanged photon and R = |r1 − r2|, can be expressed as a sum over
products of angular coefficients and radial integrals

〈γrJr|
∑
i<j

VBreit(i, j)|γsJs〉 =
∑
abcd

∑
kτ

V kτ
rs (abcd)Skτ (abcd) . (4.75)

The angular coefficients V kτ
rs are evaluated with the MCBP code [GMN+80]. The index τ differenti-

ates six types of integrals appearing in the calculation of matrix elements. These expressions for the
radial integrals Skτ (abcd) can be taken from Ref. [DGJ+89]. They are solved by the program module
BENA [GMN+80] numerically, using a finite differences method. Corrections of the Breit interaction to
the energy levels are included in a perturbative approximation.

4.5 Radiative transitions between many-electron states

In this section we briefly outline the calculation of radiative transition probabilities between many-
electron states as described by MCDF state vectors. This can be regarded as a straightforward gener-
alization of the calculation of radiative rates involving single-electron states as derived in Chapter 2. The
electromagnetic transition probability from the intermediate state d to the final state f by the emission of
a photon with all possible wave number vectors k and polarizations λ was introduced in section 4.1 as

Ad→f
r =

2π
2Jd + 1

∑
Md

∑
Mf λ

∫
dΩk|〈ΓfJfMf ;k, λ|Her|ΓdJdMd; 0〉|2ρf . (4.76)

Her is the Hamiltonian describing the interaction of the electrons with photons. The matrix element
between the two atomic state functions d and f is

〈ΓfJfMf ;k, λ|Her|ΓdJdMd; 0〉 =
nc∑

r,s=1

c∗rΓf
csΓd

〈γrJrMr;k, λ|Her|γsJsMs; 0〉 , (4.77)

where for the ASFs we applied the series expansion into configuration state functions. The matrix ele-
ment 〈γrJrMr;k, λ|Her|γsJsMs; 0〉 is evaluated with the CSFs r and s.

For evaluating these matrix elements of Her, the electromagnetic radiation is expanded in multipole
waves. Thus, the emission operator is decomposed in a sum of multipole operators a(0)

LM (r) and a(1)
LM (r)

describing electric (1) and magnetic (0) multipole radiation. This results in

〈γrJrMr;k, λ|Her|γsJsMs; 0〉 =

√
2πc2

ωkV

∑
L

∑
M

√
2π(−i)L

√
2L+ 1DL

M,−λ(k̂) (4.78)

×
[
〈γrJrMr|αa(0)

LM (r) + iλαa(1)
LM (r)|γsJsMs〉

]
.
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Here, DL
M,−λ(k̂) is a rotation matrix as defined in [Ros67]. The reduced matrix elements between con-

figuration state functions can be expressed as a sum of single-electron reduced matrix elements using

〈γrJrMr||O(L)||γsJsMs〉 =
∑
ab

dL
ab(rs)〈naκa||O(L)||nbκb〉 , (4.79)

where the angular re-coupling coefficients dL
ab(rs) are given in Ref. [PGB78]. O(L) denotes a spherical

tensor operator of rank L, and M , to be used later, is the corresponding magnetic quantum number. The
magnetic and electric one-particle matrix elements are given by [Gra06]

〈f ||αa(0)
LM ||i〉 = i(−1)ji+L+1/2

√
(2ji + 1)(2L+ 1)

4πL(L+ 1)
(4.80)

×
(
jf ji L
1
2 −1

2 0

)
(κf + κi)

[∫
dr(Ff (r)Gi(r) + Fi(r)Gf (r))jL(kr)

]
,

〈f ||αa(1)
LM ||i〉 = i(−1)ji+L+1/2

√
2ji + 1

4π

(
jf ji L
1
2 −1

2 0

)
(4.81)

×

[√
L+ 1

L(2L+ 1)
(
LI−L−1 − (κf − κi)I+

L−1

)
+

√
L

(L+ 1)(2L+ 1)
(
(L+ 1)I−L+1 + (κf − κi)I+

L+1

)]
,

with the radial integrals defined as

I± =
∫
dr (Ff (r)Gi(r)± Fi(r)Gf (r)) jL(kr) . (4.82)

The evaluation of these integrals with the radial orbital functions Fi(r), Gi(r), Ff (r) and Gf (r), stem-
ming from the MCDF variational procedure, is performed numerically.

The oscillator strength for the transition from ASF Γi to ASF Γj induced by a multipole radiation field
operator Ô(L)

M of order L is [Gra74]

fi→j =
πc

(2L+ 1)ω2

∣∣∣〈ΓiPiJi||Ô(L)||ΓjPjJj〉
∣∣∣2 , (4.83)

where we use the Brink and Satchler [BS02] definition of reduced matrix element. This in turn, can be
expressed in terms of CSF matrix elements by

〈ΓiPiJi||Ô(L)||ΓjPjJj〉 =
∑
r,s

crΓicsΓj 〈γrPrJr||Ô(L)||γsPsJs〉, (4.84)

and this, in turn as a sum of single-electron transition integrals using

〈γrPrJr||Ô(L)||γsPsJs〉 =
∑
a,b

dL
ab(rs)〈naκa||Ô(L)||nbκb〉, (4.85)

where the coefficients dL
ab(rs) are described in subsection 4.2.9 below. Allowing for the fact that we are

now using Brink-and-Satchler type reduced matrix elements, we have

〈naκa||Ô(L)||nbκb〉 =
(

(2jb + 1)ω
πc

)1/2

(−1)ja−1/2

(
ja L jb
1
2 0 −1

2

)
M̄ab, (4.86)
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Figure 4.4: Different contributions to the energy of the ground state and the excited autoionizing state
of a given transition in C-like Kr, as calculated with the methods presented in the previous sections.

where M̄ab is one of the radiative transition integrals defined by Grant [Gra74]

M̄ab =

{
M̄ e

ab +GM̄ l
ab, for electric multipole transitions,

M̄m
ab , for magnetic multipole transitions,

M̄ e
ab = −iL

[(
L

L+ 1

)1/2

[(κa − κb)I+
L+1 + (L+ 1)I−L+1]−

(
L+ 1
L

)1/2

[(κa − κb)I+
L−1 − LI−L−1]

]
,

M̄ l
ab = −iL{[(κ−κb)I+

L+1 + (L+ 1)I−L+1] + [(κa − κb)I+
L−1 − LI−L−1]− (2L+ 1)JL},

M̄m
ab = −iL+1 (2L+ 1)

[L(L+ 1)]1/2
(κa + κb)I+

L ,

I±L =
∫ ∞

0
drjL(ωr/c) (Gnaκa(r)Fnbκb

(r)± Fnaκa(r)Gnbκb
(r)) ,

JL =
∫ ∞

0
drjL(ωr/c) (Gnaκa(r)Gnbκb

(r) + Fnaκa(r)Fnbκb
(r)) .

Here G is the gauge parameter; it takes the value 0 in the Coulomb gauge and [(L + 1)/L]1/2 in the
Babushkin gauge. In the nonrelativistic limit G = 0 gives the velocity form of radiation matrix elements
whilst G = [(L+ 1)/L]1/2 gives the length form [Gra74].

4.6 Comparision of theoretical and experimental results

Once the bound-state wave functions and energies, and the radiative and Auger transition rates have been
calculated, the cross section and related quantites like the resonance strength can be evaluated. Fig. 4.4
illustrates the magnitude of contributions to the transition energy of a trielectronic resonance in the C-
like krypton ion. Such calculations have been performed to all possible transitions in the relevant K-LL
energy range for He-, Li-, Be-, B-, C-, N-, and O-like Ar, Fe, and Kr ions, however, we do not list all
numbers here. In Figs. 4.5 and 4.6 we show total theoretical cross sections for resonance recombination
in highly charged Ar- and Fe-ions, respectively, as a function of the electron beam energy.
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Figure 4.5: Total calculated cross section for resonant recombination, involving DR, TR and QR chan-
nels, for few-electron Ar ions. The electron energy range of the K-LL resonances is shown. The
Lorentzian peaks have been convoluted with a Gaussian line shape with a FWHM of 10 eV for better
comparision with experiments.

Figure 4.6: Total calculated cross section for resonant recombination, involving DR, TR and QR chan-
nels, for few-electon Fe ions. The electron energy range of the K-LL resonances is shown.

Fig. 4.7 shows the relative strength of certain TR transitions as compared to the dominant DR process in
some few-electron charge states.

The experiment was performed at the Heidelberg EBIT [CDMU99] where highly charged Kr, Fe and
Ar ions were produced and radially trapped by an electron beam, as explained at the end of Chapter
2. A magnetic field of 8 T compresses the beam to a radius of ≈ 22 µm. The ions were axially con-
fined by electrostatic potentials applied to a set of drift tubes. The electron beam energy was swept over
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Figure 4.7: Ratio of trielectronic to dielectronic recombination resonance strengths for elements with
different atomic numbers Z for certain transitions involving the B-, C- and N-like charge states. As ex-
pected, the relative weight of the TR process which is due to higher-order electron correlation decreases
for stronger central Coulomb fields.

the expected range of resonance energies. Photons emitted as signature of the direct and indirect pho-
torecombination and their cascades were detected with a high-purity germanium x-ray detector having
a resolution of about 350 eV viewing the trap in a direction perpendicular to the exciting beam. The
photons counted are represented in a two-dimensional intensity plot as a function of the electron beam
energy. Bright spots at well-defined electron and photon energies reveal the recombination resonances in
the illustration in Fig. 4.8. Projecting the counts within a certain photon energy region around the energy
difference of the K and L shell (about 13 keV) onto the beam energy axis yields the energy-differential
cross section of the photorecombination under perpendicular observation. An excellent electron energy
resolution of about 13 eV FWHM at 10 keV was accomplished in the EBIT and actually was prerequisite
to resolve the weak peaks corresponding to inter-shell TR and separate them from the roughly twenty
times stronger DR features.

Fig. 4.8 presents an example of resonances appearing in the electron energy region of C- to O-like K-LL
DR. Well-resolved DR and TR resonances of C- to O-like Kr ions are found. Close to their theoretically
expected positions, signatures of C- and Be-like inter-shell QR resonances are indicated as well. The
experimental resonance energies for inter-shell TR as well as the signatures of QR are compared to the
theoretical values in Table 4.1. Our predictions agree very well within error bars with the inter-shell TR
results and reasonably with the weaker QR signatures.

In Fig. 4.8 the theoretical resonance strengths were also normalized to the earlier mentioned C-like DR
resonance line for Be-like, B-like and C-like Kr and to the first corresponding DR line for N-like and
O-like ions. These values also show a good agreement with our predictions, thus further confirming the
identification of the features as inter-shell TR resonances.

An overview on the calculated and measured DR, TR and QR resonance strengths is shown on Fig. 4.9.
The DR strength decreases monotonically with a growing number of L electrons. For inter-shell TR,
the possible range of ion charge states spans from the Li- to the N-like isoelectronic sequence. It is
noteworthy that the predicted KL-LLL TR strength vanishes for initially Be-like ions due to parity rea-
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Figure 4.8: DR and TR resonances in the K-LL DR region of C- to O-like Kr ions as a projection
and in three-dimensional illustration (photon intensity against electron beam energy and photon energy).
Predictions (this work) for DR, TR and QR resonances and their strength are marked by blue, red and
green lines, respectively. At the top the calculated resonances (color coded) for differently charged ion
species are indicated.

Figure 4.9: DR, TR and QR resonances strengths for He- to O-like Kr ions. Theory: DR, blue circles;
TR, red triangles; QR, green squares. Measured TR strength: magenta diamonds. The relative strengths
of the higher-order recombination processes with respect to total DR are indicated.

sons: while the TR resonances should necessarily be described by |1s2s2p3〉 configurations possessing
negative parity, the nearby K-LL DR configurations |1s2s22p2〉 are of positive parity, forbidding the
requested admixtures. For this case, QR is the dominant higher-order recombination process. Interest-
ingly, the ratio of inter-shell TR to the total DR resonance strength reaches values of up to 6% for C-like
Kr30+. This demonstrates that higher-order recombination processes of such mid-Z HCI contribute in
the 1 – 10 % range to the total resonant photorecombination at interaction energies as high as 10 keV,
which are relevant in the temperature range from Te = 500 eV upwards. The measured values confirm
this statement. Experimental total TR resonance strengths of (6.2±1.8)×10−21 cm2 eV sr−1 for C-like
and (3±2)×10−21 cm2 eV sr−1 for N-like ions agree reasonably well with theoretical values, as seen
on Fig. 4.9. Moreover, they are remarkably large for a higher-order process in an inter-shell reaction
involving a K-shell excitation. Studying HCIs at lower and higher Z values and, therefore, shifting
from the nonrelativistic to the relativistic regime helps quantifying these contributions for the benefit of
fundamental aspects and of plasma physics applications.
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Table 4.1: Predicted and measured energies of selected dielectronic (TR), trielectronic (TR) and quadru-
electronic (QR) resonances for Be-like to O-like Kr ions. The autoionizing configurations are given in
the jj coupling notation; subscripts following round brackets denote the angular momentum of coupled
subshells and subscripts following square brackets stand for the total angular momentum of the level.
The experimental errors correspond to statistical uncertainties.

Process charge state intermediate state Eexp (eV) Etheo (eV)
DR C [1s2s22p2

1/2(2p
2
3/2)2]5/2 9429.0(2) 9429(5)

DR C
{

[1s2s22p2
1/2(2p

2
3/2)2]3/2

[1s2s22p2
1/2(2p

2
3/2)0]1/2

}
9455.0(3) 9455(5)

DR N [1s2s22p2
1/22p

3
3/2]2 9543.9(3) 9543(6)

DR N [1s2s22p2
1/22p

3
3/2]1 9561.6(4) 9560(6)

DR O [1s2s22p2
1/22p

4
3/2]1/2 9653.8(4) 9653(7)

TR C [(1s2s22p1/2)02p3
3/2]3/2 9496.3(3) 9495(4)

TR C (blend) 9514.3(3) 9514(5)
TR N [(1s2s22p1/2)12p4

3/2]1 9617.5(7) 9616(6)
QR Be [1s2p4

3/2]1/2 9594(2) 9598(4)
QR C [1s2s22p4

3/2]1/2 9576(2) 9582(4)

These considerations lead to the EBIT measurement of resonant recombination cross sections with the
somewhat lighter Fe ions. Fig. 4.10 shows an experimental spectrum for this case. Beyond the TR
peaks observed just as in the case of Kr, by the help of our theoretical calculations QR peaks have been
unambiguously identified for the first time. They appear in the spectral range of the C- and Be-like Fe
ions.
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Figure 4.10: Theoretical (uppermost panel) and experimental (middle panel) intensity (arbitrary units)
of x-ray emission as a function of the x-ray photon energy and the electron beam energy, for B- to O-like
Fe ions [Bei]. Also, the photon yield integrated over the x-ray energies is shown in the bottom panel.
The light spots correspond to DR, TR and QR resonances. QR resonances, indicated by the long red
arrows and the green area, have been observed for the first time.
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CONCLUSIONS AND OUTLOOK

5.1 Conclusions

In this thesis we theoretically investigated relativistic processes in highly charged ions, where strong
electromagnetic fields play a decisive role.

In Chapter 2 we developed a fully relativistic ab initio theory of the bound dynamics of atomic systems
in laser fields ranging to the x-ray domain. This study completes and extends a number of earlier inves-
tigations on the response of three-level atoms to external driving fields. It has been known from some
time that multilevel atoms can display a much broader range of effects than their two-level counterparts
as a result of the coherence induced among the states by the radiation, and the interference effects that
can produce unexpected and sometime counterintuitive behaviors (e.q., coherent population trapping). In
this work we have focused mainly on the properties of spontaneous emission from a V-model atom. The
most interesting consequence of the presence of two fields is the structure acquired by the spontaneous
emission spectra, and specially the influence of the spontaneous decay rates in setting the strength of the
emitted intensity and the width of each of the spectral components.

As relativistic effects on the bound electronic wave function increase rapidly with the nuclear charge
number Z, one needs to formulate a fully relativistic theory of coherent laser-atom interaction. The bare
atomic states are constructed from solutions of the Dirac equation. This approach allows for exploit-
ing the sensitivity of inner-shell electrons to relativistic electron correlation, QED and nuclear effects in
strong Coulomb fields. Also the description of the theory beyond dipole approximation allowed us to de-
scribe forbidden transitions such as M1 transitions. As a demonstrative example, a means to determine
ionic transition multipole moments and frequencies via a three-level configuration driven by an x-ray and
an optical field has been put forward. Current or near-future laser systems are expected to increase the
accuracy of multipole moment determinations from the current 10−3 level (via lifetime measurements)
to the 10−4 range or better. Furthermore, the undesirable trapping of atomic population in a long-lived
metastable state – naturally occurring in certain three-level systems – can be reversed by the scheme
presented here. Other scenarios developed for the quantum control of non-relativistic resonance fluo-
rescence emission [ZS96b, ZS96a, PK98, SZ98, Kei99] are anticipated to yield further improvement of
detection and accuracy.

The inner-shell electrons in highly charged ions have a large overlap with the nuclear matter. Also, the
relative simplicity of electronic shell structure in such few-electron ions allows for the accurate theo-
retical extraction of nuclear proton distribution parameters from isotope shift data, as shown in the first
half of Chapter 2. Here, we have investigated isotope shifts measurements and we have extracted in-
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formation on heavy nuclei via resonance fluorescence of a two-level atomic configuration driven by a
short-wavelength laser field.

For the case of ions or atoms driven by lasers with off-resonant frequencies, shifts of hydrogenic energy
levels were calculated in Chapter 3 in an analytical way. Interaction with the monofrequent laser field is
treated by second-order time-dependent perturbation theory. Our formalism goes beyond the Stark long-
wavelength dipole approximation and takes into account non-dipole effects of retardation and interaction
with the magnetic field components of the laser beam. The technics is based on the adiabatically damped
Babushkin gauge interaction. This procedure is based on using the unperturbed Hamiltonian, and treat-
ing the interaction α · A as the perturbation. This interaction gives rise to a dynamic Stark shift. The
procedure gives a time-dependent energy shift which depends on a constant of integration. If the duration
of the measurements is short compared with the period of the electromagnetic field, the time-dependent
AC Stark shift must be time averaged. When a time average is taken, the terms involving the constant
of integration cancel. In order to calculate the matrix elements, we used the fully relativistic wavefunc-
tion, solutions of the Dirac-Coulomb equation. Because the transition is off-resonant, a Green function
representing an infinite sum over virtual bound states and integration over all virtual continuum states
is involved. The computation takes advantage of an expansion over a Sturmian basis of the first-order
Dirac-Coulomb Green function.

At high laser intensities, the light shifts are found to be sizable, especially for excited states with lower
binding energies. These results are relevant in current and near-future spectroscopic experiments, es-
pecially for experiments employing advanced light sources in the x-ray regime. This opens interesting
perspectives regarding the possibility to address the difficult problem of the simulation of the response
of heavy atoms or ions in the presence of an intense, high frequency, radiation field. The result of our
calculations show that, for two-photon bound-bound transitions, relativistic contributions can be signifi-
cant. In comparison to the usual nonrelativistic dipole treatment, the influence of relativity is to decrease
the magnitude of the transition matrix element in two-photon processes. Such an influence is opposite
to the one observed in the case on single-photon bound-free transitions, where relativistic effects tend to
increase the cross sections. It appears also that retardation effects cannot be neglected. In fact, the mag-
nitude of these corrections depends crucially on the final state of the two-photon transition. However,
no significant cancellations take place when adding up the contributions of retardation and relativity,
meaning that the nonrelativistic dipole result loses its accuracy by several percent already for Z ≈ 20.
For higher nuclear charge and corresponding shorter wavelength of radiation, relativistic calculations are
clearly mandatory. We saw also that the dipole approximation is a reasonable approximation in most
cases, where just the retardation effects should be added.

A further central point of this work has been the process of dielectronic (DR), trielectronic (TR) and
quadruelectronic (QR) recombination via the KLL resonant channels. We have analyzed various effects
which contribute to the resonance energies observed in DR, TR and QR into He-, Li-, Be-, B-, C-, N-, and
O-like Ar, Fe, and Kr ions. We applied the multiconfiguration Dirac-Fock method to determine atomic
state functions and energies. Our calculations include Coulomb and Breit correlation contributions,
approximations for the many-electron QED terms as well as finite nuclear size effects. The comparison
of our theoretical values with the experimental data shows a good overall agreement.

Due to the complex nature of the physical problem, results in many-body theories are commonly provided
without error estimates in the literature. In our work we assigned theoretical uncertainties to the transition
energies. On the theoretical side, the largest error bars are due to QED screening effects and electron
correlation contributions. As electron interaction terms to DR, TR and QR energies beyond the no-pair
approximation may not be negligible in the case of heavy ions, the calculation of such terms is necessary
in the future to improve the accuracy of theoretical results.
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The previously unobserved processes of TR and QR have been unambiguously identified in EBIT mea-
surements performed at the Max Planck Institute for Nuclear Physics [BPA+09], involving for the first
time a K-shell electron as one of the actors. By investigating the electronic rearrangements taking place
in such multiple excitations, new access to the study of dynamic correlations of bound electrons is pre-
sented. In the case of Kr ions, the inclusion of these hitherto unexplored contributions raises the total
resonant photorecombination x-ray yield by up to 6% at temperatures in the Te > 500 eV range, an ef-
fect which has to be considered in the quantitative modeling of fusion and other hot, e. g. , astrophysical
plasmas. Future improvements experimental in resolution – e.g. by means of the forced evaporative
cooling technique [BPA+09] to decrease Doppler broadening due to ionic motion – may even enable A
A.detailed studies of the hyperfine structure as well as of isotopic shifts.

5.2 Outlook

In this thesis, a versatile fully relativistic theory of correlated electronic dynamics in strong Coulomb and
laser fields has been developed. Beyond the dynamic processes and level shifts investigated in this work,
a range of other phenomena may be theoretically studied using the same framework.

As seen in Chapter 2, the resonance fluorescence spectrum bears the signature of the driving process.
For monochromatic x-ray light, the spectrum exhibits sidebands with positions determined by the Rabi
frequency. By superimposing a second color, e.g., an optical laser, an efficient manipulation of the fluo-
rescence spectrum could be achieved, e.g., in a V-type system the spectral line widths can be narrowed
by several orders of magnitude. For future investigations, one may think of other schemes in which an
x-ray transition is strongly driven and the fluorescence spectrum is manipulated with optical light. This
should imprint a clear signature on the fluorescence spectrum as seen in our V-type system. Specifically,
one may ask the question what effect an optical twin pulse or a frequency comb have on the fluorescence
spectrum. To this end, the formalism of Chapter 2 needs to be extended to describe the dynamics in
the time domain. This may offer the opportunity for novel frequency combs at x-ray wavelengths, a
finer control over the comb and novel spectroscopic methods. A potential application is a more accurate
spectroscopy of highly charged ions.

Diffraction of x rays represents a salutary method to learn about ionic structure since the photons that are
irradiated and scattered interact only weakly with other ions or electrons in the interaction volume. This
is particularly beneficial for the spectroscopy of highly charged ions. In this context, one may investigate
Raman scattering (Stokes and anti-Stokes processes) of highly charged ions with transitions in the x-ray
range. A high x-ray flux from free electron lasers [LCL,XFE] appears to be necessary to compensate for
the somewhat lower cross sections.

The perturbative description of non-resonant light shifts, described in Chapter 3, may be employed with
little modifications to further two-photon processes: excitation, ionization and electron-positron (or, in
general, fermion-antifermion) pair creation. These processes are illustrated in Fig. 5.1. In case of exci-
tation, the second-order electrodynamic process promotes a bound electron initially in the ground state
to an excited bound state. For ionization, this final state is replaced by an electronic wave function be-
longing to the continuous part of the spectrum with an electron energy above +mc2. Pair creation in
a Coulomb field occurs when the initial electronic state has an energy below −mc2 (,,Dirac sea“), and
then photon absorption promotes the fermion into a bound or positive continuum state (bound-free and
free-free pair production, respectively).

These processes are not only interesting from an academic point of view but they also have important
experimental applications. The theoretical understanding of relativistic two-photon excitation is required
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Figure 5.1: Two-photon processes involving highly charged ions: excitation, ionization, and free-free and
bound-free electron-positron pair creation, respectively. The panels in the upper row show the Feynman
diagrams of the corresponding processes, while the panels in the lower row show the level structures
involved. See text for further details.

to conceive Doppler-free two-photon spectroscopic experiments with trapped ions, especially for highly
charged ions where a relativistic treatment is mandatory. Our treatment applies for a broad range of
transition energies, also allowing to perform studies in the x-ray range. The scheme of such experiments,
allowing for the determination of ionic transition energies with accuracies much higher than presently
possible, is shown in Fig. 5.2. As the laser intensities required for two-photon excitation are anticipated
to be rather high, the levels involved in the transition are shifted by the polarization effects discussed in
Chapter 3, therefore, the light shift effect calculated in the present work plays an important role in the
interpretation and analysis of such experiments.

The two-photon ionization of highly charged ions is anticipated to become feasible by the use of up-
coming intense x-ray free electron lasers such us the LCLS [LCL] and XFEL [XFE] facilities, equipped
with transportable EBITs providing the trapped ions as targets. Experiments of this type are planned by
the Max Planck Institute for Nuclear Physics, therefore, thorough theoretical investigation are necessary.
The perturbative treatment developed for the calculation of light shift of energy levels (Chapter 3) can
be extended to bound-continuum transitions in a straightforward way. Also, the inclusion of resonance
pathways (resonant excitation-ionization) is feasible by means of a density operator approach such as
that applied for relativistic resonance fluorescence in Chapter 2.

The direct production of electron-positron or even the heavier muon-antimuon pairs by two-photon ab-
sorption from a high-frequency laser wave colliding with an atomic nucleus has been investigated re-
cently [MDK08]. The process is sensitive to the nuclear form factor, i.e. electrodynamic nuclear prop-
erties such as charge radii and other parameters of the protonic charge distribution. It could be realized
experimentally by combining radiation from upcoming x-ray free electron or high harmonic genera-
tion [Mül09] laser sources with an ultra-relativistic ion beam from the present accelerator generation.
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v

h+v/c)hv/c)
h

M M

Figure 5.2: Scheme of a Doppler-free spectroscopic experiment with two-photon excitation. The atomic
transition corresponds to two times the photon energy hν. The incoming laser light is split into two
counter-propagating beams by the use of two parallel planar mirrors (M). The atoms (or ions), trapped
in the interaction region between the mirrors, move with a random thermal velocity v. In the reference
frame of the ion, the photons arriving from the two different directions have slightly Doppler-shifted
frequencies; however, as the shifts have different signs in the dominant linear order in v/c, the blue and
red shifts largely cancel. As a consequence, all ions (possessing different velocities) can absorb two laser
photons and emit fluorescence photons.

In Ref. [MDK08], the strong field approximation has been employed, i.e. the created fermionic pair
was described by Volkov wave functions accounting for interaction with the intense laser field but fully
neglecting interaction with the nucleus. This description may be refined by our formalism described in
Chapter 3, taking into account the nuclear potential to all orders. In the case of µ+µ− pairs, the wave
functions and the analytic Sturmian basis set corresponding to a pointlike nucleus have to be substituted
with their counterparts integrated in the potential of an extended nucleus.
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–APPENDIX A–

COULOMB-DIRAC GREEN’S FUNCTION IN THE

STURMIAN REPRESENTATION

Given a Hermitian operator H , the corresponding resolvent or Green operator G(z) is defined by

(H − z)G(z) = 1, (A.1)

where z, referred to later on as the energy variable, is a complex number. Let us assume thatH possesses
a complete set of eigenfunctions Φn corresponding to eigenvalues E:

(H − En)Φn = 0 , (A.2)∑
n

ΦnΦ†
n = 1 . (A.3)

In the spectral representation, G(z) is formally given by

G(z) = −
∑

n

ΦnΦ†
n

z − En
. (A.4)

Generally, the summation is performed over a discrete and a continuous spectrum of eigenfunctions.

If H is represented by a differential operator Hr acting on a Hilbert space of functions on R3, G(z) is
itself represented by a function G(r1, r2; z) on R3 ×R3 which satisfies the equation

(Hr1 − z)G(r1, r2; z) = δ(r1 − r2) . (A.5)

For a certain class of Hamiltonians, the Green’s function can be given analytically, without explicitly
carrying out the summation over a complete spectrum. The Green’s function associated with the Dirac-
Coulomb Hamiltonian can be decomposed into radial and angular parts as

G(r1, r2;En) =
1
c~

(
G11 G12

G21 G22

)
, (A.6)

where in the components Gij , i, j ∈ {1, 2}, which are 2 × 2 matrices, we omitted the coordinate and
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energy arguments for brevity. They can be decomposed as

G11 =
∑

κnmn

g11
κn

(r1, r2;En)Ωκnmn(r̂)Ω∗
κnmn

(r̂′) , (A.7)

G12 =
∑

κnmn

−ig12
κn

(r1, r2;En)Ωκnmn(r̂)Ω∗
−κnmn

(r̂′) ,

G21 =
∑

κnmn

ig21
κn

(r1, r2;En)Ω−κnmn(r̂)Ω∗
κnmn

(r̂′) ,

G22 =
∑

κnmn

g22
κn

(r1, r2;En)Ω−κnmn(r̂)Ω∗
−κnmn

(r̂′) .

The radial components gij can be represented as an expansion involving Laguerre polynomials:

g11
κn

=
1
2ε

(2λn)2γn(rr′)γn−1e−λn(r+r′)
∞∑

n=0

(
(κn + ν/εn)

n!
Γ(2γn + 1 + n)

L2γn
n (2λnr)L

2γn
n (2λnr

′)
n+ γn + 1− ν

− [(κn − ν/εn) + 2(γn + ν)]
n!

Γ(2γn + 1 + n)
L2γn

n (2λnr)L
2γn
n (2λnr

′)
n+ γn − ν

+
n!

Γ(2γn + n)
L2γn−1

n (2λnr)L
2γn
n (2λnr

′) + L2γn
n (2λnr)L

2γn−1
n (2λnr

′)
n+ γn − ν

)
, (A.8)

g12
κn

=
1
2
(2λn)2γn(rr′)γn−1e−λn(r+r′)

∞∑
n=0

(
(κn + ν/εn)

n!
Γ(2γn + 1 + n)

L2γn
n (2λnr)L

2γn
n (2λnr

′)
n+ γn + 1− ν

+ (κn − ν/εn)
n!

Γ(2γn + 1 + n)
L2γn

n (2λnr)L
2γn
n (2λnr

′)
n+ γn − ν

− n!
Γ(2γn + n)

L2γn−1
n (2λnr)L

2γn
n (2λnr

′)− L2γn
n (2λnr)L

2γn−1
n (2λnr

′)
n+ γn − ν

)
, (A.9)

g21
κn

= g12
κn

(r ↔ r′) , (A.10)

g22
κn

=
ε

2
(2λn)2γn(rr′)γn−1e−λn(r+r′)

∞∑
n=0

(
(κn + ν/εn)

n!
Γ(2γn + 1 + n)

L2γn
n (2λnr)L

2γn
n (2λnr

′)
n+ γn + 1− ν

− [(κn − ν/εn)− 2(γn + ν)]
n!

Γ(2γn + 1 + n)
L2γn

n (2λnr)L
2γn
n (2λnr

′)
n+ γn − ν

− n!
Γ(2γn + n)

L2γn−1
n (2λnr)L

2γn
n (2λnr

′) + L2γn
n (2λnr)L

2γn−1
n (2λnr

′)
n+ γn − ν

)
. (A.11)

Here, we introduced the notations

ε =

√
mc2 − E

mc2 + E
, ε =

E

mc2
, ν =

αZε√
1− ε2

. (A.12)



–APPENDIX B–

ELECTROMAGNETIC MULTIPOLES

In the following, we systematize the decomposition of the first-order transition amplitude into multipole
components (electric and magnetic dipole, electric and magnetic quadrupole etc.). The transition matrix
element is defined as

Tan =
∫
d3rφ†a(r)αA(r, ω)φn(r) , (B.1)

where A(r, ω) is the transverse-gauge vector potential [Joh]:

A(r, ω) = ε̂eikr. (B.2)

As a first step of the multipole decomposition, we expand the vector potential A(r, ω) in a series of
vector spherical harmonics [Joh] as

A(r, ω) =
∑
JLM

AJLMYJLM (r̂) . (B.3)

The expansion coefficients are given by

AJLM =
∫
dΩ(YJLM (r̂) · ε̂)†eikr . (B.4)

Using the expansion of a plane wave in terms of spherical Bessel functions jl(kr) [AS72], namely,

eikr = 4π
∑
lm

iljl(kr)Y ∗
lm(k̂)Ylm(r̂) , (B.5)

and carrying out the angular integration in Eq. (B.4), we can rewrite the vector potential in the form

A(r, ω) = 4π
∑
JLM

iL(YJLM (k̂) · ε̂)aJLM (r) , (B.6)

with

aJLM (r) = jL(kr)YJLM (r̂) . (B.7)

For compactness, we introduce the notation Y
(λ)

JM (r̂), which is related to the vector spherical harmonics
as

YJJ−1M (r̂) =

√
J

2J + 1
Y

(−1)
JM (r̂) +

√
J + 1
2J + 1

Y
(1)

JM (r̂) ,

YJJM (r̂) = Y
(0)

JM (r̂) , (B.8)

YJJ+1M (r̂) = −
√

J + 1
2J + 1

Y
(−1)

JM (r̂) +

√
J

2J + 1
Y

(1)
JM (r̂) .
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This transformation leads immediately to the multipole expansion of the vector potential,

A(r, ω) = 4π
∑
JMλ

iJ−λ(Y (λ)
JM (k̂) · ε̂)†a(λ)

JM (r) . (B.9)

The vector functions a
(λ)
JM are referred to as the multipole potentials. They are given by

a
(0)
JM (r) = aJJM (r) , (B.10)

a
(1)
JM (r) =

√
J + 1
2J + 1

aJJ−1M (r)−
√

J

2J + 1
aJJ+1M (r) .

Only terms with λ = 0 and λ = 1 contribute to this multipole expansion, since Y
(−1)

JM (k̂) = k̂YJM (k̂) is
orthogonal to k̂.

A gauge transformation leaves the transition amplitudes invariant, provided the energy difference be-
tween the initial and final states equals the energy carried off by the photon. The transformed multipole
potential can be written as

aλ
JM (r̂) −→ aλ

JM (r̂) +∇χJM (r̂) , (B.11)

ΦJM (r̂) −→ iωχJM (r̂) ,

where the gauge function χJM (r̂) is a solution to the Helmholtz equation. We choose the gauge function
to be

χJM (r̂) = −1
k

√
J + 1
J

jJ(kr)YJM (r̂), (B.12)

to cancel the contribution that is of lowest order in powers of kr. The resulting transformation has no
effect on the magnetic multipoles, but transforms electric multipole potentials to the form

a
(1)
JM (r̂) = −jJ+1(kr)

(
Y

(1)
JM (r̂)−

√
J + 1
J

Y
(−1)

JM (r̂)

)
,

Φ(1)
JM (r̂) = −ic

√
J + 1
J

jJ(kr)YJM (r̂) . (B.13)

The resulting potentials reduce to the length form potentials in the nonrelativistic limit [Gra06, Gra74].



–APPENDIX C–

REDUCTION OF ANGULAR MATRIX ELEMENTS

We collect some formulas which will be important in the calculation of the angular part. In a general
two-component system like a Dirac wave function possessing an orbital and a spin part, with the tensor
Rk1(1) acting only on the first part and Sk2(2) only on the second component, a tensor acting on the
composite system can be written as [BS02]

TKQ(k1k2) =

=
∑
q1q2

Rk1q1(1)Sk2q2(2)C(k1k2K; q1q2Q) , (C.1)

with the C(k1k2K; q1q2Q) being the Clebsch-Gordan coefficients. The reduced matrix element of the
spherical tensor operator can be written as [BS02]

〈j1j2j||TK(k1k2)||j′1j′2j′〉 =
= [(2j′ + 1)(2K + 1)(2j1 + 1)(2j2 + 1)]1/2

×


j j′ K
j1 j′1 k1

j2 j′2 k2

 〈j1||Rk1 ||j′1〉〈j2||Sk2 ||j′2〉 . (C.2)

Here, the 9j symbol was introduced in its usual notation. We apply this general theorem to an electron,
i.e. a particle with its spin equal to 1/2, coupled with the orbital angular momentum l (l′) to the quantum
number j (j′) (i.e. we substitute in the above equation j1 = l1, j′1 = l′1, and j2 = j′2 = 1/2):

〈l1
1
2
j||TK(Ck1σ1)||l′1

1
2
j′〉 =

= [(2j′ + 1)(2K + 1)(2l1 + 1)2]1/2

×


j j′ K
l1 l′1 k1
1
2

1
2 1

 〈l1||Ck1 ||l′1〉〈
1
2
||σ1||

1
2
〉 . (C.3)

Using the matrix elements

〈l1||Ck1 ||l′1〉 = (2l′1 + 1)1/2(−1)l1

(
l1 k1 l′1
0 0 0

)
(C.4)

and

〈1
2
||σ1||

1
2
〉 = 2〈1

2
||S||1

2
〉 =

√
3 , (C.5)
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we get

〈l1
1
2
j||TK(Ck1σ1)||l′1

1
2
j′〉 =

=
√

(2j′ + 1)(2K + 1)(2l1 + 1)6


j j′ K
l1 l′1 k1
1
2

1
2 1


×(2l′1 + 1)1/2(−1)l1

(
l1 k1 l′1
0 0 0

)
, (C.6)

where S is the spin operator.

In the case of k1 = K, the expression relating the 9j-symbol to the Racah W -coefficient simplifies
to [BS02] 

j j′ K
l1 l′1 K
1
2

1
2 1

 =

=
j(j + 1)− l1(l1 + 1)− j′(j′ + 1) + l′1(l

′
1 + 1)

[6K(K + 1)(2K + 1)]1/2

×(−1)K+1/2−j−l′1W
(
jj′l1l

′
1;K1/2

)
. (C.7)

Thus, the reduced matrix element can be rewritten as

〈l1
1
2
j||TK(CKσ1)||l′1

1
2
j′〉 =

=
j(j + 1)− l1(l1 + 1)− j′(j′ + 1) + l′1(l

′
1 + 1)√

K(K + 1)

×(−1)K+1/2−j−l′1+l1
√

(2j′ + 1)(2l1 + 1)(2l′1 + 1)

×W
(
jj′l1l

′
1;K1/2

)( l1 k1 l′1
0 0 0

)
. (C.8)

Let us pay attention to the product of the Racah coefficient and the 3j symbol. The 6j symbol is invariant
under the interchange of any two columns, and also for interchange of the upper and lower arguments
in each of any two columns. Thus the following relation holds: W (abcd; e1/2) = W (dcba; e1/2). If
a+ b+ e is even, a special case is

W

(
abcd; e

1
2

)(
a b e
0 0 0

)
= (C.9)

= − 1
[(2a+ 1)(2b+ 1)]1/2

(
c d e

−1
2

1
2 0

)
.

In our case the corresponding expression is as follows:

W

(
l′1l1j

′j;K
1
2

)(
K l1 l′1
0 0 0

)
= (C.10)

= −(−1)K+l1+l′1
1

[(2l′1 + 1)(2l1 + 1)]1/2

(
j′ j K
−1

2
1
2 0

)
.
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The reduced matrix element thus becomes

〈l1
1
2
j||TK(CKσ1)||l′1

1
2
j′〉 =

=
j(j + 1)− l1(l1 + 1)− j′(j′ + 1) + l′1(l

′
1 + 1)

[K(K + 1)]1/2

×(−1)j′−K−1/2(2j′ + 1)1/2

(
j j′ K
1
2 −1

2 0

)
. (C.11)

Using the relation j(j + 1)− l1(l1 + 1)− j′(j′ + 1) + l′1(l
′
1 + 1) = κ− κ′, we arrive to

〈l1
1
2
j||TK(CKσ1)||l′1

1
2
j′〉 =

κ− κ′

[K(K + 1)]1/2

×(−1)j′−K−1/2(2j′ + 1)1/2

(
j j′ K
1
2 −1

2 0

)
. (C.12)

In the case of k1 = K + 1, the reduced matrix element of the spherical tensor operator can be written as

〈l1
1
2
j||TK(CK+1σ1)||l′1

1
2
j′〉 =

= [(2j′ + 1)(2K + 1)(2l1 + 1)6]1/2


j j′ K
l1 l′1 K + 1
1
2

1
2 1


×(2l′1 + 1)1/2(−1)−K−1−l′1

(
K + 1 l1 l′1

0 0 0

)
. (C.13)

If c+ d+ e is odd, the following relation holds:

(
c+ 1 d e

0 0 0

)
a b c
d e c+ 1
1
2

1
2 1

 =

=
(d− a)(2a+ 1) + (e− b)(2b+ 1) + c+ 1

[6(c+ 1)(2c+ 1)(2c+ 3)(2d+ 1)(2e+ 1)]1/2

×(−1)b+e+1/2

(
a b c
1
2 −1

2 0

)
, (C.14)

thus the product of the 3j and 9j symbols in our case can be written as

(
K + 1 l1 l′1

0 0 0

)
j j′ K
l1 l′1 K + 1
1
2

1
2 1

 =

=
(l1 − j)(2j + 1) + (l′1 − j′)(2j′ + 1) +K + 1

[6(K + 1)(2K + 1)(2K + 3)(2l1 + 1)(2l′1 + 1)]1/2

×(−1)j′+l′1+1/2

(
j j′ K
1
2 −1

2 0

)
. (C.15)
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Using the formula κ = (l1 − j)(2j + 1), this can be further simplified to

〈l1
1
2
j||TK(CK+1σ1)||l′1

1
2
j′〉 =

= − κ+ κ′ +K + 1
[(K + 1)(2K + 3)]1/2

(−1)j′−K−1/2

×(2j′ + 1)1/2

(
j j′ K
1
2 −1

2 0

)
. (C.16)

Finally, in the case of k1 = K − 1, the reduced matrix element is given as

〈l1
1
2
j||TK(CK+1σ1)||l′1

1
2
j′〉 =

= [(2j′ + 1)(2K + 1)(2l1 + 1)6]1/2


j j′ K
l1 l′1 K − 1
1
2

1
2 1


×(2l′1 + 1)1/2(−1)−K−1−l′1

(
K − 1 l1 l′1

0 0 0

)
. (C.17)

When the sum c+ d+ e is odd, the product of the algebraic symbols can be written as(
c+ 1 d e

0 0 0

)
a b c
d e c− 1
1
2

1
2 1

 =

=
(d− a)(2a+ 1) + (e− b)(2b+ 1)− c

[6c(2c+ 1)(2c− 1)(2d+ 1)(2e+ 1)]1/2

×(−1)b+e+1/2

(
a b c
1
2 −1

2 0

)
. (C.18)

Applying this relation to the case of interest,(
K − 1 l1 l′1

0 0 0

)
j j′ K
l1 l′1 K − 1
1
2

1
2 1

 =

=
(l1 − j)(2j + 1) + (l′1 − j′)(2j′ + 1)−K

[6K(2K + 1)(2K −K)(2l1 + 1)(2l′1 + 1)]1/2

×(−1)j′+l′1+1/2

(
j j′ K
1
2 −1

2 0

)
, (C.19)

and applying again the formula κ = (l1 − j)(2j + 1), one arrives to

〈l1
1
2
j||TK(CK+1σ1)||l′1

1
2
j′〉 =

=
κ+ κ′ −K

[K(2K − 1)]1/2
(−1)j′−K−1/2

×(2j′ + 1)1/2

(
j j′ K
1
2 −1

2 0

)
(C.20)

The results in Eq. (C.11), (C.16) and (C.20) can be summarized as

〈l1
1
2
j||TK(Ckσ1)||l′1

1
2
j′〉 = (C.21)

= aK(−1)j′−K−1/2(2j′ + 1)1/2

(
j j′ K
1
2 −1

2 0

)
,
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with the factors

ak = (κ− κ′)/
√
k(k + 1) , (C.22)

ak−1 = −(k + κ+ κ′)/
√

2k(k + 1) ,
ak+1 = (k + 1− κ− κ′)/

√
(k + 1)(2k + 1) .
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–APPENDIX D–

ALLOWED COUPLINGS OF SUBSHELL ANGULAR

MOMENTA IN RELATIVISTIC ATOMIC STATES

q v J

j = 1
2 0,2 0 0

1 1 1
2

j = 3
2 0,4 0 0

1,3 1 3
2

2 0 0
2 2

j = 5
2 0,6 0 0

1,5 1 5
2

2,4 0 0
2 2,4

3 1 5
2

3 3
2 ,92

j = 7
2 0,8 0 0

1,7 1 7
2

2,6 0 0
2 2,4,6

3,5 1 7
2

3 3
2 ,52 ,92 ,112 ,152

4 0 0
2 2,4,6
4 2,4,5,8

j = 9
2 0,10 0 0

1,9 1 9
2

2,8 0 0
2 2,4,6,8

3,7 1 9
2

3 3
2 ,52 ,72 ,92 ,112 ,132 ,152 ,172 ,212

4,6 0 0
2 2,4,6,8
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q v J

j = 9
2 4 0,2,3,42,5,62,7,8,9,10,12

5 1 9
2

3 3
2 ,52 ,72 ,92 ,112 ,132 ,152 ,172 ,212

5 1
2 ,52 ,72 ,92 ,112 ,132 ,152 ,172 ,192 ,252

Table D.1: Allowed coupling of states jq for j = 1
2 −

9
2 .The seniority of the coupling and the subshell

angular momentum are denoted, respectively, by v and J . The superscript 2 that follows J = 4, 6 for
jq =

(
9
2

)4,6, v = 4 indicates a two-fold degeneracy with respect to this classification scheme.
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