
Dissertation

submitted to the

Combined Faculties for the Natural Sciences and for

Mathematics

of the Ruperto-Carola University of Heidelberg,

Germany

for the degree of

Doctor of Natural Sciences

put forward by

Benjamin John King MSci.

born in Leeds, United Kingdom

Oral examination: 2nd June 2010





Vacuum Polarisation Effects

in Intense Lasers Fields

Referees: Prof. Dr. Christoph H. Keitel

Prof. Dr. Jan M. Pawlowski





Zusammenfassung

Die Polarisation des Vakuums durch ein externes elektromagnetisches Feld ist
gemäß theoretischer Vorhersagen die Ursache verschiedener nichtlinearer Prozes-
se. Angesichts zukünftiger Laseranlagen mit Intensitätsbereichen, die um Größen-
ordnungen jenseits der heutigen experimentellen Grenzen liegen, wird eine kon-
krete Untersuchung von Vakuumpolarisationseffekten erforderlich. Anhand der
Streuung von Photonen eines Probelichtstrahls an zwei ultrastarken Laserstrah-
len beschreiben wir ein neues experimentelles Szenario, in dem das Vakuumsignal
durch Interferenzeffekte vom Probehintergrund getrennt werden kann. Durch die
Betonung experimenteller Aspekte stellen wir ein realistisches Szenario vor, mit
dem man erstmals eine reelle, elastische Photon-Photon-Streuung beobachten
könnte. Dadurch zeigen wir außerdem, wie man prinzipiell mit starken Laser-
strahlen einen Doppelspalt aufbauen kann, der ausschließlich aus Licht besteht.
Darüber hinaus weisen wir nach, dass ein solcher Aufbau die Erwartungswerte der
Vakuum-Doppelbrechung und des Dichroismus im Vergleich zu konventionellen
Zweistrahl-Stoßexperimenten erhöht. Dies wird durch eine theoretische Methode
ergänzt, die sowohl eine endliche Temperatur als auch die Vakuumpolarisation
gemeinsam beschreibt. Indem wir diese Methode auf den Fall eines sogenannten

”
constant crossed“ Feldes anwenden, berechnen wir, wie sich der thermische Va-

kuumdruck unter dem Einfluss dieses externen Feldes ändert.

Abstract

Polarisation of the vacuum by an external electromagnetic field is predicted to
lead to an array of non-linear processes. In light of upcoming laser facilities
that will access intensity ranges orders of magnitude above current limits, the
continued study of vacuum polarisation effects is both necessary and timely. By
considering how photons from a probe laser field are scattered by two ultra-intense
laser beams, we present a novel experimental scenario in which interference effects
separate the vacuum signal from the probe background. By placing emphasis on
experimental considerations, we demonstrate a realistic arrangement that could
be used to observe, for the first time, real, elastic, photon-photon collisions. In
doing so, we also show how strong-field lasers can in principle be used to generate a
double-slit experiment consisting entirely of light. Moreover, such a set-up is also
shown to modestly increase vacuum birefringence and dichroism over traditional
two-beam collisions. We complement this by expounding an original theoretical
method that incorporates both finite temperature and vacuum polarisation in a
common setting. By employing this method on the case of a constant crossed field,
we calculate the resulting change in the pressure of the vacuum in an external
field.
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Chapter 1

Introduction

Does the concept of a vacuum, a region of empty space, have any real-world existence?
This and similar questions have preoccupied thinkers since antiquity with exchanges
between Parmenides and Leucippus culminating in Aristotle’s definitive remark hor-
ror vacui or “nature abhors a vacuum”. Indeed, the question has persisted with the
famous Michelson-Morley experiments arguing against a classical aether or preferen-
tial co-ordinate system, only to be re-questioned a century later with concepts such
as ,,dark energy” and quintessence to explain cosmological expansion. Even without
mentioning the role of a quantised vacuum on spontaneous emission of atoms and
the Casimir force, questions of the vacuum remain a vehicle for theoretical enquiry.

Soon after Dirac developed a wave equation for spin-1/2 particles, Klein calculated
that when electrons, mass m, impinge on a square electromagnetic barrier of height
V0 & 3mc2, for speed of light in vacuo c, not only are more reflected than were
incident, a large proportion is also transmitted through the barrier with a negative
mass. Sauter then refined this calculation for smooth potentials and achieved the key
result that only if the rise distance was less than the reduced Compton wavelength,
λ = ~/mc, for ~ equal to Planck’s constant over 2π, would electrons penetrate.
Resolution of Klein’s paradox comes when one permits a second continuum of particle
states for negative energies E < −mc2, the Dirac sea in Dirac’s hole theory, which
is now associated with the positron ensemble. In light of these findings, Euler and
Heisenberg and independently Weisskopf then calculated, in an effective theory, the
correction to Maxwell’s equations brought about by a polarisation of the vacuum by
a constant electromagnetic (EM) field, the results of which still form the basis of
many applications to detect vacuum polarisation effects (VPEs) [104, 157, 84, 182].

The modern interpretation of the vacuum is rooted in quantum field theory (QFT),
which describes particles using an analogy of excitations of a harmonically oscillating
field which permeates spacetime. In the absence of particles, instead of being devoid
of energy, in this picture, the vacuum comprises the lowest energy or vacuum- modes
of the field, also known as “zero-point” fluctuations. QFT then envisages the vacuum
as a bath of “virtual” particles which can mediate interactions between real ones. In
line with the uncertainty principle these particles are suitably ephemeral and obey
other fundamental symmetries of the QFT at hand, such as charge conjugation.
Sufficiently strong external fields can then promote virtual particles out from the
quantum vacuum into existence, reproducing the results of Dirac’s hole theory.
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Owing to the light degrees of freedom, the relativistic and gauge-invariant theory
of quantum electrodynamics (QED) has been the most successful in posing and
answering questions of the quantum vacuum. Virtual electron-positron pairs, in line
with Sauter’s calculations, are regarded to be active over the length scale of the
reduced Compton wavelength. These virtual loops couple to photons and can be
regarded as giving the photon a finite size and mass, affecting its dispersion. The
virtual fermion loops can be polarised by external electromagnetic fields, which by
Le Chatelier’s principle must act to damp the field in a manner similar to Lenz’s law.
Virtual photons on the other hand, are emitted and reabsorbed by electrons and can
be thought to smear out the charge distribution and correct the electrons’ mass,
taking into account its EM field and being responsible for the anomalous magnetic
dipole moment not being exactly equal to two as predicted by the Dirac equation.
As the coupling scales in an external Coulomb field with ∼ Zα, for a charge Z
and fine-structure constant α = e2 (using the cgs system of units), around heavy
nuclei such as uranium (Zα ≈ 0.67) the effect can become appreciable. As the 2s1/2
wavefunction has a non-zero overlap with the nucleus, due to either “screening of the
nuclear charge” from vacuum polarisation (Uehling potential) or “smearing of the
electron charge”, the energy is shifted 1057 MHz higher than the 2p1/2 which has
no nuclear penetration, known as the Lamb shift or hyperfine splitting, one of the
experimental results not predicted by the Dirac equation and key to the formulation
and success of QED due to Dyson, Feynman, Tomonaga and Schwinger at the end
of the 1940s [109, 55, 65, 158].

The study of effects of the polarised vacuum proceeds in strong field QED in which the
usual external fields treated are either i) constant (or slowly-varying); ii) Coulombic;
iii) wave-like. In all cases, the coupling can become so large that representing the
action of the external field perturbatively fails, with the only solution being to use the
exact solution for propagators in the external field where just the interaction between
quantised particles is seen as perturbative - the so-called Furry picture [70]. This
emphasises the non-perturbative nature of strong-field QED and when the coupling to
the external field becomes large enough, processes involving multiple field interactions
can be significant, hence making the problem also non-linear. If we imagine the
typical situation of an incoming particle, electron or photon, with momentum pµ

in an external field of frequency ω and electric and magnetic field strength E and
B respectively, effects of the polarised vacuum can be quantified using two gauge-
invariant Lorentz scalars ξ and χ. First, the degree of non-linearity can be quantified
by the invariant classical parameter ξ = eE/mcω for electron charge −e < 0, equal
to the work the field can perform over the reduced Compton wavelength eEλ in units
of field energy quantum and therefore represents the mean number of external field
photons involved in a typical process. To what degree the effects are quantum, can
be ascertained with a second invariant parameter χ = e~

√
|(Fµνpν)2|/m3c4, for field

strength tensor Fµν . For massive particles, this is equal to the work done by the field
over the reduced Compton wavelength in the particle’s rest-frame in units of the
electron rest energy mc2. The ~ factor emphasises that the conversion of radiation
to matter and vice versa has no classical analogue.

When the external field becomes strong enough, the vacuum undergoes a phase tran-
sition and becomes conducting, through spontaneous generation of electron-positron
pairs. If one consider just photons, this can occur either i) when the photon en-
ergy ~ω ≥ 2mc2 in some QED background (required for energy-momentum con-
servation) decay; or ii) when the photon energy flux reaches the critical intensity
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Icr = (m2c3/e~)2/8π = 2.3×1029 Wcm−2 as already shown by Euler and Heisenberg
in the case of a constant EM field, corresponding to critical electric and magnetic
fields Ecr = m2c3/e~ = 1.3 × 1016 Vcm−2, Bcr = m2c3/e~ = 4.4 × 1013 G.

Vacuum polarisation effects can be classified as either i) dissipative, involving real
pair creation or ii) refractive, where only virtual particles mediate interactions. Dis-
sipative effects are perhaps the most dramatic manifestation of a polarised vacuum,
but as Schwinger showed with his famous expression for the rate of pair creation in
a constant EM field per unit volume per unit time, which for weak fields eE ≪ m2

becomes (eE0/π)2 exp(−πEcr/E0), the exponential dependence on −Ecr/E0 repre-
sents a large technical barrier, which has yet to be overcome. However, recent results
show that for non-trivial field configurations, even intensities as low as 10−5Icr can
in principle lead to prolific pair-creation [135, 20, 103, 53]. The single measure-
ment of radiation converted into particle pairs in a vacuum remains the elegant 144d
experiment conducted more than a decade ago at SLAC National Accelerator Lab-
oratory [34] in which photons, back-scattered by a beam of electrons collided with
other background photons via the Breit-Wheeler process (γ1γ2 → e+e−) and de-
cayed into ∼ 106 particle pairs. Refractive VPEs by contrast, allow elastic photon
collisions, the non-linearity of which provides for a rich spread of phenomena. Along-
side photon-photon scattering (vacuum diffraction, or ray-bending), photon-splitting,
photon-merging (high-harmonic generation) as well as photon polarisation rotation
(vacuum dichroism) and photon ellipticity effects (vacuum birefringence) are all pre-
dicted to occur [102, 170, 63, 26, 32, 142, 62, 129, 82, 143]. Collective effects such
as photon acceleration (continual change of frequency of photons in a laser beam),
EM wave collapse, photon bullets and light wedges have also been predicted to occur
[126, 123, 121, 162, 122]. Although such effects have been calculated in a variety of
situations, with calculations having been performed in the field of magnetars (where
B0 & 1013G can cause light-ray bending and photon acceleration) [138], heavy-ion
collisions (in which superheavy nuclei are formed and the total Z > Zcr = 170),
proton-proton collisions [96], the field of heavy nuclei, constant laboratory magnetic
fields and also in lasers, of these, only photon-photon scattering in the field of a
heavy nucleus (Delbrück scattering) [184] and photon-splitting in atomic fields [6]
have been experimentally observed.

An example typical scaling of exp(−πEcr/E0) in the case of dissipative or I0/Icr
in the case refractive VPEs highlights the experimental challenge in investigating
effects of the polarised vacuum. The HERCULES laser currently holds the record
for the highest laser intensity, which stands at 2×1022 Wcm−2, some seven orders of
magnitude lower than the critical value [188]. However, in light of the forthcoming
ELI and HiPER laser facilities, both of which expect to offer intensities of the order
∼ 1026 Wcm−2 or ξ ≈ 6900, (χ ≈ 10−7 for head-on photon-photon scattering),
signatures of the polarised vacuum should be detectable [60, 86]. Lasers offer an
advantage over many other EM backgrounds in that they are i) readily tunable and ii)
“clean” without signatures from hadrons or QCD (quantum chromodynamics). The
prospect of using lasers to probe for the first time the unexplored low-energy regime
of our hitherto most accurate theory of nature has triggered interest in hypothetical
particles which could explain any unexpected deviations from QED. The veritable
menagerie includes WISPs (Weakly-Interacting Sub-eV Particles) such as axions or
ALPs (Axion-Like Particles) including scalar and pseudo-scalar particles, as well
as MCPs (Mini-Charged Particles), which often arise in theories containing extra
spacetime dimensions as well as unparticles, which unlike particles, would have a
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continual mass spectrum [75, 4, 3, 80, 171, 39]. These exotic scenarios are possible
outcomes of photon-photon scattering and pair-creation experiments, both of which
appear in this work.

Whilst it can be phrased in the terminology of high-energy physics, the polarised
vacuum can also be used to generate interference effects, finding application in quan-
tum optics [101, 102]. The famous double-slit experiment, first recorded by Thomas
Young in 1804 using two pinholes in a slip of card [189], and later recreated by
Geoffrey Ingram Taylor using very weak light sources [166], has been central to
the interpretation of quantum mechanics as it exhibits wave-particle duality in a
clear manner, leading to Dirac’s statement that “each photon then interferes only
with itself”[47]. This phenomenon continues to be challenged [160, 185, 116, 100]
and demonstrated in a broad range of set-ups using neutrons, helium atoms, C60

fullerenes, Bose-Einstein condensates and biological molecules [191, 36, 11, 9, 81].
In addition, whilst first being shown to diffract in crystals in the 1920s, electrons
have also been shown to generate interference effects, even with only one particle
in the apparatus at a time [45, 94, 127, 172]. All previous examples however, have
only displayed how light or matter diffract on interaction with matter in the double-
slit. Using the polarised vacuum, it is in principle possible to construct a double-slit
comprising ultra-intense lasers and hence demonstrate the diffraction of light with
light.

Polarisation of the vacuum can be caused by other particles such as quarks and light
mesons [64] as well as in other settings such as in non-trivial spacetimes, strong
gravitational fields around e.g. black holes and neutron stars [87, 145, 35, 88, 76],
in QCD [106], as well as in a hot radiation plasma [183, 123]. Finite temperature
vacua are particularly interesting as they offer typically i) broadband radiation ii)
more realistic calculation iii) the possibility of measuring the effect of the polarised
vacuum from thermodynamic quantities. Moreover the rate of production of real
electron-positron pairs can be increased not only by using stronger fields but also by
increasing temperature [49]. However, neither for inhomogeneous external fields nor
for non-equilibrium systems do there exist definitive results and clarity of method in
four-dimensional QED at finite temperature, with it requiring a decade to ascertain
even whether pair-creation occurred at all in the one-loop effective Lagrangian [41,
117, 71, 57, 49]. Finite temperature, strong-field QED, being a gauge theory with
large coupling constant (Zα for nuclei or ∼ αχ2/3 for lasers [152]) could also be used
to better understand the mechanisms at play in the formation of the QGP (quark-
gluon plasma), especially when studied in non-equilibrium situations, undergoing a
phase transition at a critical temperature Tcr ∼ 1010 K.

The current thesis expounds upon a realistic scenario to detect VPEs. We envis-
age scattering probe laser photons off of two ultra-intense laser beams, using the
interference between the signals to spatially separate the intensity of the vacuum
signature from the probe background, resulting in a “matterless double-slit” effect.
An additional outcome of this set-up is that vacuum birefringence and dichroism are
also increased over standard two-laser collisions. Moreover, considering experimental
application, we show that the effect should be measurable at upcoming laser facil-
ities to be completed by the end of the decade. In addition, we also consider the
polarisation of the vacuum by a constant crossed field in a finite temperature setting,
which we show changes macroscopic thermodynamical quantities by calculating the
resulting increase in pressure.
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After some useful preliminary notes on nomenclature and units, we begin in chapter

2 by introducing effective field theory, in particular applied to QED, including details
of the heat kernel method of evaluating resulting functional determinants which is
applied by way of example to the case of a constant magnetic field. The chapter
is then concluded with a discussion of the Euler-Heisenberg Lagrangian, the weak-
field expansion of which will form the basis of calculations for our photon scattering
scenario.

Calculations for photon-photon scattering are then presented in chapter 3, in which
a weaker probe field is diffracted by two separated ultra-intense laser beams in two
different set-ups with both optical and X-ray frequencies investigated. We first derive
the field scattered by the polarised vacuum, and then study two intensity terms that
come from this vacuum signal, the pure signal itself and the interference with the
probe background, and conclude with numerical results for the corresponding number
of diffracted probe photons. Calculations for the rotation of the probe polarisation
and the induced ellipticity are then detailed, and the corresponding improvement over
the typical probe + strong-beam collision investigated. A comprehensive discussion
of the validity of employed approximations and measurability of the effects then
concludes the chapter.

We outline the derivation of the polarisation operator that describes photon scatter-
ing in an external plane wave in chapter 4, which is supplemented by calculations
and identities given in appendix A. The result is then specialised to the case of a
constant crossed field, for which the modified refractive indices are derived and their
asymptotic limits. Details of the form of relevant special functions as well as the
derivation of asymptotic limits are contained in the supplement in appendix B.

Averaging the photon scattering solution summed over a thermal ensemble, initial
calculations investigating the effect of temperature on vacuum polarisation effects
in a constant crossed field are presented in chapter 5. We calculate the change in
pressure induced by elastic photon-photon scattering between the thermal photons
and the external field and also include tentative calculations for how the rate of
pair-creation scales with temperature. We detail the various approaches to thermal
and non-equilibrium field theory which are complementary to this direct averaging
approach in appendix C.

1.1 Conventions and Nomenclature

In order to reduce confusion, we explain notational issues here. Throughout the
thesis we use cgs units, unless otherwise stated, and we will often use natural units,
in which c = ~ = 4πǫ0 = 1.

In natural units, we will give energies and hence frequencies and inverse distances
in electron volts (eV). The mass of the electron is in these units 0.511 MeV. Some
useful conversion factors when dealing with lasers are:

When we use the terminology four-vector we are referring to Lorentz-invariant ob-
jects. Three-vectors are emboldened k and the components of four-vectors k will
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Notation guide

−e < 0 electron charge
α = e2 fine-structure constant (cgs units)

ηµν = diag(+,−,−,−) Minkowski metric
gµν general metric
ω frequency
kB Boltzmann constant
c speed-of-light in vacuo
~ Planck’s constant
ǫ0 Permittivity of free space
† Hermitian conjugate
T transpose

γµ, γµ Gamma matrices

/a γµaµ
v̇ dv/dt

1.60 × 10−19 J = 1 eV
1 × 10−15 s = 1 fs = 0.66 eV−1

1 × 10−6 m = 1 µm = 5.07 eV−1.

be denoted by normal sub- and super- scripts whereas powers will be denoted with
a superscript slightly displaced to the right and dot products could be explicitly
defined with a · so that for a photon in vacuum with four-momentum k we have
k 2 = k · k = (k0)2 − k · k.

Whenever vector labels are dropped, the result applies to all such vectors e.g. for
four-vectors a1, a2, κ ·a = 0 implies κ ·a1 = κ ·a2 = 0. We will often refer to objects
without explicitly writing spacetime indices, i.e. Π will represent the polarisation
operator when taken in context.

When we want to emphasise the operator nature of an object, we will use a hat e.g.
f(p̂)|p〉 = f(p)|p〉 and a state |p〉 is an eigenfunction of the operator p̂. In addition, we
use ∂µ to mean partial differentiation with respect to the µth spacetime co-ordinate
as well as g′(x) to mean differentiation of the function with respect to its argument,
x. Also for fermions, ψ̄ := ψ†γ0 and the gamma matrices satisfy {γµ, γν} = 2gµν .



Chapter 2

Effective field theory in the
context of vacuum polarisation

We introduce EFT (effective field theory) as a means to describe a system
whose heavier degrees of freedom have little influence on the dynamics.
A method of evaluating the resulting functional determinants that occur
in the theory is presented, and employed in the pedagogical example of a
constant external magnetic field. We make some remarks on the Euler-
Heisenberg Lagrangian and give its weak-field expansion, which will be
the basis for calculations of photon-photon scattering in Ch. 3.

One of the first examples of an effective field theory was constructed by Euler and
Heisenberg as they considered the collision of photons in vacuum [84, 83]. Fol-
lowing the elegant rederivation of Schwinger in the 50s [159], the Euler-Heisenberg
Lagrangian has found many applications in describing QED vacuum polarisation
processes. The weak field expansion E ≪ Ecr is particularly useful as it provides
the leading-order quantum correction to classical quantities. It has been employed
to describe a multitude of refractive vacuum polarisation effects such as the modified
refractive index [82] (photon dispersion), photon splitting in arbitrary slowly-varying
electromagnetic fields [26, 2], vacuum four-wave mixing [118], vacuum birefringence
and dichroism [85, 143, 82], photon-photon scattering [143, 170, 63, 102] and in the
context of laser pulse propagation in plasmas [123, 121, 162, 122]. Moreover as the
imaginary part of the Lagrangian is directly related to dissipative effects, the EH La-
grangian has also been used extensively to describe pair creation [173, 54, 123], often
in the form of the famous pair-production formula in constant external fields derived
by Schwinger [159]. In addition, the EH Lagrangian has also found application at
finite temperatures [48], again applied to pair-production [41, 117, 71, 57, 49] as well
as to photon splitting [58] and photon-photon scattering [169]. Other examples of
highly successful effective field theories include Fermi theory for low-energy weak
nuclear interactions, BCS theory used to describe properties of superconductors and
general relativity which is believed to be an effective theory of quantum gravity. In
the current thesis, we focus on the case of QED.



8 Chapter 2. Effective field theory in the context of vacuum polarisation 2.1

2.1 Effective Field Theory

One of the key elements of EFT is that it represent physics occurring on some low
energy scale with respect to other degrees of freedom in the field theory. The heavier
degrees of freedom are “integrated out” and the object of study is a function only of
the lighter fields. In QED, the mass of the electron defines a clear separation between
low and high energy phenomena – in electroweak theory it is the mass of the W±

and Z0 particles. Effective field theory is simply a rewriting of the original theory in
an expression valid at lower momentum scales.

Since we wish to explain processes in a laser, which can typically produce photons
with frequencies from the infra-red (energies of the order eV) to the X-ray (keV
energies), we are comfortably in a region much lower than that required for sponta-
neous photon decay into pairs ω ≪ 2m, using a system of units ~ = c = 4πǫ0 = 1.
Therefore, an effective theory of QED should give reliable results.

Let us consider a classical field theory containing a light and a heavy scalar field
φl(x), φh(x) and at the end assume the straightforward generalisation to quantum
field theory [141]. Labelling the action S[φl, φh], the transition amplitude for this
system, for initial and final spacetime co-ordinates (xi, ti), (xf , tf ), then becomes:

〈φl(xf , tf ), φh(xf , tf )|φl(xi, ti), φh(xi, ti)〉 =

∫
Dφl

∫
Dφh eiS[φl,φh], (2.1)

where:

S[φl, φh] =

∫ (xf ,tf )

(xi,ti)
d4x L [φl, φh], (2.2)

and where Dφ defines a path integral measure. A description of the low-energy
physics should depend only on the light degrees of freedom so we define a functional
W [φl] fulfilling:

〈φl,f , φh,f |φl,i, φh,i〉 =

∫
Dφl e−iW [φl], (2.3)

e−iW [φl] :=

∫
Dφh eiS[φl,φh], (2.4)

where |φs,i(f)〉 are initial (final) configurations of a field φs. We notice that the right-
hand side of Eq. (2.4) can just be written as the transition amplitude of the φh field
given a coupling J [φl]φh for some functional J , typically a polynomial. Let us rewrite
the action as:

S[φl, φh] =

∫ (xf ,tf )

(xi,ti)
d4x

{
Ll + Lh + J [φl]φh

}
, (2.5)

for Ll = Ll[φl] and Lh = Lh[φh]. We then define W [J ] as the energy functional
through:

Z[J ] = e−iW [J ] =

∫
Dφh ei

R

d4x
(
Lh+Jφh

)
(2.6)

= 〈φl,f |φl,i〉, (2.7)
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where Z[J ] is the quantum-mechanical partition function (briefly reviewed in the
context of quantum statistical mechanics in App. C.1), being regarded as a nor-
malisation for expectation values of the field that occur in e.g. Green’s functions.
Inserting a factor 1 = exp(−iĤt) exp(iĤt) and evolving the states |φh,i(f)〉 to the
distant past (future), we can consider slightly rotating the t co-ordinate in the com-
plex plane, to generate a factor exp(−εĤ |t|) for arbitrarily small ε. This can be
applied by expanding the field states |φh,i(f)〉 =

∑
n |n〉〈n||φh,i(f)〉, in a sum of en-

ergy eigenstates
{
|n〉
}
, and applying the evolution operator for arbitrary large t.

This famous adiabatic switching on (off) of the interactions justifies reducing the
field states to their vacuum values as the overlap with all higher energy eigenstates
dies away, finally giving:

e−iW [J ] → 〈0+|0−〉. (2.8)

This relation is the usual starting definition of the energy functional [159]. The energy
functional W [J ] can be regarded as the (quantum) free energy, and from Eq. (2.8),
like the free energy, must tend to 0 in the absence of external perturbations, so that
〈0+|0−〉 → 1. We can interpret W [J ] better by expanding in terms of a functional
Taylor series in J , with each successive term generated by differentiating Eq. (2.6):

W [J ] =

∞∑

n=1

1

n!

∫
cn(x1, . . . , xn)

n∏

j=1

J(xj)d
4xn, (2.9)

where the coefficients are given by:

cn(x1, . . . , xn) =

[( n∏

j=1

δ

δJ(xj)

)
W [J ]

]

J=0

(2.10)

=
〈0+|φh(x1) . . . φh(xn)|0−〉

〈0+|0−〉 . (2.11)

One can then show by iteration [141] that:

δnW [J ]

δJ(x1) · · · δJ(xn)
= C(x1, . . . , xn), (2.12)

where C(x1, . . . , xn) are the n-point connected correlators. So the free energy W [J ]
contains all 1PI (one-particle irreducible) connected diagrams and is simply a rewrit-
ing of the field theory. Knowing the free energy to all orders is therefore equivalent
to the exact theory. We will investigate the one-loop correction, C(x1, x2), which
is the leading-order correction to the classical theory C(x1). We denote by φc

h the
classical solution:

φc
h =

δW [J ]

δJ
=

〈0+|φh|0−〉
〈0+|0−〉 , (2.13)

which is in some way the “mean-field” in a quantum sense. Now following [141],
we can split the Lagrangian up into a piece which is a function of renormalised
parameters and one which contains counterterms δLh, δJφh:

Lh + Jφh = L
′
h + δLh + J ′φh + δJφh, (2.14)

where J ′φh is so defined that:

δL ′

δφh

∣∣∣∣∣
φ=φc

h

= −J ′. (2.15)
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We now wish to expand the right-hand side of Eq. (2.6) in a Taylor series around
this classical solution. Setting φh(x) = φc

h(x) + η(x), we have:

∫
d4x
(
L

′ + J ′φh

)
=

∫
d4x
(
L

′[φc
h] + J ′φc

h

)

+

∞∑

n=2

1

n!

n∏

j=1

[∫
d4xjη(xj)

δ

δφ(xj)

]
L

′. (2.16)

Neglecting terms n ≥ 3, substituting Eq. (2.16) back into Eq. (2.6) and performing
the functional integration over Dη, gives:

W [J ] = −
∫
d4x
[
L

′[φc
h] + J ′φc

h

]
− i

2
ln det

[
− δ2L ′

δφhδφh

]
+ . . .

+

∫
d4x
[
δL [φc

h] + δJφc
h

]
, (2.17)

where . . . signify higher-order terms in the expansion and δ2/δφhδφh represents
functional differentiation of the field at two different spacetime points. The term
δ2L ′/(δφhδφh) will be related to the two-point Green’s function as we show for the
case of QED in Sec. 2.1.1. The higher-order terms will then be a function of higher
derivatives, which are related to higher-order Green’s functions and can be neglected
in our treatment at zero temperature1.

The effective action Γ[φc
h] can be defined:

Γ[φc
h] = −W [J ] −

∫
d4x J(x)φc

h(x), (2.18)

which by definition as an action, satisfies:

lim
J→0

δΓ[φh]

δφh

∣∣∣∣∣
φh=φc

h

= 0. (2.19)

Then the one-loop quantum correction from EFT to the classical Lagrangian be-
comes:

i

2
ln det

[
− δ2L ′

δφhδφh

]
=
i

2
Tr ln

[
− δ2L ′

δφhδφh

]
. (2.20)

2.1.1 Application to QED

A suitable Lagrangian for QED would be [120]:

LQED = −1

2
∂µAν ∂

µAν + ψ̄
(
i
[
γ(∂ − ieA)

]
−m

)
ψ. (2.21)

The heavy degrees of freedom are fermions and the light ones bosons, so we associate
φh → ψ, ψ̄ and φl → A with the coupling J [φl, φh] = J [ψ, ψ̄,A] = −eψ̄γAψ.

1Interestingly, it has been shown in finite temperature QED, the two-loop contribution of
Eq. (2.16) dominates the effective action Eq. (2.18) for T ≪ m [74].
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The functional derivative we have to evaluate in this case is:

δ2LQED

δψ(x1)δψ̄(x2)
=
[
± iγ

(
∂ − ieA

)
−m

]
δ(4)(x1 − x2), (2.22)

where the ± sign indicates that since this occurs inside a trace, the sign of the
differential is irrelevant to the physics. This can be shown by inserting a factor
1 = γ5γ5 and using trace cyclicity, which results in:

Tr ln
(
i /D −m

)
= Tr ln

(
− i /D −m

)
. (2.23)

Eq. (2.22) demonstrates a general property of −δ2L ′/(δφhδφh) that for a free-field
Lagrangian (here with classical field) this object corresponds to the inverse propaga-
tor for the theory, as in our case for QED Eq. (2.22). As the action is defined up to
a total derivative, we can write the EFT term as:

i

2
Tr ln

[
S−1
F (p+ eA)

S−1
F (p)

]
=
i

2
Tr ln

[
iγD −m

iγ∂ −m

]
, (2.24)

where SF is the fermion propagator and the external field propagator is subtracted by
the free-field propagator, just like the typical renormalisation performed in external
fields (discussed briefly in App. A.1.3). There are various methods for evaluating this
functional determinant, and we discuss one in Sec. 2.1.2, which we then apply on the
case of a constant magnetic field. We notice the consistency that when the photon
field is set to zero, the one-loop contribution to the field equations also disappears,
as should be the case.

As explained in Sec. 4.1, the polarisation operator in a strong external field can be
represented as an expansion of even photon exchanges with the field, given by the
first line of Fig. 2.1 a.

In the EFT case as the fermions have been integrated out, the one-loop functional
determinant then represents the situation given by the second line of Fig. 2.1b, i.e.
where fermion loops have been shrunk to effective vertices. A particularly interesting

a

≡ + + . . .

b

−→ + + . . .

Figure 2.1: The polarisation operator and effective polarisation operator where x

represents photon exchange with a classical external field.

result for us, is shown by considering Eq. (2.8). As the free energy is related to the
vacuum-persistence amplitude, the probability for any other process must be 1 −
|〈0+|0−〉|2. But “any other process” corresponds to pair creation, whose probability
per unit time and volume Pe+e− , for Pe+e− ≪ 1 is then:

Pe+e− = 2Im LQED +O
[(

ImLQED

)2]
(2.25)

≈ Im

{
iTr ln

[
iγD −m

iγ∂ −m

]}
. (2.26)
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This can be thought of as a shortcut to the optical theorem, which relates twice the
imaginary part of the one-loop diagram to the square of its matrix element, which is
in turn related by Fermi’s Golden Rule [153] to a rate per unit volume (elaborated
in Ch. A.1.3).

2.1.2 Heat Kernels

We now wish to introduce some tools in order to deal with objects such as Eq. (2.26),
required for evaluation of effective actions. The study of the spectrum of Laplace
operators (the divergence of the gradient) is greatly aided by the use of heat kernels.
The name originates from a generalised solution to the heat equation and they are
typically used to reconstruct the geometry of a manifold given the spectrum of a
differential operator, eloquently captured by Kac’s famous question “can one hear
the shape of a drum?”[95]. Other applications include studying quantum anomalies,
the Casimir effect and as we shall see here, vacuum polarisation. Our aim is to
calculate the effective action given in Eq. (2.24) for QED, which can be efficiently
computed with the use of the heat kernel method.

The general heat equation with boundary condition:
(
∂

∂t
− M̂

)
K(t; ~x, ~y) = 0, (2.27)

lim
t→0

K(t; ~x, ~y) = δ(~x − ~y), (2.28)

for an operator M̂ is solved by the heat kernel K(t; ~x, ~y):

K(t; ~x, ~y) := 〈~x|e−M̂t|~y〉, (2.29)

K(t) =

∫
dx K(t; ~x, ~x) = Tr{e−M̂t}, (2.30)

where we already recognise a link with EFT. Taking the Mellin transformation of
both sides, one can see how the traced heat kernel is closely related to zeta-function
renormalisation: ∫ ∞

0
dt ts−1K(t) =

∑

n

∫ ∞

0
dt ts−1e−λnt, (2.31)

where we have written the trace as a sum over eigenvalues λn of M̂ . Performing
the substitution t → t′ = λnt and using definition of the gamma function Γ(s) :=∫∞
0 ts−1 exp(−t)dt, we arrive at the following relation:

ζE(s) =
1

Γ(s)

∫ ∞

0
dt ts−1K(t), (2.32)

where the zeta function ζE(s) is the Epstein zeta function allowing eigenvalues with
quadratic dependence on n: λn = an2 + bn+ c for constants a, b, c:

ζE(s) :=
∞∑

n=0

1

λsn
. (2.33)

We mention for later reference the Hurwitz zeta function, which is a special case of
the Epstein version with a = 0, b = 1:

ζH(s; c) :=
∞∑

n=0

1

(n+ c)s
, (2.34)
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with the relation ζH(s; 0) = ζ(s), with ζ(s) the Riemann zeta function.

The crucial link to the effective action comes when taking the differential of the above
expression Eq. (2.33). Let us consider a more general zeta function of the following
form:

ζ(s) =

∞∑

n=0

µlsn
λsn
, (2.35)

where l is a constant. Rewriting µls/λsn as exp(−s lnλn+ ls lnµ), differentiating and
setting s = 0 we find:

ζ ′(s) =
∞∑

n=0

1

λsn

(
− µlsn lnλn + lµlsn lnµ

)
, (2.36)

−ζ ′(0) =

∞∑

n=0

ln

(
λn
µln

)
= ln

(
∞∏

j=1

λj

µlj

)
. (2.37)

For an operator M̂1 with eigenvalues {λj} and an operator M̂2 with eigenvalues {µlk}
we then have:

− ζ ′(0) = Tr ln

(
M̂1

M̂2

)
. (2.38)

Hence using heat kernels, we have built a link between the generalised zeta function
Eq. (2.35) and the one-loop effective field theory correction Eq. (2.24). This allows
us to evaluate functional determinants by differentiating the zeta function formed
by the function’s eigenvalues and setting the argument equal to zero rather than
forming a complicated sum of logarithms.

2.2 Constant Magnetic Field

One practical application of heat kernels is in calculating the effective action for
charged fermions in a constant external magnetic field2. Through the Lorentz law,
a charged particle feels a constant electric field completely differently to how it ex-
periences a constant magnetic one. An electric field will exert a force on a positively
(negatively) charged particle parallel (antiparallel) to the applied field. In contrast,
the effect of a constant magnetic field will be to force the charged particle on helical
paths whose orbital plane is perpendicular to the direction of the applied field in a
fashion given by mv̇ = q v ∧ B for a charge, q, velocity v and mass m. If we again
consider the one-loop EFT correction, with judicious insertion of γ5 matrices, one
can again rewrite the determinant in a more manageable form:

Tr ln
(
i /D −m

)
=

1

2
Tr
[
ln
(
/D

2
+m2

)]
. (2.39)

Now we know from QFT that the eigenvalues of −γiD 2
i + m2 are given by m2 +

k2
‖ + eB(2n + 1 ± 1) [92], n ∈ N0 correspond to the discretised orbital motion in

a plane perpendicular to magnetic field lines, the so-called Landau levels, where

2This section was inspired by Gerald V. Dunne’s “Functional Determinants in Quantum Field
Theory” lectures at the 14th Saalburg Summer School on Mathematical Physics [52], but with all
calculations performed independently.
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k‖ is the momentum of the fermions parallel to field flux lines, and +eB (−eB)
corresponds to energies for particles aligned with spins anti-parallel (parallel) to
the field direction. To this we add γ0D

2, which also has continuous, positive semi-
definite eigenvalues. Therefore, eigenvalues for the whole operator can be written
λ±n = m2 + k2

1 + k2
2 + eB(2n + 1 ± 1) (where k2

‖ = k2
1 + k2

2 . In addition, we bear

in mind the typical degeneracy factor eBL2/2π, which comes from considering the
orbits of the electrons to be constrained to a finite area, L2.

We can utilise the preceding heat kernel formalism by calculating the general zeta
function Eq. (2.35) with these eigenvalues. In a frame where particle motion is only
in the plane perpendicular to applied magnetic field, we first define the Klein-Gordon
eigenvalue in the absence of an external field to be a constant µ2 (which will be later
set equal to the rest energy squared m2). Our zeta function becomes:

ζH(s) = Tr
µ2s

λs
=
eBV t

2π

∫
d2k‖

∞∑

n=0

∑

±

µ2s

[
m2 + k2

‖ + eB(2n+ 1 ± 1)
]s , (2.40)

where V t is a four-volume composed of the L2 degeneracy factor and another area
coming from letting the sum over discrete frequencies tend to an integral and we
have also multiplied by the other degeneracy factor eB/2π and sum over ± spins
and explicitly noted that we are dealing with a Hurwitz zeta function ζH(s) as in
Eq. (2.34). We deal with the four-volume factor by taking it to the other side and
absorbing it in the constant µ. To integrate out k2, we can transform to polar
co-ordinates and then reverse differentiate to acquire:

∫
d2k‖

1(
k2
‖ + c

)s =
π

s− 1

1

cs−1
, (2.41)

where c is a constant. Using this Eq. (2.41) result in Eq. (2.40) and dropping the
label on the zeta function gives us:

ζ(s) = Tr
µ2s

λs
=

eB

(2π)3

∞∑

n=0

∑

±

π

s− 1

µ2s

[
m2 + eB(2n+ 1 ± 1)

]s−1

=
eB

(2π)3
µ2s

(2eB)s−1

π

s− 1

∞∑

n=0

∑

±

1

n+ 1
2 ± 1

2 + m2

2eB

. (2.42)

We can then evaluate the sum over ± modes by using:

∞∑

n=0

[
1

(n+ c)s−1
+

1

(n+ c+ 1)s−1

]
= 2

∞∑

n=0

1

(n+ c)s−1
− 1

cs−1
(2.43)

= 2ζ(s− 1; c) − 1

cs−1
. (2.44)

Inserting this into Eq. (2.42) we have:

ζ(s) =
e2B2

(2π)2

(
µ2s

2eB

)2 1

s− 1

[
ζ

(
− 1;

m2

2eB

)
− 1

2

(
m2

2eB

)1−s
]
. (2.45)
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Labelling m2/2eB = z and using dcs/ds = d exp(s ln c)/ds = cs ln c, one acquires:

ζ ′(s) =
e2B2

(2π)2

[
− 2

(s− 1)2

( µ2

2eB

)s
ζ(s− 1; z) +

2

s− 1

( µ2

2eB

)s
ζ ′(s− 1; z)

+
2

s− 1

( µ2

2eB

)s
ln
( µ2

2eB

)
ζ(s− 1; z) +

z

(s− 1)2

( µ
m

)2s

+
z

s− 1

( µ
m

)2s
ln z − z1−s

s− 1

( µ2

2eB

)s
ln
( µ2

2eB

)]
. (2.46)

After a little manipulation and setting µ = m and s = 0 we have:

ζ ′(0) =
e2B2

(2π)2

[
− 2ζ(−1; z) − 2ζ ′(−1; z) − 2ζ(−1; z) ln z + z

]
. (2.47)

Using the following identities [52]:

ζ(−1; z) =
z

2
− z2

2
− 1

12
, (2.48)

ζ ′(−1; z) =
1

12
− z2

4
− ζ(−1; z) ln z

−1

4

∫ ∞

0

dt

t2
e−2zt

(
coth t− t

3
− 1

t

)
, (2.49)

inserted into Eq. (2.46) we achieve:

ζ ′(0) =
e2B2

(2π)2

[
3

2
z2 +

1

2

∫ ∞

0

dt

t2
e−2zt

(
coth t− t

3
− 1

t

)]
. (2.50)

The first term in the brackets is a field-independent constant as e2B2z2 = m2/4,
which will therefore not appear in the corresponding dynamics of this effective La-
grangian and can be dropped. We then have the effective or Euler-Heisenberg La-
grangian in a constant magnetic field [92]:

− ζ ′(0) = −e
2B2

8π2

∫ i∞

0

dt

t2
e−m

2t/eB

(
coth t− t

3
− 1

t

)
. (2.51)

2.3 The Euler-Heisenberg Lagrangian

The Euler-Heisenberg Lagrangian is simply the one-loop effective QED Lagrangian
in a constant electromagnetic field:

δLEH =
i

2
Tr ln

[
iγD −m

iγ∂ −m

]
=
i

4
Tr ln

[(
γD
)2

+m2

∂2 +m2

]
. (2.52)

After rewriting in terms of Klein-Gordon operators, the logarithm can be partially
dealt with by differentiating δLEH with respect to the photon field, and since kinetic
momentum is not conserved in an external field, the trace can be evaluated over all
position eigenstates, i.e. an integral over d4x, sandwiched between 〈x| and |x〉. This
trace can be performed numerous ways, i) being regarded as an evolution between
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initial and final position states (proper-time method) [159] ii) if specialised to con-
stant fields then also with the WKB method which gives exact solutions when the
potential in the Lagrangian is at most quadratic in the co-ordinates [22] iii) solving
the Green’s function equation via Fourier transformation [49], all of which give the
final result:

δLEH =
1

8π2

∫ ∞

0

ds

s3
e−im

2s

×
{

(es)2G
cos
[
es
(√

F2 + G2 + F
)1/2]

sin
[
es
(√

F2 + G2 + F
)1/2]

cosh
[
es
(√

F2 + G2 −F
)1/2]

sinh
[
es
(√

F2 + G2 −F
)1/2]

+
2

3
(es)2F − 1

}
, (2.53)

with F , G the electromagnetic invariants (see App. A.1.1). A usual way of rewriting
this (see e.g. [92]) is in terms of the positive semi-definite functions a and b:

a =

√√
F2 + G2 + F ;

√
b =

√
F2 + G2 −F ,

which gives, after rotating in the complex plane:

δLEH =
e2

8π2

∫ ∞

0

ds

s
e−im

2s

[
ab coth eas cot ebs− a2 − b2

3
− 1

(es)2

]
. (2.54)

After a change of variable t → t/eB in Eq. (2.51), in the limit E → 0 one can
rotate the complex contour to an integral along the imaginary axis to reproduce
constant magnetic field expression Eq. (2.51). Considering current and near-future
maximum laser intensity values, we will only require a weak-field expansion in E/Ecr,
Ecr = m2/e, which corresponds to an expansion in powers of F ,G. This also gives
us insight into the meaning of the second and third terms. The −1 term is due
to subtraction of the free field case to ensure that the quantum correction vanishes
in this limit (see App. A.1.3 and [27]). The term proportional to F then ensures
that for very weak fields the correction remains finite, cancelling the first order
expansion terms and is important in charge renormalisation [92]. After solving a
simple remaining integral, the weak-field expansion then becomes:

δLEH =
α2

360π2m4

[
4F2 + 7G2

]
, (2.55)

or in terms of observable quantities for L = Lclassical + δLEH:

LEH =
1

8π
(E2 −B2) +

α2

360π2m4

[
(E2 −B2)2 + 7(E · B)2

]
. (2.56)

We note that if the two electromagnetic invariants E2 −B2 and E ·B are zero, such
as is the case for a single plane wave, there is no polarisation of the vacuum. We also
note that even without having derived Eq. (2.53), we could have imagined what form
the weak-field expansion would have taken by making the observations i) δLEHd

4x
is a dimensionless Lorentz scalar ii) δLEH is gauge invariant iii) corrections from the
polarisation operator start at order α2 (as the term proportional to α cancels due to
charge renormalisation). Using only these arguments, we see that δLEH must be of
the form:

δLEH =
α2

m4

[
c1(E

2 −B2)2 + c2(E ·B)2
]
, (2.57)
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where c1,2 are constants.

In the following chapter, we use the weak-field Euler-Heisenberg Lagrangian Eq. (2.56)
to calculate vacuum polarisation effects in ultra-intense lasers.





Chapter 3

Light-light diffraction in the
polarised vacuum

We present results for two possible experimental set-ups that could be
used to detect photon-photon scattering and vacuum birefringence ef-
fects in lasers. By polarising regions of the vacuum with two separate
ultra-intense lasers, we can form a “matterless” double-slit, which can be
probed with a third, weaker laser. One can utilise the interference be-
tween photons scattered in each of the strong beams to spatially separate
this vacuum signal from the probe background, for which we calculate
the expected number of detectable photons. Moreover, we discuss the
effect of beam-geometry and show that the double-slit configuration even
leads to a modest increase of vacuum birefringence results over single-slit
values.

The race to experimentally verify a collection of vacuum polarisation effects and per-
haps even more exotic physics has already begun. Upcoming laser facilities such as
ELI and HiPER are planning by the end of the decade, to offer such colossal intensi-
ties of 1026 Wcm−2, which should already be sufficient for pair creation [135, 20, 103]
and mark a vast improvement over the current world record of 2×1022 Wcm−2 [188]
at the Hercules facility in Michigan. Refractive vacuum polarisation effects are
also mostly lacking experimental verification and, as they by definition only involve
virtual fermions, do not require the high intensities required for pair creation and
are therefore particularly desirable to study. In the current chapter, we focus on an
example of elastic photon-photon scattering, a particularly hot topic of the last five
years. Although having long been measured in the Coulomb field of a heavy nucleus
as Delbrück scattering [184], the theory [50] of which being already intensely studied
[70, 130], in other, fundamentally different environments such as a constant magnetic
field [14], the effect is still to be experimentally confirmed. It should be mentioned
that the PVLAS (Polarizzazione del Vuoto con Laser)[190] collaboration have been
searching for almost a decade to detect vacuum birefringence (change in ellipticity)
and dichroism (rotation of polarisation vector) as laser photons pass through an ef-
fectively constant magnetic field, which with a still negative result [31], gives an indi-
cation of the experimental challenges involved. Moreover, as any particle-antiparticle
pair can in principle appear in the virtual loop, photon scattering has also been dis-
cussed as a probe for new physics [80, 4, 3, 75, 171, 39]. In the present case of strong
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lasers, photon-photon scattering has been investigated theoretically through such ef-
fects as the phase difference one laser beam acquires when passing through another
[170, 63], vacuum birefringence in a head-on collision of strong laser and X-ray probe
[82, 143] or scattering of photons in four-wave mixing in which three lasers impinge
on one another [118]. Current tentative experimental limits on the minuscule elastic

photon-photon scattering cross-section of σγγ [cm
2] = 7.3 × 10−66

(
~ω[eV ]

)6
in the

optical region [177], include a limit of 1.5 × 10−48 cm2 using four-wave mixing and
0.8 eV centre-of-mass photons [24] as well as 4.6 × 10−58 cm2 and 2.7 × 10−56 cm2

for 1.2 and 2.4 eV photons respectively [31].

We propose two original experimental scenarios involving a weaker probe laser cross-
ing two ultra-intense (defined to be ≥ 1023 Wcm−2) laser beams and take the novel
step of investigating the generated diffraction pattern from the polarised vacuum (see
[102]) as well as calculating more conventional quantities such as vacuum birefrin-
gence and dichroism which we can compare to the literature.

The Euler-Heisenberg approach

Our primary interest consists of calculating effects of the polarised vacuum which
could be probed experimentally. Regarding current laser capabilities, we are therefore
working in the dual limit: ω ≪ m, E ≪ Ecr. The first of these constraints allows
us to use the Euler-Heisenberg effective field theory approach outlined in Sec. 2.1,
and the latter constraint allows us to use the weak-field expansion of this Lagrangian
Eq. (2.56), derived in Sec. 2.3. This region of parameter space is then particularly
tractable mathematically and suitable for calculation of the quantum alterations to
classical quantities. We outline in the following, a couple of consequences of these
corrections.

Since alterations to the classical Lagrangian are of the order O(E4), we note that
field equations will contain corresponding source terms of the order O(E3). So we
can observe how, on interaction with an EM field, the non-vanishing vacuum current
from the polarised vacuum generates non-linear waves in measurable quantities such
as the electric field, which we will often term the “diffracted” field, Ed.

In his autobiographical work “Das Teil und das Ganze” (The part and the whole),
Werner Heisenberg recalls a talk with his student Leonhard Euler, which precipitated
the calculation of the modified Lagrangian. Originally discussing the idea of an
energetic photon as a composite particle, they form a useful analogy also for processes
in which intense EM fields, say two colliding laser beams, interact with one another.
Euler commented, wrote Heidelberg:

“Wenn in dem einen Lichtstrahl virtuell, das heißt als Möglichkeit, Paare
von Elektronen und Positronen vorhanden sind, so könnte der andere
Lichtstrahl doch an diesen Teilchen gestreut werden . . . ”[83] (If in a beam
of light, virtual, in the sense of “possible”, electron-positron pairs were
present, another beam of light would surely be scattered by these [virtual]
particles.)

In the spirit of Heisenberg’s uncertainty principle: ∆p∆x ≥ ~/2, it is possible to
rigorously define a lower bound on the uncertainty in the energy density for a given
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length of time, similar to the above relation [46]. For short enough times ∆t, the
uncertainty in the corresponding energy density can be large enough that “virtual”
particles can be brought into existence, interact and then disappear, all within ∆t.
Therefore the quantum vacuum can be thought to manifest itself as a sea of virtual
particles that can be activated in the passage of ultra-intense laser beams. It is
possible in principle, to consider all imaginable forms of particle creation that obey
the usual conservation laws of charge and species number. The Euler-Heisenberg
approach can be applied to e.g. QCD where the fluctuation of the lightest virtual
mesons π0, π

± as well as quark-antiquark pairs qq̄ both in the quark condensate and
at higher energies have been calculated. In line with the energy uncertainty relation
however, these contributions prove to be negligible1 compared to those from the
lightest known charged pair [64], the electron-positron pair. Concentrating entirely
on QED, these virtual particles can then be thought to be “polarised” by the intensity
of the EM field and we can form the useful comparison to e.g. the polarisation of
dipoles in solids due to an external field. This allows us to develop our analogy
as regarding strongly polarised regions of the vacuum as a solid-state medium with
non-linear response.

The aptness of the non-linear solid-state perspective is demonstrated on return to
the weak-field Lagrangian Eq. (2.56). We first bear in mind that D = E + 4πP and
H = B − 4πM, where D, H are the electric displacement and magnetic inductance
and P, M are the polarisation and magnetisation respectively. Using:

D = 4π
∂L

∂E
, H = −4π

∂L

∂B
, (3.1)

we can then show2:

P =
∂ δLEH

∂E
, M =

∂ δLEH

∂B
. (3.2)

This then gives:

P =
α2

45π2m4

[
2(E2 −B2)E + 7(E ·B)B

]
(3.3)

M = − α2

45π2m4

[
2(E2 −B2)B − 7(E ·B)E

]
, (3.4)

these quantities satisfy the following relation as required for them to be considered
the straightforward quantum analogue of the classical counterpart:

∇2E − ∂2
tE = 4πJvac(t, r) (3.5)

Jvac(t, r) = ∇∧ (∂tM) + ∂2
tP −∇(∇ ·P),

which can be derived extremising the Lagrangian with respect to the vector potential.
Eq. (3.5) clearly displays both aforementioned additions due to a polarised vacuum:
the vacuum current, Jvac as well as the solid-state-like polarisation. All required
electrodynamical quantities can then be derived from these polarisation properties
Eq. (3.3), Eq. (3.4). Moreover, now that we have made this correspondence, from
this point onward, all EM experimental quantities can be calculated using classical

1Either photons in the TeV range are required, or an energy density of 300MeV/fm3 ≈
1037Wcm−2, perhaps relevant to supernovae or intense gamma ray bursts.

2The expressions for the magnetisation appear here with the correct sign, unlike in [143] which
suffers from a printing error.
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electrodynamics.

In the following experimental scenarios, we will consider time-dependent electromag-
netic fields which must then lead to a non-stationary vacuum polarisation. We are
however, still justified in using the Euler-Heisenberg Lagrangian for “constant” fields
as this constancy is with respect to the physical phenomenon at large, namely the
spontaneous appearance and disappearance of virtual electron-positron pairs which
occurs over a reduced Compton wavelength λ = 1/m = 3.9 × 10−11 cm. Therefore
as regards vacuum-polarisation effects, optical and X-ray wavelengths relevant to
upcoming scenarios, λoptical > 10−5 cm ≫ λ, λX-ray > 4×10−10 cm ≫ λ, vary slowly
enough to be felt by the quantum vacuum as constant.

Laser description

Electromagnetic fields obey a wave equation which describe their propagation through
spacetime. In vacuum, in the Lorentz gauge ∂A = 0, we have the traditional ho-
mogeneous wave equation �F (x) = 0, where F represents Aµ, Ei and Bi. With a
general solution of the form F = C1f(t− k · x) +C2g(t+ k · x) for constants C1, C2,
the homogeneous wave equation admits a plethora of phenomena, even the propa-
gation of undifferentiable initial conditions such as cusps and Heaviside field shapes
[21]. We simplify our life but also restrict ourselves to one domain of solutions by
making a separation ansatz F (xµ) = f(t)g(x, y, z) or superposition thereof for f , g
∈ C, and by doing so map the initial hyperbolic PDE onto the subspace of elliptic
PDEs3 and form the simple harmonic oscillator and Helmholtz equations for the tem-
poral and spatial parts of the electromagnetic wave respectively: f̈(t) + ω2f(t) = 0;
∇2g(x, y, z)+ω2g(x, y, z) = 0. Even with this simplification there are a multitude of
possibilities to fulfil the latter inhomogeneous Laplace equation for the wave’s spatial
dependence, which can be classified by the following steps taken in solving the equa-
tion. Employing various co-ordinate transformations one can expand g in terms of a
series of Hermite polynomials, Laguerre, Ince or hypergeometric functions, thereby
allowing for a great wealth of possible wave shapes (for a review of Hermite modes
see [59]; for Laguerre-Ince see [13]; for hypergeometric [108] and hypergeometric-
Gaussian [98]). No matter the basis, all these solutions are equal to the Gaussian
beam at zero-order which will suffice to calculate the leading-order vacuum polar-
isation effect. Moreover, by assuming a simple power series ansatz [156], one can
then show for our considered geometries that successive corrections scale ≈ (1/π)n

for the nth correction to a beam focused at the diffraction limit (as explained in
the discussion section of the current chapter) and therefore by placing observation
instruments close to the relevant laser propagation axis within the paraxial approxi-
mation sin θ ≈ θ, cos θ ≈ 1, our results will be accurate to within a factor of around
1/π ≈ 30%. With regard to temporal dependence, photons from intense laser beams
are delivered in a pulse, typically modelled as Gaussian, exp(−t2/τ2

s ) with a duration
τs. This also leads to a perturbative expansion, in the parameter 1/ω0τs, for central
frequency of radiation ω0. As long as our pulse length is sufficiently larger than
the interaction length, we can regard our pulse as being flat. Assuming only natu-
ral broadening, monochromaticity is also equivalent to the the condition ω0τs ≫ 1.

3Partial differential equations of the form Auxx+Buxy+Cuyy can be classified similar to quadratic
equations with the determinant D = B2 − 4AC: D > 0 determines a hyperbolic equation, D = 0 a
parabolic and D < 0 an elliptic equation.
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In addition, we implicitly mitigate possible reductions in the signal from temporal
corrections by choosing less than the absolute limits of values for envisaged laser
systems.

Experimental scenarios

As with all processes in strong-field QED, the degree of vacuum polarisation is dic-
tated by the relativistic invariants TrF 2 = 2(E2 − B2) and TrF ∗F = 4E · B. For
a single plane EM wave, both of these vanish indicating that single plane EM waves
(which are in any case, an idealistic construction) cannot feel the effect of their own
polarisation of the vacuum. Therefore any interesting experimental scenarios will
have to involve multiple fields or focusing effects such that the these invariants are
non-trivial.

We will focus on two main types of geometry given in Fig. 3.1. Both involve two
ultra-intense monochromatic Gaussian laser beams with wavevectors, electric and
magnetic fields given respectively by ks,i,Es,i,Bs,i, i ∈ {1, 2}, whose centres are sep-
arated by (2x0, 2y0, 2z0), with a waist ws,0 and Rayleigh length depending on the
geometry {yr,s, zr,s} = ksw

2
s,0/2, giving a transverse “width” (standard deviation

over
√

2) ws(x, xr,s) = ws,0
√

1 + (x/xr,s)2. A subscript p in place of s then indi-
cates corresponding quantities of the probe laser. We take the probe laser to also
be monochromatic and Gaussian, characterised by being much weaker in amplitude
|Ep| ≪ |Es| and broader in extent wp,0 ≫ ws,0. We calculate results for idealised
geometries, the accuracy of which will be discussed in Sec. 3.4.

In the first scenario, the two parallel ultra-intense plane-wave Gaussian laser beams
centred at (±x0, 0,±z0) counterpropagate into an optical Gaussian probe beam and
will be referred to as the double-shaft set-up4. In the second scenario, two antiparallel
ultra-intense plane-wave Gaussian beams centred at (±x0,±y0, 0) counterpropagate
into one another, perpendicular to the weaker X-ray Gaussian probe beam of broader
waist in a manner shown and will be referred to as the double-slit set-up. These
set-ups are depicted in Fig. 3.1 and typical parameters given in Tab. 3.2. Indices
on observables will denote the relevant experimental configuration with h for the
double-shaft arrangement5 and l for the double slit one.

When it comes to evaluating our expressions, we have in mind experimental param-
eters that correspond to the upcoming generation of laser facilities. For our strong-
field laser, we use, in both cases, quoted parameters from the ELI [60] and HiPER
[86] projects, modifying only the pulse duration whilst maintaining values within the
total attainable energy. The probe-field laser can be chosen to satisfy the observ-
able being measured. Diffraction maxima from a double-slit satisfy nλp = d sinϑ
for slit separation d and maxima labelled by integer n ∈ Z and at observation an-
gle ϑ < π/2 that increases monotonously with the wavelength of light λp. We may
therefore choose parameters from the optical VULCAN [179] laser in the Rutherford
Appleton Laboratory (RAL). Complementary to this is the measurement of polarisa-
tion effects in the probe which are inversely proportional to wavelength and for this

4This is a different labelling to the one used in [102], where the current double-shaft was labelled
double-slit instead.

5We will also discuss, where suitable, the single-shaft arrangement which is similar to the double-
shaft case, but with both beams on top of one another, displaced from the origin at (x0, 0, z0). This
will also be signified with a h superscript.
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purpose we will typically choose parameters from the XFEL [186] laser being built
at DESY, with values from the FLASH FEL [68] at DESY or the LCLS FEL [37]
at the SLAC National Accelerator Laboratory used as a comparison. A summary of
laser parameters is given in Tab. 3.1:

Strong-Field Lasers

PFS ELI HiPER

Peak av. power 0.5 PW 1 EW 1 EW
Wavelength 800 nm 800 nm 800 nm

Min. Pulse duration 5 fs 10 fs 10 fs
Date of Completion 2010 2015 2020

Probe Lasers

VULCAN FLASH LCLS XFEL

Peak av. power 100 TW 1–5 GW 10 GW 80 GW
Wavelength 1054 nm 6.8–47 nm 0.15 nm 1.6-0.1 nm

Pulse duration 700 fs 10–70 fs 230 fs 100 fs
Shot Frequency [Hz] >1/60 500 120 10
Date of Completion 20056 2005 20107 2009

Table 3.1: Current possible strong and probe lasers that could serve vacuum polari-
sation experiments

In accordance with the planned or current laser values in Tab. 3.1, we will evaluate
expressions with the parameters given in Tab. 3.2. In addition to laser parameters,

Set-up Ps[PW] Is[Wcm−2] λs[µm] τs[fs]

shaft 150 5 × 1024 0.8 30
slit 100(−500) 1(−5) × 1024 0.8 100

Set-up Pp[GW] λp[µm] wp,0[µm]

shaft 80 1.054/0.5278 100 − 400
slit 80 4(−16) × 10−4 (8−)100

Table 3.2: Default parameters used in the two experimental scenarios. All powers
are peak. Values in brackets denote other possibilities for particular situations which
we will declare in the text.

focusing widths will also govern interactions. As the strong field intensity should be
as high as possible, we anticipate the diffraction limit will be almost met and set
the strong-field focal spot width equal to its wavelength, ws,0 = λ0. The probe in
contrast, should be wide enough to capture both strong fields but also intense enough
that diffraction effects are measurable. The detector will then typically be placed in
the far-field region, which is defined more accurately in the following chapter.

We rely upon the assumption cτs > ls ≫ λs/2π, where ls is the effective strong-
field pulse length, to neglect temporal corrections to the Gaussian pulse and assume

6The Vulcan laser has been active since the 1980s, the next upgrade to 10 PW is scheduled to
begin in 2010.

7LCLS was completed in August 2009 but first runs with X-ray beam will begin in 2010.
8When frequency-doubled, we include an attenuation factor of 2.6 in-line with [179]
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Figure 3.1: The double-shaft a and double-slit b experimental scenarios, showing
the passage of a focused, monochromatic Gaussian probe laser beam, wavevector kp
passing through two ultra-intense monochromatic Gaussian beams, wavevectors ks,
ks,1, ks,2, with the diffracted probe photons being imaged on a detector at a distance
yd along the probe-axis from the interaction centres.

monochromaticity. For the double-shaft configuration, as the ultra-intense beams
travel through the probe, their movement during passage is not as important as
for the double-slit configuration, in which the “shape” of the aperture changes with
probe passage. Therefore, in the double-shaft case we take lhs to simply be equal to
the strong-field Rayleigh length and impose cτhs ≈ 3.5 yr,s, with a pulse length of
τhs = 30 fs. In the double-slit case, we choose to restrict lls more and define it as the
distance from the centre of the pulse at which the intensity falls to below a tenth
of its initial value, lls = 3zr,s. Then to ensure cτ ls > 2lls, we choose cτ ls ≈ 2 × 2lls
with τ ls = 100 fs. This then explains why different intensities are considered in the
double-slit case (Tab. 3.2), being limited through Is,0τ0A = E for a fixed laser energy
E and focus area A.

3.1 Diffracted electric field

In the solid-state perspective, we consider photons from the probe laser to be diffracted
by regions of the polarised vacuum. Employing Babinett’s principle [115] which states
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that the inverse of an aperture will give exactly the same diffraction pattern as the
aperture itself, we anticipate the two experimental geometries Fig. 3.1 will exploit the
interference between the two sources of diffracted field to produce a series of alternat-
ing bright and dark fringes in the far-field. However we have here three-dimensional
“apertures” which, instead of being sharply defined like apertures, will have along
two dimensions smooth Gaussian and along the other 1/(1 + x2) transmission be-
haviour. We bear in mind that this will bring a deviation from the over-simplified
slit and circular aperture diffraction picture.

Derivation of the diffracted electric field proceeds according to the familiar Green’s
function solution to the inhomogeneous wave equation Eq. (3.5) Ed(r, t) = −

∫
d3r′|r−

r′|−1Jvac(r
′, t − |r − r′|), (see e.g. [93] for derivation of this method). As we are in-

terested in how the probe is diffracted we Fourier-transform in time in order to be
able later to focus on the frequency ω = ωp:

Ed(r, ω) = −
∫
d3r′ dt

[
∇∧ ∂tM −∇(∇ ·P) + ∂2

tP
]

×exp
[
− iω

(
|r − r′| + t

)]

|r − r′| . (3.6)

Assuming detection instruments will have to be placed much further from the radiation-
intense diffraction region i.e. that ws,0,wp,0 ≪ r, such that:

ws,0

λp

(wp,0
r

)2
≪ 1,

wp,0
λp

(wp,0

r

)3
≪ 1, (3.7)

we can curtail the exponential of Eq. (3.6) to:

exp
[
− iω

(
|r− r′| + t

)]

|r − r′| ≈ 1

r
exp

{
− iω

[(
r − r̂ · r′ + 1

2r
|̂r ∧ r′|2

)
+ t
]}
. (3.8)

By retaining the quadratic co-ordinate terms, we are implicitly working within the
Fresnel regime. We can then integrate Eq. (3.6) by parts to acquire a more manage-
able form:

Ed(r, ω) ≈ ω2 exp (−iωr)
r

∫
d3r′ dt

(
M ∧ r̂ + P −P · r̂ r̂

)
× (3.9)

exp
[
iω
(
r̂ · r′ − 1

2r
|̂r ∧ r′|2 − t

)]
.

So far, this analysis is quite general. Let us specify the fields first to our experimental
scenarios; for both we have the following:

E(x, y, z, t) = Es(x, y, z, t) + Ep(x, y, z, t), (3.10)

Es(x, y, z, t) :=
[
Es,1(x, y, z, t) + Es,2(x, y, z, t)

]
x̂, (3.11)

Ep(x, y, z, t) := Ep(x, y, z, t)
[
x̂ cos θ + ẑ sin θ

]
, (3.12)

Ep(x, y, z, t) := Ep(x, y, z) sin
[
ψp + ωpt− kpy + fp(x, y, z)

]
. (3.13)

Then for each scenario, the strong-fields are different:

Ehs,{1,2}(x, y, z, t) := Ehs (x∓ x0, y, z ∓ z0) sin
[
ψs,{1,2} + ωst+ ksy

−fhs (x∓ x0, y, z ∓ z0)
]
, (3.14)

Els,{1,2}(x, y, z, t) := Els(x∓ x0, y ∓ y0, z) sin
[
ψs,{1,2} + ωst± ksz

∓f ls(x∓ x0, y ∓ y0, z)
]
, ,(3.15)
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where:

Ehs (x, y, z) :=
Es√

2

e−(x2+y2)/w2
s(y)

√
1 + (y/yr,s)2

, (3.16)

Els(x, y, z) :=
Es√

2

e−(x2+z2)/w2
s(z)

√
1 + (z/zr,s)2

, (3.17)

Ep(x, y, z) := Ep
e−(x2+z2)/w2

p(y)

√
1 + (y/yr,p)2

, (3.18)

and:

fhs (x, y, z) = tan−1
( y

yr,s

)
− ksy

2

x2 + z2

y2 + y2
r,s

, (3.19)

f ls(x, y, z) = tan−1
( z

zr,s

)
− ksz

2

x2 + y2

z2 + z2
r,s

, (3.20)

fp(x, y, z) = tan−1
( y

yr,p

)
− kpy

2

x2 + z2

y2 + y2
r,p

. (3.21)

From these initial geometries, using Faraday’s law we can derive the corresponding
magnetic fields (dropping terms much smaller than our working accuracy):

Bl
s(x, y, z, t) = −

(
Els,1 −Els,2

)
ŷ (3.22)

Bh
s (x, y, z, t) =

(
Ehs,1 +Ehs,2

)
ẑ (3.23)

Bh
p(x, y, z, t) = Ep

[
sin θ x̂ − cos θ ẑ

]
. (3.24)

We would now like to insert these fields into our expressions for the vacuum polar-
isation and magnetisation Eqs. (3.3) and (3.4). Since we are only interested in the
scattered probe photons, the relevant part of these expressions will be those contain-
ing terms in which the probe field occurs to just a single power. Higher powers Ejp
for j ∈ N1 will eventually lead to delta-functions in ω± jωp which correspond to off-
shell photons, which can be neglected [93]. The remaining terms form the relevant
polarisation and magnetisation contributions:

Ph(r, t) =
α2

45π2m4

[
4(Eh

s ·Ep−Bh
s ·Bp)E

h
s+7(Eh

s ·Bp+Bh
s ·Ep)B

h
s

]
, (3.25)

Mh(r, t) = − α2

45π2m4

[
4(Eh

s ·Ep−Bh
s ·Bp)B

h
s−7(Eh

s ·Bp+Bh
s ·Ep)E

h
s

]
, (3.26)

Pl(r, t) =
α2

45π2m4

[
2
(
(Els)

2−(Bl
s)

2
)
Ep+4El

s ·Ep El
s+7El

s ·Bp Bl
s

]
, (3.27)

Ml(r, t) = − α2

45π2m4

[
2
(
(Els)

2−(Bl
s)

2
)
Bp+4El

s ·Ep Bl
s−7El

s ·Bp El
s

]
,(3.28)

(where co-ordinates r, t have been suppressed in vectors on the right-hand side).
Now let us try and insert these expressions into that for the diffracted electric field
Eq. (3.9). By having Ed already as a function of frequency, the relevant physical
components become clear. Bearing in mind the typical exponential time-dependence
of the fields, the probe field occurs to the single power ± exp(iωpt), and the strong
fields therefore to the quadratic power ± exp(2iωst), one can see how integration
over the t co-ordinate in Eq. (3.9) will supply a variety of delta-functions in ω with
arguments: ω − ωp, ω − (ωp ± 2ωs). The final two delta-functions again represent
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evanescent waves and can be neglected. When we then Fourier-transform Ed back
into the time-domain, these unmeasurable terms can then be neglected. We note
that the on-shell terms retained then correspond to the constant terms in the strong-
field squared which, considering the sinusoidal time dependence, are therefore also
the values achieved by time-averaging all quadratic strong field combinations. Then
after this strong-field time-averaging and the Fourier transform in ω (essentially
evaluating the ω = ωp delta function), and keeping in line with the definition given
in [143], we have:

Ed(r, t) = E∗
d(r)

exp
[
i(−ωpr + ωpt+ ψp)

]

2i
+ c.c., (3.29)

Ed(r) =
ω2
p

r

∫
d3r′

(
M(r) ∧ r̂ + P(r′) − P(r′) · r̂ r̂

)
× (3.30)

exp
[
iωp
(
− y + r̂ · r′ − 1

2r
|̂r ∧ r′|2

)]
,

where c.c. is the complex conjugate, P(r) = 〈P(r, t)〉, M(r) = 〈M(r, t)〉 and 〈〉
denotes averaging over t. This time averaging leads to the generation of four different
types of term in the integral corresponding to the exponential function generated from
〈E2

s,1〉, 〈E2
s,2〉 and two originating from the cosine cross-term 〈Es,1Es,2〉. Insertion of

Eqs. (3.25-3.28) into Eq. (3.30) then yields the following formulae:

Eh
d(r) =

Is,0
Icr

4αEpv
h

45λ2
pr

4∑

k=1

Vhk (r), (3.31)

where Is,0 = E2
s,0/8π is the time-averaged strong field intensity, v is the polarisation

vector with:

vh =




(1/2)
[
1 + (y/r)

]
cos θ

−(1/2)
[
1 − (y/r)

][
(x/r) cos θ + (7z/4r) sin θ

]

(7/8)
[
1 + (y/r)

]
sin θ


+ O

[(x
r

)2
,
(z
r

)2
]
,

(3.32)
and Vhk (r) are the four integration volumes:

Vhk (r) =

∫ ∞

−∞
d3r′

eF
h
k

(1 + (y′/yr,s)2)
√

1 + (y′/yr,p)2
(3.33)

F
h
k = −iωp

(
y′ +

x′2 + y′2 + z′2

2r
− xx′ + yy′ + zz′

r
,

−(xx′ + yy′ + zz′)2

2r3

)
− 2

w2
s(y

′)
(x′2 + z′2 + x2

0 + z2
0)

−x
′2 + z′2

w2
p(y

′)
+ i tan−1 y′

yr,p
− iωpy

′

2

x′2 + z′2

y′2 + y2
r,p

+(x′x0 + z′z0)
( 4βk

w2
s(y

′)
+

2iΓkωsy
′

y′2 + y2
r,s

)
+ iΓk∆ψs, (3.34)

βk =





1 if k = 1
−1 if k = 2

0 if k = 3, 4,
and Γk =





0 if k = 1, 2
1 if k = 3

−1 if k = 4.
(3.35)
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El
d(r) :=

Is,0
Icr

αEp
45λ2

pr

(
(V l3 + V l4)ul1 + (V l1 − V l2)ul2 +

4∑

i=1

V liul3

)
, (3.36)

where the vectors, ui and the volumes Vk are defined as following:

ul1 :=




0

(z/r) sin θ + (x/r) cos θ − (y/r)
[
(x/r) cos θ + (z/r) sin θ

]

0


 ,

ul2 :=




(z/r) cos θ + (7xy/4r2) sin θ

0

−(x/r) cos θ + (7yz/4r2) sin θ


 ,

ul3 :=




cos θ

−(7z/4r) sin θ − (xy/r2) cos θ

(7y/4r) sin θ


+ O

[(x
r

)2
,
(z
r

)2
]
, (3.37)

V lk :=

∫ ∞

−∞
d3r′

exp(F l
k)

1 + (z′/zr)2
, (3.38)

F
l
k = −iωp

(x′2 + y′2 + z′2

2r
− xx′ + yy′ + zz′

r
− (xx′ + yy′ + zz′)2

2r3
+ y′

)

−x
′2 + z′2

w2
p,0

− 2

w2
0

(
x′2 + y′2 + x2

0 + y2
0 + 2βk(x

′x0 + y′y0)
)

+2iΓk

(
k0z

′ − tan−1 z′

zr,s
+
k0z

′(x′2 + y′2 + x2
0 + y2

0)

2(z′2 + z2
r )

)]
. (3.39)

(3.40)
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After integration in the plane perpendicular to strong-field propagation, we are left
with the remaining one-dimensional integrals:

Vhk =

∫ ∞

−∞
dy′

πw2
s,0yr,s√
αhx′α

h
y′

1

1 + y′2
1

1 + (yr,s/yr,p)2y′2
exp

{
4

αhx′

[ x0βk
ws,0(1 + y′2)

+
iΓkπx0ws,0
λsyr,s

y′

1 + y′2

]2
− 1

αhx′

(πws,0

λp

x

r

)2(
1 +

yr,s
r

y

r
y′
)2

4πi

αhx′

ws,0
λp

x

r

(
1 + y′

yr,s
r

y

r

)[ x0

ws,0

βk
1 + y′2

+ iΓkπ
y′

1 + y′2
ws,0x0

λsyr,s

]

1

4αhz

[−2

αhx′

(
π
x

r

ws,0

λp

)2(ws,0

r

z

r
+ y′

yzyr,sws,0

r4

)

4πi

αhx′

ws,0
λp

x

r

z

r

ws,0

r

( x0

ws,0

βk
1 + y′2

+ iΓkπ
ws,0x0

λsyr,s

y′

1 + y′2

)

+2πi
ws,0

λp

z

r

(
1 +

yr,0
r

y

r
y′
)

+ 4βk
z0

ws,0

1

1 + y′2

+4iΓkπ
z0ws,0
λsyr,s

y′

1 + y′2

]2
− iπy′2

y2
r,s

λpr

(
1 −

(y
r

)2)

−2iπy′
yr,s
λp

(
1 − y

r

)
+ i tan−1

(yr,s
yr,p

y′
)
− 2

x2
0 + z2

0

w2
s,0

}
, (3.41)

αhx′ := iπ
w2
s,0

rλp

[
1 −

(
x

r

)2
]

+
2

1 + y′2
+
(ws,0

wp,0

)2 1

1 + (
yr,s

yr,p
y′)2

+iπ
w2
s,0

λpyr,p

yr,s
yr,p

y′

1 + (
yr,s

yr,p
y′)2

(3.42)

αhz′ :=
1

αx′

(
π

ws,0

λp

x

r

)2(zws,0

r2

)2
+ iπ

w2
s,0

rλp

[
1 −

(
z

r

)2
]

+
2

1 + y′2

+
(ws,0

wp,0

)2 1

1 + (
yr,s

yr,p
y′)2

+ iπ
w2
s,0

λpyr,p

yr,s
yr,p

y′

1 + (
yr,s

yr,p
y′)2

(3.43)

V lk =

∫ ∞

−∞
dz′

πw2
s,0zr,s√
αlx′α

l
y′

1

1 + z′2
exp

{
π2

αly′

(
ws,0

λp

)2 [
i
y

r

(
1 + z′

zzr,s
r2

)

+i
π

αlx′

xy

r2
w2
s

rλp

( ix
r

+ z′
ixzzr,s
r3

− βk
π

x0λp
w2
s

)
− βk

π

y0λp
w2
s

− i
]2

−z′2
z2
r,s

w2
p,0

[ iπw2
p,0

λpr

(
1 −

(z
r

)2)
+ 1
]

+
4π

αlx′

(
ws,0

λp

)2 [
i
x

r

(
1 + z′

zr,sz

r2

)
− βk

π

x0λp
w2
s

]2
+

2πiz′
z

r

zr,s
λp

+ 4iΓkπz
′ zr,s
λs

[
1 +

x2
0 + y2

0

z2
r,s

1

2(1 + z′2)

]

−2iΓk tan−1(z′) − 2(x2
0 + y2

0)

w2
s

}
, (3.44)
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where we have defined:

αlx′ := iπ
w2
s,0

λpr

[
1 −

(x
r

)2 ]
+

2

1 + z′2
− 2iΓk

z′

1 + z′2
+

(
ws,0

wp,0

)2

, (3.45)

αly′ := iπ
w2
s,0

λpr

[
1 −

(y
r

)2 ]
+

2

1 + z′2
− 2iΓk

z′

1 + z′2
+
π2

αlx′

(
xy

r2
w2
s

rλp

)2

. (3.46)

First, we note that probe-focusing terms are absent from the double-slit integral
Eqs. (3.38) and (3.39). For X-rays, the Rayleigh length yr,p = πw2

p,0/λp ≫ ws,0

and so focusing terms can be removed from the integral, but will be kept when
the probe field occurs alone. The integrals Eq. (3.33), Eq. (3.34) and Eq. (3.38),
Eq. (3.39), we notice agreement in calculation of the vacuum-generated field Ed

with vector diffraction theory, as expected. It can be viewed as the result of a
Fresnel transform (the keeping the quadratic terms in |r − r′|, see e.g. [115]) of
an aperture function transversed by the probe beam, which in our case, due to
Babinet’s principle and QED, takes the form of the strong-field spatial intensity
distribution. We define useful diffraction parameters: νlx = w2

s,0/λpr, ν
l
z = w2

p,0/λpr

and νhx,z = νh = w2
s,0/λpr, which allow us under the condition ν ≫ 1 to keep Fresnel

terms and consider ourselves in the near-field, Fresnel limit or alternatively under
ν ≪ 1 to neglect Fresnel terms and consider ourselves in the far-field Frauenhofer
limit.

The expressions for the diffracted field are unwieldy in the present form. As our
analysis is accurate only to ∼ 1/π, we can neglect many terms appearing in the
above formulae. First of all, we study, for the typical situation in which, ws,0 +
x0 ≪ wp,0, the integrand with cosine term, V3 + V4. In the double-slit case, when

2πwp,0/λs ≫ 4

√
1 + (πw2

p,0/yλp)
2 and (λ0/2λp)(z/r) ≪ 1, the effective decay length

of 1/
√

1 + (y/yr,p)2, the cosine oscillates rapidly enough to be safely neglected (c.f.
Riemann-Lebesgue lemma), which can be seen to be fulfilled by X-rays. In the
double-shaft case, the term can be neglected approximately when max [yr,s/x0, yr,s/z0] ≪
1 (for x0, z0 6= 0), which is fulfilled for the finite strong-beam separations we will be
considering. Apart from in the special refractive index limit where y → 0, this is
satisfied for both optical and X-ray frequencies. In addition, as x/r, z/r ≪ 1 we
can neglect many terms in the polarisation vector which leaves us with two similar
expressions:

Eh
d(r) ≈ 4α

45λ2
pr

Is,0
Icr

Ep(Vh1 + Vh2 )
[
cos θ, 0, 7

4 sin θ
]
, (3.47)

El
d(r) ≈ α

45λ2
pr

I0
Icr
Ep(V l1 + V l2)

[
cos θ, 0, 7

4 sin θ
]
. (3.48)

In this often-encountered limit, the two geometries can be related to one another
through the substitution 4Vh ↔ V l.

To conclude this section, we plot in Fig. 3.2, the result of numerical evaluation of
the above integrals Eq. (3.41), Eq. (3.44) with θ = 0, π/4 respectively and typical
experimental parameters mentioned in the introduction to this chapter to be expected
from upcoming laser facilities. As is typical for diffraction patterns, we notice that
the electric field vectors point in opposite directions in different fringes. We also
note that the strongest part of the diffracted field in the central fringe points in the
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Figure 3.2: With the background colours representing the modulus electric field and
the arrows indicating direction and amplitude, we plot the vacuum polarisation in a

the double-shaft scenario for probe polarisation θ = 0 and b the double-slit scenario
for probe polarisation θ = π/4.

opposite direction to the probe, as expected from Le Chatelier’s law, or like a Lenz’s
law for polarisable materials. That the field in the double-shaft case appears to
disappear much quicker with x, z compared to the double-slit case is a consequence
of its geometry. We comment more on the effects of beam shape in the following
section, in which we discuss the directly measurable diffracted intensity.

3.2 Diffracted intensity

We calculate Poynting’s vector through a surface in the detector plane, where we
define the “detector plane” as shown in Fig. 3.1, (x, z)|y, y ∈ R

+, with typically
10 cm < y < 500 cm. This is by definition far removed from the interaction centres
and so E = Ep+Ed and we can use S(r, ωp) = E(r, ωp)∧B(r, ωp)/4π or as E = B∧k

in this vacuum region, S(r, ωp) = |E(r, ωp)|2k̂/4π 9. In the detector plane we have:

It =
cosϑ

4π
〈|Ep + Ed|2〉, (3.49)

where It is the total radiation intensity flowing through unit area in the detector plane
and cos ϑ = y/r (which will be set to one as x/r, z/r ≪ 1. Writing the diffracted

fields Eqs. (3.31) and (3.36) in the form E
h,l
d = −α(Is,0/Icr)Epζ

h,l
j v

h,l
j exp(iη)/2i+c.c.,

η = ωpr − ωpt − ψp and ζh,lj ∈ C and inserting it with the expression for the probe
(Eq. (3.13) and Eq. (3.18)) into Eq. (3.49) yields:

It(x, y, z) = Ip(x, y, z) + Ipd(x, y, z) + Id(x, y, z), (3.50)

9Since pair creation can be neglected, the average probe and strong field intensities will remain
unchanged, so that we can use the vacuum version of Poynting’s theorem.
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where:

Ip(x, y, z) =
1

4π
〈Ep(r) · Ep(r)〉 = Ip

exp
[
−2(x2 + z2)/(w2

p(y))
]

1 + (y/yr,p)2
, (3.51)

Ipd(x, y, z) =
1

2π
〈Ep(r) ·Ed(r)〉 = 2Ipα

Is,0
Icr

exp
[
−(x2 + z2)/w2

p(y)
]

√
1 + (y/yr,p)2

×
(
Reζj cos fp−Imζj sin fp

)
vj · Êp, (3.52)

Id(x, y, z) =
1

4π
〈Ed(r) ·Ed(r)〉 = Ip

(
α
Is,0
Icr

)2

vj · vk Re(ζjζ
∗
k). (3.53)

and 〈〉 refers to time-averaging, Ip = E2
p/8π and fp are the focusing terms Eq. (3.21)

and we have assumed x/r, z/r ≪ 1. Of most interest will be the change in intensity
due to QED vacuum fluctuations It−Ip. We notice immediately, that the cross term,
Ipd is a factor Icr/αIs,0 larger than the pure diffracted part, Id. However we also see
that due to the probe terms, Ipd is confined to the centre of the detector plane by
a Gaussian, whereas Id has no such strong decay10. It will first therefore, be most
interesting to study Id at larger transverse displacements x, z such that Id ≫ Ipd, Ip.
Secondly, as Ipd decays at a rate

√
2 slower with detector co-ordinate x, z than Ip,

there may be the possibility to study this vacuum signal in addition.

Using Eq. (3.47) and Eq. (3.48), we then have:

Ihpd(x, y, z) = Ip
4α

45λ2
pr

Is,0
Icr

exp
[
− (x2 + z2)/w2

p

]

√
1 + (y/yr,p)2

[1 +
3

4
sin2 θ]

(
Re(Vh1 + Vh2 ) cos fp − Im(Vh1 + Vh2 ) sin fp

)
, (3.54)

Ihd (x, y, z) = Ip

(
4α

45λ2
pr

Is,0
Icr

)2 [
1 + 33

16 sin2 θ
] ∣∣Vh1 + Vh2

∣∣2. (3.55)

As can be seen from Eqs. (3.54) and (3.55), the diffraction signal in both Ipd and Id
is maximised for θ = π/2.

We imagine that in the double-shaft case, non-zero x0, z0, will generate a typical
double-slit intensity pattern, with fringes along a direction perpendicular to the line
joining the two strong-field centres, i.e. x = zx0/z0 +c1, for an arbitrary constant c1.
We notice in the limit x/r, z/r ≪ 1, the diffracted field polarisation vector Eq. (3.32),
is to within O

(
(x/r)2

)
independent of the x and z co-ordinates. In addition, with an

optical laser ν = w2
p,0/λpr ≪ 1 and we will always be in the far field, so quadratic

Fresnel terms in Eq. (3.33) can be neglected. It can be shown from Eq. (3.33) that
under these conditions, there is in fact an SO(2) symmetry when the two vectors
(x0, z0) and (x, z) are both subject to an orthogonal rotation, which confirms our
physical intuition. Therefore, without loss of generality, we can set z0 = 0. In the
double-slit case, we might suspect that intensity results are completely independent
of separation of the beams along probe-propagation axis y0. This suspicion can be
explained by considering the path difference between two diffracted waves emitted
from the centres of the strong-fields centred at r1,2 = ±(x0, y0). The total phase

10We also mention that the next order term in the weak field expansion of the Euler-Heisenberg
Lagrangian Eq. (2.56) would give a term of the same order as Id, but would be a cross term and
again confined by the probe Gaussian.
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difference will be due to the difference ωp
(
|r1−r|−|r2−r|

)
as shown in Eq. (3.6) plus

the difference due to probe phase, as each wave is generated in phase with the probe
i.e. plus 2ωpy0y. With again x/r ≪ 1, one can show that the general condition for a
minima at the detector is 2x0x/r+2y0(1−y/r) = (2n+1)π/2 for n ∈ Z, and therefore
since the separation y0 is multiplied by essentially (x/r)2 ≪ x/r ≪ 1, it should lead
to no difference in the intensity pattern within the range of measurability. As this
turns out to be the case, we set it equal to zero for the entire remaining intensity
section, along with the phase difference between the two ultra-intense waves which
is essentially the same effect.

3.2.1 Vacuum field Id

Although much weaker in the centre of the detector plane, Id is an attractive quantity
to measure as decay with transverse co-ordinate is much slower than for Ip and Ipd and
in some way, represents the pure vacuum contribution. In the following subsections,
we investigate its form, and show how the shape of the patterns coincide with a
solid-state perspective.

Field diffracted onto the x-axis

We first focus on the double-slit, X-ray probe configuration and study the diffraction
pattern along the x-axis. Numerical evaluation of the leading-order QED contribu-
tions to the field diffracted onto the x-axis is shown in Fig. 3.3 a. With parameters
given in Tab. 3.2, focusing the probe to wp,0 = 100 µm, setting θ = π/2 and sepa-
rating the strong beams by a/w0,0 = 6, we calculate Id along the x-axis at y = 1 m,
shown in Fig. 3.3 a. The figure clearly shows a familiar squared cosine with sym-
metric, decaying envelope function, similar to the square of the Fourier transform
of a double-slit transmission aperture. The position of the minima agree excellently
with the formula for predicting minima of a classic double-slit (n+ 1/2)λp = d sinϑ,
where n ∈ Z, d = 2x0 is the slit-spacing and sinϑ = x/r. This result is expected
if one notes that with the above numerical parameters, the diffraction parameter νx
along the x direction is much smaller than unity, which allows us to neglect Fresnel
terms in the integral. By using Eq. (3.48), and integrating in just the x-direction we
achieve:

Id(x, y, z = 0, ωp) ∝ Ip,0 exp
[
− (x/r)2

2σ2
x

]
cos2

[
ωpa(x/r)

]
, σ2

x :=
λp

√
2

πws,0
, (3.56)

with Ip,0 = E2
p/8π, reproduces the position of the fringes, but with an envelope

function that decays too quickly, exemplifying the need to consider the full three-
dimensions. The cosine term originates from the interference between the vacuum
current generated in the two slits, and is independent of the single-slit shapes of
the strong beams. We compare this simplified Fourier pattern with the diffraction
pattern generated by numerically evaluating the original three-dimensional integral
in Fig. 3.3 a, and the deviation as x/r is increased shown. The overall agreement
with the double-slit picture however, shows that when VPEs are elicited by a laser,
one can successfully envisage the vacuum as a birefringent solid-state material. For
a moment, we discuss Id along the x-axis using the double-shaft set-up with X-ray
wavelength. Using the same parameters as in the double-slit case, we plot the result
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Figure 3.3: In a, the one-dimensional Euler-Heisenberg diffracted field along the x-
axis for a strong-field separation x0/w0,0 = 6, Is = 1024 Wcm−2 and other parameters
taken from Tab. 3.2, is plotted with a solid line. The dashed line indicates the result
obtained by the simplified one-dimensional integral given by Eq. (3.56), with correct
peak position but incorrect peak heights, particularly with increasing x-position.
Similarly, in b, the one-dimensional field with a/w0,0 = 0 is plotted along the z-axis,
with the dotted line representing the simplified analytical approach keeping quadratic
terms in the exponential, described in the text.

in Fig. 3.4 a. In this way, we can make a direct comparison of the two geometries
and notice a startling difference. The double-shaft fringes are in the same position
as for the double-slit as one would expect, but in addition, the single-shaft, circular
aperture diffraction pattern clearly appears. It follows that the envelope of the
entire pattern therefore has a different shape to that in the double-slit case. By
setting beam-separation to zero, we compare the envelopes in Fig. 3.4b, from which
we notice that although the double-shaft pattern appears to decay more quickly, it is
actually the case that it is more peaked in the centre. This is a manifestation of the
phenomenon of Poisson’s or Fresnel’s spot that also occurs in standard diffraction
theory from a circular aperture [140]. This is a clear exemplification of the impact
of beam geometry on diffraction pattern, as one might expect making the solid-state
comparison.

Field diffracted onto the z-axis

Returning to the double-slit set-up, with the X-ray probe focused into a waist wp,0 =
100 µm, we consider the diffracted pattern in the z direction i.e. the axis of strong-
field propagation. We set x0/ws,0 = 0 and now x = 0 and z ≪ y.

From Fig. 3.3b, we see that the intensity pattern is formed by a central Gaussian,
of width ≈ 50 µm, and two smaller exponential-shaped peaks some distance away.
Concerning the central peak, when we consider that the amplitude of the strong
field along the z-axis, and hence the “vacuum transmission aperture” is governed by
the factor 1/(1 + (z′/zr,s)

2), we see very clearly that the diffracted electromagnetic
field does not result from the aperture’s Fourier transform, which would have been a
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Figure 3.4: The effect of beam geometry. The double-shaft geometry with otherwise
the same experimental parameters as in Fig. 3.3 a is depicted in a and the comparison
of diffraction pattern envelopes (for zero beam-separation but otherwise the same
parameters) is given in b with the double-shaft result larger than the double-slit one.

decaying exponential, symmetric about the origin, i.e. the wrong shape and with a
smaller width of about 10 µm. The presence of the two peaks can be described by the
diffraction-grating-like sinusoid along the z′-axis. That the simple Fourier analysis
applied in the previous case does not work here, is already clear from the diffraction
parameter νz ∼ 25 not being smaller than unity. We wish to again explain our
diffracted field qualitatively, but now how it, and so how Eq. (3.36), depends upon
the z′ co-ordinate in the detector plane, z. We can see from Eq. (3.44) how the decay
of the integrand in the z′-direction is controlled by the softcore 1/(1+(z′/zr,s)

2) term.
The importance and presence of this term in all co-ordinates prevents us separating
out the z′ from the x′ and y′ integration variables and hence the z from the x and y
detector-plane co-ordinates in the integrands Vk, as we managed to do in the previous
case. However, if we consider that x = 0 and that z ≪ y, we can again neglect in
Eq. (3.9) the terms proportional to the vectors u1 and u2. Unlike the previous
situation, in the present case one can recognise that the integrals V3 and V4 are not
negligible. It can be shown by performing an analysis similar to that done in the
previous case that the integrals V1 and V2 give rise to the central peak (with width
wp,0/2 = 50 µm) while the integrals V3 and V4 give rise to the secondary smaller
peaks located at z = ∓2rλp/λ0 = ∓1000 µm. As we have mentioned, these come
about due to terms in the exponential, quadratic in the coordinates. It should be
noted that a finite strong-field pulse length, smaller than that of the probe, would
show up as a single-slit envelope, whose form would depend on the temporal shape
of the pulse and would probably suppress these smaller Fresnel peaks in experiment.

Field diffracted onto the x-z plane

Specialising now to the double-shaft set-up, we take strong-field laser parameters
from Tab. 3.2. The effect of the double slits separated by x0/w0,0 = 40 on a probe
laser with waist wp,0 = 290 µm, is then shown in Fig. 3.5 on a 15 cm× 15 cm detector
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at a distance y = 5 m. Agreement with the classic double-slit formula can again be
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Figure 3.5: Id, without and with strong laser separation (x0/w0 = 40), for the
parameters given in the text. The agreement of the well-known formula for diffraction
minima: (n + 1/2)λp = d sin ϑ for n ∈ Z, d = 2x0, λp = 0.527 µm, sinϑ = x/r, is
shown by crosses in b. The central circle demarcates the region in which Ipd + Ip ≥
0.01Id.

seen, indicated by crosses. Each maximum is slightly asymmetric with the peak
shifted towards the centre of the pattern. In addition, the typical single-slit rings do
not appear. These effects can be understood when studying the analytical expression
of Eq. (3.55). The probe Rayleigh length yr,p ≫ ls and so probe defocusing occurs on
a length scale much larger than the typical decay length in the problem. In addition
as the diffraction parameter ν = ws,0/λpr ∼ 2× 10−7 ≪ 1, we can neglect all Fresnel
terms in the integrand Eq. (3.33). We then arrive at an expression:

Vh1,2 = yr,sw
2
s,0

∫ ∞

−∞
d3r′

exp
[
− F ′h

1,2

]

1 + y′2
, (3.57)

F
′h
1,2 = iωp

(
yr,sy

′ +
ws,0xx

′ + yr,syy
′ + ws,0zz

′

r

)

+
2[(x′ws,0 − β1,2x0)

2 + (z′ws,0 − β1,2z0)
2]

w2
s,0(1 + y′2)

+
w2
s,0

w2
p,0

(x′2 + z′2), (3.58)

which we can approximately integrate, assuming λp/πwp,0 < x/r, z/r ≪ 1 and that
the cosine integral can be neglected yr,s/x0 ≪ 1. After insertion into Ihd (Eq. (3.55)),
we then have:

Ihd ≈ 98π

452
Ip

(yr,sws,0
λpr

)2
(
α
Is,0
Icr

)2

cos2
[
ωp

(
x
rx0 + z

r z0

)]
H
(x2 + z2

r2

)
, (3.59)

with H being the single-slit envelope function:

H
(x2 + z2

r2

)
=

exp
[
− πws,0

λp
(x2 + z2)/r2

]

(x2 + z2)/r2
. (3.60)

In order to compare the accuracy of the envelope function, we set x0 = 0 (which,
as V3,V4 essentially becomes equal to V1,V2 corresponds to multiplying by a factor
4 the above expression for Id) and the agreement with numerical results is then
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displayed in Fig. 3.6. Unlike the classic two-dimensional Fourier transformation of
slit-like aperture functions, we have a fully three-dimensional integral and it is the
final integration in the y′ co-ordinate that gives the Coulomb-like dependence in
detector-plane co-ordinates, x and z, which is softened further by an exponential at
the origin (Eq. (3.60)). This smoothness of the three-dimensional aperture at once
explains why no single-slit rings appear and also why the maxima, multiplied by
this single-slit envelope, are “tilted” toward the centre of the pattern. With these
parameters, there is indeed an exponential decay but the decay length ∼ λpr/πws,0
is much larger than the region in which our calculations are valid, x/r, z/r ≪ 1. As
previously mentioned Coulomb-like dependence defines no decay length and within
these values of x/r and z/r, changes very little on the detector plate compared
to the probe Gaussian of width ∼ wp,0 , all of which supports the much greater
width of Id compared to Ipd. Turning to quantitative results, we envisage verifying
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Figure 3.6: The agreement of the analytical approximation to the diffracted intensity
I ′d(x) for zero strong-beam separation. In a, we see how the envelope function ∼
1/(x/r)2 attained after a full three-dimensional integral (dashed-line) agrees with
the full numerical result, with b showing the normalised difference.

the phenomenon by either a full or partial resolution of the interference pattern,
or else by simple counting of diffracted photons. By making the grid of points in
Fig. 3.6 ever-finer, we can see how the integral and therefore the predicted number
of photons per shot converges. Since the diffraction pattern must be smooth, this
number should then yield a reliable value. At our probe’s wavelength of 527 nm
commercially available back-illuminated CCDs have an efficiency of 90% [144]. From
numerical results for the aforementioned typical experimental parameters, on a region
in which Id(r) is more than one-hundred times larger than Ip(r) and Ipd(r), taking
into account CCD efficiency, we expect per shot of the strong field, 4 photons from
the vacuum signal. This point is further expounded in Sec. 3.2.3.

3.2.2 Probe-vacuum cross-term Ipd

Evaluation of the Ipd term Eq. (3.54) in the double-slit arrangement, for a strong-
beam separation of x0/ws,0 = 12, θ = π/2 and the remaining parameters those in
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Figure 3.7: Plot a is of the double-slit Ipd vacuum signal intensity, with the same
experimental parameters as Fig. 3.3. In plot b, we show the logarithm to the base
10 of the relative difference in intensity due to the vacuum signal in a, Ipd/Ip, the
signal-to-noise ratio.

Tab. 3.2, is shown in Fig. 3.7 a. The position of the double-slit fringes is still clearly
noticeable and agrees with the classic formula but there is also some new structure in
the z-direction. Since the Ipd term spreads out in the x-z plane with a width

√
2 larger

than that of the probe, there exist regions in which the ratio of diffracted to probe
signal is favourable (see the log plot of the signal-to-noise ratio Fig. 3.7b). In order
to maximise this advantage, we choose parameters such that the spread of the probe
is smallest on the detector, which given a probe width of wp,0

√
1 + (yλp/πwp,0)2,

is minimised for wp,0 =
√
yλp/π, giving a width of

√
2yλp/π. At the same time,

moving too far from the centre of the pattern will reduce the intensity to the point
where nothing can be detected. If we consider drilling a hole of radius ρ into the
centre of the detector and taking the decay of the Ed term in Ipd to be comparatively
flat as an approximation we obtain limits on ρ:

[
lnNpd

]1/2
&

ρ

wp(y)
&
[
ln

Np

Npd

]1/2
, (3.61)

for total incident probe and cross-term diffracted photons Np, Npd. This agrees with
the intuitive notion that to stand any chance of measurement, the total signal must
be larger than statistical noise, which if modelled with Poisson statistics implies
Npd >

√
Np

11. Now, we can either fulfil this condition that the vacuum signal is
larger than the minimum background noise over the entire plate, or we can consider
measuring counts only in regions whereNpd(ρ) & Np(ρ). In both cases, the number of
diffracted photons will simply increase with probe intensity, whereas as Np depends
only on laser energy and wavelength λp and so for larger probe intensity, we can
easier fulfil both bounds on ρ in Eq. (3.61). First setting y = 50 cm and the still
at ELI comfortably attainable Is,0 = 5 × 1024 Wcm−2, for a probe focal width of
8 µm, we achieve Npd = 7.5 × 107 from Np = 8.0 × 1012 probe photons per shot.
Secondly, we can plot how Npd(ρ) varies with hole radius, and for a tighter probe
beam focal width of wp,0 = 3.6 µm, which, in the light of recent results of focusing

11When the statistical error on the number of photons is modelled by a Poisson distribution, the
relative error in the mean photons measured per shot, µ, given by 1/

√
nµ for n shots. As long as

lower intensity lasers still satisfy the condition Npd >
p

Np, they can indeed be used, it is just a
question of how long the experiment can be run to make nµ large enough to effectively eliminate
statistical errors.
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hard 20keV photons to a width of 7 nm[131], we expect to be attainable in the near
future, we achieve the dependency shown in Fig. 3.2.2. In the region Npd(ρ) & Np(ρ),
taking into account the efficiency of commercially-available CCDs for λp = 0.4 nm or
3.2 keV photons (& 90% [8]), we expect approximately two diffracted photons to be
measurable per shot of the probe beam. This can then be compared with the results
of the previous section for Id which, by not being subject to the probe Gaussian
envelope, has a much wider spread, and is possibly easier to measure as reported in
[102], with the caveat that an optical probe was used with an energy 2.5× 103 larger
than in the present X-ray case.
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Figure 3.8: For a probe beam focused to wp,0 = 3.6 µm, wp,0 = 5.0 µm and
a large enough detector hole radius ρ, the photon count from the vacuum-probe
cross term Npd(ρ) (solid-line) becomes comparable to that from the probe Np(ρ) =
Np(0) exp(−2(ρ/wp)

2) (dashed-line) (here around 2 diffracted photons) and greater
than statistical noise from the probe

√
Np(ρ) (dotted-line).

3.2.3 Photon counting

One can pose the question: how many photons do we require in order that we
can say, to some confidence level, that we indeed have the anticipated double-slit
pattern? Such a question is likely to be theoretical unless experimentalists can align
the strong and probe beams with sufficient precision. Nonetheless, one can calculate
the visibility, V of any interference pattern by splitting the detector into strips aligned
parallel to the pattern and with equal widths ideally capturing alternate regions of
maxima and minima. The total intensity falling on regions containing “maxima” is
then assigned Imax and that falling on minima Imin. In an experiment, as the number
of photons N that have been registered by the detector, increases, the visibility:

V (N) =
Imax(N) − Imin(N)

Imax(N) + Imin(N)
V ∈ R, 0 < V < 1, (3.62)

should tend towards the population visibility V∞ = limN→∞ V (N). As V (N) is
a stochastic variable, we can imagine how it will fluctuate around this population
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value. Defining the sample size with a maximum number of photons per experiment
N0, we can conduct many “photon counting” trials to observe how the relative error
(V (N)− V∞)/V∞ drops below a given error value after a certain number of photons
have arrived. Focusing on the most attractive results: Id for the double-shaft, shown
in Fig. 3.5, we performed 10, 000 such numerical experiments, in each of which, are
registered N0 = 10, 000 photons.

By “drilling” a hole in the centre of the Id distribution, we can consider regions in
which Id ≥ 100(Ipd + Ip) ≫ Ipd + Ip. Using the symmetry in the total diffraction
pattern, we can sum grid squares along the direction of the fringes and after normal-
ising to unit area, reduce the two-dimensional to a one-dimensional PDF (probability
density function), which in our case, had 256 points. Since, when forming the visi-
bility, we are only interested in the counts in the Imax and Imin bins, we split the 256
points into 16 bins of alternating maxima-minima stripes and average the contents.
We now have a 16-point PDF and assign, based upon the shape of the pattern the
eight “maxima” and eight “minima”. From this we can already calculate the popu-
lation visibility, because N → ∞ photons would distribute themselves exactly in the
proportions given by the PDF. This yields in our case, V∞ = 47.6%. We then ran-
domly generate detected photon positions based upon this PDF, forming a list with
10,000 entries. The visibility V (N) is then calculated for the first N points and the
relative error calculated as a function of N . An example of some stochastic ”trails”
the visibility followed, are registered in Fig. 3.9b. This is then repeated 10,000 times
and the 10,000 trails are then analysed to find the maximum Nx at which an error
was greater than a given value x. These Nxs are then averaged over and the results
plotted in Fig. 3.9 a. With our aforementioned experimental parameters for measur-
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Figure 3.9: In a, with 10,000 photons per 10,000 trials, the expected number of
photons N required to reduce the error in the visibility below the values on the
horizontal axis is plotted, along with error bars given by the standard deviation of
N over the trials. Three typical stochastic “trails” of how the visibility V (N) with
number of registered photons N oscillates around the population visibility V∞ is
depicted in b.

ing Id in the double-shaft set-up, we deduce from Fig. 3.9a, that ∼ 1,000 photons are
required before the error in the visibility will typically fall below 10%, although the
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standard deviation remains fairly large. With ELI, this corresponds to an operating
time of approximately four hours. This process could then be repeated for e.g. Ipd.

3.3 Induced ellipticity and polarisation rotation

The goal of this section is to calculate the rotation of the polarisation ψ and induced
ellipticity ε of the probe electromagnetic wave when the vacuum contribution is
added, Et = Ep + Ed. We will show how the geometry of the pulses plays again an
important role. Focusing our analysis on the polarisation of the diffracted probe on a
small region around the origin in the detector plane allows us to deal with collimated
waves for which polarisation quantities are well-defined. Moreover in this region, we
can also compare results to previous calculations [143, 82]. We then set x, z → 0 in
Eq. (3.47) and notice that in the double-shaft case, for a finite strong-field separation,
we have a mirror symmetry in both x, x0 and z, z0 co-ordinates. Therefore, the same
diffracted field impinges on (x, z) = (0, 0) if we perform a reflection on one beam in
the x0 and z0 co-ordinates, i.e. simply place the one beam on top of the another and
form a “single-shaft” geometry of a single, displaced strong laser beam. In the double-
slit geometry, although this symmetry is present in the x and x0 co-ordinates, as both
strong beams together generate a standing wave, we cannot replace the two with a
single beam set-up. However, it has already been argued that the wave oscillations
contribute only a negligible amount to the diffracted field Eq. (3.48) and so, when
y0 ≪ yr,p, y0 is an inconsequential parameter in polarisation measurements in the
double-slit case (which we demonstrate later), so in principle a displaced single-slit
geometry would give very similar results to the double-slit case.

Once derived, our results will be an enhancement of the single-slit, on-axis (x0 = y0 =
0) geometry of [143], which also lacked probe defocusing terms and suffered therefore
from the unphysical result that all vacuum polarisation effects on the probe polari-
sation tended to zero with increasing observation distance. These results therefore
form a useful comparison to discuss the effects of these changes in the experimental
set-up.

Derivation of expressions

We begin by deriving expressions for the ellipticity and polarisation direction in the
most straightforward way. These two quantities are independent of time and this
detail must also appear in the derivation. This can be achieved by utilising the fact
that the probe field and vacuum contribution are in phase. We will concentrate on
the electric field part of the wave as by Faraday’s equation the magnetic part will
have the same behaviour, and imagine the field vector tracing out an ellipse: where
Et(r, t) = Ep(r, t) + Ed(r, t), as shown in Fig. 3.10. With η = ψp + ωpt − kpy, by
splitting up the sinusoidal time dependence into spatial and temporal parts, we can
rewrite Eqs. (3.47) and (3.48) using the time-dependence of the strong field defined
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z

Figure 3.10: The total emergent field Et = Ep + Ed, which for an angle of probe
polarisation θ 6= 0, has components both parallel to the polarised vacuum in the
x-direction as well as perpendicular in the z-direction. The phase difference acquired
from the differing refractive indices these components feel, induces an ellipticity in
the emergent field (birefringence). The probe vector is rotated when the diffracted
component, which is in phase, is added (dichroism).

in Eq. (3.29) as well as the probe field in the following way:

Eh
d(r, t) =

Is,0
Icr

8αEp
45λ2

pr

(
ReVh2 sin η−ImVh2 cos η

)[
cos θ, 0, 7

4 sin θ
]
, (3.63)

El
d(r, t) =

Is,0
Icr

αEp
45λ2

pr

2∑

n=1

(
ReV ln sin η−ImV ln cos η

)[
cos θ, 0, 7

4 sin θ
]
, (3.64)

Ep(r, t) =
(
E(1)
p sin η−E(2)

p cos η
)[

cos θ, 0, sin θ
]
, (3.65)

where we have defined:

E(1)
p := Ep

exp[−x2+z2

w2
p

]

1 + (y/yr,p)2
E(2)
p := Ep

exp[−x2+z2

w2
p

]

1 + (y/yr,p)2
y

yr,p
. (3.66)

For either geometry we can form the following matrix equation:

(
E
h,l
t · x̂

E
h,l
t · ẑ

)
=

(
(4ReX h,l+E

(1)
p ) cos θ (−4ImX h,l+E

(2)
p ) cos θ

(7ReX h,l+E
(1)
p ) sin θ (−7ImX h,l+E

(2)
p ) sin θ

)(
sin η
cos η

)
, (3.67)

with:

X h =
2α

45λ2
pr

Is,0
Icr

EpVh2 , (3.68)

X l =
α

180λ2
pr

Is,0
Icr

Ep

2∑

n=1

V ln. (3.69)

Eq. (3.67) can be inverted and squared to eliminate the time-dependent terms and
give the desired equation of an ellipse, Ah,lx2,+Bh,lxz + Ch,lz2 = r2, where the x
and z co-ordinates are given by the corresponding components of the total electric
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field and:

Ah,l =
[
(E(1)

p )2 + (E(2)
p )2 + 14(Ṽh,lr E(1)

p + Ṽh,li E(2)
p )

+49((Ṽh,lr )2 + (Ṽh,li )2)
]
sin2 θ,

Bh,l = −
[
(E(1)

p )2 + (E(2)
p )2 + 11(Ṽh,lr E(1)

p + Ṽh,li E(2)
p )

+28((Ṽh,lr )2 + (Ṽh,li )2)
]
sin 2θ,

Ch,l =
[
(E(1)

p )2 + (E(2)
p )2 + 8(Ṽh,lr E(1)

p + Ṽh,li E(2)
p )

+16((Ṽh,lr )2 + (Ṽh,li )2)
]
cos2 θ, (3.70)

where Ṽh,lr = ReṼh,l, Ṽh,li = ImṼh,l with Ṽh = 2Vh1 and Ṽ l = V l1 + V l2. The situation
is simplified by first performing an orthogonal rotation of the co-ordinates M(φ0) ∈
SO(2) by an angle φ0 which removes the xz term and thus aligns the major and
minor axes of the ellipse with the x and z the co-ordinates. Once this rotation angle
φ0, equal to the total polarisation angle, is found, the formula for the ellipticity is
then simply the ratio of the minor to the major axis lengths i.e. the new coefficients
A′, C ′ of x2 and z2, giving the following:

tan 2(θ + ψ) =
−B
C −A

, (3.71)

(tan ε)2 =
(A+ C)

√
(A− C)2 +B2 − (A− C)2 −B2

(A+ C)
√

(A− C)2 +B2 + (A− C)2 +B2
, (3.72)

where θ + ψ = φ0 is the new polarisation for the total field, probe plus vacuum. By
expanding these expressions Eq. (3.71) to first order in all small variables: Ṽh,lr,i /Ep,
ψ and ε, one finally achieves the desired quantities:

ψh =
α sin 2θ

15λ2
p

Is,0
Icr

(
ReVh1
y

+
ImVh1
yr,p

)
, (3.73)

εh =
α sin 2θ

15λ2
p

Is,0
Icr
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)
, (3.74)
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120λ2
p
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Icr

2∑
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(
ReV lk
yr,p

− ImV lk
y

)
. (3.76)

Analysis and results

We notice that unlike the previous case, these vector vacuum polarisation effects are
maximised for θ = π/4. In addition, since diffraction doesn’t play a role and ψ and ε
increase with frequency (even after the integrations are performed), we would profit
from switching to an X-ray probe laser such as the XFEL at DESY whose parameters
were mentioned in Tab. 3.1.

As an initial check of our results, taking the limit of x0, y0,→ 0; yr,p → ∞ in ψl, εl,
we recover the expression in [143]. We also note that the introduction of more
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experimentally relevant defocusing terms in the probe, produces the more realistic
and expected result that limy→∞{ψ, ε} = {ψ∞, ε∞} 6= {0, 0}.

As a further confirmation of validity, we can compare the double-shaft expressions
to existing calculations arrived at by Heinzl et al. [82] when we take x0 = z0 = 0 and
the two limits: the refractive-index and the crossed-field limit. The first is obtained
when we take y → 0 (near region), in a regime where ψ becomes linear with y and
disappears, and ε converges to a constant. The crossed-field limit corresponds to a
constant strong field, i.e. k0 → 0, which we can achieve when we let the counter-
propagating pulse be e.g. of the form of a cosine. This ensures that neither the
strong electric nor magnetic field disappears in this limit, so that we can keep the
normalisation used in Eqs. (3.73) and (3.74). To be consistent, the time-averaging
procedure which was equivalent to neglecting evanescent waves must be repeated
with the precondition that k0 = 0 as 〈cos2(ωpt)〉 = 1/2 6= 〈limωpt→0 cos2(ωpt)〉 = 1,
for a 〈〉 a time-average over integer number of periods. Then Eq. (3.74) tends to the
result in [82]:

ε =
2απ

15

Is,0
Icr

l

λp
sin 2θ; l =

yr,pyr,0
yr,p + yr,0

. (3.77)

The only difference to the formula in [82] is that we have incorporated the focusing of
the strong- and probe- fields, which automatically generates the effective interaction
length l of the beams. Focusing on our results, first in the double-slit geometry, we

y[cm]

|ψ
|,
|ε
|[
×

1
0
−

7
ra

d
]

0 50 100 150 200

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Figure 3.11: With parameters from Tab. 3.2, dark lines represent absolute polarisa-
tion rotation and light ones absolute induced ellipticity, the dashed lines are values
for x0 = 0 without probe defocusing terms given in [143], and the solid lines represent
the new values with strong-field beams separated by x0/ws,0 = 10.

vary y and set θ = π/4 to maximise the effect of the polarised vacuum and show a
demonstrative plot in Fig. 3.11, for how ψl and εl vary for a fixed strong-field beam
separation, x0/ws,0 = 10, y0 = 0, with the other parameters taken from Tab. 3.2.
The first difference we note is that in comparison with results from [143], for y ≪ yr,p,
polarisation and ellipticity oscillate rapidly and there are sizeable ranges where both
are larger than that for previously derived results. For the choice of parameters in
the plot, yr,p ≈ 80 m, and so if we keep within this range, i.e. disregard the effect of
defocusing terms, we can clearly ascertain the improvement brought by separating
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the strong-field beams. This perhaps counterintuitive result is an exemplification of
VPEs’ sensitive dependence on beam geometry and can be shown to be consistent by
following through the conditions on the detector-plane co-ordinates and studying the
form of the integrals V1,2 (Eqs. (3.33) and (3.38)) which appear in our expressions
for ψ and ε (we can once more disregard the contribution of V3,4):

V l1,2 =

∫
dy′ dz′

1

1 + (z′/zr,s)2
exp
[
−iωp

z′2

2y
− z′2

w2
p,0

]
Iy′,± Jx′,±, (3.78)

Iy′,± =

∫
dy′ exp

[−2(y′ − y0)
2

w2
s

]
, (3.79)

Jx′,± =

∫
dx′ exp

[
−iωp

x′2

2y

]
exp
[
− x′2

w2
p,0

]
exp
[−2

(
x′ ∓ x0

)2

w2
s

]
. (3.80)

From Eq. (3.79) we can see more clearly, that under these conditions (most notably
that y0 ≪ yr,p), since there is no other structure in the y-direction, y0 becomes an
inconsequential parameter when measuring polarisation and ellipticity in the double-
slit case and is set to zero. By separating strong-field beams in the x-direction, we
see that we only produce an effect on the x′-integrals, Jx′,±. When considering the
contribution from the first complex exponential factor in Eq. (3.80), for a fixed x0, in
varying y, we vary the overlap this factor’s real cosine and imaginary sine functions
with the other two Gaussian integrand factors, which have maxima at x′ = 0 and
x′ = ∓a respectively. Hence some values of y form local maxima in ψ and ε, and due
to the trigonometric nature of the varying function, we have the oscillating shape in
Fig. 3.11. However, in the limit y → 0, both of these values tend to constants:

ψl = 0; εl =
α
√
π

30
√

2

Is
Icr

ws,0

λp
exp
[
− 2x2

0

w2
s,0

]
sin 2θ (3.81)

We also show how ψ and ε depend upon beam-separation x0 in Fig. 3.12, which
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Figure 3.12: The ratios of |ψ(x0)/ψ(0)| (continuous line) and |ε(x0)/ε(0)| (dashed
line) in the double-slit set-up for the same parameters as in Fig. 3.3 but with wp,0 =
200 µm.

also shows oscillatory behaviour, with the consistency of the results being explained
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with similar arguments to those above for the dependence on y. In varying x0, the
first two factors in Eq. (3.80) act as fixed peaks, whereas the final Gaussian term is
moved to place its peak x = ∓x0, at such a position which could be used to maximise
the integral. We recall from Eq. (3.73)-Eq. (3.76) that ψ and ε have predominantly
real and imaginary parts respectively. When considering the contribution from the
imaginary part of the integrand, we see that the maximum of the first complex
exponential factor, i.e. of the sinusoidal, will not occur at the origin, unlike that of
the second Gaussian factor, and hence in order to maximise this integral comprising
three functions we should place the peak of the third function somewhere between
the peaks of the first two, which corresponds to a value x0 6= 0. Moreover, as the
first sinusoidal factor is periodic, and has a wavelength much smaller than the width
wp,0, of the Gaussian which multiplies it, we should have a series of maxima in both
ψ(x0) and ε(x0) which decay slowly with x0 (see Fig. 3.12). For the case y ≪ yr,p,
our explanation would on the one hand predict that the value of ε(x0) would initially
rise as x0 increases, and on the other hand justify the maximum of ψ(x0) being very
close to the origin, and hence that ψ(x0) would decrease as x0 initially increases from
0. These results can be further confirmed via differentiation under the integral in
Eq. (3.78), and are exactly what we observe in the numerical evaluation depicted in
Fig. 3.12. This increase therefore physically exemplifies the role played by Fresnel
terms and non-trivial beam geometry. From numerical analysis, the polarisation and
ellipticity were found to increase by a factor of 1.4 over x0 = 0 values. It should
be noted that neither through varying y nor y0 directly, did we observe any notable
dependence of the results on y0, corroborates our earlier argument for setting y0 = 0.

In the single-shaft set-up, this time using X-rays, we also see a similar increase in the
ellipticity and polarisation rotation, depicted inFig. 3.13. For the same experimental
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Figure 3.13: The ratios of |ψ(x0)/ψ(0)| (continuous line) and |ε(x0)/ε(0)| (dashed
line) in the single-shaft set-up for the same experimental parameters as in Fig. 3.12
but with y = 50 cm.

parameters as in Fig. 3.3 but with y = 50 cm and a/ws,0 = 10, we achieve a modest
increase in the ellipticity of 1.3 over x0 = 0 values. A double-shaft geometry was
tested as to leading to exactly the same relative increase as for the off-axis single-
shaft one, which as previously explained, can be understood as a consequence of the
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symmetry of the set-up. This increase drops off quickly with a, which is a consequence
of the shaft geometry, just as seen for the rapid drop-off of Id with respect to the
double-slit set-up.

3.4 Discussion

The prospect of observing the polarised quantum vacuum using lasers is certainly
enticing. There are many predictions, from the theory that explains the side of
nature we believe we understand best, waiting to be tested in as yet unexplored
parameter regimes. With upcoming laser facilities such as ELI [60] and HiPER [86],
the technology will soon be ripe to exploit, with also the possibility of discovering
new physics [80, 4, 3, 75, 171]. In this arena, on the one hand, we have envisaged
a further realisation in the many generations of the double-slit experiment in which
we remove all material constituents and investigate light-by-light diffraction. On
the other, we have shown how polarisation results can be increased by using such a
double-slit configuration. Often, beam shape and the effects of non-trivial Fresnel
diffraction have played a role. From a realistic perspective, in order to observe such
effects, many shots of an ultra-intense laser are required. Due to the incredible
intensities involved, the accuracy in the positioning of the strong lasers will, aside
from issues concerning beam profile, pulse shape, triggering and focal points, prove
a great experimental challenge. Nevertheless, a detection of any diffracted photons,
in whatever fashion, would be a breakthrough. We now comment on some of the
idealisations of our calculations.

Gaussian beam

Throughout our analysis, what we have named a “Gaussian beam” was only the
leading-order solution of Maxwell’s equation for a wave-like vector potential [155].
The expansion is in the diffraction parameter ǫ = ws,0/yr,s, with yr,s being the
relevant Rayleigh length and since for ǫ ≪ 1, this is approximately an angle with
the propagation axis, the solution is also known as the “paraxial beam”. This lead
to us assigning a provisional accuracy of ≈ ǫ = 1/π to our calculation, although it
should be mentioned that slightly decreasing the focusing of the strong field beams
would increase this accuracy by a factor of λs/ws,0. We briefly study the effect of
higher orders of the general Gaussian beam given in [156], by writing down a general
integrand for all possible corrections. The simplified expressions for the diffracted
field in the double-shaft case Eq. (3.47) can act as a starting point, showing, that we
need only focus on V1,2 for finite beam separation. Ignoring prefactors and choosing
a wide probe-beam wp,0 ≫ ws,0, at an observation point r = y, we can write:

δEd ∼
∫
d3r′

(
z

ws,0

)l ( x

ws,0

)2m′ (
ws(y)

ws,0

)k+1(x2 + z2

w2
s(y)

)t′

exp

[
− iωp

(
x′2 + z′2

2r

)
− 2

w2
s(y)

(x′2 + z′2 + x2
0) −

4βk
w2
s(y)

(x′x0)

]

where ∼ shows the illustrative nature of our arguments, l = 0 or 1, m′ = 0 or 1,
k, n, t′ ∈ N0, and all are equal to zero in the leading-order case we considered. We
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have also neglected the effect of a phase difference between the probe and strong-
field, as this simply amounts to a spatial shift in the longitudinal direction of the
time-averaged strong-field, which as already argued, in neither geometry, makes a
measurable difference to the diffracted field. By integration it can be shown that
all higher order contributions are approximately less than or equal in magnitude
to ǫ = 1/π times our leading-order solution. In addition, we also note the result
from [156] that the first correction to the total intensity of the full Gaussian beam is
ǫ2/4 ∼ 0.03, which motivates us taking only the leading-order term in our calculations
as our results are proportional to the strong-field intensity or its value squared. It is
possible however, that higher-order corrections may slightly reduce the visibility of
the pattern.

Beam shape

One assumption that we have made in considering our set-up “realistic” is that the
ultra-intense laser beams that will be produced at forthcoming laser facilities can be
faithfully described by the Gaussian beam solution. However, from a detailed study
of a 7µm-diameter focal spot generated at the Vulcan laser (λ = 1054nm), it was
found that a q-Gaussian of the form q(ρ) = [1+(ρ/4.4539)2 ]−1.4748, for ρ equal to the
transverse radial co-ordinate, produced the best fit [139, 134]. Although the beam
profile q(ρ) is not a solution to Maxwell’s equation, the claim that only a distinct
separation of beams is required to generate an interference pattern, irregardless of
beam shape, can in some way be tested. For our strong beam focal spot of dimension
ws,0 = 0.8 µm, we instead choose to study q1(ρ) = [1+(ρ/2ws,0)

2]−3/2, which can be
partially analytically tackled. Although it is not possible to calculate a corresponding
number of photons, it is possible to calculate the visibility. In the double-shaft set-
up, using the standard set of parameters given in Tab. 3.2, and a longitudinal beam
shape given by the same factor as for the Gaussian beam, the visibility was found to
remain approximately the same.

Pulse duration

In using Gaussian beams to represent our lasers, we are, as discussed in the introduc-
tion to this chapter, taking the leading order solution to the Helmholtz and simple
harmonic oscillator equations. In order to characterise ultra-short laser pulses, it is
necessary to include details of the pulse envelope. Suppose we consider the pulse
envelope to be Gaussian, then what we are really doing is placing a condition on the
spectrum of the radiation12. Therefore a general solution to Maxwell’s equation can
be written as an integral of the product of a solution to the Helmholtz equation, the
simple harmonic oscillator equation and a spectral function giving the amplitude of
each term, or:

f(x, y, z, t, ω0, t0,w0) =

∫
dω Ã(t0, ω0, ω)g(x, y, z, ω,w0) exp

[
iω(t− z/c)

]
, (3.82)

with g(x, y, z, ω,w0) being a solution to the Helmholtz equation and t0 eventually a
pulse length and w0 a pulse width. To obtain a Gaussian pulse, we require the spectral

12A temporal Gaussian itself is not a solution to the simple harmonic oscillator equation, but a
superposition of plane waves solutions can give a function which has a Gaussian envelope in time.
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function to equal its Fourier transform, also a Gaussian and can set Ã(t0, ω0, ω) =
(t0/

√
2π) exp(−[(ω − ω0)

2t20]/2). It turns out (see e.g. [90]), that by expanding the
Helmholtz part of the integral g(x, y, z, ω,w0) as a Taylor series around ω = ω0, the
nth order of the solution scales as s ≈ [1/(ω0t0)]

n. For an electric field polarised
along the x-axis and travelling in the z-direction, we have:

E(0)
x (t− z

c
) = E0 exp

[
− (t− z

c )
2

2t20

]

E(1)
x (t− z

c
) =

{
1 +

2s

i+ 2z
k0w2

0

t− z
c

t0

[
− iz

k0w2
0

+
x2 + y2

w2
0

(
1 − 1

2 +
ik0w2

0
z

)]}

×E(0)
x (t− z

c ), (3.83)

with E
(n)
x the nth-order temporal correction to the electric field in the x-direction

[90]. Therefore, asserting monochromaticity ω0t0 ≫ 1 is equivalent to taking the

zeroth-order temporal correction E
(0)
x . For all other corrections, there is a cou-

pling between temporal and spatial beam corrections which become important in
femtosecond pulses [187] and sufficiently increases calculational complexity. In our
calculations, we have effectively used a square-wave temporal pulse form. We can
see from the zeroth-order, purely temporal correction in Eq. (3.83), that if the pulse
is longer than our typical interaction length l,

√
2ct0 > l, we can consistently ap-

proximate the Gaussian with a square wave within the interaction volume. In the
double-shaft geometry, as our strong-field beams have a longitudinal decay of the form
1/(1 + (z/zr,s)

2), we define l = 2zr,s. As ct0 = (0.3 × t0 [fs]) µm, and 2zr,s ≈ 5 µm,
we have picked t0 = 30 fs in our numerical examples and scaled the intensity accord-
ingly, such that we are comfortably within the total power given in Tab. 3.1. In the
double-slit case, although the interaction length along the axis of probe propagation
is ws,0, along the axis of strong-field propagation it is again 2zr,s, because of the more
difficult geometry and triggering that would be required, we set the duration of the
strong field equal to that of the probe, t0 = 100 fs.

Beam geometry

Whilst initially appearing to be different experiments, the double-slit and double-
shaft scenarios are two idealisations of the general case of one wide laser beam probing
two other, sharply-focused beams. We can relate the two set-ups to one another by
beginning with the double-shaft instance and considering an anti-clockwise rotation
in the y−z plane, φ of one of the beams, Es,1 say, and a rotation by the same amount
in an opposite fashion −φ of the other beam, in this case Es,2, as in Fig. 3.14. This
allows us to consider two important points: i) the effect of not having entirely parallel
strong-field beams which, due to the finite size of the apparatus, will occur when
focusing the beams; ii) how the double-shaft and double-slit geometries are related
to one another. Denoting rotated quantities by primes and suppressing (x, y, z, t)
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Figure 3.14: The two strong laser beams in the double-shaft set-up are rotated
opposite directions in the y− z plane by an angle φ as indicated in a. For φ = 3π/2,
we should have the double-slit set-up b.

co-ordinates on fields so that Es,1 := Es,1(x, y, z, t), we then have:

k′
s,1 = ks,1

(
cosφ k̂s,1 + sinφ ẑ

)
, (3.84)

k′
s,2 = ks,2

(
cosφ k̂s,2 − sinφ ẑ

)
, (3.85)

E′
s,1 = Es,1, (3.86)

E′
s,2 = Es,2, (3.87)

B′
s,1 = Bs,1 cosφ+ Es,1 · x̂ sinφŷ, (3.88)

B′
s,2 = Bs,2 cosφ− Es,2 · x̂ sinφŷ. (3.89)

Substituting these fields into the applicable polarisation and magnetisation expres-
sions Eqs. (3.25) and (3.26) respectively, we achieve the more general:

P′(φ) =
16πα2

45m4

[
4Es,1Es,2(1−cos 2φ)Ep + 4

(
Es ·Ep − Bs ·Bp cosφ

)
Es

+7
(
Es ·Bp + Bs ·Ep cos θ

)(
Bs cosφ+ (Es,1 − Es,2)·x̂ sin θŷ

)]
,

(3.90)

M′(φ) = −16πα2

45m4

[
4Es,1Es,2(1−cos 2φ)Bp+4

(
Es ·Ep − Bs ·Bp cosφ

)

×
(
Bs cos θ + sin θŷ(Es,1−Es,2)·x̂

)
−7
(
Es ·Bp + Bs ·Ep cos θ

)
Es],

(3.91)

which fulfil the necessary requirements: P ′(0) = P h,M ′(0) = Mh and P ′(3π/2) =
P l,M ′(3π/2) = M l. In making a small angle approximation in φ we can observe the
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deviation from the idealised case:

P′(δφ) =
16πα2

45m4
Ep sin η

{
2J1

[
4 cos θx̂ + 7 sin θẑ

]
+ 14δφJ2 sin θŷ

+
(δφ)2

2

[
(16J3 − 4J1) cos θx̂ + (16J3 − 21J1) sin θẑ

]}
, (3.92)

M′(δφ) =
16πα2

45m4
Ep sin η

{
2J1

[
7 sin θx̂− 4 cos θẑ

]
− 8δφJ2 cos θŷ

+
(δφ)2

2

[
(16J3 + 7J1) sin θx̂− (16J3 + 12J1) cos θẑ

]}
(3.93)

where Ji is independent of time, having already been averaged over:

J1 =
1

2

[
E2
s,1 + E2

s,2 + Es,1Es,2 cos
( 2ksy

y2 + 22
r,s

xx0 + δψs

)]
, (3.94)

J2 =
1

2
(E2

s,1 − E2
s,2), (3.95)

J3 = Es,1Es,2 cos
( 2ksy

y2 + 22
r,s

xx0 + δψs

)
. (3.96)

We can ask the question, in our experimental scenario, how large do we expect
δφ to be? We envisage the vacuum chamber planned to be used for ELI to be
10m × 4πm2, with two mirrors of 1 m diameter, focusing two laser beams down to
the experiment interaction centre, located a distance of 5 m along the optical axis,
giving a δφ ∼ 0.1. With a correction of such a size, we should also consider the
detector position in calculating the total diffracted intensity, Id, (see e.g. Fig. 3.5) of
xd/rd, zd/rd ∼ 0.03. Using Eqs. (3.92) and (3.93) to calculate Jvac, it turns out that
all corrections proportional to δφ vanish and leave us with:

J ′
vac(δφ) = P′(δφ) + M′(δφ) ∧ r̂ −

(
P′(δφ)·r̂

)
r̂, (3.97)

=
4α2Ep
45m4

sin η

{
2J1




8 cos θ
0

14 sin θ


−4J1




0
7zr sin θ + 4xr cos θ

0



}

(3.98)

neglecting terms O
(
(x/r)2, δφ(x/r), (δφ)2

)
. We mention that the calculation for the

double-slit scenario reaches the same conclusion (as it must) and we can therefore
justify our results that, within overall calculational accuracy ∼ 1/π, we can regard
the strong beams as propagating anti-parallel to the probe.

In order to describe arbitrarily aligned strong beams, we could make use of Euler
angles to relate them to our double-shaft set-up. Any geometry can be arrived at
by the algorithm: i) rotation clockwise about the z-axis by an angle φ; ii) rotation
clockwise about the new x-axis by an angle θ; iii) rotation clockwise about the new
z-axis by an angle ψ. x0 and z0 would then be made independent for both beam,
and a y0 would be introduced into the strong-beam expressions.

As many shots of the laser are required to build up a diffraction pattern, an important
criterion is that of reproducibility. If the separation of the strong laser beams changes
from one shot to the next by a factor of more than 1/(2m + 1), where m is the
maximum order of minima or maxima anticipated on the detector, then, starting



3.4 Discussion 53

from the outer edges of the pattern, the characteristic shape will be washed out.
From the double-shaft example in Fig. 3.5, this corresponds to being able to position
the strong beams with an accuracy of 1/7 or 9.1 µm.

Residual gas

The focusing of ultra-intense laser beams such as those to be employed at ELI, must
take place in a synthetic vacuum. The large apparatus required places restrictions
on the minimum size of the vacuum chamber and hence the quality of the vacuum.
Residual gas particles may also radiate and contribute a background to the double-
slit pattern. As the main component of residual case is by far and away hydrogen [10],
we can imagine that one shot of an X-ray probe laser, and due to the high intensity,
through multiphoton processes, one shot of an optical probe laser will ionise all
particles giving a dilute plasma. In the same way that vacuum, being polarised by
the ultra-intense laser, exhibits a modified refractive index nv, so too will a dilute
plasma npl = 1 + δnpl, where δnpl = (ωpl/ωp)

2/2 , with ω2
pl = e2ρ/m being the

square of the plasma frequency and ωp the probe angular frequency (note that the
analogous contribution to the plasma frequency of heavier particles like protons can
be neglected due to their much larger mass). Beginning with the expressions of the
vacuum polarisation and magnetisation Eq. (3.25)-Eq. (3.28), one can calculate the
correction δnv = a(α/45π)(Is,0/Icr) [174], where a is a numerical factor a ∼ O(1)
that we set to 1. The condition δnpl ≪ δnv is fulfilled, for the laser intensity employed
in our numerical examples Is,0 ∼ 1024 Wcm−2 by a plasma density ρ ≪ 1013 cm−3.
When regarded as an ideal gas, i.e. obeying P = kBρT at temperature T , at standard
temperature and pressure (293 K, 1 atm), we obtain P . 10−6-10−5 Torr. If we
compare this to the case of ELI which should have a similar sized vacuum chamber,
for which it is planned to produce a vacuum of the order ∼ 10−12 Torr, the limits
mentioned seem easily attainable.

Any decoherence of the double-slit pattern will reduce its visibility V (P ), from the
ideal vacuum value V0 by V = V0 exp(−P/Pd), where Pd = kBT/2yσcoll is the so-
called degeneracy pressure with y being the observation distance and σcoll an effective
collision cross section between the diffracted photons and the residual gas (see [89]
for a derivation). For photon energies of the order of eV and keV, the cross section
is of the order of that for Thomson scattering [133], σT = 6.7×10−25 cm2 [93], which
gives us for an ideal gas a ratio P/Pd = 2yρσT , which for an observation distance
y = 500 cm, unless the density of residual gas is much larger than already calculated,
will not have an appreciable effect. Therefore we can conclude that a synthetic
vacuum of pressure P . 10−6-10−5 Torr is sufficient to safely neglect degeneracy
pressure.

Finite temperature

We can pose a further question of our proposed experiment: to what extent will a
thermal background prove a source of decoherence? We can imagine cryogenically
cooling the CCD apparatus to minimise thermal effects within the detection equip-
ment so that the main source would come from thermal photons, in equilibrium with
the sides of the vacuum chamber. If the CCD has a spectral resolution of δω, then
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the background to our double-slit pattern will come from black-body photons indis-
criminately landing on the detection plate (we can ignore further interaction between
probe photons and black body photons as the intensities are far too low for this to
contribute to our results). For a total energy E per unit volume V our black-body
spectrum gives:

E
V

=
8π(kBT )4

c3h3

∫
~(ω+δω)/kBT

~(ω−δω)/kBT
dx

x3

ex − 1
≈ ~ω3δω

π2c3
1

e~ω/kBT − 1
. (3.99)

Now we can imagine all possible thermal photons incident on the detector during the
interval τ to have come from an “effective volume” given in a conservative estimate
(as only a small fraction of photons in this volume will be headed for the detector) by
a hemisphere of radius cτ around the detector’s centre. Setting V = 2π(cτ)3/3, we
can reformulate the expression in terms of the number of incident thermal photons
N(T ) with wavelength λ0 ± δλ:

N(T ) =
16π2

3

(cτ
λ0

)3 δλ

λ0

1

ehc/kBTλ0 − 1
, (3.100)

giving a temperature in terms of the number of photons N :

T (N) =
hc

kBλ0

[
ln
(
1 +

16π2

3

(cτ
λ0

)3 δλ

λ0

1

N

)]−1

. (3.101)

If one could trigger the opening and closing of shutters in front of the CCD with the
passage of the laser beams, we could take the corresponding shutter speed to be the
same order as for commercial cameras τ ∼ 100µs13. With a filter able to separate
frequencies within δλ/λ0 ∼ 0.114 for our optical photons λ0 = 0.527 µm, in order
that we have less than one thermal photon (compared with a signal of four) per shot
of the strong laser in the effective volume, we require a temperature T . 360K. For
a conservative estimate, this is still above room temperature and pressure, and we
take the effect of a finite-temperature background to be negligible.

Conclusion

The vacuum polarisation effects described in this chapter have yet to be confirmed.
We have put forward two geometries that utilise diffraction effects to spatially sepa-
rate the vacuum signal from the background and we calculate a few photons per shot
of the lasers will be, in principle, measurable for the two different types of vacuum
field intensity - the pure term Id and the cross-term Ipd. In addition, we have shown
how a double-slit like set-up can actually be used to increase vacuum birefringence
and dichroism. This originates from the important Fresnel terms as part of the pro-
cess of diffraction of probe photons. Fresnel terms were also seen to play a role in the
shape of the diffraction pattern envelopes, especially when the diffraction parameter
ν > 1 as was the case in the double-slit scenario in a direction parallel to the strong
beams. In addition to diffraction, beam shape was seen to play an important role.
First the very different fall-off of patterns in the double-shaft case with respect to the

13Using electronic shutter technology designed for back-illuminated CCDs, in [125] a 25 cm2 CCD
with recording frequency even in the MHz range was fabricated.

14For example, the v18t filter in [25] has a full-width at half maximum δλ/λ0 ≈ 0.05 around
λ0 = 527 nm.
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double-slit one and second, with the standing wave of the double-slit set-up being
responsible for the extra secondary peaks far from the centre of the pattern parallel
to these waves. In the current section, we have argued that the role of many typical
hindrances such as an imperfect vacuum, finite temperature, temporal effects and an
imperfect beam geometry will have negligible effect on our results. As many shots
of the lasers are required, our main obstacle in addition to the yet to be attained
strong-field intensities is that of reproducibility. That all three beams can be com-
bined in the envisaged fashion on such a short time scale of 100 fs, not to mention
that the strong-field beams can be consistently aligned to within tens of micrometres
represent considerable experimental challenges. However, even if the double-slit pat-
tern would prove difficult to reproduce, the principle of diffraction is a robust one,
and is a useful addition to the array of possible experimental scenarios to test QED
in this relatively unexplored regime.





Chapter 4

Scattering of a photon in an
electromagnetic wave

Complementary to our approach in the previous chapters which was based
upon effective field theory and the vacuum average of the current oper-
ator, we now focus on the full quantum calculation of the relativistic
photon-photon scattering amplitude. In particular, we derive formulae
describing how a photon is scattered by an electromagnetic wave, which
will then be specialised to a constant crossed field. With a view to apply-
ing the solution in the setting of a thermal photon gas, our aim for this
chapter will be to calculate the first-order vacuum polarisation correction
to the refractive index felt by the photon.

Calculation of the polarisation tensor in an external field has a long history. Prop-
erties of the tensor in a constant magnetic field have been studied by many authors
[132, 173, 161], but only very few solutions of the Dirac equation in non-trivial ex-
ternal fields have been found. Exceptions include Schwinger’s result for an arbitrary
constant EM field [159], Volkov’s in a plane wave background [178], in the Redmond
configuration [149] – a combination of constant magnetic field and plane wave – as
well as in a Coulomb field [42, 78], with arbitrary EM fields lying beyond current
calculational methods. The polarisation tensor has been calculated in a general con-
stant, homogeneous electromagnetic field in [15], using Schwinger’s exact solution for
the Green’s function. In a non-crossed (FG 6= 0), constant EM background, the ten-
sor was also derived in [49], in which the solution for parallel electric and magnetic
fields [176] was Lorentz transformed to a more general configuration. In addition
the “string-theory inspired” world-line formalism, in which a one-dimensional path
integral is evaluated to yield quantum vacuum amplitudes has also been employed
to calculate the tensor in a constant external EM field [51]. Of particular relevance
to us will eventually be the crossed-field configuration, defined constant electric and
magnetic field vectors, equal in magnitude and mutually orthogonal, which was in-
vestigated in [136] and reviewed in [151].

We will apply the operator diagram technique developed in the 1970s by Baier,
Katkov, Milstein and Strakhovenko [17, 18] and applied in [19, 16] to plane waves
(i.e. the vector potential is transverse and a function of ϕ = kx), which suits our
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primary interest in describing processes in lasers. We will follow the last two ref-
erences to arrive at the general expression for the coefficients of the expansion of
the polarisation operator in terms of a basis relevant to the problem at hand. This
technique involves evaluating operator traces making the usual external field sub-
stitution p̂ → P̂ = p̂ + eA1̂ and has the advantage of leading to relatively simple
analytic expressions. Using the full quantum theory allows a broader application of
the solution than in the effective field theory, being not restricted to the assumption
ω ≪ m, which could become important in the broadband thermal ensemble.

4.1 Calculation of the polarisation operator in an exter-
nal electromagnetic wave

Maxwell’s classical solution for the propagation of a photon finds its lowest-order
quantum correction in the polarisation operator. This inherently describes the po-
larisation of virtual electron-positron pairs in the vacuum, which generate a vacuum
current as expounded in Ch. 2 and Ch. 3. For the free Dirac field, these terms are
normally neglected as the vacuum current should vanish due to isotropy, but in an
external field, these inner fermionic loops can be polarised and contribute to the
dynamics of the Dirac field. The question is how to incorporate the external field.
Processes that are higher order in the external field coupling must contain an ex-
tra term of the order ∼ eA/m which is nothing more than the invariant parameter
ξ = (m/ω)(E/Ecr). When this is of the order of unity, which is the case for our
domain of enquiry (for the upcoming ELI and HiPER lasers ξ ≈ 6900), the external
field can no longer be included perturbatively. Moreover, although the convergence
of perturbation approaches to quantum field theory is far from proven1, also in the
external field of e.g. a heavy nucleus, the expansion parameter Zα can be large. An
alternative approach for strong external fields would be to then move the dependence
of the external field into the “free”, unperturbed solution for the wavefunction and
view just the internal QED interactions as the perturbative. This puts us in the
Furry picture [70] in which, in our case, the Dirac equation must be solved in an
external plane wave, yielding propagators which are then exact in the external-field.
The process can be summarised in Fig. 4.1 which we reproduce from Ch. 2, in which
we note, via charge conjugation symmetry, the exchange of an odd number of pho-
tons in the transition amplitude is prohibited. This is also known as Furry’s theorem
(see App. A.1.3). We also mention, that it has been shown [152], at least for the
first two orders, that when the external field is strong, the coupling with photons
scales as αχ2/3, which for us as αχ2/3 ≪ 1, justifies us taking the leading order dia-
gram. We begin by first referring to the list of conventions given in the introduction
Sec. 1.1 used in the following calculations. We define the scattering matrix, Sfi as
the operator relating an initial quantum state |i〉 to a final quantum state 〈f | in some
scattering process, via |f〉 = Sfi|i〉. An additional matrix, Tfi encodes all non-trivial

1This was shown most clearly by Dyson [56] who lucidly argued that if the series expansion
converges in α ∼ e2, it must also converge for e2 → −e2, but this would imply the reversal of
electrostatic laws with like charges attracting and unlike ones repelling. Then one can imagine
how the virtual e+-e− pairs of the vacuum would not recombine but instead would be spontaneously
created so that at any point in time, a finite probability would exist that a pathological state would be
achieved in which large numbers of such pairs would be created and the vacuum would disintegrate.
This is one of the motivations behind more mathematically rigorous and abstract formulations of
relativistic quantum mechanics such as algebraic quantum field theory [69].
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≡ + + . . .+

2n

Figure 4.1: The polarisation operator in an external field (left-hand side) with
fermion propagators exact in the external field (bold curved lines) can be regarded
as a sum of free-field polarisation processes in which all possible topologically unique
even exchanges of photons with the external field (marked with an x) occur.

processes through Sfi = δfi + i(2π)4δ(4)(Pf −Pi)Tfi, where a four-dimensional delta
function has been included to encapsulate momentum conservation between total
initial and final momenta, Pi, Pf . We are specifically interested in the process of a
photon with initial momentum k1 being scattered into a momentum state k2. Us-
ing the generalisation of the scattering matrix to continuum states, this amplitude
corresponds to 〈k2|S(k2, k1)|k1〉, which we label T (k2, k1). Then from the Dyson
expansion of the S-matrix for the QED coupling in co-ordinate space [120] (space-
time and spinor indices suppressed) ieψ̄(x)γA(x)ψ(x), the lowest order one particle
irreducible diagram occuring in the polarisation operator is given by:

S(k2, k1)=−e2
∫
d4x1d

4x2γA(x1)iGF (x2, x1)γA(x2)
(
−iGF (x1, x2)

)
, (4.1)

where the normal-ordering has already been carried out; represented by the fermionic
Green’s function GF (x2, x1) := −i〈T̂ ψ(x2)ψ̄(x1)〉 for a time-ordering operator T̂ . We
mention that for QED, the Green’s function is built so as to satisfy the inhomogeneous
Dirac equation in an external EM field (iγD −m)G(x2, x1) = −iδ(4)(x2 − x1) with
the usual iD = i(∂ − ieA) external field replacement2. We also note, that there is
only one topologically unique diagram in the one-loop calculation.

Expanding the photon field in terms of annihilation and creation operators, we can
rewrite T (k2, k1) as:

T (k2, k1) =
1

2V
√
ωk2ωk1

eµ(k1)eν(k2)T
µν , (4.2)

with

T µν = − e2

(2π)4

∫
d4x1d

4x2 γ
νGF (x2, x1)e

ik2xγµGF (x1, x2)e
−ik1x (4.3)

T µν = − e2

(2π)4

∫
d4x1d

4x2 γ
ν〈x2|GF (p̂)eik2x̂|x1〉γµ〈x1|GF (p̂)e−ik1x̂|x2〉 (4.4)

T µν = − e2

(2π)4

∫
d4x Tr 〈x|GF (p̂)e−ik1x̂γµGF (p̂)eik2x̂γν |x〉, (4.5)

where in the second line we have used the operator representation of the Green’s
function GF (x2, x1) = 〈x2|GF (p̂)|x1〉, GF (p̂) = 1/(γP̂ −m), P̂ := p̂ + eA1̂, and in
the final line we have used the cyclicity of the trace. In this section, we will outline
the steps required to evaluate Eq. (4.5), which begin with the definition of a suitable
basis for the problem.

2That the replacement p→ p+ eA/c in the Lagrangian is a valid relativistic generalisation of the
zero-field expression can be shown as it reproduces the Lorentz-force equation. It can be derived
considering a Lorentz invariant, co-ordinate independent action which must also lead to the zero-field
expression, see e.g. [93]
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Polarisation tensor and vector basis

We define our plane wave via the vector potential:

Aµ(ϕ) = aµ1ψ1(ϕ) + aµ2ψ2(ϕ), (4.6)

where functions ψ1,2(ϕ) solve Maxwell’s wave equation with ϕ := κx = κ
0x0 − κκκ ·

x, all amplitude coefficients are contained within the vectors aµ1,2, and the wave is

transverse through a1a2 = κa = 0 and in vacuum κ
2 = 0. The invariant intensity

defined in Ch. 1 is then ξ2 = e2|a2|/m2.

The polarisation tensor relates initial to final polarisations and therefore initial to
final vector potentials and so occurs in the corresponding wave equation. Using
Dyson’s equation:

D(k) =
D(0)(k)

1 −D(0)(k)Π(k)
, (4.7)

for the exact photon propagator D(k) and zeroth-order photon propagator D(0)(k) =
1/k2, inverting both sides gives k

′ 2 = k2 − Π(k), for an exact photon momentum
k′. Our first-order approximation to Π(1)(k) will therefore appear in the dispersion
relation as:

[
k2gµν + kµkν − Π(1)µν(k)

]
eν(k) = 0, (4.8)

Π(1)µν(k)eν(k) =
1

i(2π)4

∫
d4k′T µν(k, k′)eν(k

′). (4.9)

Being a tensor, T µν can be decomposed into a linear superposition of products of
four-vectors. It is logical to define two orthonormal bases relevant to the physics
before and after the scattering event, and we follow [19] by first defining:

Λµ1 =
(kf1)

µ

κk
√

−a 2
1

, Λµ2 =
(kf2)

µ

κk
√
−a 2

2

, (4.10)

Λµ3 =
κ
µk 2

1 − kµ1 κk

κk
√
−k 2

1

, Λµ4 =
κ
µk 2

2 − kµ2 κk

κk
√

−k 2
2

, (4.11)

where

fµν1,2 = κ
µaν1,2 − aµ1,2κ

ν, (kf1,2)
ν = kµf

µν
1,2, (4.12)

so that we have:

Λ 2
1 = Λ 2

2 = Λ 2
3 = Λ 2

4 = −1, (4.13)

Λµi Λj,µ = 0 for i 6= j ∈ {1, 2, 3} or {1, 2, 4}, (4.14)

where we note Fµν =
∑

j=1,2 f
µν
j ψ′

j(ϕ). Being superpositions of four-vectors, the Λ
vectors are themselves Lorentz covariant and have been so constructed that they can
be combined with the photon wave-vector to form two orthonormal sets for k1 and
k2:

{
k1/
√
k 2
1 ,Λ1,Λ2,Λ3

}
&

{
k2/
√
k 2
2 ,Λ1,Λ2,Λ4

}
. (4.15)
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Using one set for each spacetime component of T µν , we can span the tensor’s 16
component produce vector space V ⊗ V . However, from Eq. (4.8), we can see that
the polarisation tensor is symmetric, which reduces the space to 10 components.
In addition, the polarisation operator Πµν(k1, k2) is transverse k1µΠ

µν(k1, k2) =
Πµν(k1, k2)k2ν = 0, which removes four further components from T . Finally, we
recall that all processes involving odd numbers of external photons are forbidden by
Furry’s theorem, as described in App. A.1.3. The effect of this restriction can be
seen by studying possible combinations of the above bases. It can be shown by direct
calculation [19] that the combinations:

Λµ1,2 Λν3 =

[
(κk)2

√
−a 2

1 k
2
1

]−1{(
kρκ

ρaµ1,2 − kρa
ρ
1,2κ

µ
)(

κ
νk2

1 − kν1 (κk)
)}

=

[
(κk)2

√
−a 2

1 k
2
1

]−1{
(kκ)k2

1a
µ
1,2κ

ν − (ka1,2)k
2
1κ

µ
κ
ν

−(kκ)2aµ1,2k
ν
1 + (ka1,2)(κk)κ

µkν1

}
, (4.16)

and likewise Λµ1,2 Λν4 , do not contribute. We are then left with five possible combina-
tions and can expand T µν fully as:

T µν = c1Λ
µ
1Λν2 + c2Λ

µ
2Λν1 + c3Λ

µ
1Λν1 + c4Λ

µ
2Λν2 + c5Λ

µ
3Λν4 . (4.17)

We may refer to c1,...,5 as form-factors, being complicated functions of laser intensity
and laser and photon momenta. However it is clear that they must be Lorentz
and gauge-invariant scalars. Since the only objects to hand that could form such
scalars are Fµν , F

∗
µν , kµ and recognising from dimensional analysis that F,F ∗ must

be accompanied by e/m2, the only three possible scalars are:

χ =
e
√

|(Fµνkµ)2|
m3

, f =
e2F

m4
, g =

e2G

m4
. (4.18)

Now that the stage has been set, we see that the calculation of the polarisation
operator can be reduced to determining the coefficients c1 → c5. In the following
section, we briefly recapitulate the main steps taken in [19].

Derivation of polarisation operator form factors

Our general strategy will be to remove operator hats so that we can end up with an
integral for the polarisation coefficients. We first rewrite Eq. (4.5) for clarity:

T µν = − e2

(2π)4

∫
d4xTr 〈x|SF (p̂)e−ik1x̂γµSF (p̂)eik2x̂γν |x〉,

and begin by removing the exponential terms. Recognising the position opera-
tor in momentum space as x̂µ(p) = −iηµσ∂/∂pσ , one can show, using an infinitesi-

mal expansion, that exp
(
ikx̂
)

is the generator of momentum translations, namely
that exp

(
iδx̂
)
|k〉 = |k + δ〉 and exp(iδx̂)f(p̂) exp(−iδx̂) = f(p̂ + δ). Therefore

〈x|f(p̂) exp(−ikx̂) = exp(−ikx)〈x|f(p̂ + k). Applying these results, multiplying
propagators by the identity

(
γP̂ + m

)
/
(
γP̂ + m

)
and utilising trace cyclicity, we

achieve:

T µν = − e2

(2π)4

∫
d4x exp

[
i(k2 − k1)x

]
Tr
〈
x
∣∣∣

1

(γP̂ + k1)2 −m2
γµ

1
(
γP̂
)2 −m2

(
γP̂ +m

)[
2P̂ ν + γν/k2 + (m− γP̂ )γν

]∣∣∣x
〉
. (4.19)
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Using Tr 〈x|f
[
γ(P+k1)

]
|x〉 = Tr 〈x| exp(−ik1x̂)f

[
γ(P+k1)

]
exp(ik1x̂)|x〉 = Tr 〈x|f

[
γP ]|x〉,

the final term in square brackets in Eq. (4.19) can be brought into the form:

T ′µν =
e2

(2π)4

∫
d4x exp

[
i(k2 − k1)x

]
Tr
[〈
x
∣∣∣

1

(γP̂ )2 −m2

∣∣∣x
〉
γµγν

]
, (4.20)

which can be shown to be independent of the external field and so disappears on
renormalisation. Exponentiating propagators we then achieve:

T µν = − e2

(2π)4

∫ ∞

0
dt

∫ ∞

0
ds exp[−im2(s+ t)]T̃ µν , (4.21)

T̃ µν =

∫
d4x exp[i(k2 − k1)x]Tr

[
〈x| exp

{
it(P̂ + k)2

}
γµ

exp
{
isP̂ 2

}(
γP̂ +m

)(
γν/k2 + 2P̂ ν

)
|x〉
]
. (4.22)

Now we would like to disentangle the exponentials in Eq. (4.22) which are func-
tions of non-commuting operators. To do this, we can use results from the operator
method developed by Baier, Katkov, Milstein and Strakhovenko, which we explain
in App. A.2. Also in App. A.2, are the steps required to reach the next part of the
derivation:

T̃ µν =

∫
d4x exp[i(k2 − k1)x]〈x| exp

[
it(P + k1)

2
]
exp

[
isP 2

]
Bµν |x〉,

Bµν = Tr
[
γµ
(
1 − er+(s)

2(κP )
/κ/a
)(
γP +m

)(
γν/k2 + 2P ν

)

×
(
1 +

er−(t)

2κ(P + k)
/κ/a
)]
, (4.23)

where:

r+(s) = ψ(ϕ+2(κP )s)−ψ(ϕ), r−(t) = ψ(ϕ−2κ(P + k)t)−ψ(ϕ), (4.24)

and where we have now dropped hats on operators to avoid notational clutter. Now,
as we will eventually contract Bµν with our orthogonal basis, due to the transversality
of the polarisation operator, all terms including fµν or κ

µ can be automatically
discarded. Using the trace formulae Eqs. (A.10-A.15) given in App. A.1.2, we then
have:

Bµν = 4
{
2PµP ν + Pµkν2 − gµν(k2P ) −

(
e+(s) + e−(t)

)[
gµν(Pfk)

−kµ2 (Pf)ν + Pµ(kf)ν
]
+
(
e+(s) − e−(t)

)[
(Pf)µ(2P ν + kν2 )

+(kfµ)P ν
]}
, (4.25)

where

e+(s) =
er+(s)

2(κP )
, e−(t) = − er−(t)

2κ(P + k)
, (4.26)

with all combinations e±f summed over the suppressed subscripts 1, 2. Having dealt
with the fermionic trace, we consider the remaining operators. It turns out, that the
single operator term that can be formed on contraction with the T µν basis Eq. (4.15)
is (k2P ), which doesn’t commute with all other terms. By considering this term alone
in the integral and rewriting k2P in the form {(P +k2)

2−m2− [(P 2−m2)+k2
2 ]} and
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again using exp(ikx̂)f(p) exp(−ikx̂) = f(p+ k), it can be shown, that the k2P term
is equivalent to one in which (k2P̂ ) → −k 2

2 /2. This allows all operators occurring in
Bµν can now be regarded as c-numbers.

Now we can consider the rest of T̃ µν , utilising the disentangling method for to write
exponentiated operators in terms of integrals, Eq. (A.51), to give:

Ĩµν = 〈x| exp
[
it(P + k1)

2
]
exp

[
isP 2

]
Bµν |x〉

= 〈x| exp
{
it

∫ 1

0

dy

a2
[a(P + k) + ea2r−(ty)]2

}
exp

{
it(P + k1)

2
⊥

}

exp
{
itP 2

⊥

}
exp

{
is

∫ 1

0

dy

a2
[aP + ea2r+(sy)]2

}
Bµν |x〉. (4.27)

Now comes the important step of specifying a basis. We choose the plane wave to
be directed along the 3-axis, i.e. κ

0 = κ
3, and a1,a2 lie in the 1-2 plane. In this

plane wave, the conserved quantities are known to be p0 − p3, p1, p2, which can be
shown by their operators commuting with the Hamiltonian [23] and so we make the
co-ordinate transformation:

|x〉 = |x0, x1, x2, x3〉 → |k′〉 = |θ, ν, a1x, a2x〉, (4.28)

θ =
(
x0 − x3

)
/
√

2, ν =
(
x0 + x3

)
/
√

2, pθ = i
∂

∂θ
, pν = i

∂

∂ν
, (4.29)

giving:

ϕ =
√

2κ
0θ, P 0 = p0 = (pθ + pν)/

√
2, (κP ) =

√
2κ

0pν
P 2 = p3 = (pθ − pν)/

√
2, P 3

0 − P 2
3 = 2pθpν .

Now, we can rewrite the amplitude Ĩ as an integral using:

〈x|G(p̂)|x〉 =

∫
d4p′〈x|G(p̂)|p′〉〈p′|x〉 =

∫
d4p′G(p′), (4.30)

where the operator nature has been removed. If we first consider the simpler problem
of Bµν = gµν , we can then integrate over each transformed variable, the results being:

〈θ|eit(P+k1)2eisP
2|θ〉 =

π

s+ t
e2itk1θ(pν+k1ν)δ

(
pν+

rk1ν

s+ t

)
, (4.31)

〈ν| π

s+ t
e2itk1θ(pν+k1ν)δ

(
pν+

rk1ν

s+ t

)
|ν〉 =

π

s+ t
e2itk1θk2ν

s
s+t , (4.32)

〈xa1, xa2| exp
{

2it

∫ 1

0
dy e∆j(µy)

(
aj(P + k)

)
+ ite2a2

j

∫ 1

0
dy ∆2

j(µy)

−it
[(
P 1 + k1

)2
+
(
P 2 + k2

)2]
+ 2is

∫ 1

0
dy e∆j(µy)ajP

+ise2a2
j

∫ 1

0
dy ∆2

j(µy) − is(P 1 2 + P 2 2)
}
|xa1, xa2〉 =

−iπ
s+ t

ei(s+t)e
2a 2

j

[(
R 1
0 dy ∆j(µy)

)2
−

R 1
0 dy ∆2

j (µy)
]
− ist

s+t
k 2
1 ,

(4.33)
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with sums over j ∈ {1, 2} and:

∆1,2(µy) = ψ1,2(ϕ− 2(κk)µy) − ψ1,2(ϕ), (4.34)

to give for I = Ĩµν(Bµν = gµν)g
µν/4:

I =
−iπ2

s+ t
eiµk

2
1 +i(s+t)β , (4.35)

where:

β1,2 = −e2
∣∣a2

1,2

∣∣
[ ∫ 1

0
dy ∆ 2

1,2(µy) −
(∫ 1

0
dy∆1,2(µy)

)2]
, µ =

st

s+ t
. (4.36)

Following this, we can consider the individual terms of Bµν appearing in Ĩµν . Since
this is an integral over d4P and we have at most terms of order PµP ν , we can integrate
by parts and use our result for I Eq. (4.35). We can show that the full integral
Ĩµν(Bµν) is equal to the result Eq. (4.35) after making the following replacements in
Bµν :

Pµ → Rµ = −kµ1
t

s+ t
− eaµ1

∫ 1

0
dy∆1(µy) − eaµ2

∫ 1

0
dy∆2(µy), (4.37)

PµP ν → RµRν +
i

2(s+ t)

(aµ1aν1
a 2

1

+
aµ2a

ν
2

a 2
2

)
. (4.38)

With the 〈x|x〉 operation performed, all that is left is to contract T̃ µν with our basis
Eq. (4.15). We then renormalise the polarisation operator in the typical way for an
external field (see App. A.1.3), by subtracting off T̃ µνF=0 terms. After much algebra,
bearing in mind symmetry of integrals and gauge invariance of T , we achieve the
final integral expressions for c1 → c5:

cn = − iα

2π

∫ 1

−1
dv

∫ ∞

0

dτ

τ

∫
d4xei(k2−k1)xe−im

2τ
(
1−

k 2
1 (1−v2)

4m2

)
bn, (4.39)

where we have gone over to new integration variables:

s+ t = τ, v = (s − t)/(s+ t), µ = τ(1 − v2)/4, &

D1,2 =

∫ 1

0
dy∆1,2(µy) +

v2

1 − v2
∆1,2(µ), (4.40)

b1 = 2ξ1ξ2m
2
[
D1

∫ 1

0
dy∆2(µy) −

∆2(µ)

1 − v2

∫ 1

0
dy∆1(µy)

]
eiτβ, (4.41)

b2 = 2ξ1ξ2m
2
[
D2

∫ 1

0
dy∆1(µy) −

∆1(µ)

1 − v2

∫ 1

0
dy∆2(µy)

]
eiτβ, (4.42)

b3 = 2m2
[
ξ21D1

∫ 1

0
dy∆1(µy) +

ξ22∆2(µ)

1 − v2

∫ 1

0
dy∆2(µy)

]
eiτβ

−
( i
τ

+
k 2
2

2

)
(eiτβ − 1), (4.43)

b4 = 2m2
[
ξ22D2

∫ 1

0
dy∆2(µy) +

ξ21∆1(µ)

1 − v2

∫ 1

0
dy∆1(µy)

]
eiτβ

−
( i
τ

+
k 2
2

2

)
(eiτβ − 1), (4.44)

b5 = −1

2

√
k 2
1 k

2
2 (1 − v2)(eiτβ − 1), (4.45)
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and β = β1 + β2. The coefficient formulae Eqs. (4.39-4.45), are suitable for any form
of transverse plane wave. We mention in addition, our remark that the polarisation
tensor can only depend on the gauge and Lorentz-invariant scalars χ, F and G is
also seen to be justified, considering the coefficients cn (ξ is related to F and G ) and
the vector bases

{
k1,2,Λ1,Λ2,Λ3,4

}
, when k2

1 → 0 as will be imposed later on. In
order to progress further, we need to specify the vector potential.

4.2 Constant crossed field

We wish to take the formulae of the preceding section and specialise them to the
case of a constant crossed EM field. This is effectively the same as taking the zero-
frequency limit of a plane wave, with the E and B vectors perpendicular to one
another. In this limit, F = G = 0 and χ is the only Lorentz-invariant scalar.
Following [152], considering the probability for processes as a function of these three
parameters W (χ, a, b), in general, considering a and b as small (whose definitions
are given in Eq. (A.7)) and imagining Taylor-expanding the probability in these
parameters, one can see that the case of a constant crossed-field W (χ, 0, 0) is a valid
approximation to probability in an arbitrary field when:

a, b≪ 2m

e
, a, b≪ 2mχ

e
. (4.46)

In addition to the expansion argument, we can also understand physically why results
from the constant crossed field can even be applied to oscillating fields. We can make
the analogy of ionisation of atoms in the gas phase with pair production in vacuum
(i.e. “ionisation” of the vacuum), which is understood in the non-linear regime by the
value of the Keldysh adiabacity parameter γ =

√
2mIpω/eE, which for an ionisation

potential Ip = 2m becomes γ = 2/ξ. Therefore, when the work done by the field over
the Compton wavelength is much larger than the energy of a field quantum (ξ ≫ 1),
the vacuum polarisation processes said to be in the tunnelling regime (γ ≪ 1) and
so do not see the oscillation of the field.

Recalling our vector potential:

Aµ(ϕ) = aµ1ψ1(ϕ) + aµ2ψ2(ϕ),

we can take the zero-frequency limit, without loss of generality on a linearly-polarised
wave and so take immediately ψ2(ϕ) = 0. Since a constant field implies a linear
vector potential, we set f1 = ϕ = κ0(x

0 − x3) (κ 2 = 0 implying κ
0 = ±κ

3 and we
chose the positive root in the previous section). In order to be dimensionally correct,
we choose a1 = E0/κ

0 for a constant vector E0. Aµ is then independent of the
external field plane wave frequency, and the constant electric field strength enters as
E = −E0, allowing us to take the limit κ

µ → 0 without obstruction. We first note



66 Chapter 4. Scattering of a photon in an electromagnetic wave 4.2

the important components of the integral:

∆2(µy) = 0, (4.47)

∆1(µy) = = −1

2
(κk)τ(1 − v2)y, (4.48)

∫ 1

0
dy∆1(µy) = −1

4
(κk)τ(1 − v2), (4.49)

D1 = −1

4
(κk)τ(1 + v2), (4.50)

β = −β1 = −1

3

1

16
e2|a2|τ2(κk)2(1 − v2)2, (4.51)

are all, like all other integration terms, independent of spatial co-ordinates, as might
be expected in a homogeneous external field. Therefore we can perform the integral
in d4x and immediately recover four-momentum conservation in a constant crossed
field:

cn = −iα(2π)3
∫ 1

−1
dv

∫ ∞

0

dτ

τ
exp

[
− im2τ

(
1 − k2

1(1 − v2)

4m2

)]
bnδ

(4)(k2 − k1),(4.52)

b1 = b2 = 0, (4.53)

b3 =
1

8
m2ξ2

(
κk
)2

(1 + v2)(1 − v2)τ2e−iβτ
3 −

( i
τ

+
k 2
2

2

)(
e−iβτ

3 − 1
)
, (4.54)

b4 =
1

4
m2ξ2µ2

(
κk
)2

(1 − v2)τ2e−iβτ
3 −

( i
τ

+
k 2
2

2

)(
e−iβτ

3 − 1
)
, (4.55)

b5 = −1

2

√
k 2
1 k

2
2

(
1 − v2

)(
e−iβτ

3 − 1
)
. (4.56)

There comes an important point of consistency. Since we are interested in the one
loop correction to photon propagation, we must assume that we are calculating the
effect on a vacuum photon, i.e. that k 2

1 = 0. In actual fact, we will show, with
this very calculation, that taking into account the quantum corrections due to the
polarised vacuum, k 2

1 6= 0 ! This kind of circularity of argument can, in a standard
way, be avoided by calculating loops to all orders using Dyson’s series to obtain
the exact self-energy Π(k), which can then be used in the Dyson equation to give
the exact photon propagator in an external field (see e.g. [119]) Eq. (4.7). When
we make the assumption ακ

2/3 ≪ 1, the exact polarisation operator Π(k) is well
approximated by the one-loop calculation with k2 = 0.

In calculating the cn’s, we encounter two main types of integrals:

I1 =

∫ ∞

0
dττe−im

2τe−iβτ
3
, (4.57)

I2 =

∫ ∞

0

dτ

τ2

∫ 1

−1
dve−im

2τ
(
e−it

τ3

3
(1−v2)2 − 1

)
, (4.58)

t = e2|a2|(κk)2/16. We can integrate these analytically in one variable and choose
τ . I1 can then be rewritten in a more familiar form:

I1 = iβ−1/3 d

dm2

∫ ∞

0
dτ exp

(
− im2τ

β1/3
− iτ3

3

)
, (4.59)

I1 = β−2/3f ′
[ m2

β1/3

]
, (4.60)

f
[ m2

β1/3

]
=

[
iAi
( m2

β1/3

)
+ Gi

( m2

β1/3

)]
(4.61)
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where Ai and Gi are the Airy and Scorer’s functions, corresponding to the real and
minus the imaginary part of the integral respectively, whose properties are briefly
recapitulated in App. B. I2, it turns out, is simpler to tackle as a double-integral.
Using the substitution v′ = 1 − v2 and after integrating by parts and making the
further substitution v′′ = 4/v′, we can rewrite Eq. (4.58) as:

I2 =
4

3
t2/3

∫ 1

0
dv′v′1/3

√
1 − v′

d

dm2

∫ ∞

0
dτ exp

[
−im2

(tv2)1/3
τ − i

τ3

3

]
, (4.62)

I2 =
4

3

∫ ∞

4
dv′′
(4

√
t

v′′

)2/3
√
v′′ − 4

v′′
√
v′′

f ′
[(mv′′

4
√
t

)2]
. (4.63)

Now since the polarisation operator represents quantum corrections to the lightcone
condition Eq. (4.8), we separate out the delta-function and polarisation basis and
define new coefficients α3,4 which appear directly in the dispersion relation for the
photon:

1

i(2π)4
T µνren(k1, k2) =

[
α3Λ

µ
1Λν1 + α4Λ

µ
2Λν2

]
δ(4)(k2 − k1), (4.64)

{
k 2
1 g

µν − 1

(κk)2

[
α3

(kf1)
µ(kf1)

ν

−a 2
1

+ α4
(kf2)

µ(kf2)
ν

−a 2
2

]}
eν(k1) = 0, (4.65)

α3 =
−α
2π

{∫ 1

−1
dv
[1
8
m2ξ2(κk)2(1 + v2)(1 − v2)I1

]
− iI2

}
, (4.66)

α4 =
−α
2π

{∫ 1

−1
dv
[1
4
m2ξ2(κk)2(1 − v2)I1

]
− iI2

}
. (4.67)

After substituting Eqs. (4.60) and (4.63) into the above expressions, we achieve:

α3 = α3(κ) =
−2αm2

3π

∫ ∞

4

2v − 2

v
√
v(v − 4)

(κ
v

)2/3
f ′
([v
κ

]2/3)
, (4.68)

α4 = α4(κ) =
−2αm2

3π

∫ ∞

4

2v + 4

v
√
v(v − 4)

(κ
v

)2/3
f ′
([v
κ

]2/3)
, (4.69)

where we have introduced a dimensionless scattering parameter which will dictate
the size of the quantum effect:

κ =
(κk)ξ

m2
=
E0

Ecr

k0 − k3

m
= κ0

k0 − k3

m
, (4.70)

for κ0 = E0/Ecr and E2
0 = E · E and f ′(z) is given by Eq. (B.10) in App. B.

The parameter κ is simply χ for photons, and clearly encodes the two paths to
vacuum polarisation effects: either by increasing the intensity or by increasing photon
energies. It also only depends on photon momentum in the direction of the field
wavevector, with a maximum for photons counterpropagating antiparallel to the
(DC) field. The numerical evaluation of these integrands is then discussed in App. B.
We can check our results by comparison with Ritus’ [151] for constant crossed fields,
noting the change of metric, that Lµ = Fµνk1ν , L

∗
µ = F ∗

µνk1ν and using the formulae
in App. A.1.1, we can show:

Λµ1Λµ1 =
LµLν

L2

∣∣∣∣
(η→−η)

, Λµ2Λµ2 =
L∗µL∗ν

L2

∣∣∣∣
(η→−η)

, (4.71)
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and also that our expressions for Eqs. (4.68) and (4.69) are equivalent, and therefore
that our dispersion relation Eq. (4.65) agrees.

The lightcone condition depends upon the polarisation of the photon in a constant ex-
ternal field, which we can best observe using the initial photon’s basis {k1,Λ1,Λ2,Λ3}.
Specialising to the Lorentz gauge ∂A = 0 then gives:

k2 = 0 for e
(l)
ν (k) = f1(k) kν δ(k

2),

k2 = 0 for e
′(l)
ν (k) = f2(k)Λ3 ν δ(k

2),

k2 = −α3 for e
(1)
ν (k) = f3(k)Λ1 ν δ(k

2 + α3),

k2 = −α4 for e
(2)
ν (k) = f4(k)Λ2 ν δ(k

2 + α4),

(4.72)

where e(l), e′(l) are scalar and longitudinal polarisations, and e
(1)
ν , e

(2)
ν transverse with

fi, i ∈ {1, 2, 3, 4} being arbitrary functions, which we will set to one. As might have
been expected, only the directions originally transverse to the external polarising EM
field define a non-trivial dispersion for other photons. What about longitudinal and
scalar polarisations? Do they represent propagating photon modes? Although in
the absence of charges scalar and longitudinal photons do not constitute observable
degrees of freedom, having zero norm, and although the relative proportion of each
can be altered by choosing different Lorentz gauges, their presence is not entirely
ruled out [92]. Moreover, they play an important role in Coulomb fields as well as
the Casimir effect. The question in the setting of vacuum polarisation is further
discussed in [40, 161, 175].

4.3 Modified refractive index

Following [19], we define the refractive index n(k) through:

n2(k) = 1 − k 2/(k0)2, (4.73)

which is simply a rewriting of c → c/n = k0/|k|. The polarisation operator has
defined two distinct axes, perpendicular to the external field momentum. A general
photon will have a polarisation e that is linear combination of these eigenpolarisa-
tions, with each component being dispersed differently, leading to birefringent and
dichroic effects. As can be seen from Eq. (4.65), the dispersion is related to the
projection of the polarisation on one of the eigenvalues, squared with e.g. dispersion
along Λ1 given by:

k 2 = −α3

(
Λ1e
)2
. (4.74)

We can define a change in refractive index, δn, via:

δn1,2 := n− 1 =
α3,4

2(k0)2
+O

[
(α3,4/k

0)2
]
, (4.75)

for a photon polarisation in the Λ1,2 directions respectively (implying birefringence).
Before plotting δn(κ) for general values of κ, we can first test that we recover the
correct weak-field κ≪ 1 and strong-field κ≫ 1 asymptotic limits in both the analyt-
ics and numerics. Defining n1,2 and ω1,2(k) as the refractive indices and frequencies
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of a wave with polarisation satisfying (Λ1,2 e)2 = −1, ω 2
0 = k · k, we can rearrange

Eq. (4.73) into:

ω1,2 = ω0 − α3,4/2ω0. (4.76)

Using the asymptotic limits derived for α3,4(κ) Eqs. (B.20) and (B.21) in App. B one
can then show:

lim
κ≪1

ω1,2(k, κ) = ω0 −
11 ∓ 3

180

αm2

πω0
κ2 − iαm2

√
3

2

3 ∓ 1

32

κ

ω0
exp

[
− 8

3κ

]
,(4.77)

lim
κ≫1

ω1,2(k, κ) = ω0 +
(5 ∓ 1)

√
3

56

(
1 − i

√
3
)
Γ4
(
2/3
) αm2

π2ω0

(
3κ
)2/3

, (4.78)

which agree with [136] and [49]. First, we see we have recovered the famous ∼ κ2

correction from weak fields and ∼ κ2/3 from strong fields. Secondly, we note that the
weak field limit has the same ratio of coefficients as the Euler-Heisenberg Lagrange
expressions in Ch. 3. Moreover, using the definition Di = εijEj = P i + Ei for
an electric displacement Di, relative permittivity εij , polarisation P i and electric
field Ei and n =

√
ε (with the

√
understood as referring to eigenvalues εi of a

diagonalised system D′i = [ε1E′1, ε2E′2, ε3E′3] neglecting the relative permeability
µij without loss of generality), one can show that the weak field limit of δn in
Eq. (4.77) is consistent with the expressions from effective field theory we used for
vacuum polarisation Eq. (3.3) in Ch. 3.

For general parameters of κ, the correction δn1,2 corresponding to (Λ3,4e) = 1 re-
spectively is plotted in Fig. 4.3.
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Figure 4.2: Correction to the refractive index δn(κ0) in a constant crossed field.

For the real part of the refractive index, we have taken the limit of κ0 ∼ 0.02 corre-
sponding to upcoming laser facilities ELI and HiPER [60, 86] with the plot showing
excellent agreement with the asymptotic weak-field expression. For the imaginary
part of the refractive index, we have chosen larger values of κ0 in order that the
results are at all observable. Again, the asymptotic expression shows excellent agree-
ment, up to the point where the maximum numerical accuracy has been reached,
clearly seen by deviation of the numerical points from the theoretical curve.

Having the solution of scattering in a constant crossed field for a single photon, we
can sum over a thermal ensemble of photons and investigate how the properties of
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the thermal vacuum are modified when polarised by an external field. We investigate
this question in detail in the following chapter.



Chapter 5

Polarisation of the thermal
vacuum in a constant crossed
field

In this chapter, we focus on photon-photon scattering in a constant
crossed EM field at finite temperature with particular interest in ultra-
intense lasers. Our approach is complementary to other analyses using
effective field theory generalised to finite temperature, which were mostly
limited to the domain of ω ≪ m. We demonstrate how macroscopic ther-
modynamical observables are altered as a result of scattering in a thermal
photon gas and comment on the question of a thermal correction to pair
creation rates.

As we continue onward on the quest for new physics, we look for unprobed param-
eter regimes in which to test our current understanding of the universe. In the last
decades interest in finite temperature field theory has soared, fuelled by both out-
standing questions in QCD related to the QGP phase diagram and astrophysics, being
used to describe cosmological electron-positron-photon plasmas and active galactic
nuclei [7, 180]. There remain multiple formalisms which compete to develop quantum
statistical mechanics in a field-theoretic setting. To complement the current section,
we provide in App. C a brief introduction to the main contenders1 the Matsubara
and Keldysh formalisms and summarise their range of applicability. For the case
of strong external EM fields at finite temperature, there are currently few definitive
results. In fact, for a few years in the 90s, there was even discord about whether
the effective field theory one-loop contribution to pair-production in a constant EM
field was altered by the generalisation to finite temperature or not. Authors using
a real-time formalism [41], the thermofield dynamics formalism [117] as well as the
Matsubara formalism [71] first claimed the affirmative but since convincing results of
the real-time formalism [57] showed how the imaginary part of the one-loop effective

1A third formalism, thermofield dynamics, conceived by Takahashi and Umezawa in 1975 [164,
165] also makes use of a real-time variable, appealing directly to the average over the thermal
ensemble instead of an integration contour in complex time to accommodate temperature. Although
it can be used to describe nonequilibrium physics, it has found most application in spacetimes other
than the four-dimensional Minkowskian, which is of primary interest to us.
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Lagrangian was exactly zero (see also [49])2, there have been no further counter-
assertions. This demonstrates the trickiness of thermal field theory in Evans’ remark
“a quantum plasma [is] not a quantum vacuum”[61] and criticism of thermofield
dynamics [113]. In actual fact, real-time results show that a thermal contribution
does indeed occur, but that it is the two-loop contribution that is most significant
for both the refractive effects and pair-creation rates in effective field theory when
generalised to finite temperature in the limit T ≪ m [74]. The explanation given
is that the internal photons in the two-loop polarisation operator, being massless,
are much more susceptible to thermal effects than the leading-order fermionic loop,
which is suppressed by a factor exp(−m/T ) at low temperatures [58]. The one loop
QED effective Lagrangian for slowly-varying electromagnetic fields generalised to
finite temperature [57] was also used to calculate thermally-induced photon split-
ting [58], for which it was shown only for high temperatures and constant magnetic
fields (T/m,B/Bcr ∼ 0.2) that the effect was appreciable. The effects of a thermal
background on photon-photon scattering using effective field theory have also been
investigated [169], with particular emphasis on the dispersion relation of photons in
the CMB (Cosmic Microwave Background).

A main hindrance of applying finite-temperature field theory to problems involving
strong external fields, is that many interesting processes such as photon-splitting
and pair-creation will ultimately alter the occupation distribution in a non-trivial
way such that the ensemble cannot be regarded as thermal anymore i.e. as having a
well-defined temperature. The non-linearity of strong field phenomena twinned with
non-equilibrium dynamics is a theoretically demanding area. Even in purely photon-
photon interactions, for sufficiently intense fields, there is a wealth of collective non-
linear phenomena to consider (for a review, see e.g. [123]).

The need to restrict temperature ranges is due in part to gauge-dependent results (see
references [3] in [29]) and infra-red divergences that appear in perturbation theory
when T ≫ m. This occurs when calculating loop diagrams such as the polarisation
operator. These ultra-relativistic temperatures alone, give a non-zero polarisation
operator and thus a “thermal mass” squared of the photon e2T 2/3 [163, 73]. When
the external photon energy is of the order of this thermal mass ∼ √

αT , so-called “soft
momenta”, the perturbation approach breaks down when using the assumption of
massless photons k2 = 0. This can be remedied with hard-thermal loop resummation
summarised in App. C.4.

Theoretical method

In the current chapter, we model the polarised thermal vacuum as a photon gas which
scatters in an external constant crossed EM field. The amplitude for scattering
processes is then calculated by taking the single photon-scattering amplitude and
summing over the thermal boson distribution. There are two assumptions that are
inherent to this approach which we justify in the following, using a system of units
~ = c = 4πǫ0 = kB = 1.

i. Thermal photons are included perturbatively. Considering how a general external-
field amplitude would be altered by the next-order contribution from a photon

2It has also interestingly been recently shown in thermofield dynamics that in 1+1 massless QED,
both the real and imaginary parts of the one-loop retarded photon self-energy vanish [44].
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vertex, we see that the expansion parameter for such higher-order processes is
of the order ∼ eA/m = eE/mω = ξ. Now considering thermal photons to have
a frequency ω ∼ T and the electric field to be of the order of the square root of
the energy density, using the result for a photon gas [150] that U/V = π2T 4/15
for energy U and volume V , one can show that the condition that thermal pho-
tons can be included perturbatively is equivalent to T ≪ m/

√
α.

ii. The effects of a thermal electron and photon mass are neglected. In our calcu-
lation of the polarisation operator, we make the assumption that the one-loop
diagram is a valid approximation, and use on-shell electron and photon masses
(k2 = 0) accordingly. However, as the temperature increases, so do the electron
and photon thermal mass corrections which come from evaluating the mass and
polarisation operators respectively in a thermal environment. The thermal pho-
ton mass has already been calculated by considering the interaction between
photons in the gas [169], in which it was found that the resulting correction to
the refractive index is (44π2/2025)α2(T/m)4. We can compare this correction
with the change induced by the external field, derived in Eq. (4.75) to be at
least (2/45)(α/π)(E/Ecr)

2. In order to neglect this inter-photon interaction, we

must satisfy the condition T ≪ m
[
(45/22π3α)I/Icr

]1/4
, which for intensities I

of the order of those in upcoming laser facilities ELI and HiPER, corresponds
to T ≪ 0.3m. The electron thermal mass has also been calculated. It has
been shown that in the limit T ≪ m, the thermal correction to the electron
mass squared is (2/3)απT 2, implying that the assumption T ≪ m is a suitable
limit to neglect these effects. As this condition is less restrictive than that for
the photon mass, we are left with the condition T ≪ 0.3m for our considered
values of external field intensity.

Signatures of the polarised vacuum

The external field introduces an anisotropy to the system, which as we have seen,
leads to an anisotropy in the refractive index i.e. a vacuum birefringence that could
be measured. In addition, the change in refractive index, causing a shift in the photon
gas energy levels, should lead to a change in measurable thermodynamic variables
such as the pressure. Moreover, although our results assume thermal equilibrium, for
sufficiently high values of κ0T , pair creation would take place and although numbers
of pairs cannot be consistently calculated, the parameters at which pair creation will
begin to become a factor, can be ascertained. In the current chapter, we present
calculations for the change in thermodynamical quantities and discuss the question
of pair-production, bearing in mind the restriction T ≪ 0.3m.

5.1 Thermodynamics of a polarised thermal vacuum

We begin by calculating the free energy or Helmholtz function Ω of the system. From
this single function, one can derive all other interesting thermodynamical quantities
(see e.g. Eq. (C.3)). In a vanishing external field, our results must tend to those of
a photon gas.
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5.1.1 Free energy of a free photon gas

We consider a system of dimension L3 filled with a thermal gas of photons. The
Helmholtz function can be arrived at through the grand partition function, Z:

Z = Tr e−βĤ , (5.1)

where we have already inserted the condition that the chemical potential is zero for
photons and the trace is a sum over all possible ensembles. For our system, Ĥ can
be written as

∑
k
ω(k)N̂ (k)3. Quantising along the axes of the box defined using the

orthonormal set {x̂, ŷ, ẑ} gives us the condition k = (π/L)[mxx̂,myŷ,mz ẑ] for the
three quantum numbers m = {mx, my, mz} ∈ Z

3. In addition to a product of sums
over configurations, one also has a sum over occupancies l ∈ N0:

Z = Tr e−βĤ =
∏

mx,my,mz

∞∑

l=0

e−βlω(m) (5.2)

=
∏

mx,my,mz

(
1 − e−βω(m)

)−1
. (5.3)

The free energy is then given by:

Ω = − 1

β
lnZ =

1

β

∞∑

mx=−∞

∞∑

my=−∞

∞∑

mz=−∞

ln
[
1 − e−βω(m)

]
. (5.4)

We wish to turn these sums into an integral. First of all, we rewrite the sum over
configurations m as a sum over components of k and then note that the density
of states in d3k-space is (L/2π)3. In addition, as the polarisation also defines an
eigenstate of the Hamiltonian and as the energy is independent of polarisation, we
have a factor 2 due to degeneracy4. All this gives us:

Ω =
V

4π3β

∫
d3k ln

[
1 − e−βω

]
, (5.5)

where the volume V = L3 and d3k = ω2dωd cos θkdφ. Noting that P = −(∂Ω/∂V )T ,
taking the limit L→ ∞ and integrating once by parts, we achieve the famous result:

P =
1

3π2β4

∫ ∞

0
dx

x3

ex − 1
=

1

3
σT 4, (5.6)

where σ is the Stefan-Boltzmann constant, σ = π2k4
B/15(c~)3.

5.1.2 Free energy of a photon gas in a constant crossed field

The derivation in an external field proceeds in much the same way as for the free
field case. The main difference can be seen from the dispersion relation Eq. (4.8),
which in the Lorentz gauge becomes:

ω2gµν |k, eν(k)〉 =
[(

k · k
)
gµν + Πµν

]
|k, eν(k)〉, (5.7)

3We have already performed the standard removal of the ~ω/2 zero-point modes [66].
4We could instead include a final sum

P

r=1,2 for polarisation states r in the trace and label
|nx,y,z〉 as |nr

x,y,z〉, but this would just be equivalent to gaining a factor 2.
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implying that the “new” photon energies are functions of both wavevector and po-
larisation. Our analysis in Ch. 4 consisted of diagonalising Πµν or equivalently, in
specifying the eigenbasis Eq. (4.72), comprising the normalised four-vectors
{e(l), e′(l), e(1), e(2)}, with the first two corresponding to scalar and longitudinal po-
larisations respectively. This implies that the photon energies of each momentum
mode should carry a polarisation index: ω = ωr(k), r ∈ {0, 1, 2, 3}. Therefore when
performing the trace, an additional sum over the four polarisations is required. As
noted at the end of Sec. 4.2, the existence of scalar or longitudinal photons is still an
unresolved issue and we too, will observe that they play no role in our calculations.
Beginning from the expression for the free energy of a photon gas Eq. (5.5), with
an additional sum over polarisations and a factor 1/4 in comparison to the free-field
case due to the fixing of the polarisation5, we have:

Ω = − 1

β
lnZ =

V

16π3β

3∑

r=0

∫
d3k ln

[
1 − e−βωr

]
. (5.8)

Now ωr = ω/nr for refractive index nr = 1 + δnr, with δn0 = δn3 = 0 and δn1,
δn2 corresponding to the results derived in Eq. (4.75) with

(
Λ3,4e

)
= 1 respectively.

Using again the relation P = −(∂Ω/∂V )T , we can expand the logarithm in a Taylor
series around nr = 1 to give:

P = − 1

16π3β

3∑

r=0

∫
d3k

{
ln
[
1 − e−βω

]
− βω

eβω − 1
δnr +O

[
(δnr)

2
]}

(5.9)

= P0 + δP. (5.10)

One can then verify that evaluating P0 leads to the expression Eq. (5.6) for a free
photon gas. In order to calculate δP , we recall that δn1,2 = α3,4(κ)/2ω

2, with
κ = κ0ω(1− cos θk), slightly rewriting Eq. (4.70), with θk being the angle between k

and the external field momentum κκκ. We then have:

δP = δP1 + δP2, (5.11)

δP1,2 =
1

8π2β4

∫ ∞

0
dx

∫ 2

0
dy

x3

ex − 1

β2α3,4(κ
0xy/βm)

2x2
, (5.12)

where we have performed the trivial integral in φk and gone over to new integration
variables y = 1 − cos θk and x = βω. We mention that although x runs to ∞
corresponding to a momentum much larger than the pair-creation threshold, as T ≪
0.3m, the high-momentum tail will be exponentially damped. In addition, although
the integral can be performed analytically in y, the complicated expression that
ensues does not aid numerical evaluation.

Bearing in mind these restrictions which amount to κ0Txy/m ≪ 0.3κ0, with κ0

being of the order ∼ 0.02 for the upcoming ELI and HiPER laser facilities [60, 86]
and considering the excellent approximation of the weak-field limit of the refractive
index to the values plotted in Fig. 4.3, it suffices to use the weak-field expansion of
δnr in δP1,2.

5This is performed in analogy to an electron gas in a constant, homogeneous, magnetic field,
in which the Hamiltonian includes a term proportional to the spin’s projection onto the field ∼
±(1/2)µ · B, for electron magnetic moment µ [110].
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Weak-field expansion of pressure difference in a photon gas in a constant

crossed field

In the weak-field limit, the shifts in the refractive index become:

lim
(κ0Txy/m)→0

δn1,2

(
κ0Txy/m

)
=
β2α3,4(κ

0Txy/m)

2x2
=

11 ∓ 3

180

α

π
(κ0y)

2. (5.13)

On insertion into Eq. (5.12), after some trivial integration, one acquires:

lim
(κ0T/m)→0

δP (κ0T, T 2) =
11πα

4050

(κ0

β2

)2
, (5.14)

lim
(κ0T/m)→0

δP

P0
=

11ακ2
0

90π
, (5.15)

or in SI units:

lim
(κ0kBT/mc2)→0

δP (κ0T, T 2) =
11πακ2

0

4050

(kBT
)4

(c~)3
. (5.16)

That the change in pressure is positive can be explained using physical intuition.
The thermal ensemble is a trace over the Boltzmann factor which is a function of the
photon energies. For a fixed energy ω, the momenta of the photons in an external
field k =

√
k · k = nω will increase with refractive index, n. In the weak-field limit,

δn > 0, so the thermal photon momenta increase and correspondingly so too does the
pressure. From Eq. (5.15) we note that the relative change in pressure is independent
of temperature. This implies that even for low temperatures, where our assumption
of thermal equilibrium should comfortably hold to a sufficient level of accuracy, as
pair-creation rates tend to zero, the polarised vacuum has an effect. Although it is
unlikely that this pressure change can be measured directly (as the detection appa-
ratus would have to be actually in the strong field), it poses the question, whether
vacuum polarisation effects can be observed in macroscopic measurements.

5.2 Discussion and Outlook

Although a goal is to devise a realistic experimental scenario in which one could
measure the effects of the polarised vacuum through the change in thermodynamic
variables, there remain substantial theoretical issues to be addressed. We can identify
the three most immediate points to be tackled, involving taking a step towards more
realistic inclusion of field, temperature and effects:

i. Evaluation of the thermal pair-production rate: completion of this task would
not only allow us to corroborate our assumption of thermal equilibrium for
our calculation of thermodynamic effects, but it would also provide parameters
at which the potentially easier to measure process of pair production would
become probable. Moreover, if the result turns out to be non-zero, one could
specialise the solution in a general EM wave Eq. (4.39) to the case of a constant
electric field, which could then be used to ascertain the thermal correction
to Schwinger’s pair-production formula, and to the value Ecr regarded as an
indicator of the pair-production threshold in the absence of temperature. This
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would then provide a direct link with existing results in the literature, which for
the case of a constant electric field using Matsubara, Keldysh and thermofield
formalisms, seem to now all agree that there is no thermal correction to the pair-
creation threshold to one-loop order effective field theory [73, 57, 43]. In the
following we present preliminary considerations as to how we could formulate
an expression for the thermal pair-production rate:

We derive in App. A.1.3, the relationship between the polarisation operator and the
rate of pair creation R, (Eq. (A.23)):

R(ω, κ, e) = Im
eµeνΠ

µν
e (κ)

k0
. (5.17)

In order to average this rate over the thermal ensemble, we can appeal to classical
statistics and use the average of the number operator N(ω, β) = 〈N̂ (ω)〉β :

〈R(ω, κ, e)〉 = V

∫
d3k

(2π)3
R(ω, κ, e)P (ω, e, β)

=
V

32π3N(β)

4∑

r=1

∫
d3kR(ω, κ, er)N(ω, β), (5.18)

where 〈〉 refers to averaging over the thermal ensemble, P (ω, e, β) is the thermal
photon probability density, N(β) is equal to the average total number of photons
and:

N(ω, β) :=
1

eβω − 1
. (5.19)

The expression Eq. (5.18) can then be shown to reproduce the correct limits when
the rate is replaced by unity (giving 〈1〉 = 1) and when the external field tends to
zero (giving zero rate). Bearing in mind that we will again be considering values of
κ ≪ 1 and are constrained by T/m ≪ 0.3, since the weak-field limit of α3,4 agrees
excellently with the numerical solution in this range (see Fig. 4.3b), we are justified
in using the corresponding expression here in the rate. The weak-field rate:

lim
κ→0

R(ω, κ, er) =
3 − δr1 + δr2

16

√
3

2

αm2κ

ω
e−

8
3κ , (5.20)

can be inserted in Eq. (5.18) and if we again switch to integration variables x = βω
and y = 1 − cos θ, we achieve:

〈R(ω, κ, e)〉 =
3
√

3

128π
√

2

ακ0m

ζ(3)

∫ ∞

0
dx

∫ 2

0
dy x2y

e−8βm/3κ0yx

ex − 1
, (5.21)

where β is dimensionless, with temperature measured in units of the electron mass
and where we have used the result:

N(β) = V

∫
d3k

(2π)3
1

eβω − 1
=
ζ(3)V

πβ3
,

where ζ is the Riemann zeta function and ζ(3) ≈ 1.20. The final expression for the
rate Eq. (5.21) can be again seen to reproduce correct limits for κ0, T → 0. Although
in principle possible to numerically evaluate, a next step could be to evaluate the
rate for the typical situation of βm/κ0 ≫ 1.



78 Chapter 5. Polarisation of the thermal vacuum in a constant crossed field 5.2

ii. Displacement of system from equilibrium: only in a very few, special and most
probably unrealistic cases, can the effect of a strong external field be regarded
as preserving equilibrium. Therefore any first steps towards an experimentally-
realistic scenario must involve some understanding of systems displaced from
equilibrium. One possible example that could be studied is the case of a pho-
ton gas in the field of a circularly-polarised wave. From [19], for scattering
of a photon with initial momentum k1 to k2, in an external field of photon
momentum κ, the T -matrix can be written in terms of a sum of polarisation
operators:

T (k1, k2) = Π(0)δ(k1−k2) + Π(−)δ(k1−k2−2κ) + Π(+)δ(k1−k2+2κ).

This scenario offers on the one hand a system weakly displaced from equilib-
rium with energy levels being mixed by the external field frequency, and on the
other a system of equations that is only slightly less tractable than for the con-
stant field case. As we could no longer assume thermal equilibrium, we would
have to calculate the polarisation operator in the context of e.g. the Keldysh
formalism. Using real-time non-equilibrium methods would also provide the
possibility of investigating the T ∼ m limit, taking into account the fermion
field and being able to calculate pair-creation rates. In addition, one could
then calculate the effect the presence of generated pairs have on assumptions
of thermal equilibrium.

iii. Field inhomogeneity: any realistic scenario must involve detection equipment
placed away from the incredible intensities required before vacuum polarisation
effects become measurable. With the exception of pair creation and perhaps
some bulk thermodynamic quantities such as the specific heat, this would ne-
cessitate some form of inhomogeneity in the fields. However, any form of field
inhomogeneity at finite temperature would seem to displace the system from
equilibrium and so this line of enquiry could only be taken up after including
non-equilibrium effects.

To conclude, many questions still remain open about the nature of the polarised
vacuum when subject to heat. However, our technique is original and complements
methods already applied to similar external field backgrounds. Moreover, the power
of our approach is that any wave background can in principle be calculated, and the
link to vacuum polarisation effects is direct.



Chapter 6

Summary and outlook

6.1 General summary

Vacuum polarisation effects in intense lasers was the title chosen to best summarise
the aims of the work. Our goal was to devise a realistic scenario involving intense
lasers, in which the effect of the polarised vacuum could be measured. By utilising
interference effects, we showed how elastic real photon-photon scattering could in
principle be measured with the next generation of laser facilities. In addition, we
also considered what role finite temperature plays in vacuum polarisation effects. The
thesis was balanced fairly equally in terms of applied and theoretical aspects. For
the case of vacuum diffraction, we were also able to place special emphasis on exper-
imental aspects, whereas the finite temperature discussion remained predominantly
theoretical.

Opening with a brief history of key experimental and theoretical results related to
the polarised vacuum and motivating the present need for a continued study of the
myriad hitherto unobserved vacuum polarisation effects, we began in chapter 2

with a discussion of effective field theory. Not only have the majority of papers on
QED vacuum polarisation been partially or fully based on the corresponding Euler-
Heisenberg Lagrangian, but generalisations to finite temperature at least in 3+1
dimensions have almost exclusively relied upon its predictive power. Considering
the applicability to low frequency photons ω ≪ m, this theoretical approach is
particularly suited to describing vacuum polarisation phenomena in lasers and is
therefore an essential component in any substantial work on the polarised vacuum.
After deriving the main object of calculational interest – the functional determinant –
in a scalar field theory and discussing the generalisation to QED, we included details
of a suitable method to evaluate such determinants, applying it to the pedagogical
example of a constant magnetic field. Citing approaches that solve for the general
case of a constant EM field, we expanded the resulting Euler-Heisenberg Lagrangian
in the weak-field limit, which formed the basis for calculations in chapter 3.

Chapter 3 saw the application of the Euler-Heisenberg Lagrangian to a realistic ex-
perimental scenario. Inspired by probe + strong laser calculations such as [143], we
took the novel approach of introducing a second strong laser and explicitly studied
the interference effects that were generated as a result. We showed how, using ultra-
intense lasers, it is in principle possible to fabricate a double-slit consisting entirely of
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light [102]. Not only is this an important further generation of the classic experiment
displaying the inherent wave-particle duality so central to the interpretation of quan-
tum mechanics, it also represents a realistic scenario in which one could measure, for
the very first time, elusive elastic real photon-photon scattering. Moreover, by using
the interference between scattered probe photons in the centre of each strong laser,
one is in principle able to spatially separate this vacuum signal from the otherwise
overwhelming probe background. By calculating the intensity pattern in Sec. 3.2,
we were able to relate the number of expected photons per shot and the total num-
ber of required photons for a pattern, to parameters of the laser, in regions of high
signal-to-noise ratio. In doing so, we introduced photon diffraction as a key signa-
ture of the polarised vacuum in collisions of laser beams. Throughout chapter 3 we
demonstrated the sensitivity of the single-slit diffraction pattern to the shape of the
strong-field laser beam whilst also showing how robust the phenomenon of diffraction
was, with a distinct spatial separation of the beams being the main prerequisite to
obtaining an interference pattern. In addition, these effects were demonstrated in
two different beam geometries, which can be related to one another via a contin-
uous transformation, and it was shown how sensitive the diffracted EM field is to
beam alignment. Beyond diffractive effects, in Sec. 3.3 we also calculated the modest
improvement of a factor 1.4 and 1.3 in the rotation and ellipticity inducement in
the polarisation of probe light, in the double-slit and double-shaft case respectively,
over single strong-beam + probe collisions. Moreover, by including effects of probe
focusing, it was shown that with a finite separation of beams, effects on the probe
polarisation oscillate both with beam-separation and detector distance, highlighting
once again the sensitivity to beam alignment. We concluded the chapter in Sec. 3.4
with a comprehensive discussion of the approximations used and experimental issues,
with particular emphasis on thermal effects and finite vacuum pressure.

In calculating the amplitude for photon scattering in an external EM plane wave,
chapter 4 marked the beginning of the thermal part of the thesis. The QFT deriva-
tion of the polarisation operator is also crucial to the development of the thesis, as
it is the object that encodes the full detail of the scattering process according to
QED, in comparison to the fermionic average given by the effective field theory in
chapter 2, which is restricted to frequencies ω ≪ m. Detailing calculation of the
amplitude for plane waves, which was supplemented by steps in appendix A, we
then specialised to the case of a constant crossed field in Sec. 4.2 whose pertinence to
ultra-intense lasers was also clarified, following which we calculated the modification
in refractive index in Sec. 4.3, reproducing asymptotic limits, aided by content from
appendix B. This all formed the basis for calculations in chapter 5.

After giving a brief review of mechanisms for incorporating finite temperatures into
QFT in appendix C and a summary of previous results relevant to the polarised
QED vacuum in the opening to chapter 5, we began a calculation of the change in
thermodynamic properties of a vacuum polarised by a constant crossed field. Inter-
preting the vacuum at finite temperature as a thermal photon gas, we summed the
photon scattering result of the previous chapter over the ensemble, thus incorporat-
ing the effect of an external strong field. Concentrating again on the weak-field limit,
we calculated an increase in pressure due to vacuum polarisation and posed the orig-
inal question whether the effect of the polarised vacuum could be measured through
macroscopic quantities. Moreover, the calculated relative change was independent of
temperature, meaning that even at low temperatures, where the assumption of ther-
mal equilibrium is more valid (due to the small pair-production rate), there would
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remain a vacuum signature. In addition, we outlined a preliminary expression for
the pair creation rate at finite temperature, which we interpreted as a measure of
the potential of the vacuum to decay into pairs, which is also important in verifying
thermal equilibrium.

To conclude, both on the applied and theoretical sides, we have contributed impor-
tant results to the body of work on vacuum polarisation effects.

6.2 Outlook

An outlook on future work can likewise be split into two sections on diffractive and
thermal vacuum polarisation effects.

Although we comfortably met our aims in devising a realistic scenario in which
to measure elastic real photon-photon scattering, it might be possible to further
specify this to experiment by e.g. using more realistically shaped beams. At ultra-
high intensities, there is evidence to suggest that the Gaussian assumption becomes
less valid, and that the beam profile can be best described by q-Gaussian’s of the
form [1 + (ρ/ρr)

2]−µ, for transverse beam co-ordinate ρ, constants ρr and µ > 1
[134]. However, in order to perform this consistently, one would first have to find
a solution to Maxwell’s equation which had this form, which would probably be
less tractable than a Gaussian (which was at least analytically integrable in two
dimensions) increasing the numerical calculation effort considerably.

Due to the wide applicability of the operator diagram technique devised by Baier
and colleagues [17, 18] and the veritable bounty of potential observables that can be
investigated in statistical physics combined with the rich array of potential vacuum
polarisation effects, there is plenty of room for further development of thermal results
from chapter 5. We re-iterate the three most important tasks from that chapter,
identified as being the following.

i. Evaluation of the thermal pair creation rate: this would on the one hand allow
us to further corroborate the domain of validity of the assumption of thermal
equilibrium and on the other provide a crucial comparison with results from the
existing thermal field theoretical approaches based on the Matsubara, Keldysh
and thermofield formalisms [73, 57, 43]. In the event that the thermal correction
is non-zero, which is possible as we have no such limitation that ω ≪ m,
this would allow us to define a thermally-modified Schwinger pair-production
threshold.

ii. Displacement from thermal equilibrium: if we are ever to seriously consider
application to experiment, the assumption of thermal equilibrium must be
somehow relaxed, especially in situations involving ultra-intense lasers. In
addition, this would allow us to better evaluate the equilibrium results of re-
fractive vacuum polarisation effects in chapter 5. An ideal example would be
to consider polarisation of the photon gas in a circularly-polarised laser, for
which one can also straightforwardly derive the polarisation operator (see e.g.
[19]). Again beginning in the parameter regime in which pair-creation is neg-
ligible, this would relax the condition that the real photon-scattering be elas-
tic. Circularly-polarised light offers the advantage that, due to conservation of
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angular-momentum, the only non-elastic scattering events involve a change in
photon momentum of ±2κ where κ is the momentum of the laser photon. This
would then weakly displace a photon gas from equilibrium, whilst minimising
analytical complexity.

iii. Introduction of inhomogeneity: as polarisation effects in the weak-field limit
scale with parameter κ2 = (E0/Ecr)(1 − cos θ)ω/m, for angle θ between pho-
tons of frequency ω and the wavevector associated with the background field
strength E0, first defined in Eq. (4.70) in Ch. 4, and as most detection appa-
ratus cannot withstand the intense radiation required to observe such effects,
it is necessary to introduce some inhomogeneity between the interaction centre
and detector. Although difficult to analytically include in four dimensions, a
first step could be to specify the solution of polarisation operator in general
EM waves to a wide, slowly-varying (in the sense of longer than the thermal
equilibration time) sech2 or Gaussian function. This would on the one hand
be closer to EM fields available in the laboratory but on the other provide a
better understanding of the role of field inhomogeneities at finite temperature.

It is envisaged that the first two of these tasks will provide important insights, of use
in the development of the theoretical framework, in which one may be able to make
the first tentative suggestions for experiment.



Appendix A

Results from Quantum
Electrodynamics

We collect some useful reference formulae and give brief explanations for
some of the main results from QED that we use in the main text. In the
second part, we detail the derivation of the key operator disentangling
method used in the calculation of the polarisation tensor.

A.1 QED toolbox

Here we collect some useful formulae to accompany discussion in the main text, as
well as giving brief explanations for key QED results.

A.1.1 Useful products

In a metric η = diag(+,−,−,−), the Faraday or electromagnetic field strength tensor
Fµν and its dual F ∗µν = (1/2)εµναβFαβ for the fourth-rank totally antisymmetric
pseudotensor ε, ε0123 = 1, for electric and magnetic fields E, B respectively and
general four-vector lν , obey:

Fµν =




0 −E1 −E2 −E3

E1 0 −B3 B2

E2 B3 0 −B1

E3 −B2 B1 0


 , (A.1)

F ∗µν =




0 −B1 −B2 −B3

B1 0 E3 −E2

B2 −E3 0 E1

B3 E2 −E1 0


 , (A.2)

Fµν lν = −lµFµν =
[
l · E, (l0 E + l ∧ B)

]µ
, (A.3)

F ∗µν lν = −lµF ∗µν =
[
l · B, (l0 B− l ∧ E)

]µ
. (A.4)
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Both Fµν and F ∗µν are gauge-invariant and can be combined to give Lorentz-
invariant scalars, which can be chosen to be:

F := −1

4
FµνF

µν =
1

2
(E2 −B2), (A.5)

G := −1

4
F ∗
µνF

µν = E · B. (A.6)

It is often convenient to construct the positive semi-definite secular invariants from
these objects, given by:

a =

√√
F 2 + G 2 + F , b =

√√
F 2 + G 2 − F , (A.7)

which obey the useful identities:

ab = E · B = G , a2 − b2 = E2 −B2 = 2F . (A.8)

A.1.2 Traces

Here we compile a list of some useful QED traces. The trick to working out a trace
of n ∈ N gamma matrices is to pull the first gamma matrix through to the end using:

{
γµ, γν

}
= 2gµν , (A.9)

and then use cyclicity to show that the resulting trace is equal to (−1)n times the
original.

Tr γµ = 0, (A.10)

Tr (γµ)2n+1 = 0, (A.11)

Tr γµγν = 4gµν , (A.12)

Tr γµγνγργσ = 4
(
gµνgρσ − gµρgνσ + gµσgνρ

)
, (A.13)

Tr γµγνγργσγαγβ = 4gµν
(
gρσgαβ − gραgσβ + gρβgσα

)

−4gµρ
(
gνσgαβ − gναgσβ + gνβgσα

)

+4gµσ
(
gνρgαβ − gναgρβ + gνβgρα

)

−4gµα
(
gνρgσβ − gνσgρβ + gνβgρσ

)

+4gµβ
(
gνρgσα − gνσgρα + gναgρσ

)
, (A.14)

Tr γaγbγcγdγeγfγgγh = gab Tr
(
γcγdγeγfγgγh

)
− gac Tr

(
γbγdγeγfγgγh

)

+gad Tr
(
γbγcγeγfγgγh

)
− gae Tr

(
γbγcγdγfγgγh

)

+gaf Tr
(
γbγcγdγeγgγh

)
− gag Tr

(
γbγcγdγeγfγh

)

+gah Tr
(
γbγcγdγeγfγg

)
. (A.15)
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A.1.3 Properties of the polarisation tensor

Furry’s theorem

Furry’s theorem is the statement that closed fermion loops with an odd number of
photon vertices sum to zero and can be neglected. This can be seen to be a conse-
quence of charge conjugation. Utilising notation from the main, ignoring coefficients,
and filtering out polarisation vectors, the amplitude for the diagrams Fig. A.1.3 can

+

N N

Figure A.1: A closed fermion loop with N photon vertices.

be written as:
∫
d4x
{

Tr 〈x|γµ1S
(1)
F (p̂)e±ik1x̂γµ2S

(2)
F (p̂)e±ik2x̂ · · · γµNS

(N)
F (p̂)e±ikN x̂|x〉

+Tr 〈x|γµ1S
(1)
F (−p̂)e±ik1x̂γµNS

(N)
F (−p̂)e±ikN x̂ · · · γµ2S

(2)
F (−p̂)e±ik2x̂|x〉

}

(A.16)

where − is understood as an incoming and + an outgoing photon in the ± term in the
exponentials and the (n) superscripts for n ∈ N1, 1 ≤ n ≤ N , label the propagator
and gamma matrices for the corresponding vertex. But since charge conjugation is a
symmetry in QED, one can insert C−1C = 1, 2N times, once on either side of each
propagator. Using the property of the the charge conjugation matrix Cγ C−1 = −γT

for e.g. a C = iγ2γ0 (up to a phase factor), one can also show:

SF (p̂) =
1

γP −m
=

γP +m

P 2 −m2
,

CSF (p̂)C−1 = C
1

γP −m
C−1 =

1

−γTP −m
= STF (−p̂), (A.17)

with the third equality of Eq. (A.17) verifiable by Taylor expanding the propagator.
Application to e.g. the second term in our amplitude Eq. (A.16) gives:

∫
d4x
{

Tr 〈x|γµ1S
(1)
F (p̂)e±ik1x̂γµ2S

(2)
F (p̂)e±ik2x̂ · · · γµNS

(N)
F (p̂)e±ikN x̂|x〉

+(−1)NTr 〈x|
(
γµ1
)T[

S
(1)
F (p̂)

]T
e±ik1x̂ · · ·

(
γµ2
)T[

S
(2)
F (p̂)

]T
e±ik2x̂|x〉

}
,

(A.18)

which after re-arranging and utilising cyclicity becomes:

(
1+(−1)N

)∫
d4xTr 〈x|γµ1S

(1)
F (p̂)e±ik1x̂ · · · γµNS

(N)
F (p̂)e±ikN x̂|x〉. (A.19)

So for odd N , the amplitude for the closed fermion loop diagram Fig. A.1.3 is iden-
tically zero.
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Pair creation

For an elastic scattering process, we can use Fermi’s golden rule in conjunction with
the optical theorem to relate the rate of pair creation to the imaginary part of
the polarisation operator. For a scattering matrix Sfi describing non-trivial elastic
scattering of input and output momenta pi, pf in the matrix Tfi we have:

Sfi = δfi + i(2π)4δ(pf − pi)Tfi. (A.20)

The probability Wfi of this process is the square of the non-trivial part, and dividing
by the volume V and time t that occur upon squaring the delta function, we can
define a rate:

1

V

dWfi

dt
= (2π)4V t δ(pf − pi)|Tfi|2, (A.21)

which is the statement of Fermi’s golden rule. In this notation, the optical theorem
becomes [141]:

2Im Tii = i(2π)4V t
∑

j

δ(pi − pj)|Tij|2. (A.22)

Combining Eq. (A.21) and Eq. (A.22) we then have an expression for the rate of
elastic scattering in terms of the matrix T :

1

V

dWfi

dt
= 2Im Tii. (A.23)

In the main text we have the correspondence:

Tfi =
e1(k1)√
2ω1V

Πµν(k1, k2)
e2(k2)√
2ω2V

, (A.24)

and if we define the elastic polarisation operator as

T µν(k1, k2) = i(2π)4δ(4)(k1 − k2)Π
µν
e (k1), (A.25)

we have a rate:

dW (k1)

dt
=

1

ω
Im

[
e1(k1)Π

µν
e (k1)e2(k1)

]
. (A.26)

Transversality

The polarisation tensor Π(k2, k1) relating incoming and outgoing photons with wavevec-
tors k1, k2 respectively, occurs in Maxwell’s equations in the form Πµν(k2, k1)Aν(k1).
Suppose Aν(k1) were the vector potential of a free photon, then we could write it
as Aν(ϕ), where ϕ = k1x as in the text. As the physics must be invariant under
a gauge transformation Aν → A′

ν = Aν + ∂νf(ϕ) = Aν + k1νf(ϕ), for an arbitrary
function f , this should have zero effect on Maxwell’s equations. The only way this
can be fulfilled is if Πµν(k2, k1)k1ν = k2µΠ

µν(k2, k1) = 0, and hence the necessary
transversality of the polarisation tensor.
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Regularisation in an external field

We regularise the polarisation tensor in an external field in the following, standard
fashion. We know that at zero field, the unrenormalised tensor is infra-red divergent.
No extra divergences are introduced into the tensor by the presence of the external
field (signified by F ), occurring as it does, in the denominator. We can regularise it
simply by subtracting off the zero field term as in the following:

Πµν
F =

(
Πµν
F − Πµν

F=0

)
+ Πµν

F=0 (A.27)

= Πµν
ren + Πµν

F=0. (A.28)

Now Πµν
ren is renormalised as limF→0 Πµν

ren = 0 and encodes all parts of the polarisation
operator that depend on the field and so will be what we call the “polarisation
operator” in external field calculations. So for us, terms that are independent of the
field disappear. The remaining term Πµν

F=0, can then be renormalised with standard
methods in zero field and won’t appear in our analysis.

A.2 Exponential operator method

A.2.1 Disentangling operators between exponentials

We explain the calculations in [18] for the disentangling of exponentials of non-
commuting operators. We define a transformation of the operator M̂ (where again
P̂ = p̂+ eÂ):

M̂ ≡ M̂(s) = exp(isP̂ 2)M̂ exp(−isP̂ 2). (A.29)

When M̂ → P̂ , the quantity in Eq. (A.29) occurs in loop calculations e.g. the electron
mass operator, and in our case will be used in calculation of the polarisation tensor.
How do we evaluate such an object? One possibility, which we now investigate, is to
differentiate both sides with respect to the parameter s. This then generates a first-
order operator differential equation, which can be solved for M̂(s) using the initial
condition: M̂(0) = M̂ . Letting M̂ → P (removing hats for notational simplicity),
differentiating Eq. (A.29) gives us:

dPµ
ds

= i
[
P 2, Pµ

]
= −2eP λFλµ. (A.30)

Specialising to a plane EM wave, recalling ϕ = κx, for a vector potential Aµ(ϕ) =
aµψ(ϕ), and κa = 0, we have:

Fµν = 2∂[µAν] = fµνψ
′(ϕ), (A.31)

which after substitution gives:

dPµ
ds

= 2e
[
κµ(aP ) − aµ(κP )

]
ψ
′
(ϕ). (A.32)

In order to solve this, we first solve for both barred terms on the right-hand side using
the exact same method. Contracting Eq. (A.32) with aµ, which is just a function,
not an operator, we acquire:

d(aP )

ds
= −2ea2(κP )ψ

′
(ϕ). (A.33)
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In order to evaluate ψ
′
(ϕ), we first assume ψ′(ϕ) is analytic, allowing us to Taylor

expand and show ψ
′
(ϕ) = ψ′(ϕ). Then for ϕ̂, we begin again from Eq. (A.29) but

with M → x. Differentiating again with respect to s, using [xµ, P ν ] = −igµν and
contracting with κ, we have:

dϕ(s)

ds
= −2(κP ), (A.34)

which can be solved with:

ϕ(s) = ϕ− 2(κP )s. (A.35)

Substitution of Eq. (A.35) into Eq. (A.33) brings:

(aP ) = aP + ea2∆(s), (A.36)

∆(s) = ψ
(
ϕ(s)

)
− ψ

(
ϕ
)
, (A.37)

and then after a final substitution into Eq. (A.30), some algebra and an integration
by parts, we arrive at:

Pµ(s) = Pµ +
e

κP
(fP )µ∆(s) +

e2a2

2(κP )
∆2(s). (A.38)

A.2.2 Disentangling momentum squared in exponential

This section is split into two parts. We first acquire the form of the momentum
squared by rearranging terms in the squared Dirac equation and then consider a
similar method to the previous section for disentangling the exponential of operator
expressions. We describe the method in [18] with particular reference to spin-1/2
particles in an electromagnetic wave:

Aµ(ϕ) = aµ1f1(ϕ) + aµ2f2(ϕ), (A.39)

with again ϕ = κx and a1 ·a2 = κ ·a = 0, κ ·κ = 0 as in the text in Sec. 4.1. We
note that the effect of spin becomes manifest when the Dirac equation in an external
field:

[
γ(p+ eA) −m

]
ψ = 0, (A.40)

for a bi-spinor ψ, is squared and decomposing γµγν = gµν + σµν with the spin part
of the operator σµν := (γµγν − γνγµ)/2, we acquire:

[
(p+ eA)2 −m2 +

ie

2
σµνF

µν
]
ψ = 0. (A.41)

Using Eq. (A.31), and noting that /κ/a = −/a/κ, the spin term can be rewritten as:

ie

2
σµνF

µν = −ie/a/κψ′(ϕ). (A.42)

It will prove useful to decompose the total momentum squared into its components.
With the vector potential defining a preferential direction, we can write:

P 2
F = P 2 − ie/a/κψ′(ϕ) = P 2

a + P 2
⊥ − ie/a/κψ′(ϕ), (A.43)
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Pa = Pa,1 + Pa,2, Pa,i = (aiP )ai/a
2
i , P⊥ = P − Pa,

where Pa is the sum of four-momenta along the field direction and P 2
a = P 2

a,1 +P 2
a,2,

and the spin term is also a sum over a1 and a2. In order to determine how we can
use this in an exponential, we consider solving:

exp
(
is(γPF )

)
= exp

(
is(a+ b)

)
= L(s) exp

(
isb
)
exp

(
isa
)
, (A.44)

for:

a = P 2
⊥, b = P 2

a,1 + P 2
a,2 − ie/a/κψ′(ϕ). (A.45)

We apply the same method as in the previous section to Eq. (A.44) and again differ-
entiate with respect to s. Defining fF (s) = exp(isa)b exp(−isa), we multiply both
sides of the result from the left by L−1 and from the right by exp(−isa) exp(−isb)
to give:

iL−1dL

ds
= b− exp(isb)fF (s) exp(−isb). (A.46)

We can rewrite fF (s) with the aid of the Baker-Campbell-Hausdorff formula:

fF (s) = exp(isa)b exp(−isa) = b+ [a, b] +
1

2!

[
a, [a, b]

]
+ . . . (A.47)

By first verifying [P 2
⊥, b] g = [P 2, b] g for b given in Eq. (A.45) and test function g,

one can then show by induction that:

fF (s) ≡ b(s) = exp
(
isP 2

)
b exp

(
− isP 2

)
. (A.48)

This can be solved with our usual differentiation method. The part of b that contains
(aiP )ai/a

2
i can be solved immediately by taking the result Eq. (A.36) directly over,

and the spin part of b can simply be added with the replacement ϕ → ϕ(s), all of
which gives us:

fF (s) =
aP

a2
− ie/a/κψ′(ϕ(s)). (A.49)

By showing [b, b(s)] = 0, Eq. (A.46) becomes:

iL−1 dL

ds
= b− b(s), (A.50)

which can be simply integrated by separation of variables using the initial condition
L(0) = 1, which in conjunction with Eq. (A.44) gives:

exp
[
iu
(
γP
)2]

= exp
[−e/a1 /κ∆1(u)

2κP

]
exp

[−e/a2 /κ∆2(u)

2κP

]

× exp
{
iu
[ ∫ 1

0
dy

1

a 2
1

(
a1P + ea 2

1 ∆1(uy)
)2]

+iu
[ ∫ 1

0
dy

1

a 2
2

(
a2P + ea 2

2 ∆2(uy)
)2]}

exp
(
iuP 2

⊥

)
,

(A.51)

and hence we have achieved a disentangling of the exponential of the momentum
squared, in terms of functions of its components.
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A.2.3 Application to polarisation operator

We can rewrite Eq. (4.22) with the above methods, which for convenience, we repro-
duce here:

T̃ µν =

∫
d4x exp[i(k2 − k1)x]Tr

[
〈x| exp

{
it(P + k)2

}
γµ

exp
{
isP 2

}(
γP +m

)(
γν/k2 + 2P ν

)
|x〉
]
. (A.52)

Using Eq. (A.51) in Eq. (A.52) to separate out the spin-dependent terms, we have:

T̃ µν =

∫
d4x exp[i(k2 − k1)x]Tr

[
〈x| exp

[−e/a/κ∆1(u)

2κ(P + k1)

]
exp

{
it[P + k]2

}

γµ exp
[−e/a/κ∆1(u)

2(κP )

]
exp

{
itP 2

}
(γP +m)(γν/k2 + 2γP ν)|x〉

]
, (A.53)

where expressions involving a represent those in terms of a1 and a2 as mentioned
previously. First of all, we use the fact that aκ = 0 to show (/a/κ)2 = 0 and after
showing {/κ, /a} = 0, it follows that exponentials of the first type within the trace can
be expanded as linear functions:

exp
[ −e/a/κ∆(u)

2κ(P + k1)

]
= 1 +

e/κ/a

2κ(P + k1)

[
ψ(ϕ− 2(κP )s) − ψ(ϕ)

]
. (A.54)

We would also like to put the exponentials together. Using our result from Eq. (A.37)
with s→ −s:

exp(−isP 2)∆ exp(isP 2) = ∆(−s) = ψ(ϕ + 2κPs)− ψ(ϕ), (A.55)

and so simply multiplying on the left by the exponential gives:

∆ exp(isP 2) = exp(isP 2)
(
ψ(ϕ+ 2κPs) − ψ(ϕ)

)
. (A.56)

Applying this in Eq. (A.53) gives:

T̃ µν =

∫
d4x exp[i(k2 − k1)x]〈x| exp

[
it(P + k1)

2
]
exp

[
isP 2

]
Bµν |x〉,

Bµν = Tr
[
γµ
(
1 − er+(s)

2(κP )
/κ/a
)(
γP +m

)(
γν/k2 + 2P ν

)(
1 +

er−(t)

2κ(P + k)
/κ/a
)]
,

(A.57)

where we have defined:

r+(s) = ψ(ϕ+2(κP )s)−ψ(ϕ), r−(t) = ψ(ϕ−2κ(P + k)t)−ψ(ϕ). (A.58)



Appendix B

Airy functions and constant
crossed field calculations

We present some basic definitions and plots of the first three Airy func-
tions Ai(x), Bi(x), Gi(x) as well as some results for the Airy derivative
function f ′(x) that form useful reference for calculation of the polarisa-
tion operator in a constant crossed field. In addition, we plot the form
factors α3,4 that occur in the calculation, and derive useful asymptotic
limits.

One of the simplest non-trivial linear second-order ordinary differential equations:

d2f

dx2
= fx, x ∈ R (B.1)

has a solution given by the following Airy integral [5]:

Ai(x) =
1

π

∫ ∞

0
dt cos

(t3
3

+ xt
)
, (B.2)

plotted in Fig. B.1. That Ai(x) is convergent is due to the t3/3 term initiating ever
more rapid oscillations that the linear term. We show this using a standard trick of
asymptotic analysis by integrating by parts in the following way:

Ai(x) =
1

π

∫ ∞

0
dt

1

t2 + x

d

dt
sin
(t3

3
+ xt

)
(B.3)

= lim
t′→∞

sin
(
t′3

3 + xt′
)

t′2 + x
−
∫ ∞

0
dt

t
(
t2 + x

)2 sin
(t3

3
+ xt

)
. (B.4)

Due to the absence of poles, we could also use Cauchy’s theorem to rotate the in-
tegration contour by t → exp(iπ/6)t (also known as a Stokes’ transformation [181])
giving:

Ai(x) = Re
1

π

∫ ∞

0
dt exp

[
i
(t3

3
+ xt

)]
, (B.5)

= Re
exp

(
iπ/6

)

π

∫ ∞

0
dt exp

(−t3
3

+ ixt eiπ/6
)
, (B.6)
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Figure B.1: The two standard Airy functions. For x > 0, Ai(x) converges whereas
Bi(x) diverges.

also clearly showing convergence as t→ ∞. The second linearly-independent solution
to the Airy equation is Bi(x), often defined as:

Bi(x) =

∫ ∞

0
dt exp

(t3
3

+ xt
)

+ sin
(t3

3
+ xt

)
. (B.7)

As the integral of the cosine is a solution, since a phase change only adds a constant
that can be cancelled to both sides of the differential equation Eq. (B.1), the integral
of the sine is also a solution. As a linear combination is a solution the complex expo-
nential is a solution, and after a contour rotation, one acquires the real exponential,
all of which verifies that Bi(x) is a solution. Both Airy functions can also be written
in terms of Bessel functions [137].

Airy derivative function, f ′(x)

In the text, we encounter Scorer’s function Gi(x) as the integral:

Gi(x) =
1

π

∫ ∞

0
dt sin

(t3
3

+ xt
)
, (B.8)

which is very similar in form to Airy’s function, and can even be rewritten in these
terms [137]:

Gi(x) = Bi(x)

∫ ∞

x
Ai(t)dt+ Ai(x)

∫ x

0
Bi(t)dt. (B.9)

For calculations in a constant-crossed field, we wish to evaluate the combination:

f ′(z) :=
d

dz

(
iAi(z) + Gi(z)

)
=

∫ ∞

0
dxx exp

[
− i
(
xz +

x3

3

)]
. (B.10)

The absence of poles in f ′(z) allows us to use Cauchy’s theorem again to introduce
a rotation in the complex plane of the integration contour: x→ R exp(iθ0) to trans-
form the integral into a radial one. For θ0 = −π/6 we obtain a form with rapid
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convergence:

f ′(z) = exp(−iπ/3)
∫ ∞

0
dxx exp

[
− izxe−iπ/6 − x3/3

]
, (B.11)

which is then suitable for numerical integration. To verify numerical evaluation of
the integrand, we can form the asymptotic limits z ≫ 1, z ≪ 1, which we will label
the weak and strong limits on account of their usage in the main text. Beginning
with the strong limit, one might expect due the asymptotic nature of the oscillating
exponential and considering the method of stationary phase that the imaginary part
should vanish. Using the original form Eq. (B.10), the cubic term in the exponential
can be argued away and by integrating by parts one acquires:

lim
z→∞

f ′(z) = exp
(
− iπ

3

)∫ ∞

0
dxx exp

[
− izxe−iπ/6

]
= − 1

z2
. (B.12)

For the strong limit z ≪ 1, using the rewritten Eq. (B.11) we can approximate the
oscillating integrate with unity and with a co-ordinate transformation x→ t = x3/3
we acquire:

lim
z→0

f ′(z) =
exp(−iπ/3)

3
√

3

∫ ∞

0
dtt−1/3e−t =

1 − i
√

3

2 3
√

3
Γ
(2

3

)
. (B.13)

The agreement of these asymptotic results as well as numerical evaluation of the real
and imaginary parts of f ′(z) for general z is plotted in Fig. B.2, from which we note
a similarity of the overall form with Ai(z) Fig. B.2.
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Figure B.2: Numerical evaluation of f ′(z), with the analytical asymptotics plotted
in red (Imf ′numerical(z) → 0 as z → ∞ also agrees with the analytical limit).

Constant external field form factors

The function f ′ occurs in the following integrand in the calculation of the photon
dispersion relation in an external field:

α3(κ) = −2αm2

3π

∫ ∞

4
dv

2v − 2

v
√
v(v − 4)

(κ
v

)2/3
f ′
([v
κ

]2/3)
, (B.14)

α4(κ) = −2αm2

3π

∫ ∞

4
dv

2v + 4

v
√
v(v − 4)

(κ
v

)2/3
f ′
([v
κ

]2/3)
. (B.15)
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Using the definition αi(κ) =
∫∞
4 dvai(κ, v), we plot these integrands in Fig. B.3
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Figure B.3: The integrands of the constant external field form factors α3, α4

and notice that the imaginary part of the form factors α3, α4 is always positive,
corresponding to a positive probability of pair creation. Although initially negative,
due to the asymptotic nature of f ′(x) Eq. (B.12), the real parts of a3, a4 will become
positive. We can calculate the strong κ→ 0 and weak κ→ ∞ limits of these integrals
in the same fashion as for f ′(z). Substituting Eqs. (B.12) and (B.13) into the above
expressions, and using the results:

∫ ∞

4
dv

2v + 1 ∓ 3

v3
√
v(v − 4)

=
11 ∓ 3

60
, (B.16)

∫ ∞

4
dv

2v + 1 ∓ 3

v5/3
√
v(v − 4)

=
5 ∓ 1

4

√
π

21/3

Γ(2/3)

Γ(13/6)
, (B.17)

as well as:

Γ(z)Γ(z + 1/2) = 2
1
2
−2z

√
2πΓ(2z), (B.18)

Γ
(2

3

)
Γ
(4

3

)
=

2π

3
√

3
, (B.19)

where the last formula can be arrived at by substituting the integral form of Γ and
switching to polar co-ordinates, we achieve:

lim
κ→0

α3,4 = −11 ∓ 3

90

αm2

π
κ2, (B.20)

lim
κ→∞

α3,4 =

√
3

28

αm2

π2
(5 ∓ 1)(1 − i

√
3)Γ4

(2

3

)
(3κ)2/3. (B.21)

We note, it is also possible to derive a non-zero imaginary limit for κ→ 0 which we
quote as [152]:

lim
κ→0

Imα3,4 = −αm2

√
3

2

3 ∓ 1

16
κe−

8
3κ . (B.22)



Appendix C

Quantum field theory at finite
temperature

There are a multitude of ways to describe physics at finite temperature.
To complement the discussion of the direct ensemble method used in the
text, in this chapter, we review the basics of the the imaginary- and real-
time formalisms in an equilibrium context. In the final section we explain
the necessary hard thermal loop resummation required when considering
ultra-relativistic temperatures.

Finite temperature and non-equilibrium field theory have long enjoyed many applica-
tions in condensed matter physics. From calculating the properties of an electron gas
[72, 146], to DC conductivity (electron scattering in metals) [111, 112], explaining the
resistivity minimum of magnetic impurities in metal with temperature [107] (Kondo
effect) as well as the properties of superconductors [1]. Due to the short timescales
and often very far-from-equilibrium processes involved, usage in the particle physics
community has taken more time to develop. The last couple of decades however, have
seen an increase in the application and development of finite-temperature methods
in relativistic settings1. Unresolved questions in QCD from calculation of the phase
diagram of the QGP have renewed interest in finite-temperature methods. The qual-
ity of our understanding in this non-equilibrium domain will be tested in current
and near-future heavy-ion collision experiments like ALICE [38] at CERN, RHIC
[33] at Brookhaven and FAIR [79] at GSI. In addition, finite-temperature QFT finds
widespread use in astrophysics: in leptogenesis, which seeks to explain the matter-
antimatter asymmetry of the universe, from which it has been deduced, the universe
must have been out of thermal equilibrium at some point [154]; in non-equilibrium
electron-positron-photon astrophysical plasmas [7], in active galactic nuclei [180] as
well as to describe gamma-ray bursts [77]. Finally, as explained in the main text
Sec. 5, finite-temperature methods have also been utilised in strong-field QED in the
processes of pair-production [41, 117, 71, 57, 49], photon-splitting [58] and photon-
photon-scattering [169]. We begin by reviewing quantum statistical mechanics.

1For example, the famous hard thermal loop resummation paper by Braaten and Pisarski [29]
has obtained more than 20 citations every year since 1996 (source: Scopus)
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C.1 Quantum statistical mechanics

Thermodynamics, being a macroscopic phenomenon, must be reproduced by the
quantum version of classical statistical mechanics. In the classical version, each
phase-space volume dpdq is occupied with a probability proportional to the Boltz-
mann factor e−βE(p,q), for Boltzmann’s constant kB at temperature T , energy E ,
momentum and position p, q. All thermodynamic quantities can be derived from
the partition function Z, which for a closed system is equal to the sum over all
configurations of the Boltzmann factor:

Zcl(β) =

∫
dp dq g(p, q)e−βE(p,q), (C.1)

where g(p, q) is the density of classical states and p, q are momentum and position
respectively. This also acts as the normalisation of the Boltzmann factor, giving the
probability that a given phase-space volume is occupied.

Quantum statistics, as the name suggests, are discrete, and the continuous phase
space of classical mechanics is replaced by the Hilbert space of quantum states. The
quantum-statistical partition function Z(T ), becomes then a trace of the operator
corresponding to the classical Boltzmann factor acting on the Hilbert space:

Z(β) = Tr e−βĤ(p̂,x̂) (C.2)

We note that this discrete sum is convertible to an integral when a density of energy
states g(ǫ) =

∑
n δ(ǫ − En) is introduced, and the integral proceeds over ǫ. Some

thermodynamical quantities given in terms of Z(T ) are the following [67]:

F = −N
β

lnZ, P = −
(
∂F

∂V

)

T

S = −β2

(
∂ lnZ

∂β

)

V

, CV = −β
(
∂S

∂β

)

V

,

(C.3)

where F denotes the free energy, N the number of particles, P the pressure, S the
entropy and CV is the specific heat at constant volume. We note that for a photon
gas, (∂F/∂N)S = 0 and in this case the free energy is defined F = −(lnZ)/β. With
a view to vacuum polarisation we would like to allow for open systems in which
particles may be added or removed such as via pair-production. Therefore it is
useful to define the chemical potential [67]:

µ =
∂U

∂N

∣∣∣
S,V

=
∂F

∂N

∣∣∣
V,T

=
∂G

∂N

∣∣∣
T,P

, (C.4)

for internal energy U , free energy F , Gibbs free energy G, entropy S, volume V and
pressure P , equal to the energy the system acquires by the addition of a particle
under fixed conditions. This gives the grand canonical quantum-statistical partition
function [105]:

ZG(T, µ) = Tr e−β(Ĥ−µN̂), (C.5)

where N̂ is the number operator for the state in the Hilbert space on which it is
acting. If we define a density matrix2:

ρ̂(T ) := Tr
e−βĤG

Z(T )
, (C.6)

2If ρ̂ satisfies i) ρ̂† = ρ̂; ii) Tr ρ = 1; iii) ρ̂ is positive semi-definite i.e. 〈ψ|ρ̂|ψ〉 ≥ 0; then ρ̂ is a
density matrix [91].
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for ĤG = Ĥ − µN̂ , which represents the classical probability of finding a particle
in a specific state at a given temperature, then outcomes of measurements of an
observable Â are given by [91]:

〈Â〉 = Tr ρ̂Â =
1

Z

∑

n

e−βEn〈n|Â|n〉, (C.7)

for non-degenerate energy eigenvalues and eigenvectors satisfying ĤG|n〉 = En|n〉.

One can in addition define a path integral formulation of quantum statistical me-
chanics by making the key observation which underlies both the real and imaginary
formalisms that follow, namely that when the time variable is analytically continued
to imaginary values in the quantum-mechanical partition function ZQM:

ZQM = Tr e−i(tb−ta)Ĥ/~, (C.8)

and the association tb − ta = −i~β is made, we recover the quantum-statistical
partition function Z. Then by discretising the co-ordinates, (for details see [105]).
Finally, one is left with:

Z =

∫
Dx
∫

1

2π~
Dp e−SE[p,x]/~, SE =

∫ β

0
dτL(x), (C.9)

where since t → −i~β = −i~τ , −(dt)2 → (dτ)2, we have a Euclidean action SE

over (dx)2 = (cdτ)2 + dx · dx and Dx, Dp are path integral measures. This provides
a direct link with amplitudes from quantum theory when recalling that the typical
path integral involves an action:

S(tb, ta) =

∫ tb

ta

dtL(x). (C.10)

Therefore by imposing tb− ta = −i~β and making a Euclidean rotation t→ −i~β, a
path-integral can be turned into the partition function.

Quantum statistical mechanics is the theoretical starting point of finite temperature
formalisms and provides the crucial link to classical macroscopic thermodynamic
quantities, that are of use when dealing with predictions of ensembles. This will be
achieved either as above by substituting the time variable for an imaginary temper-
ature or by doubling the degrees of freedom and introducing a thermal field3.

C.2 Matsubara (imaginary-time) formalism

The seminal work by Takeo Matsubara [124] over fifty years ago, first showed this
analytical continuation of time to complex inverse temperature. Our interest is in
understanding how to calculate Green’s functions, being the basis for calculation
of many other quantities in a quantum field theory. The imaginary-time formalism
allows one to take over the machinery of T = 0 quantum field theory with, in many
cases, a factor T and an additional sum over Matsubara frequencies to be performed.

3Thermofield dynamics will not be presented here, see [164, 165] for seminal works
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We begin by splitting the total Hamiltonian H into a sum of free H0 and interaction
H1 parts H = H0 +H1, where in the Schrödinger picture, states |ψ(t)〉 evolve by:

|ψ(t)〉 = e−iĤ(t−t0)/~|ψ(t0)〉. (C.11)

Representing the density matrix ρ̂(t) as the special projection ρ̂(t) = |ψ(t)〉〈ψ(t)|,
differentiating both sides of Eq. (C.11), using the spectral theory for self-adjoint
operators on the Hamiltonian, one can show that the density matrix must satisfy the
following von Neumann equation:

i~
dρ̂(t)

dt
= [H, ρ̂(t)]. (C.12)

In order to accommodate the thermal density matrix, we make the continuation
t→ −i~β(T ). With ρ̂ given by Eq. (C.6) we then have:

− dρ̂(T )

dβ
= [H, ρ̂(T )], (C.13)

which can be verified by evaluation of both sides. Following [124], it turns out to be
useful to consider the Boltzmann factor, for which we make the ansatz exp(−βH) =
exp(−βH0)S(β)4. Differentiating both sides with respect to β gives the Bloch equa-
tion:

− ∂S(β)

∂β
= H1(β)S(β), (C.14)

with H1(β) = exp(−βH0)H1 exp(βH0), which we recognise as the Schrödinger equa-
tion in complex time. Defining −i~τ = t, one can solve Eq. (C.14) by iteration in
the standard way to produce a Dyson series (see e.g. [120]), giving:

S(β) = S(β, 0) = T̂τe−
R β
0 dτH1(τ), (C.15)

where T̂τ is the τ -ordering operator, and the exponential is understood as a mnemonic
for the Maclaurin expansion. The object S(β), although not being unitary like the
standard S-matrix, satisfies all the semi-group properties required of an evolution
matrix for quantum fields in complex time, namely i) S(τ, τ) = 1; ii) S−1(τ, τ ′) =
S(τ ′, τ) and iii) S(τ, τ ′)S(τ ′, τ ′′) = S(τ, τ ′′).

Let us turn to the Heisenberg picture to show some useful properties of thermal
Green’s functions. We introduce thermal Green’s functions as the following:

Gβ(τ, τ
′) = −〈Tτ ψ̂(τ)ψ̂†(τ ′)〉, (C.16)

Gβ(τ − τ ′) = −Z−1Tr
[
e−βHTτe−βτ ψ̂eβτ e−βτ

′

ψ̂†eβτ
′]
, (C.17)

where ψ̂ = ψ̂(τ = 0) and where we have explicitly separated out the time-dependence
from the field operators and using cyclicity of the trace, can justify writing the
Green’s function in terms of just one variable τ − τ ′. The absence of a factor i in
Eq. (C.16), originates from the reassignment iTt → Tτ . We can then split Eq. (C.16)
into its causal and anti-causal parts:

Gβ(τ − τ ′) = −θ(τ − τ ′)Z−1Tr
[
e−βHe−τH ψ̂e−(τ ′−τ)H ψ̂†eτ

′H
]
,

±θ(τ ′ − τ)Z−1Tr
[
e−βHe−τ

′H ψ̂†e−(τ−τ ′)H ψ̂eτH
]
, (C.18)

4This is not a density matrix, contrary to the label given in [124] and [43]
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where the + sign is for fermions and the − sign for bosons. Let τ > τ ′ > 0, and G>

(G<) represent the Green’s function evaluated at positive (negative) argument, then
we can use trace cyclicity to give:

G>β (τ − τ ′) = −Z−1Tr
[
e−τ

′H ψ̂†e−(τ−τ ′)He−βH ψ̂eτH
]
. (C.19)

By judiciously introducing a factor e−βHeβH and again using cyclicity, we have:

G>β (τ − τ ′) = −Z−1Tr
[
e−βHe−τ

′H ψ̂†e−((τ−β)−τ ′)H ψ̂e(τ−β)H
]
, (C.20)

G>β (τ − τ ′) = ∓G<β (τ − τ ′ − β). (C.21)

Eq. (C.21) is the famous KMS (Kubo-Martin-Schwinger) equation, which can be
used to describe thermal equilibrium. Insertion into the Green’s function definition
Eq. (C.16) shows how this also places a periodicity on the fields: for τ ′′ < 0 ψ̂(τ ′′ +
β) = ±ψ̂(τ ′′), again with a change of sign for the fermion case. The bounding of
τ ∈ [−β, β] has implications for the Fourier transformation of the Green’s function.
As is routine for calculations of the leading-order contribution to the self-energy
Feymann graph (e.g. in QED for the calculation of the polarisation operator), virtual
propagators occurring in loops must be integrated over all possible (four)-momenta.
As the Fourier transform is over a finite τ interval, the inverse Fourier transform will
be over discrete frequencies. In general, these are the so-called Matsubara frequencies,
ωn:

G(iωn) =

∫ β

0
G(τ)eiτωndτ, (C.22)

G(τ) =
1

β

∑

n

e−iωnτG(iωn), (C.23)

ωn = nπ/β, n ∈ Z. One can then use the KMS condition to show that for the
fermion (boson) fields, the Matsubara frequencies are given by ωn = (2n + 1)π/β
(ωn = 2nπ/β).

The Matsubara formalism is an equilibrium method and perfectly applicable when
there is a well-defined temperature and only time-averaged quantities are of inter-
est. Having widely been used in QCD, it is however inapplicable to any situations
involving evolution such as phase transitions.

C.3 Keldysh (real-time) formalism

Although the Matsubara formalism adequately describes many finite-temperature
phenomena, it does so by sacrificing the evolution variable. When dealing with
general processes involving heat, we envisage being able to describe systems which,
once at a well-defined temperature, have been driven out of thermal equilibrium by
interactions with external fields. In order to describe effects on the time scale of
collisions due to an external interaction, or dissipative and transient behaviour, one
requires an evolution parameter. In the 1960s, L. V. Keldysh developed a general
real-time formalism that can be used when a statistical system under the action of an
external field “deviates to any arbitrary extent” from thermal equilibrium [99] and is
applicable to the aforementioned situation. The real-time or closed-loop formalism
is characterised by the ordering of field operators along a complex contour in time.
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We begin by defining the evolution matrix, explaining the contour and then how
non-equilibrium methods can be used with perturbative Feynman diagrams. A fuller
treatment of this method is given in [147] and [119].

Consider first a Hamiltonian Ĥ split into free and interaction terms Ĥ = Ĥ0 + ĤI.
In the Heisenberg picture, the time evolution of operators with initial condition
Â = Â(t0), can be described with a unitary evolution operator Û(t, t0) as:

ÂH(t) = Û †
H(t, t0)Â ÛH(t, t0), with (C.24)

ÛH(t, t0) := exp
[
− i

~
Ĥ(t− t0)

]
, (C.25)

and ÂH(t) being the operator Â in the Heisenberg picture with respect to Ĥ. If
we instead considered a time-dependent perturbation Ĥ ′(t) giving a time-dependent
Hamiltonian Ĥ(t) = Ĥ0 + ĤI + Ĥ ′(t), the evolution would be given by:

ÂH(t) = Û †
H(t, t0)Â ÛH(t, t0), with (C.26)

ÛH(t, t0) := T̂ exp
[
− i

~

∫ t

t0

dt′Ĥ(t′)
]
, (C.27)

with T̂ the time-ordering operator. We can combine these two equations to relate an
operator in the Heisenberg picture with respect to H to one with respect to Ĥ with:

ÂH(t) = Û †
H(t, t0)ÛH(t, t0)ÂH(t)Û †

H(t, t0)ÛH(t, t0), (C.28)

i.e. by first transforming out the dependence on Ĥ and transforming in that on
Ĥ. It is possible to show that a combined operator V (t, t0) representing the above
transformation obeys5:

V̂ (t, t0) := Û †
H(t, t0)ÛH(t, t0) (C.29)

= T̂ exp
[
− i

~

∫ t

t0

dt′Ĥ ′
H(t′)

]
, where (C.30)

Ĥ ′
H(t) = Û †

H(t, t0)Ĥ
′(t)ÛH(t, t0). (C.31)

By expansion, one can then prove the crucial rewriting [147]

ÂH(t) = Tc

{
exp

[
− i

~

(∫

c
dt′Ĥ ′

H(t′)
)]
ÂH(t)

}
, (C.32)

where the subscript c represents the first “transformation” contour given in Fig. C.1 a.

When this is applied to Green’s functions, G(t, t′) (where we sporadically omit writing
the spatial dependence), which consist of a pair of ordered operators, we then have
the situation given in Fig. C.1a, in which we depict that, due to the overlap of
integrations in opposite directions on the t-axis, the two separate contours can be
written as one. So the contour Green’s function becomes:

G(t, t′) = −i〈Tc

(
ψH(t)ψ†

H(t′)
)
〉, (C.33)

= i
〈
Tc

{
exp

[
− i

~

∫

c
dt′Ĥ ′

H(t′)
]
ψH(t)ψ†

H(t′)
}〉
. (C.34)

5The perturbation Ĥ ′(t) is time-dependent and therefore also changes under the various pictures
unlike in the usual time-independent case, where conservation of energy is explicit and ensures the
constancy of the Hamiltonian Ĥ , which is the same in all pictures.
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Figure C.1: Development of the Schwinger-Keldysh contour.

In addition, using the property V (t,∞)V †(t,∞) = 1 we can add a contour from
sup{t, t′} to +∞ and back as depicted in Fig. C.1b.

Now suppose we also consider time-dependent interactions i.e. a Hamiltonian of the
form Ĥ = Ĥ0 +ĤI(t)+Ĥ ′(t). Since our goal is the perturbation method, we transfer
to the interaction representation in the same manner, now with just the free-field:

G(t, t′) =
〈
Tc

{
exp
[
− i

~

∫

c
dt̃
(
ĤI
H0

(t̃) + Ĥ ′
H0

(t̃)
)]
ψH0(t)ψ

†
H0

(t′)

}〉
. (C.35)

What about the statistical averaging 〈〉? For our purposes we mention a crucial
assumption, that the system was in thermal equilibrium at some point in the dis-
tant past t0. Again appealing to the adiabatic theorem, this then allows the density
matrix Eq. (C.6) to be written at this reference time in terms of Ĥ0, independent of
interactions. The effect of the density matrix can then be represented by an addi-
tional contour beginning at t0 and continuing straight to t0 − iβ, in a similar way to
in the Matsubara formalism. However, when our main focus is on average quantities
and time-independent effects, we can take t0 → −∞ without loss of generality. If
one of the Green’s function’s arguments were on this contour, then due to thermal
fluctuations, any initial condition should be annulled when it is moved to the distant
past, and the result should be equivalent to putting the argument on the real axis.
This is an assumption that Green’s functions fall off rapidly enough for a sufficiently
large separation of their temporal components, a point which has been discussed
in the literature [128]. This then gives us the Schwinger-Keldysh closed time path
running from −∞ to +∞ and back.

Using Eq. (C.35) one can expand the exponential and formulate a non-equilibrium
version of Wick’s theorem which then yields perturbative Feynman rules [147]. These
can be used in conjunction with a diagrammatic form of the possible Green’s func-
tions. We can define for instance:

G(t, t′) = θ(t− t′)G>(t, t′) + θ(t′ − t)G<(t, t′), with (C.36)

G>(t, t′) = −i〈ψ(t)ψ†(t′)〉, (C.37)

G<(t′, t) = ∓i〈ψ†(t′)ψ(t)〉, (C.38)

where the ∓ is for bosons and fermions respectively. The definite ordering implied
by G<, G> is depicted on the contour by having the earliest time occur on the
increasing t branch, and the latest on the decreasing one. Likewise one can define an
anti-time-ordered Green’s function:

G̃(t, t′) = −i〈T̃
(
ψ(t)ψ†(t′)

)
〉, (C.39)
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for anti-time ordering operator T̃ , which then has G<, G> with points on the con-
tour in the opposite fashion. Contrary to G(t, t′), which is depicted by both points
occurring on the upper branch, G̃(t, t′) is represented by both points occurring on
the lower branch and all four Green’s functions occur naturally in the contour pre-
scription. It proves useful to define a general Green’s function in Schwinger-Keldysh
space:

Ĝ(t, t′) =

(
G(t, t′) G<(t, t′)

G>(t, t′) G̃(t, t′)

)
. (C.40)

All the different parts of this matrix are important. For example, G<(t, t′) will turn
out to be trivially related to the Wigner distribution function, the equation of motion
of which is the quantum Boltzmann equation. We can develop this for an interaction
with e.g. a scalar potential V (x′, t′) Fig. C.2, with the combined Green’s function
on the contour, parametrised by t′:

G
(1)
ik (x,x′′, t, t′) =

∫
dx′

∫
dt′G

(0)
ij (x,x′, t, t′)Vjj′(x

′, t′)G
(0)
j′k(x

′,x′′, t′, t′′). (C.41)

As time runs opposite on the reverse contour, this equation is consistent when:

V (x′, t′)jj′ := V (x′, t′)σ3 jj′, (C.42)

for σ3 the third Pauli matrix diag(1,−1). Then the Green’s function for the tree-level
scalar field interaction becomes:

Ĝ(1) = Ĝ(0) ⊗ V Ĝ(0) = Ĝ(0)V ⊗ Ĝ(0), (C.43)

where ⊗ represents matrix multiplication and spacetime integration. This formalism

x, t V (x′, t′) x
′′, t′′

Figure C.2: Scattering off a classical potential.

is then further generalisable to interactions with e.g. fermion-boson vertices and
eventually in a similar vein, non-equilibrium Feynman rules can be derived (see
e.g. [148]). To finish this brief introduction, we mention a key observation that
G(t, t′) + G̃(t, t′) − G<(t, t′) − G>(t, t′) = 0. This allows a rotation in Schwinger-
Keldysh space to reduce Ĝ to:

Ĝ(t, t′) =

(
0 GA

GR GK

)
, (C.44)

where:

GR(t, t′) := G(t, t′) −G<(t, t′) = −iθ(t− t′)〈[ψ(x, t), ψ†(x′, t′)]∓〉,
GA(t, t′) := G(t, t′) −G>(t, t′) = iθ(t′ − t)〈[ψ(x, t), ψ†(x′, t′)]∓〉,
GK(t, t′) := G<(t, t′) +G>(t, t′) = i〈[ψ(x, t), ψ†(x′, t′)]±〉,

(C.45)

are the retarded (and hence causal), advanced and kinetic Green’s functions re-
spectively, and the commutator []∓ becomes an anti-commutator when dealing with
fermions and vice versa for []±. Many physical quantities are retarded correlation
functions, making GR(t, t′) particularly important.
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The Keldysh formalism is the most versatile discussed here and can even deal with
initial correlations. It can be used in conjunction with the Matsubara technique e.g.
the substitution iωn → ω+ iδ in the Matsubara Green’s function is an easier way to
derive GR in the Keldysh formalism [119]. However, it is unsuccessful at describing
high-density, strongly-interacting, correlated systems such as liquid helium 3He, 4He,
for which other methods have been developed. Since VPEs generally occur in weakly-
correlated, weakly-interacting systems however, the Keldysh formalism should be
suitable to describe such situations.

C.4 Hard Thermal Loops

After some inconsistent results from perturbation theory applied in high-temperature
backgrounds (T ≫ m, for a typical mass occurring in the theory m), such as a gauge-
dependency of the damping rate of a plasma wave in a QGP (see references [3] in
[29]), a breakthrough was made in the early 1990s [29, 28, 30], which showed how
perturbation theory should be applied in the high-temperature limit. Some of the
techniques of hard thermal loop resummation are reviewed in [97, 168], and we give
a brief outline in this section.

Whenever heat is present in a quantum field theory, the standard quantum vacuum
picture must be replaced by an electron-positron-photon plasma, due to the photon
gas carrying the heat. This brings about the important change that such self-energy
quantities as the polarisation operator, which have otherwise null vacuum expecta-
tion values, are finite in a plasma. The physical reason for this is similar to that
for an external field. A photon can in principle decay into an electron-positron pair
(see Fig. C.3), but in order to preserve four-momentum conservation, requires an
additional photon to “seed” the process. In a photon gas or in other words, in a
vacuum at finite temperature, both these requirements are fulfilled. As the pair cre-
ation amplitude is related to the imaginary part of the polarisation tensor (as shown
in Eq. (A.23) in App. A.1.3), the polarisation tensor must be non-zero. As shown

≡ + + . . .+
}
n

Figure C.3: Pair creation from a photon of energy ω > 2m in an external field.

in Eq. (4.8) in Sec. 4.1, a non-zero polarisation operator implies that gauge bosons
acquire a mass, in this case a thermal mass, mth ∼

√
Π (where the square root is un-

derstood as pertaining to the eigenvalues). Its presence in the exact propagator can
be seen from the Dyson equation for the full photon self-energy Eq. (4.7). Consider-
ing the limit T ≫ m, it can be shown that the leading-order QED photon self-energy
is Π(1) = e2T 2/3 [163, 73]. As mentioned in the introduction to Ch. 5, calculation
of the polarisation operator runs into problems when the plasma frequency drops
below that associated with virtual pairs (m), equivalent to T ∼ √

αm. We show
this by specifically considering the fermionic propagator we had at low temperature
Eq. (4.3) in Ch. 4 for an external photon of initial momentum k1:

SF (P + k1) =
1

[γ(P̂ + k1)]2 −m2
.
(
γ(P̂ + k1) +m

)
. (C.46)
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We consider what occurs in the high-temperature limit T ≫ m. First, masses should
be inconsequential and so we set m = 0 in Eq. (C.46), and secondly at high temper-
ature, we should make the replacement k2 → k2 +m2

th. We notice:

γ(P̂ + k1)

[γ(P̂ + k1)]2 +m2
th

=
γ(P̂ + k1)

[γ(P̂ + k1)]2
− m2

th

[γ(P̂ + k1)]2 +m2
th

γ(P̂ + k1)

[γ(P̂ + k1)]2
, (C.47)

and so for small k1 and large enough m2
th, the correction due to the thermal mass

becomes as large as the original term itself, meaning a breakdown in the perturba-
tion approach, leading to an infra-red divergence. This is essentially because the
approximation Π ≈ Π(1) we make at T ≪ √

αm is no longer an approximate solution
to the Dyson equation at high temperature.

In reality, in a thermal distribution at temperature T ≫ m, the contribution from
soft momenta (k ∼ √

αT ) to the polarisation operator should be negligible6. Braaten
and Pisarski devised a method to solve this problem called hard thermal loop resum-
mation that consists of replacing bare propagators that carry soft momenta with
ones with a self-energy insertion, in which the momentum integral is restricted to
hard momenta ∼ T , i.e. to the actual dominant physical contribution. So in the
high-temperature limit, for soft external momenta, a contribution to our polarisa-
tion diagram, in which we don’t consider the change in vertices which in general
would also have to be resummed, would become Fig. C.4 (see also [12]), in which
the sum over soft fermion momenta S involves effective propagators. These effective
propagators then correspond to self-energy insertions with an integral only over hard
momenta, H. vertices and fermionic propagators have been replaced by effective ver-
sions (an example of this is also found in [167]). This corresponds in the case of the

→ +

H

H
S

S

S

SS

where ≡
H

Figure C.4: Polarisation operator with HTL-resummed internal propagators involv-
ing hard momenta H and soft momenta S.

fermionic propagator to:

SF (P + k) → SF (P + k)
[ ∫

d4k′SF (P + k + k′)γDF (k′)γ
]
SF (P + k)

→ SF (P + k)
[ ∫

d4k′SF (k′)γDF (k′)γ
]
SF (P + k). (C.48)

Although hard thermal loop resummation has been successfully used for T ≫ m,
there lacks an approach which deals with the transition between the soft and hard
regimes.

HTL resummation has been successful in removing infra-red divergences in the high-
temperature limit, and restoring gauge-invariance to amplitudes involving soft exter-
nal momenta. Quantities that are sensitive to super-soft external momenta (T ∼ αm)

6The assumption is that the distribution function drops off sufficiently quickly on the lower side
of the average photon energy. For thermal ensembles, this seems realistic, but the assumption can
also be used to describe non-equilibrium phenomena [167].
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however, such as damping rates of hard partons in the QGP [114] have to be tackled
by further developing the Braaten-Pisarski method. For the QED polarisation op-
erator, if the external momenta are hard, bare propagators can be used. To include
soft external momenta, HTL resummation must be employed.
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