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Abstract: A sterile (right-handed) neutrino with mass of keV scale is known to be a
good Warm Dark Matter candidate. It is the main objective of this thesis to study how
this possibility could be realized in the context of extensions of the Standard Model gauge
group.
Having such a setup with an additional symmetry breaking scale between the electroweak
and Planck scales, the naïve expectation leads to large thermal overproduction of ster-
ile neutrinos. However, we show that su�cient entropy release due to out-of-equilibrium
decay of other long-lived right-handed neutrinos is capable to dilute the density of the
keV scale sterile neutrinos so that the observed Dark Matter abundance is achieved. The
universal requirements that should be satis�ed by such gauge extensions of the Standard
Model, containing right-handed neutrinos, to be viable models of Warm Dark Matter, are
presented.
Within this scenario, we discuss the possibility of the type I see-saw mechanism and pro-
vide a simple example in the context of a left-right symmetric model.
Keywords: keV scale sterile (right-handed) neutrinos, Warm Dark Matter, gauge ex-
tensions of the Standard Model, thermal production, out-of-equilibrium decay, see-saw
mechanism, left-right symmetric model

Sterile keV Neutrinos als Kandidaten für Warme Dunkle Materie in

Erweiterungen der Standard Modell Eichgruppe

Kurzfassung: Es ist bekannt, dass ein steriles (rechts-händiges) Neutrino mit einer Mas-
se im keV Bereich ein guter Kandidat für Warme Dunkle Materie ist. Das Hauptziel dieser
Arbeit ist das Untersuchen einer solchen Realisierung im Rahmen von Theorien, die Er-
weiterungen der Standard Modell Eichgruppe darstellen.
Betrachtet man ein solches Modell mit einer zusätzlichen Symmetriebrechungsskala, die
sich zwischen denen der elektroschwachen Wechselwirkung und der Planck Masse ansie-
delt, so führt die naive Betrachtung zu einer groÿen thermalen Überproduktion von steri-
len Neutrinos. Wir zeigen, dass durch ausreichende Entropiefreisetzung�verursacht durch
ein anderes langlebiges rechts-händiges Neutrino, das zu einem Zeitpunkt zerfällt während
dem es sich auÿerhalb des thermodynamischen Gleichgewichts be�ndet�die Möglichkeit
besteht, die Teilchendichte der keV sterilen Neutrinos e�ektiv zu reduzieren und der be-
obachteten Menge von Dunkler Materie anzugleichen.
Die allgemeinen Erfordernisse und Bedingungen, die von solchen Eicherweiterungen er-
füllt werden müssen um geeignete Theorien für Warme Dunkle Materie darzustellen, wer-
den diskutiert. Desweiteren wird in einem solchen Szenarium die Möglichkeit eines Typ I
See-saw Mechanismus untersucht und ein einfaches Beispiel im Rahmen eines links-rechts-
symmetrischen Modells vorgestellt.
Stichwörter: Sterile (rechts-händige) Neutrinos, Warme Dunkle Materie, Eichgruppen-
erweiterungen des Standard Modells, thermale Produktion, Zerfall auÿerhalb des thermo-
dynamischen Gleichgewichts, See-saw Mechanismus, links-rechts-symmetrisches Modell
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Chapter 1

Introduction

Dark Matter (DM) is one of the experimentally observed indications of physics beyond
the Standard Model (SM). A wide variety of astrophysical and cosmological observations
con�rm that ΩDM ' 0.2 part of the total energy density of the Universe is composed of
some unknown form of non-baryonic matter, which interacts very weakly [1]. Evidence
for DM come from the study of dynamics of stellar objects spanning the range from
the dwarf galaxies to galaxy clusters [2], from the analysis of the Cosmic Microwave
Background (CMB) [3], from observations of non-coinciding distributions of luminous and
non-luminous matter in galaxy clusters [4], etc.

Most common particle physics explanations point towards Weakly Interacting Mas-
sive Particles (WIMPs), which are heavy, non-relativistic and weakly interacting thermal
relics, leading to Cold Dark Matter (CDM).1 The other extreme, referred to as Hot Dark
Matter (HDM) has ultra-relativistic velocities. As a consequence of its large free streaming
length, it prevents the formation of the observed small scale structures in the Universe and
thus contradicts experiment. The intermediate situation, Warm Dark Matter (WDM), is,
however, less explored. It may even provide a solution to some of the problems of the
CDM simulations, reducing the number of Dwarf satellite galaxies, or smoothing the cusps
in the DM halos [6].

Besides the identity of DM, another unsolved mystery in particle physics, presenting a
further hint of physics beyond the SM, are the astonishing small masses of the usual left-
handed neutrinos. Experiments over the past decade have shown that neutrinos oscillate
from one �avour to another, which is only possible if they are massive particles [7]. Because
the SM, predicting massless neutrinos, cannot explain such observations, there is no doubt
that it must be extended. Perhaps the simplest and most aesthetic way to incorporate
these phenomena�restoring at the same time the symmetry between the quark and lepton
sectors�is to introduce right-handed neutrinos. These hypothetical neutral particles are,
like all other right-handed chiral lepton �elds, uncharged under weak interactions and thus
represent total singlets of the SM symmetry group. Physicists characterise these neutrinos
as sterile to emphasise that their only interaction with ordinary matter is gravitational or
due to weak currents via very small mixing with ordinary SM neutrinos.

Given such weakly interacting and useful particles, which arise naturally in most ex-
tensions of the SM, we are motivated to ask whether there is a connection between the
existence of DM and that of right-handed neutrinos:

Can sterile neutrinos represent Warm Dark Matter?

In fact it was pointed out in 1993 by Dodelson and Widrow [8] that sterile neutrinos can
be either hot, warm, or cold dark matter candidates.

1Note that another common candidate for CDM is the axion, which is light, but due to a speci�c
generation mechanism it has extremely small temperature (see Ref. [5]).
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2 Chapter 1. Introduction

A simple model which predicts WDM as light sterile neutrinos [9]2 is the νMSM
[12, 13], where only three singlet fermions with Majorana masses and Dirac mixing with
ordinary (active) neutrinos are added to the SM. Then, the mass of one sterile neutrino can
be chosen in the range of several keV, and with very small mixing with active neutrinos
it will provide a particle with the lifetime exceeding the age of the Universe. This is
the WDM candidate. The virtue and at the same time the problem of this model is
that the sterile neutrino with such a small mixing (the only interaction of this particle
is via the Yukawa couplings) never enters into thermal equilibrium, and can be produced
only by some non-thermal mechanism. If this was not true, and the neutrino reached
thermal equilibrium at some moment in the early Universe, then without any additional
mechanism, the thermal relics with mass of over about 90 eV would overclose the Universe.
Below or equal to this mass bound a HDM scenario would result, which is excluded
by structure formation arguments as we mentioned above. Furthermore note that in
order to calculate unambiguously the abundance of sterile neutrino DM in the νMSM, its
initial amount is required, which consequently needs knowledge of the physics before the
beginning of thermal evolution of the Universe (see Refs. [14, 15, 16]).

The possibility analysed in this work is opposite to the νMSM. We assume that there
is some additional (gauge) scale between the electroweak and Planck scales, and that the
sterile neutrinos are charged under these additional gauge transformations. Then, for
general not too high intermediate scale, these particles have the chance to enter thermal
equilibrium at some moment in the Universe's evolution. We �nd that in such a scenario,
it is possible to reconcile the thermal overproduction of WDM with the observations. To
do this, the abundance of the sterile neutrino should be diluted after it drops out of the
thermal bath. This happens if some non-relativistic long-lived particle decays after the
freeze-out of the DM sterile neutrino while being out of equilibrium and dominating the
total energy density of the Universe. Thereby considerable entropy is released such that
the amount of DM sterile neutrinos relative to the overall energy balance of the Universe
is e�ectively reduced. The most natural candidate for this long-lived heavy particle is
assumed to be another (heavier) sterile neutrino. Analysing this possibility, we are led to
various constraints and bounds on the parameters in the model required by cosmological
considerations and various experimental results. This set of requirements can serve as a
basis for model builders whose intention is to implement WDM as right-handed neutrinos
in, for example, a Grand Uni�ed Theory.

The work starts by introducing the basic formalism of massive fermions�especially
neutrinos�in gauge theories (see Chap. 2 and 3) where our main concern lies in the
discussion of the see-saw mechanism (cf. Sec. 3.1 and Sec. 3.2) and the motivation of the
introduction of right-handed neutrinos (see, e.g., Sec. 3.3). Section 3.4 gives an important
parametrization of the Dirac Yukawa in the context of see-saw mechanisms, and Sec. 3.5
covers neutrino masses in a LR symmetric model. Then, before we dive into the main
part, we present a review of fundamentals of cosmology in Chap. 4. In particular we
will discuss the dynamics of important cosmological scenarios (Sec. 4.1 and 4.2); outline
basic equilibrium thermodynamics (Sec. 4.3.1 and 4.3.2); and describe in Sec. 4.3.3 the
production mechanism of thermal relics in the early Universe. We will conclude this
chapter with Sec. 4.3.4, where our study will focus on the description of the entropy
generating out-of-equilibrium decay.

2Note that WDM can also be many other particles, like a gravitino or even heavy particles, see, e.g.,
Refs. [10, 11].
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In Chap. 5 we formulate the requirements on the properties of the DM sterile neutrino
and the out-of-equilibrium decaying particle to make our model consistent with existing
observations and bounds. This generic analysis, important for all possible models of this
type, is made in the Sec. 5.1 and summarised in the end of it. In Sec. 5.2 and 5.3 we analyse
the possibility to realise these constraints in the simplest models. Thereby we make use of
the other (heavy) right-handed neutrinos to dilute the density of the DM sterile neutrino.
Especially, in Sec. 5.2 we show that it is impossible for the same right-handed neutrinos to
be involved in the dilution of the DM abundance and at the same time to give the masses
to the active neutrinos via a type I see-saw like mechanism. Finally, in Sec. 5.3 a working
example is provided, where the active neutrino masses are generated by a type II see-saw
mechanism resulting from the scalar sector of a left-right (LR) symmetric model.

The appendices are devoted to the calculation of the total decay width of the sterile
neutrinos in the models (App. A), to the derivation of the radiative decay width (App. B),
and to the Higgs potential of the left-right symmetric model (App. C).





Chapter 2

Fermion Masses in Gauge Theories

Contents

2.1 Dirac Mass Term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Majorana Mass Term . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Masses in the Standard Model . . . . . . . . . . . . . . . . . . . . 7

In particle physics the Lagrangian L plays the fundamental role. This quantity has to
be a scalar of space-time symmetry (the Lorentz group) to be consistent with relativity.
Furthermore, from gauge theory we know that L must be invariant under some internal
symmetry transformations whose groups underlie the considered system [17, 18, 19].1 This
is guaranteed if every term in the Lagrangian represents a total symmetry group singlet.

For uncharged spin 1
2 fermions, the space-time symmetry allows two types of mass

terms in the Lagrangian: The Dirac and the Majorana mass terms.

2.1 Dirac Mass Term

A generic spinor ψ can always be decomposed into its chiral left- and right-handed com-
ponents:

ψ = ψL + ψR ≡
1− γ5

2
ψ +

1 + γ5

2
ψ . (2.1)

For this reason it is convenient to de�ne the following chirality projection matrices

PR ≡
1 + γ5

2
, (2.2)

PL ≡
1− γ5

2
, (2.3)

which satisfy PR + PL = I, P 2
L = PL, P 2

R = PR and PLPR = PRPL = 0.
A free Dirac �eld with mass m is described by the Dirac Lagrangian [18]

L = i ψ 6∂ψ −mψψ , (2.4)

where the �rst term on the right-hand side speci�es the kinetic term, and the one propor-
tional to m is referred to as the Dirac mass term. By using the decomposition (2.1) in
chiral �elds, the latter can be written as follows

L D
m = −mψψ = −m

(
ψRψL + ψLψR

)
. (2.5)

1To be accurate, we want to mention that L has to be invariant only up to a total divergence. The
theorem by Emmy Noether then implies that in an anomaly free quantum theory the current is conserved
(up to contact terms), see, e.g., Ref. [18].

5



6 Chapter 2. Fermion Masses in Gauge Theories

This expression describes transitions between left- and right-handed �elds and is a singlet
of the Lorentz group SL(2,C). Furthermore, because barred �elds are in the conjugate
representation, the bilinears in Eq. (2.5) would be invariant under gauge transformations
if both, the right- and the left-handed chiral components would be in the same represen-
tation. In such a case the Dirac mass term is a total singlet.

2.2 Majorana Mass Term

The chiral fermion �elds, described in the previous section, are the building blocks of
the Standard Model (SM) [20, 21, 22] as well as of modern gauge theories. They are
the smallest irreducible representations (irrep) of the Lorentz group, from which all other
representations can be constructed. In particular, if parity is not a symmetry of the
theory, an irrep can represent a massless fermion. Working in the chiral representation
of the γ-matrices, this becomes manifest because the left- and right-handed parts of the
Dirac equation decouple if the particle mass vanishes.

Now, one can ask if a 4-component spinor is required for the description of a massive
fermion. The answer is no! E. Majorana discovered in 1937 [23] that there could be a
connection between ψR and ψL [24]:

ψR = ψcL ≡ (ψL)c = iγ2ψ∗
L = CψL

T
, (2.6)

where C ≡ iγ2γ0 de�nes the charge conjugation matrix. Fields satisfying this relation are
called Majorana �elds. Indeed, Eq. (2.6) makes sense since ψcL is right-handed. By using
the well-known commutation properties of the γ-matrices [18, 19], we get

PLψ
c
L = iPLγ

2ψ∗
L = iγ2PRψ

∗
L = 0 , (2.7)

which con�rms this statement.
Applying the Majorana condition (2.6) on the �eld ψ in Eq. (2.1),

ψ = ψL + ψR = ψL + CψL
T = ψL + ψcL , (2.8)

we arrive at
ψ = ψc . (2.9)

This relation implies that Majorana particles are their own antiparticles and thus must
be neutral.

The possibility to construct a mass term out of only one chiral spinor component,
which forms a singlet of SL(2,C), leads to the Majorana mass term

L M
m,L = −1

2
MLψcLψL + h.c. . (2.10)

Because of the anticommuting fermionic spinors (mathematically they are treated as
Grassmann variables), and the antisymmetry property of the charge conjugation matrix
CT = C† = C−1 = −C (see, e.g., Ref. [18]), the Majorana mass matrix ML is symmetric,
i.e. MT

L = ML.
What can we say about gauge invariance? A charge conjugate �eld is in the conjugate

representation of the gauge group such that a barred charge conjugate �eld is in the same
irrep as the �eld itself. Thus, a Majorana mass term is only possible if there is a gauge
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group singlet in the product of these spinors. For example, such a term is not invariant
under the global U(1) transformation (whereas the Dirac mass term is!)

ψ → eiϕψ , (2.11)

leading to a total lepton number violation by two units.
Furthermore, in the SM of particle physics, where the lepton number conservation is

an accidental symmetry, such terms are not allowed since this theory includes no fermions
with zero hypercharge Y corresponding to the U(1)Y generator in the gauge group of
electroweak interactions (see the following section).

2.3 Masses in the Standard Model

The Standard Model is a renormalizable [25] gauge theory [17] based on the symmetry
group (see, e.g., Refs. [18, 19, 26])

GSM ≡ SU(3)C × SU(2)L × U(1)Y , (2.12)

where SU(3)C describes strong interactions i.e. quantum chromodynamics (QCD), and
SU(2)L × U(1)Y the Glashow-Weinberg-Salam model of electroweak interactions.

The fermions in the SM appear in three families, each with the same quantum num-
bers under GSM. Because the right- and left-handed chiral �elds are treated di�erently
under GSM�left-handed �elds are doublets whereas right-handed ones are singlets un-
der SU(2)L�the SM forbids bare mass terms for fermions. Therefore, all fermions of
the Standard Model would be massless were it not for the mechanism of spontaneous
symmetry breaking (SSB), also referred to as Higgs mechanism [27, 28, 29].

This process is based on the introduction of the famous but still hypothetical Higgs
boson φ. Being a doublet of SU(2)L, it can couple with fermion bilinears to form renor-
malizable terms of the following type:

LYuk = −yabLaLφe
b
R + h.c. . (2.13)

LL is the left-handed lepton doublet of SU(2)L, eR the right-handed lepton singlet of
SU(2)L and yab is the coupling constant with generation indices. Such so-called Yukawa in-
teractions represent total singlets of GSM. However, because the ground state of the Higgs
potential is not invariant under this symmetry group, the neutral component of the Higgs
doublet acquires a non-zero vacuum expectation value v (VEV). Thus, SU(2)L × U(1)Y
spontaneously breaks down to U(1)Q, the gauge group of electromagnetic interactions, and
the VEV v, substituted into Eq. (2.13), leads to Dirac masses for the charged fermions:

L D
m = −vyabeaLe

b
R + h.c. . (2.14)

However, we want to mention that in the SM, mass terms for neutrinos are not allowed.
First of all, it contains no right-handed neutrino �elds so that Yukawa terms such as
in Eq. (2.13) can not be formed. Secondly, Majorana mass terms for the left-handed
�eld νL are forbidden because on the one hand, such a term in bare form would violate
electroweak gauge symmetry (see the discussion at the end of Sec. 2.2), and on the other
hand, there is no way to produce it via SSB since there are no further scalar bosons in the



8 Chapter 2. Fermion Masses in Gauge Theories

SM, which have appropriate quantum numbers, to form a renormalizable2 gauge group
singlet together with the bilinear νcLνL. Hence, to predict massive neutrinos, one has to
go beyond the SM.

2From power counting of divergent diagrams, Lagrangian terms which contain products of �elds with
mass dimension larger than four are nonrenormalizable (see, for example, Refs. [18, 25]).
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Nowadays we know that the SM cannot be a complete theory of everything. One of the
shortcomings is that neutrinos oscillate and therefore must be massive particles. There
exist several extensions of the SM which predict neutrino masses (see, e.g., Ref. [30]).

In this chapter we want to go beyond. We shall consider a general situation, where
we assume that both, Dirac as well as Majorana mass terms for the neutrinos are present.
This will lead to a special case�known as the see-saw scenario�which can explain the
astonishing small active neutrino masses. Then we will show how such Dirac or Majorana
mass terms can be realised in some speci�c extensions of the SM, discuss the see-saw
mechanism in the context of e�ective �eld theories and conclude the chapter with a short
review of a left-right symmetric model.

3.1 The Dirac-Majorana Mass Term

As mentioned in the end of the previous Sec. 2.3, the hypothetical right-handed neutrino
is not present in the SM. Nevertheless, in order to have the possibility to form Dirac mass
terms for the neutrinos, we will assume that it is there. Furthermore, we will allow for
Majorana masses which are forbidden in the SM but could be present in some extended
theories. The question as to what models and what scalar sectors could give rise to such
terms will be postponed to Secs. 3.3 and 3.5.

9



10 Chapter 3. Massive Neutrinos

Given the left- and right-handed neutrino �elds, νL and NR respectively,1 one obtains
the general mass Lagrangian by writing down all possible Dirac and Majorana mass terms.
For one generation, one has

L D+M
m = −mDνLNR −

1
2
MLνcLνL −

1
2
MRN c

RNR + h.c. . (3.1)

By de�ning the vector

NL ≡
(
νL
N c
R

)
, (3.2)

the expression (3.1) can be written in a convenient matrix form

L D+M
m = −1

2
N c
LMNL + h.c. , (3.3)

with the symmetric complex matrix

M =
(
ML mD

mD MR

)
. (3.4)

Note that in this derivation we have considered a real MR. This is always possible by an
appropriately chosen phase of the �eld NR. Then, once the phase of NR is �xed, we can
choose that of νL in such a way that mD becomes real. However, if there is a phase left
in ML, it is no more possible to get rid of it because we can not change the phases of the
chiral �elds anymore. Thus, in general we can consider a complexM with real mD and
MR but complex ML.

From the expression in Eq. (3.3), it is clear that the chiral �elds νL and NR are in
general not the mass eigenstates. In order to �nd the �elds of massive neutrinos, one has
to diagonalise the matrix in Eq. (3.4). This can be done by a unitary transformation W

NL = WnL , (3.5)

with the �elds in mass basis

nL ≡
(
ν1L

ν2L

)
. (3.6)

Then, the mass matrix transforms as

W TMW =
(
m1 0
0 m2

)
. (3.7)

To simplify the formulas, we consider real mass matrices. In such a case the eigenvalues
ofM are

m2,1 =
1
2

[
ML +MR ±

√
(ML −MR)2 + 4m2

D

]
, (3.8)

and the angle of the rotation which diagonalisesM can be derived out of

tan 2ϑ =
2mD

MR −ML
. (3.9)

1We take the name NR instead of νR because in case of Majorana neutrinos, we have the relation
(νL)c = νR. However, the right-handed �eld describes a totally di�erent particle. In the SM it is, for
example, a total singlet of GSM whereas the usual active neutrino νL is not (see the discussion at the end
of Sec. 3.2.1). Thus, we should not identify it with (νL)c.
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3.2 The See-Saw Mechanism

In this part we describe a scenario which is able to explain, why the neutrino masses
are so small compared to that of charged leptons. We speak about the famous see-saw
mechanism. This process can be realised in di�erent ways in various extensions of the
Standard Model (see, e.g., Ref. [30]). Here we want to describe the most common types.

3.2.1 Type I See-Saw

Assume that for some reason we have the scenario

mD �MR , ML = 0 . (3.10)

From Eq. (3.8), we obtain2

m1 ' −
m2
D

MR
, m2 'MR . (3.11)

The Eqs. (3.11) show that ν2 is as heavy as MR and ν1 is very light. This is because mD

is suppressed by the small factor mD/MR, i.e. the heavier the mass of the neutrino ν2,
the lighter the mass of ν1. This is the reason why physicists call it �see-saw� mechanism.

In the considered �type I� scenario [31, 32, 33] the mixing angle (see Eq. (3.9)), which
describes the transformation from �avour to mass basis, is very small:

ϑ =
mD

MR
� 1 , (3.12)

This implies that ν1 is composed mainly of νL, whereas ν2 is composed mainly of NR. In
particular, we have

W =
(
i cosϑ sinϑ
−i sinϑ cosϑ

)
, (3.13)

such that the mass eigenstates are given by

ν1L ' −i νL + i
mD

MR
N c
R ' −i νL , (3.14a)

ν2L '
mD

MR
νL +N c

R ' N c
R . (3.14b)

At this point let us do a little excursion. We want to show, how important the see-saw
mechanism is.

One of the unsolved questions of neutrino physics is the explanation of the tiny neutrino
masses compared to that of charged leptons. This problem can be solved by the type I
see-saw mechanism in a very beautiful way if we do a minimal extension of the SM�we
add the right-handed neutrino. Note, that it is one of the peculiarities of the SM that it
contains left- and right-handed chiral projections of all fundamental fermions except for
neutrinos. However, in the epoch when the SM has been invented, neutrinos were thought
to be massless, and therefore, right-handed neutrino �elds have not been introduced. Like
all the other right-handed �elds of the SM, the NR is assumed to be a SU(2)L singlet.
The de�nition of electric charge, Q = T3 + Y/2, then implies that this electrical neutral

2The minus sign in the formula for m1 can be absorbed by a rede�nition of the �eld ν1 in mass basis
(see Eq. (3.14)).
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neutrino has in addition zero hypercharge (Y = 0). This means that the right-handed
neutrino is a total singlet of the entire SM symmetry group GSM. In other words, this
neutrino is uncharged under all SM interactions. Therefore, people call it sterile. On
the contrary, the usual left-handed neutrinos, which participate in weak interactions, are
usually called active.

Let us show how the scenario from above (see Eq. (3.10)) is realised in such a simple
SM extension. The Majorana mass term for νL, which contains ML, is not allowed in
the SM because this �eld is contained in the (1,2, -1) representation3 of GSM, and the
Kronecker product

(1,2, -1)⊗ (1,2, -1) = (1,1, -2)⊕ (1,3, -2) , (3.15)

contains no singlet. Thus, this term is forbidden by renormalizability and the symmetries
so that we have ML = 0. The Dirac mass term, which contains mD, is produced by the
Higgs mechanism in the same way like it was described in the case of charged fermions
in Sec. 2.3. Therefore, mD is like all other charged fermion masses proportional to the
VEV of the Higgs boson. This is the reason why it cannot be much larger than the
electroweak scale ∼ O(102) GeV�one says it is protected by the symmetries of the SM.
On the contrary, since the Majorana mass term of the right-handed sterile neutrino NR is
a total singlet of GSM, the mass MR is not protected by the SM symmetries. Instead, it
will be determined by some scale corresponding to new physics beyond the SM, where the
chiral �eld NR will belong to some non-trivial multiplet of the high-energy gauge group.
The mass MR is then protected by high energy symmetries, and its order of magnitude
will be determined by their breaking scale, which may, for example, be at the grand
uni�cation scale ∼ O(1014 ÷ 1016) GeV. Hence, the type I see-saw mechanism predicts a
light active neutrino mass m1 for neutrino ν1 (cf. Eq. (3.11)), which is suppressed with
respect to the electroweak or charged lepton mass scale (∼ mD) by the very small ratio
mD/MR ∼ 10−14 ÷ 10−12.

3.2.2 Type II See-Saw

The type II see-saw scenario [34, 35, 33] is realised when the left-handed Majorana mass
ML is small but non-zero, and if the relation

ML � mD �MR , (3.16)

holds. A non-zero ML can, for example, be induced by extending the scalar sector of the
SM by an Higgs triplet (see Eq. (3.15) and Sec. 3.3.2). There are models which predict a
suppression of the mass ML by a new scale of physics beyond the SM. A very important
example will be given in Sec. 3.5, where we describe the left-right (LR) symmetric model
based on the gauge group SU(2)L × SU(2)R × U(1)B−L.

Motivated by such theories, let us consider Eq. (3.16) with

ML ≡ a
m2
D

Λ
. (3.17)

3The representation of a particle in the SM is a combination of an irrep of SU(3)C , an irrep of SU(2)L

and an irrep of U(1)Y . The values of the dimensions of these irreps are usually collected in parentheses
(cf. Eq. (3.15)).
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Here a is a numerical coe�cient and Λ denotes the high-energy scale. By applying
Eq. (3.8), we obtain

m1 'ML −
m2
D

MR
= a

m2
D

Λ
−
m2
D

MR
, m2 'MR . (3.18)

Conventionally one speaks of a type II see-saw if |ML| � m2
D/MR, whereas the type I

see-saw refers to the case in which |ML| � m2
D/MR.

3.2.3 See-Saw with three Generations

So far, the discussion was for simplicity and illustration focussed on the case of one gen-
eration. However, as we know from measurements of the Z boson decay width [36], there
are three �avours of active neutrinos in nature. This motivates us to introduce three4

right-handed neutrino �elds, one for each generation. The general neutrino mass matrix
which corresponds to the Dirac-Majorana mass term is now a 6 × 6 complex symmetric
matrix:

M =
(
ML mD

mT
D MR

)
, (3.19)

where ML and MR are complex symmetric 3× 3 blocks, and mD is an arbitrary complex
3× 3 matrix. The vector of left-handed �elds NL, de�ned in Eq. (3.2), has the form

NL =
(
νL
N c
R

)
, (3.20)

with

νL = (νeL, νµL, ντL)T , NR = (NeR, NµR, NτR)T . (3.21)

It is obvious that due to the matrix character of its entries, the diagonalization of the
matrix in Eq. (3.19) is more complicated than in the case of one generation.

If all the eigenvalues of MR are much larger than all the elements of mD and ML,
M can be diagonalised by blocks following Ref. [39]. Up to corrections of the order of
M−1
R mD, we have

W TMW '
(
mν 0
0 MN

)
, (3.22)

with

W '
(

1− 1
2m

∗
D(MRM

∗
R)−1mT

D (M−1
R mT

D)†

−M−1
R mT

D 1− 1
2M

−1
R mT

Dm
∗
D(M∗

R)−1

)
(3.23)

whereas the in general non-diagonal 3× 3 matrices, mν and MN , are given by

mν = ML −mDM
−1
R mT

D , MN 'MR . (3.24)

These are the type II see-saw formulas in the case of three left- and three right-handed
neutrinos.

4It is important to note, that the presence of sterile neutrinos is irrelevant for anomaly cancellations
[37, 38].
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3.3 Neutrino Mass in SU(2)L × U(1)Y Gauge Theories

As often mentioned before, to explain observed evidences for neutrino masses, one must
go beyond the SM. However, this does not necessarily mean that one has to consider
high-energy extensions of the gauge group SU(2)L × U(1)Y . Even with the same gauge
group as the SM, one can conjecture modi�cations in the scalar or fermionic sectors of
the new model so that neutrino mass terms like in Eq. (3.1) are possible.

We already discussed such an extension in the fermionic sector (see Sec. 3.2.1): the
adding of the right-handed neutrino to the matter content of the SM.

3.3.1 Introduction of right-handed Neutrinos

The right-handed neutrino NR is assumed to be sterile, i.e. it is a total singlet of the
SM gauge group SU(3)C ×SU(2)L×U(1)Y such that its only interaction is gravitational.
Nobody knows if it exists, but the introduction of this particle is a very aesthetic extension
of the SM. Adding three of them�one for each generation�would remove the asymmetry
between the lepton and quark sectors so that there is a right-handed chiral partner for
every left-handed fundamental fermion �eld. Due to SSB the right-handed neutrinos
provide the possibility of Dirac mass terms and in addition, Majorana masses for NR are
possible if lepton number conservation is violated. In such a case the scenario of the type I
see-saw, discussed in Sec. 3.2.1, could be a possible explanation of the small active neutrino
masses. At the same time, the heavy right-handed neutrinos would be non-observable if
the mass scale of new physics beyond the SM would be at GUT scale. We want to mention
that with right-handed neutrinos present, U(1)B−L is anomaly free. Thus, it would be
possible to forbid Majorana mass terms by imposing a gauged B − L symmetry so that
models with massive Dirac neutrinos would result. However, such models are considered
to be rather unnatural because very small Dirac Yukawas are required to predict the small
active neutrino masses.

In the end of Sec. 3.2.1 we showed that a bare Majorana mass term for the left-handed
neutrino �eld νL is forbidden by the SM symmetry group (cf. Eq. (3.15)). Does this mean
that without introducing the right-handed neutrinos or extending the gauge group GSM,
neutrino masses are impossible? No! One can add new Higgs particles to the scalar sector
of the model which can lead to Majorana masses for the left-handed neutrino. In the next
section we shall present some well-studied examples.

3.3.2 Enlargement in the Scalar Sector

In the SM, the lepton �elds and Higgs scalars have the following SU(2)L × U(1)Y trans-
formation properties (see, e.g., Ref. [18]):

Lai,L =
(
νa
l−a

)
L

∼ (2, -1) ,

l−a,R ∼ (1, -2) , (3.25)

φi =
(
φ+

φ0

)
∼ (2,1) ,

where the �rst and second entries in the parentheses are the SU(2)L and U(1)Y quantum
numbers, respectively. We adopt the convention of taking the hypercharges Y to be
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2(Q− I3), where Q is the charge of the fermion and I3 its third weak isospin component.
a denotes the �avour and i the SU(2) index. Let us consider the Kronecker products of
the lepton representations:

Li,L l
−
R ∼ (2,1)⊗ (1, -2) = (2, -1) ,

(Li,L)c Lj,L ∼ (2, -1)⊗ (2, -1) = (1, -2)⊕ (3, -2) , (3.26)

(l−R)c l−R ∼ (1, -2)⊗ (1, -2) = (1, -4) .

The �rst term in Eq. (3.26), which conserves lepton number, is well known. The coupling
with the SM Higgs doublet (cf. Eq. (3.25)) leads to massive charged Dirac fermions due
to SSB, like it was discussed in Sec. 2.3. Because the Higgs particle carries no lepton
number, the mechanism of SSB will not spoil this global symmetry.

The other two bilinears in Eq. (3.26) violate lepton number by two units. Furthermore,
there is no scalar particle in the SM which could join these expressions to a gauge invariant
Yukawa coupling. Thus, to obtain mass terms out of these bilinears, we have to enlarge
the scalar sector of the SM. The study of the Kronecker products in Eq. (3.26) gives us
the following types of additional Higgs particles:

• triplet: ∆ ∼ (3,2) ,

• singlet with charge +1: h+ ∼ (1,2) ,

• singlet with charge +2: k++ ∼ (1,4) .

Note that although the last two terms in Eq. (3.26) have a net B − L number one can
restore this symmetry by assigning appropriate lepton numbers to the new Higgs particles.
How is it then possible to obtain lepton number violating Majorana mass terms in such
theories?

Adding a Higgs triplet Let us consider the case of the Higgs triplet. It joins the
second term in Eq. (3.26) to form a gauge invariant Yukawa term as follows

L∆ = −yab(Lai,L)cεik∆j
k Lbj,L + h.c. , (3.27)

where εik = i(σ2)ik is the total antisymmetric 2-dimensional Levi-Civita tensor, which
can be used to raise and lower SU(2) indices.5 Note that the term εik∆j

k is symmetric
under i ↔ j. Hence, it follows from Grassmann nature of the fermion �elds and the
antisymmetry property of the charge conjugation matrix C = iγ2γ0 (see Sec. 2.2) that the
Yukawa coupling yab is symmetric. The triplet scalar ∆ in matrix form is given by(

δ+/
√

2 δ++

δ0 −δ+/
√

2

)
∼ (3,2) , (3.28)

where the charge assignments of the �elds δ are easily determined by applying the Gell-
Mann-Nishijima charge operator Q = I3 + 1/2Y on ∆:

Q∆ =
1
2
[σ3,∆] + ∆ . (3.29)

5With σj , we denote the usual Pauli matrices. Furthermore, we use the convention that the funda-
mental representation 2 has a lower index, and its conjugate 2 has an upper index.
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Now let us assume that the parameters in the scalar potential of the theory are such that
at the minimum the Higgs particle ∆ acquires the VEV6

〈∆〉 =
(

0 0
v 0

)
. (3.30)

Then, after SSB, the expression (3.27) produces a Majorana mass term for the left-handed
neutrinos

L M
m = −1

2
Mab ν

c
a,Lνb,L + h.c. , (3.31)

with the symmetric mass matrix
Mab = 2 vyab . (3.32)

Thus, even if ∆ carries lepton number 2 so that the expression in Eq. (3.27) is B − L
invariant, this symmetry will be broken as the Higgs particle develops a VEV. Note that
by enforcing U(1)B−L to be a symmetry of the entire classical Lagrangian, this break-
down happens spontaneously implying the existence of a massless Nambu-Goldstone boson
called Majoron. However, such interesting models, proposed by Gelmini and Roncadelli
[40], are ruled out by now because the Z-boson decay into such massless scalars gives a
signi�cant contribution to its width and therefore contradicts measurement results. On
the contrary, if we do not insist in having B − L invariance, and write down the full
gauge-invariant scalar potential involving the SM Higgs doublet φ and the triplet ∆, there
will be a term

L ⊃ AφTi εik∆
j
kφj + h.c. , (3.33)

that breaks B−L explicitly. Allowing for this term, there would be no spontaneous B−L
breakdown and the Majoron would be absent.

Adding Higgs singlets The Higgs singlet h+ can have the following gauge invariant
Yukawa term

Lh+ = −yab(Lai,L)cεijLbj,Lh+ + h.c. . (3.34)

with an antisymmetric coupling yab = −yab. Here the scalar h cannot develop a VEV
because otherwise the vacuum would be charged and electromagnetic gauge symmetry
would be spontaneously broken. Thus, we need another source of B−L violation in order
to generate Majorana masses for νL. Anthony Zee found [41] that if one introduces besides
the singlet h another scalar doublet φ′ (in addition to the SM Higgs boson φ), it will be
possible to form a lepton number violating scalar coupling of the form εφφ′h−. In such a
case Majorana mass terms are produced through loop diagrams such as Fig. 3.1(a).

Another model is from Babu [42]. Instead of adding a second scalar doublet, he takes
the doubly charged singlet k++ from above. Again it is possible to form a B−L violating
trilinear coupling of scalar particles, k++h−h−, so that Majorana masses are produced by 2
loop diagrams as shown in Fig. 3.1(b). Note that such radiatively produced mass terms are
small because of the factor 1

8π2 resulting from the loop integrals, and the proportionality
to powers of small coupling constants. Hence, such mechanisms are besides the see-saw
scenario another aesthetic explanation of the smallness of neutrino masses.

Finally, let us emphasise that the ρ parameter, de�ned by

ρ ≡
M2
W

M2
Z cos2 θW

, (3.35)

6Note that because of conservation of charge, only the neutral component δ0 can acquire a VEV.



3.4. E�ective Majorana Mass 17
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(a) Onle-loop contribution to νc
LνL in

the Zee model.

νL νL

l
−

L

l
−

L

k
++

h
+

h
+

(b) Two-loop contribution to νc
LνL in

the Babu model.

Figure 3.1: Processes generating the active neutrino mass radiatively.

is sensitive to such scalar sector modi�cations and could deviate from the SM value, ρ = 1,
at tree level if the additional Higgs bosons acquire VEVs that contribute to electroweak
symmetry breakdown. To show this explicitly, we give a more general expression. Using
as usual the scalar kinetic terms with the VEVs inserted, for determining the gauge boson
masses, we obtain in case of an arbitrary number of Higgs multiplets Φk, including the
SM doublet, the following relation [43]:

ρ =
∑

k

[
Ik (Ik + 1)− (Ik3 )2

]
|vk|2ck

2
∑

k(I
k
3 )2|vk|2

. (3.36)

Here Ik is the weak isospin of the Higgs multiplet Φk, and Ik3 is the third component
of the weak isospin of the component of Φk, which has the VEV vk. The quantity ck
equals 1/2 (1) for real (complex) representations. Because experiments strongly restrict
this parameter to ρ = 1.0004+0.0008

−0.0004 [36], one has strong bounds on the VEVs of additional
Higgs bosons.

3.4 E�ective Majorana Mass

In some of the previous sections we demonstrated that without extending the SM it is
impossible to have a Majorana mass term for the left-handed chiral neutrino �eld νL (see
Sections 2.3, 3.2.1 and 3.3.2).

Then, at �rst sight, it seems to be curious why there exist a non-renormalizable ex-
pression, composed of SM �elds, which respects GSM at high energies and reduces to a
Majorana mass term for νL at low energies. We speak about the lepton number violating
Weinberg operator [44]

L5 ≡ −κ(LTLεφ)C†(φT εLL) + h.c. , (3.37)

being the lowest dimensional unique term satisfying this property. Indeed due to elec-
troweak symmetry breakdown, i.e.

φ =
(
φ+

φ0

)
SSB−−→ 〈φ〉 =

(
0
v

)
, (3.38)

this term leads to

LM
m = −1

2
mνLν

c
LνL + h.c. . (3.39)
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with the Majorana mass
mνL = 2κv2 . (3.40)

Of course, the Lagrangian from above, Eq. (3.37), is non-renormalizable. Representing
a dimension-5 operator,7 this term would produce non-renormalizable divergences and,
therefore, is not acceptable in the SM. Nevertheless, as we will demonstrate, it plays an
important role in the framework of an e�ective �eld theory (EFT).

Over the past several decades it has become clear that the SM fails to explain a
number of observed phenomena in particle physics, astrophysics and cosmology. Besides
the neutrino oscillations (suggesting massive neutrinos) this model cannot explain the
nature of Dark Matter, that of Dark Energy, the processes of baryon asymmetry and of
in�ation. These drawbacks indicate that the SM cannot be complete. It is rather the
low energy manifestation of a deeper structure, some unknown ultimate theory (see, e.g.,
Ref. [45]).

The concept of EFT allows us to make predictions at low energies (or equally long
distances) even if we don't know anything about the ultimate theory. More precisely it
describes the low energy limit of a full theory by a series expansion of its Lagrangian [46]:

L = L (0) + L (1) + L (2) + ... . (3.41)

In our case L (0) = LSM corresponds to the renormalizable SM Lagrangian. The following
L (i)'s are e�ective non-renormalizable dimension-(4 + i) terms, which are low energy
residues of the high energy theory. The latter must include the gauge symmetries of the
SM in order to be e�ectively reduced to the SM at low energies, so that the operators
L 1, L 2, ... are singlets of the gauge symmetry GSM. However, since any Lagrangian
term must have a total mass dimension of 4 the coupling constants of dimension-(4 + i)
operators are proportional to Λ−i, where Λ is a heavy mass, characteristic of the symmetry-
breaking scale of the high energy �full� theory. This is the reason why the operators in
Eq. (3.41) with i > 0 are highly suppressed compared to the SM Lagrangian such that
the observability of the low-energy e�ects of the new physics beyond the SM is limited.

The unique candidate for L (1), i.e. the e�ective low energy non-renormalizable op-
erator with lowest dimensionality, compatible with the symmetries of the SM, is the
dimension-5 operator L5 introduced in Eq. (3.37). In this formalism it is obvious, why
the neutrino masses are small. The coupling constant of L5 is proportional to Λ−1 so that
the mass term in Eq. (3.39) has the form

κv2 = a
v2

Λ
, (3.42)

with a, a dimensionless numerical coe�cient. Note that this relation is of the same
structure as that obtained with the see-saw mechanism described in Sec. 3.2.1 and 3.2.2.
In the following we shall show that the see-saw mechanism can indeed be the source of
the dimension-5 operator at low energies.

3.4.1 The See-Saw Mechanism and the Dimension-5 Operator

In this section we will reveal a connection between the see-saw mechanism and the e�ective
dimension-5 operator L5.

7A Lagrangian term which contains a product of �elds with energy or mass dimension d is called a
dimension-d operator
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The type I see-saw scenario is characterised by condition (3.10) and the presence of
right-handed neutrinos NR with mass MR. To calculate the active neutrino masses, we
will now present a new method proposed in Ref. [47]. Let us consider the Lagrangian

L D+M
m = −mD(NRνL + νLNR)− 1

2
MR(N c

RNR +NRN
c
R) . (3.43)

Above the scale of electroweak symmetry breaking, one can write this term in the form

L D+M
m = −y(NRφ̃

†LL + LLφ̃NR)− 1
2
MR(NT

RCNR +N †
RC

†N∗
R) , (3.44)

where φ̃ = εφ∗ is the charge conjugate SM Higgs �eld. Now comes the point. If the mass
MR is very heavy, the right-handed chiral �eld NR can be integrated out. This is because
at SM energies, it can be considered in the static limit in which the kinetic term in the
equation of motion is neglected. Thus, we obtain with Eq. (3.44)

0 = −∂µ
∂L (x)

∂(∂µNR(x))
+
∂L (x)
∂NR(x)

' ∂L D+M
m

∂NR(x)
= −MRN

T
RC − yLLφ̃ , (3.45)

so that NR in its static approximation is given by

NR ' −
y

MR
φ̃TCLL

T
. (3.46)

Substituting this back into Eq. (3.44), we obtain

L D+M
m ' 1

2
y2

MR
(LTLεφ)C†(φT εLL) + h.c. . (3.47)

If we de�ne the massive �eld ν1L as in Eq. (3.14)

ν1L ' −iνL , (3.48)

the operator in Eq. (3.47) generates after SSB (φ → 〈φ〉, cf. Eq. (3.38)) the Majorana
mass term

L D+M
m ' −1

2
y2v2

MR
νc1Lν1L + h.c. . (3.49)

which gives us because of
mD = vy , (3.50)

the same results as in the scenario of the type I see-saw (cf. Sec. 3.2.1).
The expression in Eq. (3.47) coincides with the dimension-5 operator in Eq. (3.37) if

we identify

Λ = MR, a = −y
2

2
. (3.51)

This procedure demonstrates that at low energies the type I see-saw mechanism e�ectively
reduces to L5 so that Λ determines the scale of the right-handed neutrino mass MR.
However, we want to mention that there are other L5 contributions possible. The pure
type II see-saw�induced by a very heavy Higgs triplet, which couples to the left-handed
chiral neutrino �elds, as described in Sec. 3.3.2�is, for example, another candidate. This
can be illustrated impressively by Feynman diagrams and their corresponding amplitudes.
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Figure 3.2: At energies far below the masses of the heavy intermediate particles, both the
type I (left-hand side) and the type II (right-hand side) seesaw mechanisms e�ectively
lead to the dimension-5 operator (centre).

In Fig. 3.2 we consider this procedure in the case of a type I and a pure type II see-
saw. The intermediate particles in the diagram on the left are the right-handed neutrinos,
whereas in the diagram on the right, we have the Higgs triplet propagating on the internal
line. Because of their heavy mass, these particles cannot get on-shell at SM energies
and thus are integrated away. In the language of Feynman diagrams this means that
at low energies the propagator of these particles becomes e�ectively independent of the
transferred four-momentum q2 so that it contracts to an e�ective four particle vertex8

where the 2 Higgs bosons of the SM meet the left-handed chiral neutrino �elds. The
resulting Feynman diagram corresponds to the e�ective dimension-5 operator, making it
impossible to distinguish between these two scenarios at low energies.

To conclude Sec. 3.4, we present a very useful parametrization, which is based on the
e�ective character of the see-saw mechanism.

3.4.2 The Casas-Ibarra Parametrization

Let us consider a Majorana mass matrix with the pattern

M =
(
ML mD

mT
D MR

)
. (3.52)

If the scenario of the type II see-saw is realized, we obtained out of this matrix the relation
(cf. Sec. 3.2.3)

mν = ML −mDM
−1
R mT

D , (3.53)

where mν denotes the active neutrino mass matrix. In the previous section we have seen
that at low energies the heavy degrees of freedom are integrated away so that the number
of high energy parameters, i.e. of those contained inML, mD andMR, exceeds the number
of low energy parameters contained in mν . The idea is now to parametrize these unknown
high energy quantities to obtain all possible Dirac mass matrices mD which lead to the
considered mν if MR is known. Within the type I see-saw, such a parametrization of
our ignorance was suggested by Casas and Ibarra [48]. We will give an extended version,
following Ref. [49], which is also applicable to the scenario of the type II see-saw.

By de�ning the symmetric and in general complex matrix

Xν ≡ mν −ML , (3.54)

we can rewrite Eq. (3.53) in the form

Xν = −mDM
−1
R mT

D , (3.55)

8Note that this is well-known from Fermi's theory of weak interactions.
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The matrices Xν and MR can be diagonalised by unitary transformations:

Xν = V ∗
ν X

diag
ν V †

ν =
[
V ∗
ν (Xdiag

ν )
1
2

] [
V ∗
ν (Xdiag

ν )
1
2

]T
, (3.56a)

MR = V ∗
RM

diag
R V †

R . (3.56b)

Multiplying Eq. (3.55) by
[
V ∗
ν (Xdiag

ν )
1
2

]−1
from the left and by

{[
V ∗
ν (Xdiag

ν )
1
2

]T}−1

from

the right and using Eqs. (3.56), we �nd

I = RRT , (3.57)

with

R = ±i
(
Xdiag
ν

)− 1
2
V T
ν mDVR

(
Mdiag
R

)− 1
2
. (3.58)

Eqs. (3.57) and (3.58) mean that the type II see-saw relation requires R to be a complex
orthogonal matrix, but otherwise does not constrain it. In this way we obtain for the
Dirac mass term in the basis where MR is diagonal

mD = ±i V ∗
ν

√
Xdiag
ν R

√
Mdiag
R V †

R . (3.59)

R is an arbitrary complex orthogonal matrix and can be parametrized as

R = ±R12R13R23 , (3.60)

where Rij is the matrix of rotation by a complex angle ωij in the ij-plane.
The formula for the type I see-saw can easily derived out of (3.59). Because ofML = 0,

Xν simply corresponds to the active neutrino mass matrix mν and the transformation
matrix Vν to the PMNS matrix U . We arrive at

mD = ±i U∗
√
mdiag
ν R

√
Mdiag
R V †

R . (3.61)

This is the so called Casas-Ibarra parametrization of the Dirac mass matrix.

3.5 Neutrino Mass in a left-right symmetric Model

Section 3.3 was devoted to the explanation of neutrino masses in models based on the SM
electroweak symmetry SU(2)L×U(1)Y . Here the aim is to give masses to the neutrinos in
the context of a model with a bigger gauge group. Our choice is to focus on the left-right
(LR) symmetric model, which seems to be one of the most straightforward extensions of
the SM. As the name says, in this model, the left- and right-handed chiralities of fermions
are treated identically at high energies above all symmetry breaking scales. This implies
that in the symmetric phase the weak interactions must conserve parity, i.e. the Lagrangian
of this model involves both V − A as well as V + A charged-currents. The dominance of
V − A at low energies is then caused by the fact that there is a non-symmetric vacuum
under space re�ections. Moreover, in this model right-handed neutrinos are naturally
included, because the LR symmetric treatment of weak interactions at high energies has
the consequence that every left-handed fundamental fermion must have a right-handed
partner. The minimal gauge group that implements such a symmetry is

GLR ≡ SU(3)C × SU(2)L × SU(2)R × U(1)B−L , (3.62)
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where SU(3)C is the usual QCD and SU(2)L × SU(2)R × U(1)B−L the high energy elec-
troweak symmetry with gauged9 U(1)B−L. In the symmetric phase, besides B − L, the
baryon and lepton numbers are conserved separately, since there are no couplings between
leptons and quarks. Moreover, the term B − L appears in the electric charge formula,
which in the LR symmetric model has the attractive form [50, 51]

Q = I3L + I3R +
B − L

2
. (3.63)

I3L and I3R are the third components of the weak isospins of SU(2)L and SU(2)R, re-
spectively. People think that B − L makes more physical sense than the hypercharge Y
contained in the Gell-Mann Nishijima formula of the SM.

Equation (3.63) has important consequences. For instance, at an energy scale beyond
the electroweak one (∼ O(100−200) GeV), ∆I3L = 0 holds and since charge is conserved,
one obtains from Eq. (3.63)

∆I3R = −1
2
∆(B − L) . (3.64)

This relation connects the breakdown of parity with that of localB−L symmetry. If SSB of
SU(2)R is chosen so as to give I3R = 1, we have in the case of neutrinos (∆B = 0) a lepton
number violation of ∆L = 2. This leads to Majorana mass terms and neutrinoless double
beta decay. Indeed, we will see in what follows that the neutrino masses are implemented
by a type II see-saw mechanism and that there is a connection to the symmetry breaking
scale of the gauge group SU(2)R.

Such left-right symmetric models were �rst proposed around 1973-1974 by Pati and
Salam [52] but also Rabindra N. Mohapatra and Goran Senjanovic are very active in this
�eld [53, 54, 55].

Below, we will give a short review where our main attention will focus on the realisation
of massive neutrinos. The general Lagrangian of such a model consists of three parts:

LLR = Lkin + LY − V . (3.65)

Lkin contains the kinetic terms dictated by the gauge group and the assignment of fermions
and Higgs bosons to this model, V is the Higgs potential, and LY the part which contains
the Yukawa couplings. We start with specifying LY.

3.5.1 Yukawa Couplings

Quarks and Leptons As mentioned before, the fermions in LR symmetric models are
treated symmetrically. They include the right-handed neutrino NR and are assigned to
the following irreducible representations [56]

qL =
(
uL
dL

)
∼ (2,1,1/3) , qR =

(
uR
dR

)
∼ (1,2,1/3) , (3.66a)

ΨL =
(
νL
lL

)
∼ (2,1, -1) , ΨR =

(
NR

lR

)
∼ (1,2, -1) , (3.66b)

where the parentheses following the matrix expressions indicate the SU(2)L, SU(2)R, and
U(1)B−L quantum numbers.

9As already mentioned in Sec. 3.3.1, the group U(1)B−L is free from anomaly because of the presence
of right-handed neutrinos.
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Higgs particles What kind of scalar �elds do we need to form gauge invariant Yukawa
terms leading to Dirac or Majorana mass terms after SSB? To produce a Dirac mass term,
the bidoublet

φ ≡
(
φ0

1 φ+
1

φ−2 φ0
2

)
∼ (2,2∗,0) , (3.67)

is the obvious choice because the Kronecker product of the bilinears qLqR and ΨLΨR is
(2∗,2,0). Thus we have the Yukawa Lagrangian

L D
m = fijΨL

i
φΨj

R + gijΨL
i
φ̃Ψj

R + h.c.

+ FijqLiφqjR + GijqLiφ̃qjR + h.c. , (3.68)

where we included the terms with the charge conjugate bidoublet de�ned by φ̃ ≡ σ2φ
∗σ2 ∼

(2,2∗,0), which transforms in the same way as φ. The coe�cients f , g, F and G are the
Yukawa couplings.

What about Majorana mass terms? The Kronecker products of the bilinears Ψc
LΨL

and Ψc
RΨR contain (3,0, -2) and (0,3, -2), respectively, so that the scalar triplets

∆L ≡
(
δ+L /
√

2 δ++
L

δ0L −δ+L /
√

2

)
∼ (3,0,2) , (3.69)

∆R ≡
(
δ+R/
√

2 δ++
R

δ0R −δ+R/
√

2

)
∼ (0,3,2) , (3.70)

can join these bilinears to form gauge invariant Yukawa terms

L M
m = (hL)ijΨc

L
i
ε∆LΨj

L + (hR)ijΨc
R
i
ε∆RΨj

R + h.c. , (3.71)

with hL = hTL and hR = hTR.
10 The entire Yukawa Lagrangian which leads, as we will see,

to a type II see-saw mechanism is thus given by

LY = L D
m + L M

m . (3.72)

Discrete Left-Right Symmetry In addition to the LR gauge symmetry, models of
this kind are usually assumed to possess a discrete LR symmetry, which is broken at
a scale that may or may not coincide with the SU(2)R breaking scale (see the following
discussion). It can be introduced in di�erent ways. One possibility is the parity symmetry
de�ned by [56]

Ψi
L, q

i
L ↔ Ψi

R, q
i
R , φ↔ φ† , ∆L ↔ ∆R . (3.73)

This leads to some restrictions on the parameters contained in the Lagrangian. The most
obvious consequence is that the gauge couplings of the left- and the right-handed SU(2)
groups are equal, i.e. gL = gR ≡ g. Considering Eq. (3.68) and (3.71), we furthermore
have

hL = hR ≡ hM , (3.74)

and hermiticity of the Dirac-type Yukawa couplings: f , g, F and G.
10Note that we have already discussed such a coupling in Sec. 3.3.2.
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3.5.2 The Pattern of Symmetry Breaking and the Higgs Potential

Here we shall show that with the two scalar triplets and the bidoublet de�ned in the
previous section it is possible to break the gauge group of the LR symmetric model spon-
taneously down to that of the SM. There are in fact two scales of symmetry breakdown,
in contrast with just one in the SM [57]. In the �rst stage, the neutral component δ0R of
∆R acquires a VEV vR. This breaks the gauge symmetry GLR down to the electroweak
symmetry11 SU(2)L × U(1)Y , where Y is the usual SM hypercharge determined by

Y

2
= I3R +

B − L
2

. (3.75)

In the second stage the VEVs κ and κ′ of the bidoublet and vL of the scalar triplet ∆L

break the electroweak gauge group down to U(1)Q. Explicitly, we have

〈φ〉 =
(
κ 0
0 κ′

)
, 〈∆L,R〉 =

(
0 0

vL,R 0

)
. (3.76)

We shall assume for simplicity in what follows that all the vacuum expectation values are
real.12 Furthermore note that we are not considering the case where the breaking scale of
the discrete parity symmetry is separated from that of SU(2)R×U(1)B−L. In our case it
breaks at the �rst stage when δ0R acquires a VEV.13

There exist an important relation between the VEVs in Eq. (3.76) resulting from the
minimisation conditions of the Higgs potential.

Minimising the Higgs Potential The most general renormalizable expression for the
Higgs potential V satisfying the gauge symmetry GLR and the discrete parity transforma-
tion de�ned in Eq. (3.73), which one can write down, is given in App. C. The minimisation
procedure, as described in more detail in Ref. [56], is as follows. We insert the VEVs of
the Higgs particles (cf. Eq. (3.76)) into Eq. (C.2) and obtain

V(κ, κ′, vL, vR) =− µ2
1

(
κ2 + κ′2

)
− 4µ2

2κκ
′ − µ2

3

(
v2
L + v2

R

)
+ λ1

(
κ2 + κ′2

)2 + (8λ2 + 4λ3)κ2κ′2 + 4λ4κκ
′ (κ2 + κ′2

)
+ ρ1

(
v4
L + v4

R

)
+ ρ3v

2
Lv

2
R

+
[
α1

(
κ2 + κ′2

)
+ 2 (α2 + α∗

2)κκ
′ + α3κ

′2] (v2
L + v2

R

)
+ 2

[
β1κκ

′ + β2κ
2 + β3κ

′2] vLvR . (3.77)

Then, using the extremising conditions ∂V/∂vL = ∂V/∂vR = 0, the following relation
between the VEVs result:

0 = vR
∂V
∂vL
− vL

∂V
∂vR

= −2
(
v2
L − v2

R

) [
β2κ

2 + β1κκ
′ + β3κ

′2 + (ρ3 − 2ρ1)vLvR
]
. (3.78)

The two possible solutions to this equation are

11We are not interested in strong interactions and therefore ignore the QCD gauge group SU(3)C in
our formula.

12This can always made true for a proper range of free parameters of the potential V (cf. App. C).
13The other case, however, can be achieved by introducing a parity odd neutral scalar �eld with a

non-zero VEV (see, e.g., Ref. [57]).
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• vL 6= vR ,

• v2
L = v2

R .

We will focus on the �rst possibility because, under a choice of parameters of the La-
grangian, this solution will give a minimum of V [56]. By de�ning the parameter

γ ≡ β2κ
2 + β1κκ

′ + β3κ
′2

(2ρ1 − ρ3)κ2
+

with κ2
+ ≡ κ2 + κ′2 , (3.79)

we get out of Eq. (3.78) the VEV see-saw constraint [56]:

vL = γ
κ2

+

vR
. (3.80)

This expression relates the widely varying VEV scales. In fact, because κ+ contains the
VEVs which break the SM symmetry group down to U(1)Q, one expects that it is of
electroweak scale (∼ O(200) GeV). Furthermore, the parameters of the Higgs potential,
βi and ρi, are naturally14 assumed to be of order unity so that by de�nition γ ∼ O(1).
The VEV vR breaks parity and thus should be of high scale beyond the electroweak one.
As a consequence, Eq. (3.80) enforces vL � κ+.

This VEV see-saw will play an important role in the following section, where the type
II see-saw, generating the neutrino masses in the LR symmetric model is described.

3.5.3 Neutrino Masses

In the presented LR symmetric model, the type II see-saw is realised in a fairly natural
way. To �nd the mass terms for the neutrinos that arise due to SSB, we need to consider
the Yukawa terms that couple the lepton �elds Ψ to the Higgs particles ∆L,R and φ. We
already know these expressions from Sec. 3.5.1. Let us see what happens when the gauge
symmetry is broken the two steps (cf. Sec. 3.5.2) down to U(1)Q. For convenience, we
will work in what follows with one lepton generation. To identify the mass contributions,
we insert the VEVs for the Higgs �elds (cf. Eq. (3.76)). At the �rst stage the neutral
component of ∆R acquires a VEV vR so that the relevant term hMΨc

Rε∆RΨR + h.c. in
Eq. (3.71) reduces to (cf. procedure for the Higgs triplet in Sec. 3.3.2)

L M,R
m = hMvRN c

RNR + h.c. . (3.81)

At the second stage the VEVs 〈φ〉 and 〈∆L〉 break the SM gauge group down to the
electromagnetic one so that the residual expression hMΨc

Lε∆LΨL + h.c. in Eq. (3.71)
passes with 〈∆L〉 into a Majorana mass term for the left-handed chiral neutrino �eld

L M,L
m = hMvLνcLνL + h.c. . (3.82)

Due to φ
SSB−−→ 〈φ〉, also Dirac mass terms result below the electroweak scale. The �rst

line in Eq. (3.68) leads to the charged lepton mass term L D,l
m and the neutrino mass term

L D
m ,

L D,l
m = (fκ′ + gκ)lLlR + h.c. , L D

m = (fκ+ gκ′)νLNR + h.c. , (3.83)

14Smaller values are possible but require �ne-tuning and much bigger values would violate unitarity
and lead to a non-perturbative theory [56].
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whereas the second line produces Dirac masses for the quarks. To summarize, we have
the following neutrino mass terms after two stages of SSB:

−L D+M
m = L M,R

m + L M,L
m + L D

m

=
1
2
MRN c

RNR +
1
2
MLνcLνL +mDνLNR + h.c. . (3.84)

with
ML,R ≡ 2hMvL,R , and mD ≡ hDκ+ ≡ fκ+ gκ′ . (3.85)

This Lagrangian, already covered in Sec. 3.1, can be written in the convenient matrix form

L D+M
m = −1

2
N c
LMNL + h.c. , (3.86)

with NL de�ned in Eq. (3.2), and

M =
(
ML mD

mD MR

)
=
(

2hMvL hDκ+

hDκ+ 2hMvR

)
, (3.87)

From previous discussions, we know that vL � κ+ � vR, which implies that the type II
see-saw scenario, i.e. Eq. (3.16), is realised. Thus, from Eq. (3.18), we get the masses

m1 = ML −
mD

MR
= 2hMvL −

(hDκ+)2

2hMvR
,

m2 = MR = 2hMvR , (3.88)

where m1 corresponds to the light active neutrino ν1L ' −iνL and m2 to the heavy
right-handed neutrino νc2L ' NR.

Note that this model is an example where ML is suppressed by a new scale Λ ∼ vR
beyond the SM (see discussion in Sec. 3.2.2)�the scale of parity breakdown. In fact,
because of the VEV see-saw relation (3.80), we have

m1 = 2hMγ
κ2

+

vR
− (hDκ+)2

2hMvR
=
(

2hMγ −
h2
D

2hM

)
κ2

+

vR
∝ 1
vR

, (3.89)

creating the pleasant situation that if vR → ∞ the left-handed neutrino mass vanishes.
As a consequence, a massless neutrino and a maximally parity-violating weak Lagrangian
seem to go hand in hand in the LR symmetric model [58].

In the next section we outline the derivation of the boson masses. We will discover
that the mass of a new right-handed SU(2)R gauge boson, denoted by WR goes with vR,
so that its (V + A) charged-current interaction disappears in the limit vR → ∞. This
con�rms the latter statement.

3.5.4 Boson Masses

The gauge group SU(2)L × SU(2)R × U(1)B−L has 3 generators of each SU(2) and one
generator of U(1), so that there must be in total 7 gauge bosons in the LR symmetric
theory. As in the SM, these bosons get their masses through the Higgs mechanism from
the kinetic terms of the scalars. Remember that our scalar sector consists of one bidoublet
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and one set of left-right symmetric lepton-number carrying triplets. The relevant kinetic
part of the Lagrangian is given by

Lkin ⊃ L
∆R,L,φ
kin = Tr(Dµ∆L)†(Dµ∆L) + Tr(Dµ∆R)†(Dµ∆R) + Tr(Dµφ)†(Dµφ) , (3.90)

with the covariant derivatives

Dµ∆L,R = ∂µ∆L,R +
1
2
ig
[
~WL,R · ~σ,∆L,R

]
+

1
2
ig′B∆L,R , (3.91)

Dµφ = ∂µφ+
1
2
ig
(
~WL · ~σφ− φ~σ · ~WR

)
. (3.92)

The charged gauge bosons are W 1
L,R and W 2

L,R, and the three uncharged are W 3
L,R and B.

Expanding the scalar �elds about the vacuum (see Eq. (3.76)), one obtains out of
Eq. (3.90) the mass terms

−L ⊃
(
W+
L , W+

R

)
M2

c

(
W−
L

W−
R

)
+

1
2
(
W 3
L, W 3

R B
)
M2

n

W 3
L

W 3
R

B

 , (3.93)

where W± are de�ned by W± = 1√
2
(W 1 ∓W 2) and

M2
c =

g2

2

(
(2v2

L + κ2
+) −2κκ′

−2κκ′ (2v2
R + κ2

+)

)
, (3.94)

M2
n =

g2

2 (κ2
+ + 4v2

L) −g2

2 κ
2
+ 2gg′v2

L

−g2

2 κ
2
+

g2

2 (κ2
+ + 4v2

R) 2gg′v2
R

2gg′v2
L 2gg′v2

R g′2(v2
R + v2

L)

 . (3.95)

Taking into account the phenomenological requirement vL � κ+ � vR, the eigenvalues
of matrix (3.94) lead to the following charged gauge boson masses

m2
W1
' 1

2
g2κ2

+, and m2
W2
' 1

2
gκ2

+ + g2v2
R . (3.96)

The corresponding physical eigenstates (i.e. the mass eigenstates)(
W+

1

W+
2

)
=
(

cos ζ sin ζ
− sin ζ cos ζ

)(
W+
L

W+
R

)
, (3.97)

are mixtures of the �avour states WL and WR, with mixing angle ζ:

tan 2ζ = − 2κκ′

v2
R − v2

L

. (3.98)

From the experimental values [59] of g ' 0.65 (at the Z pole) andmW1 = mW ' 80.4 GeV,
we �nd with Eq. (3.96)

κ+ ' 174 GeV , (3.99)

which con�rms our previous assumption: κ+ ∼ O(100−200) GeV. Furthermore note that
in our framework ζ � 1 so that W1 'WL, and W2 'WR.
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To obtain the neutral eigenstates of the mass matrix (3.95), it is convenient to work
in the basis (g sin θW ≡ e) [57]:

A = sin θW (W 3
L +W 3

R) +
√

cos 2θWB , (3.100)

ZL = cos θWW 3
L − sin θW tan θWW 3

R − tan θW
√

cos 2θWB , (3.101)

ZR =
√

cos 2θW
cos θW

W 3
R − tan θWB . (3.102)

Here A is the massless photon which corresponds to the unbroken U(1)Q. The two massive
neutral gauge bosons denoted by Z1 and Z2 are mixtures of the �elds ZL and ZR:(

Z1

Z2

)
=
(

cos ξ sin ξ
− sin ξ cos ξ

)(
ZL
ZR

)
, (3.103)

where

tan 2ξ ' (cos 2θW )3/2

2 cos3 θW

κ2
+

v2
R

. (3.104)

M2
ZL
' g2

2 cos2 θW
(κ2 + κ′2 + 4v2

L) , (3.105)

M2
ZR
' 2(g2 + g′2)v2

R . (3.106)

These equations are valid if vL � κ+ � vR. In this limit ξ is small, and we have Z1 ' ZL
as well as Z2 ' ZR.

Note that if vR →∞, only the SM gauge bosons (WL and ZL) are detectable. This is
also the case in the scalar sector. Without �ne-tuned parameters in the Higgs potential
all massive Higgs bosons besides the one which corresponds to the SM doublet will have
a mass of order vR [56].

Let us conclude this section with specifying the charged-current Lagrangian in the
LR symmetric model. As in the SM the coupling of the gauge bosons to quarks and
leptons can be obtained out of the fermion kinetic energy Lagrangian. Prior to symmetry
breakdown, we have the following charged-current interaction term

−Lcc =
g√
2

∑
a

[
Wµ
L

(
daLγµuaL + laLγµνaL

)
+Wµ

R

(
daRγµuaR + laRγµNaR

)]
+ h.c. .

(3.107)
BecauseMWR

�MWL
, all low-energy weak processes appear the same as in the SU(2)L×

U(1)Y model, with small corrections proportional to M2
WL
/M2

WR
, undetectable in exper-

iments performed to date. These contributions of the right-handed boson WR vanish if
MWR

' M2 ∝ vR → ∞ such that weak interactions become pure (V − A) type and, in
addition, zero active neutrino masses result (m1 ∝ O(1/MWR

), cf. Eq. (3.89)).
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4.1 Fundamentals of Standard Cosmology

4.1.1 Homogenity and Isotropy�The Robertson-Walker Metric

Our Universe appears to be homogeneous and isotropic around us on scales of more than
100 megaparsecs, so that on this scale the density of galaxies is very smooth, and all
directions from us appear to be equivalent. From these observations, one is led to the
cornerstone of cosmology�the �Cosmological Principle�, which states that the Universe
looks the same from all positions in space, i.e. there is no privileged point in the Uni-
verse playing a particular role. One of the best indications which supports this principle
comes from the astonishing uniform temperature corresponding to the perfect black-body
spectrum of the cosmic microwave background (CMB) radiation arriving us from di�erent
parts of the sky [60, 61].

We may therefore approximate the Universe as a spatially homogeneous and isotropic
three-dimensional space, which may expand or contract as a function of time. The metric,
which describes a Universe of this type, is necessarily of the Robertson-Walker (RW) form
with a space-time interval given by [62]

ds2 = dt2 −R2(t)
{

dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2)

}
. (4.1)

29
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The variables (t, r, θ, φ) are comoving coordinates, which are carried along with the ex-
pansion or contraction of the Universe. The coordinate t in Eq. (4.1) is the time measured
by an observer at rest in the comoving frame, i.e. (r, θ, φ) = const. The cosmic scale
factor is denoted by R(t) and the constant k describes the curvature. There are three
possibilities�negative, zero or positive k�which correspond to the three possible spatial
geometries�hyperbolic, �at and spherical, respectively.

A particular useful quantity, which can be obtained from the cosmic scale factor, is
the Hubble parameter

H ≡ Ṙ(t)
R(t)

. (4.2)

It relates the velocity v with which the most distant galaxies are receding from us to their
distance d from us via

v = Hd . (4.3)

This law was discovered by Edwin Hubble in 1929 (cf. Ref. [63]) and has been veri�ed to
high accuracy by modern experimental methods. The present value of H is measured to
be positive so that the Universe must be in an expanding phase. Usually it is written as

H0 = 100h
km Mpc

s
, (4.4)

with the normalized dimensionless Hubble constant h, which is, for example, known with
about 10% precision from the Hubble Space Telescope Key Project [64]:

h = 0.72± 0.08 . (4.5)

This value is consistent with results from independent methods such as the global �tting
of CMB data by the Wilkinson Microwave Anisotropy Probe (WMAP) collaboration (see,
e.g., Ref. [3]).

4.1.2 The Einstein Equations

The RW metric is a purely kinematic consequence of requiring an isotropic and homoge-
neous Universe. In this section we shall study the dynamics in the form of di�erential
equations governing the evolution of the scale factor R(t). These equations follow from
the fundamental equations of general relativity�the Einstein �eld equations (see, e.g.,
Ref. [62])

Gµν ≡ Rµν −
1
2
Rgµν = 8πGTµν + Λgµν , (4.6)

where Gµν is the Einstein tensor, G Newton's gravitational constant, Tµν the stress-energy
tensor and Λ is the cosmological constant. To determine the Ricci tensor1

Rµν = Γλµν,λ − Γλµλ,ν + ΓλµνΓ
σ
λσ − ΓσµλΓ

λ
νσ = Rνµ , (4.7)

and the Ricci scalar
R ≡ gµνRµν , (4.8)

we have to use the components of the RW metric gµν and the Christo�el symbols Γλµν .

1with �,� we denote the partial derivative with respect to the following component, and with �;� we
will denote the covariant derivative with respect to the following component.
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Comparing Eq. (4.1) with ds2 = gµνdx
µdxν and identifying (x0, x1, x2, x3) = (t, r, θ, φ),

we obtain

g00 = 1 , g11 = −R2/(1− kr2) ,
g22 = −R2r2 , g33 = −R2r2 sin2 θ . (4.9)

Furthermore, out of gανgνβ = δβα, it follows gµν = 1/gµν . The non-zero Christo�el symbols
are then related through Γαβγ ≡ 1/2 gαε(gεβ,γ + gαγ,β − gβγ,ε) = Γαγβ . Substituting the
derived expressions back into that of the Ricci tensor, Eq. (4.7), leads to Rµν = 0 if
µ 6= ν, and

R00 = −3
R̈

R
, (4.10)

R11 =
RR̈− 2Ṙ2 + 2k

1− kr2
, (4.11)

R22 = r2(RR̈+ 2Ṙ2 + 2k) , (4.12)

R33 = r2 sin2 θ(RṘ+ 2Ṙ2 + 2k) . (4.13)

Thus, the Ricci scalar in the RW metric is

R = −6

R̈
R

+

(
Ṙ

R

)2

+
k

R2

 . (4.14)

4.1.3 Stress-Energy Tensor and the Fluid Equation

The stress-energy (or energy-momentum) tensor Tµν in the Einstein equations (4.6), de-
scribes the density and �ows of the 4-momentum (E,−p1,−p2,−p3). To be consistent
with the symmetry of the RW metric, this tensor must be diagonal, and by isotropy the
spatial components must be equal. The simplest realisation of such a tensor is that of a
perfect �uid, i.e. a �uid that has no heat conduction or viscosity. It is fully parametrized
by its mass density ρ, the 4-velocity uµ and the pressure p (see, e.g., Ref. [65]):

Tµν = (ρ+ p)uµuν − pgµν . (4.15)

For a comoving observer, the 4-velocity is given by u = (1, 0, 0, 0), so that the stress-energy
tensor reduces with Eq. (4.9) to

T 00 = ρ , T 11 = p
(1− kr2)

R2
,

T 22 =
p

(rR)2
, T 33 =

p

(rR sin θ)2
. (4.16)

The conservation of energy and momentum in a general metric is simply incorporated by

Tµν;ν = 0 . (4.17)

In special relativity, for example, the �at space-time is described by the Minkowski metric
which leads together with Eq. (4.17) to the well-known law

∂Tµν

∂xν
= 0 . (4.18)
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Equation (4.17) can be used to determine how the components of the energy-momentum
tensor evolve with time. The covariant derivative of the tensor Tµν is

Tµν;ν = Tµν,ν + ΓµνσT
σν + ΓννσT

µσ = 0 . (4.19)

Inserting the Christo�el symbols and using the expressions (4.16), the only non-trivial
expression we obtain is that with µ = 0:

ρ̇+ 3(ρ+ p)
Ṙ

R
= 0 . (4.20)

This relation, called �uid equation, allows to determine the energy (mass) density evo-
lution of some material. As we see, there are contributions from two terms. The �rst
one in the bracket describes the dilution in case of increasing volume, whereas the second
one corresponds to the loss of energy due to work done by the pressure of some material
during the expansion of the Universe.

4.1.4 The Friedmann Equation

What can we learn from the Einstein equations? The 0− 0 component of Eq. (4.6) gives
precisely the famous Friedmann equation, which governs the time evolution of the scale
factor R(t): (

Ṙ

R

)2

+
k

R2
=

8πG
3

ρ+
Λ
3
. (4.21)

The i− i component gives

2
R̈

R
+

(
Ṙ

R

)2

+
k

R2
= −8πGp+ Λ . (4.22)

Subtracting the Friedmann equation from it leads to the acceleration equation

R̈

R
= −4πG

3
(ρ+ 3p) +

Λ
3
. (4.23)

Out of the �rst term on the right-hand side, we can learn that if material has any pressure,
this will increase the gravitational force, and thus decelerate the expansion. Furthermore,
we want to mention that the �uid equation derived previously (cf. Eq. (4.20)) is a con-
sequence of Eq. (4.21) and (4.22). It can be obtained by solving for ρ̇ in Eq. (4.21) and
eliminating R̈ with the help of Eq. (4.22). This is because general relativity automatically
encodes the energy conservation, namely Tµν;ν = 0 (cf. Eq. (4.17)), since the Einstein
tensor in Eq. (4.6) satis�es the Bianchi identities [65]:

Gµν ;ν = 0 . (4.24)

4.2 The History of the Universe

4.2.1 Cosmological Scenarios

In order to solve Eqs. (4.20) and (4.21), we need to classify the various types of matter
that could give a possible contribution to the dynamics of the Universe according to
their pressure-to-density ratio (also called equation of state). There are three classes
distinguished in cosmology:
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MATTER

It refers to any type of material in the Universe which is pressureless and has non-
relativistic velocity, i.e.

vM � c , pM = 0 . (4.25)

By applying the �uid equation (4.20), we derive

ρ̇M = −3
Ṙ

R
ρM ⇒ ρM ∝

1
R3

. (4.26)

Examples are stars, planets, clouds of gas or galaxies seen as a whole.

RADIATION

It refers to ultra-relativistic particles. This includes photons, and other light particles
like for example neutrinos travelling nearly at the speed of light. A calculation based
on statistical mechanics gives the interesting result that the pressure of a relativistic
gas is related to its energy density. We have the characteristics

vR ' c , pR =
ρ

3
. (4.27)

For this type of particles the evolution of the energy density is (use Eq. (4.20))

ρ̇R = −3
Ṙ

R

(
1 +

1
3

)
ρR = −4

Ṙ

R
ρR ⇒ ρR ∝

1
R4

. (4.28)

COSMOLOGICAL CONSTANT Λ
This quantity appears in the last term of the Einstein equations (cf. Eq. (4.6)) and
corresponds to the observed huge �Dark Energy� fraction in the Universe. Physically
it is equivalent to vacuum energy in quantum �eld theories even though its nature
is still a mystery to physicists. Proposals are based on a constant energy density
�lling space homogeneously, or quantum �elds, such as quintessence or moduli, being
dynamic quantities [66].

Describing Λ as if it were a �uid with constant density ρΛ and pressure pΛ, we obtain

ρΛ = const. ⇒ pΛ = −ρΛ . (4.29)

To study the dynamics of the Universe in the presence of these types of matter, it is
convenient to split the density ρ = ρR + ρM into its radiation and matter part and write
the Friedmann equation in the form

H2 =

(
Ṙ

R

)2

=
8πG

3
ρR +

8πG
3

ρM −
k

R2
+

Λ
3
, (4.30)

Note that we chose the right-hand side in the order: radiation, matter, spatial curvature,
cosmological constant. This is because of its scaling with R(t). In fact, the terms evolve
with respect to the scale factor as R−4, R−3, R−2 and R0. If R keeps growing, and if we
assume that all terms on the right-hand side are present, there is a chance that they all
dominate the Universe expansion one after each other. In the following we study these
four possible stages. For each scenario we provide a solution of the Friedmann equation,
using Eqs. (4.26), (4.28) and (4.29)
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I Domination of radiation:

ρR ∝ R−4 ⇒

(
Ṙ

R

)2

∝ R−4; R(t) ∝ t1/2; H(t) =
1
2t
. (4.31)

In this scenario, the Universe expands forever, but the rate of expansion, described
by H(t), decreases with time.

II Domination of matter :

ρM ∝ R−3 ⇒

(
Ṙ

R

)2

∝ R−3; R(t) ∝ t2/3; H(t) =
2
3t
. (4.32)

Here the expansion is faster than in the radiation dominated scenario, because the
pressure is missing, which would supply an extra deceleration (see Eq. (4.23)).

III Domination of curvature: In the case of negative curvature (k < 0), we obtain

k < 0 ⇒

(
Ṙ

R

)2

∝ R−2; R(t) ∝ t; H(t) =
1
t
. (4.33)

Such an open Universe, dominated by its curvature expands linearly.

In the case of positive curvature (k > 0), and for absent cosmological constant Λ,
the right-hand side of the Friedmann equation goes to zero so that the expansion of
such a closed Universe stops. Afterwards, H decreases and the Universe collapses.

IV Domination of the cosmological constant :

Λ = const. ⇒

(
Ṙ

R

)2

∝ R0; R(t) ∝ exp
(√

Λ/3 t
)

; H =
√

Λ/3 . (4.34)

If the cosmological term never decays into matter or radiation, the Universe will end
up in an exponentially accelerated expansion.

4.2.2 The Matter Composition�Evolution of the Universe

To determine the past and the future evolution of our Universe, we have to measure
besides the present Hubble parameter the current density of radiation, matter and Λ. For
this purpose let us consider another convenient form of the Friedmann equation. If we
evaluate Eq. (4.30) today and denote the values corresponding to this moment with a
subscript �0�, we arrive at

1 =
8πG
3H0

ρR0 +
8πG
3H0

ρM0 −
k

R2H0
+

Λ
3H0

. (4.35)

By using the de�nitions

ΩR ≡
8πG
3H0

ρR0, Ωk ≡
k

R2H0
,

ΩM ≡
8πG
3H0

ρM0, ΩΛ ≡
Λ

3H0
, (4.36)
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Description Symbol Value

Hubble constant h 0.705± 0.013

Total density Ω0 1.0050+0.0060
−0.0061

Dark Energy density ΩΛ 0.726± 0.015

Matter density ΩMh
2 0.1358+0.0037

−0.0036

Baryon density Ωbh
2 0.02267+0.00058

−0.00059

Dark Matter density ΩDMh
2 0.1131± 0.0034

Table 4.1: Cosmological parameters of combined �t WMAP+SN+BAO (with 68% CL
uncertainties) [3, 67].

it follows
1 = ΩR + ΩM − Ωk + ΩΛ . (4.37)

We deduce that the Universe is �at provided that

Ω0 ≡ ΩR + ΩM + ΩΛ = 1 . (4.38)

In such a case the sum of the densities of radiation, matter and Λ is equal at any time to
the critical density

ρc(t) ≡
3H(t)
8πG

. (4.39)

Note that Ωx with x ∈ {R,M,Λ} is usually de�ned by the ratio of the present (or observed)
density ρx0 to the critical density ρc0 of the Friedmann Universe, where ρΛ0 = ρΛ =
Λ/(8πG). These density parameters represent, together with the Hubble constant H(t),
the four cosmological parameters, which entirely describe the evolution of the Universe.

One of the main tasks of cosmology was to measure these quantities. Table 4.1 sum-
marizes the recent experimental results obtained by using WMAP data combined with
measurements of Type Ia supernovae (SN) and Baryon Acoustic Oscillations (BAO) in
the galaxy distribution (see Ref. [3, 67] and references therein). They astonishingly satisfy
relation (4.38) leading to a zero or negligible small curvature parameter k and thus to a
�at Universe. Furthermore, the data shows, that our present Universe is composed out
of two components�nearly 30% matter and 70% Dark Energy. Therefore, according to
the previous discussion, we can expect that its evolution will end up in an accelerated
expansion driven by the non-zero cosmological constant. In fact, one can easily show
(see, e.g., Ref. [65]) that if our approach is correct we would be at the very beginning
of the Dark Energy dominated epoch, leaving behind a matter dominated and eventually
an early radiation dominated era such that the expansion history of the Universe would
follow:

Radiation dom. 99K Matter dom. 99K Dark Energy dom. (today and future) . (4.40)

To conclude, note that the results in Tab. 4.1 reveal a clear discrepancy between the two
density parameters ΩM and Ωb, being evidence that most of the matter in our Universe is
non-baryonic. The huge fraction given by ΩM −Ωb must be some kind of so-far unknown
non-luminous and non-baryonic material, referred to as Dark Matter (DM). In chapter
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5 we will propose the sterile neutrino as a viable DM candidate. To be able to analyse
its cosmological properties, especially its production mechanism in the early Universe, we
will outline in what follows some important facts of thermodynamics.

4.3 Thermodynamics in the early Universe

If we follow the sequence in Eq. (4.40) backwards, we will cross a point where the scale
factor R(t) becomes so small that due to the large density and rapid interactions the
particles of matter and radiation are in local thermal equilibrium. As we will see, this
can be maintained as long as the interaction rate Γ dominates H, the expansion rate of
the Universe. Roughly speaking, a particle species in the early Universe has to interact
su�ciently or it decouples from the thermal bath.

In this section we quickly review some basic equilibrium thermodynamics, describe,
using the Boltzmann equation, a departure from thermal equilibrium�the freeze-out from
thermal bath, and �nally present a further non-equilibrium process, which can generate
entropy during the expansion of the Universe.

4.3.1 Equilibrium Thermodynamics

Let us consider a particle species χ with number density nχ, energy density ρχ and pressure
pχ. We are interested in the early hot Universe where these particles are assumed to be
in thermal equilibrium. Statistical mechanics [68] then predicts

nχ =
gχ

(2π)3

∫
fχ(~p)d3p , (4.41a)

ρχ =
gχ

(2π)3

∫
Eχfχ(~p)d3p , (4.41b)

pχ =
gχ

(2π)3

∫
p2

3Eχ(~p)
fχ(~p)d3p . (4.41c)

The quantity gχ is the number of internal degrees of freedom (spin states of particle χ),
and Eχ(~p) = (p2 +m2

χ)
1/2 with p = |~p| is the energy. The statistical distribution function

fχ(~p) is given by the familiar Fermi-Dirac or Bose-Einstein distribution,

fχ(~p) =
1

e(Eχ−µχ)/Tχ ± 1
, (4.42)

where + accounts for fermions and − for bosons. This equilibrium distribution has two
parameters, the temperature Tχ, and the chemical potential µχ.

We evaluate the integrals in Eqs. (4.41) in the following useful limits:

Relativistic Limit For Tχ � mχ and mχ � µχ, we have

fχ(~p) '
1

ep/Tχ ± 1
, (4.43)
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so that

nχ '

3
4gχ

ζ(3)
π2 T

3
χ (χ = fermion) ,

gχ
ζ(3)
π2 T

3
χ (χ = boson) ,

(4.44a)

ρχ '

7
8gχ

π2

30T
4
χ (χ = fermion) ,

gχ
π2

30T
4
χ (χ = boson) ,

(4.44b)

pχ '
ρχ
3
, (4.44c)

where ζ(3) ' 1.202 is the Riemann zeta function of 3. The average energy is given by

〈Eχ〉 ≡
ρχ
nχ
'

 7π4

180ζ(3)Tχ (χ = fermion) ,
π4

30ζ(3)Tχ (χ = boson) .
(4.45)

Note that we already encountered Eq. (4.44c) in the de�nition of radiation in Sec. 4.2.1.

Non-Relativistic Limit For mχ � Tχ and mχ � µχ the Bose-Einstein as well as
the Fermi-Dirac function can be approximated by a Boltzmann distribution function. We
have

fχ(~p) ' e(µχ−mχ)/Tχe−p
2/(2mχTχ) , (4.46)

for both bosons and fermions. The equations (4.41) lead to

nχ = gχ

(
mχTχ

2π

)3/2

e
µχ−mχ

Tχ , (4.47a)

ρχ = mχnχ , (4.47b)

pχ ' nχTχ , (4.47c)

valid for non-relativistic bosons and fermions. In this case the average energy is given by

〈Eχ〉 ' mχ +
3
2
Tχ . (4.48)

Out of Eqs. (4.47), we see that p is negligible small compared to the energy density ρχ so
that the de�nition of matter in Sec. 4.2.1 is well-de�ned.

Since the early Universe was radiation dominated, it is convenient to express its total
energy density in terms of the photon temperature T (cf. Eq. (4.44b)):

ρ =
π2

30
g∗T

4 , (4.49)

The parameter g∗ is then given by (use Eq. (4.41b))

g∗ =
15
π4

∑
χ

gχ

(
Tχ
T

)4 ∫ ∞

xχ

(u2 − x2
χ)

1/2u2du
exp(u− yχ)± 1

. (4.50)

with xχ ≡ mχ/Tχ and yχ ≡ µχ/Tχ. Because of the exponential suppression factor in
Eq. (4.47b), the energy density contribution of non-relativistic particles is small compared
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to that of radiation. In the early radiation dominated Universe it is therefore a good
approximation to consider only the relativistic degrees of freedom with mχ � T so that
Eq. (4.50) simpli�es to (cf. Eq. (4.44b))

g∗ '
∑

χ=bosons

gχ

(
Tχ
T

)4

+
7
8

∑
χ=fermions

gχ

(
Tχ
T

)4

, (4.51)

Then, using the Friedmann equation and Eq. (4.49), we can write the Hubble parameter
in the form

H =
(

8π3G

90

)1/2√
g∗ T

2 =
2π3/2

3
√

5mPl

√
g∗ T

2 , (4.52)

with the Planck mass mPl ≡ G−1/2.

4.3.2 Entropy

Assuming a su�ciently slow Universe expansion, so that the interaction rates of particles
dominated the Hubble expansion rateH (in particular in the early epoch), thermal equilib-
rium should have been maintained in any local comoving volume element dV . Because, in
such a case, there is no net in�ow or out�ow of energy, the second law of thermodynamics
implies the conservation of entropy and thus an adiabatic evolution of the Universe:

TdS = δQ = 0 ⇒ dS = 0 , (4.53)

In order to derive the energy density and pressure dependence of the entropy S, we make
use of the �rst law of thermodynamics (energy conservation):

δQ = TdS = d(ρV ) + pdV = d[(ρ+ p)V ]− V dp . (4.54)

The quantities ρ and p are the equilibrium energy density and pressure calculated in the
previous section. Applying the integrability condition [68]

∂2S

∂T∂V
=

∂2S

∂V ∂T
, (4.55)

on Eq. (4.54), we obtain after a trivial integration

T
dp
dT

= ρ+ p ⇔ dp =
ρ+ p

T
dT . (4.56)

With this relation, Eq (4.54) transforms into

dS = d
[
(ρ+ p)V

T

]
, (4.57)

so that the constant entropy per comoving volume V = R3 is given by

S =
ρ+ p

T
R3 . (4.58)

Because the entropy density s ≡ S/R3 is dominated by the contribution of the relativistic
particles, it is also convenient to express this quantity in terms of the photon temperature
T . Using Eq. (4.58) together with Eqs. (4.44), we get

s =
2π2

45
g∗ST

3 , (4.59)
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where

g∗S '
∑

χ=bosons

gχ

(
Tχ
T

)3

+
7
8

∑
χ=fermions

gχ

(
Tχ
T

)3

. (4.60)

Here, like in Eq. (4.51), the sum goes over all relativistic species χ.
Note that s is proportional to the number density (4.44a) of relativistic particles, and

that g∗ equals g∗S if Tχ = T . Furthermore, the conservation of S implies that g∗ST 3R3

remains constant as the Universe expands, such that

T ∝ g−1/3
∗S R−1 . (4.61)

4.3.3 Freeze-Out�Decoupling from Thermal Bath

Consider a stable particle χ which interacts with some other particle Ψ through some
process χχ̄↔ ΨΨ̄. In the early Universe, when the temperature was much higher thanmχ,
the creation and annihilation processes of χχ̄ were equally e�cient. Hence, we expect the
abundance of χ to be comparable with that of other species in the hot plasma. However,
if we assume these particles to remain in thermal equilibrium inde�nitely, this would
change dramatically as the Universe expands and its temperature drops below mχ. The
reason is that for T < mχ only a small fraction of ΨΨ̄ pairs has su�cient kinetic energy
to create χ particles so that the processes ΨΨ̄ → χχ̄ become ine�cient, whereas the
annihilations χχ̄ → ΨΨ̄ continue unhindered. In fact, from Sec. 4.3.1, we know that in
thermal equilibrium the density of non-relativistic particles is Boltzmann suppressed,

nχ,EQ = gχ

(
mχTχ

2π

)3/2

e
µχ−mχ

Tχ . (4.62)

leading quickly to cosmologically irrelevant values as the Universe cools down. However,
there are a number of notable departures from thermal equilibrium, which circumvent this
situation. For example, one speculates that baryons (we) are present nowadays because
of a baryon to antibaryon number asymmetry in the very early Universe [62]. Due to
this asymmetry not every baryon found an antibaryon to annihilate with so that a small
amount survived until today. Further known departures are the decoupling of the CMB
[62], the primordial nucleosynthesis [69] and also on the more speculative side the process
of in�ation [70, 62].

In this section we will focus on a simple mechanism called freeze-out or decoupling
from thermal bath which is capable to explain the survival of a sizeable relic density of
weakly interacting massive particles (WIMPs). Because there is strong evidence that DM
must be of this kind, this mechanism could explain why this type of matter is representing
ΩDM ' 0.2 part of the total energy density of the present Universe. It takes into account
that the self-annihilation of the χ's, dominating their creation process at low temperatures,
can be contained by the competing e�ect of the Hubble expansion. This is because the
interaction rate Γ varies as the number density times an thermally averaged annihilation
cross section, which both are quantities, decreasing with temperature T . Then eventually
at some moment of the Universe's expansion, T will be su�ciently low and the χ's are
that much diluted that they cease to interact with each other and survive to the present
day. This moment of freeze-out is characterised by Γ ' H.
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Quantitatively, one describes these competing e�ects of self-annihilation and Hubble
expansion by the Boltzmann equation, given in the form (see, e.g., Ref. [62, 71]):

dnχ
dt

+ 3Hnχ = −〈σχχ̄|v|〉
(
n2
χ − n2

χ,EQ

)
≡ C . (4.63)

The quantity nχ is the number density of WIMPs and 〈σχχ̄|v|〉 is the thermally averaged
χχ̄ annihilation cross section multiplied by the relative velocity between the particles. The
signi�cance of the terms is manifest: The second term on the left-hand side of this relation
describes the dilution of the particle density due to the expansion of the Universe, whereas
the collision term C on the right-hand side accounts for annihilation and creation processes
that change the number of χ's present. Note that in the absence of these interactions, we
have the solution nχ ∝ R−3.

It is useful to scale out the e�ect of the Hubble expansion by considering the number
of particles in a comoving volume. Therefore, we de�ne the variable

Yχ ≡
nχ
s
, (4.64)

with s, the entropy density of the Universe. Using Eq. (4.53)

sR3 = S = const. ⇔ ṡR3 + 3R2Ṙs = 0
⇔ ṡ = −3Hs , (4.65)

we obtain
sẎχ = ṅχ −

nχ
s
ṡ = ṅχ − 3Hnχ . (4.66)

Thus, the Boltzmann equation can be written as

sẎχ = C . (4.67)

Furthermore, we want to change from time to temperature dependence and introduce

x ≡ m

T
⇒ xdx = −m

2

T 3
dT , (4.68)

where m is any convenient mass scale (usually the mass of the particle of interest). During
the radiation dominated epoch the temperature T is related to the time t through (cf.
Eq. (4.31) & (4.52))

t =
1

2H
=

3
√

5mPl

4π3/2T 2
g
−1/2
∗ = 0.301g−1/2

∗
mPl

T 2
, (4.69)

so that the total di�erential of t leads together with Eq. (4.68) to

dt = 2t
dx
x

=
1
H

dx
x
. (4.70)

By using this relation in Eq. (4.67), we can write the Boltzmann equation in the form
(H(m) ≡ x2H)

dYχ
dx

=
C

sxH(m)
= −x〈σχχ̄|v|〉s

H(m)
(
Y 2
χ − Y 2

χ,EQ

)
, (4.71)
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or equivalently
x

Yχ,EQ

dYχ
dx

= −Γχ
H

[(
Yχ

Yχ,EQ

)2

− 1

]
, (4.72)

with the interaction rate
Γχ ≡ nχ,EQ 〈σχχ̄|v|〉 . (4.73)

The equilibrium values Yχ,EQ in the relativistic and non-relativistic regimes are (use
Eqs. (4.44a), (4.47a) together with Eq. (4.59))

Yχ,EQ(x) =
45
2π4

(π
8

)1/2 gχ
g∗S

x3/2e−x (non-relativistic : x� 3) , (4.74a)

Yχ,EQ(x) =
45ζ(3)
2π4

gχ,e�
g∗S

(relativistic : x� 3) , (4.74b)

where gχ,e� equals gχ for bosons, and (3/4gχ) for fermions.
The Boltzmann equation in the form of Eq. (4.72) is very informative. It shows that the

relative change of χ's per comoving volume is controlled by the e�ectiveness of annihila-
tions, the ratio Γχ/H, times a measure of the deviation from thermal equilibrium. Indeed,
after decoupling where the annihilation rate drops below the expansion rate (Γχ/H . 1),
the relative change in particles is

− ∆Yχ
Yχ
∼ −

dYχ

dx x

Yχ,EQ
∼ Γχ
H

. 1 , (4.75)

so that annihilations become ine�ective, and the number of χ's in a comoving volume
�freezes in�.

In what follows we want to give approximate solutions of the Boltzmann equation for
particles that are either relativistic or non-relativistic when they freeze-out (decouple)
from thermal bath. For this purpose let us assume that Γχ ' H roughly occurs for
x = xf ≡ mχ/Tf where Tf is called freeze-out temperature.

Hot Relics: xf . 3 In this case the freeze-out happens when the species is still relativis-
tic. We know from Eq. (4.74b) that in this regime Yχ,EQ(x) has only a weak temperature
dependence through g∗S . Thus, its asymptotic value Y∞ ≡ Y (x→∞) is insensitive to the
precise value of xf and can simply be approximated by the equilibrium value at freeze-out:

Y∞ = Yχ,EQ(xf ) =
45ζ(3)
2π4

gχ,e�
g∗S(xf )

. (4.76)

Assuming that the expansion of the Universe remains adiabatic, the present number den-
sity of such hot relics is just given by (s0 is the present entropy density)

nχ0 = Y∞s0 . (4.77)

On the contrary, if the entropy should increase, say by a factor S, the present number
density would be reduced exactly by S. We will discuss a possible mechanism of entropy
production in Sec. 4.3.4.

By using ρχ0 = nχ0mχ together with s0 and ρc0 from Ref. [36], we derive the present
density parameter of the hot relic χ

Ωχ0h
2 = 7.61× 10−2

( mχ

1 eV

) gχ,e�
g∗S(xf )

. (4.78)
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Through Ωχ0 . Ω0 ' 1 (cf. Sec. 4.2.2), this formula gives an upper bound to its mass

mχ . 13.1
g∗S(xf )
gχ,e�

eV . (4.79)

As an example, let us calculate the cosmological bound on the mass of the usual light SM
neutrinos (χ = ν). To determine g∗S(xf ), we have to calculate the freeze-out temperature
Tf . For this purpose we consider the ratio of interaction rate to expansion rate, which is
given by

Γν
H
'

G2
FT

5

T 2/mPl
'
(

T

1 MeV

)3

. (4.80)

Here we used Eq. (4.52) and the fact that the cross section of weakly interacting neutrinos
is of the form σνν̄ ' G2

FE
2 ' G2

FT
2. The number density of hot relativistic relics goes

with T 3 (cf. Eq. (4.44a)) so that Γν = nσνν̄ |v| ' G2
FT

5. Thus, at temperatures below
1 MeV the neutrinos are decoupled from thermal bath.

It is now easy to calculate g∗S . For T ' 1 MeV, the thermalized relativistic parti-
cles are the photons, electrons, positrons, and neutrinos, all with the same temperature,
yielding (cf. Eq. (4.60))

g∗S(T ∼ 1 MeV) = 2 + 2
7
8
2 + 6

7
8

= 10.75 . (4.81)

Thus, with gν,eff = 2× (3/4) we obtain out of Eq. (4.78) and Eq. (4.79)

Ωνh
2 =

mν

94 eV
, (4.82)

such that
mν . 94 eV . (4.83)

This implies that the SM neutrinos must be lighter than 94 eV, otherwise they would
overclose the Universe.

Cold Relics: xf & 3 This case is more subtle since cold relics decouple when they are
non-relativistic. By considering the equilibrium value Yχ,EQ(x) in this regime, we identify
a strong exponential dependence on x, so that the precise details of the freeze-out process
are important.

Because this case will be of no further interest in this work, we will only sketch the
derivation of the result and refer to [5] for more details. One starts with the Boltzmann
equation in the form of Eq. (4.71) and parametrizes the annihilation cross section as

〈σχχ̄|v|〉 ≡ σ?(T/m)n = σ?x
−n , (4.84)

where n = 0 accounts for s-wave annihilation, n = 1 for p-wave annihilation, etc. Then
the Boltzmann equation becomes

dYχ
dx

= −λx−n−2(Y 2
χ − Y 2

χ,EQ) , (4.85)

with

Yχ,EQ = 0.145(g/g∗S)x3/2e−x , (4.86)

λ ≡ x〈σχχ̄|v|〉s
H(m)

∣∣∣∣
x=1

= 0.264(g∗S/g
1/2
∗ )mPlmσ? . (4.87)
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As shown in [5], Eq. (4.85) can be solved approximately to a very good accuracy. The
results are

Y∞ =
3.79 (n+ 1)

(
g
1/2
∗ /g∗S

)
xn+1
f

mmPl σ0
=

3.79 (n+ 1)
(
g
1/2
∗ /g∗S

)
xf

mmPl 〈σχχ̄|v|〉
, (4.88)

nχ0 = s0Y∞ , (4.89)

Ωχ0h
2 = 1.07× 109

(n+ 1)xn+1
f(

g∗S/g
1/2
∗

)
mPlσ?

GeV−1 . (4.90)

From Eq. (4.88), we see that the smaller the annihilation cross section 〈σχχ̄|v|〉, the larger
the abundance of cold relics. Thus, WIMPs, which are viable candidates for DM, are
generally expected to be a by-product of our Universe's hot youth.

4.3.4 Out-Of-Equilibrium Decay�Entropy Production

Let us consider an unstable particle ψ which is decoupled from thermal bath (i.e. Yχ �
Yχ,EQ) and su�ciently long lived so that it becomes non-relativistic before decay. Then,
because the matter density grows relative to that of radiation as R (cf. Sec. 4.2.1), there
is the chance that ψ decays while dominating the energy density of the Universe. We will
show that under these circumstances such a mechanism of out-of-equilibrium decay can
release a considerable amount of entropy during the expansion of our Universe [72].

For a rough estimate, assume that the decoupled species ψ has a pre-decay abundance
of Yi = nψ/s. The decay should occur at a time t ∼ H−1 ∼ τ = Γ−1, when the
temperature of the Universe is T = TD and the energy density is dominated by ρ ∼ ρψ =
Yismψ ∼ Yig∗T 3

Dmψ. Then, just before τ , the Friedmann equation gives:

H2
D ≡ H2(t = τ) ∼ ρ/m2

Pl ∼ Yig∗T 3
Dmψ/m

2
Pl ∼ τ−2 . (4.91)

Suppose that ψ decays into relativistic particles that rapidly thermalize, yielding a post-
decay energy density of (cf. Eq. (4.44b))

ρR ∼ g∗T 4
r . (4.92)

Because of energy conservation this must correspond to ρψ = H2
Dm

2
Pl so that the ratio of

the �nal to initial entropy per comoving volume is

Sf
Si
∼ T 3

r

T 3
D

∼ g1/4
∗

Yimψ

(mPlΓ)1/2
. (4.93)

Furthermore, it appears that due to this entropy release the Universe has been heated up:

Tf
Ti

=
Tr
TD

=
(
Safter

Sbefore

)1/3

= g
1/12
∗

(Yimψ)1/3

(mPlΓ)1/6
(4.94)

⇒ Tr = g
−1/4
∗

√
mPl/τ . (4.95)

As we will now see, the more careful analysis will con�rm, that the estimates (4.93) and
(4.95) are quite accurate. However, it will turn out that the temperature of the Universe
never increases. What happens instead is that it just falls more slowly than it would in
the absence of entropy release.
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First let us take into account the fact that the decays are not simultaneous, but instead
follow the usual exponential law, d(R3nψ)/dt = −τ−1(R3nψ), which gives

ṅψ + 3Hnψ = −τ−1nψ . (4.96)

In the non-relativistic regime, we have ρψ = mnψ (cf. Eq. (4.47b)), and

ρ̇ψ + 3Hρψ = −τ−1ρψ . (4.97)

This equation is integrated trivially:

ρψ(R) = ρψ(Ri)
(
Ri
R

)3

exp(−t/τ) , (4.98)

where the subscript i denotes the value of the quantity at the initial epoch (t = ti). The
energy released from such ψ decays converts into relativistic particles which then rapidly
thermalize. To determine the energy density ρR in these relativistic particles, we make
use of its relation to S (compare Eq. (4.49) and (4.59)):

ρR =
3
4
Ts

=
3
4

(
45

2π2g∗

)1/3

R−4S4/3 . (4.99)

The evolution of entropy per comoving volume (S in formula (4.99)) is derived from the
second law of thermodynamics, dS = δQ/T . With δQ, the heat added per comoving
volume (see Eq. (4.97))

δQ = −d(R3ρψ) = τ−1R3ρψdt , (4.100)

and
S = (2π2/45)g∗T 3R3 , (4.101)

we obtain

S1/3Ṡ =
τ−1R3ρψ

T
=
(

2π2

45
g∗

)1/3
R4ρψ
τ

. (4.102)

A simple (but formal) integration gives, using Eq. (4.98)

S4/3 = S
4/3
i +

4
3
ρψ(Ri)R4

i τ
−1

∫ t

ti

(
2π2

45
g∗

)1/3
R(t′)
Ri

exp(−t′/τ)dt′ . (4.103)

Before we provide a solution to this equation let us analyse the illustrative limit, where
g∗ is assumed to be constant (see Ref. [62]). In this case the �rst law of thermodynamics
(energy conservation) leads to the following energy balance:

d(R3ρR) = −pRd(R3)− d(R3ρψ) , (4.104)

Using pR = ρR/3, valid for constant g∗, we can write

d(R3ρR) = −ρR
3

d(R3) + τ−1R3ρψdt , (4.105)

ρ̇R + 4HρR = τ−1ρψ . (4.106)
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The signi�cance of Eq. (4.106) is manifest: it is exactly the �uid equation (see Eq. (4.20))
applied to radiation (cf. Eq. (4.28)), with τ−1ρψ as a source term which accounts for
energy transfer from ρψ to ρR. Note that in the limit g∗ = const. Eq. (4.106) and (4.102)
are equivalent. For non-constant g∗, however, the former is not valid and we have to solve
Eq. (4.102).

The Friedmann equation gives the evolution of the cosmic scale factor R(t)

H2 =

(
Ṙ

R

)2

=
8π

3m2
Pl

(ρψ + ρR) , (4.107)

and forms together with Eqs. (4.98), (4.106) (or (4.102)) and (4.107) a closed set of
di�erential equations. Let us discuss the qualitative behaviour of their solutions [62].

Assume that the non-relativistic particles ψ start to dominate the energy density of
the Universe at some moment t = tψ. To produce a signi�cant amount of entropy, we
necessarily need tψ < τ . Then, in between of these values, tψ and τ , the Universe is
matter dominated and R(t) ∝ t2/3 (see Eq. (4.32)). Furthermore, we have approximately
ρΨ ' ρψ(Ri)(R3

i /R
3) ∝ t−2 (cf. Eq. (4.98)) so that Eq. (4.106) can simply be solved:

ρR = ρR(Ri)
(
Ri
R

)4

+
3
5
ρψ(Ri)

t2i
tτ
, (4.108)

with ρ(Ri), the energy density at some initial moment ti < τ . The �rst term solves
the homogeneous �uid equation and represents the original radiation. The second term,
i.e. the particulate solution to Eq. (4.106), gives the energy density component produced
by ψ decays. For convenience let us take ti ' tψ so that ρR(Ri) ' ρψ(Ri). Then, by
comparison of the two terms in Eq. (4.108), we can determine the moment when the
ψ-produced component starts to be the dominant component: t• ' tψ(5τ/3tψ)3/5. This
means that the behaviour of ρR is the following: Until the time t• the radiation behaves
as usual, ρR ∝ R−4, whereas afterwards, during the time interval t• . t . τ , we have
ρR ∝ t−1 ∝ R−3/2. For t & τ the source term ρψ/τ goes to zero due to the decays of
ψ's, and ρR once again falls as ∝ R−4. Thus, we have found that the energy density in
radiation and, hence, the temperature of the Universe (T ∝ ρ

1/4
R ) always decrease, even

though at a much slower rate during the epoch of ψ decays. This is due to the facts
that, on the one hand, we have no sudden and simultaneous decay at t = τ , which was
spuriously assumed in the rough estimates above, and, on the other hand, the Universe
expands and red-shifts the decay-produced energy density in radiation.

Notice that during the period t• . t . τ , where the ψ-produced radiation component
is dominant, the entropy is growing. Out of Eq. (4.99), we obtain

S ∝ R3ρ
3/4
R ∝ R15/8 ∝ t5/4 . (4.109)

To determine the exact amount of entropy, produced as a result of such out-of-equilibrium
decays, we will solve Eq. (4.103). Using Y = n/s = nR3/S together with ρψ = mψnψ
and Eq. (4.101), it follows from Eq. (4.103) that the ratio of the �nal (t � τ) to initial
(t� τ) entropy per comoving volume can be written as [72]

Sf
Si

=

[
1 +

4
3

(
45

2π2g∗(Ti)

)1/3 mχYi
Ti

I

]3/4

, (4.110)
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Figure 4.1: The evolution of ρR and S as a function of z = R/R0 in the scenario where the
ψ particles dominate the energy density of the Universe during the decay period. The �old�-
line shows the energy density ρR ∝ R−4 in the original radiation component, whereas the
�new�-line gives the energy density component of the decay products of ψ. From z = z=
(or equally t = t•), when the decay products start to dominate radiation, until t ' τ
denoted by x ≡ t/τ ' 1, the density goes like ρR ∝ R−3/2, implying T ∝ R−3/8. For
t � τ , we have the usual behaviour ρR ∝ R−4. The entropy S is in good approximation
constant before t•, then, during t• . t . τ increases proportional to R15/8 and afterwards
adopts the constant value Sf . Figure taken from Ref. [72].

with (τ−1 = Γ)

I = Γ
∫ ∞

0

(
2π2g∗

45

)1/3
R(t′)
Ri

e−t
′/τdt′ . (4.111)

The entropy production is signi�cant if the energy density of χ particles and their decay
products dominate the total energy density during the decay epoch. In this case one can
show that

I = 1.09
(

8πρψ(Ri)
3m2

Pl

)1/3

Γ−2/3

(
2π2ḡ∗

45

)1/3

, (4.112)

where the number 1.09 is the result of a numerical integration [72] and ḡ1/3
∗ is the weighted

average of g1/3
∗ in the interval near t = τ . By substituting this back into Eq. (4.110), we

�nd

Sf
Si

=

(
1 + 2.95

(
2π2ḡ∗

45

)1/3 (mχYi)4/3

(mPlΓ)2/3

)3/4

. (4.113)

Comparing with our rough estimate (Eq. (4.93)), we see that there is only a small di�erence
by a numerical factor of order unity.
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Finally let us calculate the �reheating� temperature which is de�ned as the temperature
of the Universe at the end of the decay epoch where radiation dominates. Out of the
Friedmann equation, it follows directly

H2(t = τ) '
(

1
2τ

)2

' 8π
3m2

Pl

π2ḡ∗
30

T 4
r , (4.114)

Tr '
1
2

(
2π2ḡ∗

45

)−1/4√
ΓmPl . (4.115)

which again di�ers from Eq. (4.95) only by a numerical factor of order unity .

4.4 Dark Matter in the Universe

As mentioned in the introduction, a wide variety of cosmological and astrophysical obser-
vations provide evidence for the existence of Dark Matter. While we know that it interacts
gravitationally but must be non-luminous and non-baryonic, the nature of DM is still a
mystery to physicists and cosmologists. It is probably made of new kind of particles, but
even though there are many ideas about what those could be, we have not yet succeeded
in actually detecting and identifying a DM candidate in laboratory.

Evidence emerge at di�erent scales. Without attempting to be complete, let us cite
a few among them. At the galactic and sub-galactic scales hints come from weak grav-
itational lensing of distant galaxies with foreground structure [73], the incompatibility
of the radial velocity-distribution of a galaxy with its mass distribution [74], from strong
gravitational lensing of galaxies [75] etc. At the scale of galaxy clusters the famous �Bullet
Cluster� with non-coinciding distributions of luminous and non-luminous matter repre-
sents evidence for DM and at the same time illustrates in a very beautiful way that DM
must be some form of very weakly interacting material (thus, non-baryonic) [4]. Further-
more, measurements of the mass-to-light ratio of galaxy clusters via the application of
the virial theorem, the method of weak gravitational lensing or the analysis of the X-ray
pro�le lead to values which exceed that of the solar neighbourhood. This was �rst ob-
served in 1933 by Fritz Zwicky who studied the velocity dispersion in the Coma Cluster
and predicted for the �rst time in history that a large amount of non-luminous matter is
required to be present [76]. On the cosmological scale the WMAP analysis of the small
temperature-anisotropies of the Cosmic Microwave Background Radiation (CMBR), dis-
covered in 1965 by Penzias and Wilson [60, 61], provided the possibility to determine
with very good accuracy the total amount of DM in the present Universe. A combined
WMAP+SN+BAO �t gives the following results (see Sec. 4.2.2 and Tab. 4.1):

Ωbh
2 = 0.02267+0.00058

−0.00059, ΩMh
2 = 0.1358+0.0037

−0.0036 , (4.116)

so that the DM fraction is

ΩDMh
2 = ΩMh

2 − Ωbh
2 = 0.1131± 0.0034 . (4.117)

We would like to point out that the value of Ωbh
2 is in good agreement with the predictions

from Big Bang Nucleosynthesis (BBN) (see, e.g., Ref. [77]):

0.018 < Ωbh
2 < 0.023 . (4.118)
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This is really striking, since these two measurements are done with completely di�erent
techniques: BBN uses nuclear physics and the CMB theory follows out of relativistic �uid
mechanics. Taken together, all these observations lead to the conclusion that approxi-
mately 80% of matter in the Universe is composed out of DM.

Cosmologists consider several di�erent types of this unidenti�ed weakly interacting
material, which they classify according to how fast the individual DM particles travel
around us. Heavy and non-relativistic candidates are called Cold Dark Matter (CDM)
while very light particles moving with ultra-relativistic velocities are referred to as Hot
Dark Matter (HDM). Concerning structure formation in the Universe, these DM species
behave totally di�erent. Due to their large free streaming length, rapidly moving HDM
particles prevent clumps of matter from accumulating such that formation of small scale
structures is suppressed. Thus, in a HDM-dominated Universe, structures form in a top-
down fashion: �rst, the large scale structures are born which afterwards fragment and
form the small scale inhomogeneities like galaxy clusters or galaxies. In the case of slowly
moving CDM, however, the particles have a negligible free streaming length leading to
a bottom-up formation of structures: small scale structures of galactic size form �rst
and then merge to larger structures like superclusters. A comparison of observations
with structure formation simulations favours domination of CDM in the Universe. We
already know a possible production mechanism for these heavy but weakly interacting
particles (WIMPs). They satisfy the requirements of cold relics discussed in Sec. 4.3.3
and can possess a large relic abundance due to their small cross section which enters
inversely in formula (4.88). Nevertheless, CDM has some problems. In particular, it
implies the cuspy halo problem predicting rotation curves which are peaked too strongly.
Furthermore, out of CDM simulations it follows that galaxies such as the Milky Way
should have a large number of Dwarf satellites, which are, however, not observed. It is
the intermediate situation between cold and hot�the Warm Dark Matter (WDM), which
is able to ameliorate these problems. Contrary to CDM it causes structure formation to
occur bottom-up from above its �nite but not too large free-streaming scale, and top-down
from below this scale such that densities of halo cores are lowered, large halos have fewer
subhalos, and density �uctuations at the satellite scale or smaller are suppressed [78, 6].

In the following chapter we suggest thermally produced light sterile neutrinos as WDM
candidates and show which properties these particles must possess for not to be in con�ict
with experimental bounds or cosmological predictions.
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Dark matter has been recognized as an essential part of matter for over 70 years now, and
many suggestions have been made, what it could be. Most of these ideas have focused on
CDM, particles that are predicted in extensions of the SM, such as supersymmetry. Since
these concepts recently led to problems of structure formation simulations (see previous
discussion), we want to consider another, less explored but maybe more viable one, that
of WDM.

Natural candidates commonly considered for WDM are light sterile (right-handed)
neutrinos. These hypothetical massive fermions, which arise in most extensions of the
SM, are very weakly interacting singlets of the electroweak gauge group SU(2)L×U(1)Y ,
and, in fact, their very useful properties (cf. Chap. 3) as well as the provided possibility
to solve the mystery of DM are quite good reasons for these particles to exist.

Probably one of the simplest models which realizes sterile neutrino WDM is the νMSM
[12, 13]. It is essentially the SM with no further scale between the electroweak and Planck
scales, but with three sterile neutrinos, having Majorana masses and Dirac mixing with
ordinary (active) neutrinos, added. Then, for a speci�c choice of parameters, this simple
SM extension is very predictive. Besides having a WDM candidate, represented by the
lightest added singlet fermion, it can explain the tiny masses of active neutrinos via the
see-saw mechanism, and at the same time, the apparent matter-antimatter asymmetry in
the Universe [13]. However, due to their weak interactions (they can only interact via the
small Dirac mixing with active neutrinos), the sterile neutrinos never enter into thermal
equilibrium (i.e. Γ � H), such that thermal production mechanisms (cf. Sec. 4.3.3), are
not viable in this model. Instead, it is a non-thermal process [8] which produces the WDM
in the νMSM, and it was argued in [14, 15, 16] that in order to calculate unambiguously its
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Figure 5.1: Schematic illustration of the direction we pursue. The tree should be read from
top to bottom. Starting on the green left-hand side and taking the YES path corresponds
to our analysis. The NO branch, which points to the blue right-hand side, would lead to
a situation similar to the νMSM, which we don't further examine.
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present abundance, the initial WDM amount is required. This, however, needs knowledge
of physics before the beginning of the thermal evolution of the Universe.

Here we will analyse a possibility opposite to the νMSM. We postulate an additional
(gauge) scale between the electroweak and Planck scales, and that the sterile neutrinos
are charged under the associated gauge transformations. Then, for general not too high
intermediate scale, it will be possible for these particles to reach thermal equilibrium at
some moment in the early Universe. Assuming a relativistic decoupling (the hot relic
case in Sec. 4.3.3), the thermal production mechanism predicts a viable DM abundance
for sterile neutrinos with masses of about ∼ 90 eV. This, however, would correspond to
HDM and is forbidden by structure formation arguments like the Lyman-α bound, which
excludes masses below ∼ 1 keV.

Thus, in order to reconcile the thermal overproduction of a keV scale DM sterile
neutrino with the observations, its abundance has to be diluted after it drops out of
the thermal bath. A suitable mechanism, which can handle this is already known�the
entropy production due to a long-lived particle which decays while dominating the total
energy density of the Universe and being out of equilibrium (cf. Sec. 4.3.4). We will show
that if su�cient large entropy is released after the decoupling of our DM sterile neutrino,
its abundance can be su�ciently diluted to be in accordance with experimental results.
The natural candidate for this long-lived particle is another (heavy) sterile neutrino.

For completeness, we will also mention other ways to avoid the WDM overproduction
in the analysed class of models. One possibility is realised if all the new gauge interactions
are at the GUT scale, while the reheating after in�ation leads to temperatures below this
scale. This situation is similar to the νMSM, because in this case the sterile neutrinos
do not reach thermal equilibrium. Another possibility requires large (of the order of
thousand) number of degrees of freedom at the moment of the sterile neutrino freeze-out,
and does not seem natural.

The chart, Fig. 5.1, gives an overview of these possibilities and illustrates in which
direction our discussion goes.

5.1 Cosmological Requirements and Constraints from Ex-

periments

In this section, we introduce the generic framework we will work with, and discuss the
various constraints and bounds resulting from cosmological considerations and various
experimental results. Note that these constraints are rather general and apply to most
variations of the speci�ed model.

5.1.1 Assumptions and De�nitions

In the following we will assume the existence of three right-handed (sterile) neutrinos, NI

(I = 1, 2, 3). As mentioned in Sec. 3.3.1 and 3.2.1 these sterile neutrinos are not charged
under the SM gauge group, however, could be charged under the gauge transformations
of an extended model (ultimately, emerging in the breaking chain of some GUT model).
Though for most of the statements in this work the precise details of this gauge interaction
are not important, we will use a speci�c LR symmetric extension of the SM, and stick to it
to obtain de�nite numbers. This speci�c model (for a review see, e.g., Ref. [56] or Sec. 3.5)
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with the gauge group SU(3)C × SU(2)L × SU(2)R × U(1)B−L appears as a subgroup of
many GUT theories.

In this framework the neutrinos interact with the charged gauge bosons through the
interaction Lagrangian (cf. Eq. (3.107))

−L νN
cc =

g√
2

∑
a

(
Wµ
L laLγµνaL +Wµ

R laRγµNaR

)
+ h.c. , (5.1)

whereWL is the SMW -boson,WR is the corresponding right-handed boson from SU(2)R,
and la are the charged SM leptons. The neutrino masses arise due to spontaneous sym-
metry breakdown as discussed in detail in Sec. 3.5.2 and 3.5.3. Up to Sec. 5.3, however,
we will not be interested in these details, and thus just write the general mass matrix as
(cf. Eq. (3.19))

L D+M
m = −1

2

(
ν̃caL, ÑaR

)( ML mD

mT
D MR

)(
ν̃aL
Ñ c
aR

)
+ h.c. , (5.2)

where the tilde over the neutrino �elds indicate that they are written in �avour basis. We
assume that the block matrices in Eq. (5.2) obey in some sense the relations ML < mD <
MR such that we can use the see-saw type formulas from Sec. 3.2.3. The transformation
into to the mass basis is then given by (use Eq. (3.23) and neglect terms of order M−2

R )(
ν̃aL
Ñ c
aR

)
'

(
1

(
M−1
R mT

D

)†
−M−1

R mT
D 1

)(
U 0
0 VR

)(
νiL
N c
IR

)
, (5.3)

where U is the standard PMNS matrix and the unitary matrix VR describes the mixing
in the right-handed sector:

ML −mDM
−1
R mT

D = U∗ · diag(m1,m2,m3) · U † , (5.4)

MR = V ∗
R · diag(M1,M2,M3) · V †

R . (5.5)

with mi being the active neutrino masses and MI the sterile neutrino masses. Note that
if ML = 0, then Eq. (5.4) is the usual see-saw formula.

For the analysis of the sterile neutrino decay, when the oscillations of the active neu-
trinos are not important, while the masses of the charged leptons are, it is helpful to make
the described rotation only partially�without the PMNS rotation by the matrix U . Then
we get the mixing angles between the mass states of the sterile neutrinos and SM �avours

θaI ≡
(mDVR)aI

MI
, (5.6)

and also
θ2
I ≡

∑
a=e,µ,τ

|θaI |2 . (5.7)

As we will see, these squared mixing angles describe the overall strength of interaction
(decay) of sterile neutrinos with the SM particles.

Before moving on to the analysis of the cosmological properties of sterile neutrinos,
let us note an additional possible complication. Speci�cally, as discussed in Sec. 3.5.4, the
WL and WR bosons in Eq. (5.1) do not have to coincide with the mass eigenstates, W1
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and W2 (with massesMW ≡ mW1 andM ≡ mW2), respectively, but be slightly mixed (cf.
Eqs. (3.97) and (3.98)):

WL = cos ζ W1 − sin ζ W2 ,

WR = sin ζ W1 + cos ζ W2 . (5.8)

Normally this can be neglected, but it may give signi�cant contribution to the radiative
decay of the DM sterile neutrinos, analysed in Sec. 5.1.6.

5.1.2 Temperature of Freeze-Out

Let us now calculate the moment of decoupling of the neutrinos N1 in the early Universe.
We will denote values corresponding to this moment by the subscript �f�. As far as the
sterile neutrino is relatively light and the freeze-out happens while it is still relativistic,
the calculation is analogous to those for the usual active neutrinos (see the �Hot Relic�
case in Sec. 4.3.3). The only di�erence is that the annihilation cross section is suppressed
by the larger mass M of the right-handed gauge boson WR ' W2, compared to the SM
W boson mass MW ,

σN1N1 ≈ σνν̄
(
MW

M

)4

∼ G2
FE

2

(
MW

M

)4

. (5.9)

Here, σνν̄ is the SM neutrino annihilation cross section, GF = 1.166× 10−5 GeV−2 is the
Fermi constant and E is the energy of the colliding sterile neutrinos. These are light and
ultra-relativistic, so that according to Sec. 4.3.1, v ' c = 1 ⇒ n ∼ T 3, and the energy in
Eq. (5.9) scales as E ∼ T . Thus, the interaction rate (per neutrino) is

ΓN1 = nσN1N1 |v| ∼ G2
FT

5

(
MW

M

)4

. (5.10)

Requiring the equality of the width ΓN1 and the Hubble parameter (4.52)

H =
2π3/2

3
√

5mPl

√
g∗ T

2 , (5.11)

we obtain, with the Planck massmPl =
√
G = 1.22×1019 GeV, the freeze-out temperature

Tf ∼ g
1/6
∗f

(
M

MW

)4/3

(1÷ 2) MeV . (5.12)

The quantity g∗f counts the e�ective number of relativistic degrees of freedom (d.o.f.)
immediately after freeze-out. If freeze-out happens below 100 MeV, we have at least
g∗f = 10.75, (cf. Eq. (4.81)).

We recognize that for the not very large scale M , the sterile neutrino N1 decouples at
rather low temperature. Thus, it normally is in thermal equilibrium at the early stages
of the Universe evolution, making it a thermal relic. This will be the possibility which
we peruse in the current study. In this case calculation of the present day density of the
sterile neutrinos is insensitive to the history of the Universe before Tf .

Note, however, that if the reheating temperature after in�ation is lower than Eq. (5.12),
the neutrinos never enter the thermal equilibrium. In this case additional assumptions
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about the initial abundance of the sterile neutrinos are necessary to predict their current
density, and the generation mechanism is very di�erent form the case analysed here (see,
e.g., Refs. [79, 80, 8, 81]). Such a scenario can, for example, be realised for a very low
reheating temperature (see, e.g., Ref. [82]), or naturally if the right-handed scale is the
GUT scale, M ∼MGUT, leading to Tf ∼MGUT, and the reheating after in�ation reached
slightly lower temperatures. Another way to implement this situation is perused in the
νMSM [12, 13], where no new physics is present up to Planck scale, leading to N1 never
entering the thermal bath.

5.1.3 Abundance of Sterile Neutrino Dark Matter

The number to entropy density ratio of our relic sterile neutrino N1 (two fermionic degrees
of freedom) after freeze-out is given by (cf. Eq. (4.44a) and Eq. (4.59) or use Eq. (4.76))

Yf ≡
nN1

s

∣∣∣
f
≡
nN1(tf )
s(tf )

=
1
g∗f

135ζ(3)
4π4

. (5.13)

While the Universe expands slowly with all the processes approaching thermal equilib-
rium (⇒ S constant), both the number density and entropy density scale inversely pro-
portional to the volume of the Universe, and their ratio remains constant. If, however,
non-equilibrium processes happen during the expansion, like, for example, an intermediate
matter dominated stage caused by out-of-equilibrium decay of a heavy species, additional
entropy release is possible, which we will take into account by the factor S

S ≡ S0

Sf
=
s(t0)
s(tf )

(
R(t0)
R(tf )

)3

. (5.14)

This leads to the relation

nN1(t0)
nN1(tf)

=
(
R(tf)
R(t0)

)3

=
s(t0)
s(tf)

1
S
. (5.15)

Let us calculate the contribution of N1 to the present energy density. Rescaling the
number to entropy density ratio at present moment by this factor, as compared to the
freeze-out moment, we get for the sterile neutrino contribution to the energy density of
the Universe ΩN1

ΩN1

ΩDM
=
( nN1

s

∣∣∣
f

) 1
S
M1

s0
ΩDMρc

' 1
S

(
10.75
g∗f

)(
M1

1 keV

)
× 100 , (5.16)

where ΩDM = 0.113h−2 is the DM density, s0 = 2889.2 cm−3 the present day entropy
density and ρc = 1.05368 × 10−5h2 GeV cm−3 is the critical density of the Universe (see
Tab. 4.1 and Ref. [36]). The observational requirement is ΩN1/ΩDM ≤ 1 with equality
being the nicest choice (all DM is made out of N1), and inequality opting for multispecies
DM.

Let us analyse Eq. (5.16) further. Without entropy release (S = 1) the Universe is
overclosed, unless the neutrino is very light (see also the weaker bound in Eq. (4.79)),
which corresponds to the Hot Dark Matter case, excluded by the structure formation in
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the Universe. Models with the number of degrees of freedom at freeze-out g∗f of order
1000 seem rather unnatural and will not be considered. The only opportunity is thus the
entropy release after the freeze-out of N1,

S ' 100
(

10.75
g∗f

)(
M1

1 keV

)
. (5.17)

Having this entropy release will lead to the observed DM abundance today. In the follow-
ing, we will analyse possibilities of generation of this large amount in the model.1

5.1.4 Mass Bounds

The mass of the DM particle N1 can not be too light, or the observed structure in the
Universe would have been erased by a too hot DM. The simplest and most robust bound
can be obtained from the phase space density arguments. The phase space density of a
collision-less DM can only become smaller during the evolution of the Universe, as an e�ect
of coarse-graining. Comparison of the primordial phase space density, which is calculated
using the initial DM particle distribution function and the maximal modern one, derived
from the observation of the Dwarf spheroidal galaxies [10, 83] gives the lower bound

M1 > 1÷ 2 keV . (5.18)

Another important bound is the Ly-α bound [84, 85]. This bound constrains the
velocity distribution of the DM particles, from the e�ect of their free-streaming on the
formation of the structure on the scales, probed by the Ly-α forest. It should be noted,
that to convert this constraint into a bound for the mass of the DM particle, one needs
to take into account the initial velocity distribution of the particles. In our case it takes
the form of a usual thermal distribution, but with the temperature (T ∝ R−1) lowered by
the dilution factor S−1/3. This corresponds to the thermal relic case in Ref. [84], and not
to the case of the non-resonantly produced sterile neutrinos, denoted mNRP in Ref. [84].
Thus, the result of Ref. [84] should be rescaled as

M1 >
T

Tν
mNRP , (5.19)

where T is the present temperature of the DM neutrino diluted with the entropy factor
(5.17), Tν is the temperature of the usual relic neutrinos, and mNRP = 8 keV [84]. The
ratio of the temperatures is obtained from the requirement of the observed ΩDM. With
Eq. (5.17) we have:

T

Tν
= S−1/3 '

(
0.01 keV
M1

)1/3

, (5.20)

Equivalently, we can use Eq. (4.44a) and calculate ΩDMρc0 ≡ ΩN1ρc0 = M1nN1 ∝ T 3. Di-
viding by the current active neutrino temperature Tν0 = (4/11)1/3Tγ0 (see, e.g., Ref. [62]),
we obtain (T/Tν)3 = ΩDMh

2(94 eV/M1) which is equal to Eq. (5.20). By substituting one
of these expressions back into Eq. (5.19), we obtain the lower bound on our thermally
produced WDM sterile neutrino N1:

M1 & 1.6 keV . (5.21)

1The exact value of the required entropy release S may be slightly di�erent, if, for example, some
amount of DM sterile neutrino was generated non-thermally after the decoupling from thermal bath.
However, in the examples, analysed in this work, this e�ect is negligible.
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5.1.5 Generation of Entropy and BBN Bound

As discussed in Sec. 4.3.4, the entropy (5.17) can be generated by some heavy long-lived
particle which goes out of thermal equilibrium at some moment after DM neutrino freeze-
out, tf , and decays after becoming non-relativistic and dominating the energy density of
the Universe. The obvious candidates for such particles are the two remaining heavier
neutrinos (though other candidates are possible, and can be analysed in a similar way).
Let us assume for simplicity that only one of these two neutrinos is responsible for entropy
generation, and denote it by N2. Then, according to Sec. 4.3.4, the entropy release is (cf.
Eq. (4.113))

S '

(
1 + 2.95

(
2π2ḡ∗

45

)1/3 (M2Yi)4/3

(mPlΓN2)2/3

)3/4

, (5.22)

where M2 is the mass of N2, Yi ≡ nN2(ti)/s(ti) is the initial abundance of the N2 par-
ticles after decoupling (or, probably more precise, before they start to drive the matter
dominated intermediate stage of the Universe expansion), and ḡ∗ is the properly averaged
e�ective number of d.o.f. during the N2 decay. The ratio Yi is maximal if the particle
decouples when it is still relativistic, and is equal to

Yi =
gN
2

135ζ(3)
4π4g∗

, (5.23)

where gN = 2 is the number of d.o.f. for N2, and g∗ is taken at the N2 freeze-out. If the
entropy generation is large, we can neglect the 1 in Eq. (5.22) and get

S ' 0.76
gN
2

ḡ
1/4
∗ M2

g∗
√
mPlΓN2

. (5.24)

By combining Eqs. (5.17) and (5.24), we obtain

ΓN2 ' 0.50× 10−6 g
2
N

4
g2
∗f
g2
∗
ḡ
1/2
∗

M2
2

mPl

(
1 keV
M1

)2

. (5.25)

Note that in our case the freeze-out temperatures of the DM sterile neutrino (N1) and of
the entropy generating one (N2) coincide, such that g∗ = g∗f . If Eq. (5.25) is satis�ed, then
we have proper DM abundance in the present Universe. Schematically this is illustrated
in Fig. 5.2.

However, Eq. (5.25) is not the only requirement for the lifetime of the heavier sterile
neutrino in a realistic model. Entropy generation should �nish before the Big Bang Nu-
cleosynthesis (BBN), i.e. the N2's should decay before it. According to Refs. [86, 87, 88]
the temperature after the decay of the sterile neutrino N2�the so-called �reheating� tem-
perature Tr�should be greater than 0.7÷ 4 MeV in order not to spoil BBN predictions.
This temperature is approximately equal to (see Eq. (4.115))

Tr '
1
2

(
2π2ḡ∗

45

)−1/4√
ΓN2mPl , (5.26)

leading to a bound on the N2 lifetime which should be shorter than approximately 0.1÷2 s.
The sterile neutrino with such a lifetime can produce enough entropy, satisfying Eq. (5.25)
only if it is su�ciently heavy,

M2 >

(
M1

1 keV

)
(1.7÷ 10) GeV . (5.27)
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Figure 5.2: Schematic evolution of the light relic abundance in the Universe. The dashed
line is a thermal relic decoupled while being relativistic (hot thermal relic), leading to
the overclosure of the Universe. The blue line is the same hot thermal relic, but with
the abundance diluted by rapid expansion of the Universe (entropy production), leading
to correct DM abundance. The lowest magenta line depicts the evolution of the non-
thermally produced particle with zero primordial abundance.

Finally, as far as we were assuming that the sterile neutrino N2 decoupled while still
relativistic (otherwise the entropy generation is much less e�cient), we should require
Tf > M2. This, using Eq. (5.12) is translated into a bound for the scale of the right-
handed bosons,

M >
1

g
1/8
∗f

(
M2

1 GeV

)3/4

(10÷ 16) TeV . (5.28)

Thus, on the one hand the su�cient entropy generation requires a long-lived neutrino,
but on the other hand, the requirement of successful BBN limits its lifetime from above,
leading to the lower bounds on its mass and on the mass scale of the additional gauge
interactions.

5.1.6 Constraints from X-ray Observations

A sterile neutrino in the considered class of models is unstable, so it provides a decaying

DM particle. Through its mixing it dominantly decays via the neutral current into three
active neutrinos. To lead to a successful DM scenario, the lifetime of the unstable neutrino
N1 should be greater than the age of the Universe τU ∼ 1017 sec, which constraints its
total decay width. However, one obtains signi�cantly stronger restrictions resulting from a
subdominant decay channel�the radiative decay N1 → νγ, induced at the one loop level
(see Fig. 5.3). This process produces a narrow line in the X-ray spectrum of astrophysical
objects [9, 89]. In the context of the νMSM the only source of this decay is via the active
sterile neutrino mixing θ2

1 (cf. Eq. (5.7)), and the recent X-ray observations bound it from
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Figure 5.3: Unitary-gauge diagrams contributing to the radiative neutrino decay with
charged leptons propagating in the loop.

above. A very rough bound, which will be enough for our purposes, is given in Ref. [79]2

θ2
1 . 1.8× 10−5

(
1 keV
M1

)5

. (5.29)

This restriction corresponds to the following upper bound on the radiative decay width

ΓN1→γν . 9.9× 10−27 1
s
. (5.30)

We also want to mention that there are bounds resulting from supernova cooling. How-
ever, they are also much weaker than the di�use X-ray background limits (5.29) for all
possible neutrino masses M1 (see Ref. [9]).

In the LR symmetric model the X-ray bound (5.30) leads not only to the bound on
the mixing angle (5.29), but also bounds the properties of the bosonic sector of the theory.
The reason is the possible mixing of the right WR gauge bosons with the SM WL ones.
Without mixing, the contribution of theWR bosons to the process N1 → γν is additionally
suppressed by the ratio of the left and right gauge boson masses (MW /M)4, and can be
safely neglected. With the mixing, however, the chiral structure of the diagram changes,
and the contribution can be enhanced by a factor ∝ (mla/M1)2, where mla is the mass of
the charged lepton propagating in the loop.

We calculate the total decay width for N1 → γν, summed over the active neutrino
�avours, following Refs. [97, 98] (for details see App. B). Supposing from the very begin-
ning, that the right-handed scale is much larger, than the left one, M �MW , neglecting
the active neutrino masses and assuming small gauge boson mixing, we get

ΓN1→γν '
G2
FαM

3
1

64π4

∑
a=e,µ,τ

∣∣∣∣4mla(VR)a1 · ζ −
3
2
θa1M1

∣∣∣∣2 . (5.31)

with α denoting the �ne-structure constant. The second term in the amplitude is propor-
tional to the mass of the sterile neutrino M1, while the �rst term to the mass mla of the
charged intermediate lepton la. This can be understood from the following consideration.
Because the photon has spin one, there must be a chirality �ip on the fermionic line. If, in
�avour basis, there is a WL-WR mixing, we have the chirality �ip3 on the internal line of

2We must note, that careful analysis gives a stronger (in some regions of masses by an order of
magnitude) bound. See detailed discussion in Sec. 5.1.2 of [79] and [90, 91, 92, 93, 94, 95, 96]. For our
purposes this approximate (weak) bound is su�cient.

3As discussed in Sec. 2 a chirality �ip is equivalent to mass insertion.
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the charged fermion, which produces a term proportional to mla . Otherwise, the chirality
�ip happens on one of the outer lines of the diagram, resulting in a term proportional to
the Majorana mass of the sterile neutrino.

If the gauge boson mixing is absent (ζ = 0), only the second term contributes, and we
obtain, using Eq. (5.7), the usual result

ΓN1→γν

∣∣∣
ζ=0
'

9G2
F αM

5
1

256π4
× θ2

1 . (5.32)

If it is present, then, barring the unlikely cancellation between the two terms in Eq. (5.31),
we can constrain ζ using the X-ray bound (5.30)

ζ2 . 9× 10−19
m2
lτ∑

a=e,µ,τ |mla(VR)a1|2

(
1 keV
M1

)3

. (5.33)

Thus, the mixing angle of the W -bosons must be vanishingly small.
Finally, we would like to note, that in a LR symmetric model with the Higgs sector as

described in Sec. 3.5.1, the WL-WR mixing angle ζ is determined by Eq. (3.98):

tan 2ζ = − 2κκ′

v2
R − v2

L

. (5.34)

where κ and κ′ are bidoublet VEVs and vL and vR correspond to the left- and right-
handed Higgs triplet VEVs, respectively. Thus, Eq. (5.33) strongly restricts the ratio
κκ′/(v2

R − v2
L).

5.1.7 Summary of Constraints

Let us summarise this section. A theory where the DM sterile neutrino was in thermal
equilibrium at some moment during the evolution of the Universe, should satisfy the
following set of constraints:

• From X/γ-ray observations, we have the model independent upper limit on the
radiative decay width of the DM sterile neutrino N1 (see Eq. (5.30))

ΓN1→γν . 9.9× 10−27 sec−1 . (5.35)

Note that this is a conservative value, c.f. the footnote on page 58.

This constraint translates to the limit on the sterile-active neutrino mixing angle
(cf. Eq. (5.29))

θ2
1 . 1.8× 10−5

(
1 keV
M1

)5

, (5.36)

and to the bound on the mixing between the left and right gauge bosons (cf.
Eq. (5.33))

ζ2 . 9× 10−19
m2
lτ∑

a=e,µ,τ |mla(VR)a1|2

(
1 keV
M1

)3

. (5.37)

• From the structure formation requirements (Ly-α bound), the mass of the sterile
neutrino is constrained in the same way as the mass of a thermal relic, i.e.

M1 & 1.6 keV . (5.38)
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• The right abundance of the sterile neutrino can be achieved by an out-of-equilibrium
decay of a long-lived heavy particle. We will use another sterile neutrino of the
model, N2, for this purpose, but most considerations here can be also applied to
another long-lived particle present in the theory.

To provide the proper entropy release (5.17), N2 should decouple while relativistic
and its total decay width should be

ΓN2 ' 0.50× 10−6 g
2
N

4
g2
∗f
g2
∗
ḡ
1/2
∗

M2
2

mPl

(
1 keV
M1

)2

. (5.39)

• At the same time, this heavy neutrino N2 should decay before BBN, which bounds
its lifetime to be shorter than approximately 0.1 ÷ 2 s. Then, the proper entropy
can be generated only if its mass is larger than

M2 >

(
M1

1 keV

)
(1.7÷ 10) GeV . (5.40)

• The entropy is e�ectively generated by out-of-equilibrium decay 5.1.5, when the
particle decoupled while still relativistic. If this particle is N2, i.e. one of the sterile
neutrinos, then its decoupling happens at temperature (5.12), and Tf > M2 requires
the bound on the right-handed gauge boson mass

M >
1

g
1/8
∗f

(
M2

1 GeV

)3/4

(10÷ 16) TeV . (5.41)

Note, that this is the only requirement which changes in the case of entropy generated
by some other particle instead of the heavy sterile neutrino.

5.2 Models with Low Scale Type I See-Saw

Let us start from the analysis of models where the active neutrino masses are generated by
a �type I� see-saw formula. This means that in the neutrino mass matrix (5.2), ML van-
ishes. The values for the mixing angles θ2

I (cf. Eq. (5.7)) are restricted by the requirements
on the decay widths of the sterile neutrinos. As discussed in the previous chapter, θ1 is
bounded from above by X-ray observations (see Eq. (5.29)), whereas θ2, regulating the
decay width of the entropy generating neutrino,4 is bounded by requiring a long enough
life-time.

A convenient way to parametrize the Dirac mass matrix mD, separating high- and
low-energy parameters, is provided by the Casas & Ibarra parametrization [48] reviewed
in Sec. 3.4.2. By using Eq. (3.61):5

mD = ±i U∗
√
mdiag
ν R

√
Mdiag
R , (5.42)

4Note that additional generation of the entropy by the third neutrino does not change conclusions.
5As far as we are using in this section the basis with diagonal MR = Mdiag

R , the right handed mixing
matrix is trivial, VR = I.
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we get, with Eq. (5.7),

θ2
I =

[√
Mdiag
R RT mdiag

ν R∗
√
Mdiag
R

]
II

M2
I

, (5.43)

where
mdiag
ν = diag(m1,m2,m3) , and Mdiag

R = diag(M1,M2,M3) . (5.44)

Here R is a complex orthogonal matrix parametrized by three complex angles ω12, ω13,
and ω23 (cf. Eq. (3.60)).

Let us check, whether we can satisfy the bounds on the mixing angles if the active
masses mi are consistent with the observed neutrino oscillation mass di�erences, sum-
marised below. The current best-�t and 3σ ranges are (see Ref. [99]):

∆m2
sol =

(
7.65+0.69

−0.6

)
× 10−5 eV2 , (5.45a)

∆m2
atm =

(
2.4+0.35

−0.33

)
× 10−3 eV2 . (5.45b)

In the following analysis we will for convenience order the active neutrino masses as

m1 < m2 < m3 . (5.46)

From Eq. (5.43), we get, using the parametrization in Eq. (3.60), for the �rst two sterile
neutrinos

M1θ
2
1 = m3 |sinω13|2 +m2|cosω13|2|sinω12|2

+m1|cosω13|2|cosω12|2 , (5.47a)

M2θ
2
2 = m3|cosω13|2|sinω23|2

+m2|cosω23 cosω12 − sinω23 sinω13 sinω12|2

+m1|cosω23 sinω12 + sinω23 sinω13 cosω12|2 . (5.47b)

Note that as far as we ordered the active neutrino masses, if we change m1 to zero,
and replace m3 by m2, the right hand sides of Eqs. (5.47) can only become smaller.
We can also con�ne ourselves to the real values of the mixing angles, as far as the sine
and cosine absolute values only become larger for complex angles, and the inequality
|z − w| ≥ ||z| − |w|| is used to transform the square of the di�erence of the angles in
Eq. (5.47b). Thus, the following inequalities should be satis�ed

M1θ
2
1 ≥ m2

{
sin2 ω13 + cos2 ω13 sin2 ω12

}
, (5.48a)

M2θ
2
2 ≥ m2

{
cos2 ω13 sin2 ω23 +

(
|cosω23||cosω12|

− |sinω23||sinω13||sinω12|
)2}

. (5.48b)

The minimum of the sum of the right hand sides is m2, and therefore the following very
simple inequality always holds

M1θ
2
1 +M2θ

2
2 ≥ m2 ≥ ∆msol . (5.49)

The second inequality is trivially ful�lled, since in all possible mass hierarchies the mass of
the second (in mass) active neutrino is larger than ∆msol. The meaning of the inequality
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(5.49) is very simple�one can not generate active neutrino masses with the �type I� see-
saw formula without su�cient mixing between the active and sterile neutrino sectors.
Note in passing, that the cancellation is possible in another direction�one can have very
small active neutrino masses and large active-sterile mixing.

Now, we are ready to compare the requirement from the observed active neutrino
masses, Eq. (5.49), with the DM bounds on the mixing angles. The angle θ2 can be bound
from the width (5.25) required to generate su�cient entropy. Estimating the width of the
heavy neutrino as (cf. App. A)

ΓN2 ≥
G2
FM

5
2

192π3
· θ2

2 , (5.50)

we have

M2θ
2
2 . 1.8× 10−3ḡ

1/2
∗

(
1 GeV
M2

)2(1 keV
M1

)2

. (5.51)

It can be clearly seen that for all allowed masses M1 and M2 this is much smaller than
∆msol.

The contribution of the DM sterile neutrino itself can be larger than M2θ
2
2. From

Eq. (5.29), we have

M1θ
2
1 . 1.8× 10−2

(
1 keV
M1

)4

. (5.52)

Together with the Ly-α bound on the WDM mass, Eq. (5.21), this contribution again
violates Eq. (5.49). Thus, we conclude that the small mixing angles, required by the
proper DM abundance and good DM properties in the model, prevent generation of the
observed active neutrino masses by the �type I� see-saw formula.

Note, however, that without the Ly-α bound it would have been possible for very light
WDM, with

M1 . 1.2 keV . (5.53)

5.3 Type II See-Saw�working Example

In the previous section we have seen that if one of the not DM-like sterile neutrinos is
responsible for entropy production, it is impossible to get the observed active neutrino
masses with a �type I� like see-saw. Here we will present a working example of the sterile
neutrino DM in the framework of a LR symmetric model, where the active neutrino masses
are generated by the contribution of the type II see-saw.

We will continue to work in the framework of the SU(3)C×SU(2)L×SU(2)R×U(1)B−L
model, sketched in pieces in Sec. 5.1.1 and reviewed in more detail in Sec. 3.5. Let
us do a short repetition of important facts. As already discussed, in a properly LR
symmetric model, the left- and right-handed leptons are treated symmetrically. One has
the usual SM doublets Ψi

L with generation index i ∈ {1, 2, 3}, and three additional right-
handed neutrinos which form together with the three charged right-handed lepton �elds
the SU(2)R doublets Ψi

R (cf. Eq. (3.66)). The Higgs sector consists of one SU(2)L triplet
∆L, one SU(2)R triplet ∆R and one bidoublet φ. If their neutral components acquire
a non-zero VEV the gauge symmetry from above will be spontaneously broken and a
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neutrino mass matrix of the following pattern will result, (cf. Sec. 3.5.3):

M =
(
ML mD

mT
D MR

)
≡
(

fL vL y κ+

yT κ+ fR vR

)
, (5.54)

The Majorana blocks on the diagonal come from the coupling of the bilinears ψi TL,RCψL,R
j

to the triplets ∆L,R, respectively, and the Dirac-type ones from the coupling of ψLψR to the
bidoublet φ and its complex conjugate φ̃ = σ2φ

∗σ2. The VEVs of the neutral components
in ∆L,R are denoted by vL,R, whereas the SM scale κ+ =

√
κ2 + κ′2 = 174 GeV is a

combination of the bidoublet VEVs κ and κ′ (see Sec. 3.5.2). These quantities are related
by Eq. (3.80),

γ =
vLvR
κ2

+

, (5.55)

where γ is a function of parameters in the Higgs potential, and naturally of order one (for
more details see Sec. 3.5.2).

In the following we will postulate the exact discrete LR symmetry (3.73), and assume
for convenience real Yukawa couplings. This requires

fL = fR , y = yT . (5.56)

As we will now show, with such a model, it is possible to satisfy all the requirements
form Sec. 5.1. Let us consider the type II see-saw formula, following from block diagonal-
ization of Eq. (5.54) with the assumption O(MR)� O(mD)� O(ML):

mν = vLfL −
κ2

+

vR
yf−1

R yT . (5.57)

After applying the conditions of discrete left-right symmetry, Eq. (5.56), we �nd

mν = vLf −
κ2

+

vR
yf−1y , (5.58)

To simplify the calculations, we further assume for illustration, proportionality of the
Dirac-Yukawa y to the triplet Yukawa f , i.e. y = Pf , where P is a numerical number.
Equation (5.58) then goes into

mν =
(
vL −

κ2
+P2

vR

)
f . (5.59)

In this case all Yukawas are diagonalised by the same transformation�the transformation
which bringsmν into diagonal form, i.e. the PMNS matrix U . The ratios of the eigenvalues
of the matrices on both sides of the equality are then the same

m1

m2
=
f1

f2
=
M1

M2
. (5.60)

Thus, the mass spectrum of the sterile neutrinos (or, speci�cally, the BBN requirement
(5.27)) leads to the same hierarchical active neutrino spectrum

m1

m2
. 5.9× 10−7 . (5.61)
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This implies that the lightest active neutrino should be very light, and we can have either
normal or inverse hierarchy. For de�niteness, we will use the normal hierarchy in our
example, though the inverse one works equally well (one should only take into account that
in the latter case M2 ' M3, and thus�because of equal mixing angles (cf. Eq. (5.63))�
ΓN2 ' ΓN3 , such that both N1 and N2 generate the same amount of entropy (5.24)). As
far as the active neutrino mass hierarchy is �xed, we have m2 ' ∆msol and m3 ' ∆matm.
We then obtain for the mass of the third sterile neutrino

M3 =
m3

m2
M2 . (5.62)

Furthermore, since the following relation holds (use Def. (5.7) together with (5.6))

θ2
I =

∑
a

∣∣∣(U∗mdiag
D

)
aI

∣∣∣2
|MI |2

=

∣∣∣(mdiag
D

)
II

∣∣∣2
|MI |2

=
κ2

+P2

v2
R

, (5.63)

the active-sterile mixing angles in the case of proportional Yukawa constants are all the
same, while the mixing angles for individual �avours are proportional to the PMNS matrix
U :

θaI = (U∗)aI
κ+P

vR
= (U∗)aI

√
θ2
I . (5.64)

Thus, the total decay width ΓN2 is proportional to θ2
2 (see App. A). The value of θ2

2

is then de�ned from the requirement of su�cient entropy production, Eq. (5.25), and
depends only on M1 and M2.

At this moment the only free parameter left is the VEV ratio γ, and everything can
be expressed via γ, M1, M2 and m2 ' ∆msol, m3 ' ∆matm. From Eqs. (5.59) and (5.55),
we get

vR =

√
κ2

+γ
m2
M2

+ θ2
2

. (5.65)

The VEV of the left-handed triplet ∆L is then given by

vL =

√
κ2

+γ

(
m2

M2
+ θ2

2

)
. (5.66)

Together with Eq. (5.65), Eq. (5.63) determines the proportionality constant P

P =
√
θ2
2v

2
R/κ

2
+ . (5.67)

The full mass matrix (5.54) is as follows

M =
(
U∗ 0
0 U∗

)(
Mdiag
L mdiag

D

mdiag
D Mdiag

R

)(
U † 0
0 U †

)
, (5.68)

where

mdiag
D = P

κ+

vL
Mdiag
L = P

κ+

vR
Mdiag
R , (5.69a)

Mdiag
L =

vL
vR
Mdiag
R , (5.69b)
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long-dashed red line shows the ratio (MW /M)4

and illustrates that processes mediated by WR-
bosons can be neglected in the decay rate of N2.
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(b) vR as a function of M2. The dependence on
M1 is very weak and therefore invisible in this plot.
However, if one goes to larger M1, one has to take
into account the lower BBN bound (5.27) on M2.

Figure 5.4: LR symmetric model with keV scale sterile neutrino WDM and an entropy
generating heavy sterile neutrino of mass M2.

and
Mdiag
R = diag (M1,M2,M3) . (5.70)

Let us �x the input values. It was mentioned before, that γ ∼ O(1) is natural in the LR
symmetric model, therefore we simply choose γ = 1. For the masses of the DM and the
entropy producing sterile neutrinos, we choose the smallest possible ones (see Sec. 5.1):

M1 = 1.6 keV , M2 = 2.7 GeV . (5.71)

With such an input, we obtain:

m1 = 5.2× 10−9 eV , vL = 313 keV ,

m2 '
√

∆m2
sol = 8.7× 10−3 eV , vR = 9.67× 104 TeV ,

m3 '
√

∆m2
atm = 4.9× 10−2 eV , P = 0.027 ,

M3 = 15.1 GeV , θ2
1 = θ2

2 = θ2
3 = 2.3× 10−15 . (5.72)

The Figures 5.4(a) and 5.4(b), respectively show the values of θ2
1 and vR for severalM1 and

M2 & 2.7 GeV. Because of the smallness of θ2
2 compared to m2/M2 and its suppression

with M−2
1 and M−3

2 (see Eq. (5.51)), vR given by Eq. (5.65) is e�ectively independent of
θ2
2. Therefore, the curve of vR has a very weak M1 dependence (invisible in Fig. 5.4(b)).
For larger M1 it is accounted for the BBN bound (5.27) on M2.

One can check that none of the constraints, summarized in Sec. 5.1.7, is violated. Even
the mixing angle θ2

1, corresponding to our DM neutrino, is much smaller than its upper
bound (5.29). Furthermore because of the large vR scale, the additional non-SM gauge
and Higgs bosons are not observable (they all have masses ∝ vR [56]). However, we should
choose the Higgs potential to have very small mixing between the left and right gauge
bosons (see Eqs. (5.33) and (5.34)).
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To conclude, we demonstrate that the obtained VEV scales are in no con�ict with
the ρ parameter, introduced at the end of Sec. 3.3.2. Equation (3.36) applied on the LR
symmetric model gives

ρ =
κ2

+ + 2 |vL|2

κ2
+ + 4 |vL|2

, (5.73)

For vL of the order of MeV the deviations are well below the current experimentally allowed
ones, which have O(10−4) [36].



Chapter 6

Conclusions

Introducing some basics of the theory of massive neutrinos has been the starting point
of this work. In particular we have explained the di�erence between Dirac and Ma-
jorana mass terms, motivated the introduction of sterile (right-handed) neutrinos and
demonstrated that the see-saw mechanism in its type I or II form could be an aesthetic
explanation of the small active neutrino masses. Then, after a short review of a useful
parametrization, proposed by Casas and Ibarra, we have closed Chap. 3 by describing a
Left-Right symmetric model, which in a very natural way implements the see-saw mech-
anism of type II.

In chapter 4 we have given an introduction of some fundamentals of cosmology, which
are of essential relevance for this work. We have outlined the derivation of the fundamental
Friedmann and �uid equations and determined their solutions in speci�c cosmological
scenarios. In Sec. 4.3 we have sketched early Universe thermodynamics and discussed
the freeze-out process of thermal relics as well as the entropy release due to an out-of-
equilibrium decaying particle. With Sec. 4.4, providing basic facts of Dark Matter in
cosmology, we have concluded this Chapter and passed on to our main goal�the analysis
of the possibility of thermally produced keV scale sterile neutrino Warm Dark Matter in
gauge extensions of the Standard Model.

During the analysis of such a realisation in Chap. 5, we have found three ways capable
to circumvent the naïve expectation of signi�cant overproduction of Dark Matter in case
of a keV scale sterile neutrino, decoupling from the thermal bath while still relativistic.
They include a low reheating temperature so that the thermal equilibrium is never reached
by the would be Dark Matter sterile neutrino, (very) large number of degrees of freedom
in the early Universe at the Dark Matter neutrino freezeout, or su�cient dilution of its
density by out-of-equilibrium decay of a massive particle like another heavy sterile neutrino
(cf. Fig. 5.1). The last possibility, assumed to be the most natural one, has been further
analysed1 and a set of requirements for this scenario has been formulated. Summarized in
short, these requirements bound the mass of the Dark Matter sterile neutrino from below
from structure formation considerations; limit its mixing angle with active neutrinos and
constrain mixing between the ordinary Standard Model (left) and additional (right) gauge
bosons from the radiative decay of the Dark Matter sterile neutrino; �x the lifetime of the
heavier sterile neutrino from the requirement to have su�cient entropy release, diluting
the Dark Matter abundance down to the observed value; and �nally constrain the mass
of these heavier sterile neutrinos from considerations of Big Bang Nucleosynthesis.

We have demonstrated in this framework, that the type I low scale see-saw mechanism
of generating masses for the active neutrinos can not lead to su�cient dilution of the Dark
Matter abundance due to the very small mixings between the active and sterile neutrino
sectors. At the same time, we have provided a working example, where the active neutrinos

1Note that another natural possibility is achieved in the νMSM model [12, 13], where the introduction
of sterile neutrinos is the only extension of the Standard Model, and the keV sterile neutrino does not
enter thermal equilibrium up to Planck scale temperatures.
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are generated by a type II style see-saw in the context of an exactly Left-Right symmetric
theory. The obtained general constraints and observations can serve as a basis for the
search of a Grand Uni�ed Theory with Warm Dark Matter sterile neutrinos.



Appendix A

Decay Widths of sterile Neutrinos

In the mass range 2.7 GeV ≤ M2 < MW , a sterile neutrino N2 dominantly decays into
leptons and spectator quarks. The corresponding partial widths can be calculated in the
νMSM because additional boson-interactions, which usually appear in more complicated
models, are of high scale�of orderO(M)�compared to that of electroweak scale. To make
use of the νMSM results, we have, for being on the safe side, to compare the suppression
factors in the νMSM ∼ O(|θi|2) with that of additional interactions ∼ O(MW /M)4,
appearing in the models we are interested in. Furthermore, the mixing of the new bosons
should be small compared to O(|θi|), otherwise there could be signi�cant contributions
from processes where new bosons mix with the SM ones (see, for example, App. B). These
e�ects are neglected in the following calculations. One can see, that for most practical
purposes it is the case, as far as the bound on the gauge boson mixings (5.33) is much
stronger than those for the active-sterile neutrino mixings.

Moreover, such additional contributions do not a�ect the conclusions in the main part
of this work. Indeed, in Sec. 5.2 additional interactions can only result in a stronger bound
and therefore the conclusion remains the same. In the type II see-saw model discussed
in Sec. 5.3, we need the exact value of the width. However, if we assume no mixing of
the W -bosons (ζ = 0), the contributions from WR-boson mediated processes are in the
considered mass range negligible small (cf. Fig. 5.4(a)).

In what follows we give all relevant decay rate formulae (at tree-level) of a sterile
neutrino N2, with a mass M2 located above the BBN bound 2.7 GeV (cf. Eq. (5.27)) and
below the SM W -boson mass MW ' 80 GeV [100].

Γ1

0

@N2 →
X

α,β

ναν̄βνβ

1

A =
G2

F M5
2

192π3
·

X

α

|θ2α|2 , (A.1a)

Γ2

`

N2 → l−α6=βl+β νβ

´

=
G2

F M5
2

192π3
· |θ2α|2

`

1 − 8x2
l + 8x6

l − x8
l − 12x4

l log x2
l

´

, xl =
max

ˆ

Mlα , Mlβ

˜

M2
,

(A.1b)

Γ3

`

N2 → ναl+β l−β
´

=
G2

F M5
2

192π3
· |θ2α|2

"

(C1(1 − δαβ) + C3δαβ)

„

`

1 − 14x2
l − 2x4

l − 12x6
l

´

q

1 − 4x2
l

+ 12x4
l

`

x4
l − 1

´

L

«

+ 4 (C2(1 − δαβ) + C4δαβ)

„

x2
l

`

2 + 10x2
l − 12x4

l

´

q

1 − 4x2
l

+ 6x4
l

`

1 − 2x2
l + 2x4

l

´

L

«

#

, (A.1c)

with

L = log

2

4

1 − 3x2
l −

`

1 − x2
l

´

p

1 − 4x2
l

x2
l

“

1 +
p

1 − 4x2
l

”

3

5 , xl ≡
Ml

M2
,
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fermions gqL gqR

q = νe, νµ, ντ
1
2 0

q = u, c, t 1
2 −

2
3s

2
W −2

3s
2
W

q = d, s, b −1
2 + 1

3s
2
W

1
3s

2
W

Table A.1: Coupling constants; sW ≡ sin θW , cW ≡ cos θW .

and

C1 =
1

4

`

1 − 4 sin2 θw + 8 sin4 θw

´

, C2 =
1

2
sin2 θw

`

2 sin2 θw − 1
´

,

C3 =
1

4

`

1 + 4 sin2 θw + 8 sin4 θw

´

, C4 =
1

2
sin2 θw

`

2 sin2 θw + 1
´

.

The formulae for the decay modes into quarks are presented below. In the range
2.7 GeV ≤ M2 < MW it is su�cient to use the free quark approach for the decay prod-
ucts. We give these formulae in the approximation where M2 is much heavier than the
decay product masses (unlike above, Eqs. (A.1), for the lepton decays). The corrections
are important at the threshold, when new decay channels open. However, at high mass
M2 this introduces a rather small relative error, because the number of open channels into
light particles is signi�cant, and provide the main part of the decay width. The exact
analysis would smooth the discontinuities of the decay width at the mass thresholds (see
Fig. A.1). We have

Γ4

`

N2 → l−α UD̄
´

=
G2

F M5
2

192π3
· 3 · |VUD|2 · |θ2α|2 , (A.2a)

Γ5 (N2 → ναqq̄) =
G2

F M5
2

192π3
· 3 · Ξq · |θ2α|2 , (A.2b)

with

Ξq = gν
L

2 ·
“

gq
L

2 + gq
R

2
”

.

The factor 3 is the colour factor and VUD are the CKM-matrix elements. The coupling
constants gL and gR correspond to the coupling of the Z-boson to left- or right-handed
particles, respectively. For a fermion f , with weak isospin component If3 and charge qf ,
one has:

gf
L = If

3 − qf sin2 θW , (A.3a)

gf
R = −qf sin2 θW . (A.3b)

Table A.1 gives the required values of the charges. In the mass range of M2 mentioned
above, the Majorana neutrino total decay rate ΓN2 is a sum of all rates presented above
multiplied by a factor of 2, which accounts for charge-conjugated decay modes.

When M2 exceeds the SM Z-boson mass MZ = 91 GeV, and if contributions of new
interactions are negligible the sterile neutrino predominantly decays into a SM gauge boson
and a lepton. Then its total decay width is given by

ΓN2 = 2
GF M3

2

8
√

2π

"

„

1 +
2M2

W

M2
2

« „

1 − M2
W

M2
2

«2

+
1

2

„

1 +
2M2

Z

M2
2

« „

1 − M2
Z

M2
2

«2
#

·
X

α

|θ2α|2 . (A.4)

In between, where MW ≤M2 < MZ , one can approximate the width by the �rst term in
Eq. (A.4).
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Figure A.1: The ratio ΓN2/2Γ1 calculated in the speci�c LR model of Sec. 5.3. We used
Eqs. (A.1) together with the formulas for the two-body decays into mesons [100] for the
red curve and Eqs. (A.1) together with Eqs. (A.2) for the blue curve. The dotted curves
correspond to the region, where both approximations are not entirely reliable.

Below M2 ∼ 2 GeV it is important to consider mesons instead of quarks as �nal
states for the sterile neutrino decay. Therefore, instead of the three-body decay modes
into spectator quarks, Eqs. (A.2), one has to use the corresponding two-body ones into
mesons (see [100] for the decay width formulas). In our case this mass range of M2 is
forbidden by the BBN-bound (5.27) and therefore we do not list them here. Nevertheless,
to get a feeling of the behaviour of the total width ΓN2 , we show in Fig. A.1 the ratio
ΓN2/2Γ1 calculated in the speci�c LR model described in Sec. 5.3, using both the free
quark and chiral meson approximations. It is clearly seen, that the transition between
two approximations happen around M2 ∼ O(1) GeV. In this region (dotted in Fig. A.1)
decays into spectator quarks more and more replace decays into mesons and therefore
one has to carefully reanalyse the given formulas, if one is interested in this mass range.
Furthermore note that because of Eq. (5.64), the total decay width is proportional to θ2

2

and therefore the plotted ratio is independent of this quantity. In more general models,
Eq. (5.64) will no longer be valid. However, as one recognizes by considering the formulas
together with the de�nition of θ2 (cf. Eq. (5.7)), there will be no signi�cant di�erence,
especially for heavy masses M2, so that Fig. A.1 can be used as a good estimate in such
models.





Appendix B

Radiative Decay Width

Here we will provide some details of calculation of the width for the radiative decay
N1 → γνi shown in Fig. B.1. We will follow Ref. [97], where general formulae for this type
of process are given. In our case N1 denotes a heavy sterile neutrino with mass M1, νi
one of the active neutrinos with mass mi and γ a photon. The neutrinos are considered
as Majorana particles.

The amplitude for such a decay is eε∗µ(q)Mµ, where e is the electric charge of the
positron and ε∗µ(q) the polarisation vector of the outgoing photon. The Ward identity for
the electromagnetic current implies that qµMµ must be zero; therefore Mµ must have
the form

Mµ = ūi [iσµνqν (σLPL + σRPR)]u1 , (B.1)

where σµν = (i/2)[γµ, γν ] and PL = (1− γ5)/2 and PR = (1 + γ5)/2 are the projectors of
chirality, introduced in Sec. 2.1. σL and σR are numerical coe�cients with dimension of
inverse mass. The partial decay width for N1 → γνi is then given by

ΓN1→γνi =
(M2

1 −m2
i )

3

16πM3
1

(
|σL|2 + |σR|2

)
. (B.2)

By comparing the Lagrange-term for the charged current (5.1) combined with Eqs. (5.8)
and the transformation rule which diagonalizes the neutrino mass matrix in Eq. (5.2)

(
ν̃aL
Ñ c
aR

)
=
(
A B
C D

)(
νiL
N c
IR

)
, (B.3)

with that given in chapter 5 of [97], we can easily calculate the coe�cients σL and σR.
Supposing from the very beginning, that the right-handed scale is much larger, than the

�Ñ1
la

Wi

ν̃i

Ñ1
la

Wi

la

Aλ

ν̃i

Wi

A
λ

Figure B.1: Unitary-gauge diagrams contributing to the radiative neutrino decay with
charged leptons propagating in the loop.
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left one, M �MW ' 80.4 GeV, and neglecting the active neutrino masses, we get1

iσR =
g2e

32M2
Wπ

2
×

∑
a=e,µ,τ

{
cos ζ sin ζ A∗

aiD
∗
a1mlaF(ra) + cos2 ζ A∗

aiBa1M1F (ra)
}
,

(B.4a)

iσL =
g2e

32M2
Wπ

2
×

∑
a=e,µ,τ

{
cos ζ sin ζ CaiBa1mlaF(ra)

}
, (B.4b)

where F (ra) and F(ra) are functions of ra ≡ m2
la
/M2

W . In our case, we have in good
approximation F (ra) ' −3/2 and F(ra) ' 4. The exact expressions for these functions
were calculated by us and do agree with that given in Ref. [101].

Because of the Majorana nature of our in- and outgoing neutrinos, we also have to
add the contribution of the complex conjugated process to our amplitude. This is easily
obtained out of Eqs. (B.4) by putting in the substitutions

A,B → A∗, B∗ and C,D → C∗, D∗ ,
γ5 → −γ5 ⇒ L,R→ R,L ,

(B.5)

and an overall negative sign coming from the photon vertex. After adding the derived σL
and σR, it is easy to see that |σL|2 = |σR|2, where

|σL|2 =
(

g2e

32M2
Wπ

2

)2

×

∣∣∣∣∣4 cos ζ sin ζ
∑

a=e,µ,τ

(AaiDa1 − CaiBa1)mla

− 3
2

cos2 ζ

( ∑
a=e,µ,τ

AaiB
∗
a1

)
M1

∣∣∣∣∣
2

. (B.6)

Using this expression in Eq. (B.2) we obtain

ΓN1→γνi '
G2
FαM

3
1

64π4
×

∣∣∣∣∣4 cos ζ sin ζ
∑

a= e,µ,τ

(AaiDa1 − CaiBa1)mla

− 3
2

cos2 ζ

( ∑
a= e,µ,τ

AaiB
∗
a1

)
M1

∣∣∣∣∣
2

. (B.7)

Here GF is the Fermi constant, α the �ne-structure constant, and mla is the mass of the
charged lepton propagating in the loop.

The total width of the radiative decay is then given by the sum over the outgoing
states

ΓN1→γν =
3∑
i=1

ΓN1→γνi . (B.8)

In a model where a see-saw mechanism of type I or II is responsible for the small active
neutrino masses, the transformation (B.3) corresponds to Eq. (5.3). Putting this into our
formulas, we get out of Eq. (B.7) the expression (5.31).

1Note, that our results do not coincide with the formulas in [101]. This is because of a mistake in
the second term of the third line of equation (10) in [101]. The correct labelling of the transformation
matrices should be PaBQaA instead of PaAQaB . In our notations, where a sterile neutrino (with mass
eigenstate index 1) decays through the radiative process into an active neutrino (with mass eigenstate
index i) the expression PaBQaA translates into Ba1Cai which is contained in Eq. (B.4b).



Appendix C

The Higgs Potential in the LR

symmetric Model

The most general renormalizable expression for the Higgs potential satisfying the gauge
symmetry GLR = SU(3)C × SU(2)L × SU(2)R × U(1)B−L of the left-right symmetric
model and in addition the discrete parity transformation de�ned by (cf. Eq. (3.73))

Ψi
L, q

i
L ↔ Ψi

R, q
i
R , φ↔ φ† , ∆L ↔ ∆R , (C.1)

is given by [56]

V(φ,∆L,∆R) =− µ2
1

[
Tr
(
φ†φ

)]
− µ2

2

[
Tr
(
φ̃†φ

)]
− µ2

3

[
Tr
(
∆L∆†

L

)
+ Tr

(
∆R∆†

R

)]
+ λ1

[
Tr
(
φφ†

)]2
+ λ2

{[
Tr
(
φ̃φ†

)]2
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[
Tr
(
φ̃†φ
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+ λ3
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Tr
(
φ̃φ†

)
Tr
(
φ̃†φ

)]
+ λ4Tr

(
φφ†

) [
Tr
(
φ̃φ†

)
+ Tr

(
φ̃†φ

)]
+ ρ1

{[
Tr
(
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(
∆R∆†

R

)]2}
+ ρ2

[
Tr
(
∆2
L

)
Tr
(
∆†
L

2
)

+ Tr
(
∆2
R

)
Tr
(
∆†
R

2
)]

+ ρ3

[
Tr
(
∆L∆†

L

)
Tr
(
∆R∆†

R

)]
+ ρ4

[
Tr
(
∆2
L

)
Tr
(
∆†
R

2
)

+ Tr
(
∆†
L

2
)

Tr
(
∆2
R

)]
+ α1

{
Tr
(
φφ†

) [
Tr
(
∆L∆†

L

)
+ Tr

(
∆R∆†

R

)]}
+ α2

[
Tr
(
φφ̃†

)
Tr
(
∆R∆†

R

)
+ Tr

(
φ†φ̃

)
Tr
(
∆L∆†

L

)]
+ α∗

2

[
Tr
(
φ†φ̃

)
Tr
(
∆R∆†

R

)
+ Tr

(
φ̃†φ

)
Tr
(
∆L∆†

L

)]
+ α3

[
Tr
(
φφ†∆L∆†

L

)
+ Tr

(
φφ†∆R∆†

R

)]
+ β1

[
Tr
(
φ∆Rφ

†∆†
L

)
+ Tr

(
φ†∆Lφ∆†

R

)]
+ β2

[
Tr
(
φ̃∆Rφ

†∆†
L

)
+ Tr

(
φ̃†∆Lφ∆†

R

)]
+ β3

[
Tr
(
φ∆Rφ̃

†∆†
L

)
+ Tr

(
φ†∆Lφ̃∆†
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. (C.2)

This potential is a possible source of CP violation. First of all, every term in expression
(C.2) is self-conjugate except that of α2. This parameter is therefore the only one in the
Higgs potential which may be complex, leading to explicit CP violation. Secondly, the CP
symmetry can be broken spontaneously if the Higgs particles in the LR symmetric model
acquire complex VEVs. In Ref. [56] it is demonstrated, that if we remove explicit CP
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violation from the potential (C.2) by taking α2 to be real, then, in the absence of extreme
�ne-tuning, spontaneous CP violation is excluded, meaning that in this case the vacuum
expectation values vL,R and the κ's can be chosen real.
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