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Zusammenfassung

Diese Dissertation behandelt die Möglichkeit den Flavorsektor des Standardmodells der Teilchen-
physik (mit Neutrinomassen), das heißt die Massen und Mischungsmatrizen der Fermionen,
mithilfe einer diskreten, nicht-abelschen Flavorsymmetrie zu beschreiben. Insbesondere wer-
den massenunabhängige Texturen untersucht, bei denen ein oder mehrere Mischungswinkel
allein durch die Gruppentheorie bestimmt werden. Zu diesem Zweck wird eine systematische
Analyse einer großen Klasse von diskreten Symmetrien, der Diedergruppen, durchgeführt. Der
Ursprung von massenunabhängigen Texturen, die aus solchen Symmetrien entstehen, wird un-
tersucht und es wird gezeigt, dass solche Strukturen auf natürliche Weise aus der Minimierung
von skalaren Potentialen folgt, wobei die Skalare Eichsingletts, sogenannte Flavons, sind, die
nur unter der Flavorsymmetrie nicht-trivial transformieren. Aus diesen Vorgaben werden zwei
Modelle konstruiert, eines beschreibt die Leptonen und beruht auf der Gruppe D4, das andere
die Quarks und verwendet die Gruppe D14. Im zweiten Modell ist es das Element Vud der
Quark-Mischungsmatrix - im wesentlichen der Cabibbo-Winkel - das in erster Näherung allein
durch die Gruppentheorie vorhergesagt wird. Abschließend wird die Möglichkeit diskutiert, die
diskrete Flavorgruppe als Untergruppe einer kontinuierlichen Eichsymmetrie zu beschreiben
und es wird gezeigt, dass dafür die ursrprüngliche Eichsymmetrie von verhältnismäßig großen
Darstellungen gebrochen werden muss.

Abstract

This thesis deals with the possibility of describing the flavor sector of the Standard Model
of Particle Physics (with neutrino masses), that is the fermion masses and mixing matrices,
with a discrete, non-abelian flavor symmetry. In particular, mass independent textures are
considered, where one or several of the mixing angles are determined by group theory alone
and are independent of the fermion masses. To this end a systematic analysis of a large class of
discrete symmetries, the dihedral groups, is analyzed. Mass independent textures originating
from such symmetries are described and it is shown that such structures arise naturally from
the minimization of scalar potentials, where the scalars are gauge singlet flavons transforming
non-trivially only under the flavor group. Two models are constructed from this input, one
describing leptons, based on the group D4, the other describing quarks and employing the
symmetry D14. In the latter model it is the quark mixing matrix element Vud - basically the
Cabibbo angle - which is at leading order predicted from group theory. Finally, discrete flavor
groups are discussed as subgroups of a continuous gauge symmetry and it is shown that this
implies that the original gauge symmetry is broken by fairly large representations.
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Chapter 1

Introduction

Who ordered that? Isidor Isaac Rabi’s exclamation upon the discovery of the muon is still
unanswered, more than fifty years later. And to top it off: Whoever ordered the muon found
that he/she liked it and decided to order a lot more.
Physicists may not have been able to answer the (possibly unanswerable) question concerning
the fundamental reason for the existence of the muon. At least the discovery of a full set of
three generations, that is three copies of each fundamental fermion occurring in ordinary atomic
matter (including the neutrino), along with the precise experimental determination of the mass
hierarchies and the mixing among these generations, have allowed us to at least formulate the
question more precisely. The fundamental one remains: Why are there three generations of fer-
mions? The most satisfying answer we can give to date is that three generations is the minimal
number needed to allow for CP violation, a discovery for which the 2008 Nobel Prize in physics
was awarded to Makoto Kobayashi and Toshihide Maskawa.
But even if we humbly accept that three generations of fermions exist, we still need to explain
how the observed masses and mixings come to be. It is the answer to this question to which
this doctoral thesis will attempt to contribute a small part.
As the title of this thesis already suggests, our approach to this question is based on sym-
metries. The symmetry principle is one of the foundations of the Standard Model of Particle
Physics (SM). The symmetries of space-time and the internal gauge symmetries constrain the
allowed terms in the Standard Model Lagrangian in such a way that only a small number of free
parameters is left to be determined from experiment. The success of this approach is spectac-
ular. And it is interesting that the SM has its weakest points where the symmetry principle is
faced with its limitations. For one, the electroweak gauge symmetry is broken in nature. This
breaking is performed in the SM through the Higgs Mechanism, which leaves many questions
unanswered, both experimentally (the Higgs boson is the only particle in the SM which has not
been observed in experiment) and theoretically (most notably the hierarchy problem).
There is also one aspect of the Standard Model which remains virtually untouched by the sym-
metry principle altogether: the flavor sector, that is the masses of and the mixing among the
three fermion generations. This sector contains by far the majority of the free parameters in
the SM Lagrangian and can be considered the part of the model that most resembles a semi-
empirical hodgepodge, rather than a fundamental theory. Physicists have thus been looking for
a symmetry governing flavor for quite a while. In this thesis we join this search by analyzing
a large class of possible symmetries, the dihedral groups, with respect to their suitability as
symmetries of flavor.
To go about this, we will start by reviewing the Standard Model of Particle Physics (SM), as
far as it deals with flavor physics, in section 1.1. We review the origin of masses and mixing,
which are determined by a large number of free parameters in the SM. We go on to discuss
neutrino masses and mixing in section 1.2.
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10 CHAPTER 1. INTRODUCTION

Chapter 2 is then devoted to presenting the general approach of this thesis towards the flavor
puzzle. The experimental results presented in chapter 1 are analyzed in section 2.1. Some of the
observed regularities cry out for an explanation, and we highlight some theoretical approaches
towards explaining them, before, in in section 2.2, presenting our method of choice, augmenting
the SM by a discrete non-abelian flavor symmetry Gf and thereby constraining the free flavor
parameters of the SM and finding deeper reasons for non-trivial correlations among them. To
further illustrate this general description, we present a worked-out flavor symmetry model in
section 2.3. From these considerations, we are led to a systematic approach to the problem of
finding both a suitable group Gf and the transformation properties of the involved fields, based
mainly on the existence of residual subgroups which remain exact after spontaneous breaking
of the flavor symmetry.
We perform such a systematic analysis for the set of single-valued and double-valued dihedral
groups in chapter 3. This analysis reveals a very interesting case of subgroup mismatch, dis-
cussed in chapter 4, first from a general perspective (section 4.1), then through the discussion
of an instance, where it has been implicitly used in the literature (section 4.2), and finally along
the lines of a worked-out example, in which this subgroup mismatch leads to the prediction of
the Cabibbo angle (section 4.3). In chapter 5, we discuss how to separate the scales of elec-
troweak and flavor symmetry breaking, leading to models with Gf broken at a high scale by
gauge singlet flavon fields. The dynamics involved in this breaking are discussed in a general
manner both for the SM (section 5.1) and for the Minimal Supersymmetric Standard Model
(MSSM), easily the most popular candidate for physics beyond the SM (section 5.2). We obtain
the result that the conservation of the subgroups necessary for the subgroup mismatch, can be
obtained as a prediction from minimizing very general scalar potentials invariant under Gf . All
the elements gathered in the preceding sections are then put together in two exemplary models
in chapter 6. The first model is based on the group D4 and uses the subgroup mismatch to
predict maximal atmospheric mixing in the lepton sector (section 6.1), the second one uses D14

for a prediction of the Cabibbo angle (section 6.2).
We finish with an outlook on the possible origin of a flavor symmetry Gf in chapter 7, focussing
on the possibility that the discrete flavor group may be a subgroup of a spontaneously broken
gauge symmetry, and finally offer our conclusions in chapter 8. A glossary of abbreviations
and group theory terms is given in appendix A, while additional mathematical information on
the dihedral groups can be found in appendix B and several bulky results have been moved to
appendix C. Parts of this thesis have already been published in [1–5].

1.1 Flavor in the Standard Model

The SM contains 45 Weyl fermions, all of which transform non-trivially under the gauge group
of the SM, SU(3)c × SU(2)L × U(1)Y . They can be divided into three generations of 15 Weyl
fermions each. The transformation properties under the gauge group repeat themselves in each
generation and are given, for the first generation, in table 1.1. Only the names change for the
second generation, with ( c, s, νµ, µ ) instead of ( u, d, νe, e), and (t, b, ντ , τ) for the third
generation. When talking about all three generations, we will often alternatively write u(c)

i ,
d

(c)
i , να, eα and eci with i = 1, 2, 3 and α = e, µ, τ , since for left-handed leptons the numerical

indices are reserved for the mass eigenstates, as we will discuss below. We will also use the
notation Qi and lα for the quark and lepton SU(2)L doublets, respectively.
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Fermion SU(3)c SU(2)L I3 U(1)Y(
u

d

)
3 2

1
2

−1
2

1
3

uc 3 1 0 −4
3

dc 3 1 0 2
3(

νe

e

)
1 2

1
2

−1
2

-1

ec 1 1 0 2

Table 1.1: The transformation properties of the first generation of SM fermions under the SM gauge group in the
Grand Unified Theory (GUT) notation, where all fermions are written as left-handed Weyl spinors. The SU(3)c

multiplet structure has been suppressed.

None of these fermions can have a gauge invariant mass term in the Lagrangian. Mass is

generated by Yukawa couplings to the Higgs scalars H =
(

H0

H−

)
or their conjugate εH∗ =

( −H+

H∗
0

)
, with transformation properties (1, 2, ∓1) under the SM gauge group:

−LY = Y u
ij (uiu

c
jH

∗
0 + diu

c
jH

+) + Y d
ij(did

c
jH0 − uid

c
jH

−) + Y e
αj(eαe

c
jH0 − ναe

c
jH

−) + h.c. (1.1)

Note that we have in this work adopted the basis in which the left-handed fermions are associated
with the rows of the Yukawa coupling matrices, the left-handed conjugate fermions with the
columns.
Due to its multiply named potential (”Mexican hat”, ”wine bottle”)

V = −µ2
(∣∣H0

∣∣2 +
∣∣H−∣∣2

)
+ λ

(∣∣H0
∣∣2 +

∣∣H−∣∣2
)2
, (1.2)

with µ, λ > 0, the Higgs boson obtains a non-vanishing vacuum expectation value (VEV)(
vwk

0

)
, vwk =

√
µ2

2λ , breaking the SM gauge group down to SU(3)c × U(1)em. The transfor-

mation properties of the SM fields under the residual U(1)em, i.e. the electric charge, is given
by the Gell-Mann Nishijima formula

Q = I3 +
Y

2
. (1.3)

At the same time, the Higgs VEV gives Dirac masses to all SM fermions, except for the neutrinos,
with mass matrices

(ML)ij = vwk Y
L
ij , (1.4)

where L is u, d or e. In the latter case mixed Greek and Latin indices should be used. If, as we
have conceded, we accept for the time being that there are three generations, we are faced with
the question of how to determine the elements of the mass matrices, as both the Higgs VEV
and the Yukawa couplings are free parameters in the SM. The first question is of course, how
they can be determined experimentally, that is first of all, in which observables they appear.
The overall scale of the fermion masses vwk can directly be calculated from the Fermi constant
GF , as determined in measurements of the muon lifetime. This is because the Higgs VEV
also gives mass to the electroweak gauge bosons, to which it couples in a gauge invariant way,
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i.e. without the large number of free parameters encountered in its coupling to fermions. The
electroweak scale vwk is thus determined to be (2

√
2GF )−

1
2 ≈ 174GeV. Its origin is to be found

in the precise dynamics of electroweak symmetry breaking, with which we will not be concerned
in this thesis.
With the overall scale given, the question is how to measure the dimensionless Yukawa couplings.
We can never measure the mass matrices directly. We can however measure the masses, which
correspond to the square roots of the eigenvalues of the squared mass matrices MM † or M †M ,
that is the singular values of M . For the charged leptons and the top quark the determination
of the masses is pure kinematics. All other quarks will hadronize before decaying (if they decay
at all), and the actual (current) quark masses need to be extracted from measurable hadronic
properties, by the means of Quantum Chromodynamics (QCD) calculations on the lattice or
effective field theories, such as chiral perturbation theory, heavy quark effective theory or non-
relativistic QCD. The fermion masses depend on the momentum scale, due to renormalization
group running. We have chosen to give all fermion masses at the scale of the Z boson mass,
MZ ≈ 91.2GeV. One observes a large hierarchy between the masses of the three generations [6]:

mu(MZ) = 1.27+0.50
−0.42 MeV, mc(MZ) = 0.619+0.084

−0.084 GeV, mt(MZ) = 171.7+3.0
−3.0 GeV,

md(MZ) = 2.90+1.24
−1.19 MeV, ms(MZ) = 55+16

−15 MeV, mb(MZ) = 2.89+0.09
−0.09 GeV,

me(MZ) = 0.486570161+0.000000042
−0.000000042 MeV, mµ(MZ) = 102.7181359+0.0000092

−0.0000092 MeV,

mτ (MZ) = 1746.24+0.20
−0.19 MeV. (1.5)

One can already see from the precision of these numbers what a difficult task the extraction of
quark masses is, compared to determining lepton masses.
For a full knowledge of the Yukawa couplings, the eigenvectors of the fermion mass matrices
are needed. These can partially be observed in the weak interaction, due to the fact that the
weak basis, i.e. which pairs of quarks form a doublet under SU(2)L, no longer coincides with
the mass bases, the bases in which the Yukawa couplings and hence the fermion mass matrices
are diagonal. Due to the universality of the weak interaction, one is free to choose the weak
basis and one usually takes it to coincide with the mass basis for the up-type quarks, such that
all mixing originates from the down-type quark sector. The mass basis d′j is then related to the
weak basis di by a unitary transformation Ud. To be more precise, if

U †dMdM
†
dUd = diag(m2

d,m
2
s,m

2
b), (1.6)

that is

U †dMdUdc = diag(md,ms,mb), (1.7)

where Udc in an unobservable unitary transformation of the left-handed conjugate down quarks,
then di = (U∗d )ij d

′
j . We can thus reformulate the charged current interaction term in the

Lagrangian, expressed using the weak eigenstates ui and di,

− g√
2

[u∗iσ
µdi]W+

µ + h.c., (1.8)

in terms of the mass eigenstates u′i and d′i,

− g√
2

[
(u′i)

∗σµ (VCKM )ij d
′
j

]
W+
µ + h.c., (1.9)

where σµ is a four vector of two-by-two matrices given by (1,−~σ), with ~σ the three-vector of
Pauli matrices. We see that the Cabibbo-Kobayashi-Maskawa (CKM) quark mixing matrix is
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equal to U∗d . In general, as in the models presented later on, the weak basis need not be fixed
by the up quark mass basis. If the two bases are not identical, one needs to introduce a second
unitary transformation Uu, with

U †uMuM
†
uUu = diag(m2

u,m
2
c ,m

2
t ) (1.10)

and consequently ui = U∗uu′i, and the CKM quark mixing matrix is given by the general formula

VCKM = UTu U
∗
d =




Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb


 . (1.11)

The elements of the CKM matrix are measurable in processes involving the weak interaction.
They contain all the observable information on the eigenvectors of the quark Yukawa matrices.
The CKM matrix is usually parameterized in the following way:

VCKM =




c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13


 , (1.12)

where cij = cos θij and sij = sin θij . The mixing angle among the first two generations θ12

is also called the Cabibbo angle θC . All mixing angles are restricted to lie in the first quad-
rant, such that all sines and cosines are positive, while the Kobayashi-Maskawa (KM) phase
δ may lie between 0 and 2π. An alternate parameterization of the CKM matrix, which fo-
cusses more strongly on the hierarchy among the mixing matrix elements, is the Wolfenstein
parameterization,

VCKM =




1− λ2

2 λ Aλ3(ρ− i η)
−λ 1− λ2

2 Aλ2

Aλ3 (1− ρ− i η) −Aλ2 1


 +O(λ4). (1.13)

The two parameterizations are related by

s12 = λ , s23 = Aλ2 , s13e
iδ = Aλ3(ρ+ iη). (1.14)

The Wolfenstein parameterization is mainly characterized by the small expansion parameter λ,
which is, as can be inferred from comparing the two parameterizations, equivalent to sin θC .
The absolute values of the CKM matrix elements can be extracted from measurements of many
processes, mainly involving decay processes (of hadrons or the top quark), but also meson
mixing or deep inelastic neutrino scattering. They can then further be constrained by imposing
certain relations among the matrix elements, arising from unitarity. The fit results determined
in this way are [7]

|VCKM | =



0.97419± 0.00022 0.2257± 0.0010 0.00359± 0.00016
0.2256± 0.0010 0.97334± 0.00023 0.0415+0.0010

−0.0011

0.00874+0.00026
−0.00037 0.0407± 0.0010 0.999133+0.000044

−0.000043


 . (1.15)

While the magnitudes of the CKM elements are parameterization independent, the phases are
not. Instead of giving the phase, one therefore usually uses a parameterization independent
measure of CP violation, the Jarlskog invariant JCP , given by

JCP
∑
m,n

εikmεjln = Im[VijVklV ∗ilV
∗
kj ]. (1.16)



14 CHAPTER 1. INTRODUCTION

It can be extracted from measurements of CP violation and asymmetry in meson mixing and
decays. The current experimental value is [7]

JCP = (3.05+0.19
−0.20)× 10−5. (1.17)

This is then all the information that can experimentally be obtained on the Yukawa matrices
in the SM. It already gives us a large number of free parameters in the flavor sector: 9 masses,
3 mixing angles and one CP violating phase (disregarding the Higgs VEV, which is not really a
part of the flavor sector) for a total of 13 free parameters, easily the majority of free parameters
in the SM. In the SM the eigenvectors of the charged lepton mass matrix are not even partially
observable: due to the mass degeneracy of the neutrinos (all three have vanishing mass) they
have no defined mass basis. One is thus free to choose the weak basis to correspond with the
charged lepton mass basis and no leptonic mixing shows up in the weak interaction. Experiments
in the last decade have however been able to observe leptonic mixing and thus proven that
neutrinos do have (non-degenerate) masses. This has not been incorporated into a new Standard
Model, since the exact nature of neutrino mass generation, in particular whether they are Dirac
or Majorana fermions, remains undetermined. For this reason, we discuss neutrino masses and
leptonic mixing in a separate section, the next one.

1.2 Neutrino Masses and Leptonic Mixing

Starting its measurements in 1970, the Homestake experiment was the first to establish the solar
neutrino problem [8], that is a flux of electron neutrinos from the sun that was significantly
smaller than expected from the Standard Solar Model. By the early 90s, the experiments
KamiokaNDE II and IMB, both experiments actually designed to measure proton decay, also
showed first hints towards a deficit in the flux of atmospheric muon neutrinos [9, 10]. In 1998
then, Super-KamiokaNDE provided the first evidence of atmospheric neutrino oscillations [11].
This was followed in 2001 by direct evidence of solar neutrino oscillations in the SNO experiment
[12], where the electron neutrinos missing in the solar neutrino flux were detected as neutrinos
of other flavors.
Neutrino oscillations can only occur if neutrinos have non-degenerate masses, i.e. if at least two
of the three neutrino masses are non-vanishing. In this case a neutrino mass basis is defined
by the neutrino mass matrix and can no longer be chosen to coincide with the mass basis of
the charged leptons and the weak basis, regardless of the actual mechanism of neutrino mass
generation. We thus have to introduce a unitary transformation Uν relating the neutrino mass
basis and the weak basis, i.e. να = (U∗ν )αi νi, where the νi with i = 1, 2, 3 are the neutrino mass
eigenstates. In general neutrinos with Latin indices denote mass eigenstates. This again effects
the charged current weak interaction, which then reads

− g√
2

[e∗ασ
µ (VPMNS)αi νi]W

−
µ + h.c., (1.18)

where the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix VPMNS = U∗ν is the leptonic
analog of the CKM matrix. Note however, that it is defined in a complementary fashion, as it
is the weak isospin I3 = −1

2 field that is chosen to have its mass basis correspond to the weak
basis, in contrast to the quark sector. In the leptonic sector, we will also later be departing
from convention and define a weak basis that is neither the charged lepton nor the neutrino
mass basis. In this case another unitary transformation is introduced, eα = (U∗e )αiei, with ei
the charged lepton mass basis, which is determined by

U †eMeM
†
eUe = diag(m2

e,m
2
µ,m

2
τ ). (1.19)
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The general formula for the PMNS matrix is then

VPMNS = UTe U
∗
ν =




Ve1 Ve2 Ve3
Vµ1 Vµ2 Vµ3

Vτ1 Vτ2 Vτ3


 . (1.20)

We still need to calculate Uν . For this we need to know the neutrino mass matrix, and hence
need to make some statement on the origin of neutrino mass. The first question we need to
answer is whether the neutrino has a Majorana or a Dirac mass. Dirac masses are conceptually
simpler, since they are completely analogous to the masses of the other SM fermions. We need
to introduce three additional Weyl fermions νcα (two are actually sufficient, since one of the
neutrinos can be massless) transforming as total singlets under the SM gauge group. We can
then write down additional Yukawa couplings

−LD = Y ν
αβ(ναν

c
βH

∗
0 + eαν

c
βH

+) + h.c., (1.21)

which lead to a neutrino mass matrix

Mν = vwkY
ν (1.22)

and a neutrino diagonalization matrix Uν defined by

U †νMνM
†
νUν = diag(m2

1,m
2
2,m

2
3). (1.23)

However, one has to take into account that the charge-conjugated left-handed neutrinos are
total SM singlets, and thus a direct (Majorana) mass term is allowed for them. In the case of
Dirac neutrinos, this mass term needs to be forbidden, for example by imposing conservation
of lepton number. If it does exist it takes the form

−LM =
1
2
νcα (Mνc)αβ ν

c
β + h.c. (1.24)

Since the elements of Mνc are not related to the electroweak scale, they will be large in general.
We can then write down an effective theory, in which the heavy Majorana neutrinos, which
are basically identical with the νc, are integrated out. Only three light Majorana neutrinos
remain in the theory: These are then the left-handed neutrinos, ignoring small admixtures.
Their Majorana mass matrix is given by

Mν = −v2
wk (Y ν)T M−1

νc Y ν . (1.25)

Since we integrate out the νc, we could just take the agnostic approach of writing down only
an effective operator to begin with. The general effective, non-renormalizable operator giving
a Majorana mass to the left-handed neutrinos is

1
Λ
Ỹ ν
αβ

(
ναH

∗
0 + eαH

+
) (
νβH

∗
0 + eβH

+
)
, (1.26)

where Λ here and in the following always denotes the high energy scale at which an effective
operator is generated. Equation (1.25) is then only one, albeit very plausible, possible origin
for the light neutrino Majorana mass matrix. If the light neutrino Majorana mass matrix is
generated in this way, one speaks of a Type I Seesaw model [13–15]. Another popular possibility
for generating a Majorana mass matrix Mν is the introduction of a scalar SU(2)L triplet which
acquires a small VEV. Combining this with a Type I Seesaw model leads to a mixed or Type
II Seesaw model [16]. In any case low energy phenomenology is determined solely by Mν . For
Majorana neutrinos, the neutrino diagonalization matrix is then determined by
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U †νMνU
∗
ν = diag(m1,m2,m3). (1.27)

The parameterization of the resulting PMNS matrix depends on whether neutrinos are Dirac
or Majorana particles. For Dirac neutrinos, the analogy to the quark case is complete, and we
can parameterize VPMNS in the same way we parameterized VCKM in equation (1.12). Since
we now have two sets of mixing angles, we will sometimes write θqij and θlij for the mixing
angles of quarks and leptons, respectively. For Majorana neutrinos we have two phases, which
cannot be removed by a rephasing of the fields, for the simple reason that we have less fields
to rephase than in the quark sector. Even if we introduce left-handed conjugate neutrinos in a
Type I Seesaw setup, rephasing them has no effect on the light neutrino mass matrix. We thus
parameterize the PMNS matrix as

VPMNS = Ṽ
(
θl12, θ

l
23, θ

l
13, δ

l
)
·



eiφ1 0 0
0 eiφ2 0
0 0 1


 , (1.28)

where Ṽ is parameterized in the same way as the CKM matrix, and φ1 and φ2 are the Majorana
phases. They lie in the interval [0, π).
Information on the singular values and the eigenvectors of Mν can be obtained from experiment,
regardless of the nature of neutrinos, be it Majorana or Dirac. As opposed to the quark case,
where mixing matrix elements are measured mainly in decay processes and masses are extracted
from the properties of bound states, information on the neutrino mass matrix is obtained from
oscillation experiments. Two properties can be measured: The mixing angles between gener-
ations, which appear in the standard parameterization of VPMNS , and the differences of the
squared neutrino masses.
The leading solar oscillation parameters are ∆m2

21 = m2
2−m2

1 and correspondingly sin θ12. They
are measured in oscillation experiments with solar neutrinos, such as SNO, and in terrestrial
experiments using reactor antineutrinos, such as KamLAND [17]. The leading atmospheric
oscillation parameters are ∆m2

31 = m2
3 − m2

1 and sin θ23, obtained initially in oscillation ex-
periments with atmospheric neutrinos, such as SuperKamiokaNDE, but also in terrestrial long
baseline experiments observing the disappearance of muon neutrinos, such as MINOS [18]. The
third mixing angle is measured mainly in experiments with reactor neutrinos, but with a shorter
source-detector distance than in KamLAND, and is therefore sometimes called the reactor angle
or the CHOOZ angle, after one of the main experiments of this type [19]. The best-fit values
as well as the allowed 1σ and 3σ ranges of all the oscillation parameters are

sin2 θ12 = 0.304+0.022 ,+0.066
−0.016 ,−0.054 ,

∆m2
21 =

(
7.65+0.23 ,+0.69

−0.20 ,−0.60

)
× 10−5 eV2 ,

sin2 θ23 = 0.50+0.07 ,+0.17
−0.06 ,−0.14 , (1.29)

∣∣∆m2
31

∣∣ =
(
2.40+0.12 ,+0.35

−0.11 ,−0.33

)
× 10−3 eV2 ,

sin2 θ13 = 0.01+0.016
−0.011 (≤ 0.056) .

These numbers are all taken from a recent global analysis [20]. In contrast to the quark sector,
some essential parameters are still entirely unknown. To begin with, the sign of ∆m2

31 has not
been measured, and therefore both m3 > m1,2 (normal hierarchy) and m3 < m1,2 (inverted
hierarchy) are still possible. Also, only mass differences are known so far, the absolute mass
scale of neutrinos remains undetermined. Lower limits can obviously be obtained from the
squared mass differences themselves. An upper bound on the effective electron neutrino mass,
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mβ =
√∑

k

|(VPMNS)ek|2m2
k < 2.3 eV (1.30)

at 95 % C.L., was obtained in the Mainz experiment by measuring the kinematics of tritium beta
decay [21]. The KATRIN experiment will improve this bound by almost an order of magnitude,
using the same general principle [22]. Since relic neutrinos act as hot dark matter (HDM) in
the universe, bounds on the energy density of HDM translate into a bound for the sum of
neutrino masses. The exact bound depends on what other astrophysical and cosmological data
are considered and what models are used for dark energy. A fairly conservative estimate is [23]

∑

j

mj ≤ 0.80 eV (1.31)

at 95 % C.L. Finally, neutrinoless double beta decay not only provides a measure of the absolute
neutrino mass scale, but, if observed, provides an unambiguous proof of the Majorana nature
of the neutrino. The current upper limit on the effective mass measured in this process comes
from the Heidelberg-Moscow experiment [24]:

|mee| =
∣∣∣∣∣
∑

k

(VPMNS)2ekmk

∣∣∣∣∣ < (0.35− 1.2) eV (1.32)

at 90 % C.L., where the range is due to uncertainties from the calculation of the involved nuclear
matrix elements [7]. Claims to evidence for neutrinoless double beta decay [25] are controversial
and have yet to be confirmed. In any case, experiments of the next generation, such as GERDA,
will improve this limit to about 0.1 eV or measure a non-vanishing mee [26]. There are also
experiments, coming up or already taking data, that will improve the measurements of the
oscillation parameters, for example Borexino, which started taking its data on solar neutrinos
in 2008 [27], or Double Chooz [28], which will improve the limit on sin θ13.
We finally mention, that the number of light neutrinos, that also interact weakly, is limited to
three by the measurement of the Z boson decay width at LEP [7]. This does not however exclude
the possibility of sterile neutrinos, which could mix with regular neutrinos after electroweak
symmetry breaking. Measurements by the LSND experiment seemed to indicate oscillations
involving a large squared mass splitting [29], which could be explained by the introduction of
at least one sterile neutrino. The subsequent MiniBoone experiment however could not confirm
these specific findings [30]. There is thus currently no conclusive evidence towards the existence
of more than the three known neutrino species.
We have collected in this first chapter the data and observations currently available to guide
us towards something like a model of flavor. In the next section, we begin by putting this data
into perspective, pointing towards regularities and structures which such a model might be or
should be able to explain.
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Chapter 2

Non-Abelian Discrete Flavor
Symmetries

2.1 Theoretical Approaches to the Flavor Sector

Until the discovery of neutrino oscillations and the measurement of the leptonic mixing angles,
the most striking feature of the parameters of the flavor sector was certainly the hierarchy
among the masses of the three generations. Early models of the flavor sector thus tend to focus
strongly on this aspect. For the quarks for example we have

mu : mc : mt ∼ λ8 : λ4 : 1,
md : ms : mb ∼ λ4 : λ2 : 1,

mb : mt ∼ λ2 : 1, (2.1)

where λ ∼ 0.2 is the small expansion parameter suggested by the Wolfenstein parameterization
of the CKM matrix. We will be using it as a generic measure for small expansion parameters
throughout this thesis. To explain this hierarchy, one needs a theory that determines the
magnitude of the Yukawa couplings in the SM Lagrangian.
The simplest ansatz is to set some of the Yukawa couplings, and thereby some of the mass matrix
elements, to zero. This is referred to as choosing certain textures for the Yukawa matrices. An
overview of phenomenologically viable textures is given in [31]. As these texture zeroes are not
motivated by symmetries or some other principle, they are theoretically not very appealing.
Texture studies however can give guidance as to what Yukawa matrix structures are favorable
and should be reproduced by more involved models. Such studies have therefore also been
performed for Majorana [32] and Dirac [33] neutrinos.
An explanation for the mass hierarchies from a symmetry was provided by Froggatt and Nielsen
(FN) [34]. The additional symmetry is a U(1)FN . It is a horizontal symmetry, meaning that
under this symmetry the different generations transform differently, as opposed to all the known
symmetries of the SM, which are then correspondingly called vertical. Considering for example
the down quark sector, one can assign charges qLi to the Qi and qRi to the dci , where all charges
are either positive integers or zero. Then the only non-zero Yukawa couplings Y d

ij are those
for which qLi = qRj = 0, as long as the U(1)FN is an exact symmetry. If this FN symmetry is
however broken spontaneously by the VEV of a gauge singlet scalar θ with U(1)FN charge of
-1, the additional Yukawa couplings are generated by effective, non-renormalizable operators

ỸijQid
c
jH

(
θ

Λ

)qL
i +qR

j

, (2.2)
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where the couplings Ỹij are assumed to be of order 1, while 〈θ〉
Λ must be a small parameter ε¿ 1.

We then obtain a hierarchy among the low energy effective Yukawa couplings Yij = Ỹijε
qL
i +qR

j if
we choose the U(1)FN charges accordingly. This translates directly into a hierarchy of fermion
masses. We use the FN mechanism in the models of this thesis to (partially) generate the quark
mass hierarchy. An alternative approach is to explain the mass hierarchy using wave function
overlap and localization in extra dimensions [35]. As none of the models presented in this thesis
makes use of extra dimensions, we will not be using such a mechanism.
Apart from the fermion mass hierarchy, other regularities have been noted. Two examples are
the Koide lepton mass relation [36]

√
me +mµ +mτ =

√
2
3

(√
me +

√
mµ +

√
mτ

)
, (2.3)

and the Georgi-Jarlskog relations, combining charged lepton and down-type quark masses [37]

mb = mτ , 3ms = mµ , md = 3me. (2.4)

As these two relations rely on the exact values of the masses, rather than on a more general
hierarchy, they are in general only true at one particular energy scale. For the Georgi-Jarlskog
relations this is a high energy scale, around the scale at which one expects the unification
of coupling constants in a Grand Unified Theory (GUT). A GUT, in which charged leptons
and down-type quarks are unified in a single multiplet, such as SU(5), is also the adequate
theoretical framework to obtain this relation. The Koide mass relation on the other hand is
true for the pole masses of the leptons, i.e. the actual masses obtained from kinematics. No
attempt at deriving the Koide mass relation from a symmetry has been entirely successful, as
all models need to artificially eliminate allowed terms in the Lagrangian [38].
Taking mass hierarchy as the fundamental attribute of the SM flavor sector, the quark mixing
angles arise as a byproduct. There exist several phenomenologically successful expressions
which relate mixing angles with quark mass ratios and can be obtained from specific mass
matrix textures [39–43], for example the Gatto-Sartori-Tonin (GST) [39] relation

θC ≈
√
md

ms
, (2.5)

which explains the smallness of the mixing among the first two generations by the mass hierarchy
among them. The full GST relation includes another contribution from the up-type quarks,
which is however subleading, as the mass hierarchy is more pronounced in that sector, cf.
equation (2.1).
The measurement of the large leptonic mixing angles and neutrino masses substantially changed
the flavor picture. Even though we do not yet know the absolute neutrino mass scale, the mass
squared differences already tell us that the neutrino mass hierarchy is by no means as pronounced
as for the charged fermions1. On the other hand, two of the mixing angles are large. Even more,
the measured leptonic mixing angles are all compatible with quite special values, sin2 θ23 = 1

2 ,
sin2 θ12 = 1

3 and sin2 θ13 = 0. If these values were exact, the leptonic mixing matrix would take
the form [44]

VPMNS =




√
2
3

1√
3

0
− 1√

6
1√
3

1√
2

− 1√
6

1√
3

− 1√
2


 , (2.6)

1The lightest neutrino can be massless, so that the relative hierarchy between the lightest and the next-to-
lightest neutrino can be arbitrarily large. The relative hierarchy between the two heavier neutrinos, however, is
limited by the squared mass differences.
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where we have suppressed possible Majorana phases. This special form of the mixing matrix
is called the Harrison-Perkins-Scott (HPS) mixing matrix or the tri-bimaximal mixing (TBM)
matrix and begs explanation. Even if we allow for sin2 θ12 6= 1

3 , we are still left with the striking
fact of one maximal and one vanishing mixing angle, with a third mixing angle large but non-
maximal. The corresponding mixing pattern (of which tri-bimaximal mixing is a special case)
is hence called bi-large. Since the interchange of the second and the third row (corresponding
to the indices µ and τ) only results in sign changes, a setup with such a mixing matrix is also
called µ-τ -symmetric.
These mixing angles do not look as if they arise from fermion mass ratios. We rather expect
that these mixing angles arise from symmetries of the mass matrices that are independent of
the eigenvalues, so-called mass independent textures [45]. This also leads to a re-evaluation of
the quark mixing angles. On the one hand, there may be a non-trivial relation with the leptonic
mixing angles, such as

θl12 + θC ≈ π

4
, (2.7)

which is referred to as Quark-Lepton Complementarity (QLC) [46]. On the other hand, the
Cabibbo angle may also be described through a specific value, rather than through order of
magnitude estimations [2, 47,48]:

θC ≈ π

14
. (2.8)

This implies that quark mixing may also be described by mass independent textures, and we
use this relation later on in this thesis. New theoretical approaches needed to be found, more
suited to predicting mixing patterns than hierarchical masses. Symmetries are again the method
of choice, but it needs to be reconsidered what kind of symmetries should be used. Abelian
symmetries, such as the U(1)FN , have only one-dimensional representations. They are well
suited for describing mass hierarchies: Each generation is treated separately and assigned a
charge determining its place in the hierarchy. Small mixings arise as a byproduct. In predicting
specific mixing patterns among generations however, it is the relationship among the generations
which becomes more important than the specific properties of each generation by itself. We
therefore need to move to higher-dimensional representations, in which two or three generations
are unified. These only exist in non-abelian groups.
This leaves the question of whether the horizontal flavor group should be continuous or discrete.
As the dimension of the irreducible representations (irreps) of continuous groups grows quite
rapidly with the size of the group, only very few groups are really able to accommodate the
three fermion generations without introducing new fermionic degrees of freedom. Taking into
account that2 U(2) ∼= SU(2) × U(1) and U(3) ∼= SU(3) × U(1), we have only three such
groups, all of which have been employed as flavor symmetries: SU(2) [50, 51], SO(3) [52, 53]
and SU(3) [54, 55], where SU(2) and SO(3) are of course very closely related, the first being
the double covering group of the second. Although these models easily predict large mixing,
they have problems predicting specific values for the mixing angles: A very elaborate vacuum
alignment is needed to reproduce TBM, for example. This can easily be understood from the
fact that in a continuous flavor symmetry no particular direction in flavor space is singled out
- we are free in our choice of axes. This is different in discrete flavor groups - here we have a
finite number of elements mapped by a finite number of representations to a finite number of
representation matrices with finitely many eigenvectors. Thus, a certain number of directions
in flavor space are singled out, like the axes of a crystal. This will play an important role in the

2Actually, in both cases a cyclic group needs to be modded out, just as the SM gauge group is really SU(3)×
SU(2)× U(1)/Z6 [49]. This is however irrelevant for our purposes.
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analysis of chapter 3. But first we will describe some general properties of non-abelian discrete
flavor symmetries.

2.2 Properties of Discrete Non-Abelian Flavor Symmetries

When designing a model of flavor using a horizontal symmetry group Gf , the first task is
obviously to pick a group. We have already elaborated on why we want to choose Gf non-
abelian and discrete. What further properties should Gf have? We want to accommodate
the three known fermion generations in irreps of Gf and also want to make use of the non-
abelianity of Gf , that is we want to unify at least two generations in an irrep. If we do not want
to introduce new fermionic degrees of freedom, this means that we must demand that Gf has
at least one two- or three-dimensional representation. This is already quite a strong restriction,
although it is by no means as strong as in the case of continuous groups, where it limited us to
three groups. In the discrete case, there is still quite a large (in fact infinite) set of groups to
choose from, and we begin by giving a brief overview of groups that have been used as flavor
groups in the literature.
The most popular choice for Gf is probably A4 [56–62], the group of even permutations of
four distinct objects or equivalently the symmetry group of the tetrahedron. The reason for its
popularity stems from the fact that it is ideally suited for predicting tri-bimaximal mixing. We
give more details on the mechanism responsible for this, when we consider the breaking of Gf
below. For now, we also mention that the double-valued group of A4, T ′, has been employed to
extend a model predicting TBM for leptons to the quark sector [63]. Also recent studies point
towards the fact that the special properties of A4 are no coincidence, but are related to the fact
that A4 is a maximal subgroup of S4, the group of permutations of four distinct objects. In fact
it can be shown that, under certain restrictions, predicting TBM specifically requires Gf to be
(or contain) S4 [64], which has also been studied as a flavor symmetry in its own right [65,66].
Of the other alternating and permutation groups, only very few are eligible candidates for a
flavor symmetry. A3

∼= Z3 is abelian, while the An with n ≥ 6 have no more two- or three-
dimensional irreps. This leaves A5, which has rarely been studied, but may be of interest for
describing the solar angle with the golden ratio [67]. The situation is similar for the permutation
groups: S2

∼= Z2 is abelian, the Sn with n ≥ 5 have no small irreps, leaving S3 which is
isomorphic to the dihedral group D3 and will thus be included in our study in the next chapter.
It is the smallest non-abelian group and has thus been very popular as a flavor symmetry [68–79].
There are however sequences of groups, where the groups corresponding to large integers are also
viable flavor symmetry candidates, most notably the dihedral symmetries, Dn and their double-
valued counterparts the D′

n. They have been used extensively in the literature [33,80–97], most
existing models however stick to a small n. We will discuss the dihedral groups extensively in
section 3. Other interesting sequences of groups are subgroups of SU(3), the groups ∆(3n2) and
∆(6n2), which all have a representation content compatible with being a flavor symmetry. Their
mathematical structure has been studied in [98, 99], a more phenomenological study along the
lines of the analysis presented in this thesis for the dihedral groups however does not yet exist.
These subgroups of SU(3) have gained some popularity as flavor groups [100–102]. There are
also other groups, which have been used as flavor groups, but are not part of a neat sequence,
such as for example the groups T7 or Σ(81) [103–105].
We see that there exists quite a large selection of flavor groups. Before focussing on a specific
subset, the dihedral groups, we will continue by discussing the general properties of models
incorporating a flavor symmetry. After choosing a group, representations need to be assigned
to the SM fermions and the charge-conjugated neutrinos νc, if they are present in the model.
Just as for the FN symmetry, this will force most, if not all, of the Yukawa couplings Y L

ij to be
zero. To obtain phenomenologically viable mixing patterns, we need to break Gf spontaneously
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with scalar VEVs. There are in principle two ways to do this: One is to use gauge singlet scalars,
as in the FN case. We will discuss this possibility in detail in section 5. For now we will focus
on the case where the flavor symmetry is broken along with the electroweak symmetry. This
means that we need a flavor-charged Higgs boson, or rather several of them. The framework is
then that of a multi-Higgs doublet model with Higgs bosons transforming non-trivially under
Gf . Such multi-Higgs doublet models tend to lead to phenomenological problems, and we will
be discussing them. However, as most general results apply equally well to both modes of
flavor symmetry breaking, and since the first models presented in this thesis break Gf at the
electroweak scale, it seems sensible to concentrate on these models for the time being.
When constructing a full model, we need to consider two sectors of the Lagrangian: We begin
by writing down the allowed Yukawa couplings, considering the transformation properties of
the fermions and the Higgs bosons. We then consider the Higgs potential and minimize it.
The resulting VEV configuration, together with the Yukawa couplings, gives the fermion mass
matrices. If our flavor group commutes with the standard model gauge group, and in particular
with SU(2)L, as we will assume throughout this thesis, then we set, without loss of generality,
the Gf basis to be identical with the weak basis. The unitary matrices diagonalizing the squared
mass matrices then give the quark and lepton mixing matrices, according to equations (1.11)
and (1.20); the eigenvalues of the squared mass matrices give the squared masses, taking into
account the regular changes for Majorana neutrinos. The results can then be compared with
phenomenology or taken as predictions of the model.
This is of course an excessive oversimplification. In general the results we want to produce will
not just drop out of our model, after choosing symmetry group and representation content.
Some additional engineering will be necessary in general. This is often performed by extending
the flavor symmetry group to Gf ×Zn, i.e. by introducing an auxiliary abelian symmetry. Both
fermions and scalars transform non-trivially under Zn. We can in this way divide our fermions
into several sectors, depending on their Zn charge. For example, considering leptons, we can
choose charges in such a way that one set of scalar VEVs contributes only to the charged
lepton mass matrix, while another set of scalars, with a different Zn charge, contributes only to
the neutrino mass matrix, at least at leading order. This is particularly interesting if the two
different sets of scalars acquire different VEV structures. For instance, take A4 and two sets
of scalars

(
ϕl,ν1 , ϕl,ν2 , ϕl,ν3

)
transforming under the three-dimensional representation of that

group: In models predicting TBM from A4 it is now a crucial ingredient that the scalars ϕνi
coupling to neutrinos acquire a VEV proportional to (1, 1, 1), while the scalars ϕli coupling to
charged leptons acquire a VEV proportional to (1, 0, 0).
This can also be understood in another way: The scalar VEVs coupling to neutrinos conserve a
Z2 subgroup of A4, while the scalar VEVs coupling to charged leptons conserve a Z3 subgroup.
It is this mismatch of subgroups which is responsible for creating the mass independent texture
and thus the special mixing pattern. This will be the guiding principle in our general analysis
of the dihedral groups in chapter 3. But first, we will take a look at a flavor symmetry model,
to see some of the general principles described in this section in action.

2.3 The D4 Scaling Model - a Worked-Out Example

2.3.1 Phenomenological Considerations - Scaling

Before we begin presenting the model, some comments on its phenomenological objectives are
in order. The model we present concerns only leptons. Its main goal is obtaining a Majorana
mass matrix for the light neutrinos that obeys the scaling ansatz [106]. This scaling hypothesis

demands that the ratio
(Mν)αβ

(Mν)αγ
is independent of the flavor α, i.e.



24 CHAPTER 2. NON-ABELIAN DISCRETE FLAVOR SYMMETRIES

Field D4 × Z2 quantum number

φ2 1+
1

ec, νce 1−1
le, νcµ 1+

3
νcτ , φ1 1−3
φ3 1−4(

lµ

lτ

)
,

(
φ4

φ5

)
2+

(
µc

τ c

)
2−

Table 2.1: Transformation properties under D4 × Z2 of the particle content of the D4 scaling model.

(Mν)eβ
(Mν)eγ

=
(Mν)µβ
(Mν)µγ

=
(Mν)τβ
(Mν)τγ

= c for fixed β and γ , (2.9)

in the basis, where the charged lepton mass matrix is diagonal. There are three possibilities
and the only one allowed by phenomenology is the one with β = µ and γ = τ . The resulting
mass matrix reads

Mν =




A B B/c

B D D/c

B/c D/c D/c2


 . (2.10)

The most important phenomenological prediction of scaling is that equation (2.10) leads to an
inverted hierarchy with m3 = 0 and Ue3 = 0. Atmospheric neutrino mixing is governed by the
scaling factor c and the relation tan2 θ23 = 1/c2, i.e. is in general non-maximal for c 6= 1.
We note that from m3 = 0 it follows that only the difference of the Majorana phases is physical.
It appears in the neutrinoless double beta decay effective mass mee. This parameter takes a
very simple form for the inverted hierarchy with m3 = θ13 = 0, if we neglect the solar mass
splitting:

|mee| =
√∣∣∆m2
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∣∣
√

1− sin2 2θ12 sin2 (φ1 − φ2) . (2.11)

The range of mee lies for the best-fit parameters from equation (1.29) between 0.019 and
0.049 eV, while at 1(3)σ it ranges between 0.017 and 0.050 eV (0.012 and 0.052 eV). This would
make an observation of neutrinoless double beta decay conceivable in the future [107]. Further
phenomenological implications of the scaling ansatz are discussed in [1]. We now continue by
presenting a specific model using the flavor symmetry D4 × Z2 that predicts scaling.

2.3.2 The Model

We work in the framework of a Type I Seesaw mechanism and employ aD4×Z2 flavor symmetry
to generate scaling. This model only describes the lepton sector: Apart from the regular
conjugated neutrinos νce,µ,τ , the conjugated charged leptons ec, µc, τ c and the lepton doublets
le,µ,τ , we introduce five Higgs doublets φ1,2,3,4,5. We have thus, as a first step, determined Gf as
well as the particle content. The exact assignment of representations under D4×Z2 is shown in
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table 2.1. The superscripts +,− refer to the transformation properties under Z2, the boldface
numbers to the D4 representations. For the mathematical details of the D4 group, we refer the
reader to section 3.1.1. From the assignment in Table 2.1 the following Yukawa Lagrangian is
obtained:

−L = k1 le e
c φ1 + lµµ

c (k2 φ1 − k3 φ3) + lττ
c (k2 φ1 + k3 φ3)

+h1 le ν
c
e φ1 + h2 le ν

c
µ φ2 + h3

(
lµ ν

c
µ φ4 + lτ ν

c
µ φ5

)
(2.12)

+
1
2

(
νce ν

c
eM1 + νcµ ν

c
µM2 + νcτ ν

c
τ M3

)
+ h.c.

From now on, as in this Lagrangian, we will drop the explicit decomposition into SU(2)L
component fields. Assuming all five Higgs fields acquire a non-vanishing VEV, the neutrino
Dirac mass matrix can be written as




a eiϕ b 0

0 d 0

0 e 0


 vwk , (2.13)

and both the charged lepton mass matrix and the Majorana mass matrix of the charge-
conjugated neutrinos are diagonal. We can always make the entries of these two diagonal
matrices real and positive by rephasing the charge-conjugated charged leptons and neutrinos.
This leaves us the freedom, to rephase the lα to remove all phases from the neutrino Dirac mass
matrix, except for the one complex phase included in the matrix of equation (2.13). There is
thus only one complex phase in the model and the entries of the Dirac mass matrix are given
by

a = |h1〈φ1〉| , b = |h2〈φ2〉| , d = |h3〈φ4〉| , e = |h3〈φ5〉| . (2.14)

We can then calculate the light neutrino Majorana mass matrix using the Type I Seesaw formula
to obtain

Mν = − v2
wk

M2




M2

M1
a2 e2iϕ + b2 b d b e

b d d2 d e

b e d e e2


 . (2.15)

Note that the third heavy neutrino massM3 does not appear inMν : the third charge-conjugated
neutrino does not take part in the seesaw because all its Dirac Yukawa couplings vanish. The
low energy mass matrix obeys scaling with c = d/e. We therefore have m3 = Ue3 = 0 and
tan2 θ23 = e2/d2 and the effective mass governing neutrinoless double beta decay is

mee =
v2
wk

M2

∣∣∣∣
M2

M1
a2 e2iϕ + b2

∣∣∣∣ =
√

∆m2
31

√
1− sin2 2θ12 sin2 (φ1 − φ2) . (2.16)

We now turn to the scalar, i.e. the flavor symmetry breaking, sector. First note that multi-
Higgs models, such as the one analyzed here, typically predict flavor changing neutral currents
(FCNCs) and Lepton Flavor Violation (LFV) in the charged lepton sector at dangerous levels.
In this model the charged lepton Yukawa matrices for all Higgs bosons are diagonal3. This

3Note that this is a stronger condition than demanding that the charged lepton mass matrix be diagonal, as
cancellations may occur.
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means that tree-level LFV is entirely forbidden and processes such as µ → eγ are suppressed
either by the Glashow-Iliopoulos-Maiani (GIM) mechanism (for light Majorana neutrinos in the
loop) or by the masses of the heavy charge-conjugated neutrinos. This is discussed in detail
in [108]. Since this model focusses only on the lepton sector, no statement can be made on
FCNCs, which could violate limits stemming from rare meson decays. The only remaining
phenomenological constraint are limits from direct searches. The analysis of the scalar masses
in a very similar model 4 in [1] shows that it is generally possible to choose the couplings in the
potential in such a way that the masses of all physical scalars are large enough to avoid such
limits. This is no longer necessarily true for models with more scalar states, and we will return
to these problems in section 4.3.
What remains to be considered is the VEV structure of the five Higgs bosons. Most importantly
we observe that the scaling parameter c is related to the scalar VEVs through

c =
∣∣∣∣
〈φ4〉
〈φ5〉

∣∣∣∣ . (2.17)

We thus see how the mixing pattern is determined not only by our initial choice of representation
content, but also by the structure of the VEVs of higher-dimensional representations of Gf .
This is very similar to the A4 case, where it was the VEV structure of the three-dimensional
representations which led to TBM. In A4 models the required structures conserve non-trivial
subgroups of the original flavor group. As we will see in the next chapter, a Z2 symmetry of
D4 is conserved for c = 1 that is for |〈φ4〉| = |〈φ5〉|. This leads to a µ − τ -symmetric model,
with maximal atmospheric mixing, which seems to indicate that conserved subgroups may be
a generic feature of models where mass independent textures predict specific mixing angles. It
is thus an interesting project to take a flavor group, determine its possible subgroups, the VEV
structures that conserve it and the resulting mixing. Such an analysis can give more general
criteria as to which flavor group to use, a pressing question considering the large amount of
models available.
We could of course perform such a systematic discussion for D4 alone, however it is much more
economical to perform a general analysis for the entire set of dihedral groups Dn and their
double-valued counterparts D′

n. They are predestined for such an analysis, as they do not
contain representations larger than two-dimensional, independent of the index n, and hence can
all theoretically be used as flavor groups, without having to add additional fermions to the SM.
We will perform just such a systematic analysis in the following chapter.

4The Yukawa Lagrangian is identical, there will only be slight differences in the potential.



Chapter 3

Dihedral Flavor Groups

3.1 Introduction to Dihedral Groups

3.1.1 Single-Valued Dihedral Groups

The dihedral group Dn is the symmetry group of the regular two-sided polygon with n corners
and n edges (often called n-gon). Two- sided means that the symmetry transformations not only
include rotations (these make up the cyclic group Zn), but also reflections, which correspond
to flipping the two sides of the polygon. In fact, it is this property which gives the dihedral
groups their name, διεδρoς meaning two-sided in ancient Greek.
Since reflections and rotations do not commute in general, all Dn groups are non-abelian apart
from D1 (∼= Z2), which is the symmetry of the two-sided point and therefore does not include
rotations, and D2 (∼= Z2 × Z2), the symmetry group of the two-sided line, which only contains
rotations by 180◦, which commute with reflections.
The rotations are generated by the element A, the reflections by B. These two generators then
fulfill the following relations:

An = 1 , B2 = 1 , ABA = B . (3.1)

A given element of Dn can then be written as Am or as BAm, with m = 0, 1, ..., n− 1, making
for a total of 2n elements. We will go into the subgroup structure in much detail later on,
but one can already see that any Dn will contain a Zn subgroup containing only the rotations,
generated by A. This abelian subgroup will have n elements, so by a well-known lemma of
representation theory [109], any irreducible representation of Dn will have a dimension less or
equal than 2n

n = 2.
The number of one-dimensional representations is strictly limited. Since B is of order 2, it
must always be represented by 1 or −1. The commutation relation between A and B then
directly implies that A must also be represented by 1 or −1. If the group index n is odd,
then A is of odd order and can only be represented by 1, leaving us with two one-dimensional
representations, the trivial one, denoted by 11, for which A = B = 1, and the non-trivial one,
denoted by 12, for which A = 1, B = −1. If the index n is even, we get two additional non-
trivial singlet representations, 13 with A = −1, B = 1, and 14 with A = B = −1. All other
irreducible representations are two-dimensional and their number can be directly inferred from
the fundamental equation of representation theory

|Dn| = 2n =
∑

i

(dimρi)2, (3.2)

with the sum going over all irreducible representations ρi. For an even n this gives (n2 − 1) two-
dimensional representations and for n being odd Dn has n−1

2 two-dimensional representations.

27
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We will denote the two-dimensional representations with 2j, where the index j = 1, ..., n−1
2 for

Dn with n odd and j = 1, .., n2 − 1 for Dn with n even.
As opposed to the case of one-dimensional representations, there is no unique matrix represen-
tation for two-dimensional representations. We will in the following be using complex matrix
representations, where the generators of the two-dimensional representations are [109]

A =

(
e(

2πi
n ) j 0
0 e−( 2πi

n ) j

)
, B =

(
0 1
1 0

)
, (3.3)

with j = 1, . . . , n2 − 1 for n even and j = 1, . . . , n−1
2 for n odd. Note that even though we have

chosen complex matrices to represent the generators for the two-dimensional representations,
the trace of the representation matrix for any given group element (and thereby the character of
the representation) will be a real number. One can in fact use real representation matrices, as
is often done in the literature, which shows that the two-dimensional representations of Dn are
real. We will discuss the most common, explicitly real set of representation matrices in appendix
B.3. For now, we mention that, since the representations are real, there exists a unitary matrix

U which links the generators to their complex conjugates: U =
(

0 1
1 0

)
. For any

(
a1

a2

)

transforming under a two-dimensional representation, the combination U

(
a?1
a?2

)
=

(
a?2
a?1

)

transforms as the same two-dimensional representation.
For completeness it should be mentioned that one often finds the notation D2n instead of Dn,
where the group index denotes the order of the group instead of the order of A, the generator
of rotations.

3.1.2 Double-Valued Dihedral groups

The groups D′
n are the double-valued counterparts of the groups Dn. Double-valued means

that a rotation by 360◦ is equivalent to the product of two reflections but not to the identity.
Only a rotation by 720◦ or equivalently the product of four reflections gives the unit element.
The relation between D′

n and Dn is thus similar to that between the Lie groups SU(2) and
SO(3). Therefore, of the groups D′

n only D′
1 is abelian, since it only contains rotations by 360◦,

which are equivalent to two reflections. D′
1 is thus isomorphic to the double-valued group of

reflections, Z4. All other double-valued dihedral groups have two generators, which fulfill the
relations

An = R , B2 = R ,R2 = 1 , ABA = B . (3.4)

R commutes with all elements of D′
n. Any element of D′

n can then be written as Am or as BAm,
with m = 0, 1, ..., 2n−1, giving a total of 4n elements. They will also contain a maximal abelian
subgroup containing only the rotations, which in this case is Z2n. This abelian subgroup has 2n
elements, so that again the dimension of irreducible representations is limited to be no larger
than 4n

2n = 2.
As B is now of order 4, it can mapped by a one-dimensional representation to 1, −1, −i or
i, while A can again only be represented by 1 or −1 due to the commutation relation. We
then have the additional constraint An = B2. For an even group index n, this means that B
cannot be imaginary, and we have the same four one-dimensional representations we had in
the single-valued case, that is all one-dimensional representations are real. For an odd n, the
choice of B uniquely determines A, leaving us again with four one-dimensional representations,
with 11 and 12 being defined as for an even n (and thereby real), but with the representations
13 and 14 now being complex conjugated to each other, the generators being represented by
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A = −1, B = −i and A = −1, B = i, respectively.
We conclude that the double-valued dihedral groups always have 4 one-dimensional represen-
tations, and thus n− 1 two-dimensional representations. For the representation 2j, we choose
generator matrices having a similar form as for Dn [110,111]:

A =

(
e(

πi
n ) j 0
0 e−(πi

n ) j

)
, B =

(
0 1
1 0

)
(3.5)

for j even, and

A =

(
e(

πi
n ) j 0
0 e−(πi

n ) j

)
, B =

(
0 i
i 0

)
, (3.6)

for j odd, j=0,1,...n − 1. All two-dimensional representations will again have a real character,
however only the two-dimensional representations 2j with j even are real, i.e. not only their
characters are real, but there also exists a set of real representation matrices. In contrast to
this, the representations 2j with j odd are pseudo-real, i.e. their characters are real, but one
cannot find a set of representation matrices which are also real. Therefore no alternative set of
real representation matrices exists.
To obtain the group D′

n from the group Dn one has to add the pseudo-real and complex
representations. Therefore the real representations are usually called even, while the pseudo-
real and complex ones are named odd representations [110], in the sense that R is 1 in case
of an even representation and −1 for an odd one. Comparing the generators of even and
odd representations one recognizes that the generator B contains an extra factor i for odd
representations.
Since also for D′

n all two-dimensional representations are real or pseudo-real, i.e. not complex,
there exists a similarity transformation U between the representation matrices and their complex
conjugates. If the index j of the representation 2j is even, U is the same as for the representations

of Dn. For j being odd, U =
(

0 −1
1 0

)
such that

( −a?2
a?1

)
= U

(
a?1
a?2

)
transforms in the

same way as
(
a1

a2

)
∼ 2j with j odd.

A final word on notation: The simplest non-abelian double-valued dihedral group, D′
2, is also

called the quaternion group. Hence, one often finds the notation Q2n or Q4n instead of D′
n,

i.e. taking the group index to be the order of the generator of rotations or the order of the
group itself. In fact the group index n in D′

n indeed has no direct interpretation from the
group structure, but is chosen to make the connection between a double-valued group and its
single-valued counterpart clearer.

3.2 Non-Trivial Subgroups

We now already know enough about the dihedral groups to determine the subgroups of a general
Dn or D′

n group, using the generators given in section 3.1. We already mentioned in the last
chapter that these subgroups are intimately related to the VEV structure of scalars transforming
non-trivially under the flavor group Gf . It will thus be most instructive to describe the method
of calculating subgroups by considering the physics behind it.
When a scalar, transforming under a non-trivial irreducible representation of Gf , acquires a
VEV, Gf will be broken, because there will be elements of the group that do not leave the VEV
invariant. Gf is thus no longer a symmetry of the vacuum of our theory. However in general
there may be elements of Gf that do leave the VEV invariant; these elements then comprise
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the subgroup left unbroken by the scalar VEV. We go through the irreducible representations
one by one, assuming there exists a scalar transforming under this representation and acquiring
a VEV. We then check which elements of Gf leave such a VEV invariant. These elements form
a group, whose group structure has to be determined. This is straightforward, as all subgroups
turn out to be either dihedral or cyclic.
For the one-dimensional representations we only need to look at which elements of the group are
represented by a 1 - these elements then form the conserved subgroup. For the two-dimensional
representations the conserved group may depend on the VEV structure, i.e. on the relation
between the two VEV components of the doublet. We thus need to determine the eigenvalues
and eigenvectors of the group elements. All group elements which have the same eigenvector
corresponding to the eigenvalue of 1 form a subgroup and this group is conserved by a VEV
proportional to this common eigenvector.
For this calculation, we only have to consider two general matrices, the first one being

Am =

(
e(

4πim
G ) j 0
0 e−( 4πim

G ) j

)
, (3.7)

whereG is the order ofGf (2n for single-valued, 4n for double-valued groups) and 0 ≤ m ≤ G
2 −1

an integer. This matrix only has an eigenvalue of 1 if 2mj
G is an integer. Since m < G

2 , this
means that the greatest common divisor (gcd) of j and G

2 must be greater than one1. In this

case 2j is an unfaithful representation which maps A
G

2g( G
2 ,j) to the unit matrix, where we have

used the shorthand notation g(x, y, ...) for the greatest common divisor of the integers x, y, ....
The subgroup conserved by the VEV of such an unfaithful representation will always contain

all group elements represented by the unit matrix and will consequently have A
G

2g( G
2 ,j) as a

generator.
The other general matrix we need to consider is

BAm =

(
0 e(

4πim
G ) j

e−( 4πim
G ) j 0

)
or

(
0 ie(

4πim
G ) j

ie−( 4πim
G ) j 0

)
, (3.8)

where m again lies between 0 and G
2 − 1. The second matrix is for representations of D′

n with
odd index j. It has no eigenvalues of 1. Thus we observe that for D′

n the structure of the
doublet VEVs with odd index j is irrelevant for the conserved subgroup. The first matrix on
the other hand, always has an eigenvalue of 1, corresponding to the eigenvector

(
e
−4πijm

G

1

)
. (3.9)

We thus have for a given two-dimensional representation a class of subgroups, parameterized
by m, where one of the generators of the subgroup will be BAm.
To make sure that we have determined all subgroups, we need to consider possible combina-
tions of two or more scalars, transforming under different representations. Further subgroups
will necessarily be subgroups of the subgroups determined above. Since all of the subgroups
encountered so far are either dihedral or cyclic, we know that all further subgroups will also be
either dihedral or cyclic. As it turns out, we need at most 2 different representations to reach
any possible subgroup of our original Dn or D′

n.
We have listed all subgroups of a general group Dn, as well as the minimal scalar VEV con-
tent needed to break Dn down to that group. We will frequently be using the name of the

1In the original paper [2], we incorrectly assumed that j itself had to divide G
2
. This has been corrected in

the results given in this thesis. An erratum is in preparation.
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representation to mean the scalar transforming under that representation, whenever there is no
ambiguity. For two-dimensional representations the structure of the scalar VEV is important,
so we need to differentiate: We denote an arbitrary VEV by < 2j >, while a VEV proportional
to the eigenvector of equation (3.9) will be denoted by < 2j >

′. We get the following results
for Dn groups:

Dn

<11>

−→ Dn

Dn

<12>

−→ Zn =< A >

Dn

<13>

−→ Dn
2

=< A2,B >

Dn

<14>

−→ Dn
2

=< A2,BA >

Dn

<2j>

−→ Zg(n,j) =< A
n

g(n,j) > (g(n, j) > 1)

Dn

<2j>

−→ nothing (g(n, j) = 1)

Dn

<2j>′

−→ Dg(n,j) =< A
n

g(n,j) ,BAm > (g(n, j) > 1; m = 0, 1, ..., n
g(n,j)

− 1)

Dn

<2j>′

−→ Z2 =< BAm > (g(n, j) = 1; m = 0, 1, ..., n− 1)

Dn

<12>+<13>

−→ Zn
2

=< A2 > (one can also use < 12 > + < 14 > or < 13 > + < 14 >)

and for D′
n groups we get:

D′n
<11>

−→ D′n

D′n
<12>

−→ Z2n =< A >

D′n
<13> or <14>

−→ Zn =< A2 > (for odd n)

D′n
<13>

−→ D′n
2

=< A2,B > (for even n)

D′n
<14>

−→ D′n
2

=< A2,BA > (for even n)

D′n
<2j>

−→ Zg(2n,j) =< A
2n

g(2n,j) > (g(2n, j) > 2)

D′n
<2j>

−→ Z2 =< An > (g(2n, j) = 2)

D′n
<2j>

−→ nothing (g(2n, j) = 1)

D′n
<2j>′

−→ D′g(2n,j)
2

=< A
2n

g(2n,j) ,BAm > (g(2n, j) > 2 and even ; m = 0, 1, ..., 2n
g(2n,j)

− 1)

D′n
<2j>′

−→ Z4 =< BAm > (g(2n, j) = 2; m = 0, 1, ..., n− 1)

D′n
<12>+<13>

−→ Zn =< A2 > (for even n; one can also use < 12 > + < 14 > or < 13 > + < 14 >)

Some of these results can also be found in references [112] and [113].
We now know the minimal VEV structure needed to break Gf down to a given subgroup. The
maximal VEV structure preserving that subgroup is then achieved by allowing VEVs for all
representations which have at least one component transforming trivially under the subgroup in
question. Therefore we list the transformation properties of the representations of our original
dihedral group under a given subgroup. These can be found by expressing the generators of
the subgroup in terms of the generators A and B of Gf . As a general feature we remark
that two-dimensional representations become reducible in several cases. The complete list of
decompositions is given in Appendix C.1 along with the maximal VEV structure.
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3.3 Breaking Chains

We have seen that a dihedral group will in general have several non-trivial subgroups. It may
be interesting to consider models, where the breaking of the flavor symmetry happens in several
steps. This can be realized by having scalars transforming under different representations ac-
quiring their VEVs at several distinct symmetry breaking scales, leading to a stepwise reduction
of the flavor symmetry. Such an approach can be useful for explaining the observed hierarchy
of fermion masses. Again this discussion can be performed in a very general way, considering
all possible breaking patterns of a dihedral group, where the symmetry breaking happens in an
arbitrary number of steps.
As the amount of breakings is arbitrary in theory, it is more economical to give only the build-
ing blocks for such a breaking chain. For each building block, we assume that we have already
broken down to one of the subgroups of Dn or D′

n determined in the last section. We then
consider how adding an additional VEV will further reduce the symmetry.
For the subgroups of Dn we only differentiate between two types. The first type are dihe-
dral subgroups Dq = 〈An

q ,BAm〉. This includes the groups Dn
2

as well as the abelian group
Z2 = 〈BAm1〉, which is isomorphic to D1. These subgroups are further parameterized by the
integer m which appears in their generators. It is restricted to lie between 0 and n

q − 1 and
thereby, along with the index q, uniquely defines the dihedral subgroup in question. The other
type are the cyclic subgroups Zq = 〈An

q 〉. For even n these may also include a Z2 = 〈An
2 〉. In

this section, this is the group we mean by Z2, the other Z2’s will be denoted by D1. In the
following sections, when we discuss the subgroups in more detail, we will always give the sub-
group generators, to make clear which group we mean. This would however make the breaking
chain building blocks rather cumbersome. Finally, note that the group Z1 is trivial, i.e. its
conservation corresponds to a total breaking of Gf .
We also use the notation mj for the phase factor m in the VEV < 2j >

′. Its relation to the
subgroup index m is of crucial importance in the building blocks given below.
We find two paths in the breaking sequences, one along the dihedral groups and one along the
cyclic groups, in the minimal case eliminating one prime divisor of the order in each step. At
any point in the sequence we can step over from the dihedral to the cyclic path (from which
there is of course no turning back). The cyclic path ends at some Zq, with q being the smallest
prime factor of n, while the dihedral path will end at D1. Note that if a representation is
allowed a VEV under the subgroup in question, it will of course not break the symmetry any
further. These cases are however still listed below for completeness. The building blocks for
Dn are:

Dq

<12>−→ Zq

Zq
<12>−→ Zq

Dq

<13>−→ Dg(n
2
,q) (m even for 13 and m odd for 14)

Dq

<13>−→ Zg(n
2
,q) (m odd for 13 and m even for 14)

Zq
<13>−→ Zg(n

2
,q)

Dq

<2j>−→ Zg(q,j)

Zq

<2j>−→ Zg(q,j)

Dq

<2j>
′

−→ Dg(q,j) (mj modnq = m)
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Dq

<2j>
′

−→ Zg(q,j) (mj modnq 6= m)

Zq

<2j>
′

−→ Zg(q,j)

The corresponding results for D′
n are given in appendix C.2. The restrictions on the phase fac-

tors mj occur if the direction in which we have broken is important. Several breaking directions
occur if we deal with distinct subgroups showing the same structure - for example in Dn we
have two Dn

2
subgroups: < A2,B > and < A2,BA >. The Z2 subgroup generated by BAmj is

only a subgroup of the first in case of mj even and only a subgroup of the second, if mj is odd.
Hence we need to impose restrictions on the phase factor mj.
Finally, note that in any of the chains given above we can interchange 13 and 14 and again
receive a viable breaking sequence. This may cause some of the requirements to change, as
shown along with the breaking chain building blocks.
We finally mention that breaking chains of dihedral flavor symmetries have been used to explain
the fermion mass hierarchy. In [81] D′

3 is broken down to Z6 and then further down, while [82]
breaks a D6 flavor symmetry down to Z2 and then fully breaks it.

3.4 Mass Matrices

The breaking chains discussed in the last chapter may enable us to get a handle on the hierar-
chy of the fermion masses. However, our interest in discrete flavor symmetries is mainly due to
their ability to describe the mixing among the fermions of different generations. To determine
what kind of mixing patterns can be obtained from imposing a flavor symmetry Gf with non-
trivial conserved subgroups, we need to determine the mass matrices which can arise in such
a setup. The mixing matrices are then obtained in the next section from diagonalizing these
mass matrices. We will first be discussing Dirac mass matrices, then comment on Majorana
mass matrices.
We assume that Gf is broken by the VEVs of multiple flavor-charged SU(2)L doublets, i.e.
by copies of the SM Higgs boson. These VEVs then break Gf down to one of its non-trivial
subgroups, determined in section 3.2. To then determine the resulting Dirac mass matrices M
which are generated when Gf is broken to one of these subgroups, we need to decide on two
things: The Gf transformation properties of the Weyl fermions coupling to form the Dirac mass
term and the representations present in the scalar sector.
The transformation properties of the fermions are not limited by our choice of conserved sub-
group. We will only impose one limitation: We do not want all fermions involved in the mass
term to transform under one-dimensional representations of Gf , since the resulting mass matrix
structures could then also be obtained from an abelian Gf . We will therefore not allow for this
possibility when considering Dirac mass terms, leaving us with three general options for the
transformation properties of the fermions. The first two possibilities are

L ∼ (1i1 ,1i2 ,1i3) , Lc ∼ (1j,2k) and L ∼ (1j,2k) , Lc ∼ (1i1 ,1i2 ,1i3),

where L denotes the three left-handed fermions involved in the mass terms (i.e. the Qi or the
lα) and Lc denotes the three left-handed conjugate fermions (i.e. the uci , d

c
i , e

c
i or, in the case of

Dirac neutrinos, νcα). We call these assignments the left-handed and right-handed three singlet
structure, respectively. The mass matrices of the two cases are related by simple transposition,
which corresponds to switching the transformation properties of left-handed and left-handed
conjugate fermions. For our study of mass matrices, we can thus limit ourselves to one of these
cases and only discuss the mass matrices for the left-handed three singlet structure (which
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we then simply refer to as three singlet structure). As soon as mixing comes into play, it is
important how the left-handed fermions transform, and we need to distinguish between the two
in section 3.5.
The last possibility for assigning the fermions to representations of Gf is

L ∼ (1i,2j) , L
c ∼ (1l,2k),

which we call the two doublet structure.
The mass matrices arise when the Higgs bosons acquire a VEV. We do not choose their transfor-
mation properties, as we did for the fermion fields. Instead, when determining the mass matrix
generated by breaking down to a certain subgroup, we reference tables C.1 to C.4 in appendix C
to determine which representations are allowed a VEV, while keeping the subgroup intact. We
then assume that our model contains a Higgs boson for each of these possible representations.
In this way the mass matrix structure is entirely determined by the properties of Gf and its
subgroup, and not by our choice of scalar fields.
To determine the mass matrices we then assume that all these Higgs bosons acquire a VEV,
with a structure conserving the relevant subgroup. We can then easily eliminate Higgs bosons
from our model, by setting their VEVs to zero in the mass matrix.
All the group theoretical tools we need, i.e. the Kronecker products and Clebsch Gordan co-
efficients, are given in appendix B. We can thus go ahead and determine the possible mass
matrices, where a mass matrix is determined by two choices: the choice of subgroup and the
choice of fermion representations.
Note that we will restrict ourselves in a fairly major way: We do not consider mass matrices
with a zero determinant, that is with at least one zero eigenvalue. This is motivated by phe-
nomenology, except when considering neutrinos. After all, it is by no means experimentally
ruled out that there exists a massless neutrino. In general the uncertainty concerning the mech-
anism of neutrino mass generation is the most significant unknown in this general discussion
of mass matrices. Apart from the non-zero determinant, we will further limit us by, for the
moment, not considering Type I Seesaw structures, where the light neutrino mass matrix arises
from the interplay of a Dirac and a Majorana mass matrix. We will thus only be considering
two cases: The case of pure Dirac neutrinos is obviously covered by our general discussion of
Dirac mass matrices. The other possibility is a pure Majorana mass term, which we will discuss
in section 3.4.6.
Before that, we give our general results in section 3.4.1, then, in section 3.4.2, we give the
conventions and notation we use in sections 3.4.3 and 3.4.4, where we discuss the three singlet
and two doublet structures, respectively, for single-valued groups Dn. The resulting mass ma-
trices will be discussed subgroup by subgroup. In section 3.4.5 we discuss why no new Dirac
mass matrix structures appear for double-valued groups, before moving on to Majorana mass
matrices in section 3.4.6.

3.4.1 General Results

We encounter a very limited number of distinct Dirac mass matrix structures: In total only five
distinct structures are possible. We display them for down-type fermions (down-type quarks
and charged leptons). We have to make this specification, since our Higgs fields are always
assumed to transform as the SM Higgs doublet. In the SM the field H itself couples to the
down-type fermions, while its conjugate εH? is coupled to up-type ones. This difference is
relevant here, since we have used complex generators and will also have explicit phases in our
VEVs. We discuss the changes for up-type fermions, i.e. up-type quarks and Dirac neutrinos,
in section 3.4.2.
The first possible structure we obtain is a diagonal mass matrix
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A 0 0
0 B 0
0 0 C


 . (3.10)

The second type is a semi-diagonal mass matrix of the form



A 0 0
0 0 B
0 C 0


 , (3.11)

where the squared mass matrix MM † has eigenvalues |A|2, |B|2 and |C|2. We also encounter a
block matrix structure 


A 0 0
0 B C
0 D E


 , (3.12)

for which the squared mass matrix has the characteristic polynomial (λ − |A|2)(λ2 − λ(|B|2 +
|C|2 + |D|2 + |E|2) + (|B|2 + |C|2)(|D|2 + |E|2) − |BD∗ + CE∗|2). These three structures are
so common that we will not give them explicitly each time. Instead, we will give the type of
matrix, followed by a listing of the non-zero entries, where we use the notation and nomenclature
introduced here. Note that in some cases the entries in the 2-3-submatrix are further correlated,
e.g. two elements therein may be equal.
Finally, we find two structures which appear only once, both times for the subgroups Z2 =
〈BAm〉. One has one texture zero and the general structure




0 C −Ce−iφk

A D De−iφk

B E Ee−iφk


 , (3.13)

with the group theoretical phase

φ =
2πm
n

. (3.14)

In this case the squared mass matrix has the characteristic polynomial (λ−2|C|2)(λ2−λ(|A|2 +
|B|2 + 2(|D|2 + |E|2)) + (|A|2 + 2|D|2)(|B|2 + 2|E|2)− |AB∗ + 2DE∗|2). This mass matrix only
shows up for a three singlet structure. The other mass matrix structure has no texture zeros
and is of the form 


A C Ce−iφk

B D E

Be−iφj Eei(k−j)φ De−i(j+k)φ


 , (3.15)

where the squared mass matrix has the characteristic polynomial (λ−|D−Eeikφ|2)(λ2−(|A|2 +
2|B|2+2|C|2+|D+Eeikφ|2)λ+(|A|2+2|C|2)(2|B|2+|D+Eeikφ|2)−2|AB∗+C(D∗+E∗e−ikφ)|2).
This mass matrix only appears with a two doublet structure. We will discuss further relevant
properties of all five mass matrices in section 3.5.
We additionally find one case, where all matrix elements are distinct and non-zero. We do not
consider it, as it corresponds to a smaller symmetry being fully broken: Dn breaks down to Zq,
where for all two-dimensional representations 2j showing up in the model j is a multiple of q ,
i.e. j = cjq, cj an integer. We can then replace the original Dn symmetry by a Dn

q
and all the

representations 2j by 2cj
, as they are in fact all unfaithful representations of the original Dn

symmetry. Breaking the original symmetry down to Zq then corresponds to fully breaking the
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smaller symmetry 2. As we want to consider conserved subgroups, we dismiss this case, when
it shows up.
A simple example is the case of a D8 symmetry, where only the representation 22 is used, while
there are no fields transforming as 21 or 23. An unstructured VEV of a Higgs field transforming
as 22 breaks D8 down to Z2 = 〈A4〉. This model is equivalent to one, where the flavor group
D4 is fully broken by the VEV of a Higgs boson transforming as 21. Note that such a case still
allows for some non-trivial correlations among the mass matrix elements, through the ratio of
the VEVs of the two doublet components (recall the scaling factor of section 2.3). Nevertheless,
such correlations are then not determined by a preserved subgroup, but only by the fact that
we use a non-abelian symmetry.

3.4.2 Conventions and Notation

In the following, κ’s and α’s denote Yukawa couplings, < φi > denotes the VEV of the Higgs field
transforming as 1i. For the VEVs of Higgs fields transforming as 2j we have two possibilities:
Either they are allowed to acquire an arbitrary VEV, in which case we denote the VEV by

(
< ψ1

j >

< ψ2
j >

)
,

or they are allowed only a certain VEV structure. As discussed in section 3.2 there is only one
such structure. We write the VEV of Higgs fields transforming as 2j and acquiring this VEV
structure as

< ψj >

(
e
−2πijm

n

1

)
.

Note that the VEV structure determines the relative phase between the two doublet compo-
nents, but not the overall phase. We are thus in general free to decide which component we
want to include the phase factor in. We will on several occasions want to make use of this
freedom, to simplify the appearance of our mass matrix. For example, if we have a left-handed
fermion transforming as 13 or 14 and the left-handed conjugate fermions transforming as 2j,
we need a Higgs boson transforming as 2(n

2
-j) to form an invariant Yukawa coupling (as can

be seen from the Kronecker products of appendix B.1). We then write the VEVs of these Higgs
fields as

< ψn
2
−j >

(
(−1)m

e
−2πijm

n

)
.

In this way, only the phase factor e
−2πijm

n shows up in the mass matrix and not its complex
conjugate. Similarly the VEV of Higgs fields transforming as 2(n-(j+k)) is written as

< ψn−(j+k) >

(
1

e
−2πi(j+k)m

n

)
,

so that it contains the same phase as that of the Higgs fields transforming as 2j+k.
As mentioned in section 3.4.1, our mass matrices are given for down-type fermions. To get the

2To be more precise: In all cases the representations of the Higgs fields have the property that their index
is divisible by q, but this is not necessarily true for the representations under which the fermions transform.
However, one can then always find some other representations for the fermions which reproduce exactly the same
matrix structure and which have the property that their index is also divisible by q such that the case can be
reduced to a smaller symmetry which is fully broken.
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corresponding mass matrices for up-type fermions a few changes have to be implemented, as all
VEVs need to be complex conjugated. This corresponds to the following substitutions:

< φi >→< φi >
∗, (3.16)

< ψ1
j >→< ψ2

j >
∗ and < ψ2

j >→< ψ1
j >

∗,

or < ψj >→< ψj >
∗ e

2πijm
n .

Finally, note that we have in general left all minus signs and phases in the mass matrices, even
if they can be trivially rotated away.

3.4.3 Three Singlet Structure

To get a mass matrix with a non-zero determinant in the three singlet structure, at least one
two-dimensional representation has to get a VEV, otherwise the second and third column of the
mass matrix will be zero. This means we can ignore all subgroups, where no two-dimensional
representation is allowed a VEV, leaving us with three subgroups to consider: Z2 =< BAm >,
Dq and Zq. The two possible two-dimensional representations that can show up are 2k and
2(n

2
-k) coming from the product of 2k with a one-dimensional representation.

We first consider the subgroup, where all two-dimensional representations acquire a VEV, that
is Z2 =< BAm >.

Z2 =< BAm >

Due to the large number of possible combinations of one-dimensional representations, we shall
only give rows as building blocks for a mass matrix. We group them according to the index j,
i.e. according to the transformation properties of the first generation of left-handed conjugate
fermions. We give the row vectors for the p-th row of the mass matrix, depending on the index
ip, i.e. the transformation properties of the p-th generation of left-handed fermions. We assume
that m is even. To get to an odd m, we need to switch 13 and 14 and φ3 and φ4, as can be
inferred from table C.1.

j = 1 , ip = 1
(κp < φ1 >, αp < ψk >, αp < ψk > e

−2πikm
n )

j = 2, 4 , ip = 1
(0, αp < ψk >, αp < ψk > e

−2πikm
n )

j = 3 , ip = 1
(κp < φ3 >, αp < ψk >, αp < ψk > e

−2πikm
n )

j = 1, 3 , ip = 2
(0, αp < ψk >, −αp < ψk > e

−2πikm
n )

j = 2 , ip = 2
(κp < φ1 >, αp < ψk >, −αp < ψk > e

−2πikm
n )

j = 4 , ip = 2
(κp < φ3 >, αp < ψk >, −αp < ψk > e

−2πikm
n )

j = 1 , ip = 3
(κp < φ3 >, αp < ψn

2
−k >, αp < ψn

2
−k > e

−2πikm
n )

j = 2, 4 , ip = 3
(0, αp < ψn

2
−k >, αp < ψn

2
−k > e

−2πikm
n )
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j = 3 , ip = 3
(κp < φ1 >, αp < ψn

2
−k >, αp < ψn

2
−k > e

−2πikm
n )

j = 1, 3 , ip = 4
(0, −αp < ψn

2
−k >, αp < ψn

2
−k > e

−2πikm
n )

j = 2 , ip = 4
(κp < φ3 >, −αp < ψn

2
−k >, αp < ψn

2
−k > e

−2πikm
n )

j = 4 , ip = 4
(κp < φ1 >, −αp < ψn

2
−k >, αp < ψn

2
−k > e

−2πikm
n )

These building blocks can be reproduced with the Clebsch Gordan coefficients given in appendix
B.2.1, which are an essential ingredient for our discussion of the mass matrix structures in
general.
The apparently large number of possible combinations actually give only one general option,
a mass matrix with one zero entry. Mass matrices with more than one zero entry or no zero
entry give a determinant of zero, and so will not be considered here. This is due to the fact that
there is a correlation between the entry in the first column and the relative sign of the entries
in the second and third column. A non-zero entry in the first column necessarily implies either
a relative sign between the entries in the other two columns (for j=2 and j=4) or no relative
sign (for j=1 and j=3) - we cannot however have both cases in the same mass matrix. To see
what a typical mass matrix looks like, consider an example. Let j = i2 = 1, i1 = 2 and i3 = 3.
The mass matrix then reads




0 α1 < ψk > −α1 < ψk > e
−2πikm

n

κ2 < φ1 > α2 < ψk > α2 < ψk > e
−2πikm

n

κ3 < φ3 > α3 < ψn
2
−k > α3 < ψn

2
−k > e

−2πikm
n


 . (3.17)

The scalar representations and the position of the zero (within the first column) can vary,
depending on our assignment of fermion representations, but the general structure will always
be the one texture zero structure of equation (3.13).

Dq =< A
n
q , BAm >

We continue with those cases, where not all two-dimensional representations can acquire a
VEV. For the subgroups Dq, we only need to consider the case where n

q is odd. As the only
two-dimensional representation for the fermions is 2k, the only relevant two-dimensional rep-
resentations for Higgs fields are 2k and 2(n

2
-k). These are the only representations that arise

when coupling 2k with a one-dimensional representation.
Now we can see from table C.2 that the Higgs bosons transforming under these representations
can only acquire a VEV if q divides k and q divides n

2 − k, respectively. If n
q is even, these two

conditions are equivalent, as n
q being even implies that q divides n

2 . Therefore, either neither
Higgs field can receive a VEV, and we end up having the second and third columns equal to
zero, or both Higgs fields can receive a VEV. In this second case we can write n = 2cnq, k = ckq
and conversely n

2 − k = (cn − ck)q. We have only unfaithful representations, and are effectively
dealing with a flavor group D2cn which is then broken down to Z2 =< BAm >.
If, however n

q is odd, the two conditions are mutually exclusive (except where q=1, but D1 is the
same as Z2 =< BAm >), and we consider them separately below. We do not need to consider
the case where neither of the two conditions is fulfilled, as then no Higgs field transforming
under a two-dimensional representation will acquire a VEV and we are again left with a mass
matrix containing two zero column vectors.
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As in section 3.4.3, we consider the structure of the p-th row, depending on ip, j and k. The sim-
plest entry is theMp1 element. We have, since only φ1 can acquire a VEV, thatMp1 = κp < φ1 >
if ip = j or Mp1 = 0 otherwise. We give the other entries as building block row vectors(
Mp2 Mp3

)
. They are, for q dividing k,

ip = 1 : (αp < ψk >, αp < ψk > e
−2πikm

n )

ip = 2 : (αp < ψk >, −αp < ψk > e
−2πikm

n )
ip = 3, 4 : (0, 0)

and for q dividing (n2 − k)

ip = 1, 2 : (0, 0)

ip = 3: ((−1)mαp < ψn
2
−k >, αp < ψn

2
−k > e

−2πikm
n )

ip = 4: ((−1)m+1αp < ψn
2
−k >, αp < ψn

2
−k > e

−2πikm
n )

The multiple possibilities can again be reduced to one general form. This is again due to the
fact that we have a correlation between the element in the first column and those in the second
and third columns. Only those rows, for which ip = j can have a non-zero element in the first
column. So if we choose the element in the first column to be non-zero, we have also determined
whether the elements in the second and third column are zero. We must have at least one zero
entry in the second and third column, otherwise we are only breaking a smaller Gf down to its
subgroup Z2 =< BAm >, a case we have already discussed. So, we need to choose j in such a
way that zero elements in the second and third column are anti-correlated with a zero element
in the first column, otherwise we would end up with a zero row vector. This means that j = 3
or j = 4 for q dividing k , while if q divides (n2 − k) we must choose j = 1 or j = 2. We can then
not have another row where ip = j, because there again the elements in the second and third
column would be zero and two row vectors would be linearly dependent. So exactly one of the ip
must be equal to j, say i1. And we can say even more: To ensure a non-zero determinant, i2 and
i3 must be unequal, since otherwise the second and third row vector will be linearly dependent.
We can thus write the particle content more exactly as L ∼ (1i1 ,1i2 ,1i3) and Lc ∼ (1i1 ,2k),
with all three one-dimensional representations mutually inequivalent. All mass matrices will
then be of the block form of equation (3.12). We give as an example the entries for i1 = 3,
i2 = 1, i3 = 2 and q dividing k:

A = κ1 < φ1 >, B = α2 < ψk >, C = α2 < ψk > e
−2πikm

n ,

D = α3 < ψk >, E = −α3 < ψk > e
−2πikm

n . (3.18)

Zq =< A
n
q >

The major difference between the subgroups Dq and Zq is that for the latter all doublets will
acquire arbitrary VEVs, and hence the mass matrices will exhibit less symmetry. As for the
Dq subgroups, we only have to consider n

q odd: As can be inferred from table C.1, all one-
dimensional representations can acquire a VEV if n

q is even. This would leave us with only
two possibilities: Either again none of the relevant Higgs bosons that transform under a two-
dimensional representation of the flavor group can acquire a VEV (if q does not divide k), or
we are faced with the case where all Higgs fields relevant for Yukawa terms (that is both those
transforming under one-dimensional and under two-dimensional representations) can acquire
an arbitrary VEV - this corresponds to the case discussed in section 3.4.1 of a smaller flavor
symmetry being fully broken.
So we can again set n

q to be odd and start by giving the elements in the first column. They are
Mp1 = κp < φ1 > if ip = j, Mp1 = κp < φ2 > if 1ip×1j = 12 or Mp1 = 0 otherwise, whereas
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the elements in the second and third column are, for q dividing k,

ip = 1: (αp < ψ2
k >, αp < ψ1

k >)
ip = 2: (αp < ψ2

k >, −αp < ψ1
k >)

ip = 3, 4: (0, 0)

and for q dividing (n2 -k)

ip = 1, 2: (0, 0)
ip = 3: (αp < ψ1

n
2
−k >, αp < ψ2

n
2
−k > )

ip = 4: (αp < ψ1
n
2
−k >, −αp < ψ2

n
2
−k > )

We can reduce the large number of possible combinations. First we set j, which must either be
in {1, 2} or in {3, 4}. If we want the Mp1 element to be non-zero, then ip must be in the same
set as j and we also know whether the elements in the second and third column are zero or not.
If we now choose j in such a way that a non-zero element in the first column implies non-zero
elements in the second and third column (and thereby a zero element in the first column implies
a zero row vector), we are left to choose between a mass matrix with nine distinct non-zero
elements and a mass matrix with at least one zero row vector and thereby a zero determinant.
We therefore need to choose j in such a way that a non-zero element in the first column implies
a zero in the second and third column, i.e. j = 3 or j = 4 if q divides k , j = 1 or j = 2 if
q divides n

2 − k. If we however choose two elements in the first column to be non-zero, then
those two row vectors will be linearly dependent, and we will have a zero determinant. So, we
need to choose one ip in the same set as j, while the other two must lie outside that set - and,
again, they cannot be equal, to ensure linear independence of the corresponding row vectors.
The general structure will then always be a block matrix. We give as an example the entries
for the case where j = 3, i1 = 4, i2 = 1, i3 = 2 and q divides k:

A = κ1 < φ2 >, B = α2 < ψ2
k >, C = α2 < ψ1

k >,

D = α3 < ψ2
k >, E = −α3 < ψ1

k > . (3.19)

3.4.4 Two Doublet Structure

In our discussion of the two doublet structure we frequently use an additional index, p, given
by 1i × 1l = 1p. We will assume j ≥ k, that is the index of the two-dimensional represen-
tation under which the left-handed fermions transform is larger than the representation index
for the left-handed conjugate fermions. This can be done without loss of generality, since the
corresponding mass matrix structures for j ≤ k can simply be obtained by transposing the mass
matrices given in this section.
For the two doublet structure we will discuss all possible subgroups, as they all give viable mass
matrices. Another difference compared to the three singlet structure is that the mass matrices
given in this section are also potential candidates for Majorana mass matrices, if we impose the
conditions j = k and i = l. If a mass matrix can also be used as a Majorana mass matrix, we
will mention this and briefly note which Yukawa couplings need to be equal in that case and
which terms drop out due to anti-symmetry. A further discussion of Majorana mass matrices
is then performed in section 3.4.6.

Zn =< A >

We read off from table C.1 that only < φ1 > and < φ2 > can get a VEV when conserving a
Zn subgroup. This limits our freedom in choosing representations for the fermions: The two
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doublets must couple to form a 11 or a 12, otherwise the second and third row vectors of the
mass matrix will be zero. This imposes the condition j = k. Also, we need p = 1 or 2, otherwise
the first row vector will turn out to be zero. These restrictions leave us with a semi-diagonal
mass matrix structure with entries

A = κ1 < φp >, B = κ2 < φ1 > +κ3 < φ2 >, C = κ2 < φ1 > −κ3 < φ2 > . (3.20)

If p = 1 this is also a possible structure for a Majorana mass matrix. In this case the anti-
symmetric part, i.e. the terms containing < φ2 >, drop out.

Zn
2

=< A2 >

From table C.1 we infer that this subgroup only allows one-dimensional representations to
acquire a VEV. So, we need the product of the two doublets to contain at least one one-
dimensional representation. We are thereby left with three possibilities:
Case (i): j = k, j + k 6= n

2 gives a semi-diagonal matrix.

A = κ3 < φp >, B = κ1 < φ1 > +κ2 < φ2 >, C = κ1 < φ1 > −κ2 < φ2 > . (3.21)

Case (ii): j + k = n
2 , j = k = n

4 gives a block structure.

A = κ5 < φp >, B = κ3 < φ3 > +κ4 < φ4 >, C = κ1 < φ1 > +κ2 < φ2 >,

D = κ1 < φ1 > −κ2 < φ2 >, E = κ3 < φ3 > −κ4 < φ4 > . (3.22)

Case (iii): j6= k, j + k = n
2 gives a diagonal structure.

A = κ3 < φp >, B = κ1 < φ3 > +κ2 < φ4 >, C = κ1 < φ3 > −κ2 < φ4 > . (3.23)

Cases (i) and (ii) are also a possibility for Majorana mass matrices. In this case the anti-
symmetric terms containing < φ2 > drop out.

Zq =< A
n
q >

This subgroup requires quite an amount of case differentiation, since we want to make the dis-
cussion as general as possible, and allow all possible relations between q and the other indices of
the model. We will first discuss the case where n

q is even, and then, at the end of this subsection,
discuss the slight changes induced by n

q being odd.
As an ordering principle in our discussion, we have taken the structure of the resulting mass
matrix, as only the three characteristic types discussed in section 3.4.1 will show up.
Most of the conditions deal with the question which two-dimensional representations are allowed
a VEV. This translates directly into deciding whether q divides the index of that representation.
The two-dimensional representations which can show up are 2j and 2k, 2(n

2
-j) and 2(n

2
-k) from

the coupling of two-dimensional with one-dimensional representations and 2j+k, 2(n-(j+k))
and 2j-k from the coupling of the two two-dimensional representations, cf. appendix B.1. We
will only give mass matrices for the case where 2j × 2k contains 2j+k. Mass matrices for the
case where it contains 2(n-(j+k)) can be obtained by replacing ψj+k by ψn−(j+k) and then
switching the components of the doublet.
As q must divide n for Zq to be a subgroup of Dn, q dividing j+k and q dividing n− (j+k) are
equivalent. As already noted, q dividing j is equivalent to q dividing n

2 − j, if n
q is even, which

we assume for this discussion.
To ensure a non-zero determinant, q must at least divide either (j− k) (This includes the case
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j k j+k j-k Structure
q divides Det[M]=0
q divides × Diagonal
q divides × Semi-diagonal
q divides × Det[M]=0
q divides × Det[M]=0
q divides × × Block
q divides × × × × Full

Table 3.1: Index relations and corresponding mass matrix structure. For a conserved subgroup Zq or Dq, one
determines which of the relevant doublet indices j, k, (j + k) and (j − k) are divided by q and can then read off
the resulting mass matrix structure.

j=k, as all numbers divide zero, corresponding to the fact that 11 and 12 can get a VEV for
an arbitrary q) or (j + k): If not, the two by two submatrix in the lower right-hand corner of
the mass matrix will be zero. This implies directly that q must divide either both j and k , or
neither of the two. If q divides j and k however, then it also divides j + k and j− k - hence all
relevant two-dimensional representations can acquire an arbitrary VEV and all one-dimensional
representations can acquire a VEV anyway. As this leads to the case where the mass matrix
contains nine distinct entries, we disregard it. We summarize our findings in table 3.1 and
discuss the different cases in detail below.

Diagonal Matrix This structure appears in the following case: q must divide (j + k) but q
does not divide (j− k), j or k . Note that this case is not possible for q=2, since the sum and
the difference of two numbers are either both odd or both even, nor is it possible for j = k. For
j + k 6= n

2 this gives

A = κ1 < φp >, B = κ2 < ψ2
j+k >, C = κ2 < ψ1

j+k > . (3.24)

If j + k=n
2 the mass matrix entries are

A = κ3 < φp >, B = κ1 < φ3 > +κ2 < φ4 >, C = κ1 < φ3 > −κ2 < φ4 > . (3.25)

Semi-diagonal Matrix This structure shows up, if q divides (j− k), but not (j + k), j or k.
Again, this is not possible if q = 2, nor is it possible for j + k = n

2 , since this contradicts the
conditions q - (j + k) = n

2 and n
q being even. This leaves two cases: For j 6= k the mass matrix

entries are
A = κ2 < φp >, B = κ1 < ψ2

j−k >, C = κ1 < ψ1
j−k >, (3.26)

while for j = k we get

A = κ3 < φp >, B = κ1 < φ1 > +κ2 < φ2 >, C = κ1 < φ1 > −κ2 < φ2 >, (3.27)

which is a candidate for a Majorana mass matrix if we omit the anti-symmetric terms.

Block Matrix This structure shows up, if q divides (j− k) and (j + k), but not j and k. This
forces q to be even, as q must divide 2j = (j− k) + (j + k) while not dividing j, that is, a factor
of 2 is relevant for making a number divisible by q. In case j + k = n

2 , j 6= k we get

A = κ4 < φp >, B = κ1 < φ3 > +κ2 < φ4 >, C = κ3 < ψ2
j−k >,

D = κ3 < ψ1
j−k >, E = κ1 < φ3 > −κ2 < φ4 > . (3.28)
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In case j + k 6= n
2 and j 6= k, we get

A = κ3 < φp >, B = κ2 < ψ2
j+k >, C = κ1 < ψ2

j−k >,

D = κ1 < ψ1
j−k >, E = κ2 < ψ1

j+k >, (3.29)

and if j+k 6= n
2 and j = k, we get

A = κ4 < φp >, B = κ3 < ψ2
2j >, C = κ1 < φ1 > +κ2 < φ2 >,

D = κ1 < φ1 > −κ2 < φ2 >, E = κ3 < ψ1
2j > . (3.30)

Finally, concerning the case j = k, j + k = n
2 : this leads us to the conditions q | n

2 and
q - n4 = j = k, which implies either q = n

2 (already covered) or q even and n
4 odd. The mass

matrices are the same in both cases, with entries:

A = κ5 < φp >, B = κ3 < φ3 > +κ4 < φ4 >, C = κ1 < φ1 > +κ2 < φ2 >,

D = κ1 < φ1 > −κ2 < φ2 >, E = κ3 < φ3 > −κ4 < φ4 > . (3.31)

For n
q even, q either divides both j and (n2 − j) or neither, and we need no further case differ-

entiation.
If however n

q is odd, we need to pay closer attention. In case i and l are both in {1, 2}, the
discussion is as above, since 2(n

2
-j) and 2(n

2
-k) will not show up as the representation of

a Higgs field. In case i and l are both in {3, 4} we can also use the above discussion if we
substitute j by (n2 − j) and k by (n2 − k) in the conditions, which changes nothing concerning
the divisibility of sums and differences, as q will always divide n.
Further changes occur due to the fact that φ3,4 ∼ 13,4 are not allowed a VEV anymore, see
table C.1. This is relevant for the last remaining case: We drop for a moment the condition
that j ≥ k and instead impose the condition i ∈ {1, 2} and l ∈ {3, 4} (as opposed to the other
way around). This means that M11 will be zero, since p = 3 or 4 and φp is then not allowed
a VEV due to n

q being odd. If we now want to avoid having a zero column or row vector in
our mass matrix, both ψn

2
−j and ψk must acquire a VEV, i.e. q must divide k and (n2 − j). By

assumption however, q does not divide n
2 , which leads us straight to the conclusion that q does

not divide (j+k) or |j−k|, thereby leaving the two-by-two matrix in the lower right-hand corner
of the mass matrix zero, which results in a vanishing determinant.

Z2 =< BAm >

As this structure also strongly depends on the one-dimensional representations under which
the fermions transform, we have reduced it entirely to building blocks, to avoid having to deal
with too many subcases. As we can read off table C.1, all Higgs bosons transforming under a
two-dimensional representation will acquire a structured VEV. The only constraints that arise
are therefore due to the Higgs bosons transforming under one-dimensional representations. This
means that the M11 entry is of special interest. We will first write down the general structure
and then use this to explain why M11 has to be non-zero to ensure a non-zero determinant:




κ3w κ4X1 κ4Y1e
− 2πikm

n

κ5X2 κ1u κ2v

κ5Y2e
− 2πijm

n κ2ve
− 2πi(j−k)m

n κ1ue
− 2πi(j+k)m

n


 , (3.32)

where:

u =< φ3 > if j + k = n
2 , m even
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i = 1 i = 2 i = 3 i = 4
X1

Y1

< ψk >
< ψk >

< ψk >
− < ψk >

(−1)m < ψn
2
−k >

< ψn
2
−k >

(−1)m+1 < ψn
2
−k >

< ψn
2
−k >

Table 3.2: Building blocks for matrix of two doublet structure under the subgroups Z2 =< BAm >

u =< φ4 > if j + k = n
2 , m odd

u =< ψmin [j+k,n−j−k] > if j + k 6= n
2

v =< φ1 > if j = k
v =< ψj−k > if j 6= k

w =< φp > where p=1,3 if m even, p=1,4 if m odd

Note that some of the phase factors degenerate to signs, in case of j=k or j+k=n
2 . Xi and Yi

depend on the transformation properties of the doublets and singlets involved, i.e. X1 and Y1

depend on i and k, X2 and Y2 depend on j and l. Building blocks for X1 and Y1 are given in
table 3.2. The same table can be used for X2 and Y2, substituting l for i and j for k.
For the discussion of the M11 element let us assume that m is even; the reasoning for an odd
m will be analogous. w = 0 implies that p=2 or 4, that is i=1 or 3 while l=2 or 4. Switching
i and l is also possible - the reasoning is again analogous. If we now consult the table for the
X and Y entries, we see that this implies a relative minus sign between the X2 and Y2 entries,
while there is no relative minus sign between the X1 and Y1 entries, so the sum of the second
and third row vector is proportional to the first row vector. This is true also with non-trivial
phases. Therefore w 6= 0 must hold.
If j = k and i = l, the matrix can be made symmetric by imposing κ4 = κ5 and can then also
show up as a Majorana mass matrix.

Dn
2

=< A2, B > and Dn
2

=< A2, BA >

The discussion for these subgroups is very similar to that of the subgroup Zn
2
, as only one-

dimensional representations can receive a VEV, in this case, however, not all of them (see
table C.2). We obtain the mass matrices for Dn

2
=< A2,B > by simply eliminating all terms

containing φ2 and φ4 from the mass matrices for Zn
2
, making sure that we do not end up with

a zero determinant. To prevent this, 1p must be allowed a VEV, that is p must be 1 or 3. We
can then distinguish between the following three sub-cases as for Zn

2
:

Case (i): j = k gives a semi-diagonal structure.

A = κ2 < φp >, B = κ1 < φ1 >, C = κ1 < φ1 > (3.33)

Case (ii): j = k, j + k = n
2 gives a block structure.

A = κ3 < φp >, B = κ2 < φ3 >, C = κ1 < φ1 >,

D = κ1 < φ1 >, E = κ2 < φ3 > (3.34)

Case (iii): j 6= k, j + k = n
2 gives a diagonal structure.

A = κ2 < φp >, B = κ1 < φ3 >, C = κ1 < φ3 > (3.35)

Note that in cases (i) and (iii) we get two degenerate eigenvalues. We can get the mass matrices
generated by breaking to Dn

2
=< A2,BA > by substituting φ3 by φ4 in the matrices above.
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In this case p must either be 1 or 4 and there is also a relative minus sign between the two
occurrences of < φ4 >. Case (i) and (ii) are applicable for Majorana mass matrices - in this
case p=1 since i must be equal to l.

Dq =< A
n
q , BAm >

This case is very similar to the Zq case. The two differences are: a) Less one-dimensional
representations are allowed a VEV and b) the two-dimensional representations are only allowed
a structured VEV (see table C.2). The first difference implies restrictions on the index p - if the
entry in the upper left-hand corner is zero, the determinant is zero too. So, we need to impose
the condition that 1p is allowed a VEV which depends on the evenness and oddness of m and
n
q , see table C.2.
The second difference means replacing the arbitrary doublet VEVs by two components with
the same absolute value and fixed relative phase. The case where we have nine independent
entries thereby does not show up here - instead the full matrix structure now corresponds to
breaking a smaller Gf down to Z2 =< BAm >. We briefly comment on this at the end of this
subsection.
We perform the entire discussion assuming an even m. This means p has to be either 1 or 3 (nq
even). To get the mass matrices for an odd m replace φ3 by φ4. The relative signs that occur
in this case are encoded in factors of (−1)m, which are therefore left in, even though the rest of
the discussion concerns only even m.
As for the case of Zq there are no major differences between n

q being even or odd, except that we
need to impose the condition p = 1, if nq is odd, as then only 11 is allowed a VEV. Furthermore,
if i and l are in {3, 4}, one must also replace j and k by (n2 − j) and (n2 − k) in the conditions,
respectively. The ordering we use is the same as in section 3.4.4, that is the mass matrices are
classified according to their structure.

Diagonal Matrix For this structure we must have q dividing (j+k) but q not dividing (j−k),
j or k. This is neither possible for q=2 nor for j = k. For j + k 6= n

2 this gives

A = κ1 < φp >, B = κ2 < ψj+k >, C = κ2 < ψj+k > e−
2πim(j+k)

n . (3.36)

If j+ k = n
2 the mass matrix entries are

A = κ2 < φp >, B = κ1 < φ3 >, C = (−1)mκ1 < φ3 > . (3.37)

Note that for both of these matrices the squared mass matrix MM † has two degenerate eigen-
values.

Semi-diagonal Matrix For this structure q must divide (j− k), but not (j + k), j or k. This
is neither possible if q = 2, nor is it possible for j + k = n

2 . We are left with two cases: If j 6= k
we end up with

A = κ2 < φp >, B = κ1 < ψj−k >, C = κ1 < ψj−k > e−
2πim(j−k)

n , (3.38)

while for j = k we get

A = κ3 < φp >, B = κ1 < φ1 >, C = κ1 < φ1 >, (3.39)

which is a candidate for a Majorana mass matrix if i = l. Both these matrices give degenerate
eigenvalues in the squared mass matrix.
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Block Matrix This structure shows up, for q dividing (j − k) and (j + k), but not j and k.
This forces q to be even. For j + k = n

2 , j 6= k we get

A = κ2 < φp >, B = κ1 < φ3 >, C = κ3 < ψj−k >, (3.40)

D = κ3 < ψj−k > e−
2πim(j−k)

n , E = (−1)mκ1 < φ3 > . (3.41)

In case j + k 6= n
2 and j 6= k, we get

A = κ3 < φp >, B = κ2 < ψj+k >, C = κ1 < ψj−k >,

D = κ1 < ψj−k > e−
2πim(j−k)

n , E = κ2 < ψj+k > e−
2πim(j+k)

n . (3.42)

If j + k 6= n
2 and j = k, we get

A = κ2 < φp >, B = κ3 < ψ2j >, C = κ1 < φ1 >,

D = κ1 < φ1 >, E = κ3 < ψ2j > e−
4πimj

n , (3.43)

and if j + k = n
2 and j = k = n

4 , that is for q even and n
4 odd, we get

A = κ3 < φp >, B = κ2 < φ3 >, C = κ1 < φ1 >,

D = κ1 < φ1 >, E = (−1)mκ2 < φ3 > . (3.44)

Full Matrix If q divides all relevant indices, that is if it divides j and k and thereby automat-
ically divides (j − k) and (j + k), we are actually breaking a smaller Gf down to its subgroup
Z2 =< BAm >, as discussed in section 3.4.3. This is because Z2 =< BAm > is equivalent
to D1, where the above conditions are automatically fulfilled, as 1 divides any integer. We
therefore do not need to consider this case.

3.4.5 Mass Matrices in D′
n

The double-valued dihedral groups have subgroup-conserving VEV structures that are very sim-
ilar to those of their single-valued counterparts. A general correspondence between subgroups
of Dn and D′

n can be established, by looking at the allowed VEVs in tables C.1 to C.4:

Dn Zn Zn
2

Zq D2 Dn
2

Dq Z(q=2) Z2

D′
n Z2n Zn Zq Z4 D′

n
2

D′
q
2

Z2 −
As one can see, each subgroup of a single-valued dihedral group has a counterpart. One can
thus expect that no new mass matrix structures appear for double-valued dihedral groups and
a detailed analysis, as performed for single-valued groups in the last two sections, shows that
this is indeed the case. But rather than giving the, rather uninstructive, details of this analysis
here, we will instead give a short, but complete, heuristic explanation for the absence of new
structures.
The only relevant difference between single- and double-valued groups is the existence of odd
representations. Therefore, at least one odd representation should show up in our model in
order to find possible new mass matrix structures.
For scalars transforming under odd two-dimensional representations, we find that they do not
get a structured VEV. In case they are allowed to get a VEV, the even two-dimensional repre-
sentations are also allowed arbitrary VEVs. This is only possible for Zq subgroups, as can be
seen from table C.3. We thus have the same situation as for the Zq subgroups of single-valued
groups: All doublets whose index is divided by q can get arbitrary VEVs. The fact that some
of them are odd and some are even is only reflected in additional signs due to differences in
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the Clebsch Gordan coefficients (see appendix B.2.2). These can however be absorbed into the
VEVs, as these are arbitrary anyway, and which doublets are odd and which are even becomes
irrelevant. We might as well be in a single-valued group D2n instead of using D′

n.
Similarly, for the odd one-dimensional representations, i.e. 13 and 14 of D′

n with n odd, only
two subgroups allow non-vanishing VEVs, namely Zn and Zq for 2n

q being even. In both cases
13 and 14 simultaneously get a VEV. This again means that the sign changes in the Clebsch
Gordan coefficients can be trivially absorbed.
One should further note that, if at least one of the fermion representations is an odd two-
dimensional representation, this results in the 3rd column being multiplied by −1 for the mass
matrix structures of equations (3.10), (3.11) and (3.12). These additional signs can be rotated
away by redefining the left-handed conjugate fermions. We would need the mass matrix struc-
ture of equation (3.13) or (3.15) for this sign change to have phenomenological consequences.
These mass matrix structures however only appear for the subgroup Z2 =< BAm >, which has
no counterpart for double-valued groups, so that these two structures do not arise for double-
valued groups.
Strictly speaking, we encounter the mass matrix structures of equations (3.13) and (3.15) for
double-valued groups, but all such cases can be reduced to a single-valued group. In the sim-
plest case we have used only even representations for the fermions. Then it is clear that one
could also have used a single-valued group right from the start. Another case occurs, if all the
fermions transform as odd representations. Then the Higgs fields have to transform as even
ones. One cannot simply reduce this case to a single-valued group, as one does not find odd
representations in Dn groups. However, one always finds some equivalent assignment for the
fermions using only even representations which leads to the same mass matrix structure and
which can then be reduced to the case of a single-valued group. Furthermore, one finds cases in
which the mass matrix is allowed to have arbitrary entries, but there exists no smaller symme-
try of the original group which is fully broken. This is the same case as already mentioned for
the Dn groups, if the unbroken subgroup is Zq, and we can again find equivalent assignments
for the fermions which result in the same matrix structure and which indeed correspond to a
smaller group being fully broken.
We thus conclude that no new Dirac mass matrix structures appear for double-valued groups.
Still, when transferring our results for Dn to D′

n with odd n, one needs to keep in mind that the
representations 13 and 14 are complex (conjugated). This implies that 13 × 14 = 11, so we
have to replace < φ3 > in the mass matrices by < φ4 >, and vice versa, even where they show
up only implicitly as < φp >. This also leads to differences, when switching to up-type mass
matrices: φ∗4 transforms as 13. So if we encounter a < φ3 > in the down-type mass matrix, we
need a < φ4 >

∗ for the up-type mass matrix. For odd two-dimensional representations an ad-
ditional minus sign is introduced along with the second component of the VEV when switching
to the up-type mass matrix, due to the matrix U introduced in section 3.1.2. All these changes
do not lead to new structures.
The remainder of this thesis will thus mainly be concerned with the single-valued dihedral groups
Dn. This is not to say that the double-valued group are entirely useless as flavor symmetries.
However, their special properties are not reflected in their subgroup structure and therefore are
not relevant in our ansatz of using conserved subgroups to obtain mass independent textures.

3.4.6 Majorana Mass Matrices

Majorana mass matrices correspond to Yukawa couplings involving two identical fermions, i.e
L = Lc. When determining the pure Majorana mass matrices for left-handed neutrinos, the
SU(2)L doublets of the Dirac mass matrices need to be replaced by SU(2)L triplets, which
naturally does not change the flavor structure, or by the product of two flavor-charged SM
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Higgs fields. This does not change the structure either: The product of two VEVs cannot break
a subgroup that is conserved by the two of them separately. Hence no additional terms in the
mass matrix can arise. Also, since a total singlet under Gf is always allowed a VEV, we can
construct any term in the mass matrix that is allowed when coupling to one scalar only. Our
results for Majorana mass matrices can of course also be used for the mass matrices of the
pure Majorana mass term of left-handed conjugate neutrinos, in which case the Higgs fields are
replaced by gauge singlet scalars and the VEVs of total singlets can be replaced by direct mass
terms. In any case, the fact that we couple identical fermions, forces Majorana mass matrices
to be symmetric.
As already mentioned at the beginning of this section on mass matrices, we keep our constraint
of a non-vanishing determinant, although this is no longer phenomenologically motivated for
neutrino Majorana masses, in order to keep the discussion manageable.
In section 3.4.4 we always mentioned when and how Majorana mass terms can show up if the
Majorana fermions transform under one two- and one one-dimensional representation of Gf , as
these correspond to mass matrices of the two doublet type. For D′

n, we have to mention that in
case of odd two-dimensional representations the terms containing < φ1 > are anti-symmetric.
So, whenever we remark in 3.4.4 that the anti-symmetric terms containing < φ2 > drop out, it
is instead the terms containing < φ1 > that will drop out. This does not lead to new structures
compared to the Dirac case.
We should however for completeness discuss another kind of structure: By allowing the three
singlet structure for the charged lepton mass matrix, we have allowed for the possibility that
the left-handed leptons transform as three one-dimensional representations of Gf . For a pure
Majorana mass term for left-handed neutrinos this would mean that all fermions in the Yukawa
term transform under one-dimensional representations, a case we have not considered so far.
For Dn with n arbitrary and for D′

n with n even we know that, in addition to the Majorana mass
matrix being symmetric, all diagonal entries will be non-zero, as two identical one-dimensional
representations always couple to form a trivial representation.
We first discuss the case of n even for Dn and D′

n. Looking at tables C.1 to C.4 we see that
depending on the preserved subgroup the following one-dimensional representations can get a
VEV: only 11, 11 and 1i with i 6= 1 or all one-dimensional representations. Especially, the
case in which three representations get a VEV is excluded. Concerning the assignment of the
fermions we can distinguish the following three cases: either all three generations transform in
the same way or two of them transform as the same representation or all three transform as
different representations. If the three generations are assigned to (1i,1i,1i), all mass matrix
entries are non-zero, i.e. the Majorana mass matrix is a general symmetric matrix with 6 inde-
pendent parameters, as 1i × 1i = 11 holds. For the assignment (1i1 ,1i1 ,1i2) there exist two
possible structures: either the matrix has a block structure or it has 6 independent entries. In
the first case one has to ensure that 1i1 × 1i2 is not allowed a VEV by the preserved subgroup,
while in the second case 1i1 × 1i2 should also acquire a VEV. In the last case, all fermions
transform under different one-dimensional representations, which allows apart from the block
and the arbitrary structure the possibility of having a matrix with non-vanishing entries on the
diagonal only. The case only occurs, if the preserved subgroup only allows 11 to acquire a VEV
and therefore the flavor symmetry is not broken in the Majorana mass sector.
For the case of Dn with n odd, we only have two one-dimensional representations to choose
from. Therefore at least two generations of fermions have to transform under the same repre-
sentation, forbidding the structure with non-vanishing entries only on the diagonal.
For D′

n with n odd, structures not found above could only arise from fermion assignments
involving the representations 13 and 14, as 13 and 14 are complex and hence 13 × 13 and
14 × 14 = 12. This means if 12 is not allowed a VEV, we can have zero elements on the
diagonal. However, we find that if 12 is not allowed a VEV, only the trivial representation
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11 is allowed a VEV for n odd, i.e. the dihedral symmetry is unbroken in the Majorana mass
sector. The structure arising from L ∼ (1i1 ,1i2 ,1i3) with i1 ∈ {1, 2} and i2, i3 ∈ {3, 4}, i2 6= i3
is then the same as in case of the two doublet assignment, if the two odd one-dimensional
representations 13 and 14 are replaced by the doublet, i.e. it is a semi-diagonal matrix with
the obvious restriction that C equals B.

3.5 Diagonalization and Mixing Matrices

What we are now interested in most is the phenomenological implications of the mass matrices
determined in the last section, i.e. their eigenvalues and the matrices that diagonalize them. We
want to allow for, indeed will need, the possibility of breaking to different subgroups in different
sectors, that is the scalar VEVs generating, for example, the up-type quark mass matrix will
conserve a different subgroup than the VEVs generating the down-type quark mass matrix.
Because of this, we will start by only considering the mixing generated in the up (neutrino) or
the down (charged lepton) sector. We then discuss the combination of both, i.e. the possible
CKM and PMNS mixing matrices, at the end of the section.
Even though the diagonalization matrices we present in the following only describe the mixing
arising in one sector, we still attempt to give them using the familiar parameterization of the
CKM-matrix for the mixing angles, to increase readability. We will not be able to put them in
the standard parameterization for the phases, as this may need rephasing, which can only be
done once the mixing from the up and the down sector has been combined.
We will again mainly be considering Dirac mass matrices, commenting on modifications for
Majorana mass matrices as we go along. For a given mass matrix M , only the mixing of the
left-handed fermions will be observable in the weak interaction. This mixing is given by the
the diagonalization matrix UL which is calculated by demanding that U †LMM †UL be diagonal.
For Majorana fermions the diagonalization matrix will also contain additional phases, which
will strongly depend on the phases of the elements of M , i.e. will be mostly independent of
the underlying group structure. Since the possible Majorana phases of neutrinos have not been
measured, they will anyhow not serve as a criterion for finding viable models, and will not be
discussed in this section.
For these reasons the relevant matrix structure is not actually that of the mass matrix itself,
but rather of the squared mass matrix MM †. As shown in the last section, we only have a
limited selection of mass matrices. When considering the squared mass matrices, the selection
is even more limited, and we can reduce our discussion to four general types, which we will
discuss one by one.
Note that, as in the last section, we do not discuss cases which differ only in a permutation
of the fermion generations. Even if these give different diagonalization matrices, the permu-
tation will cancel, when considering the net mixing of left-handed fermions. The question of
assigning eigenvalues is somewhat more tricky. We will in in general just use one eigenvalue as-
signment and will give that assignment explicitly. Exchanging the assignment of eigenvalues is
then equivalent to exchanging columns in the diagonalization matrix. For the CKM and PMNS
mixing matrices this means that switching eigenvalue assignments in the up sector corresponds
to exchanging rows, while switching eigenvalues in the down sector corresponds to exchanging
columns. The assignment of eigenvalues we use is almost entirely arbitrary. The only guiding
principle we have used is that the diagonalization matrix should not have zeroes on the diago-
nal, i.e. should not look too much like a permutation matrix. Also, if one eigenvalue is larger
than another one independent of parameter values, we have assigned the larger one to a higher
generation than the smaller one. An additional arbitrariness could also arise, if two eigenvalues
are degenerate by chance, i.e. only due to our numerical choice of parameters and not because
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of the structure of the mass matrix. But, since no mass degenerate fermion generations are
known to exist, we will not dwell on this possibility any further.
We have grouped the discussion according to the four types of squared mass matrices. For
each type, we will at first give the general form, along with the diagonalization matrix and the
eigenvalues. We will then give further details in tabular form. This further information directly
relates to the observations made in the last section: We give a list of all mass matrix structures
which can lead to a given squared mass matrix structure and show how the parameters of the
mass matrix and the squared mass matrix are related.
A word on notation: We have used the abbreviations cθ = cos θ and sθ = sin θ. As in the last
section, the entries in the mass matrices will be denoted by capital letters from the beginning
of the alphabet and are complex in general. The entries in the squared mass matrices will be
denoted by lower case letters from the beginning of the alphabet, and will be real in general:
All phases will be given explicitly. Signs need not necessarily be absorbed in these phases, we
will thus always mention whether parameters are allowed to be negative. For the phases we
continue to use φ = 2πm

n . When giving the general structure of the mass matrices, we will
place the phases where they would be in a down-type mass matrix. In most cases, the resulting
diagonalization matrix is exactly the same (no complex conjugation needed) if we consider the
diagonalization of the corresponding up-type mass matrix. If there are any differences, these
will be noted where they appear. It now becomes important for the three singlet structure,
whether it is the left-handed or the left-handed conjugate fermions which transform as three
one-dimensional representations, that is, whether we have a left-handed or a right-handed three
singlet structure. When referring to the indices of the two-dimensional representations, we
will be using j to denote the index of the representation under which the left-handed fermions
transform, and k for the index of the representation under which the left-handed conjugate
fermions transform. This is the same notation we have been using for the two-doublet structure
throughout. The one-dimensional representations, when needed, are given explicitly and we do
not use letters as indices for them in this section.

No mixing The simplest squared mass matrix is simply diagonal. It does not lead to any
mixing, i.e. is diagonalized by the identity matrix, and has the general form




a 0 0
0 b 0
0 0 c


 . (3.45)

Its eigenvalues are a (1st generation), b (2nd generation) and c (3rd generation), which are all
three positive. Further information is given in table 3.3.

One maximal mixing angle The simplest non-trivial diagonalization matrix we encounter
has one maximal and two zero mixing angles. It is of the form

Umax =




1 0 0
0 eijφ√

2
− eijφ√

2

0 1√
2

1√
2


 (3.46)

and is generated by the squared mass matrix




a 0 0
0 b ceiφj

0 ce−iφj b


 , (3.47)
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M a b c




A 0 0
0 B 0
0 0 C


 |A|2 |B|2 |C|2




A 0 0
0 B 0
0 0 Be−iφ(j+k)


 |A|2 |B|2 |B|2




A 0 0
0 0 B
0 C 0


 |A|2 |B|2 |C|2




A 0 0
0 0 B

0 Be−iφ(j−k) 0


 |A|2 |B|2 |B|2




A 0 0
0 B Be−ikφ

0 −C Ce−ikφ


 |A|2 2|B|2 2|C|2

Table 3.3: Mass matrices and models leading to no mixing. From left to right we give the mass matrix along
with the expressions for the parameters of the squared mass matrix in terms of those of the mass matrix.

which has the eigenvalues a (1st generation), b− c (2nd generation) and b+ c (3rd generation).
a and b are always positive, but c need not be, in which case of course the eigenvalue assignment
would have to be changed. All further information is given in table 3.4. Note that the first
and second mass matrices are the down- and up-type variants of the same model. We list them
separately, as there is a slight difference in the eigenvalues.

One free mixing angle The next simplest diagonalization matrix has one free and two zero
mixing angles and is of the general form

Ufree =




1 0 0
0 cθ sθe

iβ

0 −sθe−iβ cθ


 . (3.48)

It is generated by the squared mass matrix




a 0 0
0 b deiβ

0 de−iβ c


 , (3.49)

which has eigenvalues a (1st generation) and 1
2(b + c ±

√
(b− c)2 + 4d2) (with the minus sign

for the 2nd, the plus sign for the 3rd generation). All parameters are positive. The mixing
angle is given by

tan (2θ) =
2d
c− b

, (3.50)
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M a b+ c b− c




A 0 0
0 B C

0 Ce−iφ(j−k) Be−iφ(j+k)


 |A|2 |B + Ceiφk|2 |B − Ceiφk|2




A 0 0
0 Beiφ(j+k) Ceiφ(j−k)

0 C B


 |A|2 |B + Ce−iφk|2 |B − Ce−iφk|2




A 0 0
0 B −C
0 Be−iφj Ce−iφj


 |A|2 2|B|2 2|C|2

Table 3.4: Mass matrices and models generating one maximal mixing angle. For details see caption of table 3.3.

and is thus defined to lie in the interval [0, π2 ]. All further information can be found in table
3.5.

One free, one maximal mixing angle The most complicated structure is a diagonalization
matrix with one free, one maximal and one zero mixing angle. Let us first take a look at the
squared matrix structure which gives such a diagonalization matrix:




a deiβ dei(β+jφ)

de−iβ b ceijφ

de−i(β+jφ) ce−ijφ b


 . (3.51)

This squared mass matrix has the eigenvalues (b − c) and 1
2(a + b + c ±

√
(a− b− c)2 + 8d2).

All parameters are positive except for c which could also be negative. We will be discussing all
possible eigenvalue assignments in the next chapter, for now we assign the eigenvalue (b − c)
to the third generation, the other two eigenvalues to the first and second, where the eigenvalue
with the plus sign naturally belongs to the second generation. The diagonalization matrix is
then

Ufm =




cθ e
i β sθ e

i β 0
− sθ√

2
ei φ j cθ√

2
ei φ j − 1√

2
ei φ j

− sθ√
2

cθ√
2

1√
2


 . (3.52)

In any case the free mixing angle is given by

tan (2θ) =
2
√

2d
b+ c− a

(3.53)

and lies in the closed interval from 0 to π
2 . All further information is given in tables 3.6 and 3.7.

The first table gives those values which differ for up- and down-type mass matrices, while the
second one gives those values which are the same (and hence shows only the down-type mass
matrices).
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M a b




0 A B
C D E

−Ce−ijφ De−ijφ Ee−ijφ


 |A|2 + |B|2 |D|2 + |E|2 + |C|2




A C Ce−iφk

B D E

Be−ijφ Ee−i(j−k)φ De−i(j+k)φ


 |A|2 + 2|C|2 |B|2 + |D|2 + |E|2

Table 3.7: Mass matrices and models generating one free and one maximal mixing angle - parameters which are
the same in the up and down cases. For details see caption of table 3.3.

Matrix left-handed 3 singlet right-handed 3 singlet 2 doublet
1 Dq - Zn

2
, Zq, Zn, Dn

2
, Dq

Umax - Dq Dn
2
, Dq

Ufree Zq, Z2 Zq Zn
2
, Zq

Ufm - Z2 Z2

Table 3.8: Relation between diagonalization matrices and conserved subgroups. The column gives the transfor-
mation properties of the fermions, the row gives the diagonalization matrix. One can then read off the possible
conserved subgroups. Z2 always means Z2 = 〈BAm〉.

Looking back at our discussion of Dirac mass matrices in the previous chapter, and comparing
the structures encountered there with the tables in this chapter, we find that we have indeed
covered all possible cases, keeping the assumption that a non-trivial subgroup of our original
dihedral flavor symmetry is preserved and demanding a non-zero determinant. We obtain four
kinds of diagonalization matrices. In table 3.8 we give the connection between conserved sub-
group and diagonalization matrix. The table should be read in the following way: We fix the
diagonalization matrix we want to obtain and the transformation properties of the fermions.
We can then read off the possible conserved Dn subgroups.

CKM and PMNS matrices What possibilities do we now have to construct the CKM or
PMNS mixing matrices from the diagonalization matrices determined in this section? A mixing
matrix will be of the form UTi U

∗
j , with Ui,j one of the four diagonalization matrices. We will

mainly be concerned with mixing angles in the following, i.e. with the moduli of the mixing
matrix elements, as the phases depend strongly on parameterization and in the lepton sector
also on the origin of neutrino mass.
We recall what was the original purpose of our analysis of the Dn subgroups: We wanted to
find mass independent textures, i.e. mixing angles which are only determined by the structure
of the mass matrix and are independent of exact numerical values. We have so far encountered
maximal mixing angles (meaning diagonalization matrix elements with an absolute value of
1/
√

2) and vanishing mixing angles (corresponding to diagonalization matrix elements with ab-
solute values 1 and 0). However, when considering the possible combinations of diagonalization
matrices, we observe an interesting thing: The maximal and vanishing mixing angles are not
the only ones that can be predicted by group theory alone, there is a third possibility. If, for
example, different subgroups Z2 = 〈BAm1〉 and Z2 = 〈BAm2〉 with m1 6= m2 are conserved in
different sectors we predict for the absolute value of one element of the mixing matrix
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∣∣∣∣cos
(
π(m1 −m2)j

n

)∣∣∣∣ , (3.54)

where j is the index of the irrep 2j under which the left-handed fermions involved in the mixing
transform. We will discuss this effect and how it arises in detail in the following chapter.
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Chapter 4

Subgroup Mismatch in Dn

We have observed at the end of the last chapter that, in addition to vanishing and maximal
mixing angles, we have a third possibility for predicting an element of the quark or lepton mixing
matrix from group theory alone. This is not entirely unheard of, as models implementing an A4

flavor symmetry are actually able to predict all elements of the PMNS matrix and so reproduce
the HPS mixing matrix, as discussed in section 2.2. Still, the Dn case is highly interesting and
may be of relevance for both quarks and leptons, as we shall see in this chapter. We will discuss
how the matrix element is generated by subgroup mismatch in section 4.1. This mechanism has
been used in the literature to predict maximal atmospheric mixing, without however analyzing
its origin in Dn group theory. We give the details in section 4.2 and then go on to present
a model in which this mechanism is used to predict the Cabibbo angle in the quark sector in
section 4.3.

4.1 General Considerations

4.1.1 Derivation of the Non-Trivial Mixing Angle

The desired subgroup mismatch can only arise if the two involved sectors each conserve a sub-
group with BAm1,2 as generator. The parameters m1 and m2 must be different, otherwise the
group theoretically determined mixing matrix element is simply 1 as can be seen from equa-
tion (3.54). A Dn group has only three types of subgroups that have an element of the form
BAm as generator, the groups Z2, Dj and Dn

2
(where m is set to be 0 or 1). In fact if we

realize that Z2
∼= D1, we can reformulate the condition: To obtain a non-trivial, purely group

theoretical prediction for an element of the CKM or PMNS matrix, we need to demand that
distinct dihedral subgroups are conserved in the two involved sectors and that the intersection
of their elements should not contain an element of the form BAm.
We further see from the analysis of section 3.5 that we need to have a diagonalization matrix
of the form Umax or Ufm in both sectors, otherwise the subgroup index mi will not show up in
the diagonalization matrix Ui. This immediately disqualifies all models where the left-handed
fermions transform as three one-dimensional representations of Gf , and is in accordance with
the connection between subgroups and diagonalization matrices given in table 3.8. Both diago-
nalization matrices Umax and Ufm arise from squared mass matrices with a very similar form, in
fact the squared mass matrix of equation (3.47) arises from that of equation (3.51) in the limit
d = 0. This corresponds to taking the limit θ = 0 in Ufm, as can be seen from equation (3.53),
and indeed Umax and Ufm are equal in this limit. This can also be understood from the con-
served subgroups: A diagonalization matrix Ufm corresponds to a conserved subgroup Z2, while
Umax corresponds to a larger dihedral subgroup which contains Z2 as a subgroup. A conserved
Z2 allows a VEV for all two-dimensional representations, while the larger dihedral subgroup

57
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will allow a VEV only for certain (or no) two-dimensional representations, leading to d = 0. If
d were allowed to be non-vanishing even for the larger dihedral subgroup, we would encounter
the case, mentioned in section 3.4.4, of having only unfaithful representations and effectively
only conserving the Z2 subgroup of a smaller original dihedral flavor symmetry.
We will thus, without loss of generality, for our general discussion only consider the case of
distinct Z2 subgroups conserved in both sectors, keeping in mind that we can arrive at larger
conserved subgroups taking the limits described above.
Our explicit case is thus conserved subgroups Z2 = 〈BAm1〉 and Z2 = 〈BAm2〉 in sectors 1
and 2 (which can mean up- and down-type quarks or charged leptons and neutrinos). If we
additionally impose that the left-handed fermions transform under one one-dimensional and one
two-dimensional representation 2j, we have specified the unique case giving us a diagonalization
matrix Ufm (up to permutation of columns - we will come to this in a moment) in both sectors.
To make the further discussion more transparent we first factorize the diagonalization matrix
Ui which is of the form Ufm in the following way:

Ui =




eiβi 0 0
0 eiφij 0
0 0 1







1 0 0
0 1√

2
− 1√

2

0 1√
2

1√
2







cos θi sin θi 0
− sin θi cos θi 0

0 0 1


 , (4.1)

or, in an abbreviated form

Ui =




eiβi 0 0
0 eiφij 0
0 0 1


R23

(π
4

)
R12 (θi) . (4.2)

As we did for the subgroup index mi, we label all parameters in the sector i (i = 1, 2) with
the corresponding index, while otherwise keeping the notation of section 3.5. The free mixing
angles from the two sectors are thus denoted by θ1 and θ2. The definitions of R23

(
π
4

)
and

R12 (θi) follow from comparing equations (4.1) and (4.2). We then obtain the CKM or PMNS
matrix as

V = (U1)T (U2)∗ = RT12 (θ1)RT23

(π
4

)



ei(β1−β2) 0 0
0 ei(φ1−φ2)j 0
0 0 1


R23

(π
4

)
R23 (θ2) . (4.3)

As one can clearly see, if now φ1 = φ2, that is m1 = m2 and the same Z2 subgroup is conserved
in both sectors, the diagonal phase matrix in the middle has only a non-trivial (11)-entry and
thus commutes with R23

(
π
4

)
. We then have the multiplication RT23

(
π
4

)
R23

(
π
4

)
which gives the

identity, since R23

(
π
4

)
is an orthogonal matrix. All that is then left in V is one non-vanishing

mixing angle θ12 fulfilling

| cos θ12| = |ei(β1−β2) cos θ1 cos θ2 + sin θ1 sin θ2|. (4.4)

We thereby see the relevance of the fact that we conserve different subgroups in the two sectors:
If not the maximal mixing angles from the two sectors show up with the same phase and simply
cancel. If however m1 6= m2, we obtain

V =
1
2
RT12 (θ1)




ei(β1−β2) 0 0
0 1 + eij(φ1−φ2) 1− eij(φ1−φ2)

0 1− eij(φ1−φ2) 1 + eij(φ1−φ2)


R12 (θ2) . (4.5)

We thus get an additional rotation by an angle given by
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|cos θ| = 1
2

∣∣∣1 + eij(φ1−φ2)
∣∣∣ =

∣∣∣∣cos
(
π(m1 −m2)j

n

)∣∣∣∣ . (4.6)

This angle is now entirely determined by group theoretical factors and not by arbitrarily tunable
free parameters. After multiplication with the two rotation matrices on the left and on the
right, we end up with one element of the mixing matrix V which is entirely determined by
group theory. In our case this will be V33, whose absolute value is then given to be

|V33| =
∣∣∣∣cos

(
π(m1 −m2)j

n

)∣∣∣∣ , (4.7)

as already announced. Comparing this with the measured values of the elements of the CKM
and PMNS matrices can now give us a clear indication on how to construct our model using a
dihedral flavor symmetry, especially on how to pick n. But first we need to understand, why it
was V33 and not some other mixing matrix element which ended up being determined by group
theory.
For this we need to return to the question of assigning eigenvalues. We first note that Ui has a
column vector

~vi =




0
− 1√

2
ei φi j

1√
2


 . (4.8)

This is the eigenvector of the squared mass matrix corresponding to the eigenvalue (bi− ci). In
our exemplary calculation above, we implicitly assigned this eigenvalue to the third generation
in both sectors, as this was the convention adopted in section 3.5. The group theoretically
determined element V33 then arises from the Hermitian scalar product of the eigenvectors from
both sectors, i.e. V33 = ~v1

∗ · ~v2. If however we assign (b1−c1) to the ath generation and (b2−c2)
to the bth, it will naturally be Vab which is determined by group theory and whose absolute value
will be given by equation (3.54). For the case of conserved Z2 subgroups the ordering of the
other two eigenvalues is determined, and we have no further freedom in assigning eigenvalues, at
least in the quark and charged lepton sectors. For neutrinos we do not know whether the third
generation is lighter or heavier than the other two, so that there are additional possibilities.
These however only correspond to a redefinition of θν , which is anyway a free parameter. The
three different forms of the diagonalization matrix Ufm are then

Ufm =




cθ e
i β sθ e

i β 0
− sθ√

2
ei φ j cθ√

2
ei φ j − 1√

2
ei φ j

− sθ√
2

cθ√
2

1√
2


 ,

U ′fm =




cθ e
i β 0 sθ e

i β

− sθ√
2
ei φ j − 1√

2
ei φ j cθ√

2
ei φ j

− sθ√
2

1√
2

cθ√
2


 , (4.9)

U ′′fm =




0 cθ e
i β sθ e

i β

− 1√
2
ei φ j − sθ√

2
ei φ j cθ√

2
ei φ j

1√
2

− sθ√
2

cθ√
2


 .

Combining them leads to nine distinct possibilities for the mixing matrix, which are displayed
in appendix C.3. We can now go ahead and compare the expression of equation (3.54) with
the experimentally determined values for all CKM and PMNS matrix elements, and find which
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ones it is best suited to describe.

4.1.2 Comparison with Phenomenology

We start by considering the quark sector. We will restrict ourselves to values of n smaller than
30, since larger values of n correspond to larger groups. Enforcing n < 30 leads to a group
order smaller than 60 (cf. section 3.1.1) which seems to be reasonable. With a larger n we
could tune the group theoretically determined mixing matrix element to arbitrary precision,
but smaller groups are more easily handleable and a model of flavor should anyway be in some
sense minimal. Also, we expect small corrections to this element and thus should allow for small
deviations from our leading order prediction.
We immediately see that this means that the elements in the third row and column of VCKM are
too small or too close to 1 (for the case of Vtb) to be described in this way. However the elements
of the 1-2 sub-block, i.e. |Vud|, |Vus|, |Vcd| and |Vcs|, can be quite readily approximated by∣∣cos(πn (mu −md) j)

∣∣. We can accommodate the CKM matrix element |Vus| by cos(3π
7 ) ≈ 0.2225,

i.e. by taking n = 7 and for example j = 3, mu = 1 and md = 0. As |Vcd| ≈ |Vus| holds to
good accuracy, also |Vcd| can be described well by cos(3π

7 ). This favors a flavor group D7.
Furthermore |Vud| ≈ |Vcs| can be approximated well as cos( π14) ≈ 0.9749 which points towards
the flavor group D14. These are the best possible approximations for n ≤ 30 given the best fit
values of equation (1.15).
Note that, even if |Vus| is taken to be cos(3π

7 ), there is no unique solution which flavor symmetry
has to be used and to which subgroup it has to be broken, since for example taking j = 1,mu = 3,
md = 0 and n = 7 leads to

∣∣cos(πn (mu −md) j)
∣∣ = | cos(3π

7 )| as well as j = 3, mu = 1, md = 0
and n = 7 and also j = 1, mu = 6, md = 0 and n = 14. As | cos(4π

7 )| equals | cos(3π
7 )|, this

allows us to deduce further possible values for j, mu, md and n, such as j = 1, mu = 0, md = 4
and n = 7.
We will study the cases |Vus| and |Vcd| equal to cos(3π

7 ) and |Vud| and |Vcs| equal to cos( π14) in
greater detail and thereby check whether we can always adjust the two other mixing angles θq13

and θq23 with the free angles θu and θd and also the Jarlskog invariant JCP with the difference
of the two phases βu and βd. In this analysis there are only three free parameters in the mixing
matrix: θu,d and α = βu − βd, since only this phase difference will appear in VCKM . We use
these to fit the other two quark mixing angles θq13 and θq23 as well as the CP violation JCP .
The forms of V presented in appendix C.3 show that two of the elements |Vub|, |Vcb|, |Vtd| and
|Vts| are determined by cos(θu,d) in each of the four different cases. As these elements are small,
the free angles θu and θd are restricted to be θu,d ≈ π

2 . Therefore θu,d is expanded around π
2 ,

θu,d = π
2 − εu,d, εu,d > 0. The resulting four CKM matrices are (up to the first order in εu,d)

|V 11
CKM | ≈




cos( π
14 ) cos( 3 π

7 ) cos( 3 π
7 ) εd

cos( 3 π
7 ) cos( π

14 ) 1
2 |(1 + e

π
7 i) εd − 2 ei α εu|

cos( 3 π
7 ) εu 1

2 |(1 + e
π
7 i) εu − 2 ei α εd| 1


 , (4.10)

|V 12
CKM | ≈




cos( π
14 ) cos( 3 π

7 ) cos( π
14 ) εd

cos( 3 π
7 ) cos( π

14 ) 1
2 |(1 + e

6 π
7 i) εd − 2 ei α εu|

1
2 |(1 + e

6 π
7 i) εu − 2 ei α εd| cos( π

14 ) εu 1


 , (4.11)

|V 21
CKM | ≈




cos( π
14 ) cos( 3 π

7 ) 1
2 |(1 + e

6 π
7 i) εd − 2 ei α εu|

cos( 3 π
7 ) cos( π

14 ) cos( π
14 ) εd

cos( π
14 ) εu 1

2 |(1 + e
6 π
7 i) εu − 2 ei α εd| 1


 , (4.12)

|V 22
CKM | ≈




cos( π
14 ) cos( 3 π

7 ) 1
2 |(1 + e

π
7 i) εd − 2 ei α εu|

cos( 3 π
7 ) cos( π

14 ) cos( 3 π
7 ) εd

1
2 |(1 + e

π
7 i) εu − 2 ei α εd| cos( 3 π

7 ) εu 1


 . (4.13)
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Element (ij) Possible cosines
(21) cos(5π

14 ) (≈ 0.4339)
(22) cos(2π

7 ) (≈ 0.6235)
(23) cos(2π

7 ) (≈ 0.6235)
(31) cos(5π

14 ) (≈ 0.4339)
(32) cos(2π

7 ) (≈ 0.6235)
(33) cos(2π

7 ) (≈ 0.6235), cos(3π
14 ) (≈ 0.7818)

Table 4.1: Possibilities for the group theoretically determined element in VPMNS .
Note that, e.g. cos( 3 π

7
) equals cos( 6 π

14
), i.e. it could also be reproduced in the

group D14 with j = 1 and ml − mν = 6 and not only in D7 with j = 1 and
ml −mν = 3. Furthermore, for example, cos( 4 π

7
) is also included implicitly in the

list, as | cos( 4 π
7

)| = | cos( 3 π
7

)|.

Without loss of generality we have set the representation index j to 1, the group theoretical
phase φu to zero (mu = 0) and the phase φd to 2π

14 (md = 1, n = 14) for equations (4.10) and
(4.13), while we take it to be 6π

7 (md = 3, n = 7) for equations (4.11) and (4.12). Furthermore
one can calculate JCP in this case:

J11
CP =

1
8

sin
(π

7

)
sin

( π

14

)
sin (2 θd) sin (2 θu) sin

( π

14
− α

)

≈ 1
2

sin
(π

7

)
sin

( π

14

)
sin

( π

14
− α

)
εu εd.

The value of JCP belonging to V 22
CKM , i.e. J22

CP , is of the same form as J11
CP . For V 12

CKM and
V 21
CKM one finds

J12
CP = J21

CP = −1
8

sin
(

6π
7

)
sin

(
3π
7

)
sin (2 θd) sin (2 θu) sin

(
3π
7
− α

)

≈ −1
2

sin
(

6π
7

)
sin

(
3π
7

)
sin

(
3π
7
− α

)
εu εd.

A numerical computation was performed in [3], and it could be shown that in all four cases all
data can be fitted with reasonable accuracy. Anyway, one expects further small corrections due
to higher-dimensional operators and possibly explicit breaking of the residual subgroups.
A similar analysis as done in the case of VCKM can also be carried out for the lepton mixing
matrix VPMNS . As the entries of VPMNS are not as strongly restricted by experiments, there
are several more possibilities to accommodate the various matrix elements regarding the choice
of the group index n, and the values ml, mν and j. We will thus restrict ourselves to two cases:
First, as we intend to build a model which includes quarks as well as leptons, we stick to the
values n = 7, n = 14, which fit the CKM matrix elements of the 1-2 sub-block best, if we
restrict ourselves to small n. We will then in the next section deal with another special case,
where this mechanism (for n=4) has been implicitly used in the existing literature.
Fixing n = 7 or n = 14, we check element by element of VPMNS whether we can put it into the
form | cos( l π7 )| where l = 0, 1, 2, ..., 6 or | cos( l π14 )| with l = 0, 1, 2, ..., 13. Taking the 90% C.L.
bounds on the absolute values of the PMNS matrix elements from [114], all elements of the
second and third row can be approximated by a cosine of the form | cos( l π7 )| (l = 0, 1, 2, ..., 6)
or | cos( l π14 )| (l = 0, 1, 2, ..., 13), omitting the trivial possibility that the (13) element can be
approximated by 0.
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Again, a numerical fit of the mixing angles was performed in [3], assuming that the neutrinos
are Dirac particles and that they have the same ordering as the other fermions, i.e. the neutrino
mass spectrum is normally ordered. Here it was found that, as opposed to the quark case, there
are some cosines listed in table 4.1 for which no fit with χ2 < 1 could be found. In all these
cases the value of the fixed VPMNS element lies almost outside the allowed ranges. For the (23)
element, for example, the possible cosine is cos(2π

7 ) ≈ 0.6235 which is quite close to the lower
bound (0.61) of the allowed range. However it could be shown that in general it is possible
to treat the lepton mixings in the same way as the ones of the quarks in a D7 or D14 flavor
symmetry. In section 4.3 we will however only be constructing an explicit model for the quark
sector. This is also due to the fact that for the lepton sector a different application of the Dn

subgroup mismatch is more promising. This will be discussed in the next section.

4.2 A D4 Example from the Literature

Before discussing the D4 model in which the subgroup mismatch described in this section is
used, we first mention some other examples, where non-trivial subgroups of dihedral flavor
symmetries are conserved and explicitly mentioned. [74] and [83] mention the possibility of
breaking their dihedral flavor symmetry down to a non-trivial subgroup. [74] uses a D3 flavor
symmetry, which is then broken down to Z2 to achieve maximal atmospheric lepton mixing
and θl13 = 0. [83] uses a D5 symmetry. If this is broken down to Z2, maximal mixing can be
achieved. However, without separating the Yukawa sectors or explicitly breaking the residual
symmetry, the resulting maximal mixing angles in the neutrino and charged lepton sector will
cancel in the leptonic mixing matrix.
The most interesting example for our purposes however is given in [84], where a D4 flavor
symmetry is used. Before going into mathematical detail, it should be noted that the authors
use a different set of (real) generators for D4, which makes the comparison less straightforward.
The relation between this basis and ours is discussed in appendix B.3.
To obtain the distinct conserved subgroups an additional Z(aux)

2 is used for separating the three
different Yukawa sectors: the charged lepton sector, the Dirac neutrino sector and the Majorana
neutrino sector. The transformation properties of the fermions are chosen to give a two doublet
structure in all three sectors. Then one breaks down to a different subgroup in each sector:
D2 = 〈A2,B〉 is conserved in the charged lepton sector. D4 is conserved in the Dirac neutrino
sector, while it is broken down to Z2 = 〈BA3〉 in the Majorana neutrino sector. We will not go
into the intricacies of the Type I Seesaw here. One can see that the net symmetry conserved in
the neutrino sector is Z2 = 〈BA3〉 and this is all we really need for our analysis.
One should note that this model does not include scalars transforming under all representations
allowed a VEV by the conserved subgroup. To be more specific, a gauge singlet transforming
as 14 is absent from the model, leading to two texture zeros in the right-handed neutrino mass
matrix. They effect the relations between the eigenvalues of the light neutrino mass matrix, i.e.
they enforce a normal hierarchy, but do not change our general symmetry discussion.
With D2 = 〈A2,B〉 conserved in the lepton sector and Z2 = 〈BA3〉 conserved in the lepton
sector, one can already see, from our discussion in section 4.1, what will happen: One element
of VPMNS will be determined by group theory alone. In this case it will be Vτ3 and is given to
be

|Vτ3| =
∣∣∣∣cos

(
π(0− 3) · 1

4

)∣∣∣∣ =
1√
2

(4.14)

But more than this: It is a D2 that is conserved in the charged lepton sector, not a Z2, so,
when comparing with V 33 in appendix C.3, we should set θ1 = θl = 0. This means that the
entire third column of VPMNS is determined by group theory, and this model predicts maximal
atmospheric mixing and vanishing θl13. [85] goes on to discuss soft breaking of the D4 in the
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scalar potential. More precisely, the Z2 subgroup conserved in the neutrino sector is broken
explicitly. Thus, the resulting doublet VEV no longer conserves Z2, which can lead to sizable
deviations from a maximal θl23, while leaving θl13 = 0.
It is important to note that in this model the appearance of the maximal mixing angle is crucially
dependent on n = 4. A similar result is reproduced by a D3 flavor symmetry in reference [71].
But although the result is similar, it is not the same mechanism that is being used, as is already
obvious from the fact that 4 does not divide the group index n. In this case, the authors work
in the same group basis we have used, so a comparison is more straightforward. Still it needs to
be taken into account that they present their Dirac mass matrices in the basis L̄R, i.e. using the
Dirac basis, while our results are always given in the basis LLc. The D3(∼= S3) flavor symmetry
is again joined by a Z2 symmetry, which creates the same three sectors. D3 is then broken to
Z3 = 〈A〉 in the charged lepton sector. In the Dirac neutrino sector the entire flavor symmetry
is conserved, while it is broken down to a Z2 in the Majorana neutrino sector - in this case all
three equivalent subgroups < B >, < BA > and < BA2 > are mentioned. Now all mixing is
generated in the neutrino sector, where the conserved Z2 leads to one maximal and one free
mixing angle, as discussed in section 3.5. Here the maximal scalar field content is allowed: The
additional parameter which arises from having the full scalar field content does not affect the
structure of the neutrino mass matrix obtained from the Type I Seesaw formula, can however
affect the neutrino mass hierarchy, as in this case the normal hierarchy is not necessarily pre-
dicted. The interesting thing to realize however, is that the maximal mixing angle predicted in
this model has quite a different origin from that in the D4 model, and does not arise from the
subgroup mismatch we have discussed.
In any case, we have presented an existing, worked-out example, of how the subgroup mismatch
can lead to maximal atmospheric mixing in the lepton sector. We now proceed to the presen-
tation of an explicit model where this subgroup mismatch is used to predict the Cabibbo angle
in the quark sector.

4.3 D7 and the Cabibbo Angle - a Worked-Out Example

After having shown in section 4.1.2 that one element of VCKM can be explained in terms of
group theoretical indices, we want to go a step further and construct a viable model at least for
the quark sector which includes this issue. The model is viable, if we find a numerical solution
which accommodates not only the mixing parameters contained in VCKM , but also the quark
masses. Due to the strong hierarchy among the quarks this is a non-trivial task, although the
number of parameters in the mass matrices Mu and Md will exceed the number of observables.
Furthermore we have to show that a Higgs potential exists allowing us to realize the desired
VEV structure. In the simplest case we assume that all Higgs fields are SU(2)L doublets as the
Higgs field in the SM.

4.3.1 Quark Sector of the D7 Model

Here we present a model using the three singlet structure and the dihedral group D7. Both
of them are here only chosen for simplicity: A further model using the two doublet structure
is presented in [3], but it needs more scalar degrees of freedom. And D7 is chosen as flavor
symmetry, since it is smaller than D14. As we will see later, D14 has some further advantages
that actually make it the more attractive symmetry. For now we are however left with the
possibility of either determining |Vus| or |Vcd| in terms of group theoretical quantities as cos(3π

7 ).
We assign the quarks to
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Q1 ∼ 11 ,
(
Q2

Q3

)
∼ 21 , uc1, d

c
1 ∼ 12 , uc2,3, d

c
2,3 ∼ 11 (4.15)

under D7. We stick to our assumption of maximal relevant scalar field content, i.e. we assume
that the theory contains Higgs doublet fields transforming as 11 and 21, which we call Hs and
H1,2. As the relation between the mixing parameters of VCKM and the group theoretical indices
only arises, if the flavor symmetry D7 is broken down to a subgroup Z2 =< BAmu > by fields
which couple to up quarks, while it is broken down to Z2 =< BAmd > with md 6= mu by fields
coupling to down quarks, we need an extra symmetry to perform this separation. In the SM
this can be achieved by a Z(aux)

2 symmetry:

dci → −dci and Hd
s → −Hd

s , Hd
i → −Hd

i , (4.16)

while all other fields Qi, uci , H
u
s and Hu

1,2 are invariant under Z(aux)
2 . So, we deal with six

Higgs fields coupling to the fermions, Hu
s ∼ (11,+1), Hu

1,2 ∼ (21,+1) and Hd
s ∼ (11,−1),

Hd
1,2 ∼ (21,−1) under D7 × Z

(aux)
2 . The mass matrices are of the form

Mu =




0 yu1 〈Hu
s 〉? yu2 〈Hu

s 〉?
yu3 〈Hu

1 〉? yu4 〈Hu
1 〉? yu5 〈Hu

1 〉?
−yu3 〈Hu

2 〉? yu4 〈Hu
2 〉? yu5 〈Hu

2 〉?


 and Md =




0 yd1 〈Hd
s 〉 yd2 〈Hd

s 〉
yd3 〈Hd

2 〉 yd4 〈Hd
2 〉 yd5 〈Hd

2 〉
−yd3 〈Hd

1 〉 yd4 〈Hd
1 〉 yd5 〈Hd

1 〉


 ,

where yu,di denote Yukawa couplings. The VEV structure is taken to be

〈Hd,u
s 〉 > 0 , 〈Hd

1 〉 = 〈Hd
2 〉 = vd , 〈Hu

1 〉 = vu e
− 3 π i

7 and 〈Hu
2 〉 = vu e

3 π i
7 ,

with vd > 0 and vu > 0. The VEVs are set to be real apart from the phase ±3π
7 which is

necessary for the correct breaking to the desired subgroup of D7. The mass matrices then take
the form given in the second and first lines of table 3.6, respectively, where the parameters A,
B, ... can be written in terms of Yukawa couplings and VEVs:

Au = yu1 〈Hu
s 〉 , Bu = yu2 〈Hu

s 〉 , Cu = yu3 vu e
− 3 π i

7 , Du = yu4 vu e
− 3 π i

7 , Eu = yu5 vu e
− 3 π i

7 ,

Ad = yd1 〈Hd
s 〉 , Bd = yd2 〈Hd

s 〉 , Cd = yd3 vd , Dd = yd4 vd , Ed = yd5 vd,

together with φu = 6π
7 (mu = 3), φd = 0 (md = 0) and j = 1, as the left-handed quark doublets

of the second and third generation transform as 21. The preserved Z2 subgroups are generated
by B A3 and B in the up and the down quark sector, respectively.
We now assign the mass eigenvalues

√
2 |Cd| and

√
2 |Cu| to the strange and the up quark,

respectively. They correspond to the decisive eigenvalue (b− c) in the language of section 4.1,
so that |Vus| is then given by cos(3π

7 ) = 0.2225. A numerical analysis is performed in [3], to
fit the other mixing matrix elements and the masses. The resultant Yukawa couplings show
a strong hierarchy. This can be alleviated by introducing an additional FN symmetry, which
leads to all Yukawa couplings being of natural size. This then constitutes a proof of principle
that the subgroup mismatch mechanism can indeed lead to a prediction of the Cabibbo angle
in a realistic model. However, things get less realistic and less elegant once we take a closer
look at the Higgs sector, which we will do in the next section.

4.3.2 Higgs Sector of the D7 Model

We first construct the three Higgs doublet potential for the Higgs fields Hs ∼ 11 and
(
H1

H2

)
∼

21, which couple to the up quarks. The potential has the form1

1Note that σ2 is complex, but it can be made real by appropriate redefinition of the field Hs, for example.
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V3(Hs,Hi) = −µ2
s H

†
s Hs − µ2

D

2∑

i=1

H†
i Hi + λs

(
H†

s Hs

)2
+ λ1

(
2∑

i=1

H†
i Hi

)2

(4.17)

+ λ2

(
H†

1 H1 −H†
2 H2

)2

+ λ3 |H†
1 H2|2

+ σ1

(
H†

s Hs

)
(

2∑

i=1

H†
i Hi

)
+

{
σ2

(
H†

s H1

) (
H†

s H2

)
+ h.c.

}
+ σ3

2∑

i=1

|H†
s Hi|2.

As already shown in [83], this potential has an additional U(1) symmetry, i.e. there exists a
further U(1) symmetry in the potential apart from the U(1)Y gauge symmetry. This further
symmetry is necessarily broken by our desired VEV structure such that a massless Goldstone
boson appears in the Higgs spectrum which is not eaten by a gauge boson. This problem
cannot be solved by taking into account the whole potential for all six Higgs fields, since even
if the terms coupling the fields Hu

s , Hu
1,2 and Hd

s , H
d
1,2 are included, we find an accidental U(1)

symmetry in the potential. Therefore we have to enlarge the Higgs sector by further Higgs fields
in order to create new D7 invariant couplings which break this accidental symmetry explicitly.
We find that this can be done in the simplest way by adding two Higgs fields transforming as 22
under D7. Due to their transformation properties they do not directly couple to the fermions.
We decided to add two such fields to the three Higgs fields which couple to the down quarks.
Therefore the model contains eight Higgs doublet fields in total, three of them couple to up and
three of them to down quarks, while the other two are needed for a viable Higgs sector:

Hu
s ∼ (11,+1) ,

(
Hu

1

Hu
2

)
∼ (21,+1) , (4.18)

Hd
s ∼ (11,−1) ,

(
Hd

1

Hd
2

)
∼ (21,−1) and

(
χd1
χd2

)
∼ (22,−1)

under D7 × Z
(aux)
2 . The complete potential consists of three parts,

V = Vu + Vd + Vmixed, (4.19)

where Vu denotes the part of the potential which only contains Higgs fields coupling to the up
quarks, Vd contains the five Higgs fields which have a non-vanishing Z

(aux)
2 charge (three of

them give masses to the down quarks), while Vmixed consists of all other terms. The explicit
form of the potential is given in appendix C.4.
The VEV structure of the fields Hd,u

s and Hd,u
1,2 is determined by our desire to break down to

two distinct Z2 subgroups in the up and the down quark sector :

〈Hd,u
s 〉 > 0 , 〈Hd

1 〉 = 〈Hd
2 〉 = vd , 〈Hu

1 〉 = vu e
− 3 π i

7 and 〈Hu
2 〉 = vu e

3 π i
7 ,

with vd > 0 and vu > 0. In contrast to this, the VEV structure of the fields χd1,2 is not fixed in
this way. However, in order to preserve the Z2 subgroup generated by B not only through the
VEVs of the fields Hd

s and Hd
1,2, but also by the VEVs of the fields χd1,2, 〈χd1〉 = 〈χd2〉 > 0 will

be assumed in the following.
We proceed in the following way in order to find a minimum of this potential which allows for
our choice of VEVs: First we treat Vu and Vd separately to find a viable solution for these two
parts of the potential. Note that we can allow all parameters in the potential Vd to be real,
as the VEVs of the corresponding Higgs fields are also real. Since Vu suffers from the above
mentioned accidental U(1) symmetry, we find a fourth massless particle in the Higgs mass
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spectrum. In a second step we add as many terms as necessary from Vmixed to get a minimum
of the whole potential V which does not have more than the usual three Goldstone bosons. It
turns out that it is sufficient to take into account three terms in addition to Vu and Vd to get a
viable solution. The terms are of the form

κ2

(
Hu
s
†Hd

s

)2
+ κ5

(
2∑

i=1

Hu
i
†Hd

i

)2

+ κ19

(
Hu
s
†Hd

s

) (
2∑

i=1

Hu
i
†Hd

i

)
+ h.c. ⊂ Vmixed.

Note that we take all VEVs to have the same absolute value, since this considerably simplifies
the search for a numerical solution, as a fine-tuning of the parameters in the Higgs potential is
avoided. However, in principle other solutions should also be possible, e.g. the fact that the up
quarks are much heavier than the down quarks could be explained by assuming that the VEVs
of the fields Hu

s , Hu
1,2 are larger than those of the fields Hd

s , H
d
1,2.

The rest of the discussion of the potential is delegated to appendix C.4 where we present a
numerical solution for the parameters of the Higgs potential and the resulting Higgs masses.
We discuss here only the two most important points, which will be guiding us in our further
discussion. First of all: It can be shown that the subgroup conserving VEV is indeed a possible
solution minimizing the Higgs potential. However, it can by no means be considered as a
prediction of the Higgs potential, as it depends strongly on our choice of couplings. We could
have hoped that the D7 invariance of the potential might favor a group theoretically non-trivial
minimum, but this is not the case. This can be traced back to two origins: First of all, the
SU(2)L invariance is by far the dominating attribute of the potential, and tends to drown out
effects of the D7 invariance. Secondly, we want to conserve two distinct subgroups, but the
two sets of Higgs bosons are not cleanly separated in the potential, as our Z(aux)

2 symmetry
is too small to accomplish this. We could think of enlarging the auxiliary symmetry, but we
actually need the mixing terms in the potential to prevent the appearance of too many Goldstone
bosons. The accidental symmetries leading to these Goldstone bosons can again be understood
as a consequence of the SU(2)L invariance.
We also encounter an additional more immediate problem: The resulting Higgs masses are in
between 50 and 500 GeV. Some of these values are already excluded by direct searches [7].
Additional constraints will arise from FCNCs, as they do in the MSSM, where low energy flavor
observables can be used to constrain the mass of the charged Higgs (see, for example, [115]).
There are two reasons for the too low Higgs masses: On the one hand Vu contains an accidental
symmetry and on the other hand all mass parameters of the potential are chosen to be of
natural order, i.e. to be around the electroweak scale. Additionally, all quartic couplings of the
potential must be perturbative. Due to the low scalar masses, this model cannot considered to
be fully realistic. One might think of introducing explicit soft D7 breaking terms, to lift the
scalar masses.
However, there exists the possibility to solve all of the problems discussed, by supersymmetrizing
the model and disentangling the scales of flavor and electroweak symmetry breaking. This then
means that, while the electroweak symmetry is still broken by one or more Higgs bosons, the
flavor symmetry is broken at a high scale by flavons, flavor-charged gauge singlets. Both models
presented in this chapter, the D7 model as well as the D4 model discussed in section 4.2, can be
extended in this way. The possibility of supersymmetrizing the D4 model was in fact already
mentioned in the original paper [84]. But before we modify both models in this way, the next
chapter is devoted to more general aspects of the implementation of such a scheme for dihedral
flavor symmetries.



Chapter 5

Flavons and Flavon Potentials

We have found that a potential of flavor-charged SU(2)L doublet scalars tends to give us a lot
of freedom as to the structure of the scalar VEVs that minimize the potential. In particular,
we can adjust the parameters in the potential in such a way that the scalar VEVs conserve
a non-trivial subgroup of our dihedral flavor group, but this is by no means a prediction of
the model. The conservation of a non-trivial subgroup is in that case only a mathematical
construct, bearing no direct relevance to the symmetry-breaking dynamics.
In very simple cases, a VEV structure conserving a subgroup can in fact arise naturally from
the extremization of a Higgs doublet potential. Consider the most simple phenomenologically
viable D3 invariant potential for SU(2)L doublet scalars, which is a three Higgs potential with
the three scalar fields transforming as SU(2)L doublets and as 2 and 11 under D3. Without
the additional singlet the potential would exhibit an accidental U(1) symmetry, apart from the
gauge symmetries. If we use the real Dn representation matrices discussed in appendix B.3, we
can solve the extremization conditions under the assumption of real parameters and also real
VEVs. In this way all allowed VEV configurations correspond to the specific VEV structure of
equation (B.5). This subgroup-conserving VEV structure is the only one that can extremize the
potential while breaking the flavor symmetry, if one assumes real parameters in the potential
and no correlations among those parameters.
In contrast to this, one finds that for the simplest SU(2)L doublet potential in D4 no such
explicit statement can be made. The above VEV structure is still allowed, however the SU(2)L
structure of the potential tends to obscure the Dn structure. Additionally, the inclusion of a
large number of flavor-charged Higgs bosons can lead to problems with phenomenology: In the
D7 model of section 4.3 we had two neutral scalars lighter than the current lower bound on
the SM Higgs of around 114 GeV, and even if these bounds can be evaded, such as in the D4

model of section 2.3, we could easily run into problems with LFV and FCNCs. It can thus
be said that a large number of Higgs-like scalars around the electroweak scale is disfavored by
phenomenology.
Both problems can be solved simultaneously by disentangling the scales of electroweak and flavor
symmetry breaking. This means that we no longer assume that an enlarged, flavor-charged SM
Higgs sector is also responsible for the flavor symmetry breaking. Instead, we introduce a new
type of scalar, responsible only for the breaking of the flavor symmetry. Such scalars are called
flavons. These flavons will be SM gauge singlets, and thereby only charged under the flavor
symmetry. Since their VEVs are then not associated with electroweak symmetry breaking,
they are not constrained by the weak vector boson masses. We can break our flavor symmetry
at a scale different from the electroweak scale and no light scalars, apart from the SM Higgs,
are necessarily predicted in the theory. Problems with LFV and FCNCs may return, when
we supersymmetrize, through the structure of the supersymmetry (SUSY) soft breaking terms.
This so-called SUSY flavor problem is however a generic problem of supersymmetry and not

67
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directly related to the breaking of a flavor symmetry.
When replacing flavor-charged Higgs bosons with flavons, the first question is of course: Were
all our considerations so far useless? The answer is no. To understand this, we consider how
the masses of the SM fermions are generated in a scenario employing flavons. The SM fermions
will still transform non-trivially under the flavor symmetry. The term

YijLiL
c
jH, (5.1)

where H is the lone SM Higgs boson, is then only allowed if YijLiLcj is a singlet under the
full, unbroken flavor group. Such a term may be an option for generating masses for the third
generation, especially for the top quark, which is the only fermion in the SM with a mass of the
order of the electroweak scale. Such terms alone, however, will not be able to reproduce the full
flavor phenomenology. After all, as we have discussed at length, it is precisely the structure of
the flavor symmetry breaking which can lead to the observed mixing angles. We thus need to
consider in our Yukawa Lagrangian non-renormalizable terms of the form

YijkLiL
c
jH

ϕk
Λ
, (5.2)

where the ϕk denote the flavons and Λ is the (high) scale at which these interactions are
generated, either by integrating out heavy vector-like fermions or heavy Higgs scalars. If we
then substitute the VEV 〈φi〉 of a scalar charged both under SU(2)L and Gf , as used in section
3, by the product 〈H〉 〈ϕi〉

Λ , which transforms in the same way under both groups, all the results
from section 3 can be directly transferred to a flavon model. The only obvious exception are
of course direct (with respect to the flavor symmetry) mass terms, such as the one given in
equation (5.1). Here we have two options: We can just substitute the Gf singlet of section
3 with the SM Higgs boson or we can forbid the direct mass term with an additional abelian
symmetry (as we are using in all models), and substitute the original singlet scalar by the
product of the SM Higgs and a singlet flavon, charged only under this abelian symmetry. The
second approach does not modify the structure of the mass matrices at all, while the first
approach only introduces a natural hierarchy among the mass matrix elements, which may
actually be useful to generate realistic fermion masses without fine-tuning. We will be using
both approaches later on.
The general conclusion is that the use of flavons for breaking Gf does not invalidate the results
obtained so far, once the obvious modifications have been made. On the other hand, the flavon
potentials show a lot more of the structure of the dihedral flavor group, and as we will show in the
following, the subgroup conservation can in fact, under very general assumptions, be considered
a dynamical prediction. Note that we have, by introducing the cutoff scale Λ, adopted an
effective field theory approach. We will therefore, in the potentials and superpotentials we
discuss in the next two sections, take into account corrections from operators suppressed by
higher powers of Λ, where it becomes necessary.
We begin in section 5.1 by discussing Dn invariant flavon potentials in the SM: Such approaches
have been used in the literature, for example in [86] and also in [84], where flavons give mass
to the heavy charge-conjugated neutrinos. We also want to see how generic the prediction of
subgroup conservation really is. We discuss the main problem of such an approach and how
it can be alleviated by supersymmetrizing and then go on to discuss flavon potentials in the
MSSM in section 5.2.

5.1 Flavon Potentials in the SM

When introducing flavons into the SM we need to think about, for the first time, whether we are
dealing with real or complex scalars. Up until now, we did not need to worry about this: Since



5.1. FLAVON POTENTIALS IN THE SM 69

the scalars we used so far transformed under a complex representation of SU(2)L × U(1)Y , we
were forced to take them to be complex. The flavons we are now dealing with are gauge singlets,
and all representations of Dn are real, so the minimal choice is to take real flavons. Complex
flavons could be separated into two scalars transforming separately under Dn. The reality of
the representation can of course be ruined by introducing an additional abelian symmetry larger
than Z2, but we will not be considering this in the following, since the realistic models we will
build later on will be supersymmetric anyway.
We encounter one small difficulty, when switching to real scalars: We have always been using
complex generators so far and we do not want to abandon them at this point, as they have
proved a lot easier to handle when dealing with the conserved subgroups. To be able to use
our complex generators, while using a real scalar, we need to introduce a ’fake-complex’ scalar

doublet
(

ϕ
ϕ∗

)
[71]. This property (that the lower doublet component is the complex con-

jugate of the upper one) is not changed by the action of any Dn element, so this is indeed a
representation of Dn. The resulting doublet scalar has two real degrees of freedom, as we would
expect for a real scalar transforming under a two-dimensional representation of Dn. Details on
how this fake-complex scalar is related to the real doublet obtained using real generators can
be found in appendix B.3.

5.1.1 One Doublet

We begin with the simplest case: We take one doublet
(
ϕ1

ϕ2

)
= ϕ

(
eiγ

e−iγ

)
(5.3)

transforming as the 2j of some Dn. We specifically set j = 1 for our calculations, but the results
apply equally well for any other faithful representation. We then consider a scalar potential
containing this doublet and other scalars transforming under one-dimensional representations
of Dn. We begin by assuming n is odd. There are then only two other scalars we need to
consider, ψ1 and ψ2, transforming as 11 and 12, respectively. We then find that there are two
distinct terms containing only the doublet field which transform as a total singlet under Dn.
Either the one which arises from two doublets coupling to a singlet,

ϕ1ϕ2 = ϕ2, (5.4)

or the term arising if we couple n doublets together, where none of them are coupled to pairwise
singlets,

ϕn1 + ϕn2 = 2ϕn cosnγ. (5.5)

These can then couple to the singlet terms containing only one-dimensional representations, ψ1

and ψ2
2.

On the other hand, there is only one term containing only the doublet field and transforming
as 12 under Dn, since the term coupling two doublets to form 12 (the analog of equation (5.4))
is antisymmetric and vanishes identically if we are coupling the same field. We can however
couple n doublets to ψ2:

(ϕn1 − ϕn2 )ψ2 = 2iϕnψ2 sinnγ. (5.6)

It is the phase γ which is relevant for subgroup conservation. This phase only shows up in
equations (5.5) and (5.6), so we only need to consider them, when minimizing the potential
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with respect to γ. In particular, the terms proportional to ϕ2, such as a doublet mass term, do
not contain this phase. For n = 3 only three terms in the potential are relevant:

(µ+ λ1ψ1)ϕ3 cos 3γ + λ2ϕ
3ψ2 sin 3γ. (5.7)

If ψ2 gets a VEV, this does not allow for any prediction of γ independent of the values of the
real parameters µ, λ1 and λ2. However, if we go to n = 5 or larger, the terms containing γ only
show up in non-renormalizable corrections to the potential. In this way, the term containing
the sine is suppressed, since it only shows up one order after the term containing the cosine, i.e.
the minimization of the potential with respect to γ depends in leading order only on the term
with the cosine.
If the coefficient multiplying the cosine in the potential (what was µ〈ϕ〉3 for D3, where the
coupling has positive mass dimension, will be 〈ϕ〉n λ

Λn−4 in case n ≥ 5) is positive, then a
minimization of the potential, where 〈ϕ〉 is already determined by the renormalizable operators,
leads to γ = mπ

n with m an odd integer. Conversely, if the prefactor is negative, then γ = mπ
n

with m an even integer or zero. The relative phase between the two doublet components is then
given as

2γ =
2πm
n

, (5.8)

where the sign of the coefficient determines whether m is odd or even. We have therefore found
a simple example, where the conservation of a subgroup arises as a prediction of the potential.
In this case the subgroup is, for a doublet transforming as 21, Z2 = 〈BAm〉. We further observe
that the conservation of this subgroup does not allow a VEV for the scalar ψ2 transforming as
12 (cf. table C.1), which concurs with our observation: If ψ2 acquires a VEV, the Z2 subgroup
will be broken, when considering higher order terms in the Lagrangian.
Moving on to the case where n is even, we find that we can write down two more non-vanishing
terms involving the doublet:

ϕ
n
2
1 ± ϕ

n
2
2 , (5.9)

transforming as 13 and 14, respectively. If we do not include scalars transforming under these
representations they are irrelevant, and the discussion is the same as for an odd n. If we do
include such a scalar, then the phase γ already shows up in terms of order n

2 + 1, i.e.

λψr(ϕ
n
2
1 ± ϕ

n
2
2 ), (5.10)

with r=3 or 4 and ψr being the flavon transforming as 1r. Let us take for concreteness r=3.
Then equation (5.10) is of the form

2λψ3ϕ
n
2 cos

nγ

2
. (5.11)

For n = 4 we again have two relevant terms in the Lagrangian:

µψ3ϕ
2 cos 2γ + λϕ4 cos 4γ. (5.12)

These do allow for a subgroup conserving solution, but it is not the only possible one. However,
for n > 4, only the term containing ψ3 will be relevant for the minimization of the potential
at leading order: Its mass dimension is smaller than that of the second term, which will thus
be suppressed by additional powers of 1

Λ . For λ

Λ
n
2−3 〈ψ3〉〈ϕ〉n

2 positive we get γ = 2πm′
n with m′

an odd integer, while for λ

Λ
n
2−3 〈ψ3〉〈ϕ〉n

2 negative we get the same result with m′ even. In both
cases the relative phase between the two doublet components will be
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2γ =
4πm′

n
=

2πm
n

, (5.13)

with m = 2m′ even, regardless of any signs, i.e. it will conserve the same subgroup as the VEV
of ψ3. An analogous reasoning holds for r=4, where m is then forced to be odd. Introducing
both scalars ψ3 and ψ4, and allowing VEVs for them, ruins the subgroup conservation, as it
should. So, as for the case of even n, we generally predict a VEV conserving a Z2 subgroup. For
the case of an odd n, we could not predict whether the subgroup parameter m was odd or even,
as this depended on the vacuum expectation value of ϕ. For even n, the subgroup parameter
m is however determined by the scalar content of our model, making dihedral groups with n
even more attractive for model building.

5.1.2 Several Doublets

We might prefer the couplings that contain the relative phase of doublet components, and
thereby lead to subgroup conservation, to show up at the renormalizable level. We assume an
odd n to begin with. We observed that the phase γ appears in operators where we have coupled
n doublets, with none of them coupling to pairwise singlets. We can thus introduce the relative
phase at the renormalizable level, if we introduce several doublets, whose doublet representation
indices j can add up to n in a renormalizable operator. This is of course trivial for the case
n = 3, since 1+1+1=3 and the Z2 subgroup is automatically conserved at the renormalizable
level, as long as we disallow a VEV for a scalar transforming as 12 or simply do not introduce
such a field at all. As a non-trivial example we discuss the case of n = 7.
We consider the potential with the two doublets 21 and 23. This is sufficient, as we can add
doublet indices up to n at the renormalizable level (3+3+1=7) without needing to introduce a
22

1. We write the two doublets in our potential as

ϕj

(
eiγj

e−iγj

)
, (5.14)

with j=1,3. The potential will then contain two renormalizable terms containing the two phases:

λ1ϕ
3
1ϕ3 cos (3γ1 − γ3) + (µ+ λ2ψ1)ϕ1ϕ

2
3 cos (γ1 + 2γ3). (5.15)

As we have two terms and two independent phases, we can minimize them separately . From
the minimization of the first term we obtain

3γ1 − γ3 = πm1, (5.16)

where m1 is even or odd, depending on whether the prefactor λ〈ϕ1〉3〈ϕ3〉 is positive or negative.
Inserting the result for γ3 in the other minimization condition,

γ1 + 2γ3 = πm2, (5.17)

yields

γ1 =
(m2 + 2m1)π

7
, (5.18)

where m2 is even or odd, depending on the sign of µ〈ϕ1〉〈ϕ3〉2. For the other phase we obtain

1The addition of such a doublet would actually cause problems, since we would have two further ways to add
up to n (3+2+2 and 2+2+2+1), and could no longer uniquely predict the relative phases of the doublet VEVs.
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γ3 =
3(m2 + 2m1)π

7
−m1π. (5.19)

The second summand in the phase is irrelevant. For the relative phases that determine subgroup
conservation, we get

2γ1 =
2mπ

7
, (5.20)

2γ3 = 3
2mπ

7
. (5.21)

We find that the potential again predicts the conservation of a subgroup Z2 =< BAm >, with

m = m2 + 2m1, (5.22)

as both doublet VEVs fulfill the necessary condition. In this specific case, whether m is odd or
even, is determined only by m2, as m1 shows up with a factor of two. This is however not a
generic effect, as can be seen if one calculates the alternative case with 22 instead of 23.
For most n (as for n = 7, if we include all three doublets) this method fails, since we have
more terms containing phases in the Lagrangian, than we have phases, and hence we cannot
minimize term by term, as we did above. The subgroup conserving VEV is still allowed, but
its uniqueness can no longer be shown.
In a very general setup, such as the one we have chosen, showing the uniqueness of a solution
is difficult in general. It is therefore not these ambiguities, caused by too many couplings in
the Lagrangian, that cause us to skip the case of an even n for now and move on to super-
symmetrization. We have shown above that the prediction of conserved subgroups appears to
be a generic feature of Dn invariant potentials (once all the SU(2)L clutter is removed), and
hopefully dispelled any doubts that this feature arises only from supersymmetric potential en-
gineering. The main reason for supersymmetrizing (apart from all the other arguments in favor
of supersymmetry, such as the hierarchy problem, gauge coupling unification or dark matter)
is the existence of a troublesome term in the SM flavon potential that we have not mentioned
so far.
Even though we have managed to disentangle the electroweak and the the flavor symmetry
breaking scale, we have not entirely decoupled the two scalar sectors: The potential contains
terms coupling the squared SM Higgs and squared flavons, e.g.

(HH†)ϕ2. (5.23)

These will lead to corrections to the Higgs mass on the order of 〈ϕ〉. This may seem a trivial
concern in a scenario where the hierarchy problem is unsolved. But, as we will see in the
following, these couplings can naturally be avoided in a supersymmetric framework, which is a
major reason why, for the remainder of this section, we work in the framework of the MSSM.

5.2 Flavon Potentials in the MSSM

5.2.1 What Changes in Supersymmetry?

Supersymmetry (SUSY) is at this time an integral part of the graduate curriculum, and in-
troductions to supersymmetry are readily available (a deservedly popular one is [116]), so I
do not feel that it is necessary to give a general introduction to the MSSM at this point. In
the following, we will only look at several aspects of supersymmetry which are germane to our
discussion of flavon potentials.
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The first important difference concerns the complexity of the scalars. In supersymmetry, a
scalar is no longer just that, but is part of a supersymmetric multiplet. For the case of a
scalar, this will always be a chiral multiplet. This multiplet will contain an equal amount of
fermionic and bosonic degrees of freedom. Since we need two degrees of freedom to construct a
Weyl spinor, the bosonic part of a chiral multiplet will necessarily contain two scalar degrees of
freedom, which can be written as one complex scalar. This means that, in contrast to the SM
case, we do not have the minimal option of introducing only two scalar degrees of freedom to
make up a two-dimensional representation of Dn. For this reason, we will be working only with
actual complex scalars (as opposed to the fake complex ones considered above) in the following.
Supersymmetrization also means that the introduction of gauge singlet, flavor-charged flavons
necessitates the introduction of a Weyl spinor transforming in the same way, a so-called flavino.
We will not be concerned with these, as they do not play a role for the scalar potential.
The scalar potential in supersymmetry consists of two main contributions: One of these, the
D-terms, only arise for scalars which transform non-trivially under some gauge group. Since
this is not the case for our flavon fields, they play no role in our discussion. The flavon potential
will thus only consist of F-terms. These can easily be calculated with the introduction of the
superpotential, an analytic, third-order polynomial in the chiral superfields of the theory:

w = µijϕiϕj + λijkϕiϕjϕk. (5.24)

This superpotential must be invariant under all symmetries of the theory. Since we will not
be considering fields which are total singlets under all symmetries (even if we introduce a field
which is a singlet under the SM gauge groups and Gf , it transforms non-trivially under some
auxiliary abelian symmetry), we do not need to consider linear terms. These are only relevant for
supersymmetry breaking, which should anyway happen at a scale below that of flavor symmetry
breaking. In any case, the actual scalar potential is given by

V =
∑

i

FiF
∗
i =

∑

i

∂w

∂ϕi

∂w∗

∂ϕ∗i
. (5.25)

Since this is a sum of squared absolute values, the potential can never be negative. In fact if
the minimum is not at V = 0, supersymmetry will be spontaneously broken. Supersymmetry,
if it exists, is of course broken in nature. It will be broken in a hidden sector and the breaking
is only communicated to the visible sector, which includes the SM fields as well as the flavons,
through effective soft SUSY breaking terms. These should lie at a scale of about 1 TeV to solve
the hierarchy problem, while our flavor symmetry will be broken at a higher scale. We can
thus neglect the effects of SUSY breaking, and, when minimizing our flavon potentials, always
assume a supersymmetric minimum. Making this assumption, that is taking the supersymmetric
limit, means that finding the field configuration which minimizes the scalar potential reduces
to solving the equations

Fi =
∂w

∂ϕi
= 0 (5.26)

for all scalar degrees of freedom ϕi in our model.
Since the superpotential is only a third degree polynomial, we have managed to eliminate the
troubling coupling between the Higgs and the flavons: We need at least two Higgs fields, to
construct a gauge singlet, and then have only one more field to which to couple, which needs to
be a flavor singlet in itself. Of course we may need a flavor singlet which transforms non-trivially
under an additional abelian group. If the Higgs field also transforms non-trivially under this
group, we may be able to construct a total singlet out of three fields. We will return to this
more subtle point later on.
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Before returning to our discussion of flavon potentials, another word is in order concerning the
Higgs boson in the MSSM. Due to the analyticity of the superpotential, the complex conjugated
Higgs field εH∗ cannot show up in the MSSM superpotential, as it does in the SM Yukawa
couplings giving mass to the up-type quarks and neutrinos. Hence, we need to introduce two
Higgs fields with opposite hypercharge, hd and hu, the first giving mass to the down-type quarks
and charged leptons, the second giving mass to the up-type quarks and possibly the neutrinos.
This is also necessary for anomaly cancellation, as the Higgs superfields will contain fermionic
components, the Higgsinos. The gauge singlet combination of two Higgs fields to which a singlet
flavon could couple is thus huhd.
Both Higgs scalars acquire VEVs, related by

〈hu〉2 + 〈hd〉2 = v2
wk, (5.27)

whereas their ratio

〈hu〉
〈hd〉 =

vu
vd

= tanβ (5.28)

is a free parameter in the MSSM and can only be restricted by phenomenology. Often a large
tanβ ≈ mt/mb ≈ 60 is assumed to explain why the top quark mass is so much larger than that
of the bottom quark and the τ . In the models presented in chapter 6, however, the top quark is
the only fermion which acquires mass from a renormalizable operator. Its large mass can thus
be explained without invoking a large tanβ.

5.2.2 One Doublet

We can leave aside the MSSM Higgs fields for the moment, and as for the SM case, consider the

simplest possible field content, that is only one doublet
(
ϕ1

ϕ2

)
, transforming under a faithful

two-dimensional representation of Dn, which we take to be 21 for concreteness. As in the SM,
we will then in general need to go to non-renormalizable operators, to see whether a subgroup
is conserved when minimizing the potential. We again begin with n odd. The most general
flavon superpotential containing only the complex doublet is, up to terms of dimension n,

wf = µ(ϕ1ϕ2) +

n−1
2∑

t=2

λt

Λ(2t−3)
(ϕ1ϕ2)t +

λn
Λn−3

(ϕn1 + ϕn2 ), (5.29)

where µ has a mass dimension of 1, while all the λt are dimensionless. Λ is of course again
the scale at which these interactions are generated. It will be the mass scale of some heavy
messenger fields which communicate the flavor symmetry breaking to the MSSM fields. To find
the supersymmetric minimum, we need to solve the following two equations:

∂wf
∂ϕ1

= µϕ2 +

n−1
2∑

t=2

λt

Λ(2t−3)
tϕ

(t−1)
1 ϕt2 + n

λn
Λn−3

ϕ
(n−1)
1 = 0, (5.30)

∂wf
∂ϕ2

= µϕ1 +

n−1
2∑

t=2

λt

Λ(2t−3)
tϕt1ϕ

t−1
2 + n

λn
Λn−3

ϕ
(n−1)
2 = 0, (5.31)

where we have used the fields instead of the field VEVs, so as not to clutter up the equations,
which we will generally do in the following where it is unambiguous. We can multiply the first



5.2. FLAVON POTENTIALS IN THE MSSM 75

equation by ϕ1 and the second equation by ϕ2. Subtracting the two resulting equations from
each other, we find that all terms vanish except for those proportional to λn and we obtain (for
non-vanishing λn)

ϕn1 = ϕn2 , (5.32)

i.e. only subgroup-conserving VEVs. There appears however to be no possibility to determine
whether the phase factor m will be odd or even. The reasoning is equivalent for an even n if we
include no scalars transforming as non-trivial one-dimensional representations. We recall from
the SM discussion that including a flavon ψr transforming as 1r, r= 3 or 4, changes this. If we
include such a flavon, the terms determining the VEV structure already show up in operators
of dimension (n2 − 1). The superpotential up to this order is

wf = µ1(ϕ1ϕ2) + µ2ψ
2
r +

dn
4
e∑

s=2

s∑

t=0

λst

Λ(2s−3)
(ϕ1ϕ2)tψ2(s−t)

r +
λ

Λ(n
2
−2)

ψr(ϕ
n
2
1 ± ϕ

n
2
2 ) (5.33)

where the ceiling function dxe denotes the smallest integer greater than or equal to than x, i.e.
dn4 e is n

4 if n is divisible by 4 and n+2
4 if not. We will also later be using the floor function bxc

which denotes the greatest integer smaller than or equal to x. Choosing r=3 gives the plus sign
in front of the last term, while r=4 gives a minus sign.
We now have to solve a system of three equations, of which we only need to consider the first
two. This is sufficient for our purposes, if we assume that the system allows for a non-trivial
solution at all.

∂wf
∂ϕ1

= µ1ϕ2 +
dn

4
e∑

s=2

s∑

t=1

λst

Λ(2s−3)
tϕ

(t−1)
1 ϕt2ψ

2(s−t)
r +

n

2
λ

Λ(n
2
−2)

ψrϕ
(n
2
−1)

1 = 0 (5.34)

∂wf
∂ϕ1

= µ1ϕ1 +
dn

4
e∑

s=2

s∑

t=1

λst

Λ(2s−3)
tϕt1ϕ

(t−1)
2 ψ2(s−t)

r ± n

2
λ

Λ(n
2
−2)

ψrϕ
(n
2
−1)

2 = 0 (5.35)

We can again multiply by ϕ1 and ϕ2 respectively, subtract the equations from each other and
thereby eliminate all terms except for those proportional to λ. If we then also assume that ψr

gets a non-zero VEV (if not we have the same situation as for odd n), and no parameters in
the potential vanish, we obtain

ϕ
n
2
1 = ±ϕ

n
2
2 , (5.36)

which is exactly the condition we need for a VEV configuration conserving the same subgroup
as the one-dimensional representation, i.e. by the choice of our field content we can determine,
whether the phase factor m is even or odd. Note that all these considerations are independent
of the lower order terms, i.e. the VEV structure is only decided at this order of corrections.
We have retrieved the results we obtained in the SM: Flavon potentials in general favor VEVs
conserving subgroups, and for an even n we can influence the subgroup parameterm by choosing
which one-dimensional representations to include in our potential. As in the SM case, we need
to go to operators with a large mass dimension to obtain these results. To get these results at
the renormalizable level we again need to include several doublet flavons. This already made
things more complicated in the SM, and we can already anticipate that things will get worse
for complex scalars. We therefore do a slight detour at this point, to introduce the U(1)R
symmetry and the driving field mechanism, which at the same time will get rid of the problem
of Higgs-flavon coupling once and for all.
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5.2.3 R-Symmetry and Driving Fields

An R-symmetry denotes a symmetry under which different components of a superfield trans-
form differently. Most commonly an R-parity, that is a Z2 symmetry, is assumed. For vector
superfields containing the regular gauge bosons, it is always those gauge bosons which transform
trivially, while their fermionic counterparts, the gauginos, are odd under R-parity. For a chiral
superfield, one can choose which component (the scalar or the fermion) is even and which one
odd. In the MSSM one chooses the R-parity assignments in such a way that all SM particles are
even under R-parity and all superpartners are odd. In this way, the lightest supersymmetric
particle (which is really an imprecise way of saying R-odd particle) is stable since it cannot
decay to SM particles, and is therefore a good candidate for dark matter. Additionally (and
this was the original motivation) R-parity forbids certain terms in the MSSM superpotential
which can lead to proton decay and lepton number violation.
This R-parity can now be considered as a subgroup of a larger U(1)R symmetry. We can assign
each chiral superfield an integer R-charge q under this symmetry group. The transformation
properties of the component fields are then

A → eiqαA, (5.37)
ψ → ei(q−1)αψ, (5.38)

with A and ψ the scalar and fermionic components of the chiral superfield, respectively, and α
∈ [0, 2π). We see that if we restrict α to 0 and π, we retrieve R-parity, where q being even or
odd determines how the component fields transform.
Since this symmetry does not commute with supersymmetry, the supersymmetry generators
and the elements of superspace also transform non-trivially under this R-symmetry. We will
not go into these details of the supersymmetry algebra at this point. For our purposes it is
only important that the terms in the superpotential are not allowed to be singlets of U(1)R but
need to have an R-charge of 2 (when considering only the Z2 subgroup, this of course is again
a singlet).
To obtain the correct R-parity as a subgroup, we need to assign an R-charge of q = 1 to chiral
superfields containing SM fermions and an R-charge of q = 0 to the chiral superfields containing
the Higgs scalars. In this way, the term in the superpotential which leads to the SM Yukawa
couplings,

YijLiL
c
jH, (5.39)

has an R-charge of 2 and is allowed. Since we want to couple further flavons to this term,
cf. equation (5.2), to obtain flavor structure in the mass matrices, the R-charge assignment
for the flavon fields needs to be zero. To then obtain a non-vanishing superpotential for the
flavons, we need to introduce an additional type of field with R-charge 2. These fields are also
gauge singlets and in general transform non-trivially under Gf , that is they only differ from
the flavons through their R-charge. These so-called driving fields were first used for a flavor
symmetry model in [59]. We denote them by the same Greek letter as their flavon counterpart,
but with a zero superscript, e.g. ψ0

3 for a driving field transforming as a 13. These driving fields
do not couple to the SM fermions, whose mass matrix structure is still only determined by the
flavon VEVs. The driving fields are then only relevant for obtaining the VEV structure for the
flavons, which is now calculated by solving the equations

∂w

∂ϕ0
i

= 0. (5.40)
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What about the VEVs of the driving fields? They should better be zero. We have managed to
eliminate couplings between the MSSM Higgs fields and the flavons, since such a coupling term
would have an R-charge of zero. However the Higgs fields can still couple to a driving field,
that is a singlet under Gf . In any given model, one therefore needs to double check whether
the driving fields indeed do not acquire a VEV.
At some point U(1)R has to be broken, since we need the so-called µ-term, µHuHd, in the
superpotential to end up with electroweak symmetry breaking. However µ should be of the
order of the electroweak scale, and hence a driving field VEV is not an option. We will not be
concerned with the origin of the µ-term in the following and will ignore the Higgs field entirely
in the following discussion. The squared Higgs VEV may of course show up in the F-term
obtained by differentiating the superpotential with respect to a flavor singlet driving field, but
it is much smaller than the scales involved in our flavor symmetry breaking and can therefore
be safely neglected, just as we neglect the soft SUSY breaking terms.

5.2.4 Several Doublets

In what follows we will always employ the driving field mechanism discussed above. Since
the superpotential, as opposed to the scalar potential of the SM, only contains terms up to
order 3 in the scalar fields, we do not have as many possibilities to add doublet indices up to
the group index n. We therefore choose a different approach here: We introduce all possible

scalar doublets, that is a doublet flavon
(
ϕj1

ϕj2

)
and a doublet driving field

(
ϕ0

j1

ϕ0
j2

)
for each

representation 2j of our group Dn. Once we have discussed this general case, we will consider
how to reduce this large field content, while still making subgroup conservation a prediction
of the potential. As always we begin with the simpler case of n odd, in which case the most
general superpotential is

wf =

n−1
2∑

s=1

µs(ϕs1ϕ0
s2 + ϕs2ϕ

0
s1)

+

n−3
2∑

s=1

n−1
2
−s∑

t=s

αst(ϕs1ϕt1ϕ0
(s+t)2 + ϕs2ϕt2ϕ

0
(s+t)1)

+

n−3
2∑

s=1

n−1
2∑

t=s+1

βst(ϕs1ϕt2ϕ0
(t−s)1 + ϕs2ϕt1ϕ

0
(t−s)2)

+

n−1
2∑

s=1

n−1
2∑

t = n+1
2
− s

t ≥ s

γst(ϕs1ϕt1ϕ0
(n−s−t)1 + ϕs2ϕt2ϕ

0
(n−s−t)2). (5.41)

To find a supersymmetric minimum of the potential, we compute the partial derivatives:

∂wf
∂ϕ0

j1

= µjϕj2+
b j
2
c∑

s=1

αs(j−s)ϕs2ϕ(j−s)2+

n−1
2
−j∑

s=1

βs(j+s)ϕs1ϕ(j+s)2+
bn−j

2
c∑

s=n+1
2
−j

γs(n−s−j)ϕs1ϕ(n−s−j)1 = 0.

(5.42)
For the derivative with respect to the second component of the jth driving doublet, we have
the above equation with all indices of one replaced by indices of two and vice versa. We then
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multiply ∂wf

∂ϕ0
j1

and ∂wf

∂ϕ0
j2

by ϕj1 and ϕj2 respectively, and subtract the two equations from each

other. This leads to the following equation:

0 =
b j
2
c∑

s=1

αs(j−s)(ϕs2ϕj1ϕ(j−s)2 − ϕs1ϕj2ϕ(j−s)1)

+

n−1
2
−j∑

s=1

βs(j+s)(ϕs1ϕj1ϕ(j+s)2 − ϕs2ϕj2ϕ(j+s)1)

+
bn−j

2
c∑

s=n+1
2
−j

γs(n−s−j)(ϕs1ϕj1ϕ(n−s−j)1 − ϕs2ϕj2ϕ(n−s−j)2). (5.43)

These equations can become arbitrarily complicated for large n. They can however easily be
solved, by assuming that they should be satisfied for arbitrary values of the coefficients α, β
and γ, that is all summands should vanish independently. This is of course by no means a proof
of the uniqueness of the solution. However, it is definitely a very special solution, since it is
fully independent of the parameters in the potential. In the realistic models discussed later on,
we will always be able to show that the subgroup-conserving VEV is indeed a unique solution,
after we have chosen the particle content based on our more general considerations here. Also,
in a full model, some terms will be absent due to the presence of additional abelian symmetries.
In any case, minimizing the potential in this way leaves us with two general types of equations.
The first type stems from the terms in the first two sums of equation (5.43):

ϕj1ϕk1ϕ(j+k)2 = ϕj2ϕk2ϕ(j+k)1. (5.44)

This equation must hold for arbitrary j and k with (j + k) ≤ n−1
2 . The other set of equations

reads

ϕj1ϕk1ϕ(n−j−k)1 = ϕj2ϕk2ϕ(n−j−k)2 (5.45)

and is derived from the last sum of equation (5.43). It has to hold for arbitrary j and k obeying
(n − j − k) ≤ n−1

2 . We solve the equations iteratively. Setting j = k = 1 we obtain from
equation (5.44):

(
ϕ11

ϕ12

)2

=
ϕ21

ϕ22
, (5.46)

and iterating:

(
ϕ11

ϕ12

)j

=
ϕj1

ϕj2
(5.47)

for all j (note that this trivially holds for the case of n = 3, where the first set of equations does
not exist, as there is only one doublet). Inserting this in equation (5.45) we obtain

ϕn11 = ϕn12. (5.48)

Combining the last two equations, we obtain

ϕj1 = e−
2πmj

n ϕj2, (5.49)
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m an integer between 0 and n−1. Thus, all VEVs necessarily conserve a subgroup Z2 = 〈BAm〉,
and the subgroup is the same for all doublets, even though m is undetermined.
We have up until now considered the maximal field content. We can however observe that we
only need a fraction of the equations to obtain our minimization conditions. Hence it should
be possible to obtain subgroup-conserving VEVs with a reduced field content. We first observe
that we really only require one of the equations (5.45), hence we only need one term in the
potential, where the indices of the field add up to n. So, we only have to introduce all doublets
(as flavons and driving fields) up to 2dn3 e (This makes no difference for n ≤ 7).

We can further minimize the model, if we observe that, of the equations (5.44), we actually
only require those with j = 1. So apart from the driving fields which are necessary to get
equations such as equation (5.45), we can dump all of them, except for the one transforming as
21. To summarize: When conserving a Z2 symmetry in Dn with n odd, we need to introduce
all flavons up to 2dn3 e. As driving fields we definitely should introduce ϕ0

1 (or some other dou-

blet, whose index does not divide n), in addition if 3 divides n we introduce ϕ0
n
3
, if 3 divides

n + 1 we introduce ϕ0
n+1

3

and ϕ0
n−2

3

and if 3 divides n + 2 we introduce ϕ0
n+2

3

and either ϕ0
n−1

3

or ϕ0
n−4

3

for the minimal potential. This is obviously not a unique solution. In general, we

might also need specific flavon doublets to generate the desired mass matrices. But one can see
that, even though we used all two-dimensional representations for our general considerations,
a given model may contain a lot less scalar fields and still give the correct vacuum alignment.
This may then also make it possible to solve the minimization equations without any further
assumptions, as we shall see later in our worked-out models.
Before ending our general discussion of flavon potentials, we consider the superpotential invari-
ant under a Dn symmetry with n even. As before, if we do not introduce any fields transforming
as non-trivial singlets, the discussion is pretty much equivalent to the one for odd n. Adding
fields transforming as 13 or 14 however provides the possibility of determining whether m is
odd or even and hence is interesting for model building. We write down the most general super-
potential with doublet fields up to indices of dn4 e (taking the lesson we learned from studying
the case of n odd) and a singlet ψr transforming as 1r, with r=3,4:

wf =
dn

4
e∑

s=1

µs(ϕs1ϕ0
s2 + ϕs2ϕ

0
s1)

+
dn

4
e−1∑

s=1

dn
4
e−s∑
t=s

αst(ϕs1ϕt1ϕ0
(s+t)2 + ϕs2ϕt2ϕ

0
(s+t)1)

+
dn

4
e−1∑

s=1

dn
4
e∑

t=s+1

βst(ϕs1ϕt2ϕ0
(t−s)1 + ϕs2ϕt1ϕ

0
(t−s)2)

+ γ(ϕdn
4
e1ϕ0

bn
4
c1 ± ϕdn

4
e2ϕ0

bn
4
c2)ψr

+ δ(ϕbn
4
c1ϕ0

dn
4
e1 ± ϕbn

4
c2ϕ0

dn
4
e2)ψr. (5.50)

Through a similar calculation as above, we obtain equation (5.47) and instead of equation (5.48)
we get

ϕ
n
2
11 = ±ϕ

n
2
12, (5.51)

giving VEVs conserving Z2 = 〈BAm〉, with m even if r=3 and m odd if r=4. We have already
minimized the number of fields by only letting the doublet indices run to dn4 e. As for an odd
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n, one can further reduce the number of driving fields: In addition to the driving field ϕ0
1, we

need a driving field ϕ0
n
4

if 4 divides n or two driving fields ϕ0
n+2

4

and ϕ0
n−2

4

otherwise, to obtain

the last two terms in the superpotential.
Instead of introducing a flavon ψr, we could include a driving field ψ0

r . Both of them should not
be present, as long as the mass term is not disallowed by an abelian symmetry. Replacing the
flavon by the driving field is equivalent to replacing the last two terms in the superpotential of
equation (5.50) with just one coupling

γ(ϕdn
4
e1ϕbn

4
c1 ± ϕdn

4
e2ϕbn

4
c2)ψ0

r , (5.52)

which directly leads to the equation

ϕdn
4
e1ϕbn

4
c1 = ∓ϕdn

4
e2ϕbn

4
c2, (5.53)

so the connection between m being even or odd and our choice of r is switched, compared to a
flavon transforming as 1r. This does not contradict the overall conservation of the subgroup,
as the driving field should not get a VEV. For n = 4 this is in fact the only equation we
need to ensure the correct vacuum alignment, and we will thus later be using a driving field
transforming as 14 in our D4 model of section 6.1.
We have shown that the flavon VEV alignment leading to subgroup conservation also appears
naturally in a supersymmetric framework with driving fields, and that the scalar field content
can be reduced to a manageable level. The challenge is now to design models, where this
natural alignment is not obscured by other components of the model, such as was the case for
the potential of flavor charged Higgs bosons. Before we move on to the actual model building,
we briefly discuss some further aspect of models with flavons.

5.2.5 Further Aspects of Flavon Models

Next-to-Leading Order Corrections In full models, such as the ones presented in the next
chapter, we want to conserve different subgroups in different sectors. Just as in the D7 model of
section 4.3, this can be achieved by introducing an abelian symmetry. This abelian symmetry
separates the flavons in (at least) two sectors, one coupling to up-type and one to down-type
fermions. The VEVs of the two flavon sectors conserve different subgroups and the subgroup
mismatch in the mass and diagonalization matrices ensues. The two types of flavons need only
differ in their transformation properties under the abelian symmetry. Complex conjugation for
the up-type scalars, which was necessary in multi-Higgs models due to the SU(2)L structure,
is not required in flavon models.
But we do not want to separate the flavons only with respect to the Yukawa couplings. For this
a Z2 would be sufficient. We saw in the last section that the couplings in the flavon potential
tend to lead to the same subgroup being conserved by the VEVs of all flavons. Hence, we
would like our abelian symmetry to separate the two sectors in the flavon potential as well.
The minimal symmetry that can accomplish this is a Z3, as the superpotential is a third-order
polynomial. If one set of flavons (and driving fields) transforms trivially under Z3 while the
other sector acquires a non-trivial phase ω3 = e

2πi
3 , no coupling between both sectors is allowed

in the renormalizable part of the superpotential. For those fields transforming non-trivially
under Z3, the coupling of one flavon and one driving field to form a quadratic mass term is also
forbidden. These were however anyway not essential for the vacuum alignment.
Generating fermion masses through non-renormalizable couplings to the flavons implies that
we can no longer move the cutoff scale Λ arbitrarily high. Contributions to both the Yukawa
and the flavon superpotential from higher order operators are thus subleading, but by no means
entirely negligible. What effect do these corrections have?



5.2. FLAVON POTENTIALS IN THE MSSM 81

We begin by assuming that all flavon VEVs which are non-vanishing at leading order (LO)
are of the same order of magnitude. This is a fairly natural assumption, as many of them
will be linked through the minimization of the scalar potential. We will see later on, how this
tendency is reinforced when taking into account next-to-leading order (NLO) corrections. With
this assumption, we have a natural expansion parameter in our model, namely

ε ∼
(

VEV
Λ

)
, (5.54)

which can be given in terms of the generic Wolfenstein expansion parameter λ. Corrections to
LO phenomenology now arise in two ways. First of all, at NLO, flavons from one sector can
couple to the SM fields from another. For concreteness, say the left-handed conjugate down
quarks transform as ω2

3 under Z3, while the left-handed quark doublets and the left-handed
conjugate up quarks transform trivially. This will actually be the case for the D14 model
of section 6.2. We then have two types of flavons, the ϕui transforming trivially under Z3,
contributing only to the up quark Yukawa couplings at leading order, and the ϕdi , acquiring a
phase ω3 under Z3 and thus coupling only to the down quarks at LO. Then, depending on the
exact Dn structure, the following term is allowed at NLO:

Qid
c
jhdYijkl

ϕukϕ
d
l

Λ
. (5.55)

As the VEVs of ϕuk and ϕdl preserve different subgroups, this term disturbs the subgroup-
conserving structure of the down quark mass matrix, which is thus corrected at order ε.
Another correction arises from the flavon potential. There will be two sets of driving fields ϕ0u

and ϕ0d with the same respective Z3 transformation properties as their flavon counterparts.
Then terms such as

1
Λ
λijklϕ

d
iϕ

d
jϕ

d
kϕ

0u
l and

1
Λ
λ′ijklϕ

d
iϕ

d
jϕ

u
kϕ

0d
l (5.56)

are allowed in the flavon superpotential at NLO. The separation of the two sectors in the scalar
potential is thus not perfect and there will be NLO corrections to the F-terms. We thus need
to perturb the subgroup conserving VEV structures obtained at LO, e.g.

〈ϕui 〉 = 〈ϕui 〉0 + δ〈ϕui 〉. (5.57)

The natural size of these corrections is

δVEV ∼ O
(

VEV
Λ

)
·VEV ∼ ε ·VEV (5.58)

but this needs to be calculated explicitly in a given model. The shifted VEVs will then, at NLO,
no longer be subgroup-conserving, and again the subgroup-conserving structure of the quark
mass matrices are corrected at order ε. If we had not assumed in the beginning that all flavon
VEVs are of the same order, flavon VEVs which were small at LO could receive large corrections
at NLO. Our assumption is thus the most stable one. Both types of NLO corrections, from the
Yukawa and from the flavon superpotential, will be taken into account in the models discussed
in the next chapter.

Flavon Mass Spectrum and Flat Directions Another aspect of flavon models merits
further study: Although we have moved the scale of flavor symmetry breaking up, eliminating
potential problems of a multi-Higgs model such as Lepton Flavor Violation, our flavons and
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flavinos (as well as the driving fields and their superpartners, which one could conceivably
call drivinos) are of course physical fields and we will briefly consider the actually observed
spectrum. In the supersymmetric limit the masses of scalars and fermions are of course equal.
The flavon mass matrix is given by

M2
ij =

∂2V

∂ϕi∂ϕj
|ϕ=〈ϕ〉, (5.59)

where the indices i, j run over all flavons and driving fields, counting real and imaginary parts
separately, and the scalar potential is given by equation (5.25). If the flavons and driving fields
are left with a non-vanishing mass after flavor symmetry breaking, this will generically be of the
order of the flavon VEVs and therefore phenomenologically uninteresting. However it is quite
likely that due to the special VEV structure at the potential minimum, some of the flavons will
remain massless.
This is not a problem however: Aside from the fact that both flavons and flavinos can obtain
additional soft masses through supersymmetry breaking effects, which might not even respect
the flavor symmetry, these apparently massless modes will also in general disappear when taking
into account next to leading order effects. These flavons will therefore be lighter than the others,
but not massless.
If, for a given mode, not only the mass term vanishes at LO, but also the cubic and the
quartic term, i.e. if the potential has a flat direction, this may be of interest for inflationary
scenarios [117]. Where it is feasible, we thus check for such almost flat directions in the flavon
potential.



Chapter 6

Putting It All Together:
Two Worked-Out Examples

We present two discrete non-abelian flavor symmetry models, putting together all the elements
we have assembled in the last chapters. Both of them use the subgroup mismatch discussed in
chapter 4 and symmetry breaking with flavons and driving fields as discussed in chapter 5. We
first, in section 6.1, present a supersymmetrized version of the D4 model described in section 4.2
and then, in section 6.2, present a supersymmetric model based on D14 predicting the Cabibbo
angle.

6.1 D4 in the Leptonic Sector

We construct a supersymmeterized version of the model presented by Grimus and Lavoura
in [84], which we already discussed in section 4.2. In [86] it has already been attempted to build
a D4 model in which the Higgs doublets transforming non-trivially under the flavor group are
replaced by flavons. Since this model is non-supersymmetric the vacuum alignment problem
is not straightforward to solve and indeed one has to require that one of the quartic couplings
in the potential vanishes. However, such an assumption will not be stable against corrections
and has to be considered as a severe tuning. In a second version of this model [87] which is
supersymmetric, the potential is not studied such that the question of the vacuum alignment
also remains open. Using the insights on flavon potentials gained in the last chapter, the model
presented here solves that problem.
As in the original model, this model predicts θ23 maximal and θ13 = 0 in the lepton sector.
To achieve this, we augment the MSSM by the flavor symmetry D4 × Z5. The auxiliary group
needed to separate the charged lepton and the neutrino sector is somewhat larger than the
minimal Z3, to avoid ending up with charged lepton and neutrino masses of the same order.
In any case, for a flavon model the auxiliary symmetry would need to be larger than the Z2

employed in [84].
Our model contains the three left-handed lepton doublets lα, the three left-handed conju-
gate charged leptons eci , the MSSM Higgs doublets hu,d and two sets of flavons {χe, ϕe} and
{χν , ϕν , ψ1,2} which break D4 in the charged lepton and the neutrino sector, respectively. The
transformation properties of these fields are collected in table 6.1. We take the fermion fields
to transform as in [84], with the difference that we do not explicitly introduce left-handed
conjugate neutrinos. The transformation properties of the flavons are chosen according to the
maximal scalar field content allowed by the subgroups we want to conserve, D2 in the charged
lepton sector and Z2 for neutrinos.
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Field le lµ,τ ec1 ec2,3 hu hd χe ϕe χν ϕν ψ1,2

D4 11 2 11 2 11 11 11 14 11 13 2
Z5 ω5 ω5 1 1 ω3

5 ω5 ω3
5 ω3

5 ω2
5 ω2

5 ω2
5

Table 6.1: Particle content of the D4 model. lα denotes the three left-handed lepton
SU(2)L doublets, ec

i are the left-handed conjugate charged leptons and hu,d are the
MSSM Higgs doublets. The flavons χe, ϕe, χν , ϕν and ψ1,2 only transform under

D4 × Z5. The phase factor ω5 is e
2πi
5 .

6.1.1 Lepton Masses and Mixing

The invariance of the charged lepton and neutrino mass terms under the flavor group D4 × Z5

requires the presence of at least one flavon. Thus, charged lepton masses are generated by
non-renormalizable operators only. As mentioned in section 5.2.1, this allows for a small τ mass
compared to the top quark mass without relying on a large value of tanβ. The neutrinos receive
Majorana masses through the dimension-5 operator lhulhu/Λ which can be made invariant
under the flavor group by coupling to a flavon. The part of the superpotential giving lepton
masses reads at LO

wl = ye1χel1e
c
1

hd
Λ

+ ye2χe(l2e
c
3 + l3e

c
2)
hd
Λ

+ ye3ϕe(l2e
c
2 − l3e

c
3)
hd
Λ

(6.1)

+y1χν l1l1
h2
u

Λ2
+ y2l1(l2ψ2 + l3ψ1)

h2
u

Λ2
+ y2(l2ψ2 + l3ψ1)l1

h2
u

Λ2
+ y3ϕν(l2l2 + l3l3)

h2
u

Λ2

+y4χν(l2l3 + l3l2)
h2
u

Λ2
.

For the moment we simply assume that the flavons χe and ϕe acquire the VEVs

〈ϕe〉 = ue and 〈χe〉 = we . (6.2)

As discussed in chapter 3 these VEVs break D4 down to D2 generated by A2 and BA in the
charged lepton sector. The VEVs of the flavons coupling only to neutrinos at LO, are of the
form

〈ϕν〉 = u , 〈χν〉 = w ,

( 〈ψ1〉
〈ψ2〉

)
= v

(
1
1

)
, (6.3)

and therefore leave a Z2 subgroup, generated by B, unbroken. As will be discussed in section
6.1.3, the vacuum structure in equation (6.2) and equation (6.3) is a natural result of the
minimization of the flavon potential. We obtain the following fermion mass matrices, when
inserting the flavon VEVs and 〈hu,d〉 = vu,d:

Ml =
vd
Λ




ye1we 0 0
0 ye3ue ye2we
0 ye2we −ye3ue


 and Mν =

v2
u

Λ2




y1w y2v y2v
y2v y3u y4w
y2v y4w y3u


 . (6.4)

The matrix MlM
†
l is diagonalized through the unitary matrix Ul, which acts on the left-handed

charged lepton fields and is given by

Ul =




1 0 0
0 eiπ/4/

√
2 e−iπ/4/

√
2

0 e−iπ/4/
√

2 eiπ/4/
√

2


 . (6.5)
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Note that this corresponds to transforming to the basis of real generators used in [84]. This is
discussed in further detail in appendix B.3. For the masses of the charged leptons we find

me =
vd
Λ
|ye1we| ,mµ =

vd
Λ
|ye3ue + iye2we| and mτ =

vd
Λ
|ye3ue − iye2we| . (6.6)

In order to arrive at non-degenerate masses for the µ and the τ lepton either ye3ue or ye2we has
to be non-real, indicating CP violation in the Yukawa couplings and/or flavon VEVs. For mτ

being around 2GeV (cf. equation (1.5)) we find that for small tanβ - corresponding to vd of
the order of 100 GeV - the ratio of the flavon VEVs ue and we over the cutoff scale Λ should
fulfill

ue
Λ
,
we
Λ
∼ λ2 ≈ 0.04, (6.7)

where λ = sin θC is the expansion parameter used in the Wolfenstein parameterization of the
CKM matrix, cf. section 1.1. The smallness of the ratiome/mτ is in this model only explained by
the assumption of a small enough coupling ye1. Similarly, mµ/mτ enforces a certain cancellation
between the two contributions ye3ue and iye2we in mµ. In [84] these problems have been solved
by the assumption that the electron couples to a Higgs field different from those coupling to
the µ and the τ lepton and by an additional symmetry which leads to mµ = 0, if it is unbroken.
The neutrino mass matrix in the charged lepton mass basis reads (indicated by a prime ( ′ ))

M ′
ν = U †lMνU

∗
l =

v2
u

Λ2




y1w y2v y2v
y2v y4w y3u
y2v y3u y4w


 . (6.8)

M ′
ν is still µ− τ symmetric, just as Mν was. This is due to the subgroup mismatch mechanism

discussed in chapter 4. It then immediately follows that the lepton mixing angle θ13 vanishes
and θ23 is maximal. The solar mixing angle θ12 is not predicted, but in general expected to be
large. Also the Majorana phases φ1,2 are not constrained. The lepton mixing matrix is of the
form

VPMNS = diag(eiγ1 , eiγ2 , eiγ3) ·




cos θ12 sin θ12 0
− sin θ12√

2
cos θ12√

2
− 1√

2

− sin θ12√
2

cos θ12√
2

1√
2


 · diag(eiβ1 , eiβ2 , eiβ3) . (6.9)

The Majorana phases φ1,2 can be extracted from VPMNS by bringing it into the standard form
given in equation (1.28). Assuming that all flavon VEVs are of the same size, the estimate in
equation (6.7) also holds for the VEVs of the flavons χν , ϕν and ψ1,2. For small tanβ a light
neutrino mass scale between

√
|∆m2

31| ≈ 0.05 eV and 1 eV fixes the range of the cutoff scale Λ
to be

4 · 1011 GeV . Λ . 8 · 1012 GeV . (6.10)

As shown in section 6.1.3, we can assume that CP is only spontaneously violated in this model
by imaginary VEVs we and w of χe and χν . Thus, apart from we and w all other parameters,
i.e. couplings and VEVs, are real in the following. According to equation (6.6) an imaginary we
allows the µ and the τ lepton mass to be non-degenerate. In the neutrino sector only the VEV w
of χν is imaginary, whereas all other entries in M ′

ν are real, so that the matrix in equation (6.8)
can be written as

M ′
ν =

v2
u

Λ
v

Λ




i s t t
t i x z
t z i x


 , (6.11)
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where we define the real parameters

s = y1
Im(w)
v

, t = y2 , x = y4
Im(w)
v

and z = y3
u

v
. (6.12)

6.1.2 Phenomenology

In the following we analyze the phenomenology of this model. For the eigenvalues of M ′
νM

′†
ν

we find

m2
2,1 =

1
2

(
v2
u

Λ

)2 ( v
Λ

)2 [
s2 + 4t2 + x2 + z2 ±

√
(s− x)2(8t2 + (s+ x)2) + 2(4t2 + x2 − s2)z2 + z4

]

and m2
3 =

(
v2
u

Λ

)2 ( v
Λ

)2 (
x2 + z2

)
. (6.13)

This assignment of the eigenvalues is unambiguous, since m2
2 > m2

1 is experimentally known and
the eigenvalue corresponding to the eigenvector (0, 1,−1)T can only be m2

3. The solar mixing
angle θ12 is found to depend on s, t, x and z in the following way:

tan (2θ12) =
2
√

2 |t|
√

(s− x)2 + z2

x2 + z2 − s2
, (6.14)

which corresponds to equation (3.53). Before discussing the general case with unconstrained
parameters s, t, x and z we comment on the special case in which z vanishes, since then the
model contains only three real parameters which can be determined by the three experimental
quantities ∆m2

21, |∆m2
31| and θ12. According to equation (6.12) either y3 or u have to vanish for

z = 0 to hold. Assuming that y3 is zero however has to be regarded as fine-tuning. In contrast
to that, a vanishing VEV u can be explained either through the absence of the flavon ϕν from
the model or through a flavon potential which only allows configurations with u = 0 as minima.
The neutrino mass m3 is then proportional to |x|. From equation (6.13) and equation (6.14)
we can derive for z = 0

m2
3 = −1

4
cos4 θ12

sin2 θ12

(∆m2
21 + ∆m2

31(tan4 θ12 − 1))2

∆m2
31(1 + tan2 θ12)−∆m2

21

. (6.15)

Neglecting the solar mass squared difference we can simplify this expression to

m2
3 ≈ −∆m2

31 cot2 2θ12 . (6.16)

Equation (6.16) shows that ∆m2
31 < 0, i.e. the neutrinos have to have an inverted hierarchy.

Similar results can also be found in [118]. A relation analogous to equation (6.15) can be found
for |mee|. Note that |mee| is proportional to |s| due to equation (6.11) and can be written in
terms of m3, tan θ12 and the mass squared differences as

|mee|2 = m2
3

(∆m2
21(1− 2 tan2 θ12) + ∆m2

31(tan4 θ12 − 1))2

(∆m2
21 + ∆m2

31(tan4 θ12 − 1))2
. (6.17)

In the limit of vanishing solar mass splitting we find

|mee| ≈ m3 . (6.18)

Taking the best-fit values given in equation (1.29) we obtain s ≈ 0.02075, t ≈ 0.03502, x ≈
0.02146 for vu ≈ 100GeV, Λ ≈ 4 · 1011 GeV and v/Λ ≈ λ2 ≈ 0.04. Actually we find four
solutions which all lead to the same absolute values, but to different signs for s, t and x, with



6.1. D4 IN THE LEPTONIC SECTOR 87

0 0.01 0.02 0.03 0.04 0.05 0.06
0

0.01

0.02

0.03

0.04

0.05

0.06

m3@eVD

Èm
ee
È
@e

V
D

Figure 6.1: |mee| plotted against m3 for z 6= 0. The dashed red line indicates the results for z = 0. Mass squared
differences and the solar mixing angle are in the allowed 2σ ranges [20]. As one can see, |mee| and m3 have nearly
the same value. Additionally, one finds that m3 has a lower bound around 0.015 eV. For z = 0 we also find an
upper bound on m3.
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Figure 6.2: tan θ12 plotted against m3 for non-vanishing z. Again the dashed red line indicates z = 0 (assuming
the best-fit value for the atmospheric mass squared difference) and gives a lower bound for z 6= 0. Apart from
that the results for tan θ12 are only constrained by the requirement that they are within the experimental 2σ
ranges [20], 0.61 . tan θ12 . 0.73.

the constraint that s and x have the same sign. The neutrino masses are m1 ≈ 0.05348 eV,
m2 ≈ 0.05419 eV and m3 ≈ 0.02146 eV. Their sum

∑
mi ≈ 0.1291 eV lies below the upper

bound required from cosmological data (equation 1.31). |mee| equals 0.02075 eV which could
conceivably be detectable in the future [107]. The two Majorana phases φ1,2 are φ1 = π/2 and
φ2 = 0. For tritium β decay we find mβ ≈ 0.05370 eV which is substantially smaller than the
expected sensitivity of the KATRIN experiment.
Turning to the general case with z 6= 0 we first observe that also in this case the light neutrinos
have to have an inverted hierarchy. To see this let us assume that the matrix in equation (6.11)
would allow the neutrinos to be normally ordered, i.e. m3 > m1 as well as m3 > m2. From
m2

3 −m2
2 > 0 then follows

x2 + z2 − s2 − 4t2 −
√

(s− x)2(8t2 + (s+ x)2) + 2(4t2 + x2 − s2)z2 + z4 > 0 . (6.19)

From this we can deduce

x2 + z2 > s2 + 4t2 and 16t2(t2 + x(s− x)− z2) > 0 , (6.20)
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Figure 6.3: The Majorana phases φ1 (blue) and φ2 (green) plotted against the lightest neutrino mass m3 for
non-vanishing z. The values for z = 0, φ1 = π

2
, φ2 = 0, are displayed by dashed red lines. Notice that the results

for z 6= 0 are centered around these values. The measured quantities, ∆m2
21, |∆m2

31| and θ12, are within the 2σ
ranges [20].
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Figure 6.4: Phase difference φ1−φ2 against m3 for z 6= 0. The case z = 0, |φ1−φ2| = π/2, is given by the dashed
red lines. As one can see, |φ1 − φ2| is restricted to the interval [π/2, 3π/4] for m3 . 0.06 eV. Its deviation from
π/2 increases with increasing m3. Again, the mass squared differences and θ12 are within the experimentally
allowed 2σ ranges [20].

where the first inequality follows from the fact that the square root in equation (6.19) is always
positive and the second inequality is obtained by bringing the square root to the right hand
side of equation (6.19) and then squaring both sides, which is allowed since both are positive.
Rearranging the first inequality of equation (6.20) and taking t 6= 0 (otherwise θ12 is zero) for
the second one, we get

x2 − s2 > 4t2 − z2 and t2 − z2 > x(x− s) . (6.21)

The sum of these inequalities leads to

s(x− s) > 3t2 > 0 . (6.22)

From equation (6.22) we see that s and x have the same sign, while x2 > s2, hence x(x− s) >
s(x− s). Together with the second inequality of equation (6.21) this implies

t2 − z2 > s(x− s) . (6.23)
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Combining the last two inequalities, we find t2 − z2 > 3t2, an obvious contradiction. Thus,
the neutrinos cannot be normally ordered as assumed by m2

3 > m2
2. Instead we always have

m2
2 > m2

3 which is only possible in case of an inverted hierarchy. Note that it is a priori not
clear that also m1 is larger than m3, since the size of the mass squared differences has to be
tuned so that ∆m2

21 ¿ |∆m2
31|. In fact, ∆m2

21 is given by

∆m2
21 =

(v2
u

Λ

)2 ( v
Λ

)2 √
(s− x)2(8t2 + (s+ x)2) + 2(4t2 + x2 − s2)z2 + z4 . (6.24)

It vanishes, if z = 0 and s = x. Thus, ∆m2
21 ¿ |∆m2

31| holds, if these equalities are nearly met.
As noted, the vanishing of z can be made a natural result of the model. The near equality s ≈ x
however has to be regarded as a certain tuning of the couplings y1 and y4, see equation (6.12).
We study the general case z 6= 0 with a numerical analysis. To fix the light neutrino mass scale
we adjust the resulting solar mass squared difference to its best-fit value. At the same time the
atmospheric mass squared difference and the mixing angle θ12 have to be within the allowed
2σ ranges [20]. First, we note that our numerical results confirm that z has to be in general
smaller than the parameters s, t and x and that s and x have to have nearly the same value.
In figure 6.1 we plotted |mee| against the lightest neutrino mass m3.
As one can see, the approximate equality of |mee| and m3, deduced for z = 0 in equation (6.18),
still holds for z 6= 0. The dashed red line is the result for z = 0. One finds that m3 has a
minimal value around 0.015 eV, i.e. m3 cannot vanish, and for z = 0 it also has a maximal
value around 0.027 eV. These two bounds can be found as well by using equation (6.16). The
non-vanishing of m3 ≈ |mee| agrees with the findings in the literature that |mee| is required to
be larger than about 0.01 eV, if neutrinos follow an inverted hierarchy [119, 120]. Figure 6.2
shows that the relation in equation (6.16), which is fulfilled to a good accuracy for z = 0, gives
a lower bound for z 6= 0 in the tan θ12-m3 plane and no further constraints on the solar mixing
angle can be derived. Note that we used the best-fit value of the atmospheric mass squared
difference for the dashed red line in figure 6.2. Finally, we plot the Majorana phases φ1 and φ2

in figure 6.3 against the lightest neutrino mass m3. As one can see, the phase φ1 (blue) varies
between π/8 and 7π/8, while φ2 (green) either lies in the interval [0, π/8] or [7π/8, π] for small
values of m3, i.e. m3 . 0.06 eV. The dashed red lines indicate again the value of φ1 and φ2

achieved in the limit z = 0. As the difference φ1 − φ2 of the two Majorana phases is the only
quantity which can be realistically determined by future experiments through

|mee| = |m1 cos2 θ12e
2i (φ1−φ2) +m2 sin2 θ12| , (6.25)

we also plot φ1 − φ2 against m3 in figure 6.4. This plot shows that the phase difference has to
lie in the rather narrow ranges [−3π/4,−π/2] or [π/2, 3π/4] for small values of m3. As one can
see, the deviations from |φ1 − φ2| = π/2 (z = 0 case) become larger for larger values of m3.

6.1.3 Flavon Superpotential

In the following we discuss the flavon superpotential and show that the VEV structure assumed
in (equation (6.2) and) equation (6.3) naturally arises, as does the spontaneous CP violation.
This is a fairly simple specific example of the general potentials discussed in chapter 5. Since
we are dealing with smallest possible dihedral group with an even n, we do not even need any
driving fields transforming as two-dimensional representations. All the driving fields needed for
constructing the potential are χ0

e ∼ (11, ω
4), σ0 ∼ (14, ω) and χ0

ν ∼ (11, ω), given with their
transformation properties under (D4, Z5). The renormalizable D4×Z5 invariant superpotential
for flavons and driving fields reads

wf = aχ0
e χ

2
e + b χ0

e ϕ
2
e (6.26)

+ c σ0 (ψ2
1 − ψ2

2) + dχ0
ν ψ1 ψ2 + e χ0

ν ϕ
2
ν + f χ0

ν χ
2
ν .
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Assuming that the flavons acquire their VEVs in the supersymmetric limit we can use the F-
terms of the driving fields to determine the vacuum structure of the flavons. The equations

∂wf
∂χ0

e

= aχ2
e + b ϕ2

e = 0 , (6.27a)

∂wf
∂σ0

= c (ψ2
1 − ψ2

2) = 0 , (6.27b)

∂wf
∂χ0

ν

= dψ1 ψ2 + eϕ2
ν + f χ2

ν = 0 , (6.27c)

result in

〈χe〉 = ±i
√
b

a
〈ϕe〉 , 〈ψ1〉 = ±〈ψ2〉 , 〈χν〉 = ±i

√
d 〈ψ1〉 〈ψ2〉+ e 〈ϕν〉2

f
(6.28)

which can be re-written as

we = ±i
√
b

a
ue , 〈ψ1〉 = ±v , w = ±i

√
d 〈ψ1〉 〈ψ2〉+ e u2

f
. (6.29)

Note that the VEVs 〈ϕe〉 = ue, 〈ψ2〉 = v and 〈ϕν〉 = u are unconstrained by the potential.
Note further that the three signs in equations (6.28) and (6.29) can be chosen independently of
each other. For the discussion of the preserved subgroup structure it is anyway only relevant
whether 〈ψ1〉 = 〈ψ2〉 or 〈ψ1〉 = −〈ψ2〉. For 〈ψ1〉 = 〈ψ2〉 as used in equation (6.3) we conserve
a subgroup Z2 of D4 generated by B, whereas the relation 〈ψ1〉 = −〈ψ2〉 indicates that the Z2

subgroup generated by BA2 is left unbroken. This Z2 group is also not a subgroup of the D2

group conserved in the charged lepton sector. Thus, the subgroups of the charged lepton and
the neutrino sector will be properly mismatched in both cases. We will only consider the case
of 〈ψ1〉 = 〈ψ2〉 = v. Equation (6.29) shows then that the VEVs we and w necessarily have to
be imaginary, so that CP is spontaneously violated, if the parameters a, ..., f and the VEVs ue,
v and u are chosen as positive.
Only vanishing VEVs are allowed for the driving fields and this can be shown very easily in this
model. We only need to consider the three F-terms

∂wf
∂χe

= 2aχeχ0
e = 0 , (6.30)

∂wf
∂ϕν

= 2eϕνχ0
ν = 0 , (6.31)

∂wf
∂ψ1

= 2c ψ1 σ
0 + dψ2 χ

0
ν = 0 , (6.32)

to see that, if the parameters a, ..., f and the flavon VEVs are non-zero, as it is in our case, the
driving fields cannot acquire a VEV. Finally, note that we find flat directions in this potential
in the case of spontaneous CP violation under discussion here.

6.1.4 Next-to-Leading Order Corrections

In order to determine how our results are corrected at NLO, we take into account the effects of
operators which are suppressed by one more power of the cutoff scale Λ compared to the LO.
It turns out that, due to the Z5 symmetry, there are actually no contributions to the fermion
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masses from two-flavon insertions. Hence, the only NLO corrections we need to consider are
those of the flavon superpotential, which lead to a shift in the flavon VEVs parameterized as

〈χe〉 = we + δwe , 〈χν〉 = w + δw and 〈ψ1〉 = v + δv . (6.33)

The VEVs 〈ϕe〉 = ue, 〈ϕν〉 = u and 〈ψ2〉 = v which are not determined at LO remain uncon-
strained also at NLO. As will be discussed in section 6.1.4, the shifts δw and δwe are in general
complex, whereas the shift δv in the VEV 〈ψ1〉 is real for this type of spontaneous CP violation.

Fermion Masses

The VEV shifts induce corrections to the lepton mass matrices given in equation (6.4) when
the shifted VEVs are inserted into the LO Yukawa couplings of equation (6.1). In case of the
charged lepton masses only the VEV of χe is shifted. Such a shift is however not relevant, since
it can be absorbed into the Yukawa couplings ye1 and ye2. These then become complex which
however does not affect our results. In particular, Ul is still given by equation (6.5). The form
of the neutrino mass matrix is changed through the shifts of the VEVs into

Mν =
v2
u

Λ2




y1(w + δw) y2v y2(v + δv)
y2v y3u y4(w + δw)

y2(v + δv) y4(w + δw) y3u


 . (6.34)

Note that δw cannot be simply absorbed into w, since δw is complex, whereas w is purely
imaginary. In the charged lepton mass basis the matrix in equation (6.34) reads

M ′
ν =

v2
u

Λ2




y1(w + δw) y2(v + eiπ/4δv/
√

2) y2(v + e−iπ/4δv/
√

2)
y2(v + eiπ/4δv/

√
2) y4(w + δw) y3u

y2(v + e−iπ/4δv/
√

2) y3u y4(w + δw)


 . (6.35)

To evaluate the shifts in the neutrino masses and to discuss the deviations of the mixing angles
from their LO values, especially θ13 from zero and θ23 from maximal, we parameterize the
Majorana neutrino mass matrix as

M ′
ν =

v2
u

Λ
v

Λ




i s (1 + α ε) t (1 + eiπ/4 ε) t (1 + e−iπ/4 ε)
t (1 + eiπ/4 ε) i x (1 + α ε) z

t (1 + e−iπ/4 ε) z i x (1 + α ε)


 , (6.36)

with s, t, x and z as given in equation (6.12) and

α ε =
δw

w
, α = αr + i αi and ε =

1√
2
δv

v
≈ λ2 ≈ 0.04 , (6.37)

where we assume that ε is positive. The neutrino masses and mixing parameters resulting from
equation (6.36) can then be calculated in an expansion in the small parameter ε. We observe
that the mass shift of m2

3 would vanish for δw being zero. Its explicit form is

(mNLO
3 )2 = (mLO

3 )2 + 2
(v2

u

Λ

)2 ( v
Λ

)2
x(αr x+ αi z) ε, (6.38)

with (mLO
3 )2 given in equation (6.13). Similarly, the masses m2

1 and m2
2 undergo shifts propor-

tional to ε. A simple expression can however only be found for the sum m2
1 +m2

2:

(mNLO
1 )2+(mNLO

2 )2 = (mLO
1 )2+(mLO

2 )2+2
(v2

u

Λ

)2 ( v
Λ

)2
(2
√

2 t2+αr (s2+x2)−αi x z) ε (6.39)
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(mLO
1,2 )2 can be found in equation (6.13). The mixing angle θ13 no longer vanishes and we find

sin θ13 ≈
∣∣∣∣

t x

t2 + (s− x)x− z2

∣∣∣∣ ε . (6.40)

For θ23 we get
tan θ23 ≈ 1 +

√
2

x z

t2 + (s− x)x− z2
ε . (6.41)

The deviation from maximal atmospheric mixing can also be expressed through

| cos 2θ23| ≈
√

2
∣∣∣∣

x z

t2 + (s− x)x− z2

∣∣∣∣ ε ≈
√

2
∣∣∣z
t

∣∣∣ sin θ13 . (6.42)

From both formulae one can deduce that in the case z = 0 the corrections to maximal atmo-
spheric mixing are not of the order ε, but only arise at O(ε2). Contrary to this θ13 still receives
corrections of order ε, if z = 0. The solar mixing angle θ12 which is not fixed to a precise value in
this model also gets corrections of order ε. We note that the smallness of |s−x| and z, required
by the smallness of ∆m2

21, might lead to a disturbance of the expansion in the parameter ε.
A correlation between cos 2θ23 and sin θ13 depending only on physical quantities, ∆m2

ij , ..., and
not on the parameters of the model, s, t, ..., can be obtained by an analytic consideration which
is done analogously to the study performed in [71]. Clearly, the matrix in equation (6.35) is no
longer µ− τ symmetric, however we find the following remnants of this symmetry:

(M ′
ν)eµ = (M ′

ν)
∗
eτ and (M ′

ν)µµ = (M ′
ν)ττ . (6.43)

Equation (6.43) shows that µ− τ symmetry is only broken by phases, but not by the absolute
values of the matrix elements. This leads to

0 = |(M ′
ν)eµ|2 + |(M ′

ν)µµ|2 − |(M ′
ν)eτ |2 − |(M ′

ν)ττ |2

0 = (M ′
νM

′ †
ν )µµ − (M ′

νM
′ †
ν )ττ =

3∑

j=1

m2
j (|(UMNS)µj |2 − |(UMNS)τj |2)

0 =
(
(sin2 θ12 − sin2 θ13 cos2 θ12)m2

1 + (cos2 θ12 − sin2 θ13 sin2 θ12)m2
2 − cos2 θ13m

2
3

)
cos(2θ23)

−∆m2
21 sin 2θ12 sin 2θ23 cos δ sin θ13 . (6.44)

Since sin θ13 ∼ O(ε) and cos 2θ23 ∼ O(ε) is already known, we can linearize this equation and
obtain, using best-fit values for the physical quantities and the fact that neutrinos have an
inverted hierarchy in this model,

cos 2θ23 ≈ − ∆m2
21 sin 2θ12

∆m2
32 + ∆m2

21 sin2 θ12
cos δ sin θ13 ≈ 0.03 cos δ sin θ13 . (6.45)

Equation (6.45) can be used to estimate the largest possible deviation from maximal mixing.
For sin θ13 being at its 2σ limit of 0.2 and | cos δ| = 1, | cos 2θ23| still has to be less than 6×10−3

which is well within the 1σ error. Finally, we note that equation (6.45) must be consistent with
equation (6.42) and thus we again find that z has to be small.

Flavon Superpotential

The corrections to the flavon superpotential stem from terms involving one driving field and
three flavons. We find

∆wf =
k1

Λ
χ0
e χ

3
ν +

k2

Λ
χ0
e χν ϕ

2
ν +

k3

Λ
χ0
e χνψ1ψ2 +

k4

Λ
χ0
e ϕν (ψ2

1 + ψ2
2) (6.46)

+
k5

Λ
σ0 ϕe χ

2
e +

k6

Λ
σ0 ϕ3

e +
k7

Λ
χ0
ν χ

3
e +

k8

Λ
χ0
ν χeϕ

2
e .
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Assuming that CP is only spontaneously violated forces all ki to be real. We calculate the
F-terms of wf + ∆wf for the driving fields, using that the VEVs can be parameterized as

〈χe〉 = we + δwe , 〈χν〉 = w + δw and 〈ψ1〉 = v + δv . (6.47)

The VEVs 〈ϕe〉 = ue, 〈ϕν〉 = u and 〈ψ2〉 = v are not determined at LO. For our calculation of
the VEV shifts, we keep only terms containing up to one VEV shift or the suppression factor
1/Λ, but not both. As the VEV shifts we calculate turn out to be small, this calculation is
self-consistent. The F-terms then lead to

2 awe δwe +
1
Λ

(k1w
3 + k2 u

2w + k3 v
2w + 2 k4 u v

2) = 0 , (6.48a)

2 c v δv +
ue
Λ

(k5w
2
e + k6 u

2
e) = 0 , (6.48b)

d v δv + 2 f w δw +
we
Λ

(k7w
2
e + k8 u

2
e) = 0 . (6.48c)

Here we have chosen the solutions with + in equation (6.29). The explicit form of the shifts
reads

δv = − 1
2 c

ue
vΛ

(k5w
2
e + k6 u

2
e) , (6.49a)

δw =
1

4 c f
1
wΛ

(d (k5w
2
e + k6u

2
e)ue − 2 c (k7w

2
e + k8 u

2
e)we) , (6.49b)

δwe = − 1
2 a

1
we Λ

(k1w
3 + k2 u

2w + k3 v
2w + 2 k4 u v

2) . (6.49c)

As one can see, for our type of spontaneous CP violation δv is real, whereas δwe and δw turn
out to be complex in general. As can be read off from equation (6.49) all shifts are generically
of the natural size, i.e. δVEV

VEV ∼ λ2. Finally, note that the free parameters 〈ϕe〉 = ue, 〈ϕν〉 = u
and 〈ψ2〉 = v are still undetermined.
This ends our discussion of the D4 model for the moment. Before we consider what we have
learned from this model, we first discuss a second model using D14 model for the quark sector,
in the next section.

6.2 D14 in the Quark Sector

We construct a supersymmetric model using flavons and driving fields in which an element of
the CKM matrix is predicted by group theory, as discussed in section 4.1.2. We presented
a non-supersymmetric model with the same aim in section 4.3, based on the flavor group
D7. However, we found in chapter 5 that the necessary vacuum alignment can be more easily
achieved in models where the dihedral flavor symmetry has an even index n. In section 4.1.2, we
found that D7 is not the only symmetry that is adequate for predicting a CKM matrix element,
but that D14 can be used to predict |Vud| or |Vcs|. We thus construct our supersymmetric model
using D14 as a flavor symmetry. The auxiliary, abelian symmetry used to separate sectors is
taken to be the minimal Z3. As we only consider the quark sector, we should also be able to
describe the mass hierarchy, for which purpose we introduce an additional U(1)FN under which
only the left-handed conjugate quarks transform.
As for the D7 model of section 4.3, we choose the fermion transformation properties such that
the mass matrices have a right-handed three singlet structure. The left-handed quarks Q1 and
Q2 are unified into the D14 doublet 21, denoted by QD, while the third generation of left-
handed quarks Q3, the left-handed conjugate up-type quark tc, and the left-handed conjugate
down-type quark sc, transform trivially under D14, i.e. as 11. The remaining two generations of
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Field QD Q3 uc cc tc dc sc bc hu,d
D14 21 11 14 13 11 13 11 14 11
Z3 1 1 1 1 1 ω2

3 ω2
3 ω2

3 1
U(1)FN 0 0 2 0 0 1 1 0 0
Field ψu1,2 χu1,2 ξu1,2 ηu ψd1,2 χd1,2 ξd1,2 ηd σ

D14 21 22 24 13 21 22 24 14 11
Z3 1 1 1 1 ω3 ω3 ω3 ω3 ω3

U(1)FN 0 0 0 0 0 0 0 0 0

Table 6.2: Particle Content of the D14 Model. Here we display the transformation properties of fermions
and flavons under the flavor group D14 × Z3 × U(1)FN . The symmetry Z3 separates the up and down
quark sector. The left-handed quark doublets are denoted by QD = Q1,2, Q1 = (u, d)T , Q2 = (c, s)T ,
Q3 = (t, b)T and the left-handed conjugate quarks by uc, cc, tc and dc, sc, bc. The flavon fields indexed
by a u give masses to the up quarks only, at LO. Similarly, the fields which carry an index d (and the
field σ) couple only to down quarks at LO. Additionally, we assume the existence of a field θ which is a
gauge singlet transforming trivially under D14 × Z3. It is responsible for the spontaneous breaking of the
U(1)FN symmetry. Without loss of generality its charge under U(1)FN can be chosen as −1. Note that

ω3 is a non-trivial third root of unity, ω3 = e
2πi
3 .

left-handed conjugate fields, i.e. cc and uc in the up quark and dc and bc in the down quark sector,
are assigned to the one-dimensional representations 13 and 14. The fact that the transformation
properties of the left-handed conjugate down quark fields are permuted compared to those of
the left-handed conjugate up quark fields is merely due to the desire to arrive at a down quark
mass matrix Md which has a large (33) entry, cf. equation (6.59). However, since this is just
a permutation of the left-handed conjugate fields it is neither relevant for quark masses nor
for mixing. We assign a trivial Z3 charge to left-handed quarks and left-handed conjugate up
quarks, while the left-handed conjugate down quarks transform as ω2

3 under Z3. The MSSM
Higgs doublets hu and hd do not transform under D14 × Z3.
For the flavon content, we abandon our principle of including all flavon representations which
can appear in the Yukawa couplings. By eliminating possible flavons, we create zeroes in the
quark mass matrices, which are only filled by higher order corrections. Together with the FN
mechanism this creates the necessary hierarchy in the mass matrix elements. We have two
flavon sectors: The flavons which give masses to the up quarks at LO transform trivially under
Z3, while the flavon fields responsible for the down quark masses at LO acquire a phase ω under
Z3. In both sectors we have flavons transforming according to the doublets 21, 22 and 24.
Not all of these flavons couple to the SM fermions at LO, but they are needed for the vacuum
alignment, as discussed in section 5.2.4. We have a flavon transforming as 13 in the up sector
and a flavon transforming as 14 in the down sector, to arrive at the desired subgroup mismatch.
Since the left-handed conjugate down quarks transform non-trivially under Z3, whereas hd does
not transform under Z3, the bottom quark does not acquire a mass at the renormalizable level,
unlike the top quark. We thus need to introduce an additional D14 singlet flavon σ in the
down sector, which generates the bottom quark mass. The top quark is then the only fermion
acquiring mass at the renormalizable level, and we can assume a small tanβ.
We finally need to assign FN charges. Without the FN symmetry, the strange mass would be
generated at the same order as the bottom mass. To suppress it we assign a charge of +1
under U(1)FN to the left-handed conjugate down-type quark sc. We also need to suppress the
masses of the first generation quarks, for which we assign non-vanishing FN charges to both uc

and dc. The transformation properties of the quarks and flavons under D14 ×Z3 ×U(1)FN are
summarized in table 6.2.
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6.2.1 Quark Masses and Mixing

As discussed in section 5.2.5, the separation of the two sectors will not hold to all orders.
Consequently, the residual symmetries will be broken, and our group theoretical prediction of
the mixing matrix element(s) will receive corrections. In the leptonic case, this could nicely be
divided into LO contributions, which respect the residual symmetries, and NLO contributions,
which don’t. Things are not as simple for ourD14 quark model, as the levels of the contributions
conserving the residual symmetries and of the contributions that break them are mixed due to
additional effects needed to ensure the quark mass hierarchy. First of all, we have two small
expansion parameters: ε which is as before the ratio of the flavon VEVs breaking D14×Z3 over
the cutoff scale Λ and t which is the ratio 〈θ〉

Λ , where θ is the scalar field whose VEV breaks
the FN symmetry, which we do not call flavon, reserving the term for those fields that break
D14×Z3. We assume these two small parameters to be of the same order in the following, i.e. we
assume that all flavon VEVs and the VEV of the FN field are of the same order of magnitude.
Additionally, not all terms allowed by the residual symmetries arise at the order of one-flavon
insertions, as we do not include all scalar VEVs allowed by these symmetries. To structure our
discussion of quark masses and mixing we thus distinguish between contributions to the mass
matrices that respect the residual symmetries and those that break them.
The VEVs of the flavons transforming trivially under Z3, i.e. those with an index u, will
conserve a subgroup Z2 = 〈BAmu〉 at LO, while the flavons transforming non-trivially under
Z3, i.e. those with an index d (and σ), will conserve a subgroup Z2 = 〈BAmd〉. The subgroup-
conserving contributions then come from those terms in the Yukawa superpotential in which
up-type quarks couple only to flavons transforming trivially under Z3 and down-type quarks
only couple to flavons transforming non-trivially. The leading subgroup-conserving terms in the
up sector will thus be those with one or two flavons, while in the down sector only the terms
with one flavon will give the leading subgroup-conserving contribution. We first discuss these
contributions, then go on to discuss the full mass matrices including higher order contributions,
which break the residual symmetries. Our results in the subgroup-conserving limit turn out to
be stable up to corrections of order ε, thus legitimizing this approach.

Subgroup-Conserving Limit

In the up quark sector the only renormalizable coupling generates the top quark mass:

Q3 t
chu, (6.50)

where we omit, as we will always do in the following, all Yukawa couplings. These multiply each
operator separately and are taken to be complex numbers with an absolute value of order 1.
The other elements of the second column as well as the (32) element of the up quark mass
matrix Mu arise at the one flavon level through the terms

1
Λ

(QDψu)tchu (6.51)

and

1
Λ
Q3 (cc ηu)hu, (6.52)

respectively. We do not specifically write down the D14 contractions in doublet component
fields, but rather group together all those fields which are contracted to form a D14 singlet
in a round bracket. This notation is unambiguous - one would need at least four flavons to
have two possibilities for contraction. The elements of the 1-2 sub-block of Mu are generated



96 CHAPTER 6. PUTTING IT ALL TOGETHER: TWO WORKED-OUT EXAMPLES

by two-flavon insertions. The elements of the first column of this sub-block originate from the
terms

θ2

Λ4
(QDucχuξu)hu +

θ2

Λ4

(
QDu

c(ξu)2
)
hu +

θ2

Λ4
(QDψuηuuc)hu, (6.53)

while the terms

1
Λ2

(QDccχuξu)hu +
1
Λ2

(
QDc

c(ξu)2
)
hu +

1
Λ2

(QDccψuηu)hu (6.54)

are responsible for the elements in the second column. For all elements we only give the
dominant contributions. The elements in the third column all receive contributions from two-
flavon terms. As they respect the residual Z2, they can however be absorbed into the existing
couplings. Only the (31) element ofMu vanishes at this level. If we then insert the Z2 = 〈BAmu〉
conserving doublet VEVs

( 〈ψu1 〉
〈ψu2 〉

)
= vu

(
1
1

)
,

( 〈χu1〉
〈χu2〉

)
= wu

(
1
1

)
,

( 〈ξu1 〉
〈ξu2 〉

)
= zu

(
1
1

)
(6.55)

together with 〈ηu〉 6= 0, we obtain for the up quark mass matrix

Mu =



−αu1 ε2t2 αu2 ε

2 αu3 ε
αu1 t

2 ε2 αu2 ε
2 αu3 ε

0 αu4 ε yt


 〈hu〉, (6.56)

where we have set mu = 0, which can as always be done without loss of generality, since it is
only the phase difference which is observable in the subgroup mismatch. All couplings αui and
yt are complex. Apart from an exchange of the first and third row this corresponds exactly to
the matrix given in the first line of table 3.6. This exchange of rows is just a permutation of the
left-handed quarks, which has no effect on phenomenology. We thus see that the omission of
certain flavons does not change the structure of our mass matrix, as the texture zeroes induced
by their omission are removed by subgroup-conserving two-flavon insertions. The only net effect
at this level is a hierarchy among the mass matrix elements.
We can discuss the down quark mass matrix Md in a similar fashion, but only taking into
account terms with one flavon, of which there are three:

θ

Λ2
(QDψd) schd,

θ

Λ2
Q3 s

cσhd and
1
Λ
Q3( bc ηd)hd, (6.57)

where the first one is responsible for the (33) entry, the second one for the (32) entry and the
third one gives the dominant contribution to the (12) and (22) elements of Md. The VEVs of
the flavons in the down sector conserve the residual subgroup Z2 = 〈BAmd〉 and are thus given
by

( 〈ψd1〉
〈ψd2〉

)
= vd

(
e−

πimd
7

1

)
,

( 〈χd1〉
〈χd2〉

)
= wd

(
e−

πimd
7

e
πimd

7

)
and

( 〈ξd1〉
〈ξd2〉

)
= zd

(
e−

2πimd
7

e
2πimd

7

)
,

(6.58)
with 〈ηd〉 and 〈σ〉 both non-zero. From our discussion in section 4.1.2 we infer that after setting
mu = 0, we need to setmd = 1 ormd = 13 to obtain a phenomenologically viable result for |Vud|.
Note that, while we will show in the next section how the VEV configurations of equation (6.58)
arise naturally from the flavon superpotential, the exact value of the parameter md, beyond its
being an odd integer between 1 and 13, cannot be determined. As seen in chapter 5 this is
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a generic problem. We thus simply have to choose md to be minimal or maximal, and, for
simplicity and without loss of generality, we will work in the following with md = 1, keeping in
mind that there are three other possible values for the Cabibbo angle which could equally well
be predicted in this model, but are in conflict with experiment. Inserting the flavon VEVs, the
down quark mass matrix is then

Md =




0 αd1 t ε 0
0 αd1 e

−πi/7 t ε 0
0 αd2 t ε yb ε


 〈hd〉, (6.59)

where again all couplings αdi and yb are complex. Comparing this with the matrix given in the
first line of table 3.6 (and again performing the unphysical exchange of rows one and three), we
see how the absence of some of the allowed flavons leads to texture zeroes in the mass matrix.
This was different in the up quark sector, where these zeroes disappeared when taking into
account two-flavon insertions. In the down quark sector however, the next subgroup-conserving
contribution, which would get rid of these zeroes, occurs at the level of four-flavon insertions.
It is thus strongly suppressed with respect to the two-flavon insertions that violate the residual
symmetries and will thus be discussed in the next section. The prediction of the Cabibbo angle
from the subgroup mismatch, however, is stable, i.e. is only be corrected at order ε, as shown
in the next section. At first however, we determine the size of ε itself.
For this we consider the quark masses. We discuss the exact dependence on the mass matrix
parameters only after we have taken subgroup-breaking terms into account. However, we can
already see at this point how the quark mass hierarchy emerges:

mu : mc : mt ∼ ε4 : ε2 : 1,
md : ms : mb ∼ 0 : ε : 1,

mb : mt ∼ ε : 1, (6.60)

where we have used ε ∼ t. The third equation holds for small tanβ. Comparing this with
equation (2.1), we find that ε ≈ λ2 ≈ 0.04. In this case the hierarchy of quark masses is
reproduced, except for the down quark mass which vanishes at this level but is generated by
subgroup-breaking two-flavon insertions. We can also calculate the CKM matrix, and obtain

|VCKM | =


| cos( π14)| | sin( π14)| 0
| sin( π14)| | cos( π14)| 0

0 0 1


 +




0 O(ε4) O(ε2)
O(ε2) O(ε2) O(ε)
O(ε) O(ε) O(ε2)


 . (6.61)

As we expected from the construction of the model, the value of |Vud| is exact at this level and
is only corrected by subgroup-breaking effects. These corrections are thus necessary to move
|Vud| into the experimentally allowed range. We further observe that having ε as our expansion
parameter, as opposed to λ ∼ √

ε as in the Wolfenstein parameterization, makes it impossible
to predict the elements |Vtd| and |Vub|, which are both ∼ λ3, at the correct order of magnitude:
At this level, |Vtd| is slightly too large and |Vub| is slightly too small. For the measure of CP
violation in the quark sector, JCP , we find it to be of order ε3 at this level and thus of the
correct order of magnitude.

Full Results

We continue by considering how these results are corrected when taking into account subgroup-
breaking contributions. This leads to the introduction of new terms in our parameterization
of the mass matrices. The parameterization is then exact in the sense that all higher order
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corrections can be absorbed in one of the parameters. As we did for the symmetry-conserving
terms, we show the operators which give the dominant contribution to the terms violating the
symmetry. There are now two possible contributions: One is from Yukawa coupling terms in
the superpotential containing more flavons than considered in the symmetry-conserving limit.
In the up quark sector this means three-flavon insertions, in the down quark sector two-flavon
insertions. Another contribution is from shifts in the flavon VEVs due to mixing of the two
sectors in the flavon potential at NLO. Our parameterization of these complex VEV shifts is
given in equation (6.96). Their exact form is discussed in section 6.2.2 and appendix C.5. As
can be inferred from the detailed calculations given in appendix C.5, the generic size of the
shifts is ε · VEV for all VEVs being of the order εΛ, as we would have expected. Because of
this, we can easily compare VEV shift contributions with two or three flavon insertions. There
are thus no ambiguities as to what are the leading contributions for each subgroup breaking
parameter in the mass matrix.
We start with the (11) and (21) elements of the up quark mass matrix. They receive subgroup-
breaking corrections from the operators

θ2

Λ4
((QDucδχuξu)hu + (QDucχuδξu))hu +

θ2

Λ4
(QDucξuδξu)hu +

θ2

Λ4
(QDδψuηuuc)hu

+
θ2

Λ5
(QDψdχd)(ucηd)hu +

θ2

Λ5

(
QDu

c(χd)3
)
hu +

θ2

Λ5

(
QDu

c(ψd)2ξd
)
hu +

θ2

Λ5

(
QDu

cχd(ξd)2
)
hu

+
θ2

Λ5

(
QDu

c(χd)2ξd
)
hu +

θ2

Λ5
(QDucχdξd)σhu +

θ2

Λ5

(
QDu

c(ξd)2
)
σhu +

θ2

Λ5
(QDψd)(ucηd)σhu,

(6.62)

where a notation such as δχu means that the operator which was already considered as part
of the LO symmetry-conserving effects contributes also to the symmetry-breaking term, when
first-order VEV corrections to the VEV of χu are considered. There exist of course also three-
flavon insertions involving only flavons from the up quark sector. They are subgroup-conserving
at leading order and can therefore be fully absorbed into the existing couplings. The corrections
to the (12) and (22) elements are dominantly generated by

1
Λ2

((QDccδχuξu) + (QDccχuδξu))hu +
1
Λ2

(QDccξuδξu)hu +
1
Λ2

(QDccδψuηu)hu

1
Λ3

(QDccψdχdηd)hu +
1
Λ3

(
QDc

c(χd)3
)
hu +

1
Λ3

(
QDc

c(ψd)2ξd
)
hu +

1
Λ3

(
QDc

cχd(ξd)2
)
hu

+
1
Λ3

(
QDc

c(χd)2ξd
)
hu +

1
Λ3

(QDccχdξd)σhu +
1
Λ3

(
QDc

c(ξd)2
)
σhu +

1
Λ3

(QDccψdηd)σhu,

(6.63)

while the (13) and (23) elements are dominantly corrected only by

1
Λ

(QDδψu)tchu, (6.64)

since the two-flavon insertions are subgroup-conserving, i.e. we only need to consider the
symmetry-breaking arising from the VEV shifts at this order. Subgroup-breaking contribu-
tions from three flavon insertions are subdominant. As the (32) and (33) elements are already
described by general complex parameters in the subgroup-conserving limit, and are not directly
correlated with other mass matrix entries, all higher order corrections to them are subdomi-
nant and can be absorbed in existing couplings. This leaves only the (31) element, which was
zero in the limit of a conserved subgroup and is then dominantly generated by the following
three-flavon operators:
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θ2

Λ5
Q3(ucηd)σ2hu +

θ2

Λ5
Q3(ucηd)(ψd)2hu +

θ2

Λ5
Q3(ucηd)(χd)2hu +

θ2

Λ5
Q3(ucηd)(ξd)2hu

+
θ2

Λ5
Q3(ucηd)(ηd)2hu +

θ2

Λ5
Q3(ucψdχdξd)hu +

θ2

Λ5
Q3

(
ucψd(ξd)2

)
hu. (6.65)

Note that there are symmetry-conserving couplings of the same order, from the coupling to
three up-type flavons, such as

θ2

Λ5
Q3u

c(ψu1χ
u
1ξ
u
1 − ψu2χ

u
2ξ
u
2 ), (6.66)

which we have written with explicit doublet components, to make clear how these contributions
vanish at this order, due to the symmetry-preserving VEV structure. They only contribute
subdominantly at the next order, through VEV shifts. The exact up quark mass matrix can
then be parameterized as

Mu =




t2 (−αu1 ε2 + βu1 ε
3) αu2 ε

2 + βu2 ε
3 αu3 ε+ βu3 ε

2

αu1 t
2 ε2 αu2 ε

2 αu3 ε
βu4 t

2 ε3 αu4 ε yt


 〈hu〉, (6.67)

where we have defined, without loss of generality, the couplings in the first two rows in such
a way that the subgroup breaking corrections only appear in the first row. This necessitates
a redefinition of the couplings αu1,2,3, so that they only correspond to their counterparts from
equation (6.56) at leading order. The same holds true for αu4 and yt, which also need to absorb
contributions from subgroup-breaking terms. As in the subgroup-conserving limit, all couplings
αui , β

u
i and yt are complex in general.

Turning to the down sector, the (11) and (21) mass matrix elements are dominantly generated
by the same terms in the superpotential. These are two-flavon insertions and hence symmetry-
breaking in the down sector, thus |Md|11 6= |Md|12. The relevant terms in the superpotential
are

θ

Λ3
(QD dc ξdχu)hd +

θ

Λ3
(QD dc χdξu)hd +

θ

Λ3
(QD dc ξdξu)hd +

θ

Λ3
(QD ψd)(dcηu)hd

+
θ

Λ3
(QD dc ηdψu)hd. (6.68)

The same is true for the (13) and (23) elements which are dominantly generated by

1
Λ2

(QD bcξd χu)hd +
1
Λ2

(QD bc χdξu)hd +
1
Λ2

(QD bc ξdξu)hd +
1
Λ2

(QD bc ψdηu)hd

+
1
Λ2

(QDψu)(bcηd)hd, (6.69)

while the (12) and (22) elements were already non-zero at the subgroup-conserving level. They
are dominantly corrected by both VEV shifts and two-flavon insertions:

θ

Λ2
(QDδψd) schd

+
θ

Λ3
(QDχdψu) schd +

θ

Λ3
(QDψdχu) schd +

θ

Λ3
(QDψu)scσhd. (6.70)
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As for Mu we can again absorb the subgroup-breaking terms for the (32) and (33) elements
into the existing couplings, which leaves us to discuss the (31) entry, which was vanishing in
the subgroup-conserving limit. It is dominantly generated by one single operator,

θ

Λ3
Q3( dc ηu)σhd. (6.71)

The most general down quark mass matrix parameterization for our model is then

Md =




βd1 t ε
2 t (αd1 ε+ βd4 ε

2) βd5 ε
2

βd2 t ε
2 αd1 e

−πi/7 t ε βd6 ε
2

βd3 t ε
2 αd2 t ε yb ε


 〈hd〉. (6.72)

This looks like subgroup conserving terms plus subgroup breaking corrections. However, as
for the up quarks, couplings need to be redefined, for example to move the subgroup breaking
contributions of the first two rows into the first row alone. Thus, the couplings only correspond
to their counterparts from equation (6.59) at leading order. All couplings αdi , β

d
i and yb are

again complex.
We can rephase the left-handed conjugate quark fields, which has no effect on CP violation in
the CKM matrix. Through this rephasing, we can make all the elements in the third row real,
that is βu4 , αu4 , yt, βd3 , αd2 and yb. This somewhat simplifies our final formulae for the quark
masses, which are given by (again using t ≈ ε)

m2
u = 2|αu1 |2〈hu〉2ε8 +O(ε9), (6.73)

m2
c = 2

|αu3αu4 − ytα
u
2 |2

y2
t

〈hu〉2ε4 +O(ε5), (6.74)

m2
t = y2

t 〈hu〉2 +O(ε2), (6.75)

m2
d =

1
2
|βd1 − βd2e

iπ
7 |2〈hd〉2ε6 +O(ε7), (6.76)

m2
s = 2|αd1|2〈hd〉2ε4 +O(ε5), (6.77)

m2
b = y2

b 〈hd〉2ε2 +O(ε4). (6.78)

Thus, taking into account the subdominant contributions discussed in this section, we can
reproduce the full quark mass hierarchy, including a non-vanishing mass for the down quark.
The full results for the elements of the CKM mixing matrix are

|Vud| = cos
( π

14

)
+O(ε) , |Vcs| = cos

( π

14

)
+O(ε) , (6.79)

|Vus| = sin
( π

14

)
+O(ε) , |Vcd| = sin

( π

14

)
+O(ε) , (6.80)

|Vcb| = ε√
2

∣∣∣∣
βd5 + βd6
yb

− 2αu3
yt

∣∣∣∣ +O(ε2) , |Vts| = ε√
2

∣∣∣∣∣
βd5 + βd6e

iπ
7

yb
− αu3(1 + e

iπ
7 )

yt

∣∣∣∣∣ +O(ε2) (6.81)

|Vub| = ε√
2

∣∣∣∣
βd5 − βd6
yb

∣∣∣∣ +O(ε2) , |Vtd| = ε√
2

∣∣∣∣∣
βd5 − βd6e

iπ
7

yb
− αu3(1− e

iπ
7 )

yt

∣∣∣∣∣ +O(ε2) , (6.82)

|Vtb| = 1 +O(ε2) . (6.83)

The small corrections to |Vud| can safely move it into the experimentally allowed range, which it
missed only marginally in the symmetry conserving limit. All other mixing matrix elements can
also be accommodated, as has been confirmed by a numerical check, although a slight tuning is
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Field ψ0u
1,2 ϕ0u

1,2 ρ0u
1,2 ψ0d

1,2 ϕ0d
1,2 ρ0d

1,2

D14 21 23 25 21 23 25
Z3 1 1 1 ω ω ω

Table 6.3: Driving Fields of the D14 Model. The transformation properties of the
driving fields under the flavor symmetry D14 and under Z3. None of the driving
fields is charged under U(1)FN . The fields indexed with a u (d) drive the VEVs of
the flavons giving masses to the up (down) quarks.

necessary to suppress |Vtd| and |Vub|, which are now both of order ε ∼ λ2. Finally, the Jarlskog
invariant is

JCP =
ε2 sin π

7

4y2
byt

(
2ybRe

(
(αu3)∗(βd5 − βd6)

)
− yt

(
|βd5 |2 − |βd6 |2

))
+O(ε3). (6.84)

Subgroup-breaking corrections give the dominant contributions to JCP , so that it is now of
order ε2, which is slightly too large. A small JCP can however be accommodated along with
the absolute values of the mixing matrix elements. This is aided by the fact that already the
factor 1

4 sin π
7 ∼ 0.11 ∼ λ

2 leads to a suppression.

6.2.2 Flavon Superpotential

Leading Order Potential

Turning to the discussion of the flavon potential wf , it is time to introduce the necessary
driving fields. From our discussion in section 5.2.4 we know that one minimal set of driving
fields consists of the representations 21, 23 and 24 for both sectors. This set of driving fields
does indeed lead to the correct VEV alignment at LO, for this model we however prefer to
replace the driving field transforming as 24 with a field transforming as 25. The reason for this
is that this will slightly reduce the amount of terms in the NLO flavon superpotential. As far
as vacuum alignment at LO is concerned, these two choices are equivalent. Our notation for
the driving fields, along with their exact transformation properties, is given in table 6.3.
For the discussion of the flavon superpotential, we can return to the simple separation into LO
renormalizable results and NLO corrections. The flavon superpotential at the renormalizable
level consists of two parts,

wf = wf,u + wf,d, (6.85)

where wf,u gives rise to the alignment of the flavons only coupling to up quarks at LO, and wf,d
to the alignment of the flavons coupling to down quarks. We take all parameters in wf to be
real, i.e. we restrict ourselves to the case of spontaneous CP violation in the flavon sector. wf,u
reads

wf,u = Mu
ψ

(
ψu1ψ
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. (6.86)

The conditions for the vacuum alignment are given by the F-terms
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If we assume that none of the parameters in the potential vanishes and ψu1 acquires a non-zero
VEV, we arrive at
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with
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(6.89)

as the unique solution, where we have set a possible relative phase of the doublet components
to zero as discussed in section 6.2.1. Analogously, the flavon superpotential which drives the
vacuum alignment of the fields ψd1,2, χ

d
1,2, ξ

d
1,2, η

d and σ is given by
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From the F-terms of the driving fields ψ0d
1,2, ϕ

0d
1,2 and ρ0d

1,2 we derive the following equations:
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These are uniquely solved by the vacuum structure
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with
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The VEVs of the two singlets σ and ηd are

〈σ〉 = x and 〈ηd〉 = e−
4πimd

7
ed
fd

vdzd

wd
. (6.94)

Thereby, we assume that again none of the parameters in the potential vanishes and that the
two fields ψd1 and σ get a non-vanishing VEV. The parameter md is an odd integer in the
range {1, ..., 13}. Due to this it is clear that the Z2 subgroups preserved in the up and down
quark sector cannot be the same and that the mixing angle arising through this mismatch is
always non-trivial. However, we are unfortunately not able to predict the precise value of the
parameter md, so that we have to choose the vacuum structure with md = 1 (or md = 13) by
hand in order to predict the Cabibbo angle correctly.
Apart from this freedom, we can also choose the signs in front of the square roots in both up
and down sector. All sign choices are entirely uncorrelated. We also have a total of three free
dimensionful parameters, x, vu and vd. These are the three VEVs which we had to assume to
be non-zero, to make the above solutions unique. Along with the mass parameter Mu

ψ , the only
dimensionful parameter in the LO flavon superpotential, we have four dimensionful parameters
which determine the scale of the flavon VEVs. Nothing forces them to be of the same order,
but we have made this assumption in the last section, because, as discussed in section 5.2.5,
only then will our LO VEV configuration be stable with respect to NLO corrections.
We finally remark that, given the flavon VEV structure, the driving fields are not allowed to
get a VEV.

Next-to-leading order potential

In the NLO flavon potential we take into account all terms containing three flavons and one
driving field. Due to the Z3 symmetry two types of three-flavon combinations can couple to a
driving field with an index u, namely either all three flavons transform trivially under Z3 or all
three transform non-trivially. For a driving field with a d index, two of the three flavons also
transform non-trivially under Z3 and the third one necessarily has to transform trivially. The
NLO corrections to the flavon superpotential can be written as

∆wf = ∆wf,u + ∆wf,d, (6.95)

where the terms of ∆wf,u (∆wf,d) are responsible for the shifts of the flavons uncharged
(charged) under the Z3 symmetry. The exact form of the terms is given in appendix C.5.
For the shifts of the VEVs we choose the following convention:
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while
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remain as free parameters which might be fixed through the NLO corrections, but actually are
not. As can be read off from the detailed calculations given in appendix C.5, the generic size
of the shifts is

δVEV ∼ O
(

VEV
Λ

)
·VEV ∼ ε ·VEV. (6.98)

All shifts are also complex in general, with no preferred phase. This is all the information
needed to reproduce the results on quark masses and mixing from the last section. All further
details are given in the appendix.

6.3 Conclusions and Outlook

We have constructed two models incorporating all the elements of dihedral model building
gathered in chapters 3, 4 and 5. One of these models uses the symmetry D4 to describe the
lepton sector, the other one usesD14 in the quark sector. The obvious question is: Should we not
have one unique symmetry describing the entire flavor sector, especially in view of the fact that
we might want to unify quarks and leptons in a Grand Unified Theory? The reason for having
constructed two separate models is of course first of all practical one. We began our general
survey of dihedral groups looking for mass independent textures which are able to describe and
predict the mixing of the three fermion generations. We found that dihedral flavor symmetries
can, through the mismatch of conserved subgroups discussed in chapter 4, lead to mass matrix
structures in which one element of the fermionic mixing matrix is predicted by group theory
alone. This then leads to considering dihedral groups Dn whose index n is a multiple of 4, to
describe maximal atmospheric mixing in the leptonic sector, while the Cabibbo mixing angle
in the quark sector points towards groups whose index n is divided by 7. Taking into account
the vacuum alignment necessary to attain this subgroup mismatch, which is natural in setups
breaking the flavor symmetry with gauge singlet flavons as discussed in chapter 5, leads us to
favor Dn groups with an even index n. This does not change the smallest group adequate for
the description of leptons, but leads us to consider D14 as the smallest viable group for the
quark sector.
One can thus see, how the different structures of quark and lepton mixing favor different flavor
groups. This is quite a generic problem: Models which use A4 or S4 to describe tri-bimaximal
lepton mixing will typically face problems in predicting large enough mixing for quarks. The
advantage of the two models presented here, is that at least quark and lepton mixing have
the same group theoretical origin: In both cases, the largest mixing angle is predicted to be
approximately π

n . The possibility of combining the two approaches, using a larger dihedral
symmetry is therefore certainly worth studying. A natural candidate is D28, as 28 is the least
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common multiple of 4 and 14. The discussion of such a model is beyond the scope of this thesis,
but we will conclude this chapter by comparing the D4 and D14 models according to several
points which may be important for the construction of such a model.
The first question we can ask is how unique the prediction of the largest mixing angle is in both
models. In both cases the scalar VEV structure is not entirely uniquely defined. This especially
concerns the relative phase between the two components of a doublet VEV. In the D4 model,
there is only one doublet flavon - the VEVs of its two components can differ by a relative minus
sign or not, both solutions minimize the flavon potential, cf. equation (6.28). In the D14 model,
we have, after setting the phase factor mu in the up sector to zero, the freedom to choose the
phase factor in the down sector to be an odd integer between 1 and 13. Different choices can
lead to different mixing angles, a fact which we do not observe in the D4 model. This is however
only because of the smallness of the flavor group: We only have two possibilities for choosing
the conserved subgroup in the neutrino sector of the D4 model, Z2 = 〈B〉 and Z2 = 〈BA2〉.
These two subgroups give the same phenomenology. We observe a similar thing for D14, where
choosing md = 1 or md = 13, i.e. conserving the subgroups Z2 = 〈BA〉 or Z2 = 〈BA13〉, leads
to the same phenomenology. But since D14 is a larger group, we have further choices and these
then lead to a different prediction for the Cabibbo angle. For larger dihedral groups, a new
mechanism would thus be desirable, with which such degeneracies in the flavon potential can
be lifted. It may be of importance here that in the D14 model it is the maximal and minimal
choice of m (or rather of the difference md−mu as we have set mu = 0) which gives the correct
prediction for the mixing angle.
Another question is the origin and magnitude of those mixing angles which are not determined
by group theory alone. In the D4 model we have one zero angle, which is also predicted from
group theory, more specifically from the fact that a D2 subgroup is conserved in the charged
lepton sector, rather than a Z2. The third, solar, mixing angle is naturally large, as we introduce
no further symmetry in the neutrino mass matrix which could lead to a hierarchy among the
matrix elements. In the D14 quark model on the other hand, the other two mixing angles are
small but non-vanishing. This leads to a different approach in the description of the mixing
angles: The smallness of those mixing angles not predicted by group theory alone, θq23 and
θq13, arises from the fact that our model predicts a hierarchy among the quark mass matrix
elements, partly due to the absence of flavons which could couple to fermions at LO, partly
due to an additional FN symmetry. So, although we generate the largest mixing angle for both
quarks and leptons in the same manner, the difference among the two mixing patterns is still
manifest in the way we generate the two smaller mixing angles. Our approach to this problem
depends strongly on future, more precise measurements of the neutrino mixing angles. The
main question is the size of the reactor mixing angle θl13: After all the 3σ bound on sin θl13 is
currently of the order of λ. The reactor mixing angle may thus be of the order of the Cabibbo
angle, it may of the order of one of the other quark mixing angles, or it may be even smaller.
We finally come to a point which is of great importance, when considering the compatibility of
a flavor symmetry model with Grand Unification. It is the question of assigning flavor group
representations to the fermions. Here one can observe a major difference between our two
models: While the D4 model has mass matrices of the two doublet structure, in the D14 model
the quark representations are assigned in such a way that they give the (right-handed) three
singlet structure. This becomes necessary because we want to accommodate the quark mass
hierarchy in the latter model. Assigning the left-handed conjugate quarks to three different one-
dimensional representation gives us, among other things, the freedom of assigning FN charges
to each generation separately. Such a diverse set of representations becomes problematic when
faced with the restrictions imposed by Grand Unification. Such restrictions occur since, if
GUT and flavor symmetry commute, fermions united in one representation of the GUT must
transform in the same way under Gf . How this affects our choice of representations in detail,
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depends on the actual Grand Unified group.
The remainder of this thesis will however not be dealing with this (interesting) subject, but with
another aspect of flavored model building which arises when considering the interplay between
flavor symmetries and high scale, i.e. GUT or Planck scale, physics: The question of the high
energy origin of a discrete non-abelian flavor symmetry. This question is made more pressing
by indications that a global symmetry can never be fundamental because it will be broken
by quantum gravity effects at the Planck scale [121]. The last chapter of this thesis is thus
devoted to a discussion of what might lie behind a discrete flavor symmetry, manifesting itself
in fermion masses and mixing patterns at low energies. In particular we discuss the possibility
of embedding Gf into a continuous, possibly gauged, symmetry, and the problems one will face
in such an approach.



Chapter 7

Outlook: Where Could Such a
Symmetry Come From?

When discussing the origin of a discrete non-abelian flavor symmetry, a natural impulse is
of course to assume that the flavor symmetry is connected to one of the symmetries already
extensively used in quantum field theory, that is the flavor symmetry could be either a space-time
or an internal gauge symmetry. Connecting a flavor symmetry to the symmetries of space-time
necessitates an extension of space-time itself. Thus flavor symmetries have been connected with
discrete symmetries arising in compactified extra dimensions, with [122] or without [60] string
theory.
In this chapter we will be considering the other possibility, i.e. that a discrete flavor symmetry is
indeed the conserved residual subgroup of a spontaneously broken gauged flavor symmetry. The
idea of embedding a discrete flavor symmetry in a larger continuous group has been discussed in
the literature, for example in [65,113]. However no complete models exist, in the sense that the
discrete flavor symmetry is only motivated by a possible underlying continuous symmetry, but
the Lagrangian used for phenomenological considerations is only invariant under the discrete
group, i.e. the continuous group is explicitly broken such as for example in [123]. This leads to
restrictions on representations and to correlations between Yukawa couplings, not only through
group theoretical compatibility, but also through demanding anomaly freedom for an underlying
gauge symmetry [124,125]. This does not however solve the problem of the underlying symmetry
breaking dynamics.
To obtain a complete model, one needs to determine the scalar representations that break the
gauge symmetry as well as their VEV structure. In general the necessary representations are
well known, and are in fact mentioned as a motivation in some discrete flavor symmetry models.
The necessary VEV structures have also been partially discussed [113], however often not in
a flavor context [126–128]. Here the reasons for the absence of complete symmetry breaking
models become clear: In general large and unwieldy representations are needed to break down to
a phenomenologically interesting discrete subgroup. It is the aim of this chapter to show that in
fact the most well-known and easily handleable representations lead only to the conservation of
a very limited amount of non-abelian discrete subgroups. In fact, the only non-abelian discrete
subgroup we can obtain with the small representations discussed in this section is D′

2, which,
as can be inferred from the discussion of chapter 3, does not have a rich enough structure to
predict mass independent textures from conserved subgroups.
We want to break a hypothetical continuous flavor symmetry (gauged or not is irrelevant for
this discussion) at a high energy scale. This flavor symmetry should commute with the SM
and transform the three generations of fermions into each other. If we limit ourselves to three
generations, we only need to consider the groups SU(2) and SU(3) as all other semi-simple
Lie groups do not have two-or three-dimensional representations. SO(3) need not be discussed
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separately, as an SO(3) gauge theory can simply be considered as an SU(2) theory with a
limited representation content. For SU(2) the fermions will transform as 2 + 1 or 3. The
relevant Kronecker products are thus

2× 2 = 1 + 3,

2× 3 = 2 + 4, (7.1)
3× 3 = 1 + 3 + 5.

For a flavor symmetry SU(3) the possible representations for three fermion generations are 3
and 3, with Kronecker products

3× 3 = 3 + 6,

3× 3 = 3 + 6, (7.2)
3× 3 = 1 + 8.

We then in the following discuss the breaking of these flavor symmetries by small representa-
tions, where smallness means dimension smaller than five for SU(2) and smaller than eight for
SU(3). This choice of representations is motivated by the fact that these are the representations
that can couple to fermions at LO, as can be read off the Kronecker products above. These are
also the representations whose VEVs can easily be discussed using linear algebra. We discuss
how the continuous symmetry is broken by VEVs of scalars transforming under these repre-
sentations and show that no non-abelian discrete symmetries, apart from D′

2, can be conserved
with these representations alone, and thus that one generically needs larger representations and
group theory beyond simple linear algebra to model such a scenario. In fact, D′

2 itself only
arises as the double-valued group of the abelian D2 if we break SU(2) with the unfaithful five-
dimensional representation, which is also a representation of SO(3).
To determine whether a certain VEV structure conserves a subgroup of the flavor symmetry
SU(2) or SU(3), we do the same we did for the discrete dihedral symmetries in section 3.2:
We test which elements of the flavor symmetry leave the VEV invariant. We will assume the
minimal scalar content for any representation, i.e. real scalars for real representations, complex
scalars for pseudo-real and complex representations. We then check for each representation,
which subgroups the VEV of a scalar field transforming under this representation can conserve.
We also consider combinations of VEVs, but only where such a combination could lead to a
non-abelian subgroup. We begin by discussing those representations which can be written with
one index, i.e. which can be written as vectors in our linear algebra treatment, then continue
with those representations with two indices, i.e. matrix representations. Here we begin with the
most familiar (from the SM gluons), the adjoint representation of SU(3), then continue with
the very similar 5 of SO(3). The least common representations, the 6 of SU(3) and the 4 of
SU(2) end the chapter.

Breaking SU(2) with a doublet In the two-dimensional representation of SU(2) the group
elements are mapped onto the 2×2 unitary matrices with unit determinant. Thereby each group
element has two eigenvalues λ1 and λ2. They must obey the constraint that λ1λ2 = 1, as the
product of the eigenvalues is just the determinant. Hence if one of the eigenvalues is 1, then so
is the other one. The only 2×2 matrix with two eigenvalues of 1 is obviously the unit matrix.
Hence, the identity element is the only element of the group that can leave a doublet VEV
invariant.
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We conclude that the VEV of a scalar transforming as a doublet of SU(2) always breaks the
entire group. This of course does not change if we add further scalars of any sort.

Breaking SU(2) with a triplet The triplet is the fundamental representation of SO(3)
and an unfaithful representation of SU(2). The group elements are mapped onto the 3 × 3
orthogonal matrices with unit determinant. These can be thought of as rotations in three-
dimensional Euclidean space. If such a rotation leaves a vector invariant, the vector must be
parallel (or, obviously, antiparallel) to the axis of rotation. Hence any given triplet VEV will
conserve the subgroup formed by the rotations around the axis defined by the VEV. Thus the
VEV of any triplet will break SU(2) down to Spin(2), the double covering of SO(2), which is
in fact isomorphic to SO(2) and U(1).
Note that there is an SO(2) for each possible axis, i.e. infinitely many SO(2)’s that are all
mutually disjoint (up to the identity element). This means that if we introduce two triplets,
their VEVs will either be linearly dependent or not. If they are linearly dependent they break
to the same subgroup. If they are linearly independent they break to disjoint subgroups, hence
fully breaking SO(3). As the triplet is an unfaithful representation of SU(2), we will always
conserve a subgroup Z2 under which all components of the triplet transform trivially, while
both components of the doublet transform non-trivially.
We conclude that if we use three-dimensional representations to break SU(2), we either leave
invariant a U(1) ∼= SO(2) symmetry or a Z2. In particular no non-abelian subgroups can be
conserved. We therefore do not need to consider combining a triplet VEV with a VEV of a
different representation.

Breaking SU(3) with a triplet The argumentation for SU(3) is in fact very similar to the
one for SU(2) broken by a triplet. As the intuitive geometric derivation used above is not so
readily applied in the complex three-dimensional Euclidean space, we give a more elaborate
proof using linear algebra. This derivation (with the obvious modifications) can also be applied
to SU(2).
In the three-dimensional representation of SU(3) the group elements are mapped onto the 3×3
unitary matrices with unit determinant. Therefore each element will have three eigenvalues λ1,
λ2 and λ3. If one of these eigenvalues, say λ1, is 1 (i.e. if the element is able to be part of some
conserved subgroup), then the other two eigenvalues have to fulfill λ2λ3 = 1, since the matrix
has a unit determinant. This means that if λ2 is also equal to 1, then λ3 = 1 as well. That
is, the only element with more than one eigenvalue equal to 1 is the identity element, the only
element with three 1 eigenvalues.
This means that each element which is not the identity will have at most one eigenvector
corresponding to an eigenvalue of 1. For a simple example, the matrix




eiφ 0 0
0 e−iφ 0
0 0 1


 (7.3)

will have the eigenvector




0
0
1


 (7.4)

corresponding to an eigenvalue of 1. As no direction in three-dimensional complex space is
favored, there will exist for each complex 3-vector non-trivial group elements having this vector
as an eigenvector with eigenvalue 1. These elements form the subgroup conserved by a VEV
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proportional to that eigenvector. As each non-trivial element has at most one such eigenvector,
these subgroups will all be disjoint.
What is the subgroup conserved by such a VEV? We can already guess that it will be SU(2),
but we will motivate this conclusion a bit better in the following. Consider the group of elements
that leave invariant a vector ~v. We then make a unitary similarity transformation

U → U ′ =
(
~x ~y ~v

)†
U

(
~x ~y ~v

)
, (7.5)

where U is an element of the group and ~x and ~y are arbitrary mutually orthogonal vectors that
are also orthogonal to ~v. We obtain

U ′ =
(
U ′2×2 0

0 1

)
. (7.6)

As U ′ is unitary by itself and also has unit determinant, we see that the three-dimensional
representation reduces to the two-dimensional plus the one-dimensional representation of SU(2).
Since all the SU(2) subgroups are disjoint, introducing two or more triplet scalars either breaks
to an SU(2) (in case their VEVs are linearly dependent) or breaks the entire SU(3) group (if
they are not).
What about the anti-triplets? The arguments are the same as for the triplets, if we consider
them separately, as the two representations can only be distinguished if they show up together.
But even if we introduce scalars transforming as triplets and scalars transforming as anti-triplets,
we do not find any new subgroups: The reasoning is the same as above, each scalar VEV breaks
to a specific SU(2) and they are all disjoint. The only thing we observe is that if we introduce
a scalar triplet and a scalar anti-triplet they break to the same SU(2) if the VEV of the triplet
is proportional to the complex conjugated VEV of the anti-triplet. If this is not the case, they
break to disjoint SU(2)’s, i.e. they fully break SU(3).
We conclude that an arbitrary collection of scalar triplets and anti-triplets either conserves an
SU(2) subgroup of our original SU(3) symmetry or fully breaks that symmetry.

Breaking SU(3) with the adjoint representation For discussing the breaking of a con-
tinuous group with matrix representations, we begin with the eight-dimensional adjoint rep-
resentations of SU(3), as it is probably the best known. We can write the VEV of a scalar
transforming under the adjoint representation of SU(3) as a Hermitian 3 × 3 traceless matrix
V . It then transforms under SU(3) in the following way:

V → V ′ = UV U †, (7.7)

where U is a special, unitary matrix. As V is traceless, we need to consider two distinct
cases: Either V has three distinct eigenvalues, or it has two degenerate eigenvalues λ, the third
eigenvalue being −2λ. The only possible VEV with three degenerate eigenvalues is the zero
matrix, i.e. a vanishing VEV, which naturally does not break SU(3).
We first consider the case of a V with three distinct eigenvalues. We are looking for the subgroup
of SU(3) formed by those elements U which leave V invariant, i.e. for which V = V ′. This set
is just the set of all matrices U that commute with V . What does it mean if U commutes with
V ? Let ~vi be the eigenvector V associated with the eigenvalue λi, which we have assumed to
be nondegenerate. Then

V (U ~vi) = U(V ~vi) = λi(U ~vi). (7.8)

Hence U ~vi is also an eigenvector of V with eigenvalue λi. As this eigenvalue is non-degenerate
U ~vi must linearly depend on ~vi. Therefore ~vi is also an eigenvector of U . This holds for all three
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eigenvectors of V . We can thereby again reformulate the subgroup conserved by this VEV: It is
the set of all U having the same set of eigenvectors as V . The most general form for an element
of this group is then

U =
(
~v1 ~v2 ~v3

)



eiα 0 0
0 eiβ 0
0 0 e−i(α+β)


(

~v1 ~v2 ~v3
)†
. (7.9)

This representation is clearly unitarily equivalent to a diagonal representation, i.e. it reduces
to three representations of U(1). As α and β are however independent, there are actually two
distinct U(1) groups. Therefore an adjoint VEV with three distinct eigenvalues breaks SU(3)
down to U(1)× U(1). In particular such a VEV can never conserve a non-abelian subgroup of
SU(3) and we do not need to consider it any further.
We now proceed to VEVs V having two degenerate eigenvalues. The eigenvectors of V are now
no longer uniquely defined. If ~v1 and ~v2 are two orthonormal eigenvectors of V corresponding to
the same eigenvalue, we can find an arbitrary orthonormal basis of the corresponding eigenspace
as a~v1 + b~v2 and −b~v1 + a~v2, with a and b two complex numbers obeying |a|2 + |b|2 = 1. We
can therefore write any matrix in SU(3) that commutes with V in the following form:

(
(a~v1 + b~v2) (−b~v1 + a~v2) ~v3

)



eiα 0 0
0 eiβ 0
0 0 e−i(α+β)


(

(a~v1 + b~v2) (−b~v1 + a~v2) ~v3
)†

(7.10)
To reduce this representation, we do a unitary equivalence transformation by multiplying on
the right by

(
~v1 ~v2 ~v3

)
(7.11)

and on the left with the Hermitian conjugate. The resulting matrix is


|a|2eiα + |b|2eiβ ab(eiα − eiβ) 0
ab(eiα − eiβ) |a|2eiβ + |b|2eiα 0

0 0 e−i(α+β)


 . (7.12)

We now show that this is a representation of SU(2)×U(1). To do this we factorize the matrix:




ei
(α+β)

2 0 0

0 ei
(α+β)

2 0
0 0 e−i(α+β)






|a|2ei (α−β)

2 + |b|2e−iα−β
2 2iab∗ sin

(
α−β

2

)
0

2ia∗b sin
(
α−β

2

)
|a|2e−i (α−β)

2 + |b|2e+iα−β
2 0

0 0 1




(7.13)
These two matrices commute. The first matrix is the representation of U(1), with the first two
generations transforming in the same way, and the third with double and opposite charge. If
we identify

x = |a|2ei (α−β)
2 + |b|2e−iα−β

2 , (7.14)

y = 2iab∗ sin
(
α− β

2

)
, (7.15)

and observe that |x|2 + |y|2 = 1, we see that the second matrix furnishes a representation of
SU(2), under which the first two generations form a doublet and the third generation is a singlet.
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We also note that we have the correct number of free parameters: The absolute value of a (or
b), the phase of ab∗ and the phase difference (α− β).
We consider the case of two adjoint VEVs, where both VEVs have degenerate eigenvalues.
First of all, their non-degenerate eigenvalues could correspond to the same eigenvector. In this
case, they will naturally break to the same subgroup. Then we could have the case, where
the non-degenerate eigenvalue of the second VEV corresponds to an eigenvector lying in the
eigenspace of the degenerate eigenvalue of the first VEV. This, in a way, singles out a basis of
that eigenspace and thereby coincides with the VEV of an octet with three distinct eigenvalues,
i.e. conserves a subgroup U(1)× U(1). Finally, if there is no relation between the eigenvectors
of the two VEVs, we only conserve the subgroup Z3, corresponding to the three third roots of
unity, which can never be broken by adjoint scalars.
Finally, combining a degenerate adjoint VEV with a triplet VEV, we find three possibilities:
First, the triplet VEV can coincide with the non-degenerate eigenvector. In this case e−i(α+β)

must be equal to 1 and we break down to the same SU(2) conserved by the triplet VEV alone.
If the triplet VEV lies in the degenerate eigenspace, we break the SU(2) conserved by the octet
VEV and are left with only a residual U(1). If, finally, the triplet VEV is not an eigenvector of
the adjoint VEV we again break the entire group.
Thus, the only new non-abelian subgroup of SU(3) we can conserve with the VEV of a scalar
transforming under the adjoint representation is the subgroup SU(2) × U(1) if the VEV has
two degenerate eigenvalues.

Breaking SU(2) with the five-dimensional representation The calculations here are
very similar to those of the last section, so we will try and be brief. The VEV V of a scalar
transforming under the five-dimensional representation can be written as a 3× 3 traceless, real
symmetric matrix. It transforms under SU(2) as

V → V ′ = OV OT , (7.16)

with O a special orthogonal matrix. Again the question of invariance can be reduced to a
question of commutation and hence coincident eigenspaces. For a VEV with nondegenerate
eigenvalues the general form of elements in the conserved subgroup is

O =
(
~v1 ~v2 ~v3

)



(−1)n 0 0
0 (−1)m 0
0 0 (−1)n+m


(

~v1 ~v2 ~v3
)T
, (7.17)

with n, m integers (as V is symmetric it can be diagonalized by a real orthogonal matrix,
hence O will have only real eigenvectors and therefore only real eigenvalues). After a similarity
transformation this is a representation of Z2 × Z2

∼= D2. However, as we are actually breaking
SU(2) with an unfaithful representation, we are actually conserving the double-valued group
D′

2. The SU(2) doublet will transform as a doublet in this group as well, while the triplet,
as can be seen from the matrix above, decomposes into the three non-trivial one-dimensional
representations. As we saw in section 3.2, D′

2 has no non-abelian subgroups, so we do not need
to consider a combination of this VEV with others.
We move on to considering VEVs V with two degenerate eigenvalues. The elements of the
conserved subgroup must still have ~v3 as an eigenvector with a real eigenvalue. There are
however two possibilities to do this. One is to assign the eigenvalue 1 to ~v3. These are all
elements having ~v3 as axis of rotation. They form the subgroup SO(2). We also have those
elements, where the eigenvalue −1 is assigned to ~v3. These are of the form
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(
(c~v1 + s~v2) (−s~v1 + c~v2) ~v3

)



(−1)n 0 0
0 (−1)n+1 0
0 0 −1


(

(c~v1 + s~v2) (−s~v1 + c~v2) ~v3
)T
,

(7.18)
where s and c are now the sine and cosine, respectively, of some undefined angle. Unitarily
transforming by multiplying on the right by

(
~v1 ~v2 ~v3

)
(7.19)

and on the left by its transpose, we end up with




(−1)n(c2 − s2) 2cs(−1)n 0
2cs(−1)n (−1)n(s2 − c2) 0

0 0 −1


 . (7.20)

As we know that the above matrix must still have a unit determinant, we know that the upper
left 2 × 2 matrix must have determinant −1 and must also be orthogonal. Combining the
two sets of elements, we find that our representation is reducible, reducing to the defining
representation of O(2) and the one-dimensional representation, where each element is mapped
onto its determinant. As our original group was SU(2), we are actually breaking to the double
covering of O(2), which is Pin(2). Combining several such VEVs, they can coincide in the
non-degenerate eigenvector, in which case Pin(2) is conserved, the non-degenerate eigenvector
of one can lie in the degenerate eigenspace of the other, in which case the conserved subgroup
is D′

2, or their eigenbases could be unrelated, in which case only Z2 is conserved.
There are thus only two non-abelian groups which can be the residual subgroup of SU(2) after
breaking with the VEV of a five-dimensional representation: The group D′

2 for non-degenerate
eigenvalues and the group Pin(2) for degenerate eigenvalues. Some of these results can also be
found in [113].

Breaking SU(3) with the six-dimensional representation Writing the VEV of the six-
dimensional representation as a complex, symmetric 3×3 matrix V , it transforms under SU(3)
in the following way:

V → V ′ = UV UT . (7.21)

Demanding invariance can then be rewritten as the condition

UV = V U∗. (7.22)

We now note that V need not necessarily be diagonalizable. However, since V is complex and
symmetric can be written in the form

W TVW = Vdiag, (7.23)

with W unitary [129]. We can write W as ( ~w1, ~w2, ~w3). The ~wi are then singular vectors of V
obeying the relation

V ~wi = σi ~wi
∗, (7.24)

with σi the diagonal elements of Vdiag, i.e. the singular values of V . The condition of equa-
tion (7.22) then leads to
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V (U∗ ~wi) = UV ~wi = σiU ~wi
∗ = σi(U∗ ~wi)∗. (7.25)

If V has three distinct singular values, this means that all ~wi need to be eigenvectors of U∗.
Also, the corresponding eigenvalue of U∗ needs to be real. Therefore the discussion is the
same as for the quintuplet of SO(3): The conserved subgroup is D2. If V has two degenerate
eigenvalues, then U∗ should act on the corresponding singular space with only real coefficients,
that is it should be block-diagonalizable to give an orthogonal 2× 2 submatrix. The conserved
subgroup is then O(2). As V need not be traceless, we encounter the additional case of three
degenerate singular values. Here U∗ needs to act on all singular vectors with real coefficients,
so the conserved subgroup in this case is SO(3). Of these subgroups only the last two are
non-abelian and need to be considered in combination with other VEVs.
We demanded above that the eigenvalues of U need to be real. This condition stems from
equation (7.24): If ~wi obeys that relation, then α ~wi only obeys the same relation if α is real.
Or of course if σi is zero. Thereby VEVs with zero eigenvalues are algebraically special: The
group elements preserving this VEV can have complex eigenvalues corresponding to the singular
vectors of V with singular value 0. A special unitary matrix cannot have only one non-real
eigenvalues. Hence the case of interest is a VEV with two zero eigenvalues. The group elements
preserving this VEV are of the same form as those of equation (7.10), with the additional
condition that e−i(α+β), the eigenvalue corresponding to the non-zero singular value, must be
real. We can therefore substitute the parameter α + β by the integer parameter m defined by
α+ β = mπ and write the group elements conserving V in the form




im 0 0
0 im 0
0 0 (−1)m






|a|2ei (α−β)

2 + |b|2e−iα−β
2 2iab∗ sin

(
α−β

2

)
0

2ia∗b sin
(
α−β

2

)
|a|2e−i (α−β)

2 + |b|2e+iα−β
2 0

0 0 1


 . (7.26)

The conserved subgroup is therefore SU(2)×Z4, where the first two generations form a doublet
of SU(2) and a faithful representation of Z4, the third generation a singlet of SU(2) and an
unfaithful, non-trivial representation of Z4.
What if we combine two six-dimensional VEVs? If they coincide in all three singular vectors,
the subgroup is determined by the VEV with less degenerate eigenvalues. If they have only one
singular vector in common, we break to the subgroup of elements having two degenerate real
eigenvalues, that is Z2. If they have no singular vectors in common, we break SU(3) fully. Zero
eigenvalues are only relevant if the VEVs coincide in all three singular vectors anyway and the
zero eigenvalues correspond to the same eigenspace. In this case the full subgroup SU(2)× Z4

is conserved.
We thus have three non-abelian groups that can be conserved by a sextet VEV, O(2) for two
degenerate singular values, SO(3) for three degenerate singular values, and SU(2)×Z4 for two
zero eigenvalues. We now need to consider combinations of these three cases with the other
VEVs we have discussed so far, triplets and octets.
What if both a 6 and a triplet acquire a VEV? If the triplet VEV is not a singular vector of
the 6, then SU(3) is fully broken. What if it is a singular vector? If V has two degenerate
singular values, the triplet can correspond to the non-degenerate singular value. In this case,
the determinant of the 2× 2 submatrix is fixed to be one, and the conserved subgroup is SO(2)
or U(1). If the triplet VEV corresponds to a degenerate singular value, the degeneracy becomes
irrelevant and the subgroup is Z2. If V has three degenerate singular values, the triplet, which is
in the defining representation of SO(3), breaks that subgroup in the usual way down to U(1) or
fully breaks it, if the real and imaginary parts of the triplet VEV are not parallel. If we combine
a V with two zero eigenvalues with a triplet VEV, we again have two possibilities: The triplet
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VEV can correspond to the non-zero singular value. In this case m is fixed to be 0 or 2, and we
break down to SU(2) (the former Z4 element can just be multiplied into the SU(2) element,
without changing the determinant). If the triplet VEV is an eigenvector of V corresponding
to a zero eigenvalue, we need to take a closer look. The SU(2) element in equation (7.26) has
eigenvalues e±i

(α−β)
2 . So, without loss of generality, we must now demand (i)mei

(α−β)
2 = 1. The

resulting element then has in addition two eigenvalues of −1, corresponding to fixed vectors.
The conserved subgroup is then Z2.
We proceed to combining a VEV of a 6 with an adjoint VEV. The adjoint VEV must have
two degenerate eigenvalues, as only then do we have the possibility of conserving a non-abelian
subgroup. If there does not exist a basis of singular vectors for the sextet VEV, that is also a
basis of eigenvectors for the octet VEV, SU(3) will be fully broken. In particular, the eigenvector
of the octet VEV corresponding to the non-degenerate eigenvalue, ~v3, must always be a singular
vector of the sextet VEV V . The discussion is then similar to that for the triplet, with the
triplet VEV replaced by ~v3.
If V has two degenerate singular values, ~v3 can correspond to the non-degenerate singular
value. In this case nothing changes and the conserved subgroup is O(2). If ~v3 corresponds to
a degenerate singular value, the degeneracy becomes irrelevant and the subgroup is D2. If V
has three degenerate singular values, one of the degeneracies becomes irrelevant and we break
down to O(2). Finally, considering the case of a sextet VEV V with two zero eigenvalues, we
again have two possibilities: ~v3 can correspond to the non-zero singular value. In this case
nothing changes, and SU(2) × Z4 is still the conserved subgroup. If ~v3 is an eigenvector of
V corresponding to a zero eigenvalue, a specific basis is singled out for the elements of the
conserved subgroup. It is thus only determined by the possible eigenvalues, and cannot be
non-abelian. In this case it will be U(1) × Z2. Thus, no new non-abelian subgroups can be
attained by combining the VEVs of these different SU(3) representations.

Breaking SU(2) with the four-dimensional representation We finally deal with the
most complicated of the matrix representations, the 4 of SU(2). As it arises from the product
of a vector and a spinor, it can be written as a 3×2 complex matrix, with one spinor index and
one vector index. There must be further constraints, as such a matrix has 6 complex degrees
of freedom. To find them, we take a look at the Clebsch Gordan coefficients.
Writing the 4 as a matrix, it acts on a spinor and transforms it into a vector. As the Cleb-
sch Gordan coefficients are normally given in spherical coordinates we start with these, later
switching back to Cartesian coordinates, where the scalar product of two vectors is simply ma-
trix multiplication. In spherical coordinates, we can give the four degrees of freedom of the
4 as φ1 (m=3

2), φ2 (m=1
2), φ3 (m=−1

2) and φ4 (m=−3
2). Correspondingly we write the two

components of the spinor we want to transform into a vector as ψ1 (m=1
2) and ψ2 (m=−1

2).
Using the Clebsch Gordan coefficients for SU(2) [7] we find that they combine in the following
way to form a vector:

1
2
(
√

3φ1ψ2 − φ2ψ1) (m = 1), (7.27)

1√
2
(φ2ψ2 − φ3ψ1) (m = 0), (7.28)

1
2
(φ3ψ2 −

√
3φ4ψ1) (m = −1). (7.29)

Switching to Cartesian coordinates, this corresponds to a vector
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1
2
√

2
[(φ2 −

√
3φ4)ψ1 + (φ3 −

√
3φ1)ψ2)]

i
2
√

2
[−(φ2 +

√
3φ4)ψ1 + (φ3 +

√
3φ1)ψ2)]

1√
2
(φ2ψ2 − φ3ψ1)


 . (7.30)

This vector arises from multiplying a spinor by the following matrix:

1√
2




1
2(φ2 −

√
3φ4) 1

2(φ3 −
√

3φ1)
− i

2(φ2 +
√

3φ4) i
2(φ3 +

√
3φ1)

−φ3 φ2


 , (7.31)

or, in a more sensible parameterization

V =




a b
c d

−b+ id a+ ic


 , (7.32)

with a, b, c and d complex. This is then the most general form for the VEV of a 4. It transforms
in the following way:

V → V ′ = OV U †, (7.33)

as it has one vector and one spinor index. O and U are of course not independent but describe a
rotation of the same magnitude around the same axis. It can be checked by explicit calculation
that V ′ can be parameterized in the same way as V for an arbitrary rotation.
Again we reformulate the condition of invariance as a condition on the eigensystems. We first
observe that we can deduce from equation (7.33) the following two equations:

V V † = OV V †OT (7.34)
V †V = UV †V U †, (7.35)

from which we immediately deduce that the eigenvectors of V V † (i.e. the left singular vectors of
V , denoted by ~ui) must also be eigenvectors of O (with the usual ambiguities for degenerate sin-
gular and eigenvalues) and the right singular vectors of V , denoted by ~wi, must be eigenvectors
of U . Using this knowledge, we go back to equation (7.33). We find that

V U ~wi = V µi ~wi = σiµi ~ui, (7.36)

for i = 1, 2, µi the eigenvalues of U and σi the singular values of V . We also have

V U ~wi = OV ~wi = Oσi ~ui = λiσi ~ui, (7.37)

with λi the eigenvalues of O. From the last two equations we can deduce that λi = µi. As O
and V are rotations by the same angle θ, their eigenvalues are e±iθ and 1 for O and e±i

θ
2 for U .

How can they be made to coincide? Apart from the trivial case of both being the unit matrix,
we are only left with the possibility of identifying the exponential eigenvalues, which is only
possible for θ = ±4π

3 . The final left singular vector ~u3 is then the eigenvector of O corresponding
to the eigenvalue 1, i.e. it defines the axis of rotation. If it is real, we then break to all rotations
around that axis, with the angles given above. This is a Z3 subgroup of SU(2). If the axis is
complex (and real and imaginary parts are not linearly dependent), no such elements exist and
SU(2) is fully broken.
Is the subgroup expanded if V has degenerate singular values? We first take the case σ = σ1 =
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σ2 6= 0. ~u3 is still an eigenvector of O, the ~ui and ~wi however need not be eigenvectors of O
and U , respectively. Rather we have

V U ~wi = V (αi ~w1 + βi ~w2) = σ(αi ~u1 + βi ~u2) (7.38)
V U ~wi = OV ~wi = σO~ui = σ(α′i ~u1 + β′i ~u2), (7.39)

from which we can immediately infer that αi = α′i and βi = β′i. This means that again their
eigenvalues need to coincide, and we again break to Z3 or nothing. Finally, we need to consider
the case, where one of the non-trivial singular values is zero, say σ2 = 0. In this case O and U
need only coincide in one eigenvalue, but this condition is already strong enough to constrain
the elements in the same way, i.e. giving Z3 as the conserved subgroup. We thus find that a
VEV for the four-dimensional representation of SU(2) can never lead to the conservation of a
non-abelian subgroup, and we thus do not need to combine it with any other VEVs.

The results of this chapter can be summarized in one sentence: The only non-abelian, discrete
subgroup that can be conserved by VEVs of the small representations (dimension less than five
and eight, respectively) of SU(2) and SU(3) is the group D′

2, which is too small to reproduce
the mass independent textures described in this thesis. Finding the origin of a discrete flavor
symmetry, thus either requires more involved group theory for the continuous group, or a
different ansatz, in which the discrete group itself is fundamental. But that, as they say, is
another story...
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Chapter 8

Summary and Conclusions

What have we learned? We started from the assumption that the large amount of free pa-
rameters in flavor physics can be described with the help of a spontaneously broken discrete,
non-abelian flavor symmetry. This choice of symmetry puts the mixing matrices, as opposed to
the fermion mass hierarchies, in the center of attention. The question is then: How far can one
get with such an assumption? Should we expect all mixing angles in the quark and the lepton
sector to arise naturally from our flavor symmetry? This does not seem to be conceivable. The
question should rather be: Which aspects of the fermion mixing patterns can be described? To
address this question in a systematic manner, we have taken a class of discrete symmetries, the
dihedral groups Dn and their double-valued counterparts D′

n, and have determined what they
are capable of in this respect. Here our guiding principle was: What a flavor symmetry can
predict, depends on how it is broken. To be more specific: The symmetries of the mass matrices,
which then lead to predictions for the mixing angles independent of the exact numerical values
of the parameters, should be residual subgroups of the original flavor symmetry.
We thus first determined all possible subgroups of a dihedral flavor symmetry and which scalar
VEVs are compatible with their being the residual subgroup after spontaneous symmetry break-
ing. This then led us to a determination of possible mass and mixing matrices. Possible is of
course not entirely well-defined, unless some further assumptions are put in. These will partly be
motivated by physics considerations but also by calculational feasibility. In our case, we limited
ourselves to mass matrices with a non-zero determinant and also demanded that at least two
generations of left-handed or left-handed conjugate fermions are unified in a two-dimensional
representation. Given these assumptions, the possible mass matrices could be limited to five
different types, the corresponding diagonalization matrices could even be described by only
four distinct structures. This was then all the input necessary to determine the possible mixing
matrices.
Of these mixing matrices we were mainly interested in those where certain mixing angles, or
rather certain elements of the mixing matrix, are described solely by group theoretical para-
meters, such as the group order, the index of a representation or a parameter distinguishing
between several types of isomorphic subgroups. We found three kinds of such angles: The first
two are the extremal angles, i.e. maximal and vanishing mixing. They appear quite naturally
in flavor symmetry models, as the µ − τ symmetric mass matrix structures from which they
arise are fairly simple. A third kind of mass independent angle arises, which can be considered
a signature of a dihedral symmetry. Due to mismatch between the subgroups conserved in the
two sectors involved in the mixing, one element of the mixing matrix can be described by the
formula

∣∣∣∣cos
(
π(m1 −m2)j

n

)∣∣∣∣ , (8.1)
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where j is a representation index, 2n is the order of the dihedral symmetry and m1 and m2

parameterize the two conserved subgroups. After comparing this formula with phenomenology
and analyzing several existing models with dihedral flavor symmetries, we showed that this
subgroup mismatch mechanism could be relevant for describing the Cabibbo angle on the one
hand, the maximal atmospheric neutrino mixing on the other hand. Although maximal atmo-
spheric mixing can be described well by a µ−τ symmetric neutrino mass matrix and a diagonal
charged lepton mass matrix, the ansatz with the subgroup mismatch is different inasmuch as
the origin of the largest mixing angles in the quark and lepton sectors can be described in a
similar way.
Before implementing this mechanism in an actual model, it had to be checked whether the
conservation of subgroups is just a mathematical oddity, or if the necessary VEV configura-
tions occur naturally, when minimizing Dn invariant scalar potentials. And indeed under very
general assumptions - in particular the scalars breaking the flavor symmetry should be gauge
singlet flavons - this is the case and even the mismatch of subgroups can be partially explained
if the group index n is even. The most promising approach uses supersymmetry and additional
scalars, the driving fields.
We then had all the necessary ingredients to construct two models, one for leptons with the
flavor symmetry D4 and one for quarks with the flavor symmetry D14. For the leptonic model a
phenomenological analysis was performed to obtain predictions regarding the unknown aspects
of the neutrino sector. For quarks the phenomenology is more fully known, and we focussed
more on other aspects, such as the interplay of the discrete symmetry and a Froggatt-Nielsen
symmetry, which work together to reproduce the mass hierarchy among quark generations,
while leaving the prediction for the Cabibbo angle intact. In both models NLO corrections to
our leading group theoretical predictions were calculated. Finally, similarities and differences
between the two models were discussed, in view of the fact that the final goal should of course be
a model, in which quarks and leptons are described simultaneously. Such a model, which would
also ideally include a unification of quarks and leptons with respect to the gauge symmetries,
i.e. a GUT, is certainly one of the goals for which the calculations in this thesis have hopefully
laid the necessary foundations. Are there also more general lessons on how to build on the work
presented in this thesis?
To answer this question, we consider our original approach. It can be considered to be more
of a top-down approach: instead of starting with a specific mixing pattern inspired by phe-
nomenology and then finding a symmetry group which can reproduce this pattern, we took the
symmetry group as our starting point and then proceeded to show which symmetry patterns
can be produced by it. We have shown that such an analysis can be performed for a set of
discrete groups and can give direct input for model building. It is thus an interesting prospect
to analyze other (classes of) groups in a similar fashion. In particular the SU(3) subgroups
∆(3n2) and ∆(6n2) are prime candidates for such a classification according to flavor aspects.
On the other hand, this thesis can hopefully also offer some input towards the interplay of
discrete flavor symmetries with other extensions of the Standard Model. This interaction can
occur in two directions: First of all, SM extensions can lead to constraints on the flavor sym-
metry. We have already mentioned the typical example, where the unification of several SM
fermions in a GUT representation can lead to restrictions on our choice of flavor group repre-
sentations. Such restrictions can easily be implemented as further constraints in the framework
given by this thesis. Model building with these constraints however is far more challenging.
There does appear to be some tension between the GUT and flavor symmetry approaches, and
it remains to be seen how this can best be resolved. The other possibility is that the flavor
symmetry influences the SM extension: Both models we presented towards the end of this thesis
are supersymmetric. It is thus interesting to ask, what further repercussions a flavor symmetry
has in a supersymmetric model. After all, the MSSM has an extended flavor sector due to the
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sleptons and squarks, and these sfermions will also have to transform non-trivially under our
flavor symmetry. This may be of interest for the structure of the soft SUSY breaking terms,
which can then also be discussed along the lines of the mass matrix structures described in this
thesis.
Of course a high energy extension of the SM can even lead to an explanation of the flavor sym-
metry itself. We have discussed the possibility of the emergence of a discrete flavor symmetry
from the high scale breaking of a continuous gauge symmetry and could show that this requires
rather intricate breaking schemes, with large and unwieldy representations. It may thus be
more favorable to discuss different origins for flavor symmetries, such as extra dimensions. The
discrete flavor symmetry could then be considered to be of a geometric origin, favoring dihe-
dral groups, which have a straightforward geometrical interpretation. Time will tell which of
these directions will be the most fruitful. Experiments in neutrino physics will teach us more
about the mixing patterns, in particular how close to maximal atmospheric mixing really is and
whether θ13 = 0 can be considered a good approximation. At the same time results from the
Large Hadron Collider will provide information on the general framework in which to build a
flavor symmetry: Will we be working with supersymmetry, as we did in the main models of
this thesis, or will some other extension of the Standard Model prevail? These aspects need to
be taken into account in our search for a symmetry of flavor. And someday we may actually
know who ordered the muon.
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mir so einfach machst, auf Dich zu hören.
Danke, Manfred. Dass Du mich als Doktorand angenommen hast, als ich dachte, man würde
mich einfach unverrichteter Dinge wieder heimschicken und dann alle administrativen Hürden
mit unnachahmlicher Gelassenheit beiseite geschoben hast. Dass ich eine Arbeitsgruppe vorge-
funden habe, in der all die Dinge und all die Menschen versammelt waren, die mir beim
Schreiben dieser Arbeit geholfen haben. Dass Du mich auf Reisen geschickt hast, wobei hier
vor allem die Sommerschulen in Cargese und Zuoz zu erwähnen sind. Und für Dein Interesse
an allen Dingen, das immer wieder zu unerwarteten Wendungen in der Geschichte dieser Arbeit
geführt hat.
Danke, Björn (Duling). Fürs Kakao-Trinken, für ”Rauchfrei 2006” und Joggen an der Isar,
für ”Man kann an so viel scheitern!”. Kurz, dafür, dass ich gerne nach Garching rausgefahren
bin. Und für all die weiteren denkwürdigen Ereignisse, die nach meiner Münchner Zeit kamen,
insbesondere natürlich für die DPG-Tagungen, deren Zauber niemand so sehr zu würdigen weiß
wie Du (außer vielleicht Octavian Sima).
Kein Leut im engeren Sinne, aber danke auch an die Studienstiftung, meine eigentliche Alma
Mater. Für die vielen Möglichkeiten, die sie mir geboten hat, ohne je aufdringlich zu sein. Und
dafür, dass ich immer das Gefühl bekommen habe, dass was ich tue wichtig und sinnvoll ist.
Der Hauptteil dieser Geschichte findet aber natürlich in Heidelberg statt. There are so many
people in our division, at the whole institue, whom I would like to thank for contributing to
and enriching the story of this thesis. Some were only here for a short time, some accompanied
me through the years. I can’t possibly mention all of you here. But bravely ignoring the fact
that anything we do will always be incomplete (how else could one write a PhD thesis?), I will
mention some of you. To all those I don’t mention and who care enough to wonder if they are
included in my global thank you: You are.
Danke, Claudia. Für alles, was ich von Dir gelernt habe. Dass ich während all der Zeit nie
orientierungslos herumtreiben musste und immer von Deiner Zielstrebigkeit profitieren konnte.
Für die schönen und wichtigen Gespräche, die wir führen konnten, wenn es denn mal nicht ums
Korrekturlesen eines Papers ging. Und natürlich für die Einladung nach Triest.
Danke, Alex (same name, same institute, same office - ach ja, Cargese). Es war ein großes
Glück, dass ich mit Dir das Büro geteilt habe. Ich schaue mich um und sehe den Reise-Counter
(mit eingebautem Schuldenzähler), die Büromaskottchen, den Joeys-Kalender, die Flaschen vom
Getränkeautomaten, den ”Liebe im Büro”-Post-It und den stets unauffindbaren Tackerzieher.
GE 244 war mir ein Zuhause. Dank Dir.
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Thanks also to all my other collaborators, who contributed to the work I finally ended up
presenting in this thesis: Adisorn Adulpravitchai, Andi Hohenegger, Manfred Lindner, Rabi
Mohapatra and Werner Rodejohann.
Das Leben am Institut bringt Herausforderungen mit sich, die nicht direkt etwas mit der Wis-
senschaft zu tun haben. Alles wäre viel schwieriger gewesen ohne Anja Berneiser und das nicht
nur, weil es dann keine Gummibärchen gegeben hätte. Danke, Anja. Danke auch an Joachim,
der sich irgendwie immer gerade um die selben Dinge kümmern musste wie ich, und bei dem
ich deshalb viel abschauen durfte, ob es jetzt ums Stipendium oder die Anmeldung zur Dok-
torprüfung ging. Dank gebührt auch all den Leuten, die dazu beigetragen haben, dass mein
Computer Maxwell immer das gemacht hat, was ich wollte. Das bedeutet einerseits ein weiteres
Dankeschön an Alex Merle, für den äußerst fruchtbaren Austausch von Bauerntricks. On the
other hand, I also want to thank all those who ensured that our computer system was always up
and running. Even though other people have taken over (and all of them deserve my gratitude),
no-one performed this task with as much grace as Markus Michael Müller. Danke, Markus, auch
dafür, dass Du München genug für zwei vermisst hast, und ich mich so auf die schönen Dinge
in Heidelberg konzentrieren musste.
Da schon die Liste der Leute am Institut, denen ich danken möchte, viel zu lang ist, kann man
sich denken, dass die Liste der Nicht-MPI-K-ler (oder, wie manche von uns zu sagen pflegen,
Nicht-MPIfK-ler) erst recht den Rahmen sprengen würde. Ein paar muss aber an dieser Stelle
noch persönlich gedankt werden.
Dank geht an Johannes, der mich nicht nur die ersten Wochen in Heidelberg bei sich hat wohnen
lassen, sondern auch, gemeinsam mit Sven, mehr als sonst jemand dafür gesorgt hat, dass ich
in Heidelberg wirklich angekommen bin. Danke auch all denjenigen, mit denen ich im Laufe
des letzten Jahres zusammensitzen durfte, um über die Zukunft zu reden, vor allem meinen
alten Leipziger Weggefährten, Anna und Markus, die unbedingt mal wieder im selben Atemzug
genannt werden mussten, und meinen noch älteren (was die Dienstzeit betrifft) Weggefährten:
Keyvan, auch wenn bei unseren Odysseen schwerlich von sitzen geredet werden kann, Marc,
der auf dasselbe wartet wie ich, und Björn (Ebel), der mich rechtzeitig in den so zutreffend
benannten Freiheitsweg geführt hat. And: Thank you, Dad, for putting more thought into the
matter of my future than anyone else.
As this story is coming to an end, it is time to thank those, who helped me on the last stretch
by proof-reading all or parts of this thesis. Thank you, Adisorn, Björn D., Claudia and Alex.
Zum Abschluss aber, das wichtigste: Danke, Sara. Dir widme ich diese Arbeit.



Appendix A

Glossary

A.1 Theory of Discrete Groups

Caveat: The definitions given below do not meet the requirements of absolute mathematical
precision. However all definitions are correct with regard to the instances appearing in this
thesis.

abelian A group G is abelian if it fulfills a further axiom:

• For all a, b ∈ G, a ◦ b = b ◦ a

character The character of a representation is a mapping from the group G to the complex
numbers. An element of the group is mapped to the trace of its representation matrix. The
character is said to be real, if all elements of the group are mapped to real numbers, otherwise
it is complex. As the trace is an invariant, the characters of equivalent representations are
identical.

Clebsch Gordan coefficients The representation matrices of the Kronecker product of two
representations R1 and R2 of a group G act on the vector space given by the tensor product of
the two vector spaces on which the representation matrices of R1 and R2 act. This vector space
can be decomposed into invariant subspaces transforming under irreducible representations of
G. The decomposition is given by the Clebsch Gordan coefficients.

complex representation A representation is complex if its character is complex.

continuous A group is continuous if its elements can be parameterized by one or more con-
tinuous parameters. It will thus have infinitely many elements and is not discrete.

cyclic A cyclic group is a group with only one generator. A cyclic group will always be
abelian. The cyclic group of order n is denoted by Zn.

dimension of a representation The dimension of a representation R is the dimension of
the vector space on which the representation matrices act. If R maps the group elements to
d×d matrices, the dimension of the representation is d. An irreducible representation is usually
denoted by its dimension, a d-dimensional representation is written as d . If there are several
representations of the same dimension, there will be additional indices.
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discrete A group is discrete if the set of distinct elements is finite.

equivalent Two representations R1 and R2 of a group G are (unitarily) equivalent if there
exists a unique (unitary) matrix U such that UR1(a)U−1 = R2(a) for all a ∈ G.

faithful A representation is faithful if it is injective, that is if each distinct group element is
associated with a different matrix. Unfaithful representations will always map more than one
element to the unit matrix.

generator The smallest subset of elements of a group G, for which each element of G can
be written as a product of elements of the subgroup, is said to generate G. The elements of
this subset are called generators. There may be several such smallest subsets and thus the
generators are not uniquely defined. The number of generators however is uniquely defined.

group A group G is a set of elements along with a binary operation (group multiplication)
◦ : G×G→ G fulfilling the group axioms:

• For all a, b, c ∈ G, (a ◦ b) ◦ c = a ◦ (b ◦ c) (Associativity)

• There exists a unit element e for which e ◦ a = a ◦ e = a, for all a ∈ G

• For each element a there is an inverse element a−1 fulfilling a ◦ a−1 = a−1 ◦ a = e

irreducible representation (irrep) A representation is irreducible if it is not equivalent
to a representation, where all representation matrices are block diagonal. For a reducible
representation on the other hand, one can always, through an equivalence transformation,
decompose the vector space, on which the representation matrices act, into invariant subspaces.

isomorphic Two groups are isomorphic if there exists a bijective mapping between them
that conserves group multiplication. The two groups can then be considered identical for all
our practical purposes, they are only defined differently.

Kronecker product The Kronecker product of two representations R1 and R2 of a group G
is again a representation, R1 × R2. Its dimension is the product of the dimensions of R1 and
R2 and the representation matrices are the Kronecker matrix products of the representation
matrices of R1 and R2. The Kronecker product of two representations is usually written as its
decomposition into irreducible representations.

maximal subgroup A subgroup H of a group G is called maximal, if there is no proper
subgroup of G that contains H as a proper subgroup.

order (of a group) The order of the set of elements, i.e. the number of distinct elements of
the group.

order (of an element) The smallest integer r for which ar = e is the order of the element a.

pseudo-real representation A representation is pseudo-real if its character is real, but it is
not equivalent to a representation whose representation matrices have only real entries.
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real representation A representation is real if it is equivalent to a representation whose
representation matrices have only real entries. The character of such a representation will
always be real.

representation A d-dimensional representation is a mapping from the group G to the in-
vertible d × d matrices, where the matrix entries are real or complex numbers. The mapping
conserves group multiplication, i.e. for a representation R and a, b ∈ G, we have for the rep-
resentation matrices R(a)R(b) = R(a ◦ b), where the representation matrices are multiplied by
usual matrix multiplication.

subgroup A subgroup H of a group G is a subset of the set of elements of G that is closed
under group multiplication, i.e. for a, b ∈ H, a ◦ b is also in H. Each group G has an improper
subgroup, the group G itself, and a trivial subgroup, the group containing only the unit element.

A.2 Abbreviations

• CKM = Cabibbo-Kobayashi-Maskawa (quark mixing matrix)

• FCNC = Flavor-Changing Neutral Current

• FN = Froggatt-Nielsen (U(1) flavor symmetry)

• gcd = greatest common divisor

• GIM = Glashow-Iliopoulos-Maiani (mechanism for suppression of flavor change)

• GST = Gatto-Sartori-Tonin (relation between Cabibbo angle and quark masses)

• GUT = Grand Unified Theory

• HDM = Hot Dark Matter

• HPS = Harrison-Perkins-Scott (special form of lepton mixing matrix, equivalent to TBM)

• LFV = Lepton Flavor Violation

• LO = leading order

• MSSM = Minimal Supersymmetric Standard Model

• NLO = next-to-leading order

• PMNS = Pontecorvo-Maki-Nakagawa-Sakata (lepton mixing matrix)

• QCD = Quantum Chromodynamics

• QLC = Quark-Lepton Complementarity

• SM = Standard Model of Particle Physics

• SUSY = Supersymmetry

• TBM = tri-bimaximal mixing

• VEV = Vacuum Expectation Value
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Appendix B

Mathematical Details of Dihedral
Groups

B.1 Kronecker Products

The products of the one-dimensional representations of Dn are:

× 11 12 13 14
11 11 12 13 14
12 12 11 14 13
13 13 14 11 12
14 14 13 12 11

where the representations 13,4 only exist in groups Dn with an even index n. The products
1i × 2j transform as

11,2 × 2j = 2j
and for n even there are also

13,4 × 2j = 2k with k =
n

2
− j.

The products 2i×2i are of the form 11+12+2j with j = min(2 i, n−2 i). In case the group Dn

has an index n which is divisible by four one also finds the structure 2i × 2i =
4∑

j=1
1j for i = n

4 .

The mixed products 2i × 2j can have two structures: For i + j 6= n
2 we have 2i × 2j = 2k + 2l

with k = |i− j| and l = min(i+ j, n− (i+ j)), while for i+ j = n
2 we have 2i×2j = 13 +14 +2k

with k = |i− j|.
For D′

n with n even the one-dimensional representations have the same product structure as for
Dn while for n being odd they are:

× 11 12 13 14
11 11 12 13 14
12 12 11 14 13
13 13 14 12 11
14 14 13 11 12

due to the fact that the two one-dimensional representations 13 and 14 are complex conjugated
to each other. The rest of the formulae for the different product structures are the same as in
the case of D2n, i.e. in each formula above which is given for Dn one has to replace n by 2n.
The Kronecker products can also be found in [130].
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B.2 Clebsch Gordan Coefficients

We give the Clebsch Gordan coefficients in the following way: We start from two multiplets,
(a1, a2, ..., ad1)

T and (b1, b2, ..., bd2)
T , transforming under a d1- and a d2-dimensional represen-

tation of Gf , respectively. The Kronecker product of these representations contains a d3-
dimensional representation. A multiplet (c1, c2, ..., cd3)

T transforming under this representation
can then be constructed from d3 d1 × d2 matrices Mi through

ci = (a1, a2, ..., ad1)Mi




b1
b2
...
bd2


 .

These matrices Mi are the Clebsch Gordan coefficients, and we present them in a column vector
of matrices.

B.2.1 ...for Dn

For 1i×1j = 1k the Clebsch Gordan coefficient is trivially one. For 1i×2j the Clebsch Gordan
coefficients are

for i = 1:
( (

1 0
)

(
0 1

)
)
∼ 2j and for i = 2:

( (
1 0

)
(

0 −1
)

)
∼ 2j

If the index n of Dn is even, the group has two further one-dimensional representations 13,4
whose products with 2j are of the form

for i = 3:
( (

0 1
)

(
1 0

)
)

∼ 2n
2
-j and for i = 4:

( (
0 1

)
( −1 0

)
)

∼ 2n
2
-j

For the products 2i × 2i the covariant combinations are

(
0 1
1 0

)
∼ 11 ,

(
0 1
−1 0

)
∼ 12

and 


(
1 0
0 0

)

(
0 0
0 1

)


 ∼ 22i or




(
0 0
0 1

)

(
1 0
0 0

)


 ∼ 2n -2i

If the index n of Dn is even and i = n
4 , there is a second possibility: 2i × 2i =

4∑
j=1

1j. The

Clebsch Gordan coefficients are
(

0 1
1 0

)
∼ 11 ,

(
0 1
−1 0

)
∼ 12 ,

(
1 0
0 1

)
∼ 13 ,

(
1 0
0 −1

)
∼ 14

For the products 2i×2j with i 6= j there are the two structures 2i×2j = 2k+2l with k = |i− j|
and l = min(i + j, n − (i + j)) or 2i × 2j = 13 + 14 + 2k with k = |i − j|, the latter structure
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occurring for i + j = n
2 . The Clebsch Gordan coefficients for 2i × 2j = 2k + 2l are




(
0 1
0 0

)

(
0 0
1 0

)


 ∼ 2i-j or




(
0 0
1 0

)

(
0 1
0 0

)


 ∼ 2j-i

and 


(
1 0
0 0

)

(
0 0
0 1

)


 ∼ 2i+j or




(
0 0
0 1

)

(
1 0
0 0

)


 ∼ 2n -(i+j)

For the structure 2i × 2j = 13 + 14 + 2k with i + j = n
2 the Clebsch Gordan coefficients are

(
1 0
0 1

)
∼ 13 ,

(
1 0
0 −1

)
∼ 14

and 


(
0 1
0 0

)

(
0 0
1 0

)


 ∼ 2i-j or




(
0 0
1 0

)

(
0 1
0 0

)


 ∼ 2j-i

B.2.2 ...for D′
n

For n even, the Clebsch Gordan coefficients for the products 1i × 2j = 2k are the same as in
the case of D2n, i.e. for i = 3, 4 the condition for k is j + k = n instead of n

2 .
If n is odd, the same holds for j odd whereas for j even the Clebsch Gordan coefficients of the
products 13 × 2j and 14 × 2j have to be interchanged.
The Clebsch Gordan coefficients for the products 2i × 2i are the same as for D2n, if i is even.
Similarly, if n is even, nothing changes for 2i × 2j with i 6= j as long as i, j are both even or
one is even and one is odd. For n being odd the only difference is that, if the product is of the
form 2i × 2j = 13 + 14 + 2k, the Clebsch Gordan coefficients for the covariant combinations
transforming as 13 and 14 are interchanged.
We thus only need to give explicit Clebsch Gordan coefficients for the case where both two-
dimensional representations are odd. For the the products 2i × 2i = 11 + 12 + 2j with
j = min(2 i, 2n− 2 i) and i odd, one finds

(
0 1
−1 0

)
∼ 11,

(
0 1
1 0

)
∼ 12

and 


(
1 0
0 0

)

(
0 0
0 −1

)


 ∼ 22i or




(
0 0
0 1

)

( −1 0
0 0

)


 ∼ 22n -2i

If i = n
2 and odd (n must even but not divisible by 4), one has 2i × 2i =

4∑
j=1

1j. The Clebsch

Gordan coefficients are
(

0 1
−1 0

)
∼ 11 ,

(
0 1
1 0

)
∼ 12 ,



132 APPENDIX B. MATHEMATICAL DETAILS OF DIHEDRAL GROUPS

(
1 0
0 −1

)
∼ 13 ,

(
1 0
0 1

)
∼ 14

Finally, the product 2i × 2j for i, j being odd is either 2k + 2l with k = |i − j| and l =
min(i + j, 2n − (i + j)) or, if i + j = n, 13 + 14 + 2k with k = |i − j|. The Clebsch Gordan
coefficients in the first case are




(
0 1
0 0

)

(
0 0
−1 0

)


 ∼ 2i-j or




(
0 0
1 0

)

(
0 −1
0 0

)


 ∼ 2j-i

and 


(
1 0
0 0

)

(
0 0
0 −1

)


 ∼ 2i+j or




(
0 0
0 1

)

( −1 0
0 0

)


 ∼ 22n -(i+j)

In the second case the Clebsch Gordan coefficients are:
(

1 0
0 −1

)
∼ 13 ,

(
1 0
0 1

)
∼ 14

and 


(
0 1
0 0

)

(
0 0
−1 0

)


 ∼ 2i-j or




(
0 0
1 0

)

(
0 −1
0 0

)


 ∼ 2j-i

B.3 Real Representation Matrices for Dn

As representation matrices are defined only up to similarity transformations, one will frequently
find two-dimensional representation matrices of Dn that differ significantly from ours. A com-
mon convention has representation matrices which are real. This has the advantage that the
reality of the two-dimensional irreps is made explicit. We then have that for real representa-

tions
(
a?1
a?2

)
transforms as the same two-dimensional representation, and no additional unitary

transformation is needed. However the structural discussion performed in this thesis is more
tedious using real matrices, which is why we have opted for using the complex generators. Still,
to make our results more easily comparable to existing models, we describe the alternate repre-
sentation using real matrices and explicitly show its equivalence to the representation we have
used.
For a dihedral group Dn and a representation 2j, the generators A and B can be represented
by the real matrices

A =
(

cos
(

2π
n j

) − sin
(

2π
n j

)
sin

(
2π
n j

)
cos

(
2π
n j

)
)
, B =

(
1 0
0 −1

)
. (B.1)

In [84], instead g =B and h = BA3 are used as generators, the representation however is the
same as the one presented here. It does not depend on which two elements are designated as
generators. We need to show that this representation is equivalent to the one we have been
using. The explicit similarity transformation is given by

U †GrU = Gc, (B.2)
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where Gr is a representation matrix in the basis of real generators, Gc is a representation matrix
in the basis of complex generators used throughout this thesis and the unitary matrix

U =
1√
2

(
i i
1 −1

)
. (B.3)

We thus have that if
(
a
b

)
transforms as a two-dimensional representation using complex

generators then

U

(
a
b

)
=

1√
2

(
i(a+ b)
(a− b)

)
(B.4)

transforms as a two-dimensional representation using the real generators. In particular the
special VEV structure given by equation (3.9) translates to

( − cot mπj
n

1

)
, (B.5)

which already shows, why calculations in the basis of the real generators become more involved:
Instead of just having a relative phase between doublet components, the two components actu-
ally get different absolute values.
This basis change corresponds to the basis change in the model of section 6.1, when switching
to the primed basis in which the charged lepton mass matrix is diagonal. The charged lepton
mass matrix is

Ml =
vd
Λ




ye1we 0 0
0 ye3ue ye2we
0 ye2we −ye3ue


 , (B.6)

and consequently U †l Ml Uec is a diagonal matrix with positive entries, where

Ul =




1 0 0
0 eiπ/4/

√
2 e−iπ/4/

√
2

0 e−iπ/4/
√

2 eiπ/4/
√

2


 . (B.7)

and Uec equals U?l P where P is a diagonal phase matrix. Going to the basis in which charged
leptons are diagonal thus corresponds to the transformations l → UTl l and ec → U †ecec =
P ∗UTl e

c. Thus, apart from an unphysical rephasing of the left-handed conjugate fields induced
by P , both fields are transformed in the same way. If we now rewrite

UTl = Ul =
(

1 0
0 U

)
.




1 0 0
0 e−iπ/4 0
0 0 e−3iπ/4


 , (B.8)

with U as in equation (B.3), one can see that this transformation consists of a rephasing and then
a transformation to the basis of real generators, as the second and third generations transform
as a doublet of D4. This then coincides with the basis chosen in [84]. The identifications for
the singlets are the following: 1++ corresponds to 11, 1+− to 13, 1−+ to 12 and 1−− to
14. In [84] the charged lepton mass matrix is diagonal without any further transformation and
θ13 = 0 and θ23 maximal can be directly read off from the neutrino mass matrix. This is the
same in our case, if we go into the primed basis, see M ′

ν in equation (6.8).
We finally comment on the fake-complex scalars used in section 5.1. If we have a real scalar
transforming as a doublet of Dn, we can write it, using complex generators, as
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(
ϕ
ϕ∗

)
. (B.9)

Moving to the basis of real generators with the unitary transformation U , we see that this
indeed corresponds to the real doublet representation, since

U

(
ϕ
ϕ∗

)
= i
√

2
(

Re(ϕ)
Im(ϕ∗)

)
. (B.10)

The imaginary prefactor is irrelevant, as it is not affected by transformations. The important
thing is that we have a doublet where both components are independent real variables.
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Results and Tables

C.1 Decomposition under Subgroups

The decomposition of representations ofDn and D′
n under their subgroups is given in tables C.1,

C.2, C.3 and C.4. We have used the following non-standard convention for the representation of
Zn: The representation 1k transforms as e

2πi
n

(k), so that 10 denotes the trivial representation
and 1(n+ k) = 1k .
We will denote the components of the two-dimensional representation 2k by

2k ∼
(
ak

bk

)
.

For two-dimensional representations under dihedral subgroups, we find in the tables the general
identification 2k ∼ 2k. However, dihedral subgroups will have less two-dimensional represen-
tations than the original group, so we need to make the following identifications, if the dihedral
subgroup has no representation 2k:
In Dq, q even:

(e
πimq

n a q
2

+ b q
2
) ∼ 13 , (−eπimq

n a q
2

+ b q
2
) ∼ 14, (C.1)

(e
2πimq

n aq + bq) ∼ 11 , (−e 2πimq
n aq + bq) ∼ 12, (C.2)(

e
2πimk

n ak

bk

)
∼ 2k (if k <

q

2
), (C.3)

(
bk

e
2πimk

n ak

)
∼ 2q-k (if q > k >

q

2
). (C.4)

In Dq, q odd:

(e
2πimq

n aq + bq) ∼ 11 , (−e 2πimq
n aq + bq) ∼ 12, (C.5)(

e
2πimk

n ak

bk

)
∼ 2k (if k ≤ q − 1

2
), (C.6)

(
bk

e
2πimk

n ak

)
∼ 2q-k (if q > k >

q − 1
2

). (C.7)

If k > q, 2k ∼ 2(k mod q) . If q divides k, then 2k transforms just as 2q, i.e. as 11 + 12.
For D′

q one can make the same identifications as for Dq, q even, if one makes the substitutions
q → 2q and n → 2n. For q dividing k, 22k then transforms as 22q, i.e. as 11 + 12.
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Dn → Subgroup VEV allowed?
Zn =< A >

11 → 10 yes
12 → 10 yes
13 → 1n

2
14 → 1n

2
2k → ak ∼ 1k , bk ∼ 1(n-k)

Zq =< A
n
q >

11 → 10 yes
12 → 10 yes
13 → 1n

2
if n

q even

14 → 1n
2

if n
q even

2k → ak ∼ 1k , bk ∼ 1q-k if q | k
Z2 =< BAm >

11 → 10 yes
12 → 11
13 → 1m if m even
14 → 1m+1 if m odd

2k → (e
2πimk

n ak + bk) ∼ 10 , (−e 2πimk
n ak + bk) ∼ 11

(
e
−2πikm

n

1

)

Zn
2

=< A2 >

11 → 10 yes
12 → 10 yes
13 → 10 yes
14 → 10 yes
2k → ak ∼ 1k , bk ∼ 1(n

2
-k)

Table C.1: Transformation properties of the representations of a dihedral group under its abelian subgroups,
as determined in section 3.2. The rightmost column shows whether a representation has a component which
transforms trivially under the subgroup, i.e. if a scalar field transforming under this representation can acquire a
VEV, while conserving this subgroup. If only a specific VEV structure is allowed, it is given explicitly, otherwise
an arbitrary VEV is allowed.
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Dn → Subgroup VEV allowed?
Dn

2
=< A2,B >

11 → 11 yes
12 → 12
13 → 11 yes
14 → 12
2k → 2k

Dn
2

=< A2,BA >

11 → 11 yes
12 → 12
13 → 12
14 → 11 yes
2k → 2k

Dq =< A
n
q ,BAm >

11 → 11 yes
12 → 12
13 → 11(nq even, meven) yes

12(nq even, modd)
13(nq odd, m even)
14(nq odd, modd)

14 → 11(nq even, modd) yes
12(nq even, meven)
13(nq odd, modd)
14(nq odd, m even)

2k → 2k

(
e
−2πikm

n

1

)
(if q | k)

Table C.2: Transformation properties of the representations of a dihedral group under its non-abelian subgroups.
For further details see caption of table C.1.
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D′
n → Subgroup VEV allowed?

Z2n =< A >

11 → 10 yes
12 → 10 yes
13 → 1n
14 → 1n
2k → ak ∼ 1k , bk ∼ 1(2n-k)

Zn =< A2 >

11 → 10 yes
12 → 10 yes
13 → 10 yes
14 → 10 yes
2k → ak ∼ 1k , bk ∼ 1(n-k)

Zq =< A
2n
q >

11 → 10 yes
12 → 10 yes
13 → 1n if 2n

q even
14 → 1n if 2n

q even
2k → ak ∼ 1k , bk ∼ 1q-k if q | k (k can be odd)

Z4 =< BAm >

11 → 10 yes
12 → 12
13 → 10(n even, m even) yes

11(n odd, modd)
12(n even, modd)
13(n odd, m even)

14 → 12(n even, m even)
13(n odd, modd)
10(n even, modd) yes
11(n odd, m even)

2k → (e
πimk

n ak + bk) ∼ 10,1 , (−eπimk
n ak + bk) ∼ 12,3

(
e
−πikm

n

1

)
(if k even)

Z2 =< An >

11 → 10 yes
12 → 10 yes
13 → 1n if n even
14 → 1n if n even
2k → ak ∼ 1k , bk ∼ 1k if k even

Table C.3: Transformation properties of the representations of a double-valued dihedral group under its abelian
subgroups. For the decomposition of the two-dimensional D′n representations under its subgroup Z4 one has to
mention that 2k for k even splits up into 10 and 12 under Z4, while for k being odd the representations are 11
and 13. For further details see caption of table C.1.
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D′
n → Subgroup VEV allowed?

D′
n
2

=< A2,B >

11 → 11 yes
12 → 12
13 → 11 yes
14 → 12
2k → 2k

D′
n
2

=< A2,BA >

11 → 11 yes
12 → 12
13 → 12
14 → 11 yes
2k → 2k

D′
q =< A

n
q ,BAm >

11 → 11 yes
12 → 12
13 → 11(nq even, m even) yes

12(nq even, modd)
13(nq odd, m even)
14(nq odd, modd)

14 → 11(nq even, modd) yes
12(nq even, m even)
13(nq odd, modd)
14(nq odd, m even)

2k → 2k

(
e
−πikm

n

1

)
(if q | k), k even

Table C.4: Transformation properties of the representations of a double-valued dihedral group under its non-
abelian subgroups. For further details see caption of table C.1.
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C.2 Breaking Chains for D′
n

We give the possible building blocks for breaking sequences of a double-valued dihedral group
D′
n. The breaking sequences for Dn along with a general discussion of the conventions used is

given in section 3.3.
For the subgroups of D′

n we again differentiate between only two types. First, the dihedral sub-
groups D′

q = 〈An
q ,BAm〉. Again, this will include abelian groups Z4 = 〈BAm1〉, as these groups

are isomorphic to D′
1. Second, the cyclic subgroups Zq = 〈A 2n

q 〉. A Z4 is to be interpreted as
this second type, the other Z4’s will be denoted by D′

1.

D′q
<12>

−→ Z2q

Zq

<12>

−→ Zq

D′q
<13>

−→ D′g(n,2q)
2

(n even; m even for 13 and m odd for 14)

D′q
<13>

−→ Zg(n,2q) (n odd or m odd for 13 or m even for 14)

Zq

<13>

−→ Zg(n,q)

D′q
<2j>

−→ Zg(2q,j)

Zq

<2j>

−→ Zg(q,j)

D′q
<2j>′

−→ D′g(2q,j)
2

(g(2q, j) even, mj modn
q

= m)

D′q
<2j>′

−→ Zg(2q,j) (g(2q, j) odd or mj modn
q
6= m)

Zq

<2j>′

−→ Zg(q,j)

C.3 Possible Forms of V from Subgroup Mismatch

As discussed in section 4.1, for conserved Z2 subgroups there exist three possible diagonalization
matrices in each sector (up and down sector, charged lepton and neutrino sector), according
to the three possible identifications of the eigenvalue bi − ci. Out of these one can form nine
possible mixing matrices V ab = UT1 U?2 with a, b = 1, 2, 3 and Ui ∈ {Ufm, U

′
fm, U

′ ′
fm} where Ui

depends on the group theoretical phase φi (the index mi) and contains the mixing angle θi
and the free phase βi. They all have the property that one of their matrix elements, namely
the element (ab), is completely determined by group theory, i.e. by the index n of the dihedral
group, by the index j of the two-dimensional representation 2j under which two of the three
generations of SU(2)L doublets transform and by the breaking directions described by m1 and
m2 in the two different sectors. In the following we abbreviate β1 − β2with α, sin(θi) with si
and cos(θi) with ci.

V 11 =
1

2

0
@

1 + ei (φ1−φ2) j (ei φ1 j − ei φ2 j) s2 −(ei φ1 j − ei φ2 j) c2
−(e−i φ1 j − e−i φ2 j) s1 (1 + e−i (φ1−φ2) j) s1 s2 + 2 ei α c1 c2 −(1 + e−i (φ1−φ2) j) s1 c2 + 2 ei α c1 s2
(e−i φ1 j − e−i φ2 j) c1 −(1 + e−i (φ1−φ2) j) c1 s2 + 2 ei α s1 c2 (1 + e−i (φ1−φ2) j) c1 c2 + 2 ei α s1 s2

1
A

V 12 =
1

2

0
@

(ei φ1 j − ei φ2 j) s2 1 + ei (φ1−φ2) j −(ei φ1 j − ei φ2 j) c2
(1 + e−i (φ1−φ2) j) s1 s2 + 2 ei α c1 c2 −(e−i φ1 j − e−i φ2 j) s1 −(1 + e−i (φ1−φ2) j) s1 c2 + 2 ei α c1 s2
−(1 + e−i (φ1−φ2) j) c1 s2 + 2 ei α s1 c2 (e−i φ1 j − e−i φ2 j) c1 (1 + e−i (φ1−φ2) j) c1 c2 + 2 ei α s1 s2

1
A

V 13 =
1

2

0
@

(ei φ1 j − ei φ2 j) s2 −(ei φ1 j − ei φ2 j) c2 1 + ei (φ1−φ2) j

(1 + e−i (φ1−φ2) j) s1 s2 + 2 ei α c1 c2 −(1 + e−i (φ1−φ2) j) s1 c2 + 2 ei α c1 s2 −(e−i φ1 j − e−i φ2 j) s1
−(1 + e−i (φ1−φ2) j) c1 s2 + 2 ei α s1 c2 (1 + e−i (φ1−φ2) j) c1 c2 + 2 ei α s1 s2 (e−i φ1 j − e−i φ2 j) c1

1
A
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V 21 =
1

2

0
@

−(e−i φ1 j − e−i φ2 j) s1 (1 + e−i (φ1−φ2) j) s1 s2 + 2 ei α c1 c2 −(1 + e−i (φ1−φ2) j) s1 c2 + 2 ei α c1 s2
1 + ei (φ1−φ2) j (ei φ1 j − ei φ2 j) s2 −(ei φ1 j − ei φ2 j) c2

(e−i φ1 j − e−i φ2 j) c1 −(1 + e−i (φ1−φ2) j) c1 s2 + 2 ei α s1 c2 (1 + e−i (φ1−φ2) j) c1 c2 + 2 ei α s1 s2

1
A

V 22 =
1

2

0
@

(1 + e−i (φ1−φ2) j) s1 s2 + 2 ei α c1 c2 −(e−i φ1 j − e−i φ2 j) s1 −(1 + e−i (φ1−φ2) j) s1 c2 + 2 ei α c1 s2
(ei φ1 j − ei φ2 j) s2 1 + ei (φ1−φ2) j −(ei φ1 j − ei φ2 j) c2

−(1 + e−i (φ1−φ2) j) c1 s2 + 2 ei α s1 c2 (e−i φ1 j − e−i φ2 j) c1 (1 + e−i (φ1−φ2) j) c1 c2 + 2 ei α s1 s2

1
A

V 23 =
1

2

0
@

(1 + e−i (φ1−φ2) j) s1 s2 + 2 ei α c1 c2 −(1 + e−i (φ1−φ2) j) s1 c2 + 2 ei α c1 s2 −(e−i φ1 j − e−i φ2 j) s1
(ei φ1 j − ei φ2 j) s2 −(ei φ1 j − ei φ2 j) c2 1 + ei (φ1−φ2) j

−(1 + e−i (φ1−φ2) j) c1 s2 + 2 ei α s1 c2 (1 + e−i (φ1−φ2) j) c1 c2 + 2 ei α s1 s2 (e−i φ1 j − e−i φ2 j) c1

1
A

V 31 =
1

2

0
@

−(e−i φ1 j − e−i φ2 j) s1 (1 + e−i (φ1−φ2) j) s1 s2 + 2 ei α c1 c2 −(1 + e−i (φ1−φ2) j) s1 c2 + 2 ei α c1 s2
(e−i φ1 j − e−i φ2 j) c1 −(1 + e−i (φ1−φ2) j) c1 s2 + 2 ei α s1 c2 (1 + e−i (φ1−φ2) j) c1 c2 + 2 ei α s1 s2

1 + ei (φ1−φ2) j (ei φ1 j − ei φ2 j) s2 −(ei φ1 j − ei φ2 j) c2

1
A

V 32 =
1

2

0
@

(1 + e−i (φ1−φ2) j) s1 s2 + 2 ei α c1 c2 −(e−i φ1 j − e−i φ2 j) s1 −(1 + e−i (φ1−φ2) j) s1 c2 + 2 ei α c1 s2
−(1 + e−i (φ1−φ2) j) c1 s2 + 2 ei α s1 c2 (e−i φ1 j − e−i φ2 j) c1 (1 + e−i (φ1−φ2) j) c1 c2 + 2 ei α s1 s2

(ei φ1 j − ei φ2 j) s2 1 + ei (φ1−φ2) j −(ei φ1 j − ei φ2 j) c2

1
A

V 33 =
1

2

0
@

(1 + e−i (φ1−φ2) j) s1 s2 + 2 ei α c1 c2 −(1 + e−i (φ1−φ2) j) s1 c2 + 2 ei α c1 s2 −(e−i φ1 j − e−i φ2 j) s1
−(1 + e−i (φ1−φ2) j) c1 s2 + 2 ei α s1 c2 (1 + e−i (φ1−φ2) j) c1 c2 + 2 ei α s1 s2 (e−i φ1 j − e−i φ2 j) c1

(ei φ1 j − ei φ2 j) s2 −(ei φ1 j − ei φ2 j) c2 1 + ei (φ1−φ2) j

1
A

C.4 D7 Higgs Potential

We discuss the Higgs potential of the D7 model presented in section 4.3. The potential for
the three Higgs fields Hu

s and Hu
1,2, which couple only to up quarks, i.e. are even under the

additional Z(aux)
2 symmetry, is of the same form as V3 in equation (4.17). As mentioned there,

it has an accidental U(1) symmetry. We have in addition five Higgs fields which are odd under
the extra Z(aux)

2 . These are Hd
s , H

d
1,2 and χd1,2. The most general potential for these five scalar

fields is

Vd = −(µd
s)2Hd

s

†
Hd

s − (µd
D)2

 
2X

i=1

Hd
i

†
Hd

i

!
− (µ̃d

D)2
 

2X
i=1

χd
i

†
χd

i

!
(C.8)

+ λd
s(Hd

s

†
Hd

s )2 + λd
1

 
2X

i=1

Hd
i

†
Hd

i

!2

+ λ̃d
1

 
2X

i=1

χd
i

†
χd

i

!2

+ λd
2(H

d
1

†
Hd

1 −Hd
2

†
Hd

2 )2 + λ̃d
2(χ

d
1

†
χd

1 − χd
2

†
χd

2)
2

+ λd
3|Hd

1

†
Hd

2 |2 + λ̃d
3|χd

1

†
χd

2|2 + σd
1(Hd

s

†
Hd

s )

 
2X

i=1

Hd
i

†
Hd

i

!
+ σ̃d

1(Hd
s

†
Hd

s )

 
2X

i=1

χd
i

†
χd

i

!

+ {σd
2(Hd

s

†
Hd

1 )(Hd
s

†
Hd

2 ) + h.c.}+ {σ̃d
2(Hd

s

†
χd

1)(H
d
s

†
χd

2) + h.c.}+ σd
3

 
2X

i=1

|Hd
s

†
Hd

i |2
!

+ σ̃d
3

 
2X

i=1

|Hd
s

†
χd

i |2
!

+ τd
1

 
2X

i=1

Hd
i

†
Hd

i

! 
2X

i=1

χd
i

†
χd

i

!
+ τd

2 (Hd
1

†
Hd

1 −Hd
2

†
Hd

2 )(χd
1

†
χd

1 − χd
2

†
χd

2)

+ {τd
3 (Hd

1

†
χd

1)(H
d
2

†
χd

2) + h.c.}+ τd
4

 
2X

i=1

|Hd
i

†
χd

i |2
!

+ {τd
5 (Hd

1

†
χd

2)(H
d
2

†
χd

1) + h.c.}+ τd
6 ( |Hd

1

†
χd

2|2 + |Hd
2

†
χd

1|2)

+ {τd
7 {(Hd

2

†
χd

1)(χ
d
2

†
χd

1) + (Hd
1

†
χd

2)(χ
d
1

†
χd

2)}+ h.c.}
+ {ωd

1{(Hd
s

†
Hd

1 )(Hd
2

†
χd

2) + (Hd
s

†
Hd

2 )(Hd
1

†
χd

1)}+ h.c.}+ {ωd
2{(Hd

s

†
Hd

1 )(χd
1

†
Hd

1 ) + (Hd
s

†
Hd

2 )(χd
2

†
Hd

2 )}+ h.c.}
+ {ωd

3{(Hd
s

†
χd

1)(H
d
1

†
Hd

2 ) + (Hd
s

†
χd

2)(H
d
2

†
Hd

1 )}+ h.c.}.
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This five Higgs potential is free from accidental symmetries. However, the combined potential
Vu+Vd has an accidental SU(2)×U(1)×U(1) symmetry. It is broken explicitly by mixing terms
which couple the Higgs fields Hu

s,1,2 and Hd
s,1,2, χ

d
1,2. The following potential Vmixed contains all

such terms which are invariant under the symmetry D7 × Z
(aux)
2 :

Vmixed = κ1(H
u
s
†Hu

s )(Hd
s

†
Hd

s ) + {κ2(H
u
s
†Hd

s )2 + h.c.}+ κ3|Hu
s
†Hd

s |2 (C.9)

+ κ4

 
2X

i=1

Hu
i
†Hu

i

! 
2X

i=1

Hd
i

†
Hd

i

!
+ κ̃4

 
2X

i=1

Hu
i
†Hu

i

! 
2X

i=1

χd
i

†
χd

i

!

+ {κ5

 
2X

i=1

Hu
i
†Hd

i

!2

+ h.c.}+ κ6|Hu
1
†Hd

1 +Hu
2
†Hd

2 |2

+ κ7(H
u
1
†Hu

1 −Hu
2
†Hu

2 )(Hd
1

†
Hd

1 −Hd
2

†
Hd

2 ) + κ̃7(H
u
1
†Hu

1 −Hu
2
†Hu

2 )(χd
1

†
χd

1 − χd
2

†
χd

2)

+ {κ8(H
u
1
†Hd

1 −Hu
2
†Hd

2 )2 + h.c.}+ {κ̃[5−8](H
u
1
†χd

1)(H
u
2
†χd

2) + h.c.}
+ κ9|Hu

1
†Hd

1 −Hu
2
†Hd

2 |2 + κ̃[6+9]( |Hu
1
†χd

1|2 + |Hu
2
†χd

2|2) + κ10{(Hu
2
†Hu

1 )(Hd
1

†
Hd

2 ) + h.c.}
+ {κ11(H

u
2
†Hd

1 )(Hu
1
†Hd

2 ) + h.c.}+ {κ̃11(H
u
1
†χd

2)(H
u
2
†χd

1) + h.c.}+ κ12( |Hu
2
†Hd

1 |2 + |Hu
1
†Hd

2 |2)

+ κ̃12( |Hu
1
†χd

2|2 + |Hu
2
†χd

1|2) + κ13(H
u
s
†Hu

s )

 
2X

i=1

Hd
i

†
Hd

i

!
+ κ̃13(H

u
s
†Hu

s )

 
2X

i=1

χd
i

†
χd

i

!

+ {κ14(H
u
s
†Hd

1 )(Hu
s
†Hd

2 ) + h.c.}+ {κ̃14(H
u
s
†χd

1)(H
u
s
†χd

2) + h.c.}+ κ15( |Hu
s
†Hd

1 |2 + |Hu
s
†Hd

2 |2)

+ κ̃15( |Hu
s
†χd

1|2 + |Hu
s
†χd

2|2) + κ16(H
d
s

†
Hd

s )

 
2X

i=1

Hu
i
†Hu

i

!
+ {κ17(H

d
s

†
Hu

1 )(Hd
s

†
Hu

2 ) + h.c.}

+ κ18

 
2X

i=1

|Hd
s

†
Hu

i |2
!

+ {κ19(H
u
s
†Hd

s )

 
2X

i=1

Hu
i
†Hd

i

!
+ h.c.}

+ {κ20(H
u
s
†Hd

s )

 
2X

i=1

Hd
i

†
Hu

i

!
+ h.c.}+ {κ21{(Hu

s
†Hu

1 )(Hd
s

†
Hd

2 ) + (Hu
s
†Hu

2 )(Hd
s

†
Hd

1 )}+ h.c.}

+ {κ22{(Hu
s
†Hd

1 )(Hd
s

†
Hu

2 ) + (Hu
s
†Hd

2 )(Hd
s

†
Hu

1 )}+ h.c.}
+ {κ23{(Hu

s
†Hu

1 )(Hd
1

†
Hd

s ) + (Hu
s
†Hu

2 )(Hd
2

†
Hd

s )}+ h.c.}
+ {κ24{(Hu

s
†Hd

1 )(Hu
1
†Hd

s ) + (Hu
s
†Hd

2 )(Hu
2
†Hd

s )}+ h.c.}
+ {κ25{(Hd

s

†
Hu

1 )(Hu
2
†χd

2) + (Hd
s

†
Hu

2 )(Hu
1
†χd

1)}+ h.c.}
+ {κ26{(Hd

s

†
Hu

1 )(χd
1

†
Hu

1 ) + (Hd
s

†
Hu

2 )(χd
2

†
Hu

2 )}+ h.c.}
+ {κ27{(Hd

s

†
χd

1)(H
u
1
†Hu

2 ) + (Hd
s

†
χd

2)(H
u
2
†Hu

1 )}+ h.c.}
+ {κ28{(Hu

s
†Hd

1 )(Hu
2
†χd

2) + (Hu
s
†Hd

2 )(Hu
1
†χd

1)}+ h.c.}
+ {κ29{(Hu

s
†Hd

1 )(χd
1

†
Hu

1 ) + (Hu
s
†Hd

2 )(χd
2

†
Hu

2 )}+ h.c.}
+ {κ30{(Hu

s
†χd

1)(H
d
1

†
Hu

2 ) + (Hu
s
†χd

2)(H
d
2

†
Hu

1 )}+ h.c.}
+ {κ31{(Hu

s
†χd

1)(H
u
1
†Hd

2 ) + (Hu
s
†χd

2)(H
u
2
†Hd

1 )}+ h.c.}
+ {κ32{(Hu

s
†Hu

1 )(Hd
2

†
χd

2) + (Hu
s
†Hu

2 )(Hd
1

†
χd

1)}+ h.c.}
+ {κ33{(Hu

s
†Hu

1 )(χd
1

†
Hd

1 ) + (Hu
s
†Hu

2 )(χd
2

†
Hd

2 )}+ h.c.}.
In our numerical analysis we restricted ourselves to the inclusion of a minimal number of terms
from Vmixed which break all accidental symmetries such that only those three Higgs particles
remain massless which are eaten by the W± and Z bosons. As explained in section 4.3, the
three terms κ2, κ5 and κ19 are sufficient.
We want to obtain the following VEV configuration:

〈Hd,u
s 〉 = 61.5 GeV , 〈Hd

1 〉 = 〈Hd
2 〉 = 〈χd1〉 = 〈χd2〉 = 61.5 GeV , 〈Hu

1 〉 = 61.5 e−
3 π i
7 GeV

and 〈Hu
2 〉 = 61.5 e

3 π i
7 GeV,

which allows all parameters in the potential Vd to be real, as all fields Hd
s , H

d
1,2 and χd1,2 have

real VEVs. Furthermore we can remove the phase of σu2 such that we are left with only three
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complex parameters stemming from Vmixed.
The mass parameters are set to be of the electroweak scale:

µus = 100 GeV , µuD = 200 GeV , µds = 100GeV , µdD = 200 GeV and µ̃dD = 150 GeV .

One possible setup of parameters is then:
For Vu:

λus = 0.959337 , λu1 = 2.52548 , λu2 = 0.374967 , λu3 = −0.588842 , σu1 = 1.62353 ,
σu2 = −0.276964 , σu3 = −0.283914 .

For Vd:

λds = 1.70438 , λd1 = 3.76598 , λ̃d1 = 1.47549 , λd2 = −0.344036 , λ̃d2 = −0.185157 ,
λd3 = −0.304589 , λ̃d3 = −0.733236 , σd1 = 0.22429 , σ̃d1 = 4.6792 , σd2 = −0.87457 ,
σ̃d2 = −2.0284 , σd3 = 0.961454 , σ̃d3 = 0.649984 , τd1 = 2.96557 , τd2 = 1.22903 ,
τd3 = −2.02133 , τd4 = −1.22242 , τd5 = −2.31577 , τd6 = 2.38236 , τd7 = −0.660102 ,
ωd1 = 0.452165 , ωd2 = −2.112 , ωd3 = −1.63452 .

And for the three complex non-zero couplings from Vmixed:

κ2 = −0.638073 + i 0.0277608 , κ5 = 0.312782 + i 0.140162 , κ19 = −0.278402− i 0.124756 .

Note that all parameters have absolute values smaller than 5 and hence they are still in the
perturbative regime. With these parameter values we obtain the desired VEV structure. The
Higgs masses are then

513GeV, 499GeV, 426GeV, 414GeV, 386GeV, 365GeV, 321GeV, 266GeV, 246GeV,
227GeV, 178GeV, 159GeV, 134GeV, 81GeV and 55GeV

for the neutral scalars. Due to the explicit CP violation in the potential we can no longer
distinguish between scalars and pseudo-scalars. For the charged scalar fields we get

367GeV, 333GeV, 294GeV, 261GeV, 145GeV, 115GeV and 55 GeV .

There will therefore in general be scalar states too light to pass the constraints coming from
direct searches.

C.5 D14 Flavon Potential at Next-to-Leading Order

In this appendix we discuss the form of the VEV shifts induced by the NLO corrections of the
flavon superpotential in the D14 model of section 6.2. These corrections can be written as

∆wf = ∆wf,u + ∆wf,d .

The shifts of the VEVs given in equation (6.96) are of the form

〈ψu2 〉 = vu + δvu , 〈χui 〉 = wu + δwui , 〈ξui 〉 = zu + δzui , 〈ηu〉 = −eu
fu

vuzu

wu
+ δηu,

〈ψd2〉 = vd + δvd , 〈χd1〉 = e−
πimd

7

(
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)
, 〈χd2〉 = e
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7
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)
,
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7
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)
, 〈ξd2〉 = e

2πimd
7

(
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)
and 〈ηd〉 = e−

4πimd
7

(
ed
fd

vdzd

wd
+ δηd

)
,
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with vd, vu and x remaining unchanged, since they are free parameters. For the actual cal-
culation of the shifts we choose a plus sign in zu and zd in front of the square root, see
equations (6.89) and (6.93). The NLO corrections to the flavon potential of the set of fields
{ψu1,2, χu1,2, ξu1,2, ηu} are given by
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. (C.10)

The invariants IR,uk read
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For the IS,uk we find
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and for the IT,uk
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In the flavon sector of fields with non-trivial Z3 charge, the non-renormalizable terms are of the
form

∆wf,d =
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. (C.14)

The invariants IR,dk are the following
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The second set reads
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and finally the IT,dk are given by
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With these corrections to the superpotential we can calculate the shifts which correct the flavon
VEVs. We take the parameterization given in equation (6.96) and plug this into the F-terms
arising from the corrected superpotential. We then calculate the VEV shifts in the same way as
for the D4 model in section 6.2.2, i.e. we linearize the equations in the small quantities δVEV
and 1/Λ. We can then derive the following equations for the shifts of the flavons with index u
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from the F-terms of the driving fields ψ0u
i , ϕ0u

i and ρ0u
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∂ (wf,u + ∆wf,u)
∂ρ0u

1

= fuw
uδηu + eu

(
vuδzu2 −

vuzu

wu
δwu1 + zuδvu

)
+

1
Λ

{
xvdzde

2πimd
7

(
tu1 − tu2

ed
fd

)

− tu3e
πimd

7 (vd)3
(
edz

d

fdwd

)
− tu4(vu)3

(
euz

u

fuwu

)
+ tu5e

2πimd
7 vd(wd)2 + tu6v

u(wu)2 + tu7e
2πimd

7 vdwdzd

+tu8v
uwuzu − vd(zd)2e

2πimd
7

(
tu9 + tu11

ed
fd

)
+ vu(zu)2

(
tu10 − tu12

eu
fu

)}
= 0 (C.22)



C.5. D14 FLAVON POTENTIAL AT NEXT-TO-LEADING ORDER 147
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Note that we replaced the mass parameter Mu
ψ with the VEV wu. Analogously, we will replace

the dimensionless coupling md
ψ with the VEV wd. We also frequently use the fact that m is an

odd integer in order to simplify the phase factors appearing in the formulae.
Similarly, we can deduce another set of equations from the F-terms of the driving fields ψ0d

i ,
ϕ0d
i and ρ0d

i which gives rise to the shifts in the VEVs of the flavons ψdi , χ
d
i , ξ

d
i , η

d and σ:
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One can infer from these equations the generic size of the shifts of the VEVs. In the case of
no accidental cancellation among the various terms present here we expect all of them to be
of the order VEV2/Λ which is εVEV ≈ ε2Λ for all VEVs being of the natural order ε · Λ with
ε ≈ λ2 ≈ 0.04.
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