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Zusammenfassung

Die Dynamik von Vielteilchensystemen in starken, zeitabhängigen Feldern erfordert eine
nicht-perturbative Behandlung aller Konstituenten und ihrer Korrelationen. Eine direkte
numerische Lösung der zeitabhängigen Schrödinger-Gleichung ist jedoch lediglich für sehr
einfache Systeme zielführend. Daher benötigt man zur Beschreibung von Mehrelektronen-
systemen in intensiven Laserfeldern praktikable Methoden, um das quantenmechanische
Vielteilchen-Problem näherungsweise zu lösen. Eine prinzipiell exakte Herangehensweise
stellt die zeitabhängige Dichtefunktionaltheorie dar. In dieser Arbeit wird eine mathe-
matisch rigorose Formulierung der Grundlagen dieser Theorie präsentiert. Desweiteren
wird die zeitliche Nichtlokalität der Austausch-Korrelations-Funktionale untersucht und
eine formale Definition des Begriffes “quantum memory” gegeben. Der fundamentale
Prozess der Rabi-Oszillation wird aus Sicht der zeitabhängigen Dichtefunktionaltheorie
betrachtet, und die Inkompatibilität mit Näherungen basierend auf endlich vielen Niveaus
wird gezeigt. Schlußendlich wird diese Theorie verwendet, um die Elektronendynamik
von C60 in einem intensiven Laserpuls zu berechnen. Obwohl der Laser die kollektiven
Moden des C60 nicht direkt anregen kann, wird das Harmonischenspektrum stark von der
Vielteilchendynamik beeinflußt. Die Effizienz dieses Vielteilchen-Rekollisionsprozesses im
Vergleich zur üblichen Einteilchennäherung für die Erzeugung hoher Harmonischer wird
zusätzlich durch zwei analytische Modelle abgeschätzt.

Abstract

In order to properly describe the dynamics of a many-particle system in strong, time-
dependent fields, a nonperturbative treatment of all constituents and of their correlation
is needed. An ab initio solution of the time-dependent many-body Schrödinger equation
is only feasible for simple systems. Hence, for many-electron systems in intense laser
fields practicable methods for solving the quantum-mechanical many-body problem are
required. An formally exact approach is the time-dependent density functional theory. In
this work a mathematically rigorous formulation of the foundations of this theory is given.
Further the non-locality in time of the exchange-correlation functionals is examined, and
we formally define the notion of “quantum memory”. We investigate the fundamental
process of Rabi oscillations from a density-functional point of view and find the few-level
approximation to be in conflict with the basis of time-dependent density functional theory.
Finally, we apply the theory to calculate the electron dynamics of C60 in intense laser
pulses. Although the laser light is far off-resonant with respect to the collective modes
of the C60 the multi-electron dynamics strongly influences the harmonic spectra. The
efficiency of this multi-particle recollision process with respect to the usual single active
electron approximation of high-order harmonic generation is estimated by two analytical
models.
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Introduction

Assume we are asked to calculate the dynamics of a microscopic system, such as an atom
or a molecule, subject to some time-dependent perturbation. Of course we know that
quantum theory provides all necessary instruments. Usually, by assuming relativistic ef-
fects to be negligible, one would start from the Schrödinger equation. It is straightforward
to write down this fundmental equation for a specific system. However, the solution to
the many-body Schrödinger equation, even for time-independent systems, is, in general,
not known. The calculation of the eigenstates is a very demanding task. An ab initio
numerical calculation within a reasonable amount of time is only possible for quite simple
systems [1]. Nevertheless, we ignore this first severe problem and assume the initial state
to be given.
Now let us turn our attention to the dynamics of this quantum system. Even more
than in the time-independent case an ab initio solution of the time-dependent many-body
Schrödinger equation is extremely involved. One is therefore in need of efficient methods
or approximate theories to handle this problem. For very constrictive assumptions the
actual evolution of the system can be approximated by, e.g., the ubiquitous two-level ap-
proximation of quantum optics [2], which describes the dynamics of a resonantly driven
system. Note, however, that one does need further information about the system to set up
such a few-level scheme. For very weak time-dependent fields, perturbation theories may
describe the dynamics of the system quite well [3]. For stronger driving fields, however,
perturbation theory is not applicable anymore. This strong field domain has become more
and more important since the advances in laser technology have led to the possibility of
monitoring real-time dynamics of electrons, and unexpected strong field phenomena were
observed [3]. For this high intensity regime other feasible approaches to quantum dynam-
ics different from perturbation theory in the driving fields have to be used.
A very successful description of atoms or molecules in intense laser fields is the so-called
strong field approximation [4–7]. In this approximation only one electron is assumed to
interact with the field, while the rest of the system is an inert background for the actual
dynamics. An extension of this strong field approximation to multi-particle systems can
be formulated. However, this intense-field many-body S-matrix theory [8] becomes very
involved if more than only a few particles are considered and knowledge of the electronic
structure of the target is required as an input.

On the computational side we know that the challenges posed by many-body systems
arise due to the interaction of all their constituents: Every particle “feels” all other parti-
cles. A noninteracting system, on the other hand, can be treated computationally much
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Introduction

faster [1, 3]. Hence, an accurate mean-field approach, where each particle feels an effec-
tive field, could describe many-body quantum dynamics very efficiently. Any mean-field
theory will, however, only lead to an approximate description and may not be able to
reproduce important physical properties of the system. At least, this is the case if we
consider the deduced wavefunction of the noninteracting system to be the fundamental
variable. However, if we reformulate quantum mechanics in terms of another variable,
this fundamental problem may be overcome. This is exactly the idea behind density func-
tional theory [9] and its time-dependent formulation [10]. Under certain restrictions the
one-body probability density is uniquely determined by the external field applied to the
many-body system, and every observable is, in principle, determined by the density alone.
The Schrödinger equation and the corresponding wavefunction in this approach may be
seen as a tool to generate the fundamental variable, i.e., the exact density of the system.
One may introduce an auxiliary system of noninteracting particles, which does not neces-
sarily have physical significance, but which leads to the exact one-particle density of the
physical system. In consequence this noninteracting many-body Schrödinger-like equation
decouples into a set of single-particle equations, the so-called Kohn-Sham equations [11].
The solution of the nonlinear Kohn-Sham equations is computationally inexpensive in
comparison to the corresponding solution of the interacting Schrödinger equation [1, 3]
unless the calculation of the mean-field potential is too involved. The applicability of the
Kohn-Sham approach, if certain mathematical restrictions are respected, is not limited
to a specific intensity regime or system. From a physical point of view one may term the
time-dependent density functional theory and the Kohn-Sham scheme to be a universal
reformulation of quantum mechanics.
Unfortunately, the problem is not yet solved. Even if we know that there is an effective po-
tential, which will generate the physical (interacting) density in a noninteracting system,
its exact form is usually not known. Again we have to make approximations to actually
predict the dynamics of the microscopic system. Nevertheless, a detailed inspection of the
foundations of time-dependent density functional theory and of exactly solvable examples
provide routes to successively improve this approach to many-body quantum dynamics.

The formal foundations of time-dependent density functional theory were established in
the famous Runge-Gross paper [10] back in 1984. From that time on the interest in and the
application of time-dependent density functional theory have constantly grown through-
out physics and chemistry [11]. Many people have contributed, but beside review articles
[see, e.g., reference [12]] and a recent collection of work [11], an ab initio approach to the
foundations of the theory is, to the best of our knowledge, missing. Also a mathemati-
cally rigorous formulation [26,30], which exists for ground-state density functional theory,
has, to the best of our knowledge, never been pursued. Although initially the main focus
of applied time-dependent density functional theory was on the linear response of com-
plex quantum systems, nonperturbative quantum dynamics now enjoys more and more
attraction. While in linear response calculations only the functional derivatives of the
effective potentials in the vicinity of the ground-state are of importance, in the nonper-
turbative regime one requires the full time-dependent effective potential. Already in the
early years of time-dependent density functional theory major differences to the ground-
state density functional theory were recognized. For instance, the effective potential at
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time t depends on the initial state and also on previous densities at times t′ < t, i.e., it
has “memory” [13]. Simple approximations for the effective potential as, e.g., the local
density approximation, are adequate for some problems, but may lead to wrong predic-
tions for others [11]. More elaborate approximations, of course, improve the reliability of
the Kohn-Sham approach to quantum dynamics. The study of simple nonperturbative
problems from a time-dependent density functional theory point of view [14,15] as well as
fundamental considerations [13] led to further insight into the structure of effective poten-
tials [11]. Still, essential problems remain, such as resonant dynamics in time-dependent
density functional theory.

This work presents an unified ab initio approach to time-dependent density functional
theory. The formal theory is redefined to the extent that we can state a mathematically
rigorous formulation. For certain restrictions on the spatial behavior of the initial con-
figurations as well as for the Hamiltonians the existence of the effective potential can
be proven. This gives new insight into the foundations and highlights open problems of
time-dependent density functional theory. A formal definition of “quantum memory” is
given. The question of functional differentiability of the effective potentials is shown to
be linked to the properties of the set of possible density variations. The possibility of an
ab initio time-local approximation for the effective potentials is discussed. Further the
connection of “quantum memory” and wavefunction-dependence of effective potentials is
presented. We find that whenever the wavefunction is expressible by the instantaneous
density, “quantum memory” and initial state-dependence vanish. Resonant dynamics are
analyzed from a density functional perspective using a one-dimensional helium model
system. It is shown that a simple adiabatic approximation exhibits resonant behavior
without population transfer. This feature is found to be essentially of classical origin.
The incompatibility of few-level approximations with time-dependent density functional
theory is discussed. Finally we consider the radiation of a C60 fullerene subject to an
intense laser pulse. Here we identify the novel strong field phenomenon of recollision-
induced plasmon excitation and develop two analytical models for this process in the
spirit of the strong field approximation.

This thesis is divided into three main parts: In chapter one general many-body the-
ory for nonrelativistic systems in second quantization is reviewed. The basic theorem
of time-dependent density functional theory is deduced, and a proper mathematical for-
mulation of the theory is given. The nonlocality in time of the effective potential is
investigated. Finally, approximations for the effective potential are presented and re-
cently published criticism on the foundations of the theory is addressed. In chapter
two the Hamiltonian of an arbitrary system in a general multiphoton field is introduced
and the usual approximations leading to a semi-classical description are surveyed. The
strong field approximation and its extension to multi-particle phenomena are deduced.
In chapter three resonant interactions in time-dependent density functional theory are
investigated. Further, the radiation of a C60 fullerene subject to an intense laser pulse is
considered, with the emphasis on the role of radiation owing to collective effects. Finally,
a conclusion and an outlook on future work is given.
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Chapter 1

Many-Body Quantum Theory

Quantum theory has been established about a century ago and led to deep insights into
nature. Starting with a nonrelativistic theory of matter, i.e., the Schrödinger equation,
the next step was to incorporate special relativity into quantum theory via the Klein-
Gordon and Dirac equation. Further development led to quantum field theories such as
quantum electrodynamics, which describes the interaction of electrically charged particles
via photons, or quantum chromodynamics, the theory of the strong force (colour force).
From a fundamental point of view one could be tempted to believe that in order to un-
derstand nature we only have to find the most fundamental laws governing its smallest
constituents and that complex systems are nothing but the sum of their parts. This re-
ductionist’s point of view naturally leads to the conclusion that after we have extensively
studied the quantum mechanics of simple systems no new phenomena will emerge when
studying large systems. So why bother about an old theory which has been replaced by
more accurate theories on the smallest scales?
Many-particle physics tells us that a complex system may be more than the sum of the
properties of the system’s parts. The interplay of the constituents of a system leads to new
and unexpected phenomena such as superconductivity, superfluidity or the quantum hall
effect [16]. Also in the dynamics of quite simple atomic or molecular systems new phenom-
ena emerge due to correlation and collectivity of the electrons. Most famous in the field
of strong laser-matter interaction is the nonsequentiel double ionization [17] which could
only be explained by including correlation between the electrons involved. Hopefully,
the development of methods to compute the dynamics of complex many-particle systems
yields novel physical insights. One such approach is time-dependent density functional
theory.

We will review briefly the second quantized description of a general many-body quan-
tum system and then reformulate the problem to be solved in terms of quantum fluid
dynamics. Though this is not the usual way to consider the many-body problem in quan-
tum mechanics, this approach will naturally lead to the Runge-Gross theorem which forms
the basis of time-dependent density functional theory and will further give some guidance
how to systematically improve the approximations in this theory. Also nonequilibrium
Green’s functions and the Keldysh formalism are closely interlinked with time-dependent
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Chapter 1: Many-Body Quantum Theory

density functional theory. We will introduce a proper action functional defined on the
Keldysh time contour. Further some approximations of the effective potentials are dis-
cussed and we will also consider recent criticism on the fundaments of time-dependent
density functional theory.
Of special interest are the formal theory and the foundations of time-dependent density
functional theory as well as a consistent derivation of the theory. Time-independent den-
sity functional theory will only be shortly reviewed with the focus on the fundamental
ideas and problems to become aware of the similarities as well as the differences be-
tween density functional theory and its time-dependent formulation. The mathematically
rigorous formulation of density functional theory will be used as a guiding line for our
formulation of time-dependent density functional theory. We give strict conditions under
which the formally exact theory becomes mathematically rigorous. Further we give a
formal definition of the term “quantum memory” via functional derivatives. We point
out that functional differentiability is connected to the properties of the set of possi-
ble density variations. The possibility of an ab initio time-local approximation to the
exchange-correlation potential is discussed. Furthermore, the wavefunction-dependence
of the potentials is explored and we evidence that “quantum memory” and initial state
dependence disappear whenever the wavefunction is locally representable by the density.

1.1 Second Quantization

In order to describe a general many-body quantum system it is convenient to reformulate
the problem field-theoretically. The Schrödinger equation then is rewritten with creation
and annihilation operators, which simplifies the notation and encodes the fundamental
statistics (fermionic or bosonic) in the (anti)commutation-relations of these operators. In
what follows we adopt the derivation in reference [18].

We have a division of theN -particle Hilbertspace into a totally symmetric H(+)
N := sN

i=1Hi
1

and antisymmetric subspace H(−)
N :=

∧N
i=1 Hi

1,

HN = H(+)
N ⊕H(−)

N . (1.1)

Either the possible states of a system are in the symmetric subspace H(+)
N , i.e., the system

is bosonic, or all possible states are in the antisymmetric subspace H(−)
N , i.e., the system is

fermionic. Due to the spin-statistic theorem bosons have integer spin and fermions have
spin 1/2, 3/2, ... . Thus the corresponding wavefunctions have to be (anti)symmetrized.
The eigenstates |ϕα〉 of a single-particle observable ϕ̂, with α being a complete set of
quantum numbers, are assumed to form a complete and orthonormalized basis for H1.
Hence, one can construct a basis for H(±)

N with these single-particle eigenstates. We will
distinguish between the spectrum of ϕ̂ to be continuous or discrete.
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1.1. Second Quantization

1.1.1 Observable with Continuous Spectrum

For a continuous spectrum of ϕ̂ we have:

ϕ̂|ϕα〉 = ϕα|ϕα〉, (1.2)

〈ϕα|ϕβ〉 = δ(ϕα − ϕβ) ≡ δ(α− β), (1.3)∫
dα|ϕα〉〈ϕα| = 11. (1.4)

Note here that we have an orthonormalization condition (1.3) in terms of a Dirac delta
function δ(α − β). This is the cause for the main difference between the continuous and
the discrete case. The (anti)symmetrized N -particle state reads

|ϕα1 ...ϕαN
〉ǫ =

1

N !

∑

P
ǫpP|ϕα1 ...ϕαN

〉, (1.5)

with P the permutation operator, ǫ = ± indicating bosonic (+) or fermionic (−) systems,
and p the number of transpositions of P. The generalized orthonormalization condition
is

ǫ〈ϕβ1...ϕβN
|ϕα1...ϕαN

〉ǫ =
1

N !

∑

Pα

ǫpαPα
{
〈ϕ1

β1
|ϕ1
α1
〉...〈ϕNβN

|ϕNαN
〉
}

(1.6)

=
1

N !

∑

Pα

ǫpαPα [δ(β1 − α1)...δ(βN − αN)] .

The subindex α for Pα indicates that the operator only acts on the single particle wave-
functions with the same subindex. The corresponding completeness relation for the N -
particle case is then found by

∫
...

∫
dβ1...dβN |ϕβ1...ϕβN

〉ǫ ǫ〈ϕβ1...ϕβN
| = 1

ǫ
N (1.7)

with 1
ǫ
N the identity operator in Hǫ

N .
Now we will circumvent the cumbersome task of (anti)symmetrizing the wavefunctions
by introducing creation and annihilation operators and the vacuum state. The creation
operator a†ϕα

≡ a†α is defined as

a†α : Hǫ
N → Hǫ

N+1 (1.8)

|ϕβ1...ϕβN
〉ǫ 7→ a†α|ϕβ1...ϕβN

〉ǫ =
√
N + 1|ϕαϕβ1...ϕβN

〉ǫ,

connecting the different many-particle Hilbertspaces. The order of the creation operators
is of importance as we find

[
a†α1

, a†α2

]
−ǫ := a†α1

a†α2
− ǫa†α2

a†α1
= 0. (1.9)

The creation operators commute in the bosonic and anticommute in the fermionic case.
Thus, strictly speaking, we have two different creation operators. However, we will treat
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Chapter 1: Many-Body Quantum Theory

them here in a general manner. What kind of creation operator is chosen depends on the
particle described.

The adjoint operator
(
a†α
)†

= aα is defined via

aα : Hǫ
N → Hǫ

N−1 (1.10)

|ϕβ1ϕβ2...ϕβN
〉ǫ 7→ aα|ϕβ1ϕβ2...ϕβN

〉ǫ =
1√
N

{δ(α− β1)|ϕβ2...ϕβN
〉ǫ

+ǫδ(α− β2)|ϕβ1ϕβ3 ...ϕβN
〉ǫ +

+...+

+ ǫN−1δ(α− βN)|ϕβ1ϕβ3 ...ϕβN−1
〉ǫ
}
.

The annihilation operator aα destroys an orbital |ϕα〉 and generates a multi-particle
state with N − 1 particles. This behavior can already be seen by the definition (1.8)

ǫ〈ϕβ1...ϕβN
|aα =

√
N + 1

ǫ〈ϕαϕβ1 ...ϕβN
|. (1.11)

The annihilation operators obey

[aα1 , aα2 ]−ǫ = 0. (1.12)

We now introduce the vacuum state via the relation

aα|0〉 := 0. (1.13)

With this a general multi-particle state is generated as

|ϕα1 ...ϕαN
〉ǫ =

1√
N !
a†α1

...a†αN
|0〉 (1.14)

and the adjoint thereof is

ǫ〈ϕα1 ...ϕαN
| =

1√
N !

〈0|aαN
...aα1 . (1.15)

The (anti)commutation relations for the creation and annihilation operators are
[
aα1 , a

†
α2

]
−ǫ = δ(α1 − α2). (1.16)

A general N -particle observable Â usually consists of one- and two-particle contributions

Â =

N∑

i=1

Â
(i)
1 +

1

2

i6=j∑

i,j

Â
(i,j)
2 . (1.17)

We may express the operator Â in terms of the operators aα and a†α. By using the
completeness relation (1.7) one finds for the one-particle contribution

N∑

i=1

Â
(i)
1 =

∫
...

∫
dα1...dαNdβ1...dβN |ϕα1 ...〉ǫ ǫ〈ϕα1 ...|

N∑

i=1

Â
(i)
1 |ϕβ1...〉ǫ ǫ〈ϕβ1...|

=

∫ ∫
dαdβ〈ϕα|Â1|ϕβ〉a†α1ǫN−1aβ

≡
∫ ∫

dαdβ〈ϕα|Â1|ϕβ〉a†αaβ, (1.18)

8



1.1. Second Quantization

with 1
ǫ
N−1 the identity of Hǫ

N−1. In an analogous manner one finds

1

2

i6=j∑

i,j

Â
(i,j)
2 =

1

2

∫
...

∫
dαdβdγdδ〈ϕ(1)

α ϕ
(2)
β |Â2|ϕ(1)

γ ϕ
(2)
δ 〉a†αa†β1ǫ(N−2)aγaδ

≡ 1

2

∫
...

∫
dαdβdγdδ〈ϕ(1)

α ϕ
(2)
β |Â2|ϕ(1)

γ ϕ
(2)
δ 〉a†αa†βaγaδ. (1.19)

The matrix element may also be calculated with (anti)symmetrized two-particle states
without any change, in contrast to the discrete case later on.
Two important operators of special interest are the occupation density operator

n̂α = a†αaα, (1.20)

with n̂α|ϕβ1...ϕβ2〉ǫ =
{∑N

i=1 δ(α− βi)
}
|ϕβ1...ϕβ2〉ǫ, leading to the microscopic occupa-

tion density and

N̂ =

∫
dα n̂α (1.21)

the particle number operator.

A very important one-particle observable with continuous spectrum from which to con-
struct creation and annihilation operators is the position space operator

r̂. (1.22)

The corresponding operators are called the field operators

ψ̂(r), ψ̂†(r), (1.23)

obeying the previously calculated (anti)commutation relations
[
ψ̂(r)†, ψ̂(r′)†

]
−ǫ

=
[
ψ̂(r), ψ̂(r′)

]
−ǫ

= 0, (1.24)
[
ψ̂(r), ψ̂(r′)†

]
−ǫ

= δ(r − r′).

The associated eigenstates are created again by successive application of the creation
operator

|r1r2...rN〉(ǫ) =
1√
N !
ψ̂†(r1)...ψ̂

†(rN)|0〉. (1.25)

Via the completeness relation one may rewrite the field operators in terms of general
construction operators a†α, aα,

|r〉 = ψ†(r)|0〉 =

∫
dα |ϕα〉〈ϕα|r〉 =

∫
dαϕ∗

α(r)|ϕα〉

=

∫
dαϕ∗

α(r)a†α|0〉

⇒ ψ̂†(r) =

∫
dαϕ∗

α(r)a†α, ψ̂(r) =

∫
dαϕα(r)aα. (1.26)

9



Chapter 1: Many-Body Quantum Theory

1.1.2 Observable with Discrete Spectrum

For a discrete spectrum of ϕ̂ we have:

ϕ̂|ϕα〉 = ϕα|ϕα〉, (1.27)

〈ϕα|ϕβ〉 = δαβ , (1.28)∑

α

|ϕα〉〈ϕα| = 11. (1.29)

Analogously to the continuous case the (anti)symmetrized N -particle state is found by

|ϕα1 ...ϕαN
〉ǫ = Cǫ

∑

P
ǫpP|ϕα1 ...ϕαN

〉, (1.30)

which is formally different to equation (1.5) due to the normalization constant Cǫ. Be-
cause in the discrete case we have the orthonormalization condition (1.28) we find the
normalization constant by

1
!
= ǫ〈ϕα1...ϕαN

|ϕα1...ϕαN
〉ǫ. (1.31)

With the definition of the occupation number ni, which tells us how often a one-particle
state |ϕαi

〉 is found in the N -particle state |ϕα1...ϕαN
〉ǫ, we find

Cǫ ≡ C =

(
N !
∏

i

ni!

)−1/2

. (1.32)

Note that the occupation numbers ni for the different statistics fulfill:

∑

i

ni = N,

ni = 0, 1 fermions (1.33)

ni = 0, 1, 2, ... bosons.

We call

|ϕα1...ϕαN
〉ǫ ≡ |N ;n1n2...ni...〉ǫ (1.34)

the occupation number representation and its states the Fock states. With these states
we find the generalized orthonormalization condition

ǫ〈N ; ...ni...|N ; ...ni...〉ǫ = δNN
∏

i

δnini
(1.35)

and the completeness relation

∑

n1

...
∑

ni

...|N ; ...ni...〉ǫ ǫ〈N ; ...ni...| = 1
ǫ
N . (1.36)

10



1.1. Second Quantization

Again we define the creation operator a†αr
≡ a†r by

a†r : Hǫ
N → Hǫ

N+1 (1.37)

|N ; ...nr...〉ǫ 7→ a†r|N ; ...nr...〉ǫ =
√
nr + 1|ϕαr ϕα1ϕα1 ...︸ ︷︷ ︸

n1

... ϕαrϕαr ...︸ ︷︷ ︸
nr

...〉ǫ

= ǫNr
√
nr + 1|ϕα1ϕα1 ...︸ ︷︷ ︸

n1

... ϕαrϕαr ...︸ ︷︷ ︸
nr+1

...〉ǫ.

Here we have

Nr =
r−1∑

i=1

ni (1.38)

the number of occupied states before the created state αr. Accordingly the creation
operators act in the bosonic case as

a†r|N ; ...nr...〉(+) =
√
nr + 1|N + 1; ...nr + 1...〉(+), (1.39)

and in the fermionic case as

a†r|N ; ...nr...〉(−) = (−1)Nrδnr ,0|N + 1; ...nr + 1...〉(−). (1.40)

A general N -particle Fock state can be created by

|N ;n1...ni...〉ǫ =
∏

p=1...

(a†p)
np

√
np!

ǫNp |0〉. (1.41)

Accordingly we define the annihilation operator ar ≡ (a†r)
† as

ar : Hǫ
N → Hǫ

N−1 (1.42)

|N ; ...nr...〉ǫ 7→ ar|N ; ...nr...〉ǫ = ǫNr
√
nr|N − 1; ...nr − 1...〉ǫ.

The annihilation operator thus leads to:

ar|N ; ...nr...〉(+) =
√
nr|N − 1; ...nr − 1...〉(+) bosonic (1.43)

ar|N ; ...nr...〉(−) = (−1)Nrδnr,1|N − 1; ...nr − 1...〉(−) fermionic.

The associated (anti)commutation relations are

[ar, as]−ǫ =
[
a†r, a

†
s

]
−ǫ = 0, (1.44)

[
ar, a

†
s

]
−ǫ = δrs. (1.45)

A general N -particle operator Â (1.17) can be rewritten in terms of the discrete construc-
tion operators as

Â =
∑

p,r

〈ϕp|Â1|ϕr〉a†par +
1

2

∑

p,r,s,t

〈ϕ(1)
p ϕ(2)

r |Â2|ϕ(1)
t ϕ(2)

s 〉a†pa†rasat. (1.46)

11



Chapter 1: Many-Body Quantum Theory

The only difference to the continuous case is that one has to use the unsymmetrized two-
particle states. This occurs due to the different normalizations. We define the occupation
number operator by

n̂r = a†rar, (1.47)

leading to n̂r|N ; ...nr...〉ǫ = nr|N ; ...nr...〉ǫ, and the particle number operator

N̂ =
∑

r

n̂r. (1.48)

We can rewrite the previously introduced field operators via the completeness relation of
the creation and annihilation operators in accordance with the continuous case. Therefore
any general multi-particle wavefunction |Ψ〉 in terms of the basis induced by {|ϕα〉} can
be constructed as [19]

|Ψ〉 =
∑

α1,...,αN

cα1,...,αN
a†α1

...a†αN
|0〉 (1.49)

=

∫
d3r1...d

3rN

(
∑

α1,...,αN

cα1,...,αN
ϕα1(r1)...ϕαN

(rN)

)
ψ̂†(r1)...ψ̂

†(rN)|0〉

=

∫
d3r1...d

3rN ψ(r1, ..., rN) ψ̂†(r1)...ψ̂
†(rN)|0〉.

Here ψ(r1, ..., rN) is the wavefunction in position space. This construction immediately
takes care of the right symmetrization as only the (anti)symmetrized part of the wave-
function survives. This can be seen directly if one interchanges two coordinates, say r1

and r2. Due to the (anti)commutation relations of the field operators one gains a factor
ǫ in the integral. For the wavefunction not to be zero, i.e., |Ψ〉 6= −|Ψ〉, the change of the
coordinates in the position space-wavefunction have to generate a further ǫ.

1.1.3 Hamiltonian in Second Quantized Notation

In order to formulate the Schrödinger equation in second quantized description we intro-
duce the spin-valued field operators in the Schrödinger picture [18]

ψ̂σ(r), ψ̂†
σ(r), (1.50)

which annihilate or create a particle with spin σ and which are subject to the associated
(anti)commutation relations

[
ψ̂σ(r), ψ̂†

σ′(r
′)
]

−ǫ
= δ(r − r′)δσσ′ . (1.51)

The Hamiltonian in the Schrödinger picture reads

Ĥ(t) = T̂ + V̂int + V̂ (t). (1.52)

12



1.1. Second Quantization

Here the operator T̂ =
∑N

i=1
1
2
k2
i is the kinetic energy operator, V̂int = 1

2

∑i6=j
i,j=1 vint(|ri −

rj|) the particle-particle interaction and V̂ (t) =
∑N

i=1 v(ri, t) the external potential oper-
ator. We use atomic units throughout this chapter, i.e., m = |e| = ~ = 4πǫ0 = 1. The
kinetic energy operator and the external potential are one-particle operators, while the
interaction operator V̂int is a two-particle operator. From equation (1.18) we know how

to express T̂ in terms of the spin-valued field operators,

T̂ =
∑

σ,σ′

∫ ∫
d3rd3r′〈rσ|T̂1|r′σ′〉ψ̂†

σ(r)ψ̂σ′(r
′)

=
∑

σ,σ′

∫ ∫
d3rd3r′

(
∑

σ̃

∫
d3k〈rσ|kσ̃〉〈kσ̃|T̂1|r′σ′〉

)
ψ̂†
σ(r)ψ̂σ′(r

′)

=
∑

σ,σ′

∫ ∫
d3rd3r′

(
−1

2
∇

2
r′δ(r − r′)δσ,σ′

)
ψ̂†
σ(r)ψ̂σ′(r

′)

=
∑

σ

∫
d3rψ̂†

σ(r)

(
−1

2
∇

2
r

)
ψ̂σ(r). (1.53)

Note that via the relation (1.26) the kinetic energy operator may be reexpressed in terms

of the continuous k-representation which is induced by the wave-vector operator k̂. One
then finds in terms of the construction operators ak,σ and a†k,σ

T̂ =
∑

σ

∫
d3k

k2

2
a†k,σak,σ. (1.54)

For the other operators the reformulation in Fourier-space works analogously.
The particle-particle interaction operator is expressed via the spin-valued field operators
following equation (1.19) as

V̂int =
1

2

∑

σ,σ′

∫ ∫
d3rd3r′vint(|r − r′|)ψ̂†

σ(r)ψ̂†
σ′(r

′)ψ̂σ′(r
′)ψ̂σ(r). (1.55)

Here we have used the fact that the interaction between the particles is spin-independent.
For the external potential this does not hold in general. But we will assume throughout
this work, that the external potential operator is spin-independent. We then find

V̂ (t) =
∑

σ

∫
d3r v(r, t) ψ̂†

σ(r)ψ̂σ(r). (1.56)

Thus, with the definition of the density operator

n̂(r) :=
∑

σ

ψ̂†
σ(r)ψ̂σ(r) (1.57)

and the two-particle density operator

̺̂(r, r′) :=
∑

σ,σ′

ψ̂†
σ(r)ψ̂†

σ′(r
′)ψ̂σ′(r

′)ψ̂σ(r), (1.58)
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Chapter 1: Many-Body Quantum Theory

the Hamiltonian in second quantized notation reads

Ĥ(t) =
∑

σ

∫
d3r ψ̂†

σ(r)

(
−1

2
∇

2
r

)
ψ̂σ(r) +

∫
d3r v(r, t) n̂(r)

+
1

2

∫ ∫
d3rd3r′ vint(|r − r′|) ̺̂(r, r′). (1.59)

The first quantized-notation for a general many-body Hamiltonian can be restored if
we apply the second-quantized Hamiltonian (1.59) to the general expression for a wave-
function (1.49), where Ψ(r1σ1, ..., rNσN ) is the associated wavefunction in configuration
space [19].

1.2 Quantum Fluid Dynamics

For a strongly perturbed complex system common many-body techniques based on dia-
grammatic approaches [18] are demanding and not very useful [11, 20, 21]. Even in the
linear response regime such calculations are very cumbersome.
Another way to look at many-body dynamics would be to reformulate the problem in
terms of collective variables, such as the density or current-density of the system. This
leads to quantum fluid dynamics, i.e., we study the time-evolution of the density and
the current. To reformulate the problem at hand in such a manner we will need a deep
understanding of how the density and the current-density are determined by the system
and vice versa. Such considerations naturally lead to an extended Runge-Gross theo-
rem [23] and the formulation of time-dependent density functional theory [10]. It will be
shown that the continuity equation (1.71) and the local force balance equation (1.83) are
a formally closed set of equations uniquely defining the time-dependent density. An exact
quantum fluid dynamical reformulation is possible [20, 21].
First we will derive the equation of motion for the field operators in the Heisenberg picture.
Further the continuity and the local force-balance equation are derived for the general case
of a mixed state. Then we present the extended Runge-Gross proof and show the formal
exactness of the quantum fluid dynamical reformulation of quantum mechanics.

1.2.1 Conservation Laws in the Laboratory Reference Frame

We begin by deducing the Heisenberg equation of motion for the spin-valued field oper-
ators. Let Â(t) be a general operator in the Schrödinger picture. Then this operator in

the Heisenberg picture reads ÂH(t) := Û−1(t, t0)Â(t) Û(t, t0), with Û(t, t0) the unitary

time-evolution operator of the system starting at t = t0. For the Hamiltonian ĤH(t) in
the Heisenberg picture we have [18]

i
dÂH(t)

dt
=
[
ÂH(t), ĤH(t)

]
−

+ i
∂ÂH(t)

∂t
, (1.60)

14



1.2. Quantum Fluid Dynamics

independent of the spin-statistics. Here we define

∂ÂH(t)

∂t
:= Û−1(t, t0)

∂Â(t)

∂t
Û(t, t0). (1.61)

If we now look at the Heisenberg representation of the field operators we have

i
dψ̂σ,H(r, t)

dt
=
[
ψ̂σ,H(r, t), ĤH(t)

]
−

+ i
∂ψ̂σ,H(r, t)

∂t︸ ︷︷ ︸
=0

. (1.62)

One may now calculate the above commutator (for fermions as well as bosons) of the
Hamiltonian in the Heisenberg picture either in terms of the Heisenberg field operators
ψ̂σ,H(r, t) or with the field operators ψ̂σ(r), which are the Schrödinger picture field oper-

ators [18]. For the kinetic energy operator T̂H(t) we find in accordance with (1.53)

[
ψ̂σ,H(r, t), T̂H(t)

]

−
=

[
ψ̂σ,H(r, t),

∑

σ′

∫
d3r′ψ̂†

σ′,H(r′, t)

(
−1

2
∇

2
r′

)
ψ̂σ′,H(r′, t)

]

−

=

(
−1

2
∇

2
r

)
ψ̂σ,H(r, t). (1.63)

The above result may also be derived by

[
ψ̂σ,H(r, t), T̂H(t)

]
−

= Û−1(t, t0)
[
ψ̂σ(r), T̂

]
−
Û(t, t0). (1.64)

Accordingly we can calculate the other parts of the commutator (1.62) and end up with
[20, 22]

i
d

dt
ψ̂σ,H(r, t) =

(
−1

2
∇

2
r

)
ψ̂σ,H(r, t) + v(r, t)ψ̂σ,H(r, t) (1.65)

+
∑

σ′

∫
d3r′vint(|r − r′|)ψ̂†

σ′,H(r′, t)ψ̂σ′,H(r′, t)ψ̂σ,H(r, t).

For the Heisenberg density operator n̂H(r, t) we define the time-dependent density by
averaging with the usual density matrix ρ̂0 =

∑
m pm|Ψm〉〈Ψm| as

n(r, t) = 〈n̂H(r, t)〉0 = tr (ρ̂0 n̂H(r, t)) . (1.66)

The angle brackets denote averaging over the density matrix. Note that we can change
from the Heisenberg to the Schrödinger picture by taking the operators time-independent
and the density matrix time-dependent. This can be done because the trace is invariant
under cyclic permutations of operators. Note further that the density matrix obeys the von
Neumann equation for its time evolution and is a constant of motion for the Heisenberg
equation. Hence,

n(r, t) = 〈n̂(r)〉t = tr (ρ̂(t) n̂(r)) . (1.67)
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Chapter 1: Many-Body Quantum Theory

The current-density operator (in the Schrödinger picture) is defined via

ĵ(r) :=
1

2i

∑

σ

{
ψ̂†
σ(r)∇rψ̂σ(r) −

[
∇rψ̂

†
σ(r)

]
ψ̂σ(r)

}
(1.68)

and the expectation value thereof reads

j(r, t) =
〈
ĵ(r)

〉
t
. (1.69)

We find with

∂n(r, t)

∂t
=

〈
∂

∂t

∑

σ

ψ̂†
σ,H(r, t)ψ̂σ,H(r, t)

〉

0

= −i
〈
[n̂H(r, t), ĤH(t)]−

〉
0

= −i
〈
[n̂(r), Ĥ(t)]−

〉

t
, (1.70)

the continuity equation [11, 18]

∂

∂t
n(r, t) + ∇rj(r, t) = 0. (1.71)

This is the local balance equation for the number of particles. By Gauss’ law the
continuity equation expresses the change of the number of particles in a certain volume
by the flux of the current through the surface of the volume.

In order to calculate the time derivative of j(r, t) we will calculate the commutator of the

operator ĵ(r) with Ĥ(t) averaged over the time-dependent density matrix.

In a first step we calculate the commutator with the external potential operator V̂ (t),

[
ĵ(r), V̂ (t)

]
−

=

∫
d3r′v(r′, t)

[
ĵ(r), n̂(r′)

]
−

= −i (∇rv(r, t)) n̂(r). (1.72)

The other commutators are
[
ĵ(r), V̂int

]
−

=
1

2

∫
d3r′d3r′′vint(|r′ − r̃|)

[
ĵ(r), ̺̂(r′, r′′)

]
−

= −i

∫
d3r′ (∇rvint(|r − r′|)) ̺̂(r, r′), (1.73)

and
[
ĵν(r), T̂

]

−
= −1

2

∑

σ′

∫
d3r′

[
ĵν(r), ψ̂†

σ′(r
′)∇2

r′ψ̂σ′(r
′)
]

−
(1.74)

= − i

4

∑

σ

{
ψ̂†
σ(r)

(
∂

∂rν
∇

2
rψ̂σ(r)

)
−
(

∂

∂rν
ψ̂†
σ(r)

)(
∇

2
rψ̂σ(r)

)

−
(
∇

2
rψ̂

†
σ(r)

)( ∂

∂rν
ψ̂σ(r)

)
+

(
∂

∂rν
∇

2
rψ̂

†
σ(r)

)
ψ̂σ(r)

}
.
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With the help of the momentum-stress-tensor

T̂µν(r) :=
1

2

∑

σ

{(
∂

∂rµ
ψ̂†
σ(r)

)
∂

∂rν
ψ̂σ(r) +

(
∂

∂rν
ψ̂†
σ(r)

)
∂

∂rµ
ψ̂σ(r)

−1

2

∂2

∂rµ∂rν

(
ψ̂†
σ(r)ψ̂σ(r)

)}
, (1.75)

which is a symmetric second rank tensor, we may rewrite the last commutator:

[
ĵν(r), T̂

]
−

= −i
∑

µ

∂

∂rµ
T̂µν(r) = −i∂µT̂µν(r). (1.76)

Here we have introduced the abbreviation ∂
∂rµ ≡ ∂µ and the Einstein-convention, i.e., we

sum over multiple indices. The interaction expression is accordingly

[
ĵν(r), V̂int

]
−

=

∫
d3r′ (∂νvint(|r − r′|)) ̺̂(r, r′) =: V̂int ν(r). (1.77)

One may rewrite the above expression as the divergence of a symmetric second rank tensor.
This form has the advantage to immediately reveal the quantum version of Newton’s third
law, as will be shown below. The derivation of the divergence form makes use of the
symmetry of ̺̂(r, r′):

[
ĵν(r), V̂int

]
−

= −i

∫
d3r′ (∂νvint(|r − r′|)) ̺̂(r, r′) (1.78)

= − i

2

∫
d3r′ (∂′νvint(|r′|)) [̺̂(r − r′, r) + ̺̂(r, r − r′)]

=
i

2

∫
d3r′ (∂′νvint(|r′|)) [̺̂(r + r′, r) − ̺̂(r, r − r′)] .

In deriving the third line, we employed a change of integration-variable r′ → −r′ for
̺̂(r − r′, r). With the translation operator,

er
′µ∂µ ̺̂(r, r − r′) = ̺̂(r + r′, r), (1.79)

and the operator identity

er
′µ∂µ − 1 =

∫ 1

0

dλr′µ∂µe
λr′µ∂µ , (1.80)

we may rewrite

[
ĵν(r), V̂int

]
−

=
i

2

∫
d3r′

(
er

′µ∂µ − 1
)

(∂′νvint(|r′|)) ̺̂(r, r − r′)

=
i

2

∫
d3r′r′µ∂µ (∂′νvint(|r′|))

∫ 1

0

dλ ̺̂(r + λr′, r − (1 − λ)r′)

= −i∂µŴµν(r) (1.81)
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with the interaction-stress-tensor [20]

Ŵµν(r) := −1

2

∫
d3r′

r′νr′µ

|r′|
∂vint(|r′|)
∂|r′|

∫ 1

0

dλ ̺̂(r + λr′, r − (1 − λ)r′). (1.82)

The parameter λ is the natural parameter of the geodesic that connects two interacting
particles [20]. In the laboratory (Eulerian) reference frame, i.e., the frame is fixed while
the system is moving, the geodesics are simply straight lines. Later on we will change to
a moving reference frame in which the geodesics will not be straight lines anymore.
The expectation value taken with the density matrix ρ̂(t) then leads to [11, 18]

∂

∂t
jν(r, t) = −n(r, t)∂νv(r, t) − ∂µ

〈
T̂µν(r)

〉
t︸ ︷︷ ︸

=:Tµν(r,t)

−∂µ
〈
Ŵµν(r)

〉
t︸ ︷︷ ︸

=:Wµν(r,t)

. (1.83)

This is a local force balance equation, a local quantum version of Newton’s third
law. The internal integral forces, the kinetic force ∂µTµν(r, t) and the interaction force
∂µWµν(r, t), due to their form as divergences obey

∫
d3r ∂µ (Tµν(r, t) +Wµν(r, t))︸ ︷︷ ︸

=:Πµν(r,t)

= 0. (1.84)

Thus the integral kinetic and integral interaction forces become zero. The symmetric
second rank tensor Πµν(r, t) represents the local internal stress in the quantum fluid.

The local balance equation for the number of particles (1.71), i.e., the continuity equa-
tion and the local force balance equation (1.83) form the basis of the fluid dynamical
description of the quantum many-body problem [10]. We will show, by fixing the
initial state, the boundary condition of the external potentials and by assuming a density
Taylor-expandable at t = t0, equations (1.71) and (1.83) determine the current and the
density uniquely. The tensor of internal stress Πµν(r, t) is shown to be an operator of
the density as well as the current. Thus equations (1.71) and (1.83) can be seen as a
formally closed system of equations fixing the dynamics of the collective variables n(r, t)
and j(r, t). The velocity v(r, t) := j(r, t)/n(r, t) may be used as collective variable too.

Before we turn to the derivation of the extendend Runge-Gross proof, which will also
form the basis of our time-dependent density functional theory formulation, we rewrite
the fundamental equations of the fluid dynamical description [20, 21]. We separate the
contribution of the convective motion of the particles to the tensor Πµν(r, t), i.e.,

Cµν(r, t) := n(r, t)vµ(r, t)vν(r, t). (1.85)

This is the macroscopic momentum-flow tensor, where vµ(r, t) = jµ(r, t)/n(r, t). If
we further define the convective derivative

Dt :=
∂

∂t
+ v(r, t) · ∇r (1.86)
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we can rewrite the continuity equation,

Dtn + n∂µvµ = 0 , (1.87)

and the local force balance equation,

nDtvν + ∂µPµν + n∂νvext = 0 . (1.88)

Note that we introduced the subindex ’ext’ to the external potential to distinguish between
the velocity vector field v and the external potential. The exact stress tensor is defined
by

Pµν(r, t) = T̆µν(r, t) +Wµν(r, t) (1.89)

with the kinetic part as

T̆µν(r, t) =
1

2

∑

σ

〈
(qµψ̂σ)

†qνψ̂σ + (qνψ̂σ)
†qµψ̂σ −

1

2
∂µ∂ν(ψ̂

†
σψ̂σ)

〉

t

(1.90)

and qµ = −i∂µ − vµ, which accounts for the separation of the macroscopic convective
motion. Since the convective motion has been split from Πµν(r, t) = Pµν(r, t) +Cµν(r, t)
only the relative motion of the particles contribute to Pµν(r, t). This form will later on
be used to rewrite the problem in a Lagrangian noninertial reference frame from which
one can deduce approximations of interest.

1.2.2 Extendend Runge-Gross Theorem

After having formulated the continuity equation (1.71) and the local force balance equa-
tion (1.83) we turn to the famous Runge-Gross theorem [10]. However, we will adopt
an extendend version thereof introduced by van Leeuwen in [23]. Extensive use will be
made of the second quantization, introduced in section 1.1. Note that in the original
Runge-Gross proof no restriction to analytic densities in time was made. We will examine
the question how the density and the current-density of a general many-body system are
connected to the interaction potential vint(|r − r′|) and the external potential v(r, t). In
particular one may ask if there is only one external potential generating a given time-
dependent density for a chosen interaction potential and initial state. Is it possible to
generate a physical (interacting) time-dependent density via some special external poten-
tial acting on an auxiliary (noninteracting) system?

Proof. In a first step we will take the divergence of (1.83) and use the continuity equation
to find

∂2

∂t2
n(r, t) = ∇r · [n(r, t)∇rv(r, t)] + ∂ν∂µΠµν(r, t)︸ ︷︷ ︸

=:q(r,t)

. (1.91)
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Chapter 1: Many-Body Quantum Theory

This will be our basic equation. We will only consider finite systems with external po-
tentials bounded at infinity. q(r, t) decays exponentially at infinity if the density does.
Assume now we have solved the many-body problem for the Hamiltonian

Ĥ(t) = T̂ + V̂int + V̂ (t) (1.92)

and the initial density matrix ρ̂0 at time t = t0. We have found the time-dependent
density matrix ρ̂(t) and the density n(r, t). For a second system with the Hamiltonian

Ĥ ′(t) = T̂ + V̂ ′
int + V̂ ′(t), (1.93)

having a different external potential and interaction operator, we assume the solution for
an initial density matrix ρ′0 at t = t0 being ρ′(t). The interaction operator V̂ ′

int is chosen
such that its expectation value and its derivatives are finite. For both systems equation
(1.91) is fulfilled. For the second system we thus find

∂2

∂t2
n′(r, t) = ∇r · [n′(r, t)∇rv

′(r, t)] + ∂ν∂µΠ
′
µν(r, t)︸ ︷︷ ︸

=:q′(r,t)

, (1.94)

with the local internal stress tensor Π̂′
µν(r) redefined accordingly.

Now we will ask the question:

Can we find an external potential v′(r, t) for a given interac-
tion potential v′int(|r − r′|) which will lead to the same time-
dependent density n(r, t) as the initial system Hamiltonian

Ĥ(t)?

We require

n(r, t0) = tr (ρ̂0 n̂(r))
!
= tr (ρ̂′0 n̂(r)) = n′(r, t0). (1.95)

Both initial configurations should lead to the same initial density. We use equation (1.94)
to relate the different systems. This equation is a second order partial differential equation
in time. Therefore a second initial condition has to be posed:

∂

∂t
n(r, t)

∣∣∣∣
t=t0

= tr
(
ρ̂0 ∇r · ĵ(r)

)
!
= tr

(
ρ̂′0 ∇r · ĵ(r)

)
=

∂

∂t
n′(r, t)

∣∣∣∣
t=t0

. (1.96)

Furthermore we will use the abbreviation

f (k)(r) =
∂k

∂tk
f(r, t)

∣∣∣∣
t=t0

(1.97)

for the k-th time derivative of some function f(r, t) at time t = t0. As an important
restriction we assume the reference density n(r, t) to be analytic at t = t0, i.e.,
within a nonzero radius of convergence the density is exactly defined via its Taylor series

n(r, t) =

∞∑

k=0

1

k!
n(k)(r)(t− t0)

k. (1.98)
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1.2. Quantum Fluid Dynamics

We will now choose an external potential v′(r, t) such that

n′(k)(r) = n(k)(r) (1.99)

holds for all k > 1. This can be done using equation (1.94). In a first step we have for
the local force balance equation at t = t0

n′(2)(r) = ∇r ·
[
n′(0)(r)∇rv

′(0)(r)
]
+ q′(0)(r). (1.100)

Here we have the initial condition n′(0)(r) = n(0)(r) and

q′(0)(r) = tr
(
ρ̂′0

(
∂ν∂µΠ̂

′
µν(r)

))
(1.101)

with the initial density matrix ρ̂′0. If we demand

n′(2)(r)
!
= n(2)(r) (1.102)

the above equation defines v′(0)(r) via

∇r ·
[
n(0)(r)∇rv

′(0)(r)
]

= n(2)(r) − q′(0)(r). (1.103)

This equation is of Sturm-Liouville type. For a given boundary condition it has a unique
solution if a solution exists. We will choose v′(0)(r) → 0 for |r| → ∞. Thus also the gauge
is fixed. Otherwise we have a solution modulo a constant c. With this choice of the initial
potential we have guaranteed by construction that n′(2)(r) = n(2)(r), which we will also
need later on. To construct v′(1)(r) we differentiate equation (1.94) at t = t0 leading to

∇r ·
[
n′(0)(r)∇rv

′(1)(r)
]

= n′(3)(r) − q′(1)(r) (1.104)

−∇r ·
[
n′(1)(r)∇rv

′(0)(r)
]
,

with

q′(1)(r) =
∂

∂t
q′(r, t)

∣∣∣∣
t=t0

= −i tr

(
ρ̂′0

[
∂ν∂µΠ̂

′
µν(r), Ĥ ′

0

]

−

)
, (1.105)

and H ′
0 := T̂ + V̂ ′

int + V̂ ′(t)
∣∣∣
t=t0

in accordance with equation (1.59). With the initial

conditions (1.95) and (1.96) and the requirement

n′(3)(r)
!
= n(3)(r), (1.106)

the right hand side of equation (1.104) is known, and by imposing the same boundary
condition as before we fix v′(1)(r) uniquely. In the next step we differentiate equation
(1.94) two times. Here we will find a term of the form ∇r ·

[
n′(2)(r)∇rv

′(0)(r)
]
. However,

via the first step of our construction we guarantee that n′(2)(r) = n(2)(r) holds, leading
again to the same kind of differential equation and to a uniquely defined v′(2)(r). For the
k-th derivative of equation (1.94) we thus find

n′(k+2)(r) = q′(k)(r) +

k∑

l=0

(
k
l

)
∇r ·

[
n′(k−l)(r)∇rv

′(l)(r)
]
. (1.107)
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By imposing the condition

n′(k+2)(r)
!
= n(k+2)(r) (1.108)

we end up with

∇r ·
[
n′(0)(r)∇rv

′(k)(r)
]

= n(k+2)(r) − q′(k)(r) (1.109)

−
k−1∑

l=0

(
k
l

)
∇r ·

[
n′(k−l)(r)∇rv

′(l)(r)
]
.

The right hand side of equation (1.109) is fixed. The terms v′(l)(r) for l < k were previously

defined and q′(k)(r) can be computed by multiple commutators of ∂ν∂µΠ̂
′
µν(r) with the

time derivatives of the Hamiltonian Ĥ(t) at time t = t0 up to order k − 1, i.e., successive
application of the Heisenberg equation. With the chosen boundary conditions v′(k)(r) is
uniquely determined. Finally we have generated the formal Taylor expansion of the exact
external potential

v′(r, t) =
∞∑

k=0

1

k!
v′(k)(r)(t− t0)

k (1.110)

which determines the potential within its radius of convergence. As we have assumed a
reference density n(r, t) analytic at t = t0 and hence we can disregard a possible zero
convergence radius. For a finite convergence radius we may propagate ρ̂′0 until some time
t1 within the region of convergence, ending up with ρ̂′(t1). This density matrix may now
be used as a new initial configuration and the above procedure can be repeated. This
amounts to an analytic continuation along the real time-axis. �

Theorem 1.2.1 (Extended Runge-Gross Uniqueness Theorem) Let n(r, t), the

density of a general many-body system with Hamiltonian Ĥ(t) = T̂+V̂int+V̂ (t) and initial

configuration ρ̂0, be analytic at t = t0 . For a system with interaction V̂ ′
int and the initial

configuration ρ̂′0 subject to the constraints

n(r, t0) = n′(r, t0),

tr
(
ρ̂0 ∇r · ĵ(r)

)
= tr

(
ρ̂′0 ∇r · ĵ(r)

)
,

the external potential v′(r, t) and Hamiltonian Ĥ ′(t) leading to the same density is uniquely
defined.

What are the consequences? If we have two systems with different particle-particle inter-
actions and we find an initial configuration for each of those systems fulfilling the above
requirements we know that there are uniquely defined external potentials leading to the
same density in both systems at later times. Especially if we assume the second system to
be noninteracting, i.e., V̂ ′

int ≡ 0, we are formally able to exactly reproduce the density of
an interacting system provided we find an appropriate initial configuration for the nonin-
teracting system. Now suppose we have two different initial configurations, both leading
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1.2. Quantum Fluid Dynamics

to the same initial density and the first time derivative thereof. Further, both are subject
to the same interaction, i.e., V̂int = V̂ ′

int. Then we realize, if we propagate the two different
initial configurations with the same (analytic) external potential, that both systems will
have the same (analytic) density, although their time-dependent density matrices will not
be the same.

Now we can proof the possibility of a formally closed quantum fluid dynamical de-
scription:
Proof. From the continuity (1.71) and the local force balance equation (1.83) we deduced
the fundamental relation (1.91) used to proof the Runge-Gross theorem. An analytic den-
sity determines uniquely the corresponding external potential and vice versa if the initial
configuration is fixed, leading to an invertible mapping [10]

vbρ0 : n(r, t) 7→ v(r, t). (1.111)

One could reformulate this statement in terms of the current-density as well. Thus both
collective variables are equivalent as well as combinations thereof like the velocity. From
the solution of the von Neumann equation we have a mapping

ρ̃bρ0 : v(r, t) 7→ ρ̂(t) (1.112)

(in the original Runge-Gross paper the mappings were denoted as vbρ0 = G−1 and ρ̃ = F ).
If no special gauge was chosen we would have a mapping onto a class of density matrices

[ρ̂(t)] := {ρ′(t) = exp[−i α(t)]ρ̂(t)| α(t) purely time-dependent function}

corresponding to the definition of a class of external potentials

[v] := {v′ = v + c(t)|c(t) purely time-dependent function},

with ∂tα(t) = c(t). A composition of both mappings then leads to

ρ̃bρ0 ◦ vbρ0 : n(r, t) 7→ ρ̂bρ0(t). (1.113)

Therefore the density (with the initial configuration and the choice of gauge) determines
the associated density matrix. We may consider the density matrix ρ̂bρ0([n]; t) to be an
operator of the density or another collective variable. Hence every expectation value of an
observable may also be considered an operator of the density, especially, the local internal
stress

Πµν([n]; r, t) = tr
(
ρ̂bρ0([n]; t)Π̂µν(r)

)
(1.114)

is defined by the density n(r, t). Therefore we have a formally closed set of quantum
fluid dynamical equations, i.e., the continuity equation (1.71) and the local force balance
equation (1.83), as long as we consider densities which are analytic at t = t0 and fix the
initial condition as well as the gauge. �

The deduced Runge-Gross theorem forms the basis of time-dependent density functional
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Chapter 1: Many-Body Quantum Theory

theory. It is obvious that the density functional description is intimately related to a fluid
dynamical description. This was already noted in the second Runge-Gross theorem [10].
In fact, the quantum fluid dynamical reformulation is part of the density functional for-
malism of time-dependent problems. The time-independent density functional theory may
be interpreted as exact quantum hydrostatics [20, 21].

1.3 Time-Dependent Density Functional Theory

Time-dependent density functional theory is a formally exact way to treat the quantum
many-body problem. Instead of the wavefunction on the configuration space R3N one
deals with the one-particle density on R3, independent of the number of particles (N)
involved. This offers a computationally more favorable way to handle strongly perturbed
complex systems as the effort for a wavefunction-based ab initio solution of the multi-
particle problem grows exponentially [1] with the number of particles. The usual way to do
time-dependent density functional theory calculations is by adopting the time-dependent
Kohn-Sham scheme. The Runge-Gross theorem does prove that under certain conditions
there is a one-to-one correspondence between the density and the external potential, and
that one is in principle able to model a physical (interacting) many-body system by a non-
interacting system. This noninteracting problem describing a physical system then can be
solved via a set of nonlinear, selfconsistent differential equations, called the Kohn-Sham
equations. The effort for the solution of the Kohn-Sham equations only scales linearly
with the number of particles [1]. However, the main problem of time-dependent density
functional theory in practice lies in the formulation of the Kohn-Sham equations and the
approximations, which ultimately have to be made.

We will begin by introducing the derivatives of nonlinear mappings and their mathemat-
ical implications. Then a short introduction into ground-state density functional theory
will be given with emphasis on fundamental issues. The problem of v-representability and
related questions will be posed, which are of interest for time-dependent density functional
theory. The mathematically sound derivation of ground-state density functional theory
will be used as a guiding line for a proper formulation of time-dependent density func-
tional theory. The problems associated with an action functional are considered and some
approximations for the exchange-correlation potential are discussed. Further we consider
the nonlocality in time of the potentials expressed via the density, which is usually termed
“quantum memory”. Finally also recently published criticism of the fundaments on the
theory is addressed.

1.3.1 Differentiation of Nonlinear Mappings

We will now introduce the derivatives of (nonlinear) mappings between real Banach
spaces. They are of fundamental importance in density functional theory as well as
time-dependent density functional theory.
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1.3. Time-Dependent Density Functional Theory

Let Ba and Bb be two real Banach spaces with norm ‖.‖a and ‖.‖b, respectively. Note that
most of the following theorems and lemmas are true also for normed vector spaces with-
out completeness [24]. Let further denote with L(Ba,Bb) the space of all linear mappings
between Ba and Bb, which itself is a real Banach space.

Definition 1.3.1 Let U ⊂ Ba be nonempty and open, f : U → Bb.

1. f is called Gâteaux differentiable at x0 ∈ U if there exists a continuous linear
operator T ∈ L(Ba,Bb) which satisfies

lim
ǫ→0

f [x0 + ǫh] − f [x0]

ǫ
= T [h] (1.115)

for all h ∈ Ba. The operator T is called the Gâteaux derivative of the operator
f at x0. We denote

df [x0; .] := T [.]. (1.116)

2. f is called Fréchet differentiable at x0 ∈ U if the convergence in (1.115) is

uniform with respect to h ∈ {h̃ ∈ Ba|‖h̃‖a ≤ 1}. The operator T is then called the
Fréchet derivative of the operator f at x0. We denote

Df [x0; .] := T [.]. (1.117)

Some definitions of the Gâteaux derivative do not pose the condition of linearity. However,
there are sufficient conditions for the linearity of this derivative known [25]. Note that
the derivative of f at some position is a linear operator, mapping the initial Banach space
onto a second one. The Gâteaux (Fréchet) derivative d(D)f : U → L(Ba,Bb), however,
is an operator-valued mapping. df is the functional analogon to the partial derivative of
ordinary analysis. df [x0; h] is the Gâteaux differential at x0 in direction h. The Fréchet
derivative Df is the generalization of the total derivative. It reflects the idea of linear
approximation of an operator. The Fréchet derivative is continuous in x0 whereas for
a Gâteaux derivative this is not guaranteed. Further it is obvious that if the Fréchet
derivative exists the Gâteaux derivative exists as well and Df = df . The converse is not
true in general.
The functional derivatives are linear operators between spaces of functions. Under certain
conditions these linear operators can be represented in terms of an integral operator

df([x0; h]; r) =

∫

Ω′

dµ′(r′)
δf([x]; r)

δx(r′)

∣∣∣∣
x=x0

h(r′) (1.118)

where we have assumed r′ ∈ Ω′ of Ba = Ba(Ω′), r ∈ Ω of Bb = Bb(Ω) and an associated
integral measure dµ′. In physics the kernel of the integral operator

δf([x]; r)

δx(r′)

∣∣∣∣
x=x0

(1.119)

is often referred to as the derivative of the operator f . In general it is assumed that if a
mapping is differentiable it can be represented by the kernel of an integral operator.
The following lemma is also frequently found to be used as definition for the Fréchet
derivative [25, 26].
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Lemma 1.3.1 Let U ⊂ Ba be nonempty, open and f : U → Bb a mapping. Then f is
Fréchet differentiable at x0 ∈ U if and only if there exists a continuous linear operator
T ∈ L(Ba,Bb) which satisfies

f [x0 + h] = f [x0] + T [h] +R[x0; h], (1.120)

with

lim‖h‖a→0
R[x0;h]
‖h‖a

= 0. (1.121)

(∀ǫ > 0 ∃δ > 0 : ‖h‖a ≤ δ ⇒ ‖R[x0; h]‖b ≤ ǫ‖h‖a)

The operator R[x0; .] is called the remainder of the derivative at x0 and T [.] = Df [x0; .].

The proof for this lemma is on page 113 of [24].
A simple example for a Fréchet differentiable mapping is the following. Let Ba be some
real Hilbert space with inner product 〈.|.〉 and Bb = R. For a linear continuous operator

Ô : Ba → Ba we define the (bilinear) functional

f : Ba → R (1.122)

x 7→ 〈x|Ôx〉.

We find f [x + h] = f [x] + 〈Ô∗x + Ôx|h〉 + f [h]. The mapping h 7→ 〈Ô∗x + Ôx|h〉 is a
linear and continuous functional, and f [h] is of second order in h. With the help of lemma
(1.3.1) we find f to be Fréchet differentiable with

Df [x0; h] = 〈Ô∗x0 + Ôx0|h〉 (1.123)

for all h ∈ Ba.

Theorem 1.3.1 Let Ba,Bb,Bc be real Banach spaces and U ⊂ Ba as well as V ⊂ Bb be
open.

1. If we have f, g : U → V Gâteaux differentiable at x0 ∈ U then also f + g and λf
(λ ∈ R) are differentiable with derivatives

d(f + g)[x0; .] = df [x0; .] + dg[x0; .], (1.124)

d(λf)[x0; .] = λdf [x0; .].

2. (Mean value theorem) Let f : U → V be Gâteaux differentiable and let the ”interval”
I = {x0 + λh : 0 ≤ λ ≤ 1} be part of U . Then we find

‖f [x0 + h] − f [x0]‖b ≤ sup
ξ∈I

‖df [ξ; .]‖‖h‖a, (1.125)

with ‖df [ξ; .]‖ = sup‖x‖a≤1 ‖df [ξ; x]‖b the associated operator norm.

3. If f : U → V is Gâteaux differentiable and df : U → L(Ba,Bb) is continuous, then
f is Fréchet differentiable and df = Df . We say f is continuously differentiable,
f ∈ C1(U ,V).
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1.3. Time-Dependent Density Functional Theory

4. (Chain rule) Let f : U → V and g : V → Bc with f [U ] ⊂ V be Gâteaux differentiable
at x0 ∈ U and f [x0] ∈ V. Then g ◦ f is Gâteaux differentiable at x0 ∈ U with
derivative

d(g ◦ f)[x0; .] = dg[f [x0]; .] ◦ df [x0; .] = dg[f [x0]; df [x0; .]]. (1.126)

The proofs for the theorem are on page 121 of [24] and on page 398 of [26]. Of course the
same properties also hold for Fréchet derivatives.
If we now introduce the concept of higher derivatives we will find a functional analogon
to the theorem of Taylor.
If the Fréchet derivative Df : U → L(Ba,Bb) itself is Fréchet differentiable, we say f is
twice Fréchet differentiable, i.e., f ∈ C2(U ,Bb),

D2f : U → L(Ba,L(Ba,Bb)). (1.127)

It can be shown [24, 26] that there exists an isomorphism

L(Ba,L(Ba,Bb)) ∼= L(2)(Ba,Bb). (1.128)

L(2)(Ba,Bb) is the space of continuous mappings Ba ×Ba onto Bb. Thus we can associate
the second Fréchet derivative with

D2f : U → L(2)(Ba,Bb), (1.129)

and D2f [x0 : ., .] a continuous bilinear map. Higher derivatives are further defined as

Dnf : U → L(n)(Ba,Bb) ∼= L(Ba,L(n−1)(Ba,Bb)), (1.130)

with D(n)f [x0; ., ..., .] a continuous n-times multilinear mapping.

Theorem 1.3.2 (Theorem of Taylor) Let f : U → R be (n + 1)-times Fréchet differ-
entiable and {x0 + λh : 0 ≤ λ ≤ 1} ⊂ U . Then there exists a ϑ ∈ ]0, 1[ with

f [x0 + h] = f [x0] +Df [x0; h] +
1

2
D2f [x0; h, h] + ... (1.131)

+
1

n!
Dnf [x0; h, ..., h] +

1

(n+ 1)!
Dn+1f [x0 + ϑh; h, ..., h, h].

The proof is to be found on page 122 in [24].
As can be seen from the above theorems, many of the properties of ordinary analysis
can be extended to the functional case. (Local) Extrema can be associated with zeros of
the first functional derivative df [x0] = 0 [24–26] and a fundamental theorem of calculus
connecting functional derivatives and integration of functions with values in a Banach
space can be found [26].
If a functional attains a local extremum on the boundary of the region of definition one
can no longer use the afore defined functional derivatives. There the concept of variation
is of interest.
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Definition 1.3.2 Let M ⊂ Ba be a nonempty subset, x0 ∈ M and f : M → R. For
h ∈ Ba suppose that there is an r > 0 such that x0 + λh ∈ M for all 0 ≤ λ < r. Then the
n-th variation of f in the direction h is defined as

∆nf [x0; h] =
dn

dλn
f [x0 + λh]|λ=0 (1.132)

if these derivatives exist.

It can then be shown [26] that if x0 ∈ M is an interior point of M the Gâteaux derivative
df exists if and only if the first variation ∆f [x0; h] exists for all h ∈ M and

∆f [x0; .] = df [x0; .]. (1.133)

For Fréchet differentiable functionals f : U → R one may formulate a constrained varia-
tional problem. If one has a constraint g[x] = y0 with g : U → Bb and y0 ∈ Bb, one may
look for extremal points of the functional f |M : M → R where M = {x ∈ U|g[x] = y0} is
the level surface of g through the point y0. This leads to tangent spaces of level surfaces
and Lagrangian multipliers [26]. The example of interest will be the quantum mechanical
energy functional Ev[n], assumed to be differentiable under the constraint

∫
n(x)dx = N ,

i.e., conservation of the particle number.

1.3.2 Density Functional Theory

Ground-state density functional theory is a well established theory for calculating densities
of atomic, molecular and solid state systems. The success of this theory, for which Walter
Kohn was awarded the Nobel price in chemistry [1], is due to its rigorous foundation as well
its applicability to all sorts of different physical problems. Even quantum electrodynamics
may be reformulated in terms of a four-current density functional theory [9].

Hohenberg-Kohn Theory

The main idea of density functional theory is to find the (exact) ground-state density by
minimization of the energy of the system. This idea is indeed much older than actual
density functional theory and goes back to Thomas [27] and Fermi [28]. However, while
those first attempts were of semi-empirical nature, Hohenberg and Kohn [29] were able to
formulate a rigorous density functional approach to the many-body problem in quantum
mechanics.
In this subsection, we will concentrate on time-independent Hamiltonians of the form
(1.52), i.e., V̂ =

∑N
i v(ri), with Coulombic interaction for a N -particle system. We

will suppress the spin-degrees of freedom in what follows in order to keep the notation
as simple as possible. Following reference [26] we assume the real-valued one-particle
operator v(r) ∈ X = L2(R3) + L∞(R3). This is a Banach space with norm

‖v‖ = inf{‖v1‖2 + ‖v2‖∞|v1 ∈ L2(R3), v2 ∈ L∞(R3), v = v1 + v2} (1.134)

28



1.3. Time-Dependent Density Functional Theory

and assures that Ĥ is self-adjoint on the domain of the kinetic energy operator dom(T̂ ) =

{Ψ ∈ L2(R3N )|T̂Ψ < ∞} in accordance to the Kato-Rellich theorem [26]. A Kato-

perturbation B̂ is a densely defined linear operator B̂ with dom(T̂ ) ⊂ dom(B̂) obeying

‖B̂x‖ ≤ a‖T̂ x‖ + b‖x‖ with 0 ≤ a < 1 and some b for all x ∈ dom(T̂ ). The Kato-Rellich

theorem then proves that the sum of B̂ with the kinetic energy operator, i.e., T̂ + B̂,
is self-adjoint. The Coulomb-interaction V̂int, for instance, is a Kato-perturbation [26].

Hence, Ĥ0 = T̂+V̂int is self-adjoint, and Kato-perturbations thereof, i.e., Ĥ0+V̂ , are again
hermitian. Note that in [30] the space under consideration is the dual of L1(R3)∩L3(R3),
i.e., L3/2(R3) + L∞(R3). Via the solution of the N -particle Schrödinger equation we have
a mapping F : v 7→ Ψ (due to consistency we denote the mappings in accordance to
reference [10]). With D : Ψ 7→ n(r) = 〈Ψ|n̂(r)|Ψ〉 we thus can define a mapping between
the external one-particle potentials and the one-particle densities

G : X ∩ Y → {n ∈ L1(R3)|0 ≤ n} =: L1
+(R3) (1.135)

v(r) 7→ n([v], r)

where Y is the set of all potentials for which the Hamiltonian Ĥ has a (unique) ground-

state Ψ ∈ dom(T̂ ). Now we want to know if this mapping has an inverse, i.e., if G
is one-to-one for its range. To determine this property we need to know under which
conditions imposed upon n there is a potential v ∈ X ∩ Y such that the Hamiltonian
Ĥ = Ĥ[v] has a ground-state Ψ which defines n = n[Ψ]. It can be shown [26] that the
range of the mapping G obeys

ran G ⊂ {n ∈ L1(R3) ∩ L3(R3)|0 ≤ n, n1/2 ∈ H1(R3)} ≡ D(R3) (1.136)

with H1(R3) = {n|n ∈ L2(R3), ∇n ∈ L2(R3)}. And for all n ∈ D(R3) there is a state

Ψ ∈ dom(T̂ ) such that n = n[Ψ]. However, this does only give an estimation of the
range of G. Especially as we need to have a Ψ being the ground-state of the associated
Hamiltonian.
If we turn away from the problem of not knowing either the exact domain X ∩Y and the
exact range ran G of the mapping G, we may consider our initial idea of minimization of
the ground-state energy of some system. If we define the ground-state energy functional

E[v] = inf
Ψ∈dom( bT )/{0}

〈Ψ|Ĥ[v]|Ψ〉
〈Ψ|Ψ〉 (1.137)

we find the following theorem.

Theorem 1.3.3 The ground-state energy functional E[v] has the following properties

1. E[v] is concave for all v ∈ X, i.e., for all v1, v2 ∈ X and all 0 ≤ t ≤ 1 one has
E[tv1 + (1 − t)v2] ≥ tE[v1] + (1 − t)E[v2].

2. E[v] is monotonously increasing, i.e., if v1, v2 ∈ X and v1(x) ≤ v2(x) for all x ∈ R3,
then E[v1] ≤ E[v2].

3. E[v] is continuous with respect to the norm of X and is locally Lipschitz.
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The proof is to be found in [26] on page 435.
The main result of density functional theory is the Hohenberg-Kohn theorem which proves
the injectivity of the mapping G : X ∩ Y → ran G. Therefore one is able to construct
a bijective mapping G from some unknown set of potentials to the corresponding set of
densities, which is invertible.

Theorem 1.3.4 (Hohenberg-Kohn Theorem) Suppose v1, v2 ∈ X are potentials for
which the Hamiltonian H [v1] and H [v2], respectively, have different ground-states Ψ1,Ψ2.
Then the densities n[Ψ1] 6= n[Ψ2] for all points r in a set of positive Lebesgue measure.

Proof. The proof is given in accordance to [26] and holds only for nondegenerate ground-
states. A generalization of the proof is given in [9].

Let Ĥ = Ĥ0 +
∫
d3r v(r) n̂(r). Then we know E[vi] = 〈Ψi|Ĥ [vi]|Ψi〉 for Ψi ∈ dom(T̂ ) and

‖Ψi‖ = 1. Further it holds that E[vi] ≤ 〈Ψ|Ĥ[vi]|Ψ〉 for all Ψ ∈ dom(T̂ ) and ‖Ψ‖ = 1.
Especially if we impose the restriction Ψi 6= Ψ we find with the afore mentioned conditions
E[vi] < 〈Ψ|Ĥ[vi]|Ψ〉. Therefore we find, if we assume n[Ψ1] = n[Ψ2],

E[v1] = 〈Ψ1|Ĥ0|Ψ1〉 +

∫
d3r v2(r) n([Ψ1]; r) +

∫
d3r [v1(r) − v2(r)] n([Ψ1]; r)

> E[v2] +

∫
d3r [v1(r) − v2(r)] n([Ψ1]; r).

Similarly we find

E[v2] > E[v1] +

∫
d3r [v2(r) − v1(r)] n([Ψ2]; r).

Adding both inequalities leads to

E[v1] + E[v2] > E[v1] + E[v2],

which is a contradiction. �

Note here that the assumption Ĥ [v1] and Ĥ [v2] have different ground-states exclude the
possibility that v1 = v2 + c, with c a constant.
The Hohenberg-Kohn theorem establishes an invertible mapping between an unknown set
of densities and the corresponding external potentials (up to some constant). Originally
Hohenberg and Kohn [29] assumed that every well-behaved density n would be defined
in terms of some (possibly degenerate [9]) ground-state Ψ associated with some potential
v, i.e., that the densities are pure-state-v-representable. Accordingly they introduced
the set of pure-state-v-representable densities

A =
{
n ∈ L1 ∩ L3(R3)|0 ≤ n,

√
n ∈ H1(R3), (1.138)

∃ ground-state Ψ : Ψ 7→ n, ‖Ψ‖2 = 1}
on which they defined the Hohenberg-Kohn functional

FHK[n] := E[v] −
∫
d3r v(r) n(r) (1.139)

= 〈Ψ[n]|T̂ + V̂int|Ψ[n]〉 (1.140)
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1.3. Time-Dependent Density Functional Theory

which is well defined because of the Hohenberg-Kohn theorem. The mapping G = D ◦ F
is invertible (up to a constant). Therefore, also F and D are invertible, provided we
have the mapping D−1 : n 7→ Ψ[n] [9]. Note that FHK[n] is universal in the sense that
it does not depend on the chosen potential v. With this functional the Hohenberg-Kohn
variational principle reads:

Theorem 1.3.5 (Hohenberg-Kohn variational Principle) For every v ∈ X ∩Y the
ground-state energy is

E[v] = min
n∈A

Ev[n] = min
n∈A

[
FHK[n] +

∫
d3r v(r) n(r)

]
. (1.141)

The proof is to be found in [26] on page 436.
As the variational principle (so far nothing was said about functional differentiability) is
only defined for pure-state-v-representable densities we meet three major drawbacks: We
do not know the sets Y and A as well as the form of FHK. The Hohenberg-Kohn theorem
only provides us the existence of a mapping G. If we want to formulate the variational
principle in terms of a functional derivative

DEv[n; .] = 0 ⇔ δEv[n]

δn(r)
= 0 (1.142)

we need to show norm convergence in the domain of definition, or at least in the vicinity of
the supposed minimal point. To do this we need to know which densities are pure-state-v-
representable. Although Hohenberg and Kohn [29] hoped that all reasonably well-behaved
nonnegative functions would be pure-state-v-representable, this is not true. Two different
types of extensions of the pure-state-v-representable functions have been found:
Ensemble-v-representable functions which can be easily incorporated into the
Hohenberg-Kohn theory by extending the domain of the Hohenberg-Kohn functional to
density matrices ρ[n] [9],

FEHK[n] := tr
(
ρ[n](T̂ + V̂int)

)
. (1.143)

Note that also the pure-state-v-representable functions are covered by the ensemble-v-
representable ones.
However, there are still non-ensemble-v-representable functions. And again an exten-
sion of the Hohenberg-Kohn functional to the domain of the so called N -representable
functions can be constructed. One such extension is the Lieb functional [9]

FL[n] := inf
ρ→n

tr
(
ρ(T̂ + V̂int)

)
, (1.144)

where the search is over all density matrices of N -particle wavefunctions constituting an
orthonormal basis in the Hilbert space considered. Clearly all integrable nonnegative
functions are N -representable. Those extensions come under the heading of constraint
search [9]. Note that FL[n] is the Legendre transform of E[v] [30]. It has been proven [31]
that FL[n] is differentiable for ensemble-v-representable densities but nowhere else. This
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enables us to formulate the variational principle in terms of a functional derivative.
A further problem is the extension of the Hohenberg-Kohn theory to arbitrary values of
N =

∫
n(r)d3r (not necessarily integer) [9] leading to Ffrac from which one can formulate

the search for a stationary point of

δ

δn(r)

(
Ev[n] − µ

(∫
d3r n(r) −N

))
= 0. (1.145)

This leads to the Euler-Lagrange equation

δEv[n]

δn(r)
=
δFfrac[n]

δn(r)
+ v(r) = µ (1.146)

with µ the Lagrangian multiplier, which physically is the chemical potential.
Associated with the extension of the Hohenberg-Kohn functional to fractional particle
number is the derivative discontinuity [9] at integer particle numbers. This behavior
of the ground-state energy is the key to understand the minimization of energy of two
separated neutral atoms with regard to the numbers of particles at each atom [9].

The Kohn-Sham Equations

The HK theorem states that all ground-state properties of the many-body system are
determined by its ground-state density. However, beside solving the many-particle
Schrödinger equation, we do not know how to calculate this density in general. An-
other possible route offers the so called Kohn-Sham scheme. One self-consistently solves
nonlinear single-particle equations, the so-called Kohn-Sham equations, instead of the
full Schrödinger equation, such that both ground-state densities are equal. Computation-
ally the Kohn-Sham scheme is much more favorable as its calculation time scales almost
linearly with the number of particles involved, whereas the Schrödinger equation scales
exponentially [1].
Although we have specified the interaction of the particles to be Coulombic we could
state the Hohenberg-Kohn theorem also for other interactions or no interaction at all.
This leads for a general noninteracting Hamiltonian

ĤKS = T̂ + V̂KS (1.147)

to the energy functional

EKS[n] = TKS[n] +

∫
d3r vKS(r) n(r), (1.148)

which yields the exact ground-state density via minimization of EKS[n]. The solutions of
the multi-particle Kohn-Sham equation will be determinants, where every single orbital is
a solution of the corresponding single-particle Kohn-Sham equation. With the assumption
that for every interacting-v-representable density there exists a local effective potential
generating the same density in a noninteracting system, we can use this noninteracting
auxiliary system to compute the density. Again we meet the problem of extending the
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1.3. Time-Dependent Density Functional Theory

domain of the noninteracting Hohenberg-Kohn functional, i.e., the Kohn-Sham functional,
to all possible densities. This can indeed be done, and functional differentiability as well
as the existence of the assumed local effective potentials can be proven [9]:

Theorem 1.3.6 (Kohn-Sham Theorem) The exact ground-state density n of an ar-
bitrary interacting system can be obtained by a self-consistent solution of the following set
of equations:

(
−1

2
∇

2 + v(r) +

∫
d3r′ vint(|r − r′|) n(r′) + vxc([n]; r)

)
φk(r) = ǫkφk(r)

with ǫ1 ≤ ǫ2 ≤ ..., n(r) =
∑∞

k=1 γk|φk(r)|2 and occupation numbers γk satisfying

γk = 1 : ǫk < µ

0 ≤ γk ≤ 1 : ǫk = µ (1.149)

γk = 0 : ǫk > µ

as well as
∑∞

k=1 γk = N . The exchange-correlation potential is defined as

vxc([n]; r) =
δExc[n]

δn(r)
(1.150)

=
δ

δn(r)

(
FL[n] − 1

2

∫ ∫
d3rd3r′n(r)vint(|r − r′|)n(r′) − TL[n]

)
,

with

TL[n] = inf
ρ→n

tr
(
ρ T̂
)
, (1.151)

ρ =
∑

m pm|Ψm〉〈Ψm| and {|Ψm〉} a complete set of antisymmetric orthonormal N-particle
wavefunctions.

Here one introduced the exchange-correlation energy functional Exc[n]. This func-
tional and its derived exchange-correlation potential are the crucial definitions for a non-
interacting description of the interacting system. The exchange-correlation energy func-
tional relates the auxiliary system of noninteracting particles to the physical one. Again
we merely have a proof of existence. We do not know the exact form of Exc[n], from which
it would be very simple to construct everything else. Therefore we need reasonable ap-
proximations for the exchange-correlation energy and the exchange-correlation potential.
Another problem is known under the heading of noninteracting-v-representability.
Though the above theorem proves that for every interacting-v-representable density there
exists some corresponding single-particle potential generating the density, it is not known
if all interacting v-representable densities are noninteracting-v-representable by a single
determinant. In the above theorem there is no restriction to single determinantal states.
To proof noninteracting-v-representability by a single determinant we would need a proof
of the functional differentiability of [9]

Tdet[n] = inf
Φ→n

〈Φ|T̂ |Φ〉 (1.152)
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where Φ = 1√
N !

det{φk(ri)}.

We have seen that one can find the ground-state properties of a many-body sys-
tem by considering the density alone. An energy-minimizing density is unique and it
can even be found within a noninteracting theory. The whole theory can be extended
to spin-polarized systems, finite temperature ensembles, excited states and many more
applications [9]. Though density functional theory is rigorous with respect to its
foundations there are various problems unresolved, i.e., v-representability, construction of
the different exact functionals, knowledge of the sets Y and A and so forth [9]. However,
the successes of density functional theory are manifold, and the theory is widely used
throughout physics and chemistry.

1.3.3 Time-Dependent Density Functional Theory

Now we turn to density functional theory for time-dependent systems of the form (1.52)
governed by the von Neumann equation

i
∂ρ̂(t)

∂t
=
[
Ĥ(t), ρ̂(t)

]

−
(1.153)

and a given initial condition ρ̂0 = ρ̂(t0) at time t0. The initial states will in general not
be restricted to ground-states. With the time-evolution operator

Û(t, t0) = TD

{
exp

(
−i

∫ t

t0

dt′Ĥ(t′)

)}
, (1.154)

where TD is the Dyson time-ordering operator, one finds that for every t and ρ̂(t) =

Û(t, t0)ρ̂0Û
†(t, t0)

n(r, t) = tr (ρ̂(t) n̂(r)) ∈ L1
+(R3). (1.155)

As for the time-independent density functional theory we examine the spaces in which
we are operating.

In order to define the domain and the image of the Runge-Gross mapping we will
turn to equation (1.107), i.e.,

n(k+2)(r) = q(k)(r) +

k∑

l=0

(
k
l

)
∇r ·

[
n(k−l)(r)∇rv

(l)(r)
]
.

This is the fundamental defining equation between the set of external potentials v(r, t),

the initial configuration ρ̂0, the interaction V̂int and densities n(r, t). In order to associate
a density uniquely with the external potential all orders of equation (1.107) have to exist.
It seems clear that equation (1.107) is well-defined as long as we assume ρ̂0 such that all
its wavefunctions are C∞(R3N ) and v(k)(r) ∈ C∞(R3) for all k, where Ci(R3) is the space of
i-times continuously differentiable functions on R3. We further have to assume that the
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1.3. Time-Dependent Density Functional Theory

interaction V̂int does not introduce problems with respect to the multiple commutators in
the definition of q(k). However, even if those rigorous conditions are not met, all orders
of equation (1.107), i.e., the Taylor expansion of the density, may exist if the external
potential is itself analytic at t = t0.
The other fundamental equation can be constructed if the local force balance equations
of two systems leading to the same density defined in section 1.2.2 are set equal [35]

∇r·
[
n(0)(r)∇rv

(k)
Hxc(r)

]
= (1.156)

q(k)(r) − (q′)(k)(r) −
k−1∑

l=0

(
k
l

)
∇r ·

[
n′(k−l)(r)∇rv

(l)
Hxc(r)

]
.

This equation links two different system and will lead to the Kohn-Sham scheme.
Equation (1.156) is a Sturm-Liouville equation. Also the afore-mentioned equation
(1.107) amounts to a Sturm-Liouville problem if we want the potentials being defined via
the densities.

Let us consider a general differential equation of the form

∂µ (p(r)∂µu(r)) + (λk(r) − q(r))u(r) = 0 (1.157)

with the conditions

1. p(r), q(r), k(r) ∈ R
2. p(r) ∈ C3(Ω̄); q(r), k(r) ∈ C1(Ω̄)

3. p(r) > 0, k(r) > 0 in Ω̄

4. λ ∈ C
where Ω is an open, simply connected and bounded set of Rn for which the divergence
theorem is applicable, ∂Ω is its boundary with Ω̄ = Ω ∪ ∂Ω, and Ci(Ω̄) is the space of
i-times continuously differentiable functions on Ω̄. We define the Hilbert space for the
operator

Âu(r) =
1

k(r)
{−∂µ [p(r)∂µ] + q(r)}u(r) (1.158)

to be linear as [32]

Hk :=

{
u(r)

∣∣∣∣
∫

Ω

|u(r)|2k(r)dnr <∞
}
. (1.159)

The domain of the operator is

dom(Â) =
{
u(r)

∣∣∣u ∈ C1(Ω̄), u ∈ C2(Ω), Âu ∈ Hk; u = 0 on ∂Ω
}
. (1.160)
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The reciprocal of Â, i.e., Â−1, exists if and only if λ = 0 is not an eigenvalue of the
boundary value problem. As shown in section 2.3 of [32] this is true for q(r) ≥ 0. What

is the range of the operator Â on its domain , i.e., how does

ran(Â) =
{
f
∣∣∣Âu = f ∀u ∈ dom(Â)

}
(1.161)

look like? If we specialize on q ≡ 0 we find that for

f ∈ B(Ω̄) :=
{
f
∣∣f ∈ C1(Ω̄) or f Hoelder continuous in Ω̄

}
, (1.162)

i.e., |f(r) − f(r′)| ≤ H|r − r′|α for all r, r′ ∈ Ω̄ with H and 0 < α < 1 independent of
r, r′, there exists a Green’s function g(r, r′) leading to

u(r) =

∫

Ω

g(r, r′)f(r′)k(r′)dnr. (1.163)

Thus we know that B(Ω̄) ⊆ ran(Â). (1.164)

Note here that if we consider one-dimensional problems one has less restrictions [32].

We turn again to the problem of the Runge-Gross mapping, however, restricted to
an appropriate (finite) region Ω̄ ⊂ R3. Because of Hölder’s inequality [24] we have

Lq(Ω̄) ⊂ Lp(Ω̄) for 1 ≤ p < q ≤ ∞. (1.165)

Further we assume every v(k)(r) ∈ dom(Â) and find

v(r, t) ∈ dom(Â) ⊂ L2(Ω̄) + L∞(Ω̄) (1.166)

for every t ∈ [t0, t1], where t1 > t0 in accordance to Kato-perturbations of the free Hamil-
tonian [26]. We define the set of potentials at consideration as

V(ρ̂0, V̂int) :=
{
v|v analytic at t = t0, v(t) ∈ dom(Â), (1.167)

v ∈ R, n[v] analytic at t = t0} .

For the space of time-dependent densities we first note that via equation (1.107), i.e.,

n(k+2)[v], it is obvious that an external potential v ∈ V(ρ̂0, V̂int) will define n(k)(r) for
k > 1 and hence will not influence the initial conditions. Thus for a chosen initial
condition we have

n(r, t) = n0(r) + tr
(
ρ̂0∇r · ĵ(r)

)
(t− t0)

︸ ︷︷ ︸
=n(1)(r,t)

+

∞∑

k=2

1

k!
n(k)(r)(t− t0)

k. (1.168)
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We will introduce the set of densities as an affine set of variations δn via

δN (ρ̂0, V̂int) :=

{
δn

∣∣∣∣∣δn =
∞∑

k=2

1

k!
n(k)([v]; r) (t− t0)

k, (1.169)

v ∈ V(ρ̂0, V̂int), ρ̂0

}
.

Accordingly, as n(r, t) = n0(r) + n(1)(r, t) + δn(r, t) we define

N (ρ̂0, V̂int) :=
{
n
∣∣∣n = n0 + n(1) + δn,with δn ∈ δN (ρ̂0, V̂int)

}

= n0(r) + n(1)(r, t) + δN (ρ̂0, V̂int). (1.170)

In the following we may use the set N (ρ̂0, V̂int) synonymously with δN (ρ̂0, V̂int). However,

it is usually more intuitive if we use N (ρ̂0, V̂int). With the triangle inequality on L1(Ω)

we have for δn1, δn2 ∈ δN (ρ̂0, V̂int)

‖δn1 + δn2‖1 ≤ ‖δn1‖1 + ‖δn2‖1 = 0. (1.171)

Hence, all combinations of variations δn ∈ δN (ρ̂0, V̂int) will again lead to some variation
with respect to ‖.‖1. However, it is not clear that all combinations of variations δn ∈
δN (ρ̂0, V̂int) will again be part of the set δN (ρ̂0, V̂int). Further, the set of potentials
as well as the set of densities may be the empty set if the initial configuration or the
interaction is not well chosen.

Lemma 1.3.2 Let ρ̂0 be some density matrix and V̂int some specified interaction, then
the initial state dependent mapping

vbρ0 : N (ρ̂0, V̂int) → V(ρ̂0, V̂int) (1.172)

n(r, t) 7→ vbρ0([n]; r, t)

is bijective (invertible).

Proof. The extended Runge-Gross proof (1.2.1) shows that there is a uniquely defined

(with chosen boundary conditions) external potential v(r, t) ∈ V(ρ̂0, V̂int), Taylor-

expandable about t = t0, which is associated with the density n(r, t) ∈ N (ρ̂0, V̂int). �

The initial state dependence has a severe consequence. If we constructed the
exact mapping vbρ0 it would be different for every initial state. However, we can
circumvent this problem by a restriction that is almost always made. If we assume
the initial density being a ground-state density then, by virtue of the Hohenberg-Kohn
theorem, the initial state is uniquely defined by its density and thus we do not have any
initial state dependence. A different way to handle initial state dependence is to use
prehistories [13,34]. This scheme makes use of the fact that initial state dependence and
history dependence can be reexpressed in terms of one another.
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The inverse mapping v−1
bρ0 will be denoted by nbρ0 and amounts to solve the von

Neumann equation and calculate the time-dependent density. With the mapping [see the
definition (1.112)]

ρ̃bρ0 : V(ρ̂0, V̂int) → R(ρ̂0, V̂int) ⊂ Lt
[
L2(R3N ), L2(R3N )

]
(1.173)

v(r, t) 7→ ρ̃bρ0([v]; t)

which is defined via the solution of the von Neumann equation, we can formulate

Lemma 1.3.3 For a chosen initial configuration ρ̂0 and interaction V̂int the time-
dependent density matrix associated with the Hamiltonian Ĥ(t) = Ĥ([v]; t) with v ∈
V(ρ̂0, V̂int) is uniquely defined by the density, i.e.,

ρ̂bρ0 : N (ρ̂0, V̂int) → R(ρ̂0, V̂int) (1.174)

is invertible. Therefore also the expectation value of some operator Ô(t), i.e., O([n]; t) =

tr(ρ̂bρ0([n]; t) Ô(t)), is defined by the density alone.

Proof. With the mapping vbρ0 : N (ρ̂0, V̂int) → V(ρ̂0, V̂int) we have

ρ̂bρ0 = ρ̃bρ0 ◦ vbρ0 : N (ρ̂0, V̂int) → R(ρ̂0, V̂int). (1.175)

The inverse mapping from R(ρ̂0, V̂int) to N (ρ̂0, V̂int) is defined by

ρ̂(t) 7→ tr (ρ̂(t) n̂(r)) = n(r, t). (1.176)

�

This conclusion is the same as in section 1.2.2 where we showed the formal exactness of
the quantum fluid dynamical reformulation of the many-body problem. All observables
are defined by the density alone. This is an important building block of time-dependend
density functional theory as we only need the time-dependend density to find all physical
entities, at least in principle.
Until now we have merely shown that one may switch from density matrices to densi-
ties or currents. So far, the only route to determine the dynamical properties of the
system is by solving the initial problem, i.e., the many-body Schrödinger equation. The
extended Runge-Gross proof states that the density of an interacting system can for-
mally be calculated by solving a corresponding equation of noninteracting particles in
an effective potential. Such an approach would be computationally favorable. The cor-
responding effective potential was found to be uniquely defined by the density and the
initial state. Strictly speaking, however, the proof in section 1.2.2 did only state that the
Sturm-Liouville equations (1.109) have unique solutions. When do we know that such a
solution exists? First we restate the extended Runge-Gross uniqueness theorem.

38



1.3. Time-Dependent Density Functional Theory

Theorem 1.3.7 (Extended Runge-Gross Uniqueness Theorem) Let n(r, t) ∈
N (ρ̂0, V̂int) and vbρ0([n]; r, t) = v(r, t) the associated external potential. For a system

with interaction V̂ ′
int and the initial configuration ρ̂′0 subject to the constraints

n(r, t0) = n′(r, t0),

tr
(
ρ̂0 ∇r · ĵ(r)

)
= tr

(
ρ̂′0 ∇r · ĵ(r)

)
,

the external potential v′(r, t) ∈ V(ρ̂′0, V̂
′
int) leading to the same density is uniquely defined.

However, it is not clear that

n ∈ N (ρ̂0, V̂int) and n ∈ N (ρ̂′0, V̂
′
int), (1.177)

or reformulated, that all equations (1.109), which are Sturm-Liouville boundary value
problems, have existing solutions. Now let us come back to the general considerations
at the beginning of this section. In our case we have

1. q(r) ≡ 0

2. k(r) ≡ 1.

The condition n(r, t0) > 0 could be removed. If the initial density has points equal
to zero we could use a later density as new initial density n(r, t′0) and find via forward
and backward propagation and the associated local force balance equations the external
potential on the whole time interval [t0, t1]. Only if there were no t ∈ [t0, t1] for which
n(r, t) > 0 the above considerations would not work. Thus we find the following corollary

Corollary 1.3.1 For n0(r) > 0 and n0(r) ∈ C3(Ω̄) the k-th term v′(k)(r) of the Taylor
expansion of v′(r, t) exists if f (k) is Hölder continuous on Ω̄ or element of C1(Ω̄) for

∇r · [n0(r)∇rv
′(k)(r)] = f (k)(r). (1.178)

For usual physical situations where the system under study is confined to some small
region in space, the condition of Hölder continuity seems perfectly valid. The right hand
side f (k)(r) comes from the divergence of the local forces and can be assumed finite.
Therefore we may assume the existence for a large class of physical problems. This is in
correspondence to [12] where similar arguments with respect to f (k)(r) are pursued.

In a next step we will now look for a way to describe the dynamics of the system
without solving the Schödinger equation. In analogy to the time-independent theory we
will establish an auxiliary noninteracting system which gives the same density as the
physical one. This is the well known Kohn-Sham scheme. Note, however, that in the
above derivation we constructed the external potential via knowledge of the density. The
interacting density as input would not lead to some predictive theory. Therefore, like in
time-independent density functional theory, one introduces the exchange-correlation
potential, linking the interacting (physical) system to the auxiliary system. The
exchange-correlation potential accounts for all internal forces.
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Theorem 1.3.8 (Time-Dependent Kohn-Sham Uniqueness Theorem) Let

n(r, t) ∈ N (ρ̂0, V̂int) and v(r, t) ≡ vbρ0([n]; r, t) the associated external potential. If we
have an initial noninteracting configuration ρ̂′0 subject to the constraints

n(r, t0) = n′(r, t0),

tr
(
ρ̂0 ∇r · ĵ(r)

)
= tr

(
ρ̂′0 ∇r · ĵ(r)

)
,

then we have an uniquely defined one-particle potential vKS([n]; r, t) ≡ v′bρ′0
([n]; r, t) ∈

V(ρ̂′0) leading to the Kohn-Sham Hamiltonian

ĤKS(t) = T̂ + V̂KS(t) (1.179)

generating the physical density. The (orbital) Kohn-Sham equations then read as

i∂tφk(r, t) =

(
−1

2
∇

2 + v(r, t) + vH([n]; r, t) + vxc([n]; r, t)

)
φk(r, t).

The exchange-correlation potential is defined via

vxc([n]; r, t) ≡ vxc
bρ0,bρ′0([n]; r, t) := v′bρ′0([n]; r, t) − vbρ0([n]; r, t) − vH([n]; r, t) (1.180)

with vH([n]; r, t) =
∫
d3r′vint(|r − r′|)n(r, t) the Hartree potential.

Proof. One can use the extended Runge-Gross uniqueness theorem with the specializa-
tion on the noninteracting case. Analogously we can set both local force balance equations
defined in section 1.2.2 equal and find equation (1.156)

∇r·
[
n(0)(r)∇rv

(k)
Hxc([n]; r)

]
=

q(k)(r) − (q′)(k)(r) −
k−1∑

l=0

(
k
l

)
∇r ·

[
n′(k−l)(r)∇rv

(l)
Hxc([n]; r)

]
,

where vHxc([n]; r, t) ≡ vHxc
bρ0,bρ′0

([n]; r, t) := v′bρ′0
([n]; r, t) − vbρ0([n]; r, t). This is again a

Sturm-Liouville problem, and the solution, if existing, is unique if the boundary values
are chosen. Note that V(ρ̂0) ≡ V(ρ̂0, V̂int ≡ 0). �

Again the existence is guaranteed if the right hand side of equation (1.156) is
Hölder continuous due to corollary 1.3.1. Note that we may now construct everything of
interest if we calculate v

(k)
Hxc([n]; r) in the above proposed way. Further we can calculate

the next term of the density Taylor expansion via equation (1.107), which then can
be used to calculate the next order of the Hartree-exchange-correlation potential and
so forth. Beside the obvious implication of being able to reproduce an interacting
time-dependent density via some noninteracting system, the time-dependent Kohn-Sham
theorem also includes information about the noninteracting-v-representability
question for time-dependent systems. If we have found some initial configuration
subject to the above restrictions, the density is noninteracting-v-representable. The form
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of the initial state defines whether a density is noninteracting-pure-state-v-representable
or noninteracting-ensemble-v-representable. For switch-on processes where the system
is time independent up to some time t = t0 and afterwards an external perturbation
is switched on, one can always find an appropriate noninteracting initial state via the
so-called Harriman construction [33]. The question if we can find a noninteracting initial
state being the ground-state of some noninteracting system leads to the noninteracting-
v-representability for stationary systems as considered in section 1.3.2.
An important feature of time-dependent density functional theory is the nonlocality of
the mappings in space as well as in time. The nonlocality in space is already met in
the static density functional theory. However, in the time-dependent formulation one
in general finds that the Kohn-Sham potential vbρ′0([n]; r, t) does not only depend on
the density at the time of consideration but also on previous times, i.e., it depends on
the entire history of the density [11]. The nonlocality in time will be extensively
considered later on.

Rigorous Formulation

Until now we tried to give quite general conclusions at the expense of not knowing the
exact set of densities and potentials, and at the expense of not having a general proof of
existence of the uniquely defined external potential for the extended Runge-Gross theorem.
We will now leave this route and will give a combined existence and uniqueness theorem
for restrictive conditions. However, the set of densities and external potentials will again
be unknown. Nevertheless we proof that the set of all densities is the same for any smooth
interaction as long as one finds smooth initial configurations subject to the same initial
conditions. Obviously, the Kohn-Sham construction is guaranteed as vint ≡ 0 is trivially
infinitely differentiable. Though this seems quite academic, a mathematically rigorous
formulation can be seen as a proof of principle for the physically more attractive cases,
which in general will not obey the assumed restrictions. Further, the main assumption,
i.e., smooth functions, leaves us with the possibility to approximate any none-smooth
function arbitrarily well.
Let Ω and ∂Ω be defined as before. Then the following lemma holds.

Lemma 1.3.4 Let ρ̂0 be such that all its wavefunctions are in C∞(Ω̄N ), v analytic in t =
t0, v

(k) ∈ C∞(Ω̄) ∀ k, and vint(|r − r′|) infinitely differentiable. Then

n(k+2)(r) = q(k)(r) +

k∑

l=0

(
k
l

)
∇r ·

[
n(k−l)(r)∇rv

(l)(r)
]

(1.181)

is well-defined and n(k+2)(r) ∈ C∞(Ω̄) exists for all k.

Proof. Obviously we have n0(r) and n(1)(r) in C∞(Ω̄). Thus n(2)(r) is in C∞(Ω̄) if q(0)(r)
is infinitely differentiable, where

q(0)(r) = tr
[
ρ̂0

(
∂ν∂µΠ̂µν(r)

)]
. (1.182)
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Π̂µν(r) consists of partial derivatives with respect to r and of derivatives of vint(|r − r′|).
We have assumed vint(|r − r′|) infinitely differentiable. Hence we have q(0)(r) ∈ C∞(Ω̄).

For n(3)(r) we need to know q(1)(r). This is the commutator of ∂ν∂µΠ̂µν(r) with Ĥ(t)

at t = t0. All functions in Ĥ(t) are infinitely differentiable. Again the above reasoning
applies, and we find q(1)(r) ∈ C∞(Ω̄). All higher terms are to be found via successive

application of the Heisenberg equation for ∂ν∂µΠ̂µν(r) with Ĥ(t) at t = t0. The only
difference to the above reasoning is the appearance of v(k)(r)-terms, which are again
infinitely differentiable. Therefore one can successively construct all n(k)(r) ∈ C∞(Ω̄). �

Note that a restriction on vint(|r − r′|) being infinitely differentiable in r for al-
most all r′ with respect to the Lebesgue measure on Ω̄, i.e., the set of exceptional points
r′ has zero measure, may also be possible. The Lebesgue integral in turn does not depend
on a set of finite measure. Therefore any function defined via a Lebesgue integral with
respect to r′ over vint(|r−r′|) and some other infinitely differentiable function is infinitely
differentiable with respect to r. Hence we have q(0)(r) ∈ C∞(Ω̄). For higher orders of
q(k) this reasoning may also work. However, as one also introduces delta-distributions
and derivatives thereof due to the the (anti)commutation relations, it is not clear if
the evaluation of the distributions at nondifferentiable points of vint(|r−r′|) is well-defined.

Now, let V̂int and V̂ ′
int be chosen such that they have finite expectation values and

vint(|r−r′|) and v′int(|r−r′|) are infinitely differentiable. Further we assume ρ̂0 consisting
of C∞ wavefunctions. We then define

V∗(ρ̂0, V̂int) :=
{
v
∣∣v analytic in t = t0, v

(k) ∈ C∞(Ω̄) ∀ k, (1.183)

v(k) = 0 on ∂Ω ∀ k, n[v] analytic in t = t0
}

the set of all smooth external potentials.

In accordance to definition (1.170) we define

N ∗(ρ̂0, V̂int) :=

{
n

∣∣∣∣∣n =

∞∑

k=0

1

k!
n(k)([v]; r) (t− t0)

k, v ∈ V∗(ρ̂0, V̂int), ρ̂0

}
(1.184)

the set of all smooth time-dependent densities. We could have also defined the set
of corresponding variations δn. Obviously there is a one-to-one correspondence between
v ∈ V∗(ρ̂0, V̂int) and n ∈ N ∗(ρ̂0, V̂int) in accordance to lemma 1.3.2, the Runge-Gross
mapping.
With this we can reformulate the extended Runge-Gross theorem as follows

Theorem 1.3.9 Let n(r, t) ∈ N ∗(ρ̂0, V̂int) and vbρ0([n]; r, t) = v(r, t) ∈ V∗(ρ̂0, V̂int) the
associated external potential. For a system with interaction v′int ∈ C∞(Ω̄2) and the initial
configuration ρ̂′0 consisting of infinitely differentiable functions subject to the constraint

n(r, t0) = n′(r, t0) > 0,

tr
(
ρ̂0 ∇r · ĵ(r)

)
= tr

(
ρ̂′0 ∇r · ĵ(r)

)
,

42



1.3. Time-Dependent Density Functional Theory

there exists a unique effective potential

vbρ0,bρ′0([n]; r, t) =

∞∑

k=0

1

k!
(v′)(k)(r) (t− t0)

k,

where (v′)(k)(r) is defined via

∇r·
[
n(0)(r)∇r(v

′)(k)(r)
]

=

q(k)(r) − (q′)(k)(r) −
k−1∑

l=0

(
k
l

)
∇r ·

[
n′(k−l)(r)∇r(v

′)(k)(r)
]
,

with
(
v + vbρ0,bρ′0

)
∈ V∗(ρ̂′0, V̂

′
int) generating the same density. It holds that

N ∗(ρ̂0, V̂int) = N ∗(ρ̂′0, V̂
′
int).

Proof. From the proof of lemma 1.3.4 we know that all q(k) and (q′)(k) are infinitely
differentiable. As we have assumed n0(r) > 0 we can apply corollary 1.3.1 from which it
is clear that

∇r·
[
n(0)(r)∇r(v

′)(k)(r)
]

=

q(k)(r) − (q′)(k)(r) −
k−1∑

l=0

(
k
l

)
∇r ·

[
n′(k−l)(r)∇r(v

′)(k)(r)
]

has an existing solution if the right hand side is C1(Ω̄). Obviously (v′)(0)(r) exists due to
corollary 1.3.1 and is infinitely differentiable. In the next step we can use (v′)(0)(r) in
the Sturm-Liouville equation defining (v′)(1)(r). Again existence is guaranteed and we
have (v′)(1)(r) ∈ C∞(Ω̄). One can now successively construct vbρ0,bρ′0 . Then (v + vbρ0,bρ′0)
is given via its Taylor series within its radius of convergence. The case of zero conver-
gence radius can be disregarded because then also the density n would be nonanalytic.
This construction holds for every n ∈ N ∗(ρ̂0, V̂int), and we have n ∈ N ∗(ρ̂′0, V̂

′
int) as well. �

The special case of a rigorous Kohn-Sham theorem is straightforward as vint ≡ 0
is of course infinitely differentiable. Only a noninteracting initial configuration is needed.
We point out that we actually find

N ∗(ρ̂0, V̂int) ≡ N ∗(n0, n
(1)), (1.185)

the set of all analytic and smooth time-dependent densities does not depend on
the interaction. Only the initial density n0 and the first time derivative of the density
n(1) are important.

Action Functional and Symmetry-Causality Paradox

So far time-dependent density functional theory did not use any minimization principle
like in the time-independent formulation. In density functional theory the exchange-
correlation potential is the functional derivative of Exc[n] (theorem 1.3.6), whereas in time-
dependent density functional theory we have introduced vxc

bρ′0,bρ0
([n]; r, t) via the differences
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of the initial state dependend mappings of the interacting and the noninteracting case. In
time-dependent density functional theory we could use an action principle instead of the
minimization of the energy. It will be shown, however, that there are a lot of problems
connected with this idea.
Let us look at the usual action principle in quantum mechanics which requires the action
functional [12]

Ã[ψ] =

∫ t1

t0

dt 〈Ψ(t)|i∂t − Ĥ(t)|Ψ(t)〉 (1.186)

to be stationary under variations |δΨ(t)〉 satisfying |δΨ(t0)〉 = |δΨ(t1)〉 = 0. This and the
fact that the real and imaginary part of |δΨ(t)〉 can be varied independently leads after
partial integration of the variation

δÃ[Ψ] =

∫ t1

t0

dt 〈δΨ(t)|i∂t − Ĥ(t)|Ψ(t)〉 +

∫ t1

t0

dt 〈(i∂t − Ĥ(t))Ψ(t)|δΨ(t)〉

+ i〈ψ(t)|δψ(t)〉|t=t1t=t0 = 0 (1.187)

to the Schrödinger equation
(
i∂t − Ĥ(t)

)
|Ψ(t)〉 = 0. (1.188)

However, if one tries to formulate this action principle accordingly within a density func-
tional approach the supposed obvious way to use [10]

ÃΨ0 [n] =

∫ t1

t0

dt 〈Ψ[n](t)|i∂t − Ĥ(t)|Ψ[n](t)〉 (1.189)

will fail. A first problem is to fix some gauge. The density only fixes the wavefunction
up to a time-dependent phase. The time-derivative in the definition of the Runge-Gross
action functional now leads to different functionals depending on the gauge chosen. We
could circumvent this problem by using variations of

AΨ0[v] =

∫ t1

t0

dt 〈Ψ[v](t)|i∂t − Ĥ(t)|Ψ[v](t)〉. (1.190)

Here the phase is determined by the external potential chosen to propagate the initial state
|Ψ(t0)〉. By the virtue of the Runge-Gross theorem we can vary the external potential
instead of the density as both uniquely define each other. Note that we use v as a
parameter to vary the v-representable wavefunctions and let Ĥ(t) being fixed. Variations
of v uniquely define the variations of the wavefunction. In fact, as the Schrödinger equation
is first order in time we are no longer allowed to pose a second boundary condition, i.e.,
the boundary condition |δΨ(t0)〉 = 0 defines the later variations |δΨ(t)〉 uniquely for
some chosen external potential variation. Further we are not allowed to consider the real
and imaginary part of |δΨ〉 to be independent as both are determined via the potential
variation δv. All these problems induced by the restriction of the variational freedom
to v-representable wavefunctions accumulated [12] in the so called symmetry-causality
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paradox.
We will make a short detour back to density functional theory. We had found at the end
of the Hohenberg-Kohn theory section 1.3.2

FL[n] = E[v] −
∫
d3r n(r) v(r), (1.191)

the Legendre transform of E[v], to be Fréchet differentiable. Further it holds by a gener-
alization of the Hellman-Feynman theorem [12] that

δE[v]

δv(r)
= n(r),

δFL[n]

δn(r)
= −v(r). (1.192)

For the time-dependent case it would seem natural that such relations should also be
found for our action functional. In the original Runge-Gross paper [10] the functional
(1.190) was assumed to obey

δÃΨ0[n]

δn(r, t)
= 0 (1.193)

at the exact density by construction. However, the restriction of the wavefunctions to
v-representable ones poses, as indicated above, severe problems for such a variational
approach. Nevertheless we will assume equation (1.193) to be valid. Then we have via

ÃΨ0 [n] = AΨ0 [n] −
∫
dt d3r n(r, t) v(r, t) (1.194)

with AΨ0[n] =
∫ t1
t0
dt 〈Ψ[n](t)|i∂t− T̂ − V̂int|Ψ[n](t)〉 an universal functional of the density,

the equation

δAΨ0[n]

δn(r, t)
= vΨ0([n]; r, t). (1.195)

Accordingly, we have via the Legendre transformation

ÃΨ0 [v] = −AΨ0 [n] +

∫
dt d3r v(r, t) n(r, t) (1.196)

the relation

δÃΨ0[v]

δv(r, t)
= nΨ0([v]; r, t). (1.197)

Here we have introduced a relative minus in comparison to (1.192). Accordingly we could
now define the exchange-correlation potential via the kernel of the functional derivative
of the exchange-correlation functional

Axc
ψ0,Φ0

[n] = AΦ0 [n] (1.198)

−1

2

∫
dtd3rd3r′n(r, t)vint(|r − r′|)n(r′, t) −Aψ0 [n]
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where AΦ0 [n] is the analogous functional for the noninteracting (Kohn-Sham) system with
the initial noninteracting state |Φ0〉. However, if we now look at the kernel of the second

functional derivative of ÃΨ0 [v]

δ2ÃΨ0 [v]

δv(r, t)δv(r′, t′)
=
δnΨ0([v]; r, t)

δv(r′, t′)
(1.199)

which is just the usual linear response kernel

χψ0([v]; r, t, r
′, t′) =

δnΨ0([v]; r, t)

δv(r′, t′)
(1.200)

we meet a contradiction between causality and symmetry. While
δ2 eAΨ0

[v]

δv(r,t)δv(r′ ,t′)
is symmetric

in its arguments v(r, t) and v(r′, t′), χ([v]; r, t, r′, t′) is a causal kernel [11,12]. Therefore

the original Runge-Gross action functional ÃΨ0 [n] is wrong under the assumption of the
above variational principle.
This finding can be formally generalized, leading to the following theorem.

Theorem 1.3.10 Let ρ̂0 be any initial configuration and V̂int some chosen interac-
tion. Then there exist no twice differentiable functionals Ãbρ0 : V(ρ̂0, V̂int) → R and

Abρ0 : N (ρ̂0, V̂int) → R with the kernels

δÃbρ0 [v]

δv(r, t)
= nbρ0([v]; r, t) ,

δAbρ0 [n]

δn(r, t)
= vbρ0([n]; r, t). (1.201)

Proof. Assume we had some differentiable functional Ãbρ0 [v] fulfilling the above condi-
tion. Then the symmetry and causality requirement (1.199) leads to a contradiction.
If we had a functional Abρ0 [n] fulfilling the above requirement then we could by the

Legendre transformation (1.196) construct a differentiable functional Ãbρ0 [v], leading to a
contradiction. �

Although this theorem seems to be devastating for the attempt to derive the Kohn-Sham
formalism based on an action principle there are ways to do so. The problems obviously
arise through the usual quantum mechanical variational principle and the connected
v-representability problem. One is not free to force the initial and final variation to be
zero within a density functional approach. One possible route around this problem was
introduced by van Leeuwen in [35] where he uses a Keldysh contour for time-dependent
density functional theory, which only needs to take into account the initial boundary
condition. Another way is found by introducing superoperators and Liouville space [11].
Only recently Vignale in [37] redefined the variational principle for time-dependent
density functional theory as

δÃψ0 [n] = i〈ψ[n](t)|δψ[n](t)〉, (1.202)

solving the symmetry-causality paradox via a correction term not expressible as a func-
tional derivative. The correction term would be zero if one enforced the final boundary
condition of the usual variational principle.
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Keldysh Formalism

Green’s function methods are a primary tool to treat the quantum many-body prob-
lem [18]. However, the calculation of Green’s functions for interacting systems is a
very demanding task. Usually one uses perturbation theories to find approximations
to the interacting Green’s function. We distinguish three major branches: equilibrium
zero temperature, equilibrium finite temperature and nonequilibrium Green’s func-
tions. All of those rely on the Gell-Mann-Low and on Wick’s theorem [18] to derive
a perturbation theory in terms of noninteracting Green’s functions, which give rise
to Feynman diagrams. In the first case one has a time-independent Hamiltonian and
only looks at the ground-state. In the interaction picture one then singles out the free
(noninteracting) part of the Hamiltonian and looks at the interaction as a perturbation,
which is adiabatically switched on until t0 and afterwards adiabatically switched off.
The Gell-Mann-Low theorem guarantees that this procedure leads to the interacting
ground-state at t0 in the interaction picture. Because we only consider the ground-state
(of a fermionic system), Wick’s theorem is easily applied via normal ordering, finally
leading to a diagrammatic perturbation theory in terms of two-point functions, i.e.,
Green’s functions. However, if we look at an equilibrium finite temperature problem
we do not only have the ground-state but a statistical mixture, the grand canonical
ensemble, to calculate the expectation value. This poses a problem for the application
of Wick’s theorem, as the normal ordering does not lead to vanishing expressions like
in the zero temperature case. Here one makes use of the Matsubara method [11, 18],
which introduces complex times and the so-called Matsubara (Green’s) functions to
derive a generalized Wick’s theorem. For the case of a nonequilibrium finite temper-
ature problem a further generalization has to be done. Beside the particle-particle
interaction one does also have a time-dependent one particle interaction which has to be
considered. For the derivation of a diagrammatic perturbation theory one therefore in-
troduces the so-called Keldysh time contour and nonequilibrium Green’s functions [11,12].

We will use this formalism to introduce an action functional into time-dependent
density functional theory following van Leeuwen [12, 35].

Assume we have a system which is isolated until t < t0 such that we have for the
initial Hamiltonian Ĥ0 the system in its thermal equilibrium

ρ̂0 =
exp[−β(Ĥ0 − µN̂)]

tr{exp[−β(Ĥ0 − µN̂)]}
, (1.203)

with the inverse temperature β = 1/kBT , the chemical potential µ and the number

operator N̂ . If now Ĥ0 and N̂ commute we can rewrite the initial density matrix
with the evolution operator using a complex time argument as ρ̂0 = exp[βµN̂ ]Û(t0 −
iβ, t0)/tr{exp[βµN̂ ]Û(t0 − iβ, t0)}. Thus a general observable may be expressed as

O(t) =
tr
{

exp(βµN̂)Û(t0 − iβ, t0)Û(t0, t)ÔÛ(t, t0)
}

tr
{

exp(βµN̂)Û(t0 − iβ, t0)
} . (1.204)
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Reading the numerator from right to left a further reformulation is possible as we can
construct a time contour γ from t0 to t, then back to t0 and finally along the imaginary
axis from t0 to t0 − iβ. Because of the group property one may extend this contour up to
t→ ∞. This time contour is called the Keldysh contour [11] leading to

O(z) =
tr
{

exp(βµN̂)TC

[
exp(−i

∫
γ
dz′Ĥ(z′))Ô(z)

]}

tr
{

exp(βµN̂)TC

[
exp(−i

∫
γ
dz′Ĥ(z′))

]} (1.205)

where z and z′ are the corresponding time variables and TC is the contour time ordering
operator rearranging the times later on the contour to the left. The contour time
argument in Ô(z) indicates the position in the ordering. Points on the real axis (physical
time) can either be on the forward branch (t−) or on the backward branch (t+) leading to
cases where a later point on the contour may be earlier in real time. Keldysh functions
f(z) may be different for the same real-time argument t, depending on which branch
they are , i.e., f(t−) 6= f(t+). Keldysh functions with the property f(t−) = f(t+) will be
called physical.
The complex branch from t0 to t0 − iβ is analogous to the Matsubara method, which
is used to rewrite the interacting many-body problem in terms of the noninteracting
one leading to a generalized form of Wick’s theorem [18]. For our purposes, depending
on the initial configuration chosen, we may neglect the complex branch [11,12,35] later on.

We define the Keldysh space consisting of two point functions of the form [11]

k(z, z′) = δ(z, z′)kδ(z) + θ(z, z′)k>(z, z′) + θ(z′, z)k<(z, z′) (1.206)

with θ(z, z′) is equal to 1 for z later on the contour than z′, 0 otherwise, and δ(z, z′) =
dθ(z, z′)/dz. The Keldysh Green’s functions are part of this space. For k(z, z′) we further
define the greater and lesser functions

k>(t, t′) ≡ k(t+, t
′
−), k<(t, t′) ≡ k(t−, t

′
+) (1.207)

and the retarded and advanced functions

kR(t, t′) = δ(t, t′)kδ(t) + θ(t− t′) [k>(t, t′) − k<(t, t′)] , (1.208)

kA(t, t′) = δ(t, t′)kδ(t) − θ(t′ − t) [k>(t, t′) − k<(t, t′)] (1.209)

on the physical time axis. The retarded function kR(t, t′) is zero for t < t′ and analogously
kA(t, t′) is zero for t′ < t.

With t0− the earlist time on the contour and Û(z, z′) = TC{exp[−i
∫ z
z′
dz̄Ĥ(z̄)]} we will

now introduce the action functional

Ã[v] = i ln tr
{

exp(βµN̂)Û(t0 − iβ, t0−)
}
, (1.210)

which is merely a tool for generating equations of motion. Note that for a physical
potential we have Û(t0 − iβ, t0−) = Û(t0 − iβ, t0) and that the thermal density matrix ρ̂0

is itself a functional of the density [36]. From

i∂zÛ(z, z′) = Ĥ(z)Û(z, z′), i∂z′Û(z, z′) = −Û(z, z′)Ĥ(z′) (1.211)
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1.3. Time-Dependent Density Functional Theory

we find for some variation δV̂ (z)

i∂zδÛ(z, z′) = δV̂ (z)Û(z, z′) + Ĥ(z)δÛ (z, z′) (1.212)

i∂z′δÛ(z, z′) = −δÛ (z, z′)Ĥ(z′) − Û(z, z′)δV̂ (z′). (1.213)

With Û(z, z) = 1 and δÛ(z, z) = 0

δÛ(z, z′) = −i

∫ z

z′
dz̄Û(z, z̄)δV̂ (z̄)Û(z̄, z′) (1.214)

along the Keldysh contour going from t0− to t0−iβ. Note that the variations on the forward
direction δV̂ (t−) are independent of the variations on the backward branch δV̂ (t+). If we
assume a variation of the form

δV̂ (z) =

∫
d3rδv(r, z)n̂(r) (1.215)

and functional differentiability we end up with

δÃ[v]

δv(r, z)
=

tr
{

exp(βµN̂)TC

[
exp(−i

∫
γ
dz′Ĥ(z′))n̂(r, z)

]}

tr
{

exp(βµN̂)TC

[
exp(−i

∫
γ
dz′Ĥ(z′))

]}

= n([v]; r, z). (1.216)

We are of course interested in physical potentials, i.e., v(r, t−) = v(r, t+) as well as phys-
ical densities, i.e., n(r, t−) = n(r, t+). If we now look at the density-response function,
i.e., the linear response kernel, we find in Keldysh space

χ([v]; r, z, r′, z′) =
δn([v]; r, z)

δv(r′, z′)
(1.217)

=
δÃ[v]

δv(r, z)δv(r′, z′)
= χ([n]; r′, z′, r, z).

In Keldysh space the response function, which is a second functional derivative, is sym-
metric in its space-time arguments. However, if we calculate the actual physical response
for a physical variation δv(r′, t′±) = δv(r′, t′)

δn([v; δv]; r, t) = δn([v; δv]; r, t±) (1.218)

=

∫

γ

dz′
∫
d3r′χ([v]; r, t±, r

′, z′)δv(r′, z′)

we find, as noted before, that the complex branch integration does not contribute as
δv(r′, t) 6= 0 only for t > t0. Further, with χ = χ> on the forward branch and χ = χ< on
the backward branch, we end up with a retarded, i.e., causal, kernel

δn([v; δv]; r, t) =

∫ t

t0

dt′
∫
d3r′[χ>([v]; r, t, r′, t′) − χ<([v]; r, t, r′, t′)]δv(r′, t′)

=

∫ ∞

t0

dt′
∫
d3r′χR([v]; r, t, r′, t′)δv(r′, t′). (1.219)
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Therefore the second functional derivative, if expressed in physical time, is causal, whereas
it is symmetric on the Keldysh contour.
For general initial configuration ρ̂0 we thus define the action functional in Keldysh
space as

Ãbρ0 [v] = i ln tr
{
ρ̂0 exp(βĤ0)Û(t0 − iβ, t0−)

}
. (1.220)

As is usually done one could ignore the complex branch [12, 35]. It is straightforward
to redefine the contour γ̄ going from t0 to t and back to t0 and use a properly redefined
functional

Ābρ0 [v] := i ln tr
{
ρ̂0Û(t0, t0−)

}
(1.221)

with Û(t0, t0−) the time-evolution operator on the new contour γ̄. This solves the
symmetry-causality paradox in time-dependent density functional theory.
Accordingly one can then define via a Legendre transformation, assuming a one-to-one
relation between n(r, z) and v(r, z) on the Keldysh contour,

Abρ0 [n] = −Ãbρ0 [v] +

∫

γ

dz

∫
d3r v(r, z) n(r, z) (1.222)

which has the property δAbρ0 [n]/δn(r, z) = vbρ0([n]; r, z). The functional

Ãbρ0 [n] = Abρ0 [n] −
∫

γ

dz

∫
d3r v(r, z) n(r, z), (1.223)

where v(r, z) is some fixed potential, can be used as a basis for a variational principle in
time-dependent density functional theory, leading to

δÃbρ0 [n]

δn(r, z)
= vbρ0([n]; r, z) − v(r, z) = 0 (1.224)

whenever vbρ0([n]; r, z) = v(r, z), i.e., the right density is chosen.
The whole procedure can be repeated for a noninteracting system. For an initial nonin-
teracting configuration ρ̂′0 we then may define the exchange-correlation action functional

Axc
bρ0,bρ′0 [n] = Abρ′0 [n] −Abρ0 [n] − 1

2

∫
dzd3r

∫
dz′d3r′

n(r, z)n(r′, z′)

|r − r′| (1.225)

which leads via a functional derivative to

δAxc
bρ0,bρ′0

[n]

δn(r, z)
= vxc

bρ0,bρ′0([n]; r, z). (1.226)
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1.3. Time-Dependent Density Functional Theory

Approximations for the Exchange-Correlation Potential

The exchange-correlation potential is the crucial point in the usual way to use density
functional theories, i.e., the Kohn-Sham construction. All of the complex inner forces
are hidden within the Hartree-exchange-correlation potential, and one usually assumes
that the exchange-correlation part is small compared to the Hartree-term. Further, one
employs approximations for the exchange-correlation part coming from known solutions
of particular systems, e.g., the homogeneous electron gas. However, for the case of time-
dependent density functional theory another point comes into play. The exact exchange-
correlation potentials are nonlocal in time, i.e., they have memory. This point will be
thoroughly discussed later on. Until now most approximations adopt an adiabatic point of
view. These adiabatic approximations only depend on the instantaneous density. Further,
there are known exact conditions which should, in principle, be satisfied by the exact
exchange-correlation potential [11]. Though most approximations seem to be very crude,
one often finds good agreement with experiment [11].
The most common approximation is the adiabatic local density approximation [9,11]

vALDA
xc ([n]; r, t) =

δExc[n]

δn

∣∣∣∣
n=n(r,t)

, (1.227)

where Exc[n] is the exchange-correlation energy of the corresponding time-independent
system. One usually assumes the equilibrium system to be nearly homogeneous such
that every small volume element can be considered independent of the other volume
elements. Each element then is regarded to be a homogeneous many-body system of
the local density with the exchange-correlation energy of the homogeneous electron gas
Eheg

xc [n]. This energy functional can be decomposed Eheg
xc [n] = Eheg

x [n] + Eheg
c [n] into an

exchange energy term analytically known

Eheg
x [n] = −3

4

(
3

π

)1/3 ∫
d3r n4/3(r) (1.228)

and a correlation term Eheg
c [n] for which several approximations exist [9]. A possible

derivation which is closely connected to the time-dependent case is based upon the many-
body equation of motion [21]. The many-body equation of a homogeneous equilibrium
system is

i∂tψ̂σ,H = −1

2
∇

2ψ̂σ,H +

∫
d3r′vint(|r − r′|)n̂H(r, t)ψ̂σ,H. (1.229)

The associated stress tensor, i.e., equation (1.89), then reads

Pµν [n] = δµν

(
2

3
Ekin −

1

6

∫
d3r rµ

∂vint(|r|)
∂rµ

̺heg(|r|)
)

(1.230)

with Ekin the kinetic energy per volume and ̺heg the two-particle density of the homoge-
neous electron gas. We can separate the Hartree contribution to the stress tensor by using
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the pair correlation function defined in general as G2(r, r
′) = 〈∑σ ψ̂

†
σ(r)n̂(r′)ψ̂σ(r)〉 −

n(r)n(r′) instead of the full two-particle density, i.e.,

P ′
µν [n] = δµν

(
2

3
Ekin −

1

6

∫
d3r rµ

∂vint(|r|)
∂rµ

Gheg
2 (|r|)

)
. (1.231)

The noninteracting term, i.e., equation (1.90), is

T̆µν [n] = δµν

(
2

3
EiF

kin

)
(1.232)

with EiF
kin the energy per volume of the ideal Fermi gas. The exchange-correlation potential

can thus be found via

∂µvxc([n]; r) =
1

n
∂ν

(
P ′
µν − T̆µν

)
. (1.233)

This equation can be brought into the more familiar form of the Poisson equation

∇
2
rvxc([n]; r) = 4πρxc(r) (1.234)

with

ρxc =
1

4π
∂µ

(
∂ν(P

′
µν − T̆µν)

n

)
(1.235)

the exchange-correlation “charge-density”. Of course, this approximate treatment is to
be expected to fail if the density is far from homogeneous or if the density inserted into
this approximation is rapidly changing. Nevertheless, even for such cases, the adiabatic
local density approximation works surprisingly well for many applications [11].

The exact Hartree-exchange-correlation potential should in principle contain mem-
ory effects, i.e., it should dependend on previous densities. Hence a further important
step in the approximations of the potential is to go beyond adiabatic approaches.
It is expected, that memory is very important to describe, for instance, resonant
dynamics [13]. In order to derive a nonadiabatic local density approximation one
may argue as follows: Assume one considers the time-dependent problem not in the
laboratory reference frame but in a noninertial reference frame which moves with an
infinitesimal fluid element. This amounts to a transformation from an Eulerian to a
Lagrangian reference frame. In a comoving Lagrangian frame (ξ, t) the density n(r, t)
and the current density j(r, t) become exact integrals of motion [20], i.e.,

ñ(ξ, t) = n0(ξ), j̃(ξ, t) = 0. (1.236)

In such a reformulation one can in principle deduce nonadiabatic local density approxima-
tions in a similar way as adiabatic local density approximations in the time-independent
case. Assume, the time-independent density of the Lagrangian reference frame to be
nearly homogeneous. Then every small volume element can be considered as an homo-
geneous system of the local density, independent of the other elements. In addition, we
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1.3. Time-Dependent Density Functional Theory

we have to pose the restriction that the deformation of the initial system is homogeneous
too. This idea was pursued by Tokatly in [20, 21].
The transformation from an Euclidean coordinate system (x1, ..., xn) to a general reference
frame (z1, ..., zn) at some point P = (x1

0, ..., x
n
0 ) with

xµ = xµ(z1, ..., zn) (1.237)

zµ = zµ(x1, ..., xn)

and the help of the inverse function theorem [38]

∂zµ

∂xα
∂xα

∂zν
= δµν (1.238)

is for a vector r = (r1, ..., rn) relative to (x1, ..., xn)

ξν =
∂zν

∂xµ

∣∣∣∣
P

rµ, (1.239)

for a covector r = (r1, ..., rn) relative to (x1, ..., xn)

ξµ =
∂xν

∂zµ

∣∣∣∣
P

rν (1.240)

and a quadratic form (on vectors) g̃µν relative to (x1, ..., xn)

gµν =
∂xα

∂zµ

∣∣∣∣
P

g̃αβ
∂xβ

∂zν

∣∣∣∣
P

. (1.241)

The covariant derivative of a zero rank tensor f can be written as

∇µf =
∂f

∂zµ
. (1.242)

The (covariant) divergence of a vector field (T µ) in terms of the Christoffel symbols
(connexion) Γµνα compatible with the pseudo Riemannian metric

gµν =
∂xα

∂zµ
∂xα

∂zν
(1.243)

reads as

divT = ∇µT
µ = T µ;µ =

∂T µ

∂zµ
+ ΓµαµT

α, (1.244)

with Γαµν = (1/2)gαβ(∂gβν/∂z
µ + ∂gµβ/∂z

ν − ∂gµν/∂z
β). This can be further simplified if

we assume gµν = gνµ

Γµαµ =
1

2
gµβ

∂gµβ
∂zα

=
1

2g

∂g

∂zα
=

∂

∂zα
ln(
√

|g|), (1.245)
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where g = det(gµν), and we used ∂ det(A)/∂Aµν = det(A)(A−1)νµ to rewrite

∂g

∂zα
=
∂gµν
∂zα

∂g

∂gµν
=
∂gµν
∂zα

ggνµ = gµν
∂gµν
∂zα

g, (1.246)

with gµαgαν = δνµ. The covariant divergence can thus be written as

∇µT
µ =

1√
|g|

∂

∂zµ

(√
|g|T µ

)
. (1.247)

Therefore the covariant Laplacian reads as

∆ = ∇µ∇µ = ∇µg
µα∇α = ∇µg

µα ∂

∂zα
=

1√
|g|

∂

∂zµ

√
|g|gµα ∂

∂zα
. (1.248)

With this knowledge we can deduce the quantum equations of motion for the Lagrangian
reference frame. The transformation is defined via

∂r(ξ, t)

∂t
= v(r(ξ, t), t) =

j(r(ξ, t), t)

n(r(ξ, t), t)
, r(ξ, 0) = ξ, (1.249)

where the propability density and probability current are defined by equation (1.66) and
(1.69). The function r(ξ, t) corresponds to the trajectory of an infinitesimally small fluid
element. Every fluid element is uniquely labeled by its initial position, i.e., its Lagrangian
coordinate ξ. The corresponding time-dependent metric is gµν = gµν(ξ, t), which is also
denoted the deformation tensor. With the transformation [20] of

|r − r′| =

∫ 1

0

√
gµν(∂xµ/∂λ)(∂xν/∂λ)dλ := lξ,ξ′ , (1.250)

where ∂xµ/∂λ := (∂ξµ/∂rα(λ))(∂rα(λ)/∂λ) and r(λ) = r′ + (r − r′)λ, we have

vint(|r − r′|) = vint(lξ,ξ′). (1.251)

Further one finds for the equal time (anti)commutation relations with g being the square
of the Jacobian and therefore positive

[
ψ̂σ,H(ξ, t), ψ̂†

σ′,H(ξ′, t)
]
−ǫ

=
1√
g
δ3(ξ − ξ′)δσ,σ′ . (1.252)

If we renormalize the creation and annihilation operators

̂̃
ψ

†

σ,H(ξ, t) = g1/4ψ̂†
σ,H(ξ, t),

̂̃
ψσ,H(ξ, t) = g1/4ψ̂σ,H(ξ, t) (1.253)

we automatically take the change of unit volume in the deformed reference frame

into account. Therefore also the definition of the density changes to ̂̃nH(ξ′, t) =
∑

σ

̂̃
ψ

†

σ,H(ξ, t)
̂̃
ψσ,H(ξ, t). Hence one finds with the kinetic momentum

K̂µ = −i
∂

∂ξµ
− ṽµ (1.254)
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ṽµ = gµν(∂ξ
ν/∂xα)vα the quantum equation of motion in the comoving La-

grangian reference frame

i
∂
̂̃
ψσ,H(ξ, t)

∂t
=

(
g−

1
4
K̂µ

√
gK̂µ

2
g−

1
4 + vext(ξ, t) −

ṽµṽ
µ

2

)
̂̃
ψσ,H(ξ, t)

+

∫
d3ξ′vint(lξ,ξ′)̂̃nH(ξ′, t)

̂̃
ψσ,H(ξ, t). (1.255)

The quantum equation of motion in the laboratory reference frame is given by equation
(1.65). Here we gave the external potential the subindex ’ext’ to be distinguishable from
the velocity vector field v. Note that the interaction depends on the length of the geodesic
vint(lξ,ξ′) on the space with the time dependent metric gµν(ξ, t). One can show the validity
of (1.236) using

̂̃
j
µ

H = gµν

[
− i

2

∑

σ

(
̂̃
ψ

†

σ,H∂ν
̂̃
ψσ,H − (∂ν

̂̃
ψ

†

σ,H)
̂̃
ψσ,H

)
− ṽν ˜̂nH

]
(1.256)

where ∂/∂ξµ ≡ ∂µ. Note that the density in the laboratory reference frame is recovered

via n(r, t) = ñ(ξ(r, t), t)/
√
g(ξ(r, t), t). Finally one arrives at the local force balance

equation in the Lagrangian frame

ñ

[
∂tṽµ + ∂µ

(
vext −

ṽν ṽ
ν

2

)]
+
√
gP̃ ν

µ;ν = 0 (1.257)

with P̃µν = (∂xα/∂ξµ)(∂xβ/∂ξν)Pαβ, Pαβ defined via equation (1.89), and the covariant
derivative is

P̃ ν
µ;ν =

1√
g
∂ν

(√
gP̃ ν

µ

)
− 1

2

∂gαβ
∂ξµ

P̃ αβ. (1.258)

The first term is a linear acceleration force, the second term is proportional to the moving
frame independent of the particle momentum, and the third term describes the forces
of internal stress. Equations (1.255) and (1.257) constitute the full set of equations of
the quantum many-body problem in the Lagrangian frame [21]. Like in the laboratory
reference frame one may now define a system of noninteracting particles in an effective
external potential. The Kohn-Sham equations of motion thus read

i
∂
̂̃
ψσ,H(ξ, t)

∂t
=

(
g−

1
4
K̂µ

√
gK̂µ

2
g−

1
4 + vext(ξ, t) + vHxc

bρ0,bρ′0([ṽ]; ξ, t)

− ṽµṽ
µ

2

)
̂̃
ψσ,H(ξ, t) (1.259)

and

∂µv
Hxc
bρ0,bρ′0([ṽ]; ξ, t) =

√
g

n0

(
P̃ ν
µ;ν [ρ̂0, ṽ] − ˜̆T

ν

µ;ν [ρ̂
′
0, ṽ]

)
. (1.260)
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Here P̃ ν
µ;ν [ρ̂0, ṽ] are the internal stress forces of the interacting problem and

˜̆
T
ν

µ;ν [ρ̂
′
0, ṽ] its

noninteracting counterpart just like in the laboratory reference frame. Note that one may
rewrite the dependence of the internal stress forces on the velocity into a dependence on
the time-dependent metric gµν and an effective magnetic field F̃µν [21]. In this geometric
reformulation of time-dependent density functional theory one encounters naturally a
vector field as the fundamental collective variable and no longer just a scalar one. This
reformulation has strong resemblances to current density functional theory [11] and leads
to similar results for a nonadiabatic local density approximation.
For the nonadiabatic local density approximation we follow the same route as in the
static case (1.229). We assume the initial density to be almost homogeneous. However,
we further pose the restriction that the inhomogeneity of the deformation is negligible,
i.e., gµν ≃ gµν(t), leading to [21]

i∂t
̂̃
ψσ,H = −gµν(t)

2
∂µ∂ν

̂̃
ψσ,H +

∫
d3ξ′vint(lξ,ξ′)̂̃nH(ξ′, t)

̂̃
ψσ,H. (1.261)

Due to the density being stationary in the Lagrangian reference frame one can then
handle the nearly homogeneous many-body system as in the equilibrium case. With an
elastic approximation for Coulombic systems [21] and the transformation back into the
laboratory reference frame one finds the Hartree-exchange-correlation potential by use of
the Poisson equation where the first term generates the Hartree-term,

∇
2vTDLDA

Hxc ([n, gµν ]; r, t) = 4π (n+ ρxc[n, gµν ]) , (1.262)

ρxc =
1

4π

∂

∂rµ

[
1

n

∂

∂rν
P xc
µν [n, gµν ]

]
(1.263)

and

P xc
µν =

2

3
gµν

√
gEkin

xc

[
n√
g

]
+ Lµν [gαβ]E

pot
xc

[
n√
g

]
. (1.264)

With the initial condition gµν(r, 0) = δµν we further have

∂tgµν = −vα∂αgµν − (∂µv
α)gαν − (∂νv

α)gαµ, (1.265)

Lµν [gαβ] some purely geometric factor, Ekin
xc the kinetic and Epot

xc the potential energy of
the homogeneous electron gas. Thus for every time-step one has to solve equation (1.265)
and apply the deduced time-dependent metric to calculate P xc

µν and ρxc. Via solution
of the Poisson equation (1.262) one finds the nonadiabatic local density approximation,
which then can be used to propagate the Kohn-Sham-equation [39].

Another important approximation is the so-called (adiabatic) exact exchange
approximation. There one usually uses the same energy functional as in the Hartree-
Fock approach which cancels all unphysical self-interactions of the Kohn-Sham orbitals.
This is of special importance for our further considerations and can be applied in
general via optimized effective potentials to find the corresponding local potentials [40].
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However, even more involved nonadiabatic as well as adiabatic exact exchange methods
are available [11]. We will derive the exact exchange method for a simple but instructive
case, namely a spin singlet system. In Hartree-Fock approximation the many-body
wavefunction is expressed as a Slater determinant of spin-orbitals,

ψi(r)|σ〉i ∈ L2(R3) ⊗ C2, (1.266)

where the subindex i contains all quantum numbers including the spin index. The two-
particle Slater determinant reads

|Ψ〉 =
1√
2

ψ(1)(r1)|σ1〉(1) ψ(1)(r2)|σ2〉(1)
ψ(2)(r1)|σ1〉(2) ψ(2)(r2)|σ2〉(2) . (1.267)

The basis set for the two-particle wavefunctions contains all possible combinations of spin
projections and orthonormal spatial wavefunctions. With the Schrödinger Hamiltonian
Ĥ we find the energy for a general N -body Slater determinant to be

E[{ψi|σ〉i}] =
N∑

i=1

〈ψi|T̂ + V̂ |ψi〉 (1.268)

+
1

2

∑

i6=j

∫
d3rd3r′

[
|ψj(r′)|2|ψi(r)|2vint(|r − r′|)

−ψ∗
i (r

′)ψ∗
j (r)vint(|r − r′|)ψi(r)ψj(r

′)δσiσj

]
.

By variation with respect to the orbitals the ground-state energy is found. Via Lagrangian
multipliers the condition that all orbitals should be normalized is incorporated, leading
to the Hartree-Fock equation

[
T̂ + V̂ +

N∑

i=1

∫
d3r′|ψi(r′)|2vint(|r − r′|)

]
ψj(r) (1.269)

−
[

N∑

i=1

∫
d3r′ψ∗

i (r
′)vint(|r − r′|)ψj(r′)

]
ψi(r)δσiσj

= ǫjψj(r).

The third term is called the direct term and the fourth term is the nonlocal exchange
term. The nonlocality is the main difference to density functional theory, where one uses
local potentials to account for exchange and also correlation. The Hartree-Fock approxi-
mation does not account for any correlation. However, the so-called multi-configurational
Hartree-Fock approach, which assumes the wavefunction to consist of a linear combina-
tion of Slater determinants, overcomes this restriction.
It can be shown that also for Hartree-Fock theory one can find an appropriate density
functional reformulation [41] which gives rise to local exact exchange potentials. For the
special case of a spin singlet

|Ψ〉S :=
1√
2

(|ψ〉|ψ〉) (| ↑〉| ↓〉 − | ↓〉| ↑〉) (1.270)
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Hartree-Fock and exchange-only density functional theory coincide due to n(r) = 2|ψ(r)|2,
and the Kohn-Sham equation reads

ǫ ψ(r) =

[
−1

2
∇

2 + v(r) +

∫
d3r′|ψ(r′)|2vint(|r − r′|)

]
ψ(r). (1.271)

We therefore find the (adiabatic) exact Hartree-exchange potential for the spin-singlet
case

vHx([n]; r, t) :=
1

2

∫
d3r′n(r, t)vint(|r − r′|). (1.272)

Beside adiabatic and nonadiabatic local density approximation as well as the ex-
act exchange approximation many others, e.g., hybrid functionals, are known and were
successfully applied to physical problems [9, 11].

1.3.4 Quantum Memory

As already pointed out, exchange-correlation potentials in time-dependent density
functional theory are more complex than ground-state density functionals as one has to
deal with, e.g., initial configuration dependence [11]. However, the problem of initial
state dependence is mostly avoided by choosing the ground-state as the initial state.
The second main difference is not that obvious, although it is strongly interlinked with
initial state dependence [13, 34], namely ”quantum memory”, i.e., the potential does
somehow depend on previous densities. The elusive term “quantum memory” has never
been rigorously defined and a proper investigation is of importance for the development
of approximations for the exchange-correlation potential.

To see how memory appears in time-dependent density functional theory we fol-
low the arguments of van Leeuwen [42] and assume an initial configuration and
interaction chosen. If the interval at consideration is [t0, T ] with T > t0 and n(r, t) is
only given within this interval, one cannot construct the associated potential for some
time T ′ > T . There are different systems with the same density until time T which may
differ afterwards. Therefore the potential does only depend on the density in the same
time interval [t0, T ]. Also if one only has the density in some time interval [T ′′, T ] with
t0 < T ′′ < T , then one does not have enough information to construct the associated
potential on the time interval [t0, T ]. There may be more than one or no possible
potential generating the density on the subinterval for an initial configuration. However,
if the configuration at T ′′ were known one could of course construct a potential at least
in the interval [T ′′, T ]. Nevertheless this would amount to propagate the known initial
state at t0 with some unknown potential.

We can conclude: In general we need the density n(r, t) on the whole time in-
terval [t0, T ] in order to construct the potential v(r, T ). One cannot construct the
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1.3. Time-Dependent Density Functional Theory

potential by only knowing the density at the same time. Therefore v[n] has to have
“memory” of the density at earlier times. One can replace “memory” by “initial state
dependence” and vice versa.

Functional Derivative and Formal Definition of Memory

This subsection is dedicated to the definition of the term “memory”. Although it
is known that the exchange-correlation potential in general depends on previous
densities, to the best of our knowledge, a proper definition of what is meant by the
notion of “memory” has never been given. One usually connects nonadiabaticity with
frequency-dependence of the exchange-correlation kernel [11]. Following this idea, a
formal definition of “memory” in terms of the functional derivative of a general nonlinear
mapping is proposed. It is highlighted that the functional differentiability of the Runge-
Gross mapping vbρ0 depends on the properties of the set of density and potential variations.

From a formal viewpoint one could argue that due to the analytic continuation
procedure in the extended Runge-Gross proof one does need knowledge of vbρ0([n]; r, t)
and hence n(r, t) in previous intervals of convergence to uniquely define the potential at
some later time. Only knowing the density at some point later then t0 does not define
the associated potential at that time. If we have the initial configuration and the density
or potential as a Taylor series about t0 everything else is uniquely defined for later times.
Any small variation of the density leads to a different density and potential on the whole
time axis and manifests itself in a different Taylor series representation about t0. For
n ∈ N (ρ̂0, V̂int) and v ∈ V(ρ̂0, V̂int) no time-local variation is possible. Only variations ∆n

are allowed which will lead to n+ ∆n ∈ N (ρ̂0, V̂int) and v+ ∆v ∈ V(ρ̂0, V̂int). We will call
such variations v-representable variations. To determine the potential due to some
altered density at time t > t0 one needs the previous altered densities. This amounts to
a modified Taylor expansion about t0, which leads to the potential at time t. Otherwise
there may be different vρ0([n+ ∆n]; r, t) which are the same at t but different elsewhere.

Assume now Gâteaux differentiability of the mapping

vbρ0 : δN (ρ̂0, V̂int) ⊆ Bn(Ω̄) → V(ρ̂0, V̂int) ⊆ Bv(Ω̄), (1.273)

i.e., dvbρ0 : δN (ρ̂0, V̂int) → L(Bn(Ω̄),Bv(Ω̄)) exists with Bn(Ω̄) and Bv(Ω̄) the corresponding

Banach spaces. Hence for every δn ∈ δN (ρ̂0, V̂int), i.e., the space of allowed density
variations (1.169), and h ∈ Bn(Ω̄) we have with n = n0 + n(1) + δn

lim
ǫ→0

vbρ0([n + ǫh]; r, t) − vbρ0([n]; r, t)

ǫ
= dvbρ0([n, h]; r, t). (1.274)

The choice of δN (ρ̂0, V̂int) instead of the usual N (ρ̂0, V̂int) guarantees that n + ǫh will

respect the initial conditions and norm conservation at least for h ∈ δN (ρ̂0, V̂int). The
assumption of functional differentiability may not be well chosen. However, one may at
least assume v-representable differentiability. This means, we assume in accordance
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to definition 1.3.2 that for some n ∈ N (ρ̂0, V̂int) and h ∈ Bn(Ω̄) there is an ǫ > 0 for which
all n + λh with 0 ≤ λ < ǫ are v-representable, and the variation

∆vbρ0([n, h]; r, t) =
d

dλ
vbρ0([n+ λh]; r, t)

∣∣∣∣
λ=0

(1.275)

exists. If these infinitesimal v-representable variations exist for all h ∈ Bn(Ω̄) they are just
the usual Gâteaux derivatives [26]. Thus the question of Gâteaux differentiability is

strongly interlinked with the question whether the set of density variations δN (ρ̂0, V̂int)
forms a Banach space.
An indication for functional v-representable differentiability can be found in [11] on page
23 where the invertibility of the linear response functions is shown if one starts from a
ground-state.
Due to Gâteaux differentiability and analyticity of the corresponding functions we assume
the functional differential to be analytic itself, i.e.,

dvbρ0([n, h]; r, t) =
∞∑

k=0

1

k!
dv

(k)
bρ0 ([n, h]; r) (t− t0)

k (1.276)

with

dv
(k)
bρ0 ([n, h]; r) = lim

ǫ→0

v
′(k)
ǫ (r) − v(k)(r)

ǫ
, (1.277)

vbρ0([n + ǫh]; r, t) ≡ v′ǫ(r, t) and vbρ0([n]; r, t) ≡ v(r, t) both analytically continued along
the real time axis. Correspondingly, in order to find the first Gâteaux derivative at n in
direction h we need to know the density n and the variation h on the whole interval [t0, t],
i.e., from the initial time t0 until the time t we are interested in.
Usually one further assumes the Gâteaux differential to be representable by an integral
operator of the form

dvbρ0([n, h]; r, t) =

∫ t

t0

dt′
∫

Ω

d3r′
δvbρ0([n

′]; r, t)

δn′(r′, t′)

∣∣∣∣
n′=n

h(r′, t′) (1.278)

with the integral kernel
δvbρ0

([n′];r,t)

δn′(r′,t′)

∣∣∣
n′=n

≡ χ−1([n]; r, t; r′, t′) the inverse linear response

kernel.

We will call a differentiable operator O([n]; r, t) nonlocal in time if the integral
kernel

δO([n′]; r, t)

δn′(r′, t′)

∣∣∣∣
n′=n

6= δ(t− t′)f([n]; r, r′, t′), (1.279)

i.e., it cannot be written as a delta-like operator in time. Physically this means that there
is at least one time t′ < t for which the variation influences the later response at time
t. Note that f may contain derivatives in time. Due to h ∈ C∞([t0, t]) any number of
derivatives in time are allowed. Therefore we may rewrite

f([n]; r, r′, t′) =

∞∑

k=0

gk([n]; r, r′, t′) ∂kt′ . (1.280)
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1.3. Time-Dependent Density Functional Theory

If all derivatives of the analytic function h(r, t) at time t are known one also knows the
variations for previous times. Therefore we also have to exclude such cases because we
would have implicit dependence on previous times. Hence we state the following formal
definition:

A Gâteaux differentiable operator O([n]; r, t) is nonlocal in
time, i.e., has memory, if its kernel obeys

δO([n′]; r, t)

δn′(r′, t′)

∣∣∣∣
n′=n

6= δ(t− t′)f([n]; r, r′, t′), (1.281)

for any operator f([n]; r, r′, t′), which does not consist of an
infinite number of time derivatives.

Of course, even a finite number of time derivatives of h may be seen as a weaker kind
of nonlocality. Nevertheless we will use the terms nonlocality, history dependence,
and memory according to the above definition. However, a kernel which involves a time
derivative will still be called nonadiabatic although one does in principle only need the
density variation at that time t. This is done to agree with the literature [11] and with
the usual notion of adiabaticity, which does imply that the inverse linear response kernel
of the ground-state density is frequency independent.

The Runge-Gross Mapping

The potential mapping vbρ0 has memory in the above sense. Nonlocality in time
has important physical implications for vbρ0 . For the ground-state inverse linear response
kernel χ−1([nGS]; r, t; r

′, t′) we have [11]

χ−1([nGS]; r, t; r
′, t′) ≡ χ−1([nGS]; r, r

′, t− t′). (1.282)

If we Fourier-transform with respect to t − t′ we obtain a frequency dependend inverse
linear response kernel

χ−1([nGS]; r, r
′, ω). (1.283)

Nonlocality in time for vbρ0 amounts to a general ω-dependence. If we had locality in time
in the above sense only a “special” ω-dependence would be present as a derivative in
time corresponds to multiplication with ω after Fourier transformation. However, due to
combinations of time derivatives also this ”special ω-dependence” may be quite general.
Hence, even if memory exists, some local, however, nonadiabatic approximation may
cover the most important characteristics of χ−1([nGS]; r, r

′, ω).

For the Kohn-Sham scheme we have to consider the exchange-correlation potential
mapping

vxc
bρ0,bρ′0 : δN (ρ̂0, V̂int) ∩ δN (ρ̂′0) ⊆ Bxc

n (Ω̄) → V(ρ̂0, V̂int) ∩ V(ρ̂′0). (1.284)

61



Chapter 1: Many-Body Quantum Theory

Again we assume differentiability. The differentiability is guaranteed if vbρ0 and vbρ′0 are
differentiable at δn for all h ∈ Bxc

n (Ω̄). Following the above reasoning we assume with
vxc

bρ0,bρ′0
= vbρ′0 − vbρ0 − vH, where the differentiability of vH is trivial, that

dvxc
bρ0,bρ′0([n, h]; r, t) =

∫ t

t0

dt′
∫

Ω

d3r′
δvxc

bρ0,bρ′0
([n′]; r, t)

δn′(r′, t′)

∣∣∣∣∣
n′=n

h(r′, t′) (1.285)

and

δvxc
bρ0,bρ′0

([n′]; r, t)

δn′(r′, t′)
=
δvbρ′0([n

′]; r, t)

δn′(r′, t′)
− δvbρ0([n

′]; r, t)

δn′(r′, t′)
− δ(t− t′)

|r − r′| . (1.286)

Here the memory arises due to the difference of two time-nonlocal terms, i.e., the non-
locality in the auxiliary noninteracting potential vbρ′0 and the memory in the interacting
potential vbρ0 . Further one usually defines [11]

δvxc
bρ0,bρ′0

([n′]; r, t)

δn′(r′, t′)

∣∣∣∣∣
n′=nGS

=: fxc([nGS]; r, r
′, t− t′) (1.287)

as the so-called exchange-correlation kernel, which is the central object of interest
in linear response time-dependent density functional theory. Again a local approxima-
tion may capture the most important characteristics of the exchange-correlation kernel.
Thinking about an ab initio time-local approximation (via time derivatives) of the
exchange-correlation kernel has also pragmatic and computational implications and is not
mere nitpicking. From the approximation of the exchange-correlation kernel one could
construct a local approximation of the exchange-correlation potential. While effective
potentials involving derivatives of the density or the current density are quite harmless,
memory potentials (involving time integrals over previous times) could seriously spoil the
computational efficiency of the time-dependent Kohn-Sham scheme.

Complex Functional Derivative and Wavefunction Dependence

The Runge-Gross mapping and the exchange-correlation potential are both nonlocal in
time with respect to the density. It seems that memory is the price we pay if we leave
the complex configuration space of the usual many-body quantum theory and replace its
fundamental variable, i.e., the wavefunction, by a quite simple variable, the one-particle
density. If we express the Runge-Gross mapping in terms of the configuration, i.e, wave-
functions, and define nonlocality in time with respect to this new variable, do we still find
”memory”? Via the bijective mapping

ρ̂ρ0 : N (ρ̂0, V̂int) → R(ρ̂0, V̂int)

n(r, t) 7→ ρ̂ρ0([n]; t)

one can find the mapping of interest:

ṽbρ0 = vbρ0 ◦ ρ̂−1
ρ0

: R(ρ̂0, V̂int) → V(ρ̂0, V̂int). (1.288)
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We now meet problems if we want to look at the functional derivatives of ṽbρ0 . First of

all, R(ρ̂0, V̂int) is a subset of the space of linear operators between two complex Banach
spaces. This space itself is a complex Banach space. The functional derivatives, however,
were introduced only on real Banach spaces. Further we note that the derivative is now
with respect to a (linear) operator. This fact does not introduce serious mathematical
problems, as the space for those operators is still a Banach space. Nevertheless, if we
want to express the Gâteaux differential via an integral operator this fact will introduce
formal problems we want to avoid. Therefore we will restrict our considerations to pure
states ρ̂0 = |Ψ0〉〈Ψ0|.
With equation (1.83), i.e.,

∂

∂t
jν(r, t) = −n(r, t)∂νv(r, t) − ∂µ〈Ψ(t)|T̂µν(r)|Ψ(t)〉 − ∂µ〈Ψ(t)|Ŵµν(r)|Ψ(t)〉,

we formally find

∂ν ṽΨ0([Ψ]; r, t) = (1.289)

−∂tjν(r, t) − ∂µ〈Ψ(t)|T̂µν(r)|Ψ(t)〉 − ∂µ〈Ψ(t)|Ŵµν(r)|Ψ(t)〉
n(r, t)

.

One already sees that ṽΨ0 does not depend on previous wavefunctions. Equation (1.289)
merely defines ṽΨ0 and cannot be used for propagation to obtain the wavefunction it-
self [42]. Otherwise we could predict the (input) wavefunction by only knowing the defi-
nition of the mapping [see the discussion of dependence on future densities in subsection
1.3.5]. If a proper extension of the functional derivative to complex Banach spaces is
found, we can state analogously to the formal definition of nonlocality in time (1.281)
that ṽΨ0 does not have memory. Note further that also the initial state depen-
dence of the mapping is lost as we only need the wavefunction and a time derivative
of the wavefunction at time t. Only the set of allowed v-representable wavefunctions
|Ψ〉 ∈ R(Ψ0, V̂int) still depends on the initial state.
A straightforward extension of functional derivatives to complex Banach spaces is analo-
gous to the usual variational calculus where one does use |Ψ〉 → |Ψ〉+|δΨ〉 and neglects all
terms of order (|δΨ〉)2 and higher. This is in accordance with the so-called CR-calculus [43]
extended to general nonlinear mappings.
First we examine complex derivatives for functions which do not obey the Cauchy-
Riemann conditions. This leads to the so-called CR-calculus (Wirtinger-calculus). For
a (nonholomorphic) function f(z) = f(z, z∗) and z = x+ iy we introduce the Wirtinger
derivatives, which are formally (varying z without z∗ is not possible) defined as

∂f(z, z∗)

∂z

∣∣∣∣
z∗=const

the R-derivative, (1.290)

∂f(z, z∗)

∂z∗

∣∣∣∣
z=const

the conjugate R-derivative. (1.291)

These formal partial derivatives exist if the mapping interpreted as f : R2 → R2 is real
(R) differentiable. Equivalently one may rewrite

∂f

∂z
=

1

2

(
∂f

∂x
− i

∂f

∂y

)
,

∂f

∂z∗
=

1

2

(
∂f

∂x
+ i

∂f

∂y

)
, (1.292)
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which leads trivially to the fact that f is holomorphic in z (z∗) if and only if ∂f/∂z∗ = 0
(∂f/∂z = 0). The complex-derivative identities are

∂f ∗

∂z∗
=

(
∂f

∂z

)∗
,

∂f ∗

∂z
=

(
∂f

∂z∗

)∗
, (1.293)

df =
∂f

∂z
dz +

∂f

∂z∗
dz∗, (1.294)

∂h(g)

∂z
=

∂h

∂g

∂g

∂z
+
∂h

∂g∗
∂g∗

∂z
,

∂h(g)

∂z∗
=
∂h

∂g

∂g

∂z∗
+
∂h

∂g∗
∂g∗

∂z∗
. (1.295)

For the multivariate case, i.e., z = (z1, ..., zn)
T ∈ Cn, we define the pair of conjugate

coordinate vectors (z, z∗) by

c =

(
z

z∗

)
∈ C2n

and will further use the equivalent notation for f : Cn → Cm
f (c) = f (z, z∗) = f (z) ∈ Cm.

Then the cogradient operator is defined as

∂

∂z
=

(
∂

∂z1
...

∂

∂zn

)
(1.296)

and the conjugate cogradient operator is

∂

∂z∗ =

(
∂

∂z∗1
...

∂

∂z∗n

)
. (1.297)

Therefore we find the differential rule

df (c) =
∂f (c)

∂c
dc =

∂f (c)

∂z
dz +

∂f (c)

∂z∗ dz∗ (1.298)

with the Jacobian

Jf(c) =
∂f (c)

∂z
=




∂f1
∂z1

... ∂f1
∂zn

.

.

.
∂fm

∂z1
... ∂fm

∂zn




(1.299)

and the conjugate Jacobian

Jcf(c) =
∂f (c)

∂z∗ =




∂f1
∂z∗1

... ∂f1
∂z∗n

.

.

.
∂fm

∂z∗1
... ∂fm

∂z∗n



. (1.300)
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Applying (1.293) we have in general

J∗
f(c) 6= Jcf(c). (1.301)

However, for f (c) ∈ Rm we have J∗
f(c) = Jcf(c). For two mappings h : Cm → Cr and

g : Cn → Cm and its composition h ◦ g = h(g) the chain rule reads

∂h(g)

∂z
=
∂h

∂g

∂g

∂z
+
∂h

∂g∗
∂g

∂z
= JhJg + JchJ

c∗

g = Jh◦g (1.302)

and

∂h(g)

∂z∗ =
∂h

∂g

∂g

∂z∗ +
∂h

∂g∗
∂g

∂z∗ = JhJ
c
g + JchJ

∗
g = Jch◦g. (1.303)

Accordingly the Cauchy-Rieman condition reads Jcf = 0 and for stationary points of
real-valued functionals we have two equivalent conditions:

∂f(z0, z
∗
0)

∂z
= 0,

∂f(z0, z
∗
0)

∂z∗ = 0. (1.304)

Now consider a functional f = h ◦ g with h : Cn → R and g : R → Cn. The ordinaryR-derivative can be rewritten according to (1.292) as

∂

∂x
=

∂

∂z
+

∂

∂z∗
. (1.305)

Therefore we find

∂f

∂x
=

∂f

∂z
+
∂f

∂z∗
=
∂h

∂g

∂g

∂z
+

∂h

∂g∗
∂g∗

∂z
+
∂h

∂g

∂g

∂z∗
+

∂h

∂g∗
∂g∗

∂z∗
(1.306)

=
∂h

∂g

∂g

∂x
+

∂h

∂g∗
∂g∗

∂x
.

Now we will formally extend the CR-calculus to functional derivatives. We
assume the afore deduced properties of the Wirtinger derivatives to be still valid and the
functional differential to be an integral operator with the derivative being its kernel.

We formally find with (1.289) that

δṽ(r, t)

δΨ(r1, ...rN , t1)
= δ(t− t1)f([Ψ]; r, r1, ..., rN , t, t1) (1.307)

does not have memory with respect to the wavefunction as the fundamental variable.
Analogously this holds for δṽ/δΨ∗.

In order to find memory in the Runge-Gross mapping we need the density as the
fundamental variable instead of the wavefunction or the orbitals. We now employ the
inverse variable transformation ρ̂−1

bρ0 , generating the wavefunctions

|Ψ([n]; t)〉 (1.308)
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as operators of the density. Analogously we construct the Kohn-Sham orbitals as func-
tionals of the density {φi([n]; r, t)}. Consider vbρ0 = ṽbρ0 ◦ ρ̂bρ0 restricted to pure states,

vΨ0([n]; r, t) = vΨ0([Ψ[n]]; r, t). (1.309)

Now we can apply the same reasoning to |Ψ([n]; t)〉 as was done at the beginning of the
section for vΨ0([n]; r, t) [42].

We can conclude: In general we need the density n(r, t) on the whole time in-
terval [t0, T ] in order to construct the wavefunction (orbitals) |Ψ(t)〉 (φi(r, t)). One
cannot construct the wavefunction (orbitals) from the knowledge of the density at the
same time. Therefore |Ψ[n]〉 (φi[n]) has to have ”memory” of the density at earlier times.

If we have the differential expressible as an integral operator the associated inte-
gral kernel obeys using (1.306)

δvΨ0([n
′]; r, t)

δn(r′, t′)
=

∫ t

t0

∫
dt′′d3r1...d

3rN

[
δṽ(r, t)

δΨ(r1, ..., rN , t′′)

δΨΨ0(r1, ..., rN , t
′′)

δn(r′, t′)

+
δṽ(r, t)

δΨ∗(r1, ..., rN , t′′)

δΨ∗
Ψ0

(r1, ..., rN , t
′′)

δn(r′, t′)

]
. (1.310)

Especially for the Kohn-Sham case we find

δvφ0([n
′]; r, t)

δn(r′, t′)
=

N∑

i=1

∫ t

t0

∫
dt′′d3r′′

[
δṽ(r, t)

δφi(r′′, t′′)

δφi,φ0(r
′′, t′′)

δn(r′, t′)

+
δṽ(r, t)

δφ∗
i (r

′′, t′′)

δφ∗
i,φ0

(r′′, t′′)

δn(r′, t′)

]
. (1.311)

Evidently, the memory, as defined in subsection 1.3.4, resides in the wavefunction (or-
bitals) as operators of the density n. The derivative with respect to the wavefunction
(orbitals) is local in time. Hence, whenever the wavefunction (orbitals) are locally
expressible in terms of the density, then we have no memory. Further, there will
be no initial state dependence of the potential but an initial state dependence due
to the set of the possible potentials and densities which dependend on the initial state
chosen. This is evident, as we can construct the potential by only knowing the density in
the vicinity of the time t under consideration. An important example is the Kohn-Sham
helium spin-singlet state (1.270) with the orbitals

φ1(r, t) = φ(r, t)| ↑〉, (1.312)

φ2(r, t) = φ(r, t)| ↓〉, (1.313)

and the relation

φ(r, t) =
1√
2

√
n(r, t) exp [iS(r, t)] , (1.314)
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1.3. Time-Dependent Density Functional Theory

where S(r, t) is a phase function obeying

j

n
= ∇S. (1.315)

In three and two dimensions we face the problem of determining the rotational part of S.
However, for the instructive case of one spatial dimension we immediately find due to

j(x, t) = −
∫ x

−∞
dx′∂tn(x′, t) (1.316)

with the boundary condition j → 0 for |x| → ∞

S([n]; x, t) = −
∫ x

−∞
dx′
∫ x′
−∞ dx′′∂tn(x′′, t)

n(x′, t)
+ C(t) (1.317)

and C(t) = limx→−∞ S(x, t). The spatial part of the orbitals is locally expressible in terms
of the density. Therefore the mapping vφ0 will have no memory. In fact it holds that via
inversion of the Kohn-Sham-equation we find

v([n]; x, t) =
1

2

(
∂2
xn(x, t)

2n(x, t)
−
(
∂xn(x, t)

2n(x, t)

)2
)

(1.318)

− 1

2

(∫ x
−∞ dx′∂tn(x′, t)

n(x, t)

)2

+ ∂t

∫ x

−∞
dx′
∫ x′
−∞ dx′′∂tn(x′′, t)

n(x′, t)
− ∂tC(t).

The term ∂tC(t) can be fixed by the choice of gauge and will be set equal to zero.
If we now want to make contact to a physical system, we have to connect the noninteract-
ing system to the interacting system via the exchange-correlation potential. Hence, the
mapping of interest (1.284) consists of three terms, i.e., the mapping vφ0 , vΨ0 and the vH.
The Hartree-term is local in time. For the helium spin-singlet case also the term due to
vφ0 is local in time. For the interacting part with the appropriate boundary conditions,
i.e.,

ṽΨ0([Ψ]; x, t) = (1.319)

−
∫ x

−∞
dy
∂tj(y, t) + ∂y〈Ψ(t)|T̂ (y)|Ψ(t)〉 + ∂y〈Ψ(t)|Ŵ (y)|Ψ(t)〉

n(y, t)

we do not know if the wavefunction |Ψ(t)〉 can be expressed locally in terms of the density.
Therefore the exact exchange-correlation potential will have memory in general, i.e., it will
be nonlocal in time. Recent numerical simulations showed, however, that memory-effects
for a helium singlet system (in an intense laser field) [15] are negligible.

67



Chapter 1: Many-Body Quantum Theory

An Orbital Fixing Procedure

As pointed out by van Leeuwen [42], the Kohn-Sham-potential without relation to the
interacting case cannot be used for propagation. Without fixing the external potential
and defining the Hartree-exchange-correlation potential we cannot predict the interacting
density. However, one could construct an iteration scheme for the orbital potential ṽφ0 [42].
Suppose we fix the density in the denominator of the integrand in equation (1.319) for
the noninteracting case to n0(x, t). We thus define the potential in terms of the orbitals
as

ṽφ0,0([φk]; x, t) := −
∫ x

−∞
dy
∂tj(y, t) + ∂y〈Φ(t)|T̂ (y)|Φ(t)〉

n0(y, t)
.

Let us then start with an initial guess {φ(1)
k } of the orbitals and calculate the potential

v(1)(x, t) = ṽφ0,0([{φ(1)
k }]; x, t). Then we can use the potential v(1) to propagate the Kohn-

Sham-equations and obtain new orbitals {φ(2)
k }. These orbitals will not be equal to the

original ones unless

ṽφ0,0([{φ(1)
k }]; x, t) = ṽφ0([{φ(1)

k }]; x, t), (1.320)

i.e., unless the density of the system with orbitals {φ(1)
k } is equal to the fixed density

n0(x, t). We can therefore set up an iteration scheme to generate the Kohn-Sham-potential
for a given density. However, it is not clear that this iteration scheme converges.

1.3.5 Criticism on the Foundations of Time-Dependent Density
Functional Theory

Density functional theory has been widely accepted and is also mathematically on solid
ground. However, its time-dependent counterpart is lacking the same mathematical rigor
and its formal foundations have been criticized [44, 45].
The main point of criticism is related to the implementation of the Runge-Gross map-
ping theorem. It is argued that the time-dependent Kohn-Sham equations, which are a
direct consequence of the undisputed one-to-one correspondence between densities and
external potentials, may not be used, even in principle, to predict time-dependent den-
sities. Therefore the Kohn-Sham construction may only reproduce given densities via a
noninteracting system. If this were true, time-dependent density functional theory would
be degraded from a physically exact and predictive theory to an ad hoc approximation in
the spirit of a local Hartree-Fock scheme.
In short the line of argumentation is as follows:
In the constructive proof of the extendend Runge-Gross theorem equation (1.109) shows
up,

∇r ·
[
n′(0)(r)∇rv

′(k)(r)
]

= n(k+2)(r) − q′(k)(r)

−
k−1∑

l=0

(
k
l

)
∇r ·

[
n′(k−l)(r)∇rv

′(l)(r)
]
,
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1.3. Time-Dependent Density Functional Theory

which defines with appropriate initial and boundary conditions the Kohn-Sham potential
in terms of its Taylor expansion in time. One clearly sees the dependence of the potential
on the second time derivative of the density, i.e., ∂2

∂t2
n(r, t) =

∑∞
k=0

1
k!
n(k+2)(r)(t− t0)

k. If
one now wants to predict the time-evolution via a propagation scheme where at each time
step the Kohn-Sham potential is calculated according to the above equation one needs to
take the second time derivative of the density into account. At least at the initial time
t0 this cannot be done without further knowledge, e.g., the density at an infinitesimally
later time. Therefore it is argued that this construction of the Kohn-Sham potential via
the second time-derivative of the density implies a dependence on the future [44].
However, the Runge-Gross mapping of a density to its associated local potential — for a
noninteracting systems this is the Kohn-Sham potential — does not have any knowledge of
the physical system it has to describe. Instead, the Hartree-exchange-correlation potential
is required, i.e., equation (1.156),

vHxc([n]; r, t) ≡ vHxc
bρ0,bρ′0([n]; r, t) := vbρ′0([n]; r, t) − vbρ0([n]; r, t).

We can define the Hartree-exchange-correlation potential accordingly if we relate the
interacting and the noninteracting system via their modified local force balance equations
(1.91)

∂ν∂µΠµν(r, t)︸ ︷︷ ︸
=:q(r,t)

= ∇r · [n(r, t)∇rvHxc([n]; r, t)] + ∂ν∂µtr[T̂µν(r)ρ̂′(t)]︸ ︷︷ ︸
=:q′(r,t)

. (1.321)

Again we assume Taylor expandability and find for the Hartree-exchange-correlation po-
tential

∇r·
[
n(0)(r)∇rv

(k)
Hxc([n]; r)

]
= (1.322)

q(k)(r) − (q′)(k)(r) −
k−1∑

l=0

(
k
l

)
∇r ·

[
n′(k−l)(r)∇rv

(l)
Hxc([n]; r)

]
.

The terms q(k)(r) and (q′)(k)(r) are found via successive application of the Ehrenfest

theorem for the operators Π̂µν(r) and T̂µν(r) for the associated initial configurations
ρ̂0 and ρ̂′0, respectively. The dependence on the second time derivative, and therefore
also any future dependence, has vanished via relating the noninteracting system to the
interacting one.
However, here another source of criticism arises. In order to define the Hartree-exchange-
correlation potential one needs q(k)(r). Via the Ehrenfest theorem for the interacting
system this expression can be explicitly calculated. This amounts to a solution of
the interacting problem [45]. If this route is chosen, nothing is gained, as one has to
simultaneously solve the interacting as well as the noninteracting problem.
Nevertheless via lemma 1.3.3 the expectation value of any operator Ô(t) acting on
the wavefunctions can be described as an operator of the given external potential of
the interacting system alone. Especially we have q(r, t) = 〈∂µ∂νΠ̂µν(r)〉t ≡ q([v]; r, t).
Thus we could in principle rewrite the q(k)(r) without referring to the solution ρ̂(t) of
the interacting problem, i.e., the solution of the fully interacting Schrödinger equation.
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Chapter 1: Many-Body Quantum Theory

A simultaneous solution of the interacting as well as the noninteracting problem is
not required. However, to know this mapping exactly the interacting problem for all
external potentials has to be solved in the first place. Hence, this problem remains.
It is here where we usually have to use approximations for the internal forces of the
interacting system. Nevertheless we have an, in principle, exact way to rewrite the
interacting problem in terms of a noninteracting one. Note that similar problems arise in
time-independent density functional theory if one wants the exact expression of Exc[n],
which can only be given by solution of the corresponding interacting problem.

Beside the usual implementation of time-dependent density functional theory via
propagation of the nonlinear Kohn-Sham equations, one could think of using the
Kohn-Sham construction as an iteration scheme [45,46]. This would be a possible way
to circumvent any problems arising in the usual propagation scheme. Though such a
calculation was implemented and converged [47] a general proof of convergence is still
missing.
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Chapter 2

Intense Laser-Matter Interaction

Laser systems are available over a wide range of wavelengths, intensities and pulse
durations. It is already possible to produce attosecond pulses or peak intensities up to
1022 W/cm2 [48–51]. Depending on the wavelength, laser intensity and binding energies
of the systems of interest, perturbation theory is in general not applicable anymore.
For instance, at 1 µm wavelength and typical binding energies, perturbation theory is
assumed to break down at about 1013 W/cm2. Depending on the intensity and the
system, e.g., for highly charged ions, one has to take relativistic effects into account.
However, for our purposes we will safely assume relativistic effects being negligible. Usual
approaches to (nonperturbative) strong field physics are the Floquet theory, the strong
field approximation and ab initio numerical calculations [3]. A very simple approach
is the so-called simple man’s theory [see [52, 53] for a review]. There one uses classical
arguments to describe an electron released from its parent ion and travelling freely in the
laser field, i.e., without influence from the residual system. Though very crude, the simple
man’s theory predicts many phenomena of intense laser-atom interaction qualitatively
quite well, e.g., the cut-off laws of above-threshold ionization and harmonic generation.
The successes of the simple man’s theory indicate that under certain circumstances in
strong field physics the electrons behave nearly classical. The importance of classical
contributions can be seen if asymptotic expansions of the strong field approximation are
considered, or in the theory of quantum orbits [54].
Typically a three-step model is used to explain most of the observed strong field
phenomena. In a first step an electron is removed from its parent ion (ionization) by the
laser field. The electron then propagates in the continuum. It may recollide with the
residual system if the first step happend at a time such that the laser field drives the
electron back. High order harmonic generation for instance is due to recombination of an
electron of high kinetic energy with the parent system and is well described by the strong
field approximation. High order harmonic generation is able to efficiently convert a vast
amount of low frequency photons into a single high frequency photon. This process
can be used to generate short wavelength radiation and attosecond pulses. In addition,
high-order harmonic generation can be used to image molecular orbitals via so-called
orbital tomography [55, 56]. Further characteristic strong field processes are over-barrier
ionization or above-threshold ionization [48, 51, 52]. Certain strong field phenomena
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Chapter 2: Intense Laser-Matter Interaction

can only be explained if correlation or collectivity are included in the treatment. The
strong field approximation in its standard form is merely a single active electron theory
and can therefore not properly describe multi-particle strong field phenomena such as
nonsequential double ionization. In this well-studied process [see, e.g., [57] and references
therein] the electron comes back to the residual system and frees a second electron by a
collision. This gives rise to a much higher yield of doubly charged ions than a sequential
treatment, i.e., assuming uncorrelated electrons.

In this chapter we will review the theory for multiphoton processes in dipole ap-
proximation. We present the field mode expectation value and relate it to the dipole
expectation value. For high intensity lasers we will show a classical description of the
photon field to be adequate. Subsequently the strong field approximation will be derived
in two different ways. Finally a general many-body S-matrix theory in the spirit of the
strong field approximation is introduced.

2.1 Multiphoton Processes in Dipole Approximation

The minimal coupling Hamiltonian in velocity gauge and in the Schrödinger picture is
given by [58]

Ĥ =
1

2me

N∑

k=1

(
−i~∇k −

e

c
A(rk)

)2

+ V̂ (r1, ..., rN) + Ĥf , (2.1)

with V̂ the scalar potential describing the interaction with the nuclei and electron-electron
repulsion and the vector potential in second quantized notation

A(r) =
∑

k,λ

√
2π~c2

ωkV
ǫk,λ

(
exp(iδ)ak,λ exp(ik · r) + exp(−iδ)a†k,λ exp(−ik · r)

)
(2.2)

where ak,λ, a
†
k,λ are the bosonic annihilation and creation operators of a photon with

wavevector k and polarization λ, ǫk,λ the polarization unit vector, V the quantization
volume and ωk the associated angular frequency of mode k, λ. We choose the arbitrary
phase δ = 0 in what follows. Note that we use Gaussian units, i.e., ǫ0 = 1/(4π) and
µ0 = 4π/c2. The field Hamiltonian is defined as

Ĥf =
∑

k,λ

~ωk

(
a†k,λak,λ +

1

2

)
(2.3)

where the zero point energy 1
2

∑
k,λ ~ωk can be discarded if one is only interested in

phenomena involving essentially the difference in field energy.
We will now introduce an important approximation, the dipole approximation. First
the exponentials are expanded in a series

exp(±ik · r) = 1 ± ik · r + ... . (2.4)
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If we assume the wavelength of the laser at consideration to be large compared to the
relevant interaction region, e.g., the size of some atomic system, the spatial dependence
of the field is negligible, i.e., |k · r| ≪ 1. Hence we can cut the expansion already after
the first term:

A(0) =
∑

m

√
2π~c2

ωmV
ǫm
(
am + a†m

)
, (2.5)

where we used the abbreviation m = (k, λ) and ωk = ωm. Note that in this approximation
the magnetic field of the laser pulse is ignored because we have with A = A(0), B =
∇ × A(0) ≡ 0. The electric field in dipole approximation reads [58]

E(0) =
∑

m

√
2π~c2

ωmV
ωm
c

ǫm
(
iam − ia†m

)
, (2.6)

which again is found by quantization of the classical expression. We may further rewrite

Ĥ = Ĥs + Ĥ1 + Ĥ2 + Ĥf , (2.7)

with

Ĥs = − ~
2

2me

N∑

k=1

∇
2
k + V̂ (r1, ..., rN), (2.8)

Ĥ1 =
ie~

mec

N∑

k=1

∇k · A(0), (2.9)

Ĥ2 =
Ne2

2mec2
A(0)2 =

Ne2

2mec2

(
∑

m

2π~c2

ωmV
(
am + a†m

)
ǫm

)2

. (2.10)

The next step is to redefine the creation and annihilation operators to omit Ĥ2. First we
will introduce canonical coordinate and momentum operators

qm =

√
~

2ωm

(
am + a†m

)
, (2.11)

pm = −i~
d

dqm
= −i

√
~ωm

2

(
am − a†m

)
. (2.12)

This is analogous to the usual canonical quantization procedure [58], i.e., the canonical co-
ordinates and momentum are subject to the commutation relation [pm, qm′]− = −i~δm,m′ .
Thus we can rewrite the total Hamiltonian in terms of the canonical operators

Ĥ = Ĥs + Ĥ1 + Ĥ ′
f , (2.13)

with

Ĥ ′
f = Ĥf + Ĥ2 (2.14)

=
1

2

∑

m

(
−~

2 d

dqm
+ ω2

mqm

)
+

1

2
ω2

p

∑

m

∑

m′

ǫm · ǫm′qmqm′

Ĥ1 =
ie~

me

N∑

k=1

∇k ·
(
∑

m

√
4π

V qmǫm

)
(2.15)
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where

ωp =

√
4πe2N

meV
(2.16)

is the plasma frequency for an electron gas of density N/V. With the definition of the
real and symmetric matrix

Wm,m′ = ω2
mδm,m′ + ω2

pǫm · ǫm′ (2.17)

we can express Ĥ ′
f as

Ĥ ′
f =

1

2

(
∑

m

p2
m +

∑

m,m′

Wm,m′qmqm′

)
. (2.18)

The spectral theorem for finite dimensions guarantees that there exists a real orthogonal
matrix O, i.e., OTO = OOT = 1 which diagonalizes W via diag(W ) = OTWO with
eigenvalues {Ωµ}. Let

Qµ =
∑

m

Oµm qm, (2.19)

Pµ =
∑

m

Oµm pm, (2.20)

Υµ =
∑

m

Oµm ǫm. (2.21)

Then one can express Ĥ ′
f as independent harmonic oscillators

Ĥ ′
f =

1

2

(
∑

m

P 2
m +

∑

m

Ω2
mQ

2
m

)
. (2.22)

Note that Pm and Qm′ are well-defined with respect to the commutation relation
[Pm, Qm′]− = −i~δm,m′ . Further we have

Ĥ = Ĥs + Ĥ ′
f +

ie~

m

√
4π

V
∑

k

∇k ·
∑

m

ΥmQm. (2.23)

One finds that the term Ĥ2 perturbs the photon energy and the polarization of the field
modes due to coupling of the field modes among themselves via the electrons. Introducing
the dressed annihilation and creation operators defined as

ãm = (2~Ωm)−
1
2

(
ΩmQm + iP †

m

)
, (2.24)

ã†m = (2~Ωm)−
1
2

(
ΩmQm − iP †

m

)
, (2.25)

we finally arrive at the field-dressed Hamiltonian in velocity gauge

Ĥ = Ĥs +
ie~

mec

N∑

k=1

∇k · Ã(0) +
∑

m

~Ωm

(
ã†mãm +

1

2

)
, (2.26)

74



2.1. Multiphoton Processes in Dipole Approximation

where Ã(0) =
∑

m

√
2π~c2

ΩmV Υm

(
ãm + ã†m

)
. The missing term Ĥ2 is now accounted for by

the shifted energies and the changes in polarization of the field modes. However, in most
cases the term Ĥ2 and thus the energy and polarization modifications are ignored from
the beginning. This approximation is well justified if for the limit of infinite quantization
volume the condition

ωp ∼
√
N

V → 0 (2.27)

holds. This is, of course, fulfilled for single atom light interactions. For a dense gas, i.e.,
in the thermodynamic limit, we have N → ∞ if the quantization volume is extended to
infinity and therefore ωp may result in important contributions.

For the Hamiltonian (2.13) written in terms of the canonical coordinate and mo-
mentum operators, qk,λ and pk,λ, we may define, using the unitary operator

ÛL = exp

(
i
e

~c

∑

k

rk · A(0)

)
= exp

(
i

~

√
4π

V
∑

k

e rk ·
∑

m

ǫmqm

)
, (2.28)

the length form of the Hamiltonian ĤL by

ĤÛL = ÛLĤL. (2.29)

Note that the wavefunctions in velocity gauge |Ψ〉 and in length gauge |ΨL〉 obey the
relation

|Ψ〉 = ÛL|ΨL〉. (2.30)

We find

ĤL = Ĥs +
1

2

∑

m

(
−~

2 d
2

dq2
m

+ ω2
mqm

)
+ (2.31)

+

√
4π

V
∑

k

e rk ·
∑

m

(
−i~ǫm

d

dqm

)
+

2π

V
∑

m

(
e
∑

k

rk

)2

.

Transforming back to creation and annihilation operators and defining

D ≡ D(r1, ..., rN) :=

(
−e
∑

k

rk

)
=
∑

k

dk, (2.32)

the dipole polarization vector, we finally arrive at the length (gauge) form of the
Hamiltonian

ĤL = Ĥs + Ĥf + D · E(0) +
2π

V
∑

m

D2

︸ ︷︷ ︸
= bHPol

. (2.33)
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The last term ĤPol is the polarization energy operator and describes as Ĥ2 above in
velocity gauge the back reaction of the laser modes via the electrons. Again we can
neglect the back-coupling of the laser modes if for the limit of infinite quantization
volume V we have ĤPol → 0. Accordingly, for the thermodynamic limit the polarization
energy operator may give important contributions.

Before we proceed, we make a further transformation of equation (2.33) which is

often used. If we assume ĤPol → 0 we can switch to the so-called intermediate picture in
which we can eliminate the field Hamiltonian Ĥf . With the Hamiltonian Ĥ of equation
(2.33) — we will drop the subscript L in our further considerations — the Schrödinger
equation reads

i~
∂

∂t
|Ψ(t)〉 = Ĥ|Ψ(t)〉. (2.34)

With the unitary transformation Ûi = exp
(
−i
∑

m a
†
mamωmt

)
= exp

(
− i

~
Ĥft
)
, where the

zero point energy has been ignored, and

|Ψ(t)〉 = Ûi|Ψi(t)〉 (2.35)

one finds

i~
∂

∂t
|Ψi(t)〉 =

{
Ĥs +

∑

m

√
2π~ωm

V ǫm · DÛ †
i

(
iam − ia†m

)
Ûi

}
|Ψi(t)〉. (2.36)

Using the commutation relations of the bosonic creation and annihilation operators we
obtain

exp
(
ia†mamωmt

)
a†m = a†m exp

(
iama

†
mωmt

)
(2.37)

am exp
(
−ia†mamωmt

)
= exp

(
−iama

†
mωmt

)
am. (2.38)

leading to the length gauge Hamiltonian in the intermediate picture

i~
∂

∂t
|Ψi(t)〉 = (2.39)

{
Ĥs +

∑

m

√
2π~ωm

V ǫm · D
(
iam exp(−iωmt) − exp(iωmt)ia

†
m

)
}
|Ψi(t)〉.

This special form highlights the resemblance between the Schrödinger equation with a
quantized photon field and its semi-classical counterpart. We will come back to this
equation later when the so-called laser-approximation is deduced.

2.1.1 Field Mode and Dipole Expectation Value

With the above defined Hamiltonian in length gauge (2.33) we will now calculate in
accordance to [59] the expectation value of the number of photons in mode (k′, λ′) = m′,

〈a†m′,H(t)am′,H(t)〉0, (2.40)
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in the Heisenberg picture at time t. We assume

ĤPol → 0 (2.41)

and discard the zero point energy of Ĥf . The system-Hamiltonian Ĥs and D are expressed
in terms of a complete set of energy eigenstates {|i〉}

Ĥs|i〉 = Ei|i〉. (2.42)

With the transition operators

σij = |i〉〈j| (2.43)

one finds Ĥs =
∑

iEiσii and D =
∑

i,j |i〉〈i|D|j〉〈j| =
∑

i,j µijσij . This leads to

Ĥ =
∑

m

~ωma
†
mam +

∑

i

Eiσii + i~
∑

i,j

∑

m

Cijmσij(am − a†m), (2.44)

with Cijm = (2πωm/~V)1/2µij · ǫm. The time-dependent annihilation operator of mode
m′ fulfills the Heisenberg equation

−i~
∂

∂t
am′,H(t) =

[
ĤH(t), am′,H(t)

]
−

(2.45)

with ĤH(t) the Hamiltonian in the Heisenberg picture. Calculating the commutator one
finds

∂

∂t
am′,H(t) = −iωm′am′,H(t) −

∑

i,j

Cijm′σij,H(t), (2.46)

and for the creation operator we obtain

∂

∂t
a†m′,H(t) = iωm′a†m′,H(t) −

∑

i,j

Cijm′σij,H(t). (2.47)

Equations (2.46), (2.47) are two inhomogeneous ordinary differential equations of first
order. The homogeneous solution for the annihilation operator is

am′,H(t) = exp (−iωm′t) am′(t0) (2.48)

and a particular inhomogeneous solution is

am′,H(t) = exp (−iωm′t)

∫ t

t0

dt′
∑

i,j

Cijm′ exp (iωm′t′) σij,H(t′), (2.49)

leading to

am′,H(t) = exp(−iωm′t)am′(t0) (2.50)

+ exp(−iωm′t)

∫ t

t0

dt′
∑

i,j

Cijm′ exp(iωm′t′)σij,H(t′).
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Analogously one finds the general solution for the creation operator. The expectation
value of the number of photons in mode (k′, λ′) = m′ follows as

〈a†m′,H(t)am′,H(t)〉0 = 〈a†m′(t0)am′(t0)〉0 (2.51)

− 2

√
2πωm′

~V ℜ
{∫ t

t0

dt′〈am′(t0)ǫm′ · DH(t′)〉0 exp(−iωm′t′)

}

+
2πωm′

~V

∫ t

t0

dt′
∫ t

t0

dt′′〈DH(t′) · DH(t′′)〉0 exp(−iωm′(t′ − t′′)).

Here we have used

∑

i,j

µijσij,H(t) = DH(t). (2.52)

A special case, which we will need later on in the context of high-order harmonic
generation, is the one where the system is initially in its ground-state and the field mode
m′ is not occupied, i.e., |Ψ(t0)〉f,s = |Nf ; ..., 0m′ , ...〉f ⊗ |Ψ0〉s. Therefore only the third
term of equation (2.51) survives and we find

〈a†m′,H(t)am′,H(t)〉0 =
2πωm′

~V

∫ t

t0

dt′
∫ t

t0

dt′′〈DH(t′) · DH(t′′)〉0 exp(−iωm′(t′ − t′′)) (2.53)

=
2πωm′

~V
N∑

k,k′

∫ t

t0

dt′
∫ t

t0

dt′′〈dk,H(t′) · dk′,H(t′′)〉0 exp(−iωm′(t′ − t′′)).

This term accounts for spontaneous emission and scattering. The term 〈dk,H(t′)·dk′,H(t′′)〉0
is the two-time dipole correlation function. If we now assume uncorrelated emitters, e.g.,
in the original work [59] N one-electron atoms being the constituents of a dilute gas, we
can approximate

〈dk,H(t′) · dk′,H(t′′)〉0 ≃ 〈dk,H(t′)〉0 · 〈dk′,H(t′′)〉0. (2.54)

Further we can use this approximation to rewrite

〈a†m′,H(t)am′,H(t)〉0 ≃
2πωm′

~V

∣∣∣∣∣

N∑

k=1

∫ t

t0

dt′〈dk,H(t′)〉0 exp(iωm′t′)

∣∣∣∣∣

2

(2.55)

if N ≫ 1 such that the self-correlation terms contribute negligibly. If further all electrons
“see” the same field we obtain the absolute square of N times the single dipole expectation
value.
Using the dipole expectation value to describe the field mode expectation value is common
in strong field physics. However, one has to make sure that the approximations above are
well justified.
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2.1. Multiphoton Processes in Dipole Approximation

2.1.2 Classical Description of the Laser Field

Until now we have treated the laser field in second quantization. However, as will be shown
below, in the case of intense laser fields, it is well justified to use a classical description
of the laser field. The Hamiltonian in length gauge and dipole approximation then
reads [58]

Ĥ(t) = Ĥs + D · E(t) (2.56)

with E(t) =
∑

mEmǫm sin (ωmt+ δm), Em the peak field strength and δm the phase
of field mode m. For a comparison to the photon field in terms of number states
|Nf ;n1, n2, ..., nM〉f and for the description of transition matrices 〈Nf ;n1, n2, ..., nM |f ⊗
〈Ψ|sΨ(t)〉fs the so-called phasors are of importance [see e.g. [58] page 129]. The inner
product between number states correspond to the normalized phase integral of δ, i.e.,

f〈m|n〉f ↔
1

2π

∫ 2π

0

dδ exp(−i(m− n)δ). (2.57)

Note the similarity between the second term in the Hamiltonian (2.56) and the second
quantized form in the intermediate picture (2.39) if we rewrite

E(t) =
∑

m

(Em/2)ǫm[i exp(−i(ωmt+ δm)) − i exp(i(ωmt+ δm))]. (2.58)

One way to validate a classical description of the laser field at high intensities is
through the expectation value of the electric field and its uncertainty in the Heisenberg
picture. If one assumes a Glauber state and a high mean number of photons, i.e., a high
intensity, a classical description is valid [60].
Here we will formally deduce the classical field approximation in a different way.
We will make a comparison between the solutions of the Schrödinger equation with
Hamiltonian (2.56) and the quantized photon field Hamiltonian (2.33) via their resolvent

equations [58]. For Ĥ is time-independent in second quantization we use the resolvent
equation

(
E − Ĥ

)
G(E) = 1. (2.59)

The time-dependent wavefunction solution to the Schrödinger equation reads

|Ψ(t)〉fs = − 1

2πi

∫ ∞

−∞
dE G(E) exp(−iEt/~)|Ψ0〉fs (2.60)

with the initial condition |Ψ0〉fs = |Nf ;n
1
0, n

2
0, ...〉f ⊗ |Ψ0〉s. Next consider the matrix

elements

f〈Nf ;n1 + n1
0, n2 + n2

0, ...|(E − Ĥ)G(E)|Nf ;n
1
0, ...〉f = δn1|0δn2|0... . (2.61)
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Obviously the nm are the changes in the photon number of mode m with respect to the
initial occupation. We define

f〈Nf ;n1 + n1
0, ...|G(E)|Nf ;n

1
0, ...〉f = Gn1|n1

0,...
(E). (2.62)

Thus one finally ends up with the second-quantized resolvent equation
[
E − Ĥs −

∑

m

(nm + nm0 )~ωm

]
Gn1|n1

0,...
(E) (2.63)

= −D ·
∑

m

ǫm

(
iFnm+1Gn1|n1

0,...,nm+1|nm
0 ,...

(E) − iFnm−1Gn1|n1
0,...,nm−1|nm

0 ,...
(E)
)

+δn1,0...

with Fnm =
√

2π~ωm(nm+nm
0 )

V . However, one may derive the same result in a different way

which will guide us how to do it in the classical field case, where we do not have a time-
independent Hamiltonian or number states.
We begin with the Heitler-Ma equation in second-quantized description, which explicitly
takes care of the initial condition, i.e., |Ψ(t0)〉fs = |Ψ0〉fs,

i~
∂

∂t
|Ψ(t)〉fs = [Ĥs + Ĥf + D · E(0)]|Ψ(t)〉fs + i~δ(t)|Ψ0〉fs. (2.64)

We make an expansion of the wavefunction in terms of number states |Nf ;n1 + n1
0, ...〉 of

the field,

|Ψ(t)〉fs =
∞∑

n1=−n1
0,...

|Nf ;n1 + n1
0, ...〉f ⊗ |Ψn1|n1

0,...
(t)〉s, (2.65)

where the nm are the changes in the mode occupation numbers. Plugging this expansion
into the Heitler-Ma equation (2.64) and projecting onto 〈Nf ;n

′
1 + n1

0, ...| we find

i~
∂

∂t
|Ψn1|n1

0,...
(t)〉s = [Ĥs +

∑

m

(nm + nm0 )~ωm]|Ψn1|n1
0,...

(t)〉s

+ D ·
∑

m

√
2π~ωm

V ǫm

[
((nm + nm0 ) − 1)1/2i|Ψn1|n1

0,...,nm−1|nm
0 ,...

(t)〉s

− ((nm + nm0 ) + 1)1/2i|Ψn1|n1
0,...,nm+1|nm

0 ,...
(t)〉s

]

+ i~δ(t)δn1|0...|Ψ0〉s. (2.66)

With a Fourier expansion as in (2.60),

|Ψn1|n1
0,...

(t)〉s = − 1

2πi

∫ ∞

−∞
dE exp(−iEt/~)Gn1|n1

0,...
(E)|Ψ0〉s (2.67)

and the identity

i~δ(t) = − 1

2πi

∫ ∞

−∞
dE exp(−iEt/~) (2.68)
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we find the second-quantized resolvent equation (2.63).
Now we turn to the classical field case. We again incorporate explicitly the initial condition
via the Heitler-Ma version of the Schrödinger equation,

i~
∂

∂t
|Ψ(t)〉 = [Ĥs + D · E(t)]|Ψ(t)〉 + i~δ(t)|Ψ0〉. (2.69)

In order to reduce this Schrödinger equation without approximation to stationary equa-
tions we expand |Ψ(t)〉 in a generalized “integral+series” Fourier expansion

|ψ(t)〉 = − 1

2πi

∞∑

n1,...=−∞

∫ ∞

−∞
dE exp

(
− iEt

~
+ i(n1ω1 + ...)t

)
(2.70)

× exp(i(n1δ1 + ...))Gn1|0,...(E)|Ψ0〉,

as well as the δ-distribution in time

i~δ(t) = − 1

2πi

∞∑

n1,...=−∞

∫ ∞

−∞
dE exp

(
− iEt

~
+ i(n1ω1 + ...)t

)
(2.71)

× exp(i(n1δ1 + ...))δn1,0... .

The phasors exp[i(n1δ1 + ...)] correspond in accordance to (2.57) to the number states. If
we plug the wavefunction in this expanded form into equation (2.69) and compare the co-
efficients of exp

[
− i

~
Et+ i(n1ω1 + ...)t+ i(n1δ1 + ...)

]
on both sides the first-quantized

resolvent equation

[
E − Ĥs −

∑

m

nm~ωm

]
Gn1|0,...(E) (2.72)

= −D ·
∑

m

Emǫm

2

(
iGn1|0,...,nm+1|0,...(E) − iGn1|0,...,nm−1|0,...(E)

)

+δn1,0...

results. The subindices 0 are chosen to remind us of the initial condition and for a stronger
analogy to the second-quantized case.
To compare both descriptions we first redefine the initial number state

|Nf ;n
1
0, ..., n

m
0 , ...〉f → |0f ; 0, ..., 0, ...〉f (2.73)

as the new “vacuum” state. Hence, we also change the notation

Gn1|n1
0,...,nm|nm

0 ,...
(E) → Gn1|0,...,nm|0,...(E) (2.74)

in (2.63). Further we note the difference in the prefactors of the Gn1|0,...(E). While
for equation (2.63) we have occupation number and mode-dependent prefactors Fnm, for
the classical field case (2.72) we find occupation number-independent (however, mode-
dependent) prefactors Em/2. We will now introduce the laser approximation where we
assume nm0 ≫ nm, i.e., the initial mode occupation of photons is much bigger then the
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changes in the photon number in that mode. As the field modes of an intense laser are
highly populated this approximation is well justified, leading to

Fnm ≈ Fnm±1 ≈
√

2πnm0 ~ωm
V = Fnm

0
(2.75)

(nm + nm0 )~ωm ≈ nm0 ~ωm (2.76)

Because for the initial energy density Wm
0 = nm0 ~ωm/V holds we can associate Fnm

0
with

the classical field strength,

Em =

√
2Wm

0

ǫ0
= 2Fnm

0
. (2.77)

Thus the first quantized description will be very accurate as long as nm/n
m
0 ≪ 1 holds

for those modes responsible for the most important physical processes involved in the
evolution of the system. For moderate intensities of about 1 W/cm2 at optical frequencies
the initial number density n0/V is about 107/cm3 while the change in the photon number
hardly exceeds several hundreds [58]. In this work we typically consider intensities higher
then 1013 W/cm2.

2.2 Strong Field Approximation

The strong field approximation or Keldysh-Faisal-Reiss theory [4–6] is one of the main
tools to treat strong field laser-atom and laser-molecule interaction. Though merely a
single active electron approximation, i.e., one electron may interact with the laser field
while the residual system is treated as a frozen background, it describes most high field
phenomena [3] well, at least qualitatively. Besides, it offers a rather physically intuitive
interpretation. Of course, such an approximate theory also has its limits and drawbacks.
The main problem beside the incompatibility with many-particle phenomena, lies within
the loss of gauge invariance [61] introduced by the approximations made.
We will derive the strong field approximation in two different ways. Beside a Keldysh-
Faisal-Reiss like description there is another derivation of the strong field approxima-
tion following Lewenstein [7]. Finally, the strong field approximation is generalized to
multi-particle phenomena [8]. This intense-field many-body S-matrix theory is cabable of
describing nonsequential double ionization.

2.2.1 Keldysh-Faisal-Reiss Theory

First we will turn to the Keldysh-Faisal-Reiss theory of the strong field approximation and
use atomic units again. Further we will apply the laser approximation, i.e., a classical
field description

ĤL(t) = Ĥs + r · E(t)︸ ︷︷ ︸
= bHI,L(t)

(2.78)
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where Ĥs = −1
2
∇

2 + V (r). Although we have derived the the laser approximation in
length gauge we may, in first quantized description, switch to velocity gauge by the gauge
transformation

|ψV(t)〉 = exp (−ir · A(t)) |ΨL(t)〉 (2.79)

with − ∂
∂t

A(t) = E(t). The associated Hamiltonian in velocity gauge reads

ĤV(t) =
1

2
[p + A(t)]2 + V (r) = Ĥs + ĤI,V(t). (2.80)

Note that we have included the factor 1/c of the Hamiltonian (2.1) in A(t). The difference
between length and velocity gauge amounts to a translation in momentum space. While in
velocity gauge the kinetic momentum pkin = p+A(t) and the canonical momentum p are
different in length gauge they are the same. Note here that via a further transformation

|Ψ̃V(t)〉 = exp

(
i

∫ t

t0

dτA(τ)2/2

)
|ΨV(t)〉 (2.81)

one can get rid of the A(t)2/2-term in the Hamiltonian in velocity gauge. Nevertheless
we will keep this term. Note that there were some disputes in the literature concerning
its importance [see references in [3]].
We begin with the Dyson equation for the evolution operator [see equation (1.154)] where
we suppress the gauge index which will be restored later on,

Û(t, t0) = Ûs(t, t0) − i

∫ t

t0

dt′Ûs(t, t
′)ĤI(t

′)Û(t′, t0) (2.82)

= Ûs(t, t0) − i

∫ t

t0

dt′Û(t, t′)ĤI(t
′)Ûs(t

′, t0), (2.83)

with Ûs(t, t0) = TD

{
exp

(
−i
∫ t
t0
dt′Ĥs

)}
being the system evolution operator. A Dyson

like expansion can be constructed with respect to the Volkov evolution operator
Û (V )(t, t0), which is a solution for a freely propagating electron in a laser field

i
∂

∂t
Û (V )(t, t0) = Ĥ(V )Û (V )(t, t0), (2.84)

Ĥ(V )(t) = p2

2
+ ĤI(t). The Dyson expansion of (2.82) then reads

Û(t, t0) = Û (V )(t, t0) − i

∫ t

t0

dt′Û (V )(t, t′)V Û (V )(t′, t0) (2.85)

−
∫ t

t0

dt′′
∫ t

t′′
dt′Û (V )(t, t′)V Û (V )(t′, t′′)V Û (V )(t′′, t0) + ... .

One may rewrite the limits of integration using
∫ t
t0
dt′′
∫ t
t′′
dt′ =

∫ t
t0
dt′
∫ t
t0
dt′′Θ(t′ − t′′) =

∫ t
t0
dt′
∫ t′
t0
dt′′. The Volkov wavefunction reads |Ψ(V )

V (t)〉 = exp (−iSp(t, t0)) |p〉 with

〈r|p〉 = exp (ip · r) /(2π)3/2 and

Sp(t, t0) =
1

2

∫ t

t0

dt′ [p + A(t′)]
2
, (2.86)
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where Û (V )(t, t0) = exp (−iSp(t, t0)). In length gauge the Volkov wavefunction reads

|Ψ(V )
L (t)〉 = exp (−iSp(t, t0)) |p + A(t)〉.

If we now plug equation (2.85) into the Dyson equation (2.82) we find the still formally
exact expression

Û(t, t0) = Ûs(t, t0) − i

∫ t

t0

dt′Û (V )(t, t′)ĤI(t
′)Ûs(t

′, t0) (2.87)

−
∫ t

t0

dt′
∫ t′

t0

dt′′Û (V )(t, t′)V Û (V )(t′, t′′)ĤI(t
′′)Ûs(t

′′, t0) + ... .

These terms have an intuitive physical interpretation. They describe different pathways
of the electron. The first one is due to no interaction at all with the laser field, the
second term accounts for the electron interacting with the laser field at time t′, being
emitted at that instant. The third term describes ionization at time t′′, propagation in
the laser-dressed continuum until time t′ where the electron interacts with the residual
system, and again free propagation in the laser field afterwards. The standard strong field
approximation is now found by truncating the expansion after the second term, leading
to the strong field approximation wavefunction

|Ψ(t)〉(SFA) = |Ψ0(t)〉 − i

∫ t

t0

dt′Û (V )(t, t′)ĤI(t
′)|Ψ0(t

′)〉 (2.88)

with |Ψ0(t0)〉 the eigenstate of Ĥs from which the dynamics starts. Thus we assume that
the electron is ejected into the continuum at time t′ and is no longer influenced by the
binding potential. This is not a rigorous perturbation theory. Instead, one assumes the
binding potential is initially governing the evolution of the electron, and after ionization
the laser field dominates. The strong field approximation wavefunction is usually not the
primary object of interest. One rather is interested in matrix elements of the form

Mp(t1, t0) = 〈Ψp(t1)|Û(t1, t0)|Ψ0(t0)〉 (2.89)

with |Ψp(t)〉 a scattering state of asymptotic momentum p, or

d(t) = 〈Ψ(t)|r|Ψ(t)〉, (2.90)

the dipole matrix element. The matrix element (2.89) is of interest for above-threshold
ionization, (2.90) for high-order harmonic generation. In both matrix elements one
now uses the strong field approximation wavefunction. The dipole moment is used as an
approximation for the field mode expectation value in accordance to subsection 2.1.1.
First we will calculate Mp(t1, t0) in strong field approximation. The exact scattering state
|Ψp(t)〉 is perpendicular to the initial state, leading to

〈Ψp(t1)|Ûs(t1, t0)|Ψ0(t0)〉 = 0. (2.91)

The approximated matrix element thus reads

Mp(t1, t0) ≃ −i

∫ t1

t0

dt′〈Ψp(t1)|Û (V )(t1, t
′)ĤI(t

′)Ûs(t
′, t0)|Ψ0(t0)〉. (2.92)
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The associated physical interpretation is: ionization at time t′ and subsequent electron
motion in the laser field until time t1 without a rescattering event. In a final approxima-
tion, we substitute |Ψp(t1)〉 → |p〉 and find

M (SFA)
p (t1, t0) = −i

∫ t1

t0

dt′〈Ψ(V )
p (t′)|ĤI(t

′)|Ψ0(t
′)〉, (2.93)

the strong field approximation matrix element. One may rewrite the matrix element
via ĤI(t

′) = Ĥ(V )(t′) − Ĥs + V as

M (SFA)
p (t1, t0) = − 〈Ψ(V )

p (t′)|Ψ0(t
′)〉
∣∣t1
t0
− i

∫ t1

t0

dt′〈Ψ(V )
p (t′)|V |Ψ0(t

′)〉. (2.94)

In most cases one has t0 and t1 such that the laser is switched off at that times, and one
neglects the contribution of the first term as it would vanish without the approximation
|Ψp(t1)〉 → |p〉 because of orthogonality,

M (SFA)
p (t1, t0) = −i

∫ t1

t0

dt′〈Ψ(V )
p (t′)|V |Ψ0(t

′)〉. (2.95)

At a first glance this outcome seems to be strange because the laser field does not mediate
the transition anymore. However, ionization can be interpreted as time-reversed recom-
bination, which is governed by the potential of the system. The only difference between
length and velocity gauge now lies in the Volkov wavefunctions. The question of which
of the gauges should be chosen for atomic ionization is treated in [61]. This work shows
qualitative differences between the gauges and concludes that the length gauge leads to
a better agreement with numerical ab initio results.
Now we turn to the derivation of the matrix element

d(t) = 〈Ψ(t)|r|Ψ(t)〉 (2.96)

in the strong field approximation. If we plug the strong field approximation wavefunction
into the matrix element (2.96) we find (for a spherically symmetric potential) the Keldysh
dipole moment

d(K)(t) = 〈Ψ0(t)|r|Ψ0(t)〉︸ ︷︷ ︸
=0

(2.97)

−i

∫ t

t0

dt′〈Ψ0(t)|rÛ (V )(t, t′)ĤI(t
′)|Ψ0(t

′)〉 + c.c.

+

∫ t

t0

dt′
∫ t

t0

dt′′〈Ψ0(t
′′)|ĤI(t

′′)Û (V )(t′′, t)rÛ (V )(t, t′)ĤI(t
′)|Ψ0(t

′)〉,

where c.c. denotes the complex conjugate. Again a simple intuitive explanation of the
different terms can be given. The first two terms account for ionization via the laser
pulse at time t′, followed by free propagation in the laser-dressed continuum without
further influence of the binding potential, and finally recombination into the initial state
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via emission of harmonic radiation at time t, in accordance to the simple man’s three-
step model. The third term describes continuum-continuum interaction where the freed
electron emits radiation but stays in the continuum interacting with the laser field. The
continuum-continuum transitions corresponding to Thomson scattering are disregarded
in the so-called Lewenstein-dipole moment. With the Volkov-Schrödinger equation (2.84)

and, once again ĤI(t
′) = Ĥ(V )(t′) − Ĥs + V , we can recast

−i

∫ t

t0

dt′ 〈Ψ0(t)|rÛ (V )(t, t′)ĤI(t
′)|Ψ0(t

′)〉 (2.98)

= − 〈Ψ0(t)|rÛ (V )(t, t′)|Ψ0(t
′)〉
∣∣∣
t

t0
− i

∫ t

t0

dt′〈Ψ0(t)|rÛ (V )(t, t′)V |Ψ0(t
′)〉.

The third term, using the same procedure as above and defining |Ψ(V )
0 (t)〉 =

Û (V )(t, t0)|Ψ0(t0)〉, yields

〈Ψ0(t)|rÛ (V )(t, t′)|Ψ0(t
′)〉
∣∣∣
t

t0
− 〈ψ(V )

0 (t)|rÛ (V )(t, t′)|ψ0(t
′)〉
∣∣∣
t

t0

+i

∫ t

t0

dt′〈Ψ0(t)|rÛ (V )(t, t′)V |Ψ0(t
′)〉

−i

∫ t

t0

dt′〈Ψ(V )
0 (t)|rÛ (V )(t, t′)V |Ψ0(t

′)〉

−i

∫ t

t0

dt′〈Ψ0(t
′)|V Û (V )(t′, t)r|Ψ0(t)〉

+i

∫ t

t0

dt′〈Ψ0(t
′)|V Û (V )(t′, t)r|Ψ(V )

0 (t)〉

+

∫ t

t0

dt′
∫ t

t0

dt′′〈Ψ0(t
′)|V Û (V )(t′, t)rÛ (V )(t, t′′)V |Ψ0(t

′′)〉.

Collecting all terms of equation (2.97) gives

d(K)(t) = 〈Ψ(V )
0 (t)|r|Ψ(V )

0 (t)〉 (2.99)

−i

∫ t

t0

dt′〈Ψ(V )
0 (t)|rÛ (V )(t, t′)V |Ψ0(t

′)〉

+i

∫ t

t0

dt′〈Ψ0(t
′)|V Û (V )(t′, t)r|Ψ(V )

0 (t)〉

+

∫ t

t0

dt′
∫ t

t0

dt′′〈Ψ0(t
′)|V Û (V )(t′, t)rÛ (V )(t, t′′)V |Ψ0(t

′′)〉.

The Volkov time-evolution leads to dispersion of the initial wavefunction |Ψ0〉 [62]. Hence,

if we take t0 → −∞ we can neglect the contributions due to the terms with |Ψ(V )
0 (t)〉 and

finally end up with the Keldysh dipole moment

d(K)(t) = lim
t0→−∞

∫ t

t0

dt′
∫ t

t0

dt′′〈Ψ0(t
′)|V Û (V )(t′, t)rÛ (V )(t, t′′)V |Ψ0(t

′′)〉. (2.100)
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2.2. Strong Field Approximation

2.2.2 Lewenstein Theory

A different way to approximate a single active electron in an intense laser field was intro-
duced by Lewenstein et al. in [7]. They started with a single particle Hamiltonian in laser
approximation and length gauge. The Lewenstein ansatz for the electronic wavefunction
reads

|Ψ(t)〉 = exp [−iE0(t− t0)]

(
b̃(t)|Ψ0〉 +

∫
d3p b(p, t)|p〉

)
(2.101)

where Ĥs|Ψ0〉 = E0|Ψ0〉. Plugging this ansatz into the Schrödinger equation (2.78) one
finds

E0|Ψ(t)〉 + i exp [−iE0(t− t0)]

(
∂

∂t
b̃(t)|Ψ0〉 +

∫
d3p

∂

∂t
b(p, t)|p〉

)
(2.102)

= exp [−iE0(t− t0)]

{
[E0 + r · E(t)] b̃(t)|Ψ0〉 +

∫
d3p
[
Ĥs + r · E(t)

]
b(p, t)|p〉

}
.

We will now make the assumption that the depletion of the initial state is negligible, i.e.,

b̃(t) ≃ 1 ⇒ ∂

∂t
b̃(t) ≃ 0. (2.103)

By projecting onto exp [iE0(t− t0)] |p′〉 we therefore find

i
∂

∂t
b(p′, t) =

(
−E0 +

p′2

2

)
b(p′, t) + 〈p′|

∫
d3pV (r)b(p, t)|p〉 + 〈p′|r · E(t)|Ψ0〉

+〈p′|
∫
d3p r · E(t)b(p, t)|p〉. (2.104)

Neglecting the continuum-continuum matrix element 〈p′|V (r)b(p, t)|p〉, d(p′) = 〈p′|r|ψ0〉
and

〈p′|r|p〉 = i∇p′δ
3(p′ − p) (2.105)

we find

i
∂

∂t
b(p′, t) =

(
−E0 +

p′2

2

)
b(p′, t) + E(t) · d(p′) + iE(t) · ∇p′b(p

′, t).

Defining a(p) = (−E0 + p2

2
) and κ(p, t) = +E(t) · d(p) we arrive at the Lewenstein

equation

∂

∂t
b(p, t) − E(t) · ∇pb(p, t) = −ia(p)b(p, t) − iκ(p, t). (2.106)

This is a first order semilinear partial differential equation of Cauchy type. A unique
solution can be constructed with the method of characteristics [63]. Via the parameter
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Chapter 2: Intense Laser-Matter Interaction

s of the characteristics to be constructed we transform the partial differential equation
into a set of ordinary differential equations

dt

ds
(s,p0) = 1 (2.107)

dp1

ds
(s,p0) = −E1(t) (2.108)

dp2

ds
(s,p0) = −E2(t) (2.109)

dp3

ds
(s,p0) = −E3(t) (2.110)

db

ds
(s,p0) = −ia(p)b(s,p0) − iκ(p, t) (2.111)

where ds ≡ (∂t/∂s)∂t + (∂pi/∂s)∂pi
≡ ∂t − E(t) · ∇p. Here the initial data lies on

Γ = {(γ(p0), p0
1, p

0
2, p

0
3)}, (2.112)

with φ : R3 → R4 : (p0
1, p

0
2, p

0
3) 7→ (γ(p0), p0

1, p
0
2, p

0
3)) the associated atlas for the description

of the three-dimensional hyperspace:

t(s = 0,x) = γ(x) = t0 (2.113)

p1(s = 0,x) = p0
1 (2.114)

p2(s = 0,x) = p0
2 (2.115)

p3(s = 0,x) = p0
3. (2.116)

Here x are the parameters for the initial data. The initial data is

b(p, t)|Γ = b(p(s = 0,p0), t(s = 0,p0)) ≡ b(s = 0,p0). (2.117)

In order to have a unique solution the projected characteristics (1,−E1(t(s =
0,p0)),−E2(t(s = 0,p0)),−E3(t(s = 0,p0)) have to be nowhere tangent to the hyper-
space of the initial data Γ, i.e., they should be noncharacteristic. Hence, the scalar product
of the normal vector N(Γ) and the projected characteristics should be nowhere equal to
zero:

N(Γ) · (1,−E1(t0),−E2(t0),−E3(t0)) = (1, 0, 0, 0) · (1,−E1(t0),−E2(t0),−E3(t0))

= 1. (2.118)

Hence the solutions of the ordinary differential equations read

t(s,p0) = t0 + s (2.119)

p1(s,p
0) = p0

1 −
∫ t0+s

t0

dτE1(τ) = p0
1 + A1(t0 + s) − A1(t0) (2.120)

p2(s,p
0) = p0

2 + A2(t0 + s) − A2(t0) (2.121)

p3(s,p
0) = p0

3 + A3(t0 + s) − A3(t0) (2.122)

b(s,p0) = −i

∫ s

0

dτκ(p, t0 + τ) exp

(
−i

∫ s

τ

dτ ′a(p)

)
. (2.123)
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2.2. Strong Field Approximation

In a final step we rewrite the implicit solution (2.123) in an explicit way by p(τ,p0) =
p0 + A(t0 + τ) − A(t0) ≡ p − A(t) + A(t0 + τ) and change the variables of integration
τ = t′ − t0, τ

′ = t′′ − t0, leading to

b(L)(p, t) = (2.124)

−i

∫ t

t0

dt′κ(p − A(t) + A(t′), t′) exp

(
−i

∫ t

t′
dt′′a(p − A(t) + A(t′′))

)
.

The Lewenstein wavefunction with p′ = p−A(t) and Sp′(t, t
′) =

∫ t
t′
dt′′
(

(p′+A(t′′))2

2

)
then

reads

|Ψ(t)〉(L) = |Ψ0(t)〉 (2.125)

−i

∫ t

t0

dt′
∫
d3p′|p′ + A(t)〉 exp (−iSp′(t, t

′)) 〈p′ + A(t′)|r · E(t′)|Ψ0(t
′)〉.

Though the derivation appears to be quite different to the strong field approximation one
finds with Û (V )(t, t′) =

∫
d3p′|p′ + A(t)〉 exp (−iSp′(t, t

′)) 〈p′ + A(t′)| in length gauge and
equation (2.88) that

|Ψ(t)〉(L) = |Ψ(t)〉(SFA). (2.126)

The so-called Lewenstein dipole moment is, due to negligence of the continuum-
continuum transition in equation (2.97),

d(L)(t) =

∫
d3p′ b(L)(p′, t)〈Ψ0|r|p′〉 + c.c. (2.127)

= −i

∫ t

t0

dt′
∫
d3p′〈Ψ0|r|p′ + A(t)〉 exp (−iSp′(t, t

′))

〈p′ + A(t′)|r · E(t′)|Ψ0(t
′)〉 + c.c..

2.2.3 Intense-Field Many-Body S-Matrix Theory

We start with a many-body Hamiltonian in laser approximation (we again suppress the
index of the gauge)

Ĥ(t) = Ĥs + ĤI(t). (2.128)

The idea we pursue is analogous to the strong field approximation. According to our
physical understanding, we rearrange the Hamiltonian into two parts, an evolution guiding
part Ĥ0(t) and an evolution perturbing part Ĥp(t). This will be done for the initial state
of the system and the assumed final state. As we usually start with an eigenstate of the
system Hamiltonian we use as initial partition of the Hamiltonian

Ĥ0
i (t) = Ĥs and Ĥp

i (t) = ĤI(t). (2.129)
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Chapter 2: Intense Laser-Matter Interaction

Then we have in accordance to equation (2.82)

|Ψ(t)〉 = |Ψ0(t)〉 − i

∫ t

t0

dt′Û(t, t′)Ĥp
i (t

′)|Ψ0(t
′)〉. (2.130)

In a further step we will rearrange the Hamiltonian according to the final state we assume
the system to be in after the evolution. With

(
i
∂

∂t
− Ĥ0

f (t)

)
Û0
f (t, t0) = 0 (2.131)

we define the Dyson equation

Û(t, t0) = Û0
f (t, t0) − i

∫ t

t0

dt′Û0
f (t, t

′)Ĥp
f (t

′)Û(t′, t0) (2.132)

and write the wavefunction of the system as

|Ψ(t)〉 = |ψ0(t)〉 − i

∫ t

t0

dt′Û0
f (t, t

′)Ĥp
i (t

′)|Ψ0(t
′)〉 (2.133)

−
∫ t

t0

dt′
∫ t′

t0

dt′′Û0
f (t, t

′)Ĥp
f (t

′)Û(t′, t′′)Ĥp
i (t

′′)|Ψ0(t
′′)〉.

Now let us examine the S-Matrix element

Mf (t1, t0) = 〈Ψf(t1)|Ψ0(t1)〉 − i

∫ t1

t0

dt′〈Ψf(t
′)|Ĥp

i (t
′)|Ψ0(t

′)〉 (2.134)

−
∫ t1

t0

dt′
∫ t′

t0

dt′′〈Ψf(t
′)|Ĥp

f (t
′)Û(t′, t′′)Ĥp

i (t
′′)|Ψ0(t

′′)〉,

which is still exact. Now we introduce an intermediate partition of the evolution
operator. Remember the single active electron case of the strong field approximation.
There one used as intermediate (virtual) state the Volkov state of the electron. In the
many electron case one will in general find some electrons removed from its parent ion,
some still bound. Analogously to the strong field approximation one will describe those
electrons detached from the residual system by a Volkov wavefunction. This concept
will become more clear when we rearrange the Hamiltonian of a two-electron system to
describe nonsequential double ionization below.
The intermediate partitioning reads as

Ĥ(t) = Ĥ0(t) + Ĥp(t). (2.135)

We rewrite the corresponding evolution operator as

Û(t, t0) = Û0(t, t0) − i

∫ t

t0

dt′Û0(t, t′)Ĥp(t′)Û0(t′, t0) (2.136)

−
∫ t

t0

dt′′
∫ t

t′′
dt′Û0(t, t′)Ĥp(t′)Û0(t′, t′′)Ĥp(t′′)Û0(t′′, t0) + ...,
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2.2. Strong Field Approximation

plug this into equation (2.134), leading to the scattering-matrix expansion

Mf(t1, t0) =

∞∑

k=0

M
(k)
f (t1, t0) (2.137)

with

M
(0)
f (t1, t0) = 〈Ψf(t1)|Ψ0(t1)〉 (2.138)

M
(1)
f (t1, t0) = −i

∫ t1

t0

dt′〈Ψf(t
′)|Ĥp

i (t
′)|Ψ0(t

′)〉

M
(2)
f (t1, t0) = −

∫ t1

t0

dt′
∫ t′

t0

dt′′〈Ψf(t
′)|Ĥp

f (t
′)Û0(t′, t′′)Ĥp

i (t
′′)|Ψ0(t

′′)〉
... = ... .

The interpretation of the different matrix elements works in an analogous manner as
in the single active electron case. The afore-derived strong field approximation can
be recovered with an appropriately chosen partitioning of an one-body Hamiltonian.
One may associate Feynman-like diagrams with every matrix element in the S-matrix
expansion (2.137) and establish a diagrammatic approach to the intense-field many-body
S-matrix theory [8].

A very important process, which cannot be explained in a single active electron
description and is in need of a proper inclusion of electron-electron correlation, is
nonsequential double ionization. By nonsequential it is meant that the ionization
processes of the first and the second electron are not independent of each other. In fact,
the inelastic scattering of one electron at the parent system may cause the ejection of the
second electron. The importance of the nonsequential mechanism for double ionization is
wavelength dependent [3, 8]. In a certain intensity regime it dominates double ionization
for near infrared wavelengths while for ultra-violet wavelengths the sequential process is
the by far dominating mechanism.
Here we will not go through all the calculations. We want to give an example of the
above described partitioning scheme for a physical process and point out, which of
the generated terms are of importance and give its interpretation. For an extensive
consideration of nonsequential double ionization we refer to [3, 8, 57].
The Hamiltonian of helium in a laser field in velocity gauge reads

Ĥ(t) =
p2

1 + p2
2

2
+ (p1 + p2) · A(t) + A2(t) − Z

r1
− Z

r2
+

1

r12
(2.139)

with Z the charge of the nucleus and r12 = |r1 − r2|. As we assume our system to be in
its ground-state initially, we use accordingly the associated initial partitioning

Ĥ0
i =

p2
1 + p2

2

2
− Z

r1
− Z

r2
+

1

r12
, Ĥp

i = (p1 + p2) · A(t) + A2(t). (2.140)

In the final configuration we assume both electrons emitted and freely traveling in the laser
field. The core potential as well as the interaction potential are treated as perturbations,
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Chapter 2: Intense Laser-Matter Interaction

i.e.,

Ĥ0
f =

p2
1 + p2

2

2
+ (p1 + p2) · A(t) + A2(t), Ĥp

i = −Z

r1
− Z

r2
+

1

r12
. (2.141)

The intermediate partitioning is chosen according to our physical intuition that one elec-
tron is freely propagating while the other is still bound to the ion. Of course, there are
a lot of other possible path ways but this one is assumed to be the most important for
arriving at the final state. Hence,

Ĥ0 =
p2

1 + p2
2

2
+ p1 · A(t) +

A2(t)

2
− Z

r2
, (2.142)

Ĥp = p2 · A(t) +
A2(t)

2
− Z

r1
+

1

r12
.

The evolution operator for the Hamiltonian Ĥ0 is a direct product of the Volkov evolution
operator for a single electron ÛV

1 (t, t0) and a single-electron bound state evolution operator

ÛB
2 (t, t0),

Û0(t, t0) = ÛV
1 (t, t0) ⊗ ÛB

2 (t, t0). (2.143)

If we plug this into equation (2.137), assume the zeroth order to be zero, we obtain two

terms for M
(1)
f (t1, t0) and six terms for M

(2)
f (t1, t0) [8]. If we consider infrared to near-

optical wavelengths we can neglect almost all terms. The two terms of M
(1)
f (t1, t0) stand

for a “shake-off” process, where the first electron leaves so quickly that the second electron
is shaken off. However, for low frequency strong field ionization the emitted electrons are
usually slow such that this process is negligible. Four of the six terms of M

(2)
f (t1, t0) do not

have correlation during the double ionization process and hence contribute insignificantly.
A further term corresponds to the unlikely event in which one electron interacts with
the laser while the second electron goes into the intermediate Volkov state. The main
contribution comes from

Mf (t1, t0) ≃ (2.144)
∫ t1

t0

dt′
∫ t′

t0

dt′′〈Ψf(t
′)| 1

r12
U0(t′, t′′)(p1 · A(t′′) +

A2(t′′)

2
)|Ψ0(t

′′)〉.

The physical interpretation is that one electron interacts with the laser at time t′′ and
is ejected into the continuum, traveling freely in the laser pulse while the other electron
stays at the ion. At time t′ the first electron comes back to the residual system and
interacts with the still bound one. Finally both electrons leave the system in accordance
to the simple man’s three-step model. This approximation leads to reasonable quantitative
agreement with experimental data [3, 8, 57].
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Chapter 3

Many-Body Quantum Dynamics in
Intense Laser Fields

After a broad introduction to both fields, i.e., density functional theory as an approach
to the quantum many-body problem and intense-laser matter interaction theory, we will
try to tackle the problem of nonperturbative dynamics of many-particle systems via time-
dependent density functional theory. With the increasing interest in real-time quantum
dynamics of matter exposed to short and intense laser light time-dependent density func-
tional theory beyond linear response attracts more and more attention (see [11] and ref-
erences therein). Until now we have shown that a classical description of the laser field
in dipole approximation is valid. Note here that the dipole approximation introduces
an external field, which becomes infinite as |r| → ∞. From a formal point of view one
usually looks at external potentials, which go to zero for |r| → ∞. However, one could
introduce some damping of the external laser potential far away from the system with-
out influencing the actual dynamics. Therefore time-dependent density functional theory
can be applied to solve the complex many-body dynamics. In order to circumvent this
formal problem one could think of switching to velocity gauge. However, then one has
to use time-dependent current density functional to establish a mapping between vector
potentials and current densities [64].
Though time-dependent density functional theory seems to be a natural choice, the treat-
ment of atomic and molecular systems in intense laser fields poses various challenging prob-
lems. Our approach to time-dependent density functional theory so far did only consider
fundamental problems. In a next step characteristics of an explicit exchange-correlation
potential have to be investigated. There have been various interesting discoveries concern-
ing time-dependent density functional theory for intense laser-matter interaction [11]. If
one looks at ionization processes, recent findings suggest that one has to take into account
a discontinuity in the exchange-correlation potential whenever ionization occurs [65]. This
agrees with the time-independent theory, where the energy functional shows discontinuous
behavior whenever the number of particles in the system assumes integer values [9]. This
property of the functional explains why two well separated atomic systems have minimal
combined ground-state energy with zero net charge for each system. Another challenge
in the practical application of time-dependent density functional theory is to express the
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observables of interest as functionals of the density (or Kohn-Sham orbitals) alone. It was
shown, that one needs highly nontrivial functionals to calculate, e.g., the double ioniza-
tion probability [66] or momentum distributions [67].
Here we will focus on the question, which features of the exchange-correlation poten-
tials are important in resonant light-matter interaction. The resonant population transfer
between eigenstates of a system is fundamental. Any approach to the calculation of quan-
tum dynamics should be able to handle this process. Though for time-dependent density
functional theory this is the case, at least in principle, approximations for the exchange-
correlation potential capable of reproducing population transfer density-dynamics are yet
unknown. We investigate Rabi oscillations in a one dimensional model system of helium
in an intense laser field. We employ a simple adiabatic approximation for the exchange-
correlation potential and analyze the behavior of the resonantly driven self-consistent
system. Further the possibility of a few-level approximation for time-dependent density
functional theory is explored.
Finally we apply time-dependent density functional theory to a complex system in an
intense laser field. We consider the C60 fullerene which exhibits strong collective behav-
ior. The question whether collective modes are excited even though the incident laser
field is far off resonant is considered. Strong radiation by collective modes of a system
would hinder the novel approaches to orbital imaging, as those rely on the assumption
that mainly high-order harmonic radiation is emitted [see [55] and [56] for a review].
Extensions of the strong field approximation including collective behavior are deduced
to estimate the relative efficiency of the collective response compared to the “standard”
harmonic radiation.

3.1 Resonant Dynamics and Excited States

Resonant interactions are of fundamental importance in physics. Naturally, a density
functional reformulation of quantum mechanics should be able to describe such processes.
However, from a density functional point of view even excited state densities and
their corresponding eigenenergies are not easy to determine as they do not obey a
simple energy minimization property like the ground-state. The usual ground-state
density functional theory has to be modified to exactly determine all eigendensities of
a quantum system. Hence, we expect resonant interactions to require quite involved
approximations for the exchange-correlation potential to be adequately reproduced. How
does the exchange-correlation potential know about the eigenstates and eigenvalues of the
interacting system? What mechanism leads to resonant dynamics, i.e., Rabi-oscillations?

First we will give an overview of how excited states in density functional theory
are calculated and how excitation energies are extracted from linear response time-
dependent density functional theory. In a next step we employ a one-dimensional helium
model which we are able to solve numerically both exactly and within a time-dependent
Kohn-Sham framework. We show that the time-dependent Kohn-Sham dipole indeed
shows Rabi-type oscillations for the widely used exact-exchange approximation. However,
the time-dependent density of the population transfer to the excited state is not properly
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described. The Rabi-type oscillations are attributed to classical effects, and we argue
that the population transfer density-dynamics needs a proper inclusion of correlations
and nonadiabatic effects in the exchange-correlation potential. Further we discuss
the incompatibility of few-level approximations and time-dependent density functional
theory.

3.1.1 Excited States in Density Functional Theory

As seen in section 1.3.2 the ground-state density can be found by energy minimization of
the corresponding energy functional. However, excited state densities and their excitation
energies were not discussed. There is no straightforward minimization principle for excited
states. Nevertheless, one can rigorously deduce all eigenstates also in a density functional
approach.
First we take a closer look at ground-state density functional theory. The Hohenberg-
Kohn functional FHK (1.139) was defined on the set of pure-state-v-representable densities.
Extending its domain to the set

IN :=

{
n

∣∣∣∣0 ≤ n,
√
n ∈ H1(R3),

∫
d3r n(r) = N

}
(3.1)

we define

Q[n] = min
Ψ

{
〈Ψ|T̂ + V̂int|Ψ〉 |ψ 7→ n ∈ IN ,Ψ ∈ WN

}
(3.2)

with WN := {Ψ|‖Ψ‖2 = 1,
∑N

k=1

∫
|∇kΨ|2 < ∞}, which is well-defined and existing [30].

With this we can define the energy functional

Ẽv[n] := Q[n] +

∫
d3r v(r) n(r). (3.3)

If we have the excited states |Ψi〉, which are extrema with respect to the associated

energies Ei = 〈Ψi|Ĥ|Ψi〉, we immediately find that

Ei ≥ Ẽv[ni], (3.4)

where ni is the corresponding density. The equality holds if and only if |Ψi〉 delivers the

(local) minimal energy of its corresponding one-particle density, i.e., 〈Ψi|T̂ + V̂int|Ψi〉 =
Q[ni]. Thus, both functionals have the same extremum Ei, i.e.,

δẼv[ni] = δ〈Ψi|Ĥ|Ψi〉 = 0. (3.5)

However, if |Ψi〉 does not lead to the minimum of its own density, then Ẽv[n] does not
know about that excited state and hence the excited state density ni does not extremize
the corresponding energy functional. Not every stationary state density ni extremizes
the corresponding energy functional. The global minimum for some v, i.e., one searches
over all densities, is the ground-state. Thus we can conclude [68] that every (local) ex-

tremum of Ẽv[n] is a stationary state density. One can show [30] that the functional
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Ẽv[n] is nonconvex (at least in three spatial dimensions). Thus we will at least find some
excited states. Otherwise we would have no extremum beside the global minimum. This
happens if we extend the domain from wavefunctions to ensembles [68], i.e., we define

some Q′[n] and Ẽ ′
v[n], for which convexity holds,

Ẽ ′
v[ni + x(n0 − ni)] ≤ Ẽ ′

v[ni] + x
(
Ẽ ′
v[n0] − Ẽ ′

v[ni]
)
, (3.6)

with 0 ≤ x ≤ 1. Then for Ẽ ′
v[n0] < Ẽ ′

v[ni] we find

Ẽ ′
v[ni] − Ẽ ′

v[ni + x(n0 − ni)]

x
≥ Ẽ ′

v[ni] − Ẽ ′
v[n0] > 0. (3.7)

If one introduces a Kohn-Sham system of noninteracting electrons and defines the
exchange-correlation energy functional in accordance to the Kohn-Sham theorem 1.3.6
it holds [68] that every density which extremizes Ẽv[n] may be constructed
from a self-consistent solution. However, not every self-consistent solution
yields a density extremizing Ẽv[n]. If the non-extremizing self-consistent solutions
actually have some physical meaning is, to the best of our knowledge, unknown.
Therefore we may conclude that the ground-state exchange-correlation potential has
knowledge of (at least some) excited states. This is also of importance if we want
to use an adiabatic approximation in the time-dependent theory. Even for such a
simple approximation we can assume that some eigenvalues, i.e., resonance-frequencies,
may influence the dynamics of the time-dependent system. However, also possibly un-
physical self-consistent solutions may have some influence on the approximated dynamics.

Still we do not know if we can construct all excited state densities just by using
the ground-state energy functional. A proper approach to successively generating all
excited state densities is ensemble density functional theory [9, 69–72]. We will
outline the ideas of [69].
For any M-dimensional subspace R spanned by determinantal (noninteracting) wave-
functions {|Φi〉} we define the equally distributed density

nR = GM
bn (R) =

1

M

M∑

i=1

〈Φi|n̂|Φi〉. (3.8)

Note that such a subspace can be found for every density. If we further define the M-
dimensional subspace S spanned via general wavefunctions {|Ψi〉} it can be shown that

GM
bT (R′

R) := min
R′

{
1

M

M∑

i=1

〈Φ′
i|T̂ |Φ′

i〉 |dimR′ = M,R′ → nR

}
, (3.9)

GM
bT+bVint

(S ′
R) := min

S′

{
1

M

M∑

i=1

〈Ψ′
i|T̂ + V̂int|Ψ′

i〉 |dimS ′ = M,S ′ → nR

}
(3.10)
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exist and are well-defined [69]. With this we can define

HM(R) =
1

M

M∑

i=1

〈Φi|T̂ |Φi〉 +

∫
d3r v(r)nR(r) (3.11)

+
1

2

∫
d3r d3r′

nR(r)nR(r′)

|r − r′| + EM
xc (R), (3.12)

where

EM
xc (R) := GM

bT+bVint
(S ′

R) −GM
bT (R′

R) (3.13)

−1

2

∫
d3r d3r′

nR(r)nR(r′)

|r − r′| . (3.14)

We find [69] that

min
R

HM(R) =
E1 + ... + EM

M
(3.15)

exists with E1, ..., EM the first M eigenvalues of the Hamiltonian Ĥ. Moreover, if R0 is
such that minRH

M(R) = HM(R0) we have

n1 + ... + nM = MGM
bn (R0) (3.16)

with n1, ..., nM the corresponding densities of the eigenstates of Ĥ . Thus the route to all
excited eigenstate densities and energies is clear. One has to successively apply the above
minimization to first generate (E1, n1) and then (1/2(E1 + E2), 1/2(n1 + n2)). From this
one can infer (E2, n2). In a next step we calculate the 3rd order to get (E3, n3) and so
forth. Via the usual Kohn-Sham scheme this minimization procedure amounts to solve
the nonlinear single-particle equations

[
−1

2
∇

2
r + v(r) +

∫
d3r′

n(r′)

|r − r′| +
δEM

xc

δn(r)

]
φk(r) = ǫkφk(r) (3.17)

with

n(r) =
1

M

M∑

i=1

N∑

k=1

wik|φk(r)|2 (3.18)

and wik = 0, 1. Note that the derived exchange-correlation potentials will be different
for every M . Therefore the usual approximations for the (ground-state) theory will not
necessarily give good results [72]. If EM

xc is approximated by the Slater-exchange (exact
exchange) this approach corresponds to the Slater transition state theory [9]. Further one
may extend the distribution of the densities to fractional occupations [70], i.e.,

nR =

M∑

i=1

ηi〈Φi|n̂|Φi〉 (3.19)
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with η1 ≥ η2 ≥ ... ≥ ηM ≥ 0.

In time-dependent density functional theory one extracts excitation energies typi-
cally via linear response calculations [11]. For a weak perturbing field one does not
need to know the full time-dependent exchange-correlation potential but only its linear
response, i.e., the first functional derivative at the ground-state density (1.287). The
central equation of linear response time-dependent density functional theory in frequency
space is [11]

χ(r, r′, ω) = χKS(r, r
′, ω) (3.20)

+

∫
d3r1 d

3r2χKS(r, r1, ω)

{
1

|r1 − r2|
+ fxc([nGS], r1, r2, ω)

}
χ(r2, r

′, ω)

with χ(r, r′, ω) the point-wise susceptibility of the interacting system, i.e, χ = δnbρ0/δv,
and χKS(r, r

′, ω) the noninteracting counterpart. The Kohn-Sham linear response kernel
can be written as [11]

χKS(r, r
′, ω) = 2 lim

η→0+

∑

a,i

{
φ∗
i (r)φa(r)φ∗

a(r
′)φi(r

′)

ω − (ǫa − ǫi) + iη
− φ∗

a(r)φi(r)φ∗
i (r

′)φa(r
′)

ω + (ǫa − ǫi) − iη

}
(3.21)

where the index i represents all occupied Kohn-Sham orbitals φi and a all unoccupied
orbitals φa with their Kohn-Sham energy ǫi and ǫa. The pure Kohn-Sham transitions occur
whenever the frequency hits one of the energy differences. These poles represent single-
particle excitations. The Hartree-exchange-correlation kernel shifts the transitions to their
true (interacting) values and also describes multi-particle excitations if it is accurately
known [76].

3.1.2 Resonant Dynamics in the Interacting Theory

We now consider resonant dynamics in an interacting system. To that end we employ
a one dimensional model system. The generalization to the three dimensional case is
straightforward. For one dimension we have via the local force balance equation [see
section 1.2.1]

∂2
t n(x, t) = ∂x[n(x, t)∂xv(x, t)] (3.22)

+ 〈Ψ(t)|∂2
xT̂ (x) + ∂xŴ (x)|Ψ(t)〉︸ ︷︷ ︸

=:q([n];x,t)

with the one dimensional momentum-stress tensor

T̂ (x) :=
∑

σ

{(∂xψ̂†
σ(x))∂xψ̂σ(x) −

1

4
∂2
x(ψ̂

†
σ(x)ψ̂σ(x))} (3.23)

and the one dimensional interaction term

Ŵ (x) :=
∑

σ,σ′

∫
dx′ψ̂†

σ(x)ψ̂
†
σ′(x

′)(∂xvee(|x− x′|))ψ̂σ′(x′)ψ̂σ(x). (3.24)
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An interacting spin-singlet state can be written according to (1.49) as

|Ψ(t)〉 = Û(t, t0)|Ψ(t0)〉 =

∫
dx

∫
dx′ ψ(x, x′, t)ψ̂↑(x)ψ̂↓(x

′)|0〉. (3.25)

Let us introduce the widely used one-dimensional model helium [73]. We assume that
both electrons move only along the laser polarization direction. Softening the Coulomb
interaction,

1

|r| →
1√

1 + x2
, (3.26)

we obtain for the Hamiltonian Ĥ(t) = T̂ + V̂int + V̂ (t) with

T̂ = −1

2

[
∂2
x + ∂2

x′

]
, (3.27)

V̂int =
1√

1 + (x− x′)2
(3.28)

and

V̂ (t) = − 2√
1 + x2

− 2√
1 + x′2

+ E(t)[x+ x′]. (3.29)

Here, the coupling to the laser field is described by the electric field in dipole approx-
imation E(t), T̂ is the kinetic energy, and V̂int the electron-electron interaction. The
corresponding potential in equation (3.22) thus reads v(x, t) = v0(x) + vL(x, t) with
v0(x) = −2/

√
1 + x2 and vL(x, t) = xE(t). We start from the spin-singlet ground-state.

Since there is no spin-dependent potential in our model the state will remain a spin-singlet
state, i.e.,

〈x, x′|Ψ(t)〉 =
1√
2
ψ(x, x′, t)[| ↑↓〉 − | ↓↑〉] (3.30)

with ψ(x, x′, t) being symmetric under the exchange of x and x′, and a time-evolution

according to the time-dependent Schrödinger equation i∂tψ(x, x′, t) = Ĥψ(x, x′, t). The
ground-state energy in this system is E0 = −2.238, the first excited spin-singlet state is
at E↑↓

1 = −1.705.
The linear response of the exact model helium is calculated by “kicking” the system
gently [74] using a δ-like electric field (corresponding to a step-like vector potential) and
Fourier-transforming the dipole d(t) =

∫
dx xn(xt). The result is shown in figure 3.1

below. The strongest line corresponds to the transition between the ground state and the
first excited singlet-state at ω = E↑↓

1 −E0 = 0.533, followed by transitions to higher excited
states and the first continuum. The time-dependent Schrödinger equation spectrum also
shows transitions to (and between) doubly excited states and the corresponding continua.
Such transitions will be absent in linear response time-dependent density functional theory
employing simple, adiabatic exchange-correlation potentials [76]. If we now resonantly
drive the interacting system we can induce Rabi oscillations between the ground-state
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Figure 3.1: Linear response of the helium model atom as obtained from the full time-
dependent Schrödinger calculation (black, labelled ’TDSE’), from the exact-exchange
time-dependent Kohn-Sham calculation (red, labelled ’TDKS’), and the frozen exact-
exchange Kohn-Sham potential (green, labelled ’frozen’). The insert shows a close-up of
the transitions to singly excited states.

and an excited state of opposite parity. An approximate description of this resonant
dynamics is possible via a two-level description where only the ground-state |Ψ0〉 and the
addressed excited state |Ψ1〉 are taken into account, i.e., |Ψ(t)〉 ≃ a(t) exp(−iE0t)|Ψ0〉 +
b(t) exp(−iE1t)|Ψ1〉 [2]. The corresponding Hamiltonian reads

Ĥ(t) = E0|Ψ0〉〈Ψ0| + E1|Ψ1〉〈Ψ1| (3.31)

+2E(t)〈Ψ0|x|Ψ1〉|Ψ0〉〈Ψ1| + 2E(t)〈Ψ1|x|Ψ0〉|Ψ1〉〈Ψ0|.

Further, for our problem

〈Ψ0|x|Ψ1〉 = 〈Ψ1|x|Ψ0〉 =: D. (3.32)

The density of the interacting model helium is well approximated by n(x, t) =
|a(t)|2n0(x) + |b(t)|2n1(x) + 2ℜ{a∗(t)b(t) exp(−iωt)∆n(x)}, with ∆n(x) = 〈Ψ0|n̂(x)|Ψ1〉
real. Note that the two-level Hamiltonian (3.31) is nonlocal, which will be the origin of
inconsistencies with time-dependent density functional theory later on. The solutions of
these equations are analytically known if one further introduces the rotating wave approx-
imations [2]. Of special interest is the time-dependend dipole d(t) of the resonantly driven
two-particle system, which is proportional to the emitted power of the driven system in
a semiclassical picture. Via the Ehrenfest theorem one can deduce the equation

d̈(t) = −2E(t)[2ωD2(|a(t)|2 − |b(t)|2)] − ωd(t). (3.33)
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3.1. Resonant Dynamics and Excited States

Figure 3.2: Expectation value 〈x〉 vs time for a resonant excitation with Â = 0.0125 and
ω = 0.533 for the time-dependent Schrödinger equation

With the initial conditions a(t0) = 1 and b(t0) = 0 and the rotating wave approximation

a solution for E(t) = Ê cos((ω + ǫ)t) reads [2]

d(t) ≃ B(ǫ)ℜ
{

i

[
cos

(
Ωt

2

)
+ i

ǫ

Ω
sin

(
Ωt

2

)]
sin

(
Ωt

2

)
exp(iφ+ i(ω + ǫ)t)

}
, (3.34)

with ǫ the detuning from the exact resonance frequency, ΩR = |D|Ê the Rabi frequency
and Ω =

√
Ω2

R + ǫ2. The amplitude of the dipole moment (3.34) B depends on the
detuning ǫ:

B(ǫ) = 2
ΩR√

Ω2
R + ǫ2

D. (3.35)

The dipole acceleration calculated with equation (3.22) in length gauge reads

d̈(t) = −2E(t) −
∫
dx n(x, t) ∂xv0(x). (3.36)

Although both descriptions of the dipole acceleration, i.e., (3.33) and (3.36), should
be equal approximately, they are based on different footings. While in the initial
two-level approximation we have spatially nonlocal potentials, the derivation of
equation (3.36) involved local potentials. We will come back to this issue below in
the context of few-level approximations within time-dependent density functional theory.

In the numerical calculations a laser field of vector potential amplitude Â = 0.0125, i.e.,
electric field amplitude Ê = ωÂ, was ramped up over two laser cycles and then held
constant. The laser frequency was tuned to the resonance ω = E↑↓

1 −E0, i.e., ω = 0.533 for
the time-dependent Schrödinger equation calculation. The time-dependent Schrödinger
equation result shown in figure 3.2 displays Rabi oscillations of the envelope of frequency
Ω = ÂωD = 0.0075, as expected. At t = π/Ω ≃ 420 the excited state is maximally
populated and the envelope of the excursion is close to zero. At t = 2π/Ω ≃ 840 the
system is mostly in the ground state again. A closer inspection of the time-dependent
Schrödinger equation result shows that because of ionization and excitation of other
states the population of the first excited state after half the Rabi period is only 0.975
instead of unity. The population of the ground state after a full Rabi cycle is 0.96.
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3.1.3 Resonant Dynamics in the Noninteracting Theory

For the noninteracting Kohn-Sham state we have for a spin-singlet

|Φ(t)〉 =

∫
dx

∫
dx′φ(x, t)φ(x′, t)ψ̂†

↑(x)ψ̂
†
↓(x

′)|0〉 (3.37)

and n(x, t) = 2|φ(x, t)|2. From the requirement that the interacting and the noninteracting
density should be the same we find with

∂2
t n(x, t) = ∂x [n(x, t)∂x(v(x, t) + vHxc([n]; x, t))] (3.38)

+〈Φ(t)|∂2
xT̂ (x)|Φ(t)〉 (3.39)

the analogon for the noninteracting case of (3.22)

vHxc([n]; x, t) =

∫ x

−∞

dx′

n(x′, t)

{
∂x′〈Ψ(t)|T̂ (x′)|Ψ(t)〉 + 〈Ψ(t)|Ŵ (x′)|Ψ(t)〉

−∂x′〈Φ(t)|T̂ (x′)|Φ(t)〉
}

+ c1(t)

∫ x

−∞

dx′

n(x′, t)

+c2(t) (3.40)

where c1(t) and c2(t) are constants of integration and are assumed to be zero due to the
usual boundary conditions, i.e., vHxc → 0 for |r| → ∞. The above proposed procedure to
derive the exact noninteracting Hartree-exchange-correlation potential vHxc is equivalent
to an inversion scheme [14]. For our case having the solution of the Schrödinger equation,
we find as an explicit operator of the interacting wavefunction ψ(x, y, t) and the Kohn-
Sham orbitals ϕ(x, t)

vHxc([ψ, φ]; x, t) =

∫ x

−∞
2

dx′

n(x′, t)

{
∂x′

[∫
dy∂x′ψ

∗(x′, y, t)∂x′ψ(x′, y, t)

−(∂x′φ
∗(x′, t))(∂x′φ(x′, t))] (3.41)

+

∫
dyψ∗(x′, y, t)ψ(x′, y, t)∂x′vint(|x′ − y|)

}
.

Note here that all possible memory effects reside in the Kohn-Sham orbitals and the inter-
acting wavefunctions if rewritten in terms of the density, i.e., φ([n]; x, t) and ψ([n]; x, y, t).
Therefore the exact orbital-dependent Kohn-Sham equation reads

i∂tφ(x, t) =

{
−1

2
∂2
x + v(x, t) + vHxc([ψ, φ]; x, t)

}
φ(x, t). (3.42)

Again we may derive an equation for the dipole acceleration. Independently of the
interaction we also find (3.36), i.e., all the information about the interaction is found in
the time-dependent density.

Until now we just have rewritten the interacting problem as a noninteracting Kohn-Sham
problem. Via a solution of the exact interacting problem ψ(x, x′, t) we are now able
to calculate the exact noninteracting one. However, the goal would be to find some
approximate scheme for the Kohn-Sham system to solve the Rabi problem without
knowledge of the dynamics of the interacting system.
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3.1. Resonant Dynamics and Excited States

Figure 3.3: Expectation values 〈x〉 vs time for a resonant excitation with Â = 0.0125
and (a) ω = 0.533 for the time-dependent Schrödinger calculation, (b) ω = 0.549 for the
time-dependent Kohn-Sham calculation, and (c) ω = 0.492 for the frozen Kohn-Sham
calculation.

Resonant Dynamics in Exact-Exchange Approximation

Now let us specialize in the so-called exact-exchange approximation. For the spin singlet
case we recover equation (1.272), i.e.,

vHx([n]; x, t) =

∫ |φ(x′, t)|2 dx′√
1 + (x− x′)2

.

This adiabatic approximation neglects any correlation effects, and the time-dependent
Kohn-Sham equation equals the time-dependent Hartree-Fock equation in this case. The
time-dependent Hartree-Fock wavefunction is a Slater-determinant,

〈x, x′|Φ(t)〉 =
1√
2
φ(x′, t)φ(x, t)[| ↑↓〉 − | ↓↑〉]. (3.43)

Analogous to the interacting case we calculate the linear dipole response of the exact-
exchange approximation. The result is shown in figure 3.1 above where we also in-
cluded the linear response spectrum for the “frozen” Kohn-Sham ground state poten-
tial v

(0)
KS(x) = −2/

√
1 + x2 +

∫
(n0(x

′) dx′)/(2
√

1 + (x− x′)2) (commonly called “bare”
Kohn-Sham response). The difference between the time-dependent Kohn-Sham and the

“frozen” Kohn-Sham result is due to vKS(x, t) − v
(0)
KS(x), which shifts the peaks closer to

the correct positions. One finds that the exact-exchange approximation leads to good
result concerning single excitations. However, as expected double excitations are missing.
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Figure 3.4: Groundstate density n0(x)/2 =
∫
dx′ |ψ0(x, x

′)|2 (black, labelled ’ground’) and
excited state density n1(x)/2 =

∫
dx′ |ψ1(x, x

′)|2 (red, labelled ’excited’). The two inserts
show contour plots of |ψ0(x, x

′)|2 (left) and |ψ1(x, x
′)|2 (right). The signs of ψ1(x, x

′) are
indicated in the right insert.

Figure 3.3 shows 〈x〉(t) = d(t)/2 as it results from the time-dependent Schrödinger
equation, time-dependent Kohn-Sham, and frozen Kohn-Sham calculations. The same
amplitude of the vector potential and the same pulse shape as for the time-dependent
Schrödinger equation case was used, however tuned to the “exact” transition frequency
ω = 0.549 for the time-dependent Kohn-Sham, and ω = 0.492 for the frozen Kohn-Sham
calculation. In the frozen Kohn-Sham calculation ionization and the population of other
excited states is more pronounced. As a consequence, the excursion envelope does not go
to zero at t = π/Ω and the excursion amplitude is overestimated. The time-dependent
Kohn-Sham calculation shows oscillations of the right amplitude. The Rabi period one
infers from the envelope-oscillations is close to the exact result in. For nonresonant driv-
ing the amplitude oscillations are absent, as they should.

Figure 3.3 suggests that there are Rabi oscillations in the time-dependent Kohn-Sham sys-
tem. If this were true the time-dependent Kohn-Sham density should oscillate between
the ground state density and the first excited state density, both shown in figure 3.4. Un-
fortunately, this is not the case. Examining the time-dependent Kohn-Sham density at
time t ≃ 350 reveals that it does not assume the shape of the excited state density of figure
3.4 but rather resembles the ground state Kohn-Sham density again! Hence, despite an
erroneous time-dependent Kohn-Sham density we observe the Rabi-like os-
cillations of figure 3.3 in its first moment, i.e., in the time-dependent Kohn-Sham
dipole. As for our two-electron system the exact Kohn-Sham orbital corresponding to
the excited state density is given by φ1(x) =

√
n1(x)/2 and thus, according to figure 3.4,

has no nodes, the exact Kohn-Sham orbital representing this excited state density must be
the ground-state of a Kohn-Sham potential vKS[n1]. Obviously, the exact exchange-only
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3.1. Resonant Dynamics and Excited States

approximation used above is not capable of “guiding” the density towards the stationary,
“new” groundstate density n1 during a π-pulse. Correlation is needed to describe the
density dynamics of the population transfer properly, and it is unlikely that any adiabatic
Hartree-exchange-correlation potential vHxc[n(t)] = vHx[n(t)]+vc[n(t)] is capable of doing
so. Instead, memory effects are expected [13].
Let us now investigate the origin of the Rabi-like oscillations in the time-dependent Kohn-
Sham dipole of figure 3.3. Since it is not due to population transfer to the excited state
there must be another explanation.
Assume that the evolution of the system may be approximated by a classical point particle,
which is located at the center of mass of the density. It then moves in good approximation
in an anharmonic potential

v(x) =
ω2

2
x2 +

α

3
x3 +

β

4
x4 (3.44)

with α and β some constants, driven by an external force of the formE(t) = Ê cos[(ω+ǫ)t].
We may also introduce a damping λ [77]. By successive approximations one finds the true
resonance frequency being shifted

ω 7→ ω +

(
3β

8ω
− 5α2

12ω3

)

︸ ︷︷ ︸
=:κ

b2. (3.45)

The excursion amplitude squared of the corresponding solution in terms of the detuning
ǫ is given by a third order equation,

B(ǫ)2
[
(ǫ− κB(ǫ))2 + λ

]2
=

Ê2

4ω2
. (3.46)

One finds three different regimes, depending on the strength of the driver. For ǫ→ 0 one
has

B(ǫ) ≃ Ê

2ω
√
λ2 + ǫ2

. (3.47)

For a higher driving force the maximum will be displaced until one finds for Ê > 8ω2λ2

|κ|
more than one real solution for equation (3.46). Thus, unlike the two-level quantum case,
i.e., equation (3.35), the initially symmetric lineshape is shifted and becomes asymmetric

with increasing strength of the driving force Ê and develops a characteristic discontinuity
in the excursion amplitude. Figure 3.5 shows that the amplitude of the time-dependent
Kohn-Sham dipole as a function of the laser frequency displays these features. The os-
cillations can intuitively be understood in the following way: The particle is resonantly
driven until it feels the anharmonicity of the potential due to the increasing excursion.
Then the driving force no longer is in resonance and the excursion decreases. Therefore
we conclude that the Rabi-like oscillations of the time-dependent Kohn-Sham
system are due to classical effects [78].

105



Chapter 3: Quantum Dynamics in Intense Laser Fields

0.45 0.50 0.55 0.60
0.0

0.2

0.4

0.6

0.8

Frequency  (a.u.)

E
xc

ur
si

on
 a

m
pl

itu
de

  (
a.

u.
)

Figure 3.5: Time-dependent Kohn-Sham calculation excursion amplitude B = maxx vs
laser frequency for a driver with Â = 0.0125. Discontinuity and asymmetric peak structure
are characteristic of classical anharmonic oscillations.

Few-Level Approximation in Time-Dependent Density Functional Theory

As shown above the simple exact-exchange approximation is not capable of reproducing
the correct density-dynamics. One is in need of a more elaborate approximation for the
exchange-correlation potential. Therefore we will take a step back and look at equation
(3.41). One might think that a good approximation of the interacting wavefunction
should also lead to a good approximation for the Hartree-exchange-correlation potential.
We know that the interacting wavefunction is well approximated by a two-level scheme.
In order to make this approximation self-contained one would have to find some way to
determine a(t) and b(t) in terms of the noninteracting system. Although this seems a
good route to follow such an approximation will lead to wrong predictions independent
of a(t) and b(t), because the two-level approximation is in conflict with the very
basis of time-dependent density functional theory.
Note first that the dipole acceleration of an N -particle system [equation (3.36)] reads
d̈(t) = −NE(t)−

∫
dx n(x, t)∂xv0(x). Here the term depending on ∂xvHxc([n]; x, t) vanishes

in accordance with the zero-force theorem [11, 79]. With n0(x) and n1(x) symmetric as
well as v0(x) even, we find owing to

∫
dx n0(x)∂xv0(x) =

∫
dx n1(x)∂xv0(x) = 0 (3.48)

that a two-level approximated Hartree-exchange-correlation potential yields to

d̈(t) = −NE(t) − cd(t), (3.49)

with c =
∫
dx(∂xv0(x))∆n(x)/

∫
dxx∆n(x). This is the driven harmonic oscillator which

[for initial conditions d(0) = ḋ(0) = 0] does not exhibit oscillations of the excursion am-
plitude as a function of the driver amplitude, i.e., no Rabi-like oscillations. The extension
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to three dimensions is straightforward.
The introduction of the two-level approximation in equation (3.41) leads to inconsistencies
with respect to the corresponding Hilbert spaces and Hamiltonians. In order to illustrate
this fact it is sufficient to consider the Heisenberg equation (1.60) for some general, time-

independent operator Ô,

∂tÔH(t) = i[ĤH(t), ÔH(t)]− (3.50)

= i
(
Û−1(t, t0)[Ĥ(t), Ô]−Û(t, t0)

)
,

with ÔH(t) = Û−1(t, t0)ÔÛ(t, t0) and the time evolution operator (1.154) on the infinite-
dimensional Hilbert space. The afore-mentioned application of a two level approximation
amounts to

i

(
Û−1

2 (t, t0)[Ĥ(t), Ô]Û2(t, t0)

)
(3.51)

= i
{
Û−1

2 (t, t0)1̂2

(
Ĥ(t)1̂Ô − Ô1̂Ĥ(t)

)
1̂2Û2(t, t0)

}
,

with 1̂ =
∑∞

k=0 |Ψk〉〈Ψk|, 1̂2 =
∑1

k=0 |Ψk〉〈Ψk| and

Û2(t, t0) = T
(

exp(−i

∫ t

t0

dt′1̂2Ĥ(t′)1̂2)

)
, (3.52)

i.e., calculating the commutator in the infinite-dimensional Hilbert space while the time
evolution is restricted to two Hilbert space dimensions. Instead, for a consistent two-level
approximation we should have

∂t

(
Û−1

2 (t, t0)ÔÛ2(t, t0)
)

(3.53)

= i
{
Û−1

2 (t, t0)1̂2

(
Ĥ(t)1̂2Ô − Ô1̂2Ĥ(t)

)
1̂2Û2(t, t0)

}
,

leading to a different commutator. Thus the two-level approximation applied to equation
(3.41) leads to a mixing of different Hilbert spaces and is inconsistent with the derivation
of equation (3.41). One has to include contributions from states outside the two-level
subspace [80]. Obviously, our analysis not only applies to a two-level approximation but
to any few-level approximation.
However, by the usual inversion scheme [14] one could construct some Kohn-Sham poten-
tial vKS generating the two level density n(x, t). The associated dipole acceleration would
be

d̈(t) = −
∫
dxn(x, t)∂xvKS([n]; x, t). (3.54)

If we define vHxc by subtracting from the Kohn-Sham the physical external potentials we
end up with

d̈(t) = −NE(t) − cd(t) −
∫
dx n(x, t)∂xvHxc([n]; x, t). (3.55)
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By construction, this two-level density has the right dipole acceleration. This can only
be possible if the term depending on vHxc contributes. Otherwise the same problem as
with equation (3.49) discussed above arises. However, a nonvanishing contribution from∫
dxn(x, t) ∂xvHxc([n]; x, t) is only possible if vHxc does not describe internal forces only

and thus violates the zero-force theorem [11,79]. As a consequence, the external potentials
of the interacting and the noninteracting system cannot be kept equal. In fact, there is
no local external potential v(x) that supports just two levels.

3.2 Recollision Induced Plasmon Emission

A typical interaction scenario in strong field laser atom or molecule interaction involves
three steps: (i) the removal of an electron from a target (ionization), (ii) motion of this
electron in the continuum, and, possibly, (iii) a recollision with the “parent” atom or
molecule if step (i) occurred at a time such that the laser field drives the electron back.
The recollision in the third step is responsible for the plateaus in photoelectron and
high harmonic spectra, and nonsequential multiple ionization, corresponding to the three
pathways (i) scattering in the presence of a laser field, (ii) recombination and emission of
a photon, and (iii) laser-induced collisional ionization (see, e.g., [49, 52, 81] for reviews).
Structural information about the target is encoded in both photoelectron and harmonics
spectra. Hence, besides the potential of high-order harmonic generation as an efficient
source of short wavelength radiation and attosecond pulses [49], the so-called “tomo-
graphic imaging” of molecular orbitals [see [55] and [56] for a review] has attracted
considerable attention. It is clear that whatever is “imaged” in this procedure is supposed
to be representation-independent, i.e., should not depend on the basis in which one
expands the multielectron wavefunction. This requirement is difficult to fulfill within the
simple and commonly adopted single active electron approximation [82].

Here we study the recollision dynamics and the emitted radiation for the case of
the C60 fullerene, which is an example for a multielectron system displaying collective
modes and an interesting dynamics when exposed to fs laser pulses [83, 84] (other such
systems are, e.g., metal clusters or biomolecules). The laser frequency is kept well
below the surface and volume plasmon frequency of C60 so that only the recolliding
electron may excite the collective modes efficiently but not the laser itself. In the
context of “orbital imaging” it is vital to know whether the structural information
encoded in the high-order harmonic generation spectra is “contaminated” by emission
at collective frequencies. In other words, we are interested in the relative efficiency
of the collective response with respect to the “standard” harmonic generation.

First the C60 jellium model we use in the time-dependent density functional the-
ory calculations is reviewed, and its collective modes are identified. Then the high-order
harmonic generation spectra are presented for three different wavelengths, ranging from
the typical 800 nm up to 3508 nm. The transition from the linear to the nonlinear exci-
tation regime is discussed, enhancements in the dipole spectra due to plasmon excitation
are evidenced, and their origin is investigated. Further we compare the time-dependent
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density functional theory results with the predictions of a simple, single active electron
approximated Lewenstein-like model of high-order harmonic generation from C60. Finally
we develop analytical models which take collective modes into account and enable us to
predict the relative efficiency of harmonic emission due to recollision-induced plasmon
excitation with respect to standard harmonic generation.

3.2.1 Model

The C60 fullerene is modelled using density functional theory employing a jellium po-
tential for the ionic background of inner and outer radius Ri, Ro, respectively, [85,86],
i.e.,

v0(r) =





−κ3

2

(
R2
o − R2

i

)
, r ≤ Ri

−κ
(

3

2
R2
o −

[
r2

2
+
R3
i

r

])
− V0, Ri < r < Ro

−κR
3
o − R3

i

r
, r ≥ Ro

(3.56)

where κ = r−3
s , Ri = 5.3, Ro = 8.1, r−3

s = N/(R3
o − R3

i ), N = 250 Kohn-Sham electrons,
and V0 = 0.68 (atomic units are used unless noted otherwise). The solution of the time-
independent Kohn-Sham equation

ǫjφj(r) =

(
−1

2
∇

2
r + v0(r) + vH([n]; r) + vxc([n]; r)

)
φj(r) (3.57)

according theorem 1.3.6 yields the ground state configuration from which we start the
propagation. Here, φj , j = 1 . . . N are the N Kohn-Sham orbitals, ǫj are the Kohn-Sham
orbital energies,

vH([n]; r) =

∫
d3r′

n(r′)

|r − r′| (3.58)

is the Hartree potential, and

vxc([n]; r) = vx([n]; r) = −
[
3n(r)

π

]1/3

(3.59)

is the exchange-correlation potential in exchange-only local density approximation in
accordance to equation (1.228). The N = 250 Kohn-Sham electrons lead to a spin-
neutral, closed-shell ground state of spherical symmetry. More precisely, we obtain 200
σ-electrons (without node in the radial wavefunctions) and 50 π-electrons [with one node
in the radial wavefunction located close to the C60-radius R = (Ri + Ro)/2 = 6.7]. The
free parameter V0 = 0.68 is used to adjust the Kohn-Sham energy of the highest occupied
molecular orbital (HOMO) to the ionization potential of C60, −ǫHOMO = Ip ≃ 0.28. The
HOMO of our model is a π-orbital of angular momentum quantum number ℓ = 4. Figure
3.6 illustrates and summarizes the ground state configuration from which we start the
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Figure 3.6: Net Kohn-Sham potential (black, squares), total density (red, diamonds),
wavefunctions of the lowest Kohn-Sham orbital and the HOMO (orange, crosses and
triangles, respectively). The σ- and π-levels are indicated. Density and wavefunctions are
scaled to fit into the plot.

time-dependent calculations.

In order to characterize the collective response of the model C60 we apply the
real-time method proposed in reference [74], as done in the previous section. To that
end we solve the time-dependent Kohn-Sham equation in exchange-only local density
approximation [75] [see theorem 1.3.8]

i∂tφj(r, t) =

(
−1

2
∇

2
r + v0(r) + vL(r, t) + vH([n]; r, t) + vx([n]; r, t)

)
φj(r, t) (3.60)

with

vL(r, t) = Âδ(t)z

a δ-like electric field E(t) = −∂A/∂t = Âδ(t) in dipole approximation for V̂ = A(t) · p
and A(t) = ÂezΘ(t). From the Fourier-transform of the dipole

dz(t) =

∫
d3r z n(r, t) (3.61)

the spectrum S(ω) = |dz(ω)|2 is calculated. Figure 3.7 shows that the linear dipole
response consists of several narrow lines (single-particle transitions) that sit on top of two
broad structures (the surface and volume plasmon, respectively). Closer inspection shows
that transitions of the type σℓ → π(ℓ ± 1), πℓ → σ(ℓ ∓ 1) contribute to the surface (or
Mie) plasmon ωMie and transitions between σ-states and (initially unoccupied) δ-states
(with two radial nodes) to the volume plasmon ωp.
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ω
ω

Mie
p

Figure 3.7: Dipole response of the C60 model system. Narrow lines (single-particle tran-
sitions) on top of two broad structures (surface or Mie plasmon ωMie ≃ 0.7 and volume
plasmon ωp ≃ 1.4) are observed. The Mie plasmon corresponds to homogeneous dipole-
like oscillations of the electron density with respect to the ions. The volume plasmon (in
general a breathing mode) is visible in our dipole spectra since it contains a nonvanish-
ing dipole component. The dipole strength is normalized such that its integral equals
N = 250.

3.2.2 Results

In this subection we shall present and discuss our results for dipole spectra S(ω) of
the model C60 when exposed to Gaussian and trapezoidal laser pulses of various peak
intensities and wavelengths.

From linear to nonlinear plasmon excitation

We solved the time-dependent Kohn-Sham equation (3.60) for Gaussian pulses with a
vector potential of the form

A(t) = −Ê
ω

sin(ωlt) exp(−a2(t)) (3.62)

with

a(t) = 3

[
ωlt

nπ
− 1

]
. (3.63)

There are 0.278n cycles within the FWHM of the Gaussian pulse (with respect to the
electric field or the vector potential) centered around t = (2π/ωl)(n/2). We started the
simulation from the ground state at t = 0 and stopped at t = (2π/ωl)n with n = 8.

Figure 3.8 shows the transition from the linear to the nonlinear regime. At very
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low field amplitude (Ê = 0.0025 and 0.005 at 2280 and 800 nm, respectively) the dipole
spectra display replicas of the linear response profile on a very low level, depending on the
bandwidth of the applied laser pulse. Upon doubling the field amplitude (Ê = 0.005 and
0.01 at 2280 and 800 nm, respectively) the signal in the dipole spectrum is quadrupled, as
expected in the linear regime. The corresponding values of intensity are 0.9 · 1012W/cm2

and 3.5 · 1012W/cm2. However, with further increasing laser intensity, plateaus develop
and the high harmonic-signal increases rapidly over a wide frequency range. One may
argue that this increase of the harmonic signal is just due to the standard harmonic
generation mechanism while the collective response is still within the linear regime and
thus not visible at higher laser intensities. The next part is hence devoted to identify
plasmon enhancements and their wavelength dependence.
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Figure 3.8: Harmonic spectra of the C60 model for Gaussian laser pulses with ωl = 0.057
(λ = 800 nm, upper panel) and ωl = 0.02 (λ = 2280 nm, lower panel). The values of Ê
are given in the plots. The linear response profile from figure 3.7 is included (dotted).

The field amplitude Ê = 0.04 corresponds to the intensity 5.6 · 1013W/cm2.
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Plasmon enhancements and wavelength dependence

Figure 3.9 shows the harmonic spectra S(ω) as calculated from the full dipole and the
outermost orbital density only (’HOMO only’) for an 8-cycle, (2,4,2) trapezoidal 800-nm
laser pulse, i.e., with 2-cycles up and down ramps and 4 cycles of constant amplitude
Ê = 0.05. Trapezoidal pulses have the advantages (i) that the comparison with the
semi-analytical results for constant amplitude pulses of section 3.2.4 is more straightfor-
ward, and (ii) that cut-off positions do less sensitively depend on the carrier-envelope

phase since Ê is constant over several cycles [see reference [52] for a discussion of carrier-
envelope phase-effects]. We checked that all our findings are qualitatively insensitive to
the pulse shape. The difference between the two harmonic spectra clearly indicates that
not just the valence electron contributes to the emission. Enhancements by two orders
of magnitude around frequencies at which the system displays collective modes
are visible. The standard cut-off known from atomic high-order harmonic generation is
at 3.17Up + |ǫHOMO| (with Up = Ê2/(4ω2

l ) the ponderomotive energy) and indicated by an
arrow. The real cut-off, however, is extended to higher harmonic frequencies because
recombination into orbitals with higher ionization potentials |ǫj| > |ǫHOMO| takes
place. Note that the latter is possible without violation of the Pauli principle (unless
Kohn-Sham electrons are frozen in the respective states). An extension of the standard
harmonic plateau in a multielectron system—presumably of the same origin—has also
been observed in reference [87].
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Figure 3.9: Harmonic spectra of the C60 model for Ê = 0.05, ωl = 0.057 (λ = 800 nm), and
an 8-cycle trapezoidal laser pulse with 2-cycles up and down ramps. The full spectrum
and the one just from the valence Kohn-Sham electron (“HOMO only”) are shown. The
linear dipole response from figure 3.7 is included (shifted vertically). The vertical arrow
indicates the standard cut-off 3.17Up + |ǫHOMO|.

In the following we show that with increasing laser wavelength the emission spectra be-
come more and more single active electron like in the sense that all collective response is
less efficient than the standard harmonic generation by the outermost electron at the re-
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spective frequency. In the single active electron calculations we also start from the density
functional theory ground-state but freeze the potentials vH and vxc for the propagation of
the valence Kohn-Sham orbital.
Figure 3.10 shows that at λ = 2280 nm there are still substantial differences between the
single active electron result and the full time-dependent Kohn-Sham calculation. First,
the single active electron approximation yield is higher because the ionization step in the
three-step scenario described above is more efficient for a frozen potential since there is
no polarization which counteracts the laser field. Second, the plasmon emission included
in the full result obscures the oscillatory structure from which structural information (i.e.,
in our case the C60 radius and the width of the spherical jellium shell) could be obtained.
Only in the (extended) cut-off region full and single active electron result agree very well
because there are no collective modes at such high frequencies.
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Figure 3.10: Emission for ωl = 0.02 (λ = 2280 nm) and Ê = 0.03 (other parameters as in
figure 3.9). The results from the full time-dependent Kohn-Sham calculation (’full’) and
the single active electron approximation simulation are shown. The linear dipole response
from figure 3.7 is included (shifted vertically). The vertical arrow indicates the standard
cut-off.

At the even longer wavelength λ = 3508 nm the full time-dependent Kohn-Sham
result agrees well with the single active electron result, as is shown in figure 3.11.
Also the cut-off is at the expected position, indicating that recombination into states
with orbital energies |ǫ| > |ǫHOMO| is insignificant. A closer inspection of the individual
response of all the Kohn-Sham electrons shows that the standard high-order harmonic
generation of the HOMO Kohn-Sham electrons (i.e., the two spin-degenerate ones with
ℓ = 4 and m = 0) clearly dominates. Hence, long wavelengths are advantageous for
imaging schemes which are based on interference structures in the high-order harmonic
generation spectra predicted by strong field-theoretical treatments [65] in single active
electron approximation. However, the efficiency of high-order harmonic generation also
decreases with increasing laser wavelength [88]. The fact that the efficiency of the
collective response decreases even faster than the efficiency of high-order har-
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Figure 3.11: Emission for ωl = 0.013 (λ = 3508 nm) and Ê = 0.02. The results from a
full time-dependent Kohn-Sham calculation (’full’) and a single active electron simulation
are shown. The bold vertical arrow indicates the standard cut-off, the three thin vertical
arrows local minima in the envelope of the full spectrum.

monic generation is one of the main results in this section.

3.2.3 Identifying the Mechanism

In section 3.2.2 we showed that at low field strengths the collective response increases lin-
early with the field strength (i.e., the signal in the dipole spectra quadratically) while at
higher intensities the standard high harmonic plateau develops, which is an entirely non-
linear phenomenon. Further we showed that plasmon enhancements are present, although
they decrease relative to the standard high harmonic plateau with increasing wavelength.
This means that there must be some nonlinear effect at work which is able to generate
a collective response of comparable strength as the standard high harmonics. The latter
are due to returning electrons which recombine. The obvious guess is to attribute the col-
lective response also to the returning electrons so that the similar efficiency of harmonic
emission via the single active electron approximation and via the collective mechanism
can be understood if recombination with emission of a photon and with excitation of
a plasmon (followed by emission of a photon) are similarly efficient. In this subsection
we support the viewpoint that the recolliding electrons indeed excite collective
modes by analyzing our numerical results in more detail.

In our time-dependent density functional theory simulations we use a spherically symmet-
ric imaginary potential W (r) = −iW0(r/Rg)

16 with W0 = 100 and Rg the radius of the
numerical grid. The imaginary potential serves as an absorber of probability density ap-
proaching the boundary of the numerical grid [75]. Usually the grid is chosen big enough
so that only the probability density corresponding to never-returning electrons is absorbed
and thus the imaginary potential does not affect the relevant dynamics taking place in
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the interior of the numerical grid where W (r) is negligible. However, in order to test
whether recolliding electrons are responsible for both the standard harmonic generation
and the plasmon enhancements, we may absorb probability density representing electrons
of a certain excursion amplitude ẑ by moving the imaginary potential closer to the C60. If
the plasmon enhancements are due to recolliding electrons we then expect the harmonic
signal and the plasmon signal to drop. If, instead, the plasmon enhancements are due to
some other yet unknown nonlinear effect which does not require returning electrons, then
the harmonic signal should drop while the plasmon signal sustains.
Figure 3.12 shows dipole spectra for λ = 2280 nm and Ê = 0.01 (i.e., the second highest
intensity shown in the lower panel of figure 3.1) for two grid sizes. The excursion ampli-

tude of a free electron in this case is ẑ = Ê/ω2
l = 25. Hence we expect the Rg = 100-grid

to comprise all the relevant electron dynamics whereas on the Rg = 40-grid some electrons
will be already inhibited from returning to the C60 because the corresponding probability
density is absorbed. In fact, figure 3.12 shows that parts of the plateau are removed
in the spectrum for the smaller grid. Only the single particle transition lines close to
ω = 0.6 are unaffected by the absorbing boundary, showing that these transitions are not
excited by recolliding electrons but—presumably—by multiphoton resonances. However,
besides these resonant transitions the whole plateau is suppressed. We thus conclude
that the returning electrons are essential for the excitation of the collective modes. This
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Figure 3.12: Same as in figure 3.8, lower panel, for Ê = 0.01 but two different grid
sizes (indicated in the plot). The linear response profile from figure 3.7 is included again
(dotted).

conclusion is further supported by a time-frequency analysis of the dipole dz(t). To that
end a spectral window is applied to dz(ω). The result is transformed back, which cor-
responds to the spectral filtering of certain harmonics for the generation of attosecond
pulses in experiments [49]. The result is shown in figure 3.13. The emission follows over-
all nicely the classical “simple man’s theory”: the classical return-times of electrons with
return-energy Eret (which contribute to the emission of harmonic radiation at a frequency
ω = Eret + |ǫHOMO|) are indicated by white trajectories in the frequency-time plane. It is
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Figure 3.13: Logarithmically scaled contour plot of the time-frequency analyzed dipole
emission log10 |dz(t, ω)|2 for the parameters of figure 3.10. The white lines indicate the
classical solutions of returning electrons (see text). The positions of the Mie surface
plasmon and the volume plasmon are indicated.

seen that the plasmon emission is correlated with the return of electrons. Whenever there
are recolliding electrons having the right energy to excite a plasmon, enhanced emission is
observed. Due to the large width of the collective resonances the emission decays before
the next returning electron collides.

3.2.4 Strong Field Approximation vs long-wavelength Time-

Dependent Density Functional Theory Result

We now show that the structure in the high-order harmonic generation spectrum
(of long wavelengths) of figure 3.11 is indeed similar to what one expects from
the strong field approximation applied to high-order harmonic generation, i.e., the
so-called Lewenstein-model of subsection 2.2.2. Within the Lewenstein-model the dipole
expectation value for an infinite, linearly polarized laser pulse

E(t) = Êez cos(ωlt), E(t) = −∂tA(t) (3.64)

is given by equation (2.127), i.e.,

d(L)
z (t) =

∫
d3p′ b(L)(p′, t)〈Ψ0|z|p′〉 + c.c. (3.65)

= − lim
t0→−∞

i

∫ t

t0

dt′
∫
d3p′〈Ψ0|z|p′z + A(t)〉 exp (−iSp′(t, t′))

〈p′z + A(t′)|zÊ cos(ωlt
′)|Ψ0(t

′)〉 + c.c.
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with Sp′(t, t′) = 1/2
∫ t
t′
dt′′(p′ + A(t′′))2. Now we asymptotically approximate the p-

integration [93]. The saddel-point of the highly oscillating integrand can be found by
∇p[Sp′(t, t′) + ǫHOMOt

′] = 0, leading to

k(t, τ) = −Ê cosωlt− cosωl(t− τ)

ω2
l τ

, (3.66)

where τ = t − t′ is the travel-time of the electron between ionization and recombination
and k(t, τ) = k(t, τ)ez . In order for the asymptotic approximation to be well-defined
we need to have det(∂pi

∂pj
S) > 0. Here we find det(∂pi

∂pj
S) = τ 3 for 0 < τ < ∞.

With a change of the variable of integration t′ → τ we hence find for the asymptotically
approximated expression

d(L)
z (t) ≃ −i

∫ ∞

0

dτ

(
2π

iτ

)3/2

µ∗
z[k(t, τ) + A(t)] (3.67)

× exp[−iS(t, τ)]Ê cos[ωl(t− τ)]

×µz[k(t, τ) + A(t− τ)] + c.c.

where

µz(pz) = 〈pz|z|Ψ0〉, (3.68)

S(t, τ) the saddle-point action defined as

S(t, τ) = (Up − ǫHOMO)τ − 2Up(1 − cosωlτ)

ω2
l τ

−UpC(τ) cos[(2t− τ)ωl]

ωl
(3.69)

with

C(τ) = sinωlτ −
4

ωlτ
sin2(ωlτ/2) (3.70)

and Up = Ê2/(4ω2
l ).

The target-dependence of the high-order harmonic generation spectra enters in (3.67) via
the initial state |Ψ0〉 through the ionization and recombination matrix elements µz[k(t, τ)+
A(t− τ)] and µ∗

z[k(t, τ) + A(t)], respectively [89]. We assume an initial state of the form
ψ0(r) = φ0(r)Yℓ,0(θ, ϕ)/r with Yℓ,m(θ, ϕ) a spherical harmonic and model the valence π-
orbital using a radial wavefunction φ0(r)/r = (2∆)−1/2 for R − ∆ < r ≤ R, −(2∆)−1/2

for R < r ≤ R + ∆, and zero otherwise. Here, ∆ is half the thickness of the C60-shell,
i.e., ∆ = (Ro − Ri)/2 = 1.4. Assuming further |pz∆| ≪ 1 and, e.g., ℓ = 0, we obtain

µz(pz) ∼
1

p2
z

(sin pzR − pzR cos pzR+ p2
zR

2 sin pzR) (3.71)

and a similar but more lengthy expressions for ℓ = 4. One clearly sees that structural in-
formation (i.e., the C60-radius R) is “encoded” in µz(pz). If the approximation |pz∆| ≪ 1
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Figure 3.14: Harmonic spectra S(ω), calculated from equation 3.67 for ℓ = 4, ℓ = 0,
and ℓ = 4 but twice the radius R. The laser parameters are the same as in figure 3.11
[ωl = 0.013 (λ = 3508 nm) and Ê = 0.02]. R = 6.7 and ∆ = 1.4 was used. The three thin
vertical arrows indicate local minima in the envelope of the spectrum for ℓ = 4.

is not made, also information about the shell thickness 2∆ is included in the matrix ele-
ment µz(pz).

Figure 3.14 shows the harmonic spectra obtained from the Fourier-transform d
(L)
z (ω) of

equation (3.67) for ℓ = 4 and ℓ = 0 and the laser parameters of figure 3.11. The positions
of the minima in the envelope of the high-order harmonic generation spectra depend on
the initial ℓ quantum number and the C60 radius R. In order to illustrate this depen-
dency the spectra for ℓ = 0, ℓ = 4, and ℓ = 4 but with the radius doubled are shown. The
minima indicated in the ℓ = 4-spectrum by vertical arrows may be compared with those
of the time-dependent density functional theory result in figure 3.11. The latter are at
ω ≃ 0.5, 0.95, and 1.7. The arrows in figure 3.14 are at ω ≃ 0.52, 1.05, and 1.9, which
is in reasonable agreement. Note that the agreement would be worse if one attempted to
compare with the ℓ = 0-spectrum, let alone with the spectrum for ℓ = 4 and doubled ra-
dius, which is qualitatively different since there is at least one more pronounced minimum
in the envelope.

3.2.5 Strong Field Approximation including Recollision-
Induced Collective Excitations

For systems with a single active electron, harmonic spectra are usually analyzed using the
strong field approximation (or Lewenstein model) [7,90], as we did in the previous section.
Emission into a mode with frequency ω and polarization eλ, λ = 1, 2, by a system with
only a single active electron can also be described by the amplitude

MSAE(ω, λ) =

∫
d3p

∫ ∞

−∞
dt 〈Ψ0, 1ω,λ|V̂ †

rad|0ω,λ,p〉
∫ t

−∞
dt′ 〈p|V̂L(t′)|Ψ0〉. (3.72)
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Here, |Ψ0〉 is the single-electron ground state, |p〉 is the Volkov state of drift momentum
p, |nω,λ〉 is the Fock state of the harmonic radiation field with n photons in the respective

mode (n = 0, 1 in our case) and V̂ †
rad and V̂L(t′) are the interaction operators coupling to

the radiation and the laser field, respectively,

V̂ †
rad = −i

√
2πω

V r · eλa†ω,λ exp(iωt), (3.73)

V̂L(t) = E(t)z, (3.74)

with a† the photon creation operator and V the quantization volume. The amplitude
(3.72) describes an electron which is lifted from the ground state to a Volkov state by the
laser field at time t′ and emits a harmonic photon upon recombination at time t > t′. The
harmonic spectrum is given by the square modulus of (3.72) and appears to be virtually
identical to the spectrum found from the dipole (3.67) [90]. In the dipole approximation
we use here the wavevector K of the emitted photon does not appear in the amplitude
(3.72).
Now we introduce a similar amplitude which accounts for the collective modes:
in addition to the pathway described by (3.72) the recombining electron may excite col-
lective modes which then relax upon emission of a harmonic photon. The amplitude for
such a process reads

Mcoll(ω, λ) = −
∑

j

∑

L

∫ ∞

−∞
dt 〈0j, 1ω,λ|V̂ †

rad|0ω,λ, Lj〉 (3.75)

×
∫
d3p

∫ t

−∞
dt′ 〈Ψ0, Lj |Û |0j,p〉

∫ t′

−∞
dt′′ 〈p|V̂L(t′′)|Ψ0〉.

Here, |0j〉 and |Lj〉 are the ground and the L-th excited state of a collective mode, la-
belled by j (e.g., surface or volume oscillations). The interaction energy between

the electron and the residual electron cloud is described by the operator Û . The
amplitude (3.76) is a straightforward generalization of the Lewenstein model to the case
when collective modes can be involved in the emission process.
To evaluate the collective amplitude (3.76) a certain model for the description of the

collective modes and their interaction Û with the active electron is required. In order
to estimate the relative contribution of the single active electron approximation and the
collective pathways to the radiation spectrum we use a simple model which takes col-
lective degrees of freedom into account as two noninteracting harmonic oscillators with
eigenfrequencies ωMie ≃ 0.7 and ωp ≃ 1.4 (i.e., the surface and the volume plasmon in the
C60-model above). The respective widths of the plasmons are taken as ΓMie(p) ≈ 0.2. The
main physical mechanism which generates these widths is a coupling between collective
and single-electron degrees of freedom. This can also be interpreted as collisionless or
Landau damping of collective modes in a finite system [91,92]. To obtain an explicit form

for the interaction operator Û we employ a rigid sphere model in which the electron
cloud is treated as an incompressible homogeneous sphere which may oscillate around its
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3.2. Recollision Induced Plasmon Emission

equilibrium position. Note that on the level of modelling in this subsection it does not
matter whether we consider a homogeneous sphere or a spherical shell. Within the rigid
sphere model the interaction operator has the form

U(r,X) =
(N − 1)

R






3

2
− (r − X)2

2R2
, |r − X| ≤ R,

R

|r − X| , |r − X| > R,
(3.76)

where N = 240 is the number of electrons, r is the active electron’s position and X is the
center-of-mass displacement of the electron cloud. Because of the relatively high energies
of the plasmons only the first excited collective states are relevant in the sum over L in
(3.76). For a first excited state X ≃ 1/

√
(N − 1)ωMie(p) ≪ R so that with high accuracy

(e.g., taking N = 240 and ωMie = 0.7 one estimates X ≃ 0.08) one may simplify (3.76)
keeping only the linear term with respect to the center-of-mass displacement X:

U(r,X) ≃ U0(r) +
N − 1

R3
r · X

{
1, r ≤ R,
R2/r3, r > R

. (3.77)

Next, we assume that the electron excursion amplitude in the laser field ẑ = Ê/ω2
l is less

than or comparable to the cluster size R. Then, with reasonable accuracy, we may use

U(r,X) ≃ N − 1

R3
r · X (3.78)

instead of (3.77). Within this approximation an explicit relation between the amplitudes
(3.76) and (3.72) can be derived. To this end we first evaluate the emission matrix element
in (3.72),

〈Ψ0, 1ω,λ|V̂ †
rad|0ω,λ,p〉 = −i

√
2πω

V 〈Ψ0|r · eλ|p〉 exp(iωt). (3.79)

A similar procedure for the emission matrix element in (3.75) yields

〈0Mie(p), 1ω,λ|V̂ †
rad|0ω,λ, 1Mie(p)〉 (3.80)

= −i

√
π(N − 1)ω

VωMie(p)

ez · eλ exp(i(ω − ωMie(p))t− ΓMie(p)t/2).

Here we used the fact that for the harmonic oscillator 〈0|z|1〉 = 1/
√

2MΩ with M =
(N − 1)m and Ω = ωMie(p) in our case. Also we take into account that the oscillator is
excited along the polarization direction given by the unit vector ez.
Rearranging the time-integrations, the amplitude (3.75) can be also written as

Mcoll(ω, λ) = −
∑

j

∑

Mie,p

∫
d3p

∫ ∞

−∞
dt′ 〈Ψ0, 1Mie(p)|Û |0Mie(p),p〉 (3.81)

×
∫ ∞

t′
dt 〈0Mie(p), 1ω,λ|V̂ †

rad|0ω,λ, 1Mie(p)〉
∫ t′

−∞
dt′′ 〈p|V̂L(t′′)|Ψ0〉.
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Now the inner integral over t can be evaluated explicitly using (3.80). The result reads

∫ ∞

t′
dt 〈0Mie(p), 1ω,λ|V̂ †

rad|0ω,λ, 1Mie(p)〉 (3.82)

= −i

√
π(N − 1)ω

VωMie(p)

ez · eλ exp(i(ω − ωMie(p))t
′)

ΓMie(p)/2 − i(ω − ωMie(p))
.

Finally, using the standard expression for the coordinate matrix element of the harmonic
oscillator 〈0|z|1〉 = 1/

√
2MΩ and (3.78) one obtains for the first matrix element in (3.82)

〈Ψ0, 1Mie(p)|Û |0Mie(p),p〉 =
1

R3

√
N − 1

2ωMie(p)

〈Ψ0|z|p〉 exp(iωMie(p)t). (3.83)

Collecting equations (3.79)–(3.83), we may express the amplitude (3.75) via (3.72) as

Mcoll = i
N − 1

2R3

{
ω−1

Mie

ΓMie/2 − i(ω − ωMie)
+

ω−1
p

Γp/2 − i(ω − ωp)

}
MSAE. (3.84)

Equation (3.84) shows that collective modes may lead to enhancements in the high-order
harmonic generation spectrum around the respective plasmon frequencies. For the plas-
mon enhancements to be detectable |Mcoll|2 > |MSAE|2 should hold. For the ratio of
collective to single active electron high-order harmonic generation efficiency
we obtain

|Mcoll|2
|MSAE(ω = ωMie(p))|2

≃
[

N − 1

R3ωMie(p)ΓMie(p)

]2

(3.85)

For N = 240, R = 6.7, ΓMie = Γp = 0.2 the ratio (3.85) is above 10 for the surface and
about unity for the volume plasmon.
The ratio (3.85) does not depend on the laser parameters anymore whereas in
our time-dependent density functional theory results we observe a wavelength-dependent
relative efficiency of the plasmon enhancements. With increasing laser intensity or wave-
length the electron’s excursion amplitude is increasing and the approximation (3.78) for
the interaction between the active electron and the electron cloud becomes invalid. With-
out the assumption of small excursion amplitudes (as compared to the cluster radius)
a simple relationship of the type (3.84) cannot be established. Qualitatively it is quite
obvious, however, that with increasing excursion amplitude distances r ≃ R [for which
(3.77) is sizeable] contribute less and less to the spatial matrix element (3.83). As a
consequence the standard single-electron high-order harmonic generation spectrum dom-
inates for Ê/ω2

l ≫ R. In fact, Ê/ω2
l = 15.4, 75.0, and 118.3 in figure 3.9, 3.10, and 3.11,

respectively, supporting our statement.

The results (3.84) and (3.85) were derived making several approximations besides the
one of small excursion amplitudes. For example, the surface and the volume plasmons
were treated as independent. This makes sense if they are well separated from each
other, i.e., |ωMie − ωp| ≫ (ΓMie + Γp)/2, which is actually not fulfilled in the case of C60.
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3.2. Recollision Induced Plasmon Emission

Another simplification was that we applied the rigid sphere model for the description of
the electron cloud. Within this model the volume plasmon simply does not exist. In a
more realistic description one should use two different interaction potentials instead of
(3.76) alone, which will lead to two different coefficients in (3.85) for approximating the
relative efficiency.

3.2.6 Linear Response induced by a Single Active Orbital

In the above derivation we introduced a very simple model for the collective response of
the system. We analyzed the shortcomings of this approach. Time-dependent density
functional theory is routinely used to calculate the collective response of large systems.
Usually one employs a linear response approach to calculate excitation spectra and finds
good agreement with experiment (see subsection 3.1.1).
For a bound electron with the initial state |Ψ0〉 having the binding energy ǫHOMO and A(t)
the vector potential of the laser pulse in dipole approximation the strong field approxi-
mation wavefunction reads in length gauge [see equation (2.125) and subsection 3.2.4 for
the definition of the travel time τ ]

|Ψ(t)〉 = |Ψ0(t)〉 − i

∫
d3p |p + A(t)〉

∫ t

0

dτE(t− τ)

· 〈p + A(t− τ)|z|Ψ0〉 e−i(Sp(t,τ)+ǫHOMO(t−τ)). (3.86)

E(t) = −∂tA(t) is the electric field of the laser, Sp(t, τ) + ǫHOMO(t − τ) =

[
∫ t
t−τ dt

′′ 1
2
(p + A(t′′))2 + ǫHOMO(t − τ)] the quasi classical action and the variable

of integration τ is the travel-time between ionization and recollision. Note that the
validity of this approximation in the Lewenstein derivation assumes the ionization to be
weak. The strong field approximation wavefunction mainly occupies its initial state.
In order to derive an analytic approximation for recollision induced plasmon emission
we will describe the outermost orbital, which excites the plasmon via recollision, in
terms of the strong field approximation wavefunction. Further we will deduce within the
framework of time-dependent density functional theory the effective potential change
due to the strong field approximation orbital. This change will be treated as an
perturbation for the residual system, which then may radiate. From this we will infere
some approximations for the dipole radiation of the collective modes excited via the
returning orbital. The main advantage is that linear response time-dependent density
functional theory gives very good approximations for the collective response of the system.

We begin with the time-dependent Kohn-Sham equation [see theorem 1.3.8]

i
∂

∂t
φi(r, t) =

(
−1

2
∇

2 + v(r, t) + vH([n]; r, t) + vxc([n], r, t)

)
φi(r, t), (3.87)

where v(r, t) = v0(r) + vL(r, t) and v0(r) the ionic background and vL(r, t) the laser field
in dipole approximation. If the initial state |Φ0〉 is a ground state we loose the initial
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state dependence, which is assumed. The N occupied orbitals constitute the density, i.e.,

n(r, t) =
N∑

i=1

|φi(r, t)|2. (3.88)

Now we adopt the strong field approximation for time-dependent density functional the-
ory. We describe the outermost orbital φN(r, t) ≡ ψ(r, t) within this approximation.
The corresponding density change

δn(r, t) ≃ δnSFA(r, t) (3.89)

leads to a variation of the Hartree and exchange-correlation potential

δv(r, t) =

∫
d3r′

δnSFA(r′t)

|r − r′| (3.90)

+
(
vxc([n0 + δnSFA]; r, t) − vxc([n0]; r)

)
︸ ︷︷ ︸

=:δvxc([δnSFA];r,t)

.

The exchange-correlation variation depends now on the choice of approximation for the
exchange-correlation potential. We assume the contribution of the exchange-correlation
variation to the dynamics to be negligible, leading to

δv(r, t) ≃
∫
d3r′

δnSFA(r′t)

|r − r′| . (3.91)

The effective Kohn-Sham potential in this approximation then reads

vKS([n]; r, t) ≃ v0(r) +

∫
d3r′

n0(r
′)

|r − r′| + vxc([n0]; r) (3.92)

+ vL(r, t) + δv(r, t). (3.93)

The density change is induced by vL(r, t) + δv(r, t). For the plasmon excitation, i.e., the
collective density variation, only δv(r, t) will contribute, as we have assumed the laser to
be far-off resonant.

If we are interested in how the emission of collective modes obscures the spectrum
of high harmonics we need to know the radiation of those collective modes. The main
contribution of the plasmon emission, if expanded in multipoles, will be the dipole
radiation. Thus we need to calculate the dipole radiation of the excited collective motion.
In our considerations the field due to the recollision of the outermost orbital δv(r, t) is
perturbative. One should not be confused at this point. We have a strong laser pulse
which cannot be treated as a perturbation. However, we assume the laser pulse to be
far-off resonant with respect to the plasmon modes. So only the recolliding electron,
treated non-perturbatively, may excite these modes. The effective field of the returning
electron δv(r, t) is responsible for the excitations of collective modes.
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3.2. Recollision Induced Plasmon Emission

The dipole response in z direction due to the collective density variation δncoll(r
′, t)

induced by δv(r, t) is

dz(ω) =
1√
2π

∫
dt e−iωt

∫
d3r z δncoll(r, t) (3.94)

≃
∫
d3r

∫
d3r′ z χKS(r, r

′, ω)δv(r′, ω),

where χKS(r, r
′, ω) is the Kohn-Sham linear response kernel of the system and δv(r′, ω) =

F(δv)(r, ω) the Fourier transformed Hartree potential. Further, with

Γz(r
′, ω) :=

∫
d3r z χKS(r, r

′, ω), (3.95)

we find with a multipole expansion of δv(r, ω)

dz(ω) ≃
∞∑

i=0

∫
d3r′Γz(r

′, ω)δvi(r
′, ω). (3.96)

The linear dipole moment may be calculated by applying a δ-like electric field in dipole
approximation E(t) = Âδ(t), which is equivalent to give the ground-state wavefunctions
a coherent velocity field, i.e., |ψi〉 → eikz |ψi〉 [74]. This is analogous to the assumption
that the main contribution to the dipole response is due to the dipole of the perturbing

field. With the Fourier transform F(Âδ(t)) =
bA√
2π

we find the linear dipole response

ddr
z (ω) =

∫
d3r′Γz(r

′, ω)
Â√
2π
z′ (3.97)

+

∫
d3r′

∫
d3r Γz(r

′, ω)

[
1

|r − r′|
+ fxc(r, r

′, ω)] δndr(r
′, t).

Here fxc(r, r
′, ω) is the exchange-correlation kernel. In leading order we may approximate

the dipole response by

ddr
z (ω) ≃

∫
d3r′Γz(r

′, ω)z′

︸ ︷︷ ︸
=:D(ω)

Â√
2π
. (3.98)

For δv(r, ω) in dipole approximation δv(r, ω) ≃ zδv(ω) we find in leading order the
collective dipole response

dz(ω) ≃ ddr
z (ω)

√
2π

Â
δv(ω) ≃ D(ω)δv(ω). (3.99)
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In order to derive the density variation due to the SFA wavefunction we will fur-
ther simplify equation (3.86). We will approximate the p-integration by an
asymptotic expansion [93]. Asymptotic approximations, above all the saddle-point
approximation, are widely and very successfully used within strong field physics.
Returning to equation (3.86) the exponent, which will be subject to a saddle-point
approximation in coordinate space, is

S(p, t, τ) = (p + A(t)) · r +
1

2

∫ t

t−τ
dt′′ (p + A(t′′))

2

+ ǫHOMO(t− τ) − (p + A(t− τ)) · x. (3.100)

The critical points of the exponent are found by solving

∇pS(p, t, τ)
!
= 0, (3.101)

leading to the saddle-point

k(r,x, t, τ) = −
∫ t
t−τ dt

′′Â(t′′)

τ
+

x − r

τ
(3.102)

= k(t, τ) +
x − r

τ
.

Here k(t, τ) is the saddle-point from the SFA treatment of high-order harmonic gener-
ation, i.e., equation (3.66). For the asymptotic expansion to be valid the determinant

det(∂pi
∂pj
Ŝ) = τ 3 6= 0. With

µ(r, t, τ) :=
〈
k(t, τ) + A(t− τ) − r

τ
+

x

2τ
|z|ψ0

〉
,

f(t, τ) :=

(
2π

iτ

) 3
2

e−i
R t

t−τ
dt′′ 1

2
(k(t,τ)+A(t′′))2 (3.103)

E(t− τ)eiǫHOMOτ

the asymptotically expanded SFA wavefunction then reads

ψ(r, t) ≃ ψ0(r, t) − i

∫ t

0

dτ
e−i(k(t,τ)+A(t))·r

(2π)3/2
(3.104)

×µ(r, t, τ)e−iǫHOMOte
ir2

2τ f(t, τ).

The associated density is

n(r, t) = ψ∗(r, t)ψ(r, t) ≃ n0(r) (3.105)

− 2ℜ
{

iψ∗
0(r)

∫
dτe

ir2

2τ
e−i(k(t,τ)+A(t))·r

(2π)3/2
µ(r, t, τ)f(t, τ)

}
,

with n0(r) = |ψ0(r)|2 the initial orbital density. Here we have neglected the modulus
square of the continuum part of the wavefunction. This term is assumed to be negligible
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due to the Lewenstein assumption of weak ionization. We will further use initial orbitals
of the form

ψ0(r) = ψ0(r, θ, ϕ) =
φ0(r)

r
Yk,0(θ, ϕ) (3.106)

with φ0(r) contributing mostly around r = R. Here Yk,0(θ, ϕ) is a spherical harmonic of
order (k, 0).

The Hartree-potential due to the density variation

δnSFA(r, t) ≡ δn(r, t) (3.107)

= n(r, t) − n0(r)

expanded in multipoles [94] is

δv(r, t) = 4π
∞∑

i=1

j=i∑

j=−i

1

2i+ 1

(∫
d3r′

r′i<
r′i+1
>

Y ∗
i,j(r

′)Yi,j(r)δn(r′, t)

)
. (3.108)

Here Yi,j(r) are the spherical harmonics of order i, j expressed in Cartesian coordinates
and r′(<,>) := (min,max){r′, r}.
We may rewrite the potential variation in the form

δv(r, t) = − 4√
2π

ℜ
{
i

∫
dτd3r′e−i(ek(t,τ)·r′− r′2

2τ
) (3.109)

×
∑

i,j

1

2i+ 1

r′i<
r′i+1
>

Y ∗
i,j(r

′)Yi,j(r)ψ∗
0(r

′)µ(r′, t, τ)f(t, τ)

}
,

with k̃(t, τ) := k(t, τ) + A(t).
In the appendix we asymptotically expand the potential variation. However,
the final result is not very intuitive. Therefore we will proceed deducing another
approximate solution for the potential variation.

This other derivation makes use of the special behavior of the spherical Bessel
functions jl(x). Though the approximation we derive within this section will not be as
general as the asymptotically expanded Hartree potential variation, it will be of a very
simple form.
First we will calculate µ(r′, t, τ) for equation (3.109). We will make use of the
expansions [94]

eik
′·x =

∞∑

ℓ=0

iℓ
√

4π(2ℓ+ 1)jℓ(|k′|x)Yℓ,0(θ, ϕ), (3.110)

ei
x·r′

τ = 4π

∞∑

m=0

imjm

(
xr′

τ

) n=m∑

n=−m
Y ∗
m,n(θ, ϕ)Ym,n(θ

′, ϕ′), (3.111)
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and

z = 2

√
π

3
Y1,0(θ, ϕ)x, (3.112)

where k′ := k(t, τ) + A(t− τ). Thus we have with the measure dΩ = dϕdθ sin θ

µ(r′, t, τ) =

(
8

3

)1/2 ∑

ℓ,m,n

iℓ+m
√

4π(2ℓ+ 1)Ym,n(θ
′, ϕ′)

×
∫ ∞

0

dxx2jℓ(|k′|x)jm
(
xr′

τ

)
ei

x2

2τ φ0(x) (3.113)

×
∫
dΩYℓ,0(θ, ϕ)Y ∗

m,n(θ, ϕ)Y1,0(θ, ϕ)Yk,0(θ, ϕ).

Using the Wigner 3j-symbols
(
ℓ1 ℓ2 ℓ3
m1m2m3

)
[94] we find

µ(r′, t, τ) =
∑

ℓ,m

iℓ+m(2ℓ+ 1)

√
2

π
(2m+ 1)(2k + 1) (3.114)

×Ym,n(θ′, ϕ′)

∫ ∞

0

dxx2jℓ(|k′|x)jm
(
xr′

τ

)
ei

x2

2τ φ0(x)

×
(

(2k − 1)

(
1 k (k − 1)

0 0 0

)2(
ℓ (k − 1) m

0 0 0

)2

+ (2k + 3)

(
1 k (k + 1)

0 0 0

)2(
ℓ (k + 1) m

0 0 0

)2
)
.

If we now apply the same procedure, i.e., the same expansions and the Wigner 3j-symbols,
to the rest of the Hartree potential variation we end up with

δv(r, t) = − 2

π3/2
ℜ
{ ∞∑

h,i,j,ℓ,m=0

iℓ+m+h(−1)hYi,0(θ, ϕ) (3.115)

×(2h+ 1)(2ℓ+ 1)(2k + 1)(2j + 1)(2m+ 1)√
(2i+ 1)

×i

∫ t

0

dτf(t, τ)

[∫ ∞

0

dr′r′ei
r′2

2τ φ∗
0(r

′)
r′i<
r′i+1
>

jh(|k̃|r′)
]

×
(
k m j

0 0 0

)2(
h j i

0 0 0

)2 [∫ ∞

0

dxx2φ0(x)e
i x2

2τ jℓ(|k′|x)

× jm

(
r′x

τ

)](
(2k − 1)

(
1 k (k − 1)

0 0 0

)2(
ℓ (k − 1) m

0 0 0

)2

+(2k + 3)

(
1 k (k + 1)

0 0 0

)2(
ℓ (k + 1) m

0 0 0

)2
)}

.

128



3.2. Recollision Induced Plasmon Emission

For comparison we express the strong field approximation dipole moment for high-order
harmonic generation (3.67) in terms of the Wigner 3j-symbols:

d(L)
z (t) = −2k + 1

3π2
ℜ





i

∫ t

0

dτ f(t, τ)κ(τ, k̃)(κ(τ, k′))∗︸ ︷︷ ︸
=:κSFA(t,τ)





(3.116)

and

κ(τ, k̃) :=

∫
dr r2φ∗

0(r)

[
i(k−1)(2(k − 1) + 1)

(
1 k (k − 1)

0 0 0

)2

jk−1(|k̃|r) (3.117)

+”(k − 1) ↔ (k + 1)”

]
.

Now we will examine the x-integration of equation (3.115). Note that for ωlτ ≪ 1 we
have |k′| ∼ 0 because

|k′| =

∣∣∣∣∣−
∫ t
t−τ dt

′′A(t′′)

τ
+ A(t− τ)

∣∣∣∣∣ (3.118)

ωlτ≪1≃ | − A(t) + A(t)| = 0.

The argument of the second spherical Bessel function in the x-integration is xr′

τ
∼ R2

τ
. For

a general laser pulse |k′| . Â with Â the field-strength. As we have a localized orbital

around x = R we find |k′|x . ÂR for the non-zero contributions in the x-integration.
Thus we have

|k′|x→ 0 for τ ≪ 1

ωl
or ÂR≪ 1, (3.119)

r′x

τ
→ 0 for τ ≫ R2.

If the argument of the spherical Bessel functions x → 0, only j0(x) → 1 will have a
non-vanishing contribution. If we further concentrate on the dipole term of the multipole
expansion of the Hartree potential we have

(
h j 1

0 0 0

)2

→ h = {j − 1, j + 1}. (3.120)

Assume now that the parameters R and ωl fulfill

R2 ≪ 1

ωl

(3.121)

such that for T ∈ [R2, 1
ω
], R2 ≪ T ≪ 1

ωl

j0

(
r′x

τ

)
jℓ>0(|k′|x) ≃ Θ(τ − T )jℓ>0(|k′|x) (3.122)

jm>0

(
r′x

τ

)
jℓ>0(|k′|x) ≃ 0.
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Therefore only m = 0 will lead to a non-vanishing contribution:

(
k 0 j

0 0 0

)2

→ k = j, (3.123)

(
ℓ k ± 1 0

0 0 0

)2

→ ℓ = k ± 1.

With this choice of parameters, i.e., R2 ≪ T ≪ 1
ωl

and τ > T

exp

(
i
r′2

2τ

)
≃ 1 ≃ exp

(
i
x2

2τ

)
(3.124)

and owing to the localized orbital around r′ = R we can set

r′<
r′2>
Y1,0(θ, ϕ) ∼

√
3

4π

r′

R3
z. (3.125)

Collecting all this we find with

κ1(τ, k
′) :=

∫
drr2φ0(r)

(
i(k−1)

√
2(k − 1) + 1

(
1 k (k − 1)

0 0 0

)2

×jk−1(|k′|r) + ”(k − 1) ↔ (k + 1)”) (3.126)

and

κ2(τ, k̃) :=

∫
drr2φ∗

0(r)

(
−i(k−1)(2(k − 1) + 1)

(
1 k (k − 1)

0 0 0

)2

×jk−1(|k̃|r) + ”(k − 1) ↔ (k + 1)”
)

(3.127)

δv(r, t) ∼ −2k + 1

π2
ℜ
{
i

∫ t

0

dτΘ(τ − T )f(t, τ)κ1(τ, k
′)κ2(τ, k̃)

}
z

R3
. (3.128)

As we have f(t, τ)κ1(τ, k
′)κ2(τ, k̃) ≃ κSFA(t, τ), the standard strong field approximation

integrand for high-order harmonic generation, we can rewrite

δv(r, t) ∼ −2k + 1

π2
ℜ
{
i

∫ t

0

dτΘ(τ − T )κSFA(t, τ)

}
z

R3
.

Note that due to the behavior of the spherical Bessel functions κSFA(t, τ) → 0 for ÂR≪ 1.
This is just the physical condition that the deBroglie-wavelength becomes too long to
disturb the system as a whole. This approximation should work well even for R2 ∼ 1

ω
,

leading to

dz(ω) ∼ −D(ω)
2k + 1

π2R3
F
{
ℜ
[
i

∫
dτΘ(τ − T )κSFA(t, τ)

]}
. (3.129)
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Finally we may approximate

dz(ω) ∼ D(ω)
3

R3
d(L)
z (ω), (3.130)

in accordance to the afore deduced strong field approximation model including recollision-
induced collective excitations of subsection 3.2.5. Note that the dipole spectrum is pro-
portional to |dz(ω)|2. Hence, for the ratio of collective to single active electron
high-order harmonic generation efficiency we obtain

|dz(ω)|2

|d(L)
z (ω)|2

≡ |Mcoll|2
|MSAE(ω)|2 ≃

∣∣∣∣D(ω)
3

R3

∣∣∣∣
2

, (3.131)

where D(ω) is the normalized dipole response of the system (3.99). This generalizes
the result of subsection 3.2.5. Accordingly, the ratio can be of the order of one or even
higher. However, again the ratio (3.131) does not depend on the laser parameters
anymore whereas in our full time-dependent density functional theory results we observe
a wavelength-dependent relative efficiency of the plasmon enhancements.
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Conclusion and Outlook

In conclusion, we presented an ab initio approach to time-dependent density functional
theory. We defined the set of v-representable densities and the associated external po-
tentials and gave simple conditions for the existence of the different orders of the Taylor
expansions of the densities as well as the external potentials. With this knowledge we
stated a rigorous formulation of the extended Runge-Gross theorem. A formal definition
of “quantum memory” in terms of functional derivatives was given. The question of
functional differentiability of the potential-mapping was found to be connected with
the properties of the set of possible density variations. The possibility of an ab initio
time-local approximation for the exact exchange-correlation potential was discussed. In
particular we found the potentials to be independent of previous densities and of the
initial state if the associated wavefunctions were expressible in terms of the instantaneous
density and their time-derivatives.
After an introduction into intense laser-matter interaction we studied the problem of
resonant dynamics from a density functional point of view. We found for a simple
adiabatic approximation the dipole of the Kohn-Sham system to exhibit Rabi-like
oscillations. Nevertheless, the density-dynamics of the population transfer were not
well reproduced. We could attribute this behavior to a classical effect and argued
that only a proper inclusion of correlation and nonadiabatic effects should be able to
describe the Rabi density-dynamics. Furthermore, any few-level approximation was
found to be in conflict with the very basis of time-dependent density functional theory.
Finally, we applied the Kohn-Sham-scheme to C60 subject to an intense laser pulse far
off-resonant with respect to the collective modes. A strong enhancement of the harmonic
radiation at the plasmon resonances and an extension of the usual cut-off was observed.
We attributed the enhancement to recollision-induced plasmon excitation, followed by
emission. The contribution of recollision-induced plasmon emission to the usual harmonic
radiation becomes smaller for longer wavelengths, i.e., the efficiency for this recollision
process drops faster than for the recollision process responsible for high-order harmonic
generation. In order to predict the relative efficiency we developed two simple analytical
models in the spirit of the strong field approximation.

Future work: We have found that the initial state dependence of the mapping
vanishes if the mapping depends locally on the density. The question arises whether
the opposite conclusion is also valid. The implementation of the Kohn-Sham scheme
as an iteration scheme and the associated convergence properties also pose an inter-
esting challenge. Additionally, the developement of an exchange-correlation potential
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capable of reproducing the density-dynamics of Rabi oscillations will be pursued. In
time-independent systems one uses ensemble density functional theory to find the excited
state densities and the excitation energies. This concept may be useful for the description
of resonant dynamics in time-dependent density functional theory. Furthermore, it is
known that several excited states can be described by the ground-state energy functional.
It is assumed that the corresponding Kohn-Sham scheme may generate in addition to
these physical excited state densities also unphysical self-consistent solutions. This can
be investigated with the help of our one-dimensional helium model system.
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Appendix A

Asymptotically Expanded Potential
Variation

We apply an asymptotic expansion for the r′-integration of equation (3.109) of
subsection 3.2.6. If we want to use the saddle-point approximation we have to make sure

that the integrand is at least one-time differentiable. However, in this case, due to
r′i<
r′i+1
>

,

the integrand is not differentiable at r = r′.

In order to properly define the asymptotic expansion of equation (3.109),
we assume the order of integration to be interchangeable and the x-integration is left
unevaluated. Further we divide the regions of the r′-integration into DA := {r′|r′ ≤ r}
and DB := {r′|r′ > r}, in which the integrand will be differentiable, leading to

I(r) =

∫
d3r′e−i eS(r′,x)g0(r, r

′,x, t, τ) (A.1)

= IA(r) + IB(r),

with g0(r, r
′,x, t, τ) the remaining integrand and IA,B(r) integrals over the regions DA

and DB, respectively. The region DA is bound by ∂DA := {r′|r′ = r} = S2(r), the sphere
of radius r. Region DB has the same boundary but is not bound from above as r′ → ∞.
Nevertheless we can assume DB to be bound. As the integrand goes to zero for large
values of r′ we can choose an outer boundary ∂DB,out which will not contribute to the
asymptotic expansion and thus may be neglected.
Critical points beside the saddle-point r′

s = x+ τ k̃(t− τ) are the points on the boundary
∂DA. Note that the saddle-point may also lie on ∂DA itself. With this we find the
following possible cases:

1. saddle-point in DA and boundary-critical points from DA and DB,

2. saddle-point in DB and boundary-critical points from DA and DB,

3. saddle-point on the boundary ∂DA .
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From [93] we know that the contribution of a saddle-point lying in the interior in leading
order is

IA,B0 (r) ∼ (i2πτ)
3
2 g0(r, r

′
s,x, t, τ)e

−i eS(r′

s,x). (A.2)

If the saddle-point is on the boundary between the two regions its contribution is

IA,B∂DA,s
(r) ∼ 1

2
(i2πτ)

3
2 g0(r, r

′
s,x, t, τ)e

−i eS(r′

s,x). (A.3)

For the boundary-critical terms from region DA and ∂DA we have to define a parametric
representation of the boundary itself:

σ : P := [0, π[×[0, 2π[ → S2(r) (A.4)

(Θ, φ) 7→ r′(Θ, φ). (A.5)

With σ we can define the 3 × 2 Jacobian matrix J := ∂ri
∂σj

and the determinant

W :=
∣∣det(J TJ )

∣∣ 12 , (A.6)

where J T is the transposed matrix. Further ϑ(σ) := S̃(r′(σ),x) and

H0 := g0(r
′, r, t, τ)

∇
′S̃

|∇′S̃|2
. (A.7)

The outward pointing unit normal vector on the boundary ∂DA is different for both
regions:

NA = −NB. (A.8)

The boundary contribution in leading order is

IA∂DA
(r) ∼ −i

∫

P

(
H0 · NA

)
We−iϑ(σ)dσ ∼ −IB∂DA

(r). (A.9)

If we collect all contributions for the different cases we obtain

1. I(r) ∼ IA0 (r) + IA∂DA
(r) + IB∂DA

(r),

2. I(r) ∼ IB0 (r) + IA∂DA
(r) + IB∂DA

(r),

3. I(r) ∼ IA∂DA,s
(r) + IB∂DA,s

(r).

Thus regardless of the position of the saddle-point the integral is asymptotically approx-
imated by

I(r) ∼ (i2πτ)
3
2g0(r, r

′
s,x, t, τ)e

−i eS(r′

s,x), (A.10)
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which is just the standard saddle-point approximation expression.

Therefore with

∇r′S̃(r′,x) := ∇
′
(

k̃(t, τ) · r′ − r′2

2τ
+

x · r′

τ

)
= 0

⇒ r′
s = x + τ k̃(t, τ) := x′ (A.11)

and det(∂′i∂
′
jS̃(r′)) = −(1/τ)3 6= 0 we find

δv(r, t) ∼ −4π
∑

i,j

Yi,j(r)

2i+ 1
ℜ
{

i

∫ t

0

dτ(2πiτ)
3
2f(t, τ) (A.12)

×
∫
d3xY ∗

i,j(x
′)ψ∗

0(x
′)
x′i<
x′i+1
>

e−iek·x′

(2π)3/2
ei

x′2

2τ e−i x′
·x

τ
eik

′·x

(2π)3/2
e−i x2

2τ zψ0(x)

}
.

Here we have used k′ = k(t, τ)+A(t−τ). If we want to make use of the properties of the
spherical harmonics involved in the x-integration we first have to note that the first two
spherical harmonics Y ∗

i,j(x
′)Yk,0(x

′), where the second is due to the assumed form of our
initial orbital, are displaced with regard to the integration variable x. The displacement
of a spherical harmonic due to a coordinate change

x′ = x − q (A.13)

with q = q(q,Θ,Φ) can be rewritten as [94]

Yℓ′m′ [x′(x′, θ′, ϕ′)] (A.14)

=
ℓ′∑

ℓ=0

(−1)ℓ
′+1

[
4π(2ℓ+ 1)(2ℓ′ − 2ℓ+ 1)

2ℓ′ + 1

] 1
2 ( q

x′

)ℓ′ (x
q

)ℓ
{Yℓ(θ, ϕ) ⊗ Yℓ′−ℓ(Θ,Φ)}ℓ′m′ .

The irreducible tensor product {Yℓ(θ, ϕ) ⊗ Yℓ′−ℓ(Θ,Φ)}ℓ′m′ is defined via the Wigner 3j-
symbols

(
ℓ1 ℓ2 ℓ3
m1m2m3

)

{Yℓ(θ, ϕ) ⊗ Yℓ′−ℓ(Θ,Φ)}ℓ′m′ := (A.15)
∑

M1M2

(−1)2ℓ−ℓ′+m′
√

2ℓ′ + 1

(
ℓ (ℓ′ − ℓ) ℓ′

M1 M2 m′

)
YℓM1(θ, ϕ)Y(ℓ−ℓ′)M2

(Θ,Φ).

As we have a translation in z-direction we find with Θ ≡ 0

q = −k̃τ, rs = x′ =
(
x2 + k̃2τ 2 + 2xk̃τ cos θ

) 1
2
. (A.16)

In order to use the spherical harmonics we will introduce a further approximation. As we
have assumed a well localized wavefunction at x = R > 1 for φ0 the main contribution
for k̃τ < R to x′ will be due to x2 and for k̃τ > R will be k̃τ itself. Thus we will further
use

x′ ≃
(
x2 + k̃2τ 2

) 1
2

. (A.17)
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With the condition m1 +m2 = −m3 of the Wigner 3j-symbols and the knowledge that a
spherical harmonic equals zero for Θ ≡ 0 if M2 6= 0 we find

Y ∗
i,j(x

′) ≃
i∑

a=0

(−1)2a+1
√

4π(2a+ 1)(2i− 2a+ 1)
( q
x′

)i

×
(
x

q

)a(
i a (i− a)

−j j 0

)
Ya,j(θ, ϕ)Y(i−a),0(0) (A.18)

and

Yk,0(x
′) ≃

i∑

b=0

(−1)2b+1
√

4π(2b+ 1)(2k − 2b+ 1)
( q
x′

)k

×
(
x

q

)b(
k b (k − b)

0 0 0

)
Yb,0(θ, ϕ)Y(k−b),0(0). (A.19)

Now we have expressed the translated spherical harmonics in terms of the integration
variable x(x, θ, ϕ). Turning to the angular integration in spherical coordinates with the
measure dΩ = dϕdθ sin θ we find via the spherical Bessel functions je(x)

ei(A(t)−A(t−τ))·x =
∞∑

e=0

ie
√

4π(2e+ 1)je(|A(t) − A(t− τ)|x)Ye,0(θ, ϕ) (A.20)

and

z = 2

√
π

3
Y1,0(θ, ϕ)x (A.21)

the integral

∫
dΩYa,j(θ, ϕ)Yb,0(θ, ϕ)Y1,0(θ, ϕ)Yk,0(θ, ϕ)Ye,0(θ, ϕ) (A.22)

=

∞∑

c,d=0

(2c+ 1)(2d+ 1)

4π

√
3(2b+ 1)(2e+ 1)(2k + 1)

(
1 c k

0 0 0

)2(
b d e

0 0 0

)2(
a c d

0 0 0

)2

δj,0.
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Using the Wigner 3j-symbols one can reduce the infinite series expansions of equation
(A.12)-(A.22) to finite ones, leading altogether to

δv(rt) ∼ −8π

∞∑

i=1

i∑

a=0

k∑

b=0

k+1∑

c=k−1

a+c∑

d=a−c

b+d∑

e=b−d√
(2a+ 1)(2i− 2a + 1)(2k − 2b+ 1)(2k + 1)

2i+ 1
Y(i−a),0(0)Y(k−b),0(0)(2b+ 1)(2c+ 1)(2d+ 1)

(2e+ 1)Yi,0(r)ℜ
{

i

∫ t

0

dτf(t, τ)(2πiτ)
3
2e−i

bk2τ
2

[∫ ∞

0

dxx
x′i<
x′i+1
>

φ∗
0(x

′)e−i x2

τ

( q
x′

)i+k+1

(
x

q

)a+b+1

φ0(x)je(|A(t) − A(t− τ)|x)
]

(
i a (i− a)

−j j 0

)(
k b (k − b)

0 0 0

)(
a c d

0 0 0

)2(
1 c k

0 0 0

)2

(
b d e

0 0 0

)2
}
. (A.23)

The dipole term is the most important one for the recollision induced plasmon emission
process. Thus we find, for instance, in the case of ψ0(x) = φ0(x)

x
Y0,0(θ, φ) the simple

approximation

δv(rt) ∼ −
√

1

π
zℜ
{∫ t

0

dτ

(
iτ

2π

) 3
2

f(t, τ)e−
i
2

ek2τ

[∫ ∞

0

dx
x′<
x′2>

φ∗
0(x

′)

R

x2

x′2
e−i x2

τ φ0(x)

(
k̃(t, τ)j1(|A(t) − A(t− τ)|x)

−1

3
xj0(|A(t) −A(t− τ)|x)

−2

3
xj2(|A(t) −A(t− τ)|x)

)]}
(A.24)

so that with equation (3.99) and the Fourier transform of the above expression

dz(ω) ∼ D(ω)δv(ω). (A.25)

Although the asymptotically approximated potential variation (A.23) is in principle more
general then the approximation (3.129) it does not lead to a simple and intuitive ratio
of the collective to the single active electron high-order harmonic generation efficiency
similar to (3.131).
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Corkum, D.M. Villeneuve, Nature 432, 867 (2004).

[56] M. Lein, J. Phys. B: At. Mol. Opt. Phys. 40, R135 (2007).

[57] A. Becker and F.H.M. Faisal, Phys. Rev. A 59, R1742 (1999),: A. Becker, R. Dörner
and R. Moshammer, J. Phys. B 38, S753 (2005)

[58] F.H.M. Faisal, Theory of Multiphoton Processes, (Plenum, New York, 1987)

[59] P.L. Knight and P.W. Milonni, Phys. Rep. 66, 21 (1980)

[60] R. Loudon, The Quantum Theory of Light, (Clarendon Press, 1985)

[61] D. Bauer, D.B. Milosevic and W. Becker, Phys. Rev. A 72, 023415 (2005)

[62] W. Becker et al., Phys. Rev. A 56, 645 (1996)

[63] D. Zwillinger, Handbook of Differential Equations, (Academic Press, San Diego,
1998)

[64] G. Vignale, Phys. Rev. B 70, 201102 (2004)
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