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Abstract:
This thesis reports on the first production of a degenerate three-component Fermi
gas in equilibrium. The sample consists of 6Li atoms in the three lowest Zeeman
sublevels. Its production is enabled through the control of interactions by means
of Feshbach resonances. For weak interactions the three-state mixture exhibits
a remarkable stability with lifetimes exceeding 30 seconds. This represents an
excellent starting point for future experiments.
In the course of this thesis, we analyzed the collisional stability of such a three-

component sample as a function of the magnetic field and thus also as a function
of the interaction strength. In the region below 600 Gauss we observed a strongly
varying three-body loss and found two loss resonances at about 127 Gauss and
at 500 Gauss. The observed three-body loss coefficient varies over almost three
orders of magnitude. We were able to explain this behavior with a model utilizing
the universality of systems with large scattering lengths. In this model, the loss
resonances are due to a universal three-body bound state that crosses the three-
atom continuum twice. Additionally, further measurements could be performed
in the region of unitary two-body interactions near the Feshbach resonances.

Zusammenfassung:
Diese Arbeit behandelt die erste Realisierung eines entarteten dreikomponentigen
Fermigases in einem Gleichgewichtszustand. Das Gas besteht aus 6Li Atomen
in den drei niedrigsten Zeemanzuständen. Die Herstellung dieses Gases wird er-
möglicht durch die Kontrolle der Wechselwirkung durch Feshbach-Resonanzen.
Für schwache Wechselwirkungen weist die dreikomponentige Mischung eine be-
merkenswerte Stabilität auf (Lebensdauer >30 Sekunden). Dies stellt eine hervor-
ragende Ausgangssituation für zukünftige Experimente dar.
Im Verlauf dieser Arbeit untersuchten wir die Stabilität gegen Zerfall durch Stöße

als Funktion des Magnetfelds und daher ebenso als Funktion der Wechselwirkungs-
stärke. Für Magnetfelder kleiner als 600 Gauss konnten wir einen stark variieren-
ner Dreikörperverlust und zwei Verlustresonanzen beobachten, eine bei etwa 127
Gauss die andere bei ca. 500 Gauss. Der beobachtete Dreikörperverlustkoeffizient
variiert im untersuchten Bereich um nahezu drei Größenordnungen und es war uns
möglich diesen Verlauf mit einem Modell zu erklären, welches sich die Universal-
ität von Systemen mit großer Streulänge zunutze macht. In diesem Modell wer-
den die Verlustresonanzen durch einen universellen Trimerzustand hervorgerufen,
welcher das Kontinuum zweimal kreuzt. Darüber hinaus konnten im Rahmen
dieser dieser Arbeit weitere Messungen im Bereich starker Wechselwirkung nahe
den Zweikörper-Feshbach-Resonanzen durchgeführt werden.
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Chapter 1

Introduction

The history of science has always been characterized by classifications and ab-
straction. Soon after the discovery of a novel, nonclassical spin degree of freedom
in electrons and atoms, in the beginning of the 20th century, particles were clas-
sified into two distinct categories. The integer spin particles are called bosons,
named after the Indian physicist S. Bose who, together with A. Einstein, de-
veloped the statistics describing their behavior (Bose-Einstein-statistics). On the
other hand, the half-integer spin particles, called fermions, obey the Fermi-Dirac
statistics and were named after E. Fermi and P. Dirac. These two particle groups
differ fundamentally in their symmetry and behavior. Since bosons have a to-
tally symmetric wavefunction, they can and favor to occupy the same quantum
state at the same position. Fermions, on the other hand, cannot be at the same
place if they are in the same quantum state, because of their totally antisymmetric
wavefunction. This fermionic property is called Pauli exclusion principle and has
fundamental influence on our everyday lives since almost all matter is built from
fermionic building blocks (e.g. electrons, protons, neutrons).
Especially in the quantum degenerate regime, where the wavefunctions start to

overlap, the fundamental differences between fermions and bosons take effect.
This regime can be reached by either drastically cooling the system to extremely
low temperatures or by dramatically increasing the system’s density.
The first theoretical studies on degenerate quantum ensembles reach back to the

beginnings of quantum theory. A. Einstein predicted that if bosons would obey
the statistic developed by Bose, they would “condense” into the first quantum state
(the state without kinetic energy) when the density is increased by an isothermal
compression [Ein25]. This macroscopic occupation of the ground state is there-
fore referred to as Bose-Einstein condensation (BEC). For many years, this region
seemed to be unreachable in experiments. But with novel techniques like laser
cooling and evaporative cooling, a pure Bose-Einstein condensate could finally be
produced by cooling dilute gas vapors to ultracold temperatures [And95, Dav95].
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In the years to follow, this new state of matter and its physics turned out to be
extremely exciting. Theoretical predictions and ideas that had already been de-
veloped decades before could be proven in a series of beautiful experiments. This
proves that the diluteness and the controllability make ultracold gases an unique
quantum system.
Soon after the first production of Bose-Einstein condensates with ultracold atomic

vapors, efforts were made to enter the quantum degenerate regime for fermionic
ultracold gases as well. But some obstacles had to be overcome first. In contrast
to bosons, identical fermions stop interacting if they are cooled to ultralow tem-
peratures. Thus in order to perform evaporative cooling one has to use a second
component (in most cases one simply uses an additional spin state). In constrast
to the bosonic case where a BEC is formed even for a noninteracting sample, the
fermions need interactions for a phase transition to occur. With an attractive in-
teraction between the two components, they form so-called Cooper pairs. These
pairs behave like bosons and “condense” into a superfluid state if the temperature
is sufficiently low. This phase transition is well known from solid state physics,
where the two-component (spin up and spin down) electron gas in certain metals
forms a superfluid for low temperatures. This frictionless flow of electron Cooper-
pairs leads to the phenomenon called superconductivity. A similar state can also
be observed in liquid 3He.
The occurrence of so-called Feshbach resonances makes the ultracold fermionic

gases an excellent system to study these superfluids and their pairing mechanisms.
These scattering resonances allow us to tune the only interaction parameter of the
system, the s-wave scattering length a, to arbitrary values simply by applying a
homogeneous magnetic field. For large positive values of the scattering length,
bosonic molecules can be formed which are able to form a BEC of molecules
[Joc03b, Gre03, Zwi03b]. If the scattering length is further increased it diverges
and changes sign. In this strongly interacting regime, the bosonic molecules can
be continuously transformed into Cooper pairs without destroying the superflu-
idity of the system [Reg04, Bar04, Bou04, Zwi05]. This so-called BEC-BCS
crossover is still an experimentally and theoretically investigated system espe-
cially because for diverging scattering length the system behaves completely in-
dependent of its short range behavior [Car03, Hei01, Ho04]. Thus results obtained
from such an ultracold fermionic gas can be used to predict properties of diverse
systems like neutron stars or high-Tc-superconductors [Che05].
The addition of a third state to such a tunable fermionic system raises several

new questions. This three-component Fermi gas, which cannot be achieved in
solid state physics or in liquid 3He, paves the way for new and so far unobserved
phenomena. Its SU(3) symmetry, together with the possibility of tuning the in-
teractions by means of Feshbach resonances, offers an intriguing generic system
for the study of physics related to high-energy physics and quark matter [Wil07].
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There are theoretical predictions that such a system should form a superfluid state
comparable to a color superfluid where two components pair to Cooper pairs and
the third one remains a spectator [Rap07]. This system should then undergo a
quantum phase transition if the interactions are increased and form three-body
bound states. This formation of bound states would then be the analogy to the
formation of Baryons consiting of three quarks.
Furthermore, this ternary mixture provides fascinating insight into few-body physics

and this thesis is a careful scrutiny of these phenomena and their implication for
fermionic systems. There are evidences that universal three-body bound states are
formed in such a gas [Ott08, Bra08, Nai08, Sch08a]. These states are most likely
related to phenomena described and theoretically developed by V. Efimov in the
early 1970s [Efi71, Efi70, Efi79]. Thus once again, ultracold gases are used to
prove and support theoretical predictions and paradigms developed several years
ago.

Outline

This diploma thesis begins with a summary of the relevant properties of ultra-
cold fermionic gases and their interactions in chapter 2. In chapter 3, we apply
three-body theory to obtain qualitative insights into the few-body phenomena in
a three-component Fermi gas. We then use the universality of systems with large
scattering lengths to deduce analytic predictions for the three-body loss in such
ternary samples. These relations are able to describe the later performed experi-
ments on the stability of three-component Fermi gases.
After these theoretical considerations, we describe the experimental setup in

chapter 4. In this description, we focus on parts of the setup that were added
in the course of this thesis, like the radio frequency setup and the high resolution
imaging. Chapter 5 deals with the techniques used for the production and analysis
of a three-component Fermi gas. Additionally, this chapter contains theoretical
predictions for such a three-state mixture and the problems we faced during its
production.
Chapter 6 presents the first experiments with three-component Fermi gases and

their results. We were able to measure the three-body loss as a function of the
interaction strength. The analysis of those experiments is also performed in this
chapter and implies that universal effects occur in this system. The last chapter
(chapter 7) summarizes all results obtained during this diploma thesis and gives
an outlook on future plans and experiments.
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Chapter 2

Ultracold Fermi Gases

Since the primary focus of this thesis is on ultracold fermions, the aim of this
chapter is to provide a brief introduction on their properties and behavior. To fully
understand the production procedure of ultracold Fermi gases and the experiments
performed with such a sample, it is necessary to discuss the main properties of
their interactions. Since the theory of ultracold Fermi gases has been discussed in
detail in several review articles [Gio08, Ket08] and text books [Pit03, Pet02], we
will only give a brief overview on the interaction properties of ultracold fermionic
gases and then analyze the density and momentum distribution of a degenerate
Fermi gas.

2.1 Interactions and Universality

Interactions in an ultracold Fermi gas are essential for the preparation and all pos-
sible experiments. Sufficient elastic scattering is the prerequisite for evaporative
cooling. On the other hand too strong inelastic collisions lead to fast loss of atoms
from the trap and thus prevent the preparation of an ultracold Fermi gas.
One particular feature of ultracold gases is that their interactions can be desribed

in a simple model. The s-wave scattering length a is the only parameter that
determines all relevant interaction properties. By utilizing so-called Feshbach
resonances, this interaction parameter can be tuned to arbitrary values reaching
from−∞ to +∞. Thus we are able to access the full range of attractive, repulsive
and non-interacting samples by applying a homogeneous magnetic field. As we
will see later, we use all those regimes, but especially the regions of very strong
interactions (attractive and repulsive) offer interesting phenomena.
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2.1.1 Scattering in Ultracold Fermi Gases
Using fundamental quantum mechanics, the scattering process between two atoms
can be described by the stationary Schrödinger equation for the relative motion (if
relativistic and spin effects are neglected):(

− ~2

2m∗
∆ + V (r)− E

)
ψ(r) = 0. (2.1)

Here, E > 0 is the energy, V (r) is the interaction potential, r is the atoms’ relative
coordinate (r1 − r2) and m∗ = (m1m2)/(m1 + m2) is their reduced mass. In a
spherically symmetric potential and with the wave number k defined by

E =
~2 k2

2m∗
, (2.2)

one obtains the following solution for the asymptotic region where r = |r| is
significantly larger than the range of the interaction potential:

ψ(r) ∝ eikz + f(θ)
eikr

r
. (2.3)

Here, θ is the angle between the z-axis and r. The function f(θ) is called scat-
tering amplitude. One can show that the scattering amplitude is connected to the
differential cross section by (0 < θ < π):

dσ

dΩ
= |f(θ)|2 . (2.4)

This result is slightly altered for identical particles, due to the symmetrization and
antisymmetrization of the wavefunction for bosons and fermions, respectively:(

dσ

dΩ

)
identical

= |f(θ)± f(π − θ)|2 , (2.5)

here 0 < θ < π/2. For identical bosons (fermions) the wavefunction has to be
totally symmetric (antisymmetric) and hence one has to consider the +(−) sign.

Scattering length and low-energy limit

The scattering length can be defined as the isotropic low-energy (E → 0) limit of
the scattering amplitude:

f(θ)→ −a for E→ 0. (2.6)
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Thus for vanishing energy, the cross section becomes isotropic and independent
of the energy and reaches a constant value. Taking into account the symmetry
of the wavefunction for bosons and fermions, we obtain the following total cross
sections in the low-energy limit:

σid.bosons = 8 π a2, (2.7)
σnonid.fermions = 4 π a2, (2.8)
σid.fermions = 0. (2.9)

Partial wave expansion

For the calculation of the scattering amplitude in a rotationally symmetric interac-
tion potential, it is helpful to expand the wavefunction into partial waves (i.e. for
different values of the angular momentum l). One can then simplify equation 2.1
and obtains a radial equation for each angular momentum state χk,l:(

d2

dr2
− 2m∗

~2

(
V (r) +

~2l(l + 1)

2m∗ r2

)
+ k2

)
χk,l(r) = 0. (2.10)

One sees that the spherical part of the Laplace operator in 2.1 leads to a centrifugal
barrierEc = ~2l(l+1)/(2m∗ r2). For scattering energies tending to 0, this barrier
prevents the states with l > 0 from scattering. In the case of 6Li Ec ≈ kB 7mK
(from [Jul92]) thus for temperatures significantly lower than 7 mK isotropic s-
wave scattering is the only possible scattering process.
Furthermore, it can be shown that different partial waves obtain different phase

shifts δl. Since we examine elastic scattering processes, these phase shifts deter-
mine the complete scattering process. For non-identical particles the contribution
to the total cross section for each partial wave can be written as:

σl(k) =
4π

k2
(2l + 1) sin2 δl. (2.11)

The s-wave phase shift δ0 can be used to define the scattering length in the low-
energy limit:

a = − lim
k→0

tan δ0(k)

k
. (2.12)

Low energy behavior of the cross section

A more careful analysis shows that the low-energy cross section deduced above
is only true if ka � 1. If the scattering length diverges, the given cross section
will also diverge. This is unphysical, because the cross section cannot exceed the
size of the wave packet, given by the deBroglie wavelength λdB = 2π/k. For
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diverging scattering lengths the interparticle spacing (∝ 1/k) is the only relevant
length scale of the system and thus the cross section should scale with 1/k2 for
a → ±∞. Assuming a point-like interaction the resulting total cross section for
non identical particles can be written as

σ(k) =
4π a2

1 + k2 a2
. (2.13)

This model is a good approximation if the range of the interaction potential is sig-
nificantly smaller than the scattering length and the deBroglie wavelength, which
is true in most of our cases.
This means that for non-diverging scattering lengths one obtains the relation

given above (σ = 4 πa2 for ka � 1) in the low-energy limit. However, if the
scattering length diverges, the result is the so-called unitary limit σu(k) = 4 π/k2,
which is the maximal possible cross section for a s-wave collision and occurs if
sin2 δ0 = 1 in equation 2.11.

2.1.2 Hyperfine States of Lithium-6
Before we can examine the interactions in a gas of 6Li, we have to examine its
hyperfine states to determine the states participating in scattering events.
Fermionic 6Li has a total nuclear spin of I = 1 and a total electron spin of
S = 1/2. It follows that at low magnetic fields they couple to a total spin of
F = 3/2 or 1/2. Hence in the case of zero magnetic field, the electronic ground
state splits into a quadruplet (F = 3/2) and a doublet (F = 1/2) of states (see
figure 2.1), which are separated by 228.2 MHz.
For higher magnetic fields (� 30 Gauss) one enters the Paschen-Back regime.

Here, the electron and nuclear spin decouple into two branches due to the two
possibilities of the electron spin. The energy of one of them is lowered for higher
magnetic fields so that these states are high-field seeking (the other three states
are low-field seekers). Each branch consists of three states, due to the nuclear
spin triplet. For the sake of simplicity, the states are labeled from |1〉 to |6〉 in
order of increasing energy in the magnetic field.
In equation 2.8, we see that the cross section for identical fermions vanishes at

low energies. Thus one has to use a mixture of at least two states to study an
interacting Fermi gas. The states |1〉 and |2〉 are well-suited for this purpose,
because they are the lowest hyperfine states and thus stable against inelastic spin
changing collisions. In the following section we will see that by using a broad
Feshbach resonance in 6Li, one is able to tune the scattering length in a |1〉 − |2〉
mixture to high values. Thus one can perform very fast and efficient evaporation
in an optical dipole trap. Furthermore, this mixture is relatively easy to produce
in the transfer from the magneto-optical trap (MOT) into the dipole trap. Since
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Figure 2.1: Zeeman hyperfine levels of the 6Li electronic ground state.

the cooling transition of 6Li in the MOT goes from the S1/2(F = 3/2) to the
2P3/2 states, one has to additionally use a repumper driving the S1/2(F = 1/2) to
2P3/2 transition (see [Ser07]). In order to pump the atoms into the F = 1/2, the
repumper is switched off before the cooler during the transfer to the dipole trap
and thus one automatically produces a mixture consisting of atoms in states |1〉
and |2〉 (if a homogeneous magnetic field is applied).
The states |1〉 and |2〉 are high-field seeking. They are thus not magnetically trap-

pable (as it is not possible to produce local magnetic field maxima in those traps).
Hence there is no stable and magnetically trappable two-component mixture of
6Li which means that one has to utilize a bosonic cooling agent (e.g. 23Na or 7Li)
if one insists on the use of magnetic traps.
For the reasons given above, we will use an optical dipole trap and hence the

“all-optical” approach explained in [Gra02] or [Gri07].

2.1.3 Feshbach Resonances

From low-energy scattering theory, we know that if a bound state of the inter-
action potential is close to the continuum, the scattering length and the interac-
tion strength are resonantly enhanced. For a bound state situated slightly below
the continuum this leads to a large positive scattering length (see for example
[Lan81]), which diverges to +∞ if the bound states reaches the continuum. The
scattering length then changes sign, becoming negative and large in magnitude, if
the bound state is right above the zero-energy threshold.
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Since atoms can normally scatter in various spin channels, there are other chan-
nels beside the scattering channel, which is also called open channel. As the
continuum of the other channels is higher in energy, they appear as closed chan-
nels for the scattering states (see figure 2.2). If these channels have a different
magnetic moment, they are tunable with respect to each other by applying a ho-
mogeneous magnetic field. If one now tunes a bound state of the close channel to
the continuum of the open (scattering) channel and if there is a coupling between
those channels, the scattering length also becomes resonantly enhanced.
Such scattering resonances between two channels are called Feshbach resonances,

named after H. Feshbach who studied this concept in the field of nuclear reactions
[Fes58]. These resonances allow to tune the scattering length to arbitrary positive
and negative values. In our case, the hyperfine coupling connects the open and
closed channel with different magnetic momenta. Thus in a descriptive picture
the scattering atoms approach each other and change into the closed channel for a
certain time. Then they return to the open channel and separate again. During this
second order process, the accumulated phase shift changes so that the scattering
length diverges and then changes sign. A more thorough analysis, as done for ex-
ample in [Moe95], shows that the scattering length behaves like (shown in figure
2.2 (b))

a = abg

(
1 +

∆

B −B0

)
, (2.14)

where abg is the background scattering length, ∆ is the width of the resonance and
B0 is the magnetic field where the resonance occurs.
The coupling of the different channels leads to an avoided crossing between the

molecular state and the scattering state. It is then possible to adiabatically enter
the molecular state by performing sufficiently slow magnetic field ramps over the
resonance. For large positive values of the scattering length, the bound molecular
state has a binding energy EB = ~2/(ma2), where m is the mass of a 6Li atom
(see 7.1).

Feshbach resonances in 6Li

For the three lowest hyperfine states of 6Li we have three different scattering
lengths for the respective channels, namely a12, a13 and a23. All of them exhibit
at least one broad Feshbach resonance for magnetic fields below 1000 Gauss. A
molecular state in the highest vibrational excitation level (ν = 38) of the singlet
potential is responsible for them. The bound state splits into several hyperfine
states due to the addition of two nuclear spin I = 1 atoms. Their resulting quan-
tum numbers are F = 0, mF = 0 and F = 2, mF = ±2,±1, 0 and they cause
broad Feshbach resonances (width about 300 Gauss) in each scattering channel

10
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Figure 2.2: A magnetic Feshbach resonance occurs when a bound state of the
closed channel coincides with the continuum of the scattering/open channel (a).
This leads to a resonant enhancement of the scattering length (b). The coupling
between the open and the closed channel results in an avoided crossing, which
adiabatically connects the scattering state with the bound molecular state (c).

and an additional narrow resonance in the |1〉|2〉 channel at 543 Gauss (see table
2.1).

Scattering channel Molecular state Position

|1〉|2〉 ν = 38, F = 0, mF = 0 834 Gauss
|1〉|3〉 ν = 38, F = 2, mF = −1 691 Gauss
|2〉|3〉 ν = 38, F = 2, mF = −2 811 Gauss

|1〉|2〉 ν = 38, F = 2, mF = 0 543 Gauss

Table 2.1: S-wave Feshbach resonances in the three lowest hyperfine states of 6Li,
with the responsible bound state and the position of the corresponding resonance.
The lowest resonance shown is the narrow one (width of about 100 mGauss), the
others have widths of about 300 Gauss.

To obtain the complete scattering length in all channels, one also needs to include
the background scattering length. For our system, the scattering (open) channels
change from a superposition state in the Zeeman regime (e.g. triplet and singlet
for |1〉|2〉 channel) to an almost pure triplet state in the Paschen-Back regime.
Thus the background scattering length varies from small positive values at zero
magnetic fields to the large negative triplet scattering length of about −2000 a0
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for large fields (& 600 Gauss). A careful calculation, for example in the coupled
channels model, results in the scattering lengths shown in figure 2.3.
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Figure 2.3: Scattering lengths in Bohr radii as a function of the magnetic field
between the three lowest hyperfine states of 6Li (from [Jul]).

2.1.4 Universality and Unitarity in Ultracold Gases

Universality and unitarity are two fundamental concepts in the theoretical treat-
ment of ultracold gases. These terms and their implications will be frequently
used in the course of this thesis. Therefore, it is essential to give a definition of
these concepts.
Universality implies that physical systems behave identical in certain limits at

long distances, regardless whether they differ substancially at short distances. In
the low-energy limit systems with large scattering lengths (always compared to
the short range length scale of the problem) are insensible to the details of the
interatomic potentials, which are significantly smaller than the scattering length a.
The short range length scale of our problem (denoted by r0), is given by the

size of the interatomic potential. Neutral atoms interact through a van der Waals
potential, thus the short range length scale of our system is the van der Waals
length r0 = lvdW . This effective range can be obtained from the attractive part of
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the van der Waals potenial V = −C6

r6
and is defined as

lvdW =

(
mC6

~2

)1/4

. (2.15)

For 6Li this range is given by lvdW = 62.5 a0 [Joc04, Bra08].
We noted that universal effects occur for large scattering lengths a� lvdW . The

corrections to that behavior scale with powers of lvdW/ |a|. Hence there are two
limits where the universal predictions become exact:

1. the scaling limit: a is fixed and r0 → 0,

2. the unitary (or resonant) limit: r0 is fixed a, but a→ ±∞.

In the unitary limit the scattering length is so large that it can no longer be used to
describe the observables of the system. For low energies, ka diverges in the uni-
tary limit. Then the cross section defined in equation 2.13 becomes independent
of the scattering length and depends only on the inverse of the wave number. Thus
when we later use the term “unitary interactions” or “unitary regime”, we mean a
region where the scattering length diverges (for example due to a Feshbach reso-
nance) and the only remaining length scale is the interparticle spacing (n−1/3). In
this limit, universality is applicable and even exact. For a degenerate Fermi gas
the interparticle spacing is proportional to the inverse of the Fermi momentum
1/kF (with kF =

√
2mEF/~2). From this it follows that, for instance, the Fermi

energy of an unitary interacting Fermi gas is rescaled by a universal constant β
[Car03, Hei01, Ho04] with respect to the Fermi energy (EF ) of an ideal gas:

EF,unitary = (1 + β)EF . (2.16)

However, in the scaling limit which is the limit we will consider in our exper-
iments, universal effects can also occur. For the two-body sector, the universal
predictions for the scaling limit are relatively simple. They state that the two-
body observables in the low-energy limit can only depend on a single parameter
(namely the scattering length a), which has the dimension of length. Examples
for such universal observables are the two-body cross section (given in equation
2.13) or the two-body bound state that exists for a > 0 with a binding energy
of EB = ~2/(ma2) [Bra06]. This manifestation of universality occurs due to a
continuous scaling symmetry, which means that in the scaling limit the system
is invariant if one rescales all relevant parameters (scattering length, coordinate r
and time t) by appropriate powers of a number λ>0:

a→ λa, r→ λr, t→ λ2t. (2.17)
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This symmetry under scaling of the system is a consequence of the fact that a is
the only length scale of the system. The corrections to these universal behaviors
come from the s-wave effective range and scale with lvdW/ |a|. Thus effects of
universality can be observable even if the scattering length is only several times
larger than the effective range lvdW .
For the three-body sector the universal predictions in the scaling limit are more

complex: one obtains a discrete scaling symmetry for three-body observables.
This discrete symmetry implies that the system is invariant not for arbitrary λ but
for all powers of a certain fixed number λ0. One can calculate λ0 to be eπ/s0 ≈
22.7, with s0 = 1.00624. Thus the discrete scaling symmetry can be written as

κ∗ → κ∗, a→ λn0a, r→ λn0 r, t→ λ2n
0 t, (2.18)

where κ∗ is a possible choice for the three-body parameter (sometimes called
Efimov parameter), which sets an additional scale for the three-body sector. It
can be thought of as the three-body analog to the scattering length in the two-
body case. It effectively summarizes the effects for the long-range behavior of
the three-body system stemming from the short-range characteristics of the three-
body interaction potential.
The universal observables for the three-body case can only depend on the scatter-

ing length and the three-body parameter (e.g. κ∗). A thorough analysis shows that
universality predicts an infinite number of three-body bound states (called “Efi-
mov” states or trimers) for a → ±∞ and in this limit their energy spectrum has
the following form:

E
(n)
trimer =

(
e−2π/s0

)n−n∗ ~2 κ2
∗

m
. (2.19)

The corrections to this behavior scales logarithmically (∼ln(|a| /l)) and thus they
cannot be treated as perturbations for |a| /lvdW →∞.
To sum up, we can state that for large but not-diverging scattering lengths, the

scaling limit is a reasonable approximation and universality is applicable. There-
fore the scattering length and the three-body parameter are the only relevant pa-
rameters in all physical observables of the system. For the unitary limit (a →
±∞), the scattering length does not provide a length scale, but the behavior is
still universal. Thus when we speak of the universal regime, we mean a region
where the scattering length a is significantly larger than lvdW . It turns out that for
most experiments a > 5lvdW [Web03b, Kra06b, Ott08] is already sufficient to ob-
serve universal effects, but for those values there are definitively some corrections
to the universal behavior.
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2.2 Ultracold Fermi Gases in Traps
The density distribution of an ultracold gas in a trap is one of the parameters which
is directly accessible in experiments, e.g. by absorption imaging. From this pa-
rameter one deduces the temperature, shape and atom number of the sample. The
spatial and momentum distributions are normally Gaussian, but as soon as one
enters the quantum degenerate regime the distributions are altered. For bosonic
gases, a phase transition occurs and a Bose-Einstein condensate is formed. The
case is somewhat different for fermions. Here the influence of quantum degen-
eracy smoothly increases for temperatures lower than the Fermi temperature TF .
For attractively interacting Fermi gases, Bardeen, Cooper and Schrieffer (BCS)
[Bar57] showed that below a critical temperature, which is smaller than TF , so-
called Cooper pairs are formed. These pairs then “Bose”-condense and form a
BCS superfluid. This phase transition occurs at T ∼ 0.2TF for strongly interact-
ing fermions. The temperatures so far achievable in our three-component Fermi
gases are still about a factor of two larger than this value. Thus we will not deal
with fermionic superfluidity in this theoretical consideration. Since the treatment
of interacting Fermi gases inside traps is theoretically very elaborate (and in fact
for most cases only perturbatively possible, if at all), we will focus on the case of
non-interacting Fermions. As we produce our three-state samples near the zero-
crossings of all possible scattering lengths (near 550 Gauss, see figure 2.3) and
since we perform our thermometry also in that region, neglecting the effects of
interaction should be a good approximation.
Since we mostly deal with relatively large particle numbers (> 50 000) and the

level spacing inside our harmonic traps is significantly smaller than the thermal
energy of the sample, we can neglect the quantization in the trapping potential
and use formulas deduced in the thermodynamical limit for a continuous density
of states.
The trapping potential of our cigar-shaped harmonic trap can be written as V (r) =

1
2
mω2

r(x
2 + y2 + λ2 z2), where ωr is the radial and ωa = λωr is the axial trapping

frequency. One can thus define the mean trap frequency ω̄ = (ωr ωr ωa)
1/3. In

most cases it will be sufficient to consider a spherically symmetric trap with the
mean trap frequency ω̄.
Since this problem has been discussed in several publications [But97, Joc09], we

will focus on a short derivation of all relevant quantities.
In the limits described above and with the Hamiltonian H(r, k) = ~2 k2/2m +
V (r), the Fermi distribution function takes the form

f(r, k) =
1

exp ((H − µ) /kBT ) + 1
. (2.20)

With a density of states of 1/(2 π ~)3 per unit volume in the six-dimensional phase
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space (r, k), one can implicitely define the chemical potential by the following
normalization condition on the particle number N :

N =
1

(2 π ~)3

∫
f(r, k) dr dk. (2.21)

Assuming the harmonic potential described above and by variable substitution,
one can simplify this to

N =
1

2 (~ω̄)3

∫ ∞
0

E2

exp ((E − µ)/kBT ) + 1
dE. (2.22)

For T = 0, the Fermi distribution function f(r, k) is unity for E < EF ≡ µ(T =
0, N) and zero above, thus the integration of equation 2.22 gives

µ(T = 0, N) = EF = (6N)1/3 ~ω̄, (2.23)

which can be used to define the Fermi energy, the Fermi temperature (kB TF =
EF ) and the Fermi wave number ~2k2

F/2m = EF . With this chemical potential,
we can calculate the density and momentum distribution for T = 0, by integrating

1
(2π ~)3

f(r, k) over k or r respectively. Thus the resulting density distributions for
zero temperature are:

n(r, T = 0) =
1

π2~3
(2m(EF − V (r)))3/2,

=
8N

π2xFyF zF

(
1− x2

x2
F

− y2

y2
F

− z2

z2
F

)3/2

, (2.24)

n(~ k = p, T = 0) =
8N

π2p3
F

(
1− p2

p2
F

)3/2

, (2.25)

where we use the Fermi momentum and radii defined by

EF =
p2
F

2m
=

1

2
mωxxF =

1

2
mωyyF =

1

2
mωzzF . (2.26)

The equations 2.24 and 2.25 are only defined for n > 0; densities are zero beside
that regions. This means that for zero temperature, the “Fermi sea” fills the trap
up to the corresponding Fermi radius or momentum.

2.2.1 Fermi Distribution for Non-Zero Temperature
The density distribution of a Fermi gas inside a trap is more complex for non-zero
temperatures. Here, the chemical potential cannot be calculated analytically as it
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is the case for T = 0. Nevertheless, to simplify the results, it is useful to define
the Fermi-Dirac integral function [Rho50, Goa93, Goa95] 1

fν(z) =
1

Γ(ν)

∫ ∞
0

tν−1

1
z

exp(t) + 1
dt. (2.27)

Sometimes the polylogarithm is also used to describe the Fermi-Dirac integral
function2. They are connected via the following relation:

−Liν(−z) =
1

Γ(ν)

∫ ∞
0

tν−1

1
z

exp(t) + 1
dt = fν(z). (2.28)

For |z| < 1, these functions can be written as a power series:

fν(z) = −Liν(−z) =
∞∑

k=1

(−1)k+1 zk

kν
. (2.29)

In this representation it is easy to see that with z = ex the Fermi-Dirac integral
satisfies

d

dx
fν(x) = fν−1(x). (2.30)

In [Rho50, Goa93] it was shown that this relation is actually true for all real x
and ν. Thus 2.30 can later be used to integrate fν(ex), for instance, to obtain the
doubly-integrated one-dimensional axial density distribution n(z).
With those definitions, the density and momentum distribution take the form

n(r, T ) =

(
mkBT

2π~2

)3/2

f3/2

(
exp

(
µ− V (r)
kB T

))
, (2.31)

n(p, T ) =
1

~ωxωyωz

(
kBT

2π

)3/2

f3/2

(
exp

(
µ− p2/2m

kB T

))
. (2.32)

The normalization of the atom number is now given by

N =

(
kBT

~ω̄

)3

f3

(
exp

(
µ

kBT

))
. (2.33)

and thus by using equation 2.23, one can obtain a relation, which implicitely de-
fines the chemical potential as a function T/TF

f3

(
exp

(
µ

kBT

))
=

1

6(T/TF )3
. (2.34)

1Note that they define the Fermi-Dirac integral slighty different: fν(z = exp(x)) = Fν−1(x).
2The polylogarithm Liν(z) describes the Bose-Einstein distribution function and thus one has

to use −Liν(−z) for Fermions.
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This equation is only numerically solvable for arbitrary T/TF (see figure 2.4), but
for small temperatures (T/TF � 1), the chemical potential can be described by
the Sommerfeld approximation (see e.g. [But97]), which states

µ(T ) = EF

(
1− π2

3

(
T

TF

)2
)
. (2.35)

For high temperatures (T/TF > 1) the chemical potential can be approximated by
the classical value

µ(T ) = −kB T ln

(
6

(
T

TF

)3
)
. (2.36)
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Figure 2.4: Chemical potential µ (see (a)) and fugacity z = exp
(

µ
kB T

)
(in (b))

of a non-interacting Fermi gas in a harmonic trap as a function of temperature.
These values were obtained by solving equation 2.34 numerically. In (a), the dash-
dotted line shows the Sommerfeld approximation and the dashed line shows the
classically calculated chemical potential. The fugacity diverges for T/TF → 0,
which makes the evaluation of fν(z) difficult, since the series expansion given in
equation 2.29 cannot be used to calculate the Fermi-Dirac integral function.

With the chemical potential given above, one can now calculate the density dis-
tribution as a function of the temperature in a harmonic trap (see figure 2.5). One
clearly sees that for low temperatures (T/TF . 0.3) the change of the density
distribution due to temperature is only minor and occurs mostly at the edge of
the distribution. This makes it very difficult to extract the accurate temperature
from experimentally determined density distributions. For more details on our
thermometry, see section 5.5.
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Figure 2.5: Density distribution of a non-interacting Fermi gas inside a harmonic
trap for different temperatures T/TF . rF is the Fermi radius in a spherically sym-
metric trap and is defined in equation 2.26. The inset in particular shows that only
minor changes occur in the density profile for low temperatures. Figure taken
from [Joc09].
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Chapter 3

Universal Three-Body Physics in a
Three-Component Fermi Gas

In order to later describe the physical processes occuring in a three-component
Fermi gas, we have to first give a brief overview on the three-body problem and
the influence of universality on a three-body system. Universality predicts a se-
quence of three-body bound states, named after V. Efimov who first predicted their
occurence in the 1970s [Efi71, Efi70]. These “Efimov”states are a universal gen-
eralization of the trimer state L. H. Thomas predicted 35 years earlier in a system
of two neutrons and a proton [Tho35]. In our discussion, we will follow parts of
the review article by E. Braaten and H.W. Hammer [Bra06], which explains these
concepts in detail and also shows their influence on cold atoms.
In the previous chapter, we saw that the implications of universality on ultracold

two- and three-body systems are manifold. To explain the universal behavior of a
three-body system, we introduce the hyperspherical formalism, a set of spherical
coordinates, which facilitate qualitative insight to the three-body problem. Af-
terwards, we use the Faddeev equations describing the three-particle scattering
(especially for pairwise interaction) to derive the hyperspherical potential. With
those results we are able to qualitatively understand Efimov’s scenario. We then
derive an analytic expression for the three-body loss coefficient K3, using Efi-
mov’s radial law [Efi79]. The universal three-body bound states (Efimov trimers)
lead to a resonant enhancement of K3 for certain interaction strengths, commonly
called Efimov resonances. With the formulas derived here, we will later be able
to explain and interpret our experimental data (see Chapter 6).
Most of the concepts described in this chapter were initially developed for three

identical bosons. But since the three different hyperfine states are distinguishable
fermions, they do not experience the Pauli exclusion principle. Thus by changing
certain numerical prefactors, the bosonic theory can be directly applied to our
case. In principle, interaction in a three fermion system can be asymmetric (three
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different two-body scattering lengths a12, a13 and a23). But as we will later show,
one can combine them to a mean effective scattering length (see section 6.3.1).
Thus we will now ignore the different two-body interaction strengths and consider
only one scattering length a. In our case, the three different states are different
Zeeman sublevels of the same 6Li atom, consequently they all have the same mass
m and we will use the terms “trimer” for three-body bound states and “dimer” for
two-body bound states.

3.1 Theoretical Considerations on the Three-body
Problem

The three-body problem is one of the oldest physical problems around. In the
17th century, Newton already considered a system consisting of three mass points
attracted to each other by gravity. While the two-body problem is integrable and,
for most cases, well understood, the three-body problem can become arbitrarily
complex and is far from being fully understood. Similar to the classical problem,
the quantum mechanical three-particle problem has been a subject of thorough
research since the dawn of quantum mechanics. It was L. D. Faddeev who intro-
duced a set of equations [Fad61], which significantly simplified the problem in
case of pairwise interactions.
In most cases, the three-body problem is considered in a hyperspherical frame-

work, which we will introduce in the following section. This will already give
qualitative insight to the consequences of universality for the three-body problem.

3.1.1 The Hyperspherical Formalism
Let us consider the stationary Schrödinger equation for three atoms (with mass n)
at positions r1, r2 and r3 and interacting through a potential V :(

− ~2

2m

∑
i=1,2,3

∆i + V (r1, r2, r3)

)
Ψ(r1, r2, r3) = EΨ(r1, r2, r3), (3.1)

where Ψ(r1, r2, r3) is the three-atom wavefunction. If the interaction potential is
translationally invariant, it can be described by only six independent coordinates.
The same is also true for the wavefunction Ψ.
We choose a hyperspherical respresentation to facilitate the treatment of the

three-body problem. A comprehensive review on this formalism is given in [Nie01].
The relative coordinates of two atoms are defined by rij = ri − rj and the sep-
aration of the third atom from the center-of-mass of the other two is given by
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ri,jk = ri − 1
2

(rj + rk) (see figure 3.1). Using these relations, we can define the
hyperradius R

R2 =
1

3

(
r2
12 + r2

13 + r2
23

)
, (3.2)

which represents the radial coordinate in the hyperspherical representation. The
other parameters are called hyperangular variables (summarized by Ω) and a pos-
sible choice for them is one of the hyperangles αk (defined by αk = arctan

(√
3rij

2 rk,ij

)
)

and the unit vectors eij and ek,ij .

r1

r3,12 r3

r2
r12

Figure 3.1: Example of a relative coordinate of two atoms rij and the separation
of the third atom from their center-of-mass rk,ij .

In this coordinate system, the Schrödinger equation for the center-of-mass wave-
function can be written as(

TR + Tαk
+

Λ2
k,ij

2mR2
+ V (R,Ω)− E

)
Ψ(R,Ω) = 0, (3.3)

where TR is the hyperradial kinetic energy, Tαk
is the kinetic energy term resulting

from the hyperangle αk and Λk,ij is the generalized angular momentum. In prin-
ciple, one could now solve this equation but it is advisable to first apply several
simplifications and thus use the Faddeev equations.

3.1.2 The Faddeev Equations
The Faddeev equations are a set of equations that describe the quantum mechani-
cal three-body problem for short range interactions 1 and additionally make use of
the simplifications occuring in the case of a two-body cluster and a well separated
atom. These equations can be deduced to be [Fad61]:(

TR + Tα1 +
Λ2

1,23

2mR2

)
ψ(1) + V (r23)

(
ψ(1) + ψ(2) + ψ(3)

)
= Eψ(1), (3.4)

1With short range interactions we mean that one can use universality for the two-body problem.
Thus one can neglect all corrections∝ r0/a and the two-body scattering lengths is the only length
scale of the system (in our experiments r0 = lvdW ).
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with all cyclic permuations of (1, 2, 3). If the functions ψ(1), ψ(2) and ψ(3) solve
this equation, their sum

Ψ(r1, r2, r3) = ψ(1)(r23, r1,23) + ψ(2)(r31, r2,13) + ψ(3)(r12, r3,12) (3.5)

solves the Schrödinger equation 3.3. If we now neglect all total and subsystem
angular momenta2, this simplyfies the wavefunction for three identical particles
to

Ψ(r1, r2, r3) = ψ(R,α1) + ψ(R,α2) + ψ(R,α3). (3.6)

The three Faddeev equations can be reduced to one by integrating the angular
variables. The result is an integro-differential equation for ψ(R,α) called the
low-energy Faddeev equation

(TR + Tα − E)ψ(R,α) = −V (
√

2R sinα)

×

(
ψ(R,α) +

4√
3

∫ π/2−|π/6−α|

|π/3−α|

sin(2α′)

sin(2α)
ψ(R,α′)dα′

)
. (3.7)

To solve this equation, one uses a hyperspherical expansion, which expands the
wavefunction Ψ(R,α) for each value ofR into a complete set of functions Φn(R,α),
which depend on the hyperradius and one hyperangle α

ψ(R,α) =
1

R5/2 sin(2α)

∑
n

fn(R) Φn(R,α). (3.8)

The Φn(R,α) are chosen such that they satisfy the integro-differential eigenvalue
equation for the α dependent part of equation 3.7:

− ∂2

∂α2
φn(R,α) +

2mR2

~2
V (
√

2R sinα)

×

(
φn(Rα) +

4√
3

∫ π/2−|π/6−α|

|π/3−α|
dα′φn(R,α′)

)
= λn(R)φN(R,α)(3.9)

where λn(R) are the corresponding eigenvalues. The expansion with respect to
fn(R)φn(R,α) converges fast and thus f0(R,α)φ0(R,α) already gives a reason-
able approximation for the wavefunction ψ(R,α).
One can now substitute the wavefunction in the low-energy Faddeev equation

by its expansion and project the whole equation onto φ∗n(R,α). This simplifies
equation 3.7 to a set of coupled differential equations for the hyperradial functions
fn(R). If the channel eigenvalues vary sufficiently slow with R, several terms can

2This assumption can be justified by the suppression of angular momenta in the low-energy
limit.
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be neglected and the eigenvalue equations decouple. With further approximations
(details in [Bra06]) the equations can be reduced to a radial Schrödinger equation
for each hyperspherical potential:[

~2

2m

(
− ∂2

∂R2
+

15

4R2

)
+ Vn(R)

]
≈ Efn(R). (3.10)

It is now possible to calculate the hyperradial potentials Vn(R) and one obtains

Vn(R) = (λn(R)− 4)
~2

2mR2
, (3.11)

where λn are eigenvalues of the integro-differential equation 3.9 and can be cal-
culated numerically.

3.1.3 The Hyperspherical Potentials

An exact transcendental relation can be found for the channel eigenvalues λn(R),
so that the hyperspherical potentials can be determined. The numerical results for
these calculations are shown in figure 3.2 (calculated in [Bra06]).
In the limit of zero range (r0 → 0) the potential scales with 1/R2 from 0 to∼ |a|.

In general, the effective range is not zero, but � |a|. Thus the hyperspherical
potential has to be cut off at the size of the short range length scale (in our case
r0 = lvdw). For the region with R < r0 this theory cannot make any predictions,
but the effects for the long range behavior from short distances can be taken into
account by imposing a boundary condition for the connection between short- and
long-range behavior (R ≈ r0). This means that the hyperradial wavefunctions for
R < r0 have to be continuously connected to the wavefunctions with R > r0.
This can be done by only one additional parameter. This three-body parameter
does the same as the scattering length for the two-body case: it unites all effects of
the short-range characteristics of the interaction potential to a boundary condition
for the long-range behavior.
The lowest hyperspherical potential is the only attractive one and thus the only

one that supports bound states. These universal three-body bound states are called
Efimov trimers. Since the potential scales with 1/R2, it actually supports an infi-
nite number of states in the limit |a| → ∞, with an accumulation point for zero
binding energies. Thus the attractive long-range potential gives rise to the Efimov
effect.
One can now define a scalar s0 such that the lowest eigenvalue λ0 = −s2

0 for
R/a → 0. From numerical calculations one obtains s0 = 1.00624. Additionally,
one can define a wave number κ, which is related to the trimer binding energy
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Figure 3.2: The three lowest hyperspherical potentials for a > 0 (solid lines) and
a < 0 (dashed lines). The lowest potential is attractive and scales with 1/R2,
all others are repulsive. In the limit of large hyperradius, the lowest potential for
a < 0 approaches the free atoms threshold (E = 0), for a > 0 the potential
reaches − ~2

ma2 , which is the binding energy of the universal dimer. Figure taken
from [Bra06].

ET = ~2κ2

m
in the limit |a| → ∞. Using these relations, one can solve the hyper-

radial equation 3.10 and it follows in the limit of κR� 1:

f0(R) ∝ −
√

π

s0 sinh(πs0)
R1/2 sin (s0 ln(κR) + α0) , (3.12)

where α0 is an universal phase.
Imposing the boundary condition for the connection between short- and long-

range region, one obtains the following binding energies for the nth trimer state in
the resonant limit |a| → ∞:

E
(n)
T =

(
e−2π/s0

)n−n∗ ~2κ∗
m

, (3.13)

where κ∗ is the wave number associated with the Efimov level n = n∗. Note that
adjacent states are separated by a factor of e2π/s0 ≈ 515.03.
Using these results, we can qualitatively discuss the wavefunctions in the hyper-

spherical potential: There is a lowest universal bound state whose wavefunction
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does not exhibit a node in the potential (for R > r0). This respresents a lower
bound of the Efimov spectrum. The wavefunctions of the next weaker bound state
have one additional half-period and the binding energies are always separated by
a factor of e2π/s0 ≈ 515 (see figure 3.3). The scattering length imposes an up-
per limit to the number of Efimov states. For a diverging, there is an infinite
number of states. These states appear one after the other if the scattering length
is increased. Thus one can estimate the number of possible Efimov states for a
given scattering length by counting the nodes in the wavefunctions (see figure
3.3): Nstates ≈ s0/π ln (|a| /r0).

~|a|
R

V0(R)
lvdW

Et,1

Et,2

Et,3

Figure 3.3: Sketch of the lowest hyperspherical potential with its short-range cut-
off atR ≈ lvdW and the long-range end at approximately |a|. The blue lines depict
the radial probability distributions of possible bound states in this attractive long
range potential. It shows that there is an infinite number of bound states with
an accumulation point for zero binding energy for |a| → ∞. To facilitate the
visibility, the scaling factor e2π/s0 was chosen to be ∼ 2 (not 515.3).
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3.2 Efimov’s Scenario
The essence of Efimov’s predictions for the three-body sector can be best visual-
ized in a graph, which plots the wave vector K ∝

√
E versus the inverse of the

scattering length (see figure 3.4). On the right-hand side of the figure the scat-
tering length is positive, thus there exists an universal dimer state with a binding
energy EB ∝ 1/a2. On the left-hand side the interactions are attractive (a<0)
and consequently no shallow two-body bound state exists. In the resonant region
(1/a ≈ 0), an infinite number of Efimov trimers exist.

a-1

“window of 
universality”

0
a-1>0a-1<0

A+A+A

D+A1st Efimov trimer

2nd trimer

K E∼

Figure 3.4: Sketch of the Efimov scenario as a function of the inverse of the scat-
tering length. The infinite tower of Efimov trimer states is shown. These states
exhibit an accumulation point at the zero-energy threshold for diverging scattering
length (1/a = 0). Additionally, the universal dimer state plus free atom contin-
uum (D+A) and the three atom threshold (A+A+A) are shown, both are depicted
by vertically hatched regions. The “window of universality” gives the limit of
the universal region and is defined by

√
K2 + 1/a2 ≈ 1/r0 (illustrated by diag-

onally hatched region). On the (gray) dashed circles the three-body observables
(scattering cross sections, binding energies etc.) differ only by a discrete scale
transformation (scaling factor is ∼ 2 to for clarity).

The absolute value of the binding energies of the Efimov trimers is governed by
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the short range characteristics of the interaction potential. But once one of those
energies is fixed (done by determining the three-body parameter, e.g. κ∗), all
other trimer states are known because of the universal scaling behavior. On each
dashed circle in figure 3.4, the observables, e.g. the scattering cross sections and
the binding energies, differ only by the earlier calculated scaling factor e2π/s0 (and
appropriate powers of e2π/s0) [Efi71, Efi70, Efi79]. Hence, they are connected by
the discrete scaling transformation shown in section 2.1.4. For large scattering
lengths these trimers connect the three atom continuum to the atom-dimer thresh-
old.
At a certain interaction strength a trimer state can be formed, when starting at

weak attractive interactions and moving towards the resonance on the three-atoms
continuum. For a scattering length which is a factor of eπ/s0 = 22.7 larger the
next trimer can be formed. Their binding energy on resonance is separated by a
factor of about eπ/s0 = 515 (in figure 3.4 we changed the scaling factor to about
2 to improve clearness). The scaling factor changes outside the resonant region
1/a ≈ 0 because nonuniversal corrections cannot be neglected anylonger. Outside
the universal regime, no predictions can be made with the methods described in
the present chapter. The boundaries of the universal regime are depicted by the
so-called “window of universality”, which is defined by

√
K2 + a−2 ≈ r−1

0 . It is
not clear what happens to trimer states outside this region.

3.2.1 Efimov Physics in Experiments
There are several atomic and nuclear systems, for which Efimov states were pre-
dicted, for example in a system of three 3He nuclei (for more examples in nuclear
physics see [Jen04]). In a system consisting of 4He atoms, a nonuniversal Thomas
trimer was found [Sch94] and there are predictions for an excited trimer state,
which would be an Efimov trimer.
Until now, the only strong evidence for Efimov physics was observed in exper-

iments performed at Innsbruck with an ultracold bosonic gas consisting of 133Cs
atoms [Kra06b]. The ability to tune the scattering length by means of Feshbach
resonances seems to make ultracold gases the ideal system to study the effects
predicted by Efimov. In those ultracold gases the formation of a trimer state can
be observed as a resonant enhancement of three-body loss processes in the scat-
tering of three free atoms. Since deeply bound dimer states exist in the case of
ultracold atoms, the Efimov trimer opens an additional loss channel to a deeply
bound dimer and a free atom. This process is called three-body recombination
and will be described in more detail in chapter 6.2. The binding energy released
in such a process is very large compared to the depth of the trapping potential
and thus all particles involved leave the trap. The influence of universal trimer
states on this three-body recombination into deep dimers plus free atom was cal-
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culated by E. Braaten and H.W. Hammer [Bra06]. In the next section we will show
how the three-body recombination rate is resonantly enhanced at certain interac-
tion strengths for which a universal trimer hits the three atom threshold. These
loss resonances are commonly reffered to as Efimov resonances. The crossing
between an Efimov trimer and the atom-dimer threshold also leads to resonantly
enhanced loss in a mixture consisting of atoms and dimers. Recently, there has
been strong evidence for such a crossing in 133Cs [Kno08].
There is an ongoing debate whether the lowest possible trimer should be an Efi-

mov or a Thomas trimer [Lee07]. There are predictions that this particular trimer
state never reaches the atom dimer continuum for positive scattering lengths be-
cause the state leaves the universal regime and then tunes parallel to the contin-
uum. To avoid misconceptions and to clearly specify our statements, we call a
trimer Efimov-like if the trimer is in the universal regime (a significantly larger
than r0). As a result, an Efimov resonance occurs if such a trimer crosses the con-
tinuum and enhances three-body loss. The trimer states (universal or not) are also
referred to as Borromean states. Since the trimer state exists in a region where no
two-body bound state is supported by the interatomic potential (at least for neg-
ative scattering lengths). Accordingly, if one of the atoms is removed from the
trimer, the other two cannot remain bound in a dimer.

3.3 Analytic Results for Ultracold Three-Body Re-
combination

In this section, we will show how the crossing of a universal trimer state gives rise
to a resonant enhancement of the three-body loss. For these considerations, we
will use Efimov’s radial law [Efi79] and proceed as done in [Bra06].
Three-body loss is normally described by the three-body recombination rate α,

which provides the number of recombination events per second. It is connected to
the three-body loss coefficient3 K3 by a numerical constant that counts the number
of lost atoms per event (in our case 3). It could be shown in [Esr99, D’I04] that
the three-body loss coefficient can be written as

K3 =
∑
i,f

C∗ ~
mK4

|Sf,i|2 , (3.14)

where C∗ is a numerical constant, K is the wave number (∝
√
E) and Sf,i is

the S-matrix element of the reaction responsible for the loss (f and i correspond

3The three-body loss coefficient is defined by ṅ = −K3n, where n is the atomic number
density.
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to the final and initial state, respectively). To deduce the scaling of K3 with the
scattering length and the three-body parameters, we will have to examine the S-
matrix element which describes the processes leading to three-body loss.

3.3.1 Efimov’s Radial Law
Efimov’s radial law [Efi79] uses the conservation of probability in elastic three-
body processes to make universal predictions for the S-matrix dependence on the
scattering length and the three-body parameter. Therefore, it is useful to define
two new parameters H and ξ. They are the polar coordinates in figure 3.4: H is
the radial coordinate that measures the distance from the origin and ξ is the angle
measured with respect to the positive 1/a axis. Every point of the plane (K, 1/a)
can be expressed by (H, ξ) with this definition. The atom dimer threshold, for
example, can be described by (H, ξ = −π/4).
To derive how the S-matrix scales with the scattering length and the three-body

parameter (or alternatively with H and ξ), it is useful to define the following
regions for the hyperradius:

• asymptotic region: for R� |a|,

• long-distance region: for R ∼ |a|,

• scale-invariant region: for |a| � R� r0,

• short-distance region: for R ∼ r0.

In most of these regions at least approximate results can be found for the wave-
functions. If one neglects the effects of deeply bound dimer states (only for now),
the only possible states in the asymptotic region are the three-atom scattering state
(AAA) or the shallow dimer plus a free atom scattering state (AD), the latter state
only exists for a > 0. The probability of the incoming states to evolve into outgo-
ing states is governed by the square of the S-matrix |Sf,i|2. Thus if one neglects
deeply bound dimers, no inelastic processes occur and by imposing conservation
of probability the hyperradial flux flowing to short distances (small R) has to even-
tually flow back to the asymptotic region either in the three-atom scattering state
or in the atom-dimer scattering state.
The explicit wavefunction of the asymptotic AAA state with total energy E =

~2κ2/2m can be expressed in terms of Bessel functions:

ψAAA → 1/R2 (FJ2(κR) +GJ−2(κR)) , (3.15)

with F and G numerical constants. An analogous expression can be found for
the ψAD, with an outgoing and an incoming part described by constants C and D,
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respectively. In the scale-invariant region |a| � R � r0, the wavefunction in the
low-energy limit can be calculated from the following hyperradial equation

~2

2m

(
− ∂2

∂R2
− s2

0 + 1/4

R2

)
f0(R) ≈ 0. (3.16)

The most general solution to this can be written as a hyperradial wave (as of now
denoted by |hw〉) with an incoming and an outgoing part described by numerical
constants A and B.
If one normalizes all these states and defines the “in” direction for waves flowing

into the long-distance region R ∼ |a| and “out” for waves flowing out of the long-
distance region, we can denote all possible wavefunctions in the scale-invariant
and asymptotic region by:

|hw〉 = A|1, in〉+B|1, out〉, (3.17)
|AD〉 = C|2, out〉+D|2, in〉, (3.18)
|AAA〉 = F |3, out〉+G|3, in〉. (3.19)

In the long-distance region R ∼ |a|, the wavefunction can become very com-
plicated and thus we are not able to give an expression for that. But since the
hyperradial flux is conserved, this region can be summarized by an unitarity trans-
formation Û with a certain probability of reflection and transmission. Hence the
S-matrix which describes an incoming asymptotic state passing through the long-
distance region to the scale-invariant region is a unitary and symmetric (because
of time reversal invariance) 3× 3 matrix with the elements

sij = 〈i, out|Û |j, in〉. (3.20)

In the short-distance region, the wavefunction becomes again very complicated.
However, since the hyperradial flux is conserved (if there are no inelastic chan-
nels), the hyperradial wave has to be completely reflected at R ∼ r0. Conse-
quently, the amplitudes of in- and outgoing hyperradial waves can only differ by
a phase, which is accumulated during the reflection at short distances. Therefore,
we can define A = −e2iθ∗ B, with some angle θ∗.
Taking all this into account, we are now able to determine the S-matrix for low-

energy atom-dimer and three-atom scattering

SAD,AD = s22 + s21e
2iθ∗

1

1− e2iθ∗s11

s12, (3.21)

SAD,AAA = s23 + s21e
2iθ∗

1

1− e2iθ∗s11

s13, (3.22)

SAAA,AAA = s33 + s31e
2iθ∗

1

1− e2iθ∗s11

s13. (3.23)
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Note that not all states are possible for all points in the (H, ξ) plane. For in-
stance, AAA only exists for 0 < ξ < π. For all other regions AAA is kinemati-
cally forbidden. Similar constraints hold for AD (kinematically only allowed for
−π/4 < ξ < π/2).
If the respective states are kinematically allowed, one can use the S-matrix ele-

ments to graphically explain what happens to the hyperradial flux during an inter-
action event (see figure 3.5). We particularly examine SAAA,AAA since this is the
element we will later consider, but the other matrix elements can be explained in
the same manner.

e-2η*

~|a|
R

V0(R) rvdW

short distance long distancescale invariant asymptotic region

s33

s13

e2iθ*

AAA (in)

s13 AAA (out)

s110…∞ times

SAAA,AAA:

s13

e2iθ*

AAA
s12 AD

0…∞ times

SAD,AAA:

s11

into deep dimers + atom
(probability 1- e-4η*)

Figure 3.5: Graphic representation of the SAAA,AAA matrix element for elastic
three-atom scattering for low energies in the hyperspherical potential. The be-
havior of the hyperradial amplitude flux for the scattering process described by
SAAA,AAA is explained in the text. As we will later see (section 3.3.2) there is a
probability to enter a deeply bound dimer states at short distances. This process
can be described by a single parameter η∗.

In the asymptotic region, a three-atom scattering state approaches the long-distance
region, a fraction of the incident hyperradial wave is directly reflected (s33), the
residual part passes this region and enters the scale-invariant regime, where it ex-
periences the 1/R2 hyperspherical potential. There, the hyperradial flux flows to
short distances and is completely reflected, because of the conservation of flux. In
this process, it accumulates a phase shift e2iθ∗ . Now the wave moves in outward
direction until it reaches the long-distance region where a fraction is transmitted
and reaches the asymptotic region in the AAA state. The rest is reflected from
the long-distance region and flows again to short distances. This reflection at the
long-distance region and the subsequent reflection at the short-distance region can
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occur infinitely many times. The sum over all of these amplitude
∑

n

(
e2iθ∗s11

)n
can be written as a geometric series, hence the result is 1/

(
1− e2iθ∗s11

)
. The

same considerations can be made for all other S-matrix elements by substituting
the corresponding sij .
With the S-matrix elements as given above, the physical observables are strongly

restricted. One can show that the radial variable H only enters the S-matrix
through θ∗ and ξ can only enter as an argument of the sij . From this, Efimov
was able to show that, for example, the atom-dimer cross section depends log-
periodically on the dimensionless factor aκ∗ and some universal constants de-
scribing the transmission and reflection from the long-distance region [Efi79].
The binding energies of the Efimov trimers can also be calculated from the re-
lation given for the S-matrix, only by imposing e2iθ∗ = 1, which means that the
hyperradial flux enters the scale-invariant region and then remains “bound” there.
Thus by using the conservation of the hyperradial flux we are able to give strong
constraints on physical observables of this universal three-body system.

3.3.2 Effects of Deeply Bound Dimers
So far, we assumed that there are no deeply bound states which implies that all the
hyperradial flux flowing to short distances has to be completely reflected. How-
ever, in the interaction potential of alkali atoms deeply bound states do exist (e.g.
lower vibrational levels). This leads to a loss of a fraction of the flux to those
states, because they form a deeply bound dimer and a free atom at short dis-
tances. The binding energies of those nonuniversal dimer states has to be larger
than E = ~2/(mr2

0) since they are not part of the scale-invariant regime and thus
their size has to be smaller than r0. The binding energy released in such a pro-
cess is very large compared to all other energies of the system. So that the deeply
bound atom and the free atom fly apart in a “high-energy” atom-dimer state.
To form a deeply bound state, the three atoms have to approximate each other to

distances comparable to or smaller than r0. In the low-energy limit, this is only
possible in the lowest hyperspherical potential, which is proportional to 1/R2.
Thus the entire flux emerging in the high-energy atom-dimer channel has to flow
through this potential. As a result, the effect of all possible deeply bound state can
be described by only one parameter η∗, which we will call the inelasticity param-
eter. This parameter can be added to the phase shift obtained during a reflection
at the short-distance region (e2iθ∗) and the boundary condition on the amplitudes
of the hyperradial waves at short distances is then:

A = −e−2η∗+2iθ∗B. (3.24)

This means that every time the hyperradial wave is reflected at the short-distance
region, the probability to enter a deeply bound state is ∝ e−2η∗ . One can now
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rewrite Efimov’s radial laws (equations 3.21, 3.22 and 3.23) including these deeply
bound states by simply replacing the factor e2iθ∗ by e−2η∗+2iθ∗ . Thus in the scaling
limit all low-energy three-body observables are functions of just three parameters:
the scattering length a, the three-body parameter κ∗ and the inelasticity parameter
η∗.
We can now generalize Efimov’s radial law to transitions from normal scattering

states (e.g. AAA) to high-energy atom-dimer scattering states (the kinetic energy
may be large, but the total energy is still small), which we will denote by X .
Although the wavefunction in the short-distance region is still very complicated
we are again able to use the conservation of the total hyperradial flux. The sole
difference is that we have to add an asymptotic high energy atom-dimer state X
that is accessed through the hyperradial wave (|hw〉) in the short-distance region.
The transition amplitude for this process is given by a t-matrix, which is defined
analogous to sij in equation 3.20:

tij = 〈i, out|Û |j, in〉, (3.25)

where Û is an operator describing the evolution through the short-distance region.
By defintion, the amplitude of a hyperradial wave to change from an incoming
to an outgoing hyperradial wave is given by t11 = e−2η∗+2iθ∗ . Thus the total
probability for an incoming hyperradial wave to enter all possible high-energy
states X is given by ∑

X

|tX1|2 = 1− e−4η∗ . (3.26)

From this we can obtain the S-matrix element for transitions betweenAD orAAA
scattering states and the high-energy atom-dimer state X . Since we only need the
case of negative scattering lengths in the later analysis of our experimental data,
we will from now on focus on states without an universal dimer state and thus
neglect the AD state. The relations in this case can be derived analogous to the
case for negative scattering lengths and the results can be found in [Bra06].
The relevant S-matrix element for our later analysis is:

SX,AAA = tX1s13 + tX1 s11e
−2η∗+2iθ∗

1

1− e−2η∗+2iθ∗s11

s13. (3.27)

This S-matrix element describes the amplitude of a three-atom scattering state to
evolve to a deeply bound dimer states and a free atom X . The first term in this
equation is due to a three-atom scattering state, which passes the long-distance
region to the scale-invariant one and afterwards directly enters the deep dimer
plus free atom state X . The second term describes a transmission through the
long-distance region and subsequently arbitrary reflections at the short-distance
region and the long-distance region before accessing the high-energy scattering
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state X . Both paths are graphically explained in figure 3.5 if one replaces θ∗ by
θ∗+ iη∗ and follows the dashed arrow downwards after the nth reflection from the
short- and long-distance region.
The three-body recombination rate is proportional to the square of the respective
S-matrix element, which can be calculated using relation 3.26:∑

x

|SX,AAA|2 = (1− e−4η∗) |s13|2
1

|1− e−2η∗+2iθ∗s11|2
. (3.28)

Now we only need to know how s13 and s11 scale for low energies (K → 0). The
leading dependence of s13 on K can be obtained from threshold laws for three-
body reactions (given in [Del60]) and the zero-energy value s11 was determined
for example in [Mac05]:

s11 = e−2πs0e−2iδ0 , (3.29)
s13 = −c1e

−iγ0a2K2 (1 + . . . ) , (3.30)

where δ0 is the s-wave phase shift, c1 is a positive real constant and γ0 is a real
numerical constant.
With these relations, we are capable of calculating the three-body recombina-

tion rate and the three-body loss coefficient K3 for negative scattering lengths in
the low-energy limit. In a similar manner, we could also determine the elastic
three-atom to atom-dimer cross section or the cross section from an atom-dimer
scattering state to a high-energy atom-dimer state X . With the latter, one can de-
duce the dimer relaxation rate, which describes the number of processes from AD
to X , which has been experimentally measured in Innsbruck [Kno08] recently.
As predicted by the concept of universality, all observables just mentioned only

depend on three parameters (beside numerical constants): the scattering length, a
three-body parameter and the inelasticity parameter, which is sometimes referred
to as complex part of the three-body parameter.

3.3.3 Three-Body Recombination into Deeply Bound Dimers
The level-crossing between an Efimov trimer and the three-atom continuum leads
to a resonant enhancement of the three-body loss, because the trimer state facil-
itates the formation of a deeply bound dimer and a free atom in a “high-energy”
scattering state X . We calculated the S-matrix element for such a transition
AAA → X as a function of the transition amplitudes sij . Using the relations
3.29 and 3.30 and with trigonometric relations, one obtains∑

x

|SX,AAA|2 = C0a
4K4 sinh (2η∗)

sin2 (θ∗ + γ) + sinh (η∗)
for K→ 0, (3.31)
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where C0 and γ are appropriate numerical constants.
One can now define θ∗ in terms of a different three-body parameter. To describe

experiments, it is useful to use a∗, which is the value of the scattering length
(a∗ < 0) for which the trimer state hits the three-atom threshold. This three-
body parameter can be analytically related to κ∗ or other choices of a three-body
parameter (see [Bra06]).
Accordinlgy, with equation 3.14 one can obtain for the three-body loss coefficient
K3 for negative scattering lengths (a < 0) in the low-energy limit:

K3 =
c sinh (2η∗)

sin2 (s0 ln(a/a∗)) + sinh (η∗)

~ a4

m
, (3.32)

where c is a numerical constant, which can be calculated for example with an
effective field theory approach [Bra08]. In figure 3.6 we plotted (K3)1/4 with the
formula derived above, the scaling factor s0 was chosen to be 2 instead of 1.00624
in order to increase visibility. The possibility to decay into a deeply bound dimer
and a free atom at short hyperradial distances results in a finite lifetime of the
Efimov trimers and thus in a finite width of the loss resonance. For η∗ → 0, the
loss resonances becomes arbitrarily narrow and diverge to infinity.
In principle, an infinite number of Efimov resonances should occur if the scat-

tering length tends to −∞. In experiments, however, the number of observable
resonances is limited to a few, owing to the unitary limitation of the inelastic pro-
cess leading to loss. In our formula the S-matrix element which describes the loss
process can diverge to infinity. This is unphysical since at a certain magnitude
every collision leads to a three-body recombination event and the probability to
enter the high-energy atom-dimer state cannot exceed unity. Additionally, for fi-
nite temperatures the low-energy limit is also only an approximation, that breaks
down if the temperature becomes to high.
In 2004, J. D’Incao et al. were able to show in [D’I04] how these limitations

affect experiments. They concluded that temperature effects start to wash-out the
resonances as soon as the three-body loss coefficient becomes of the order of the
unitary limit. In section 6.3.2 we will analyze these limitations more thoroughly
and in the context of our experimental data.

37



0 2 4 6 8 1 0
/ a *

(K
3)1/4

a

 η *  =  0 . 0 5
 η *  =  0 . 2
 η *  =  0 . 4

Figure 3.6: Calculated three-body loss coefficient K3 as a function of a
a∗

for dif-
ferent inelasticity parameters η∗ (a∗ is the position of a loss resonance). The in-
elasticity parameter describes the finite lifetime of the trimer states and thus leads
to a finite width of the loss resonance. One can observe the log-periodic behavior
of K3, which exhibits loss resonances for every scattering length a = a∗

(
eπ/s0

)n.
We used s0 = 2 for the plot to increase visibility. In experiments, this behavior is
cut-off at small scattering lengths by the range of the interaction potential r0. For
large interactions limitation due to temperature effects and the unitary limit occur
(see section 6.3.2).
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Chapter 4

The Experimental Setup

The main goal of the experimental apparatus is to enable a fast and efficient pro-
duction of an ultracold degenerate Fermi gas of 6Li atoms. In a first step a slowed
atomic beam is captured and precooled in a magneto-optical trap (MOT). After-
wards the sample is transferred to an optical dipole trap where its temperature is
further decreased by evaporative cooling and for sufficient low temperature the
quantum degenerate regime can be reached. With these ultracold fermionic sam-
ples, experiments can be performed. The preparation and the the experiments are
performed in an ultra high vacuum environment (UHV) with pressure on the order
of 10−12 mbar to ensure sufficient lifetimes for our purposes. The experimental
setup has already been extensively discussed and analyzed in several diploma the-
sis [Ser07, Lom08, Koh08]. Therefore, the aim of this chapter is to provide a
brief overview of the setup and focus on the parts that were recently added, like
the radio frequency (RF) setup and the high-resolution imaging setup in vertical
direction.

4.1 Vacuum Chamber and MOT

Since the last diploma thesis was carried out in our group [Koh08], the vacuum
setup (see figure 4.1) was not significantly changed. The UHV is maintained by
two ion and two titanium sublimation pumps. One of each located in the oven
section. The Zeeman slower tube between the oven section and the main chamber
serves as a differential pumping stage. The second ion pump and titanium subli-
mator are placed right after the experimental chamber (see figure 4.1). To further
improve the vacuum at the place of the experiments, the main chamber is coated
with a special Non Evaporable Getter (NEG) coating developed at Cern [NEG].
Another special feature of the vacuum setup is the gate valve attached to the main
chamber. It enables to add parts in the octagon or to attach for example a glass
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Figure 4.1: Overview of the vacuum chamber with pumps, oven, Zeeman slower
and main experimental chamber. The magnetic field coils for the magneto-optical
trap, the Feshbach coils and the coils of the Zeeman slower are shown in red. The
main experimental chamber (octagon) is displayed in blue.

cell without breaking the vacuum.
The oven is normally operated at a temperature of 360 ◦C, this leads to sufficient

atom flux in direction of the main chamber. After leaving the oven section, the
atoms in the beam are decelerated in a Zeeman slower and subsequently captured
in the MOT inside the main experimental chamber (5 in figure 4.1). For the MOT
and the Zeeman slower we use a tapered amplifier system (TA100 from Toptica)
with an output power of about 400 mW. The tapered amplifier (TA) is locked by a
beat offset lock [Sch99] with respect to the spectroscopy laser (see [Lom08]). The
spectroscopy laser is stabilized to the 22S1/2 (F = 3/2)→ 22P3/2 (F = 5/2) line
with a Doppler-free saturation spectroscopy [Ser07]. After dividing the TA beam
into cooler and repumper, the frequency is adjusted by acousto optical modulators
(AOMs).
Both branches are subdivided at several beam splitters, coupled into optical fibers

and transferred to the experimental table. After all manipulations and the transfer
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to the experimental table, the remaining power in all beams (3 retro reflected MOT
beams and one Zeeman slower beam) is about 150 mW. A detailed analysis of the
MOT performance and parameters can be found in [Ser07], a complete scheme of
the 671 nm laser system in [Lom08].
To monitor the MOT loading efficiency we use a diagnostic sequence and mea-

sure the fluorescence of atoms [Ser07] in the trap after a loading time of one
second. The atom number in the MOT is not saturated after this time and the val-
ues obtained fluctuate from 0.8 ·108 to 1.2 ·108. If the atom number has decreased
significantly, the coupling of the seed laser into the TA chip and the coupling into
the optical fibers has to be readjusted. This has to be done in rougly 2 to 4 weeks
intervals.

4.2 The Dipole Trap
To enter the quantum degenerate regime the phase space density has to become on
the order of unity. After the MOT, it is still only about 10−5. The standard tech-
nique used to increase phase space density further is evaporative cooling. This
technique was developed to cool atomic hydrogen into Bose-Einstein condensa-
tion [Hes86]. By letting the hottest atoms of the sample escape from the trap and
after rethermalization of the remaining atoms by elastic scattering, the temperature
of the trapped atoms can be significantly reduced. This decrease in temperature
leads to an increase of the phase space density (if the density remains the same or
increases). However, the prize one has to pay is a large loss of atoms during this
procedure.
We use an optical dipole trap to create the conservative trapping potential needed

to perform evaporative cooling. In a fermionic sample the elastic cross section
vanishes for identical particles and ultracold temperatures. Therefore, one either
uses different hyperfine states of the same atom or a second species of atoms.
Because we did not want to set up a second laser system for another species, we
decided to use a mixture of the two lowest Zeeman substates (|1〉 and |2〉 defined
in section 2.1.2). In an optical dipole trap one can take full advantage of the broad
Feshbach resonance at 834 Gauss between states |1〉 and |2〉. Here, the elastic
scattering rate is resonantly enhanced and hence ensures fast thermalization and
thus effective evaporative cooling. For the evaporation procedure, we follow the
scheme used by J. Thomas’ group at Duke University [O’H99, Gra02] and R.
Grimm’s group in Innsbruck [Gri07].
These optical dipole traps make use of the fact that the oscillating electric field

of a light wave induces an electrical dipole moment on the atom, the induced
dipole moment then interacts with the applied oscillating electric field. This leads
to an effective potential, which is proportional to the square of the electric field
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strength (∝ E2) and thus proportional to the intensity of the light. The sign of
the detuning ∆ from the atomic transition then decides if the atoms are low or
high-intensity seekers. For red detuning, meaning longer wavelengths, the atoms
are pushed towards high intensities (for blue detuning towards intensity minima).
Since trapping a sample with blue detuned light would require a difficult geomet-
ric setup, we use a red detuned optical dipole trap. Here, the atoms are trapped
in the intensity maximum. Consequently, the focus of a single red detuned laser
beam can already serve as a trap. Heating caused by non-resonant scattering be-
tween atoms and photons from the trapping light can be suppressed by choosing
a large detuning. However, this makes it necessary to increase the intensity of the
trapping beam to achieve a reasonable trap depth. To meet our requirements, we
use a single-transverse-mode Ytterbium doped fiber laser with a power of 200 W,
manufactured by IPG photonics (IPG YLR-200-SM) for the dipole trap. Its center
wavelength is at 1070 nm (width 3 nm), which ensures sufficient large red detun-
ing compared to the atomic transition at 671 nm. One big issue working with such
high-power lasers is, as mentioned in [Lom08, Koh08], thermal lensing. If a high-
power laser beam is focussed tightly and propagates through an optical element,
it deposites energy and heats it. This changes the refractive index of the material
locally and results in undefined drifts of foci. In order to avoid this, one has to
work with large beam diameters, where possible, remove all optical elements that
are not essential or use optical components made of special materials (fused silica
lenses or tellur dioxid for the AOM crystals work better than the standard borosil-
icate glass (BK7) ). But even with these changes, we are still not able to use the
full laser power of 200 W for a long time if we want to prevent strong thermal
lensing effects. Thus, we start to lower the laser power less than 10 ms after the
transfer from the MOT and within 100 ms we arrive at half the possible power
(for a precise description of the transfer process see [Lom08]). By doing so, we
loose far more atoms than necessary in the first 150 ms of evaporation. Only re-
cently we learned that lenses and anti-reflection coatings developed especially for
very high power applications are available and we will soon test if they meet our
requirements. This could enable us to produce ultracold samples consisting of a
larger amount of atoms.
Using a single beam as a trap results in very high aspect ratios (up to 100), which

means very elongated cigar-shaped traps. The resulting trapping frequencies in
the longitudinal axis are very small, which makes the trap very vulnerable to
residual magnetic field gradients or gravitational forces and result in undefined
loss of atoms from the trap. To avoid this, we use a crossed beam trap which
also results in deeper trapping potentials. In this setup it is crucial to rotate the
polarization of the counterpropagating beam by 90 degress in order to guaran-
tee sufficient lifetimes. The explanation for this is still not completely clear but
we observe drastic losses if we do not rotate the polarization. Other groups us-
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ing the same type of lasers experienced difficulties using large (≈ 90◦) crossing
angles, thus we decided to cross the beams only by an angle of 14◦. This also
makes it possible to shine both dipole trap beams through one window of the
main chamber, which leaves us more optical access for imaging and perhaps, in
the future, for an optical lattice. The complete setup of the dipole trap can be
found in [Koh08]. The aspect ratio of our trap is about 1/10. At a laser power
of 106 mW per beam, the resulting trap frequencies are ωz = 2π 33(3) Hz in the
longitudinal and ωx = ωy = 2π 344(15) Hz in the axial direction . These values
are obtained by parametric heating and by exciting dipole oscillations of the cloud
inside the trap, the complete procedure is explained in [Koh08]. The heating rate
associated with our dipole trap is only about 1.11± 0.12 nK/s at a beam power of
200 mW per beam.
A special feature of our current setup is the use of time-averaged optical poten-

tials. Two crossed AOMs allow to move the dipole trap position in two dimen-
sions. This can be performed much faster than the inverse of the trapping frequen-
cies, therefore the atoms experience a time-averaged potential. It was intended to
use this technique to increase the overlap betweeen the dipole trap and the MOT
during the transfer. But because we can not use the full beam power for a long
time the transfer efficiency could not be increased. This could change if the new
high power lenses do not exhibit such strong thermal lensing effects. However,
the time-averaged potentials can be and are used to “draw” trapping potentials at
lower beam powers, for instance to further decrease density in experiments with
three-component Fermi gases.

4.3 The Radio Frequency Setup
An essential tool to change the internal state of the atoms is the use of radio fre-
quency (RF) fields. The three lowest Zeeman sublevels of the electronic ground
state of 6Li (see figure 2.1) are spaced by about 50-120 MHz in the magnetic
field range of interest. Applying RF pulses with the right frequency drives the
addressed hyperfine transition. In our experiments, we need to drive RF transi-
tions at different points in time, during the evaporation to balance the number of
atoms in state |1〉 and |2〉 and later to produce the three-component sample. The
RF signals are generated by different waveform generators, sent through switches,
amplified and applied to the atom clouds by an antenna located at the lower reen-
trant viewport (see figure 4.4). Most of the experimental data discussed in this
thesis was generated using the “old” provisional RF setup. But since we had to
return borrowed equipment and wanted a more powerful and variable RF system
we rebuild most parts of it. A scheme of the “old” and the “new” setup can be
found in figure 4.2.
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Figure 4.2: Scheme of the “old” ( a) ) and “new” ( b) ) radio frequency setup.

“Old” RF setup

The main part of the “old” setup was the spectrum analyzer (FSL 6, Rhode &
Schwarz) controllable via our Labview experiment control. It is capable to gen-
erate a single frequency at its output with a power of 0 dBm in a frequency range
from 0 to 6 GHz. To drive the |1〉 − |2〉 and |2〉 − |3〉 transitions simultaneously,
we mixed the frequency of the spectrum analyzer (roughly 80 MHz) with a 4
MHz signal generated in an arbitrary waveform generator (Stanford DS345). The
mixer (ZFM-4-S+, Mini Circuits) creates the sum and difference frequency, each
of which is then resonant to one of the transitions (≈76 and ≈84 MHz ).
During the evaporation we also need a RF pulse to balance the number of atoms

in the lowest two hyperfine states, which are loaded from the MOT. This signal is
created in another arbitrary waveform generator (Agilent 33250 A, from now on
referred to as Agilent AWG). As we need different RF fields at different times, we
use a switch (ZX80-DR230-S+, Mini Circuits) to change between both generators
and to turn the RF off completely. After passing the switch, the signal is amplified
by a 5 Watt Amplifier (ZHL-5W, Mini Circuits). Because the antenna does not
dissipate most of the applied RF power, most of it is reflected to the amplifier.
But since this amplifier does not tolerate high back reflection, we had to put a 3
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dB attenuator before the antenna. This attenuator reduced the incoming power
by a factor of 2, but reflections from the antenna have to pass it a second time in
reversed direction and thus they are diminished by a factor of 4. Consequently this
is too little to damage the amplifier output. In order to synchronize the frequencies
of all generators, we connected them to the 10 MHz clock output of the Agilent
AWG (see figure 4.2).
The major disadvantages of this setup were:

• The Agilent AWG could not be programmed with the experimental control.
Thus, we determined the corresponding transition at the magnetic field of
interest with the spectrum analyzer and then programmed the Agilent AWG
by hand.

• The old amplifier had only 5 W of power. Thus after the attenuator in
front of the antenna the resulting power was only about 2 W. This results
in smaller Rabi frequencies which increases the time to drive a transition.
This raises problems if the sample decays fast or if decoherence occurs on
the same time scale.

• The spectrum analyzer could only generate one frequency per experimental
cycle and it was not possible to do frequency ramps.

• The width of the RF transitions in a homogeneous magnetic field is given
by the relative slope of the magnetic moments and the magnetic field insta-
bilities. As states |1〉 and |2〉 tune almost exactly the same in a magnetic
field above 100 Gauss, the width of this transition is quite narrow (0.5 kHz).
Hence, small drifts in the magnetic field or the RF setup result in frequency
shifts, such that we have to readjust the frequency every day.

The “new” RF setup

To overcome the shortcomings of the “old” setup we implemented a “new” RF
setup. The most important part of the “new” setup (see figure 4.2) is a Direct Dig-
ital Synthesizer (DDS). This chip (AD9854, Analog Devices) creates sine signals
up to 150 MHz and can be digitally programmed using an onboard micro con-
troller (ATmega128-16AC). A program that can assemble whole sequences of RF
pulses and ramps is embedded into the Labview experiment control. Before every
experimental cycle, the frequencies, pulse lengths, powers (up to 7 dBm) and ramp
speeds are programmed on the microcontroller via USB. The microcontroller then
sets the DDS chip and waits for the corresponding external triggers produced by
the Adwin real-time system. This system has a fundamental advantage, it can
generate frequency sweeps and thus does non-adiabatic (Landau-Zener) passages
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(see section 5.4.2). Therefore, drifts in the RF setup and the magnetic field do
not pose such serious problems anymore. The DDS boards and the front panel
were developed in R. Grimm’s and R. Blatt’s groups in Innsbruck. Currently, we
only have one board, but in principle up to 64 could be easily installed. They
are adressed by one front panel and each of them can be separately triggered. In
addition, every DDS board has two outputs and a frequency doubler in front of
each output. In the future we plan to use additional DDS boards to generate the
RF signals needed for the AOMs controlling the dipole trap.
Another tool in the current RF setup is a 100 W amplifier (ZHL-100W, Mini Cir-

cuits), together with the newly designed RF antenna coils (see next section), the
Rabi frequencies are significantly increased. That makes it possible to drive RF
transitions faster. We believe that this will enable us to perform RF spectroscopy
even at magnetic fields where the sample decays relatively fast. To generate fre-
quencies higher than 150 MHz, for example to drive the |1〉 − |6〉 transition, we
still need the spectrum analyzer (FSL 6). Therefore, we still have a switch in front
of the amplifier (figure 4.2).

RF Antennas

To apply the RF fields to the atoms we need an antenna. The wavelength at fre-
quencies of roughly 80 MHZ is about 4 m. As our antenna is less than 10 cm
away from the atoms, all our experiments take place in the near-field regime.
Hence, the antenna does not have to send an electromagnetic field. An easy setup
is then to use a simple loop of copper wire. In order to increase the intensity at
the atom’s position, one has to maximize the current through the wire. This is
done by matching the antenna to the right frequency. The wire loop has a certain
inductance (about 100 nH) and in order to resonantly enhance it, one has to con-
nect a capacitor in series with the loop, the capacities needed are on the order of
100 pF. To endure the currents and voltages, we use CKBX05 ceramic moulded
multilayer capacitors (they tolerate up to 200 V).
In order to further increase the power transfer to the antenna, the impedance of

the antenna has to be matched to the 50 Ω impedance of the amplifier output. To
calculate the magnitude of capacitors and inductors needed, we make use of a
computer program called rfsim99 [rfs]. We use a simple L section consisting of
one capacitor and one inductor to match the impedance. As the ohmic resistance
of the wire loop is extremely small, it is not possible to perfectly match the 50 Ω
of the amplifier output. One could therefore increase the number of windings of
the loop, but this would lead to problems matching the LC loop frequency. Be-
cause of the errors and simplifications made, the calculated values are only rough
estimates. Small stray inductances as for example the connectors of the capaci-
tors can already change the behavior when they are bent or touched. Therefore,
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Figure 4.3: a) Picture of the antenna matched for 82 MHz; b) circuit diagram of
the antenna; c) resonance characteristics of the 82 MHz antenna, measured with
a pick up coil at a distance of 18 mm.

we used a socket and tried different capacitors until the result was suitable for our
purposes. Afterwards these capacitors were soldered in and fixed with hot glue.
The achievable bandwidth of such an antenna is rather narrow (several MHz, see
figure 4.3 c) ), therefore we designed antennas matched for different radio fre-
quencies (53, 72 and 82 MHz) and built a mount that made it possible to easily
exchange the antennas. A circuit diagram and a picture of one antenna can be
seen in figure 4.3. With the LC oscillator and the impedance matched, the cur-
rents in the antennas are quite high and if the amplifier is operating at full power,
the capacitor starts to disintegrate and the copper wire becomes hot (>80 ◦C). In
order to prevent damage to the antenna, the input power of the amplifier has to be
limited to -15 dBm if the frequency is right on the antennas resonance. If it is far
detuned, the full power of the amplifier can be used.
The antennas are placed directly below the lower reentrant viewport under an

angle of about 45◦. The size of the loop was chosen such that it fits around the
vertical MOT and imaging beam (see figure 4.4).

4.4 Imaging System

The fundamental tool to investigate our sample is absorption imaging. A resonant
laser pulse is applied to the atoms and their shadow is recorded on a CCD camera.
This shadow is the two dimensional projection of the three dimensional density
distribution of the cloud. Together with a reference image (laser light on, but no
atoms) and a background image (all laser beams off), the two dimensional optical
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density of the cloud ρop(x, y) can be calculated:

ρop(x, y) = −ln Iabs(x, y)− Ibackground(x, y)

Ireference(x, y)− Ibackground(x, y)
. (4.1)

Given the absorption cross section σ = 3λ2

4π
, the two dimensional column density

can be determined to be n(x, y) = ρop(x, y)/σ. Additionally, one has to take sat-
uration effects into account, but they are negligable for the relatively small inten-
sities in the horizontal imaging setup, which was used for almost all experiments
described in this thesis. To decrease noise and facilitate the fitting procedure, the
data is integrated along one axis and the resulting one dimensional density distri-
bution is fitted. From this, one can deduce the number of atoms, the temperature
and the density distribution (e.g. Gaussian, Bose-Einstein or Fermi distribution),
if the laser pulse is sufficiently short to not distort the spatial information of the
cloud while imaging (in our case 1-10 µs pulses).
The statistical fluctuations that occur, if N photons are detected is

√
N because of

the Poissonian distribution of the photons. This is called shot noise. To ensure a
reasonable signal to noise ratio, one has to additionally guarantee that the optical
density is on the order of one. Because if the cloud becomes too dense or too thin,
the signal gets lost in the shot noise.
We are currently working with two CCD cameras in our setup: the “Andor”

(Andor iXon DV 887 DC) and the “Guppy” (AVT Guppy F-038 B/NIR), a scheme
of the imaging setup can be seen in figure 4.4.

4.4.1 Imaging in Horizontal Direction
Most experiments performed in this thesis and before were analyzed with the hor-
izontal imaging setup and using the “Guppy”. Therefore, its setup and proper-
ties were already described in [Lom08, Koh08]. This comparably cheap cam-
era, is very easy to control, handle and maintain. Thus it is the right choice for
purposes, that do not necessary require a very high sensitivity. The interlaced
CCD chip of the “Guppy” has 768 × 494 pixels but we normally bin two pix-
els in vertical direction, which results in 768 × 247 pixels with a effective size
of 8.4µm × 19.6µm. The objective of this camera consists of two 1” diameter
lenses (f1 = f2 = 150mm) and the resulting magnification is M = 1.17. The
resolution is determined by the pixel size, so roughly 20µm. This is not enough
to resolve the transverse axis of the dipole trap in-situ. Therefore, all images have
to be made after a time-of-flight.
The different Zeeman sublevels can be separately imaged because the width of

the transitions is about 5 MHz, which is narrow compared to the 50 - 130 MHz
splitting between adjacent hyperfine states. With our current imaging setup, we
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Figure 4.4: Schematic cut through the main chamber, with the horizontal imaging,
the high-resolution imaging in the vertical axes, the vertical MOT beams and the
microtrap.

are not able to take several images at the same time. Therefore, we have to gener-
ate a new sample everytime we want to image a different state.
In experiments we fit the one dimensional density distribution with a Gaussian

distribution on the fly, after letting the atoms freely expand for the time of flight.
This is a good approximation down to about T/TF = 0.35. For more degenerate
samples a more sophisticated analysis with the Fermi distribution has to be per-
formed (see section 2.2), but since this takes more time, we perform it mostly after
the measurements to precisely determine the temperature and still use the Gauss
fit as an on the fly indicator.

4.4.2 High Resolution Imaging in the Vertical Direction
The second camera setup was implemented during this thesis. It was designed to
make high resolution images of the cloud in the vertical direction. The large upper
reentrant viewport allows the use of an aspheric lens with large numerical aper-
ture, which makes it possible to reach high spatial resolution. Additionally, the
camera has an extremely sensitive electron multiplying CCD chip, which enables
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it to count single photons.
This setup allows us to study the atoms inside the trap (in situ). It enables inves-

tigation of possible phase separation or of the system’s dynamics, e.g. collective
excitations. In this setup, the vertical MOT beam and the imaging beam are in
the same vertical axis. Additionally, we plan to add a small volume optical dipole
trap, the so-called “microtrap”, which is also applied in the vertical direction (see
figure 4.4). Therefore, one wants an asphere that is specially optimized to tightly
focus the microtrap and at the same time allows high resolution imaging. As a
first test, we are now using a standard asphere which leads to a microtrap waist of
3.1 µm and an imaging resolution of approximately 3 µm.
In order to retroreflect the MOT beam and to transmit the imaging beam, we use

a special reflective polarizer film. This adhesive film is originally used in LCD
monitors to enhance the brightness of the screen by retroreflecting one linear po-
larization and transmitting the perpendicular one. In our case, the imaging beam
and the vertical MOT beam are merged with orthogonal linear polarizations and
then they pass a quater-wave plate and provide σ+ and σ− light, respectively. Af-
ter passing the atoms, both beams propagate again through a quater-wave plate
and one ends up with two perpendicular linearly polarized beams. The film can
be adjusted in such way, that the vertical MOT beam is reflected and the imaging
beam transmitted. The polarizing film is laminated directly onto the asperic lens,
which simplifies the optical setup significantly. After the polarizer film the imag-
ing beam is focussed by the asphere and reflected from a mirror onto the CCD
chip of the Andor. This mirror is dichroic and transmits the microtrap light with
its wavelength of 1070 nm. All optical elements (lens with polarizer film and the
quarter-wave plate) are supported by a specially designed lens holder, which is lo-
cated right above the upper reentrant viewport and mounted on the main chamber
(see figure 4.4).
The first absorption images taken with this setup showed quite strong periodic

modulations (fringes). This would not be a problem if those fringes were fixed in
position and amplitude, because they would be the same on the reference image
and therefore cancel. But if the fringes moved between the absorption and the ref-
erence image or if the modulation was too strong (leads to large shot noise), they
would remain visible. To overcome this, we made two major modifications. First,
we used a special imaging procedure, called frame transfer, which minimizes the
time between the absorption and reference picture. Here a part of the CCD chip
is covered which enables to take various pictures (absorption image, reference
image and the background) and store them under the covered part of the chip be-
fore reading out the whole chip at once. Between each picture a clock voltage
is applied, which shifts the charges of a pixel in the vertical direction. With the
available shift speeds of about 3.3µs/pixelshift, the images consisting of 256 lines
can be transferred in roughly 1ms (without frame transfer: 400−500ms between
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Figure 4.5: Image of the atomic cloud in the trap. Shown is the optical density of
an atomic sample. After evaporation the power of the trapping beam is increased
again, this leads to a comparatively small and dense cloud and a good visibility of
the two trapping beams.

images). By using this technique, the quality of the pictures is significantly im-
proved, especially in the region of low and medium atom densities, because the
fringes did not move or change on that ms timescale and therefore cancel. In the
region of high density, however, the modulations were still visible, which was due
to the little power in the vertical imaging beam. In the beginning, the imaging
and MOT beam came out of one optical fiber, therefore the size of the imaging
beam was rather large (≈ 2 cm diameter), which resulted in low intensities at the
atomic cloud. To provide more light the setup was changed such that the beams
are now coming out of two different fibers and are only merged right before the
main chamber at a polarizing beam splitter. Hence, the size of the beams can be
adjusted independently and the imaging beam now only has a diameter of about
2 mm. Effectively, this increases the intensity at the atom’s position which leads
to a better image with less fringes. An in situ image of the cloud can bee seen in
figure 4.5.
This camera is far more sensitive than the Guppy used in the horizontal imaging

system. The price one has to pay for this, is the complexity of the computer
control of the Andor. Especially the frame transfer mode is difficult to use and the
computer control is still not totally stable.

4.5 Future Plans
There are several modifications of the setup planned for the future:

• The next step, performed presumably in January and February of 2009, will
be the implementation of the microtrap setup. This small volume trap, with
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high trapping frequencies will be an important tool for the production of
finite fermionic samples planned in our experiment. The first preliminary
setup was already assembled and tested and will soon be added to the setup.
These experiments are carried out by G. Zuern and for more information,
we therefore refer to his diploma thesis, which is expected to be finished in
April 2009 [Zue09].

• The resolution in the horizontal axis should be improved. For this we al-
ready purchased a camera (Stingray F033B, AVT), which is still easy to use
but has better specifications concerning pixel size, full well depth and sen-
sitivity than the Guppy. The plan is to build a setup similar to the vertical
imaging only along the horizontal MOT beam. The difficulty here is that
the distance from the atoms is larger and the size of the window is smaller,
which will result in a reduced resolution. To reduce aberrations and still
achieve resonable resolutions, we are working with a 2” Gradium (Gradient
index) lens. The setup and the camera were already tested and the resolution
is about 3µm.

• As pointed out in [Lom08, Koh08] the Feshbach coils remain a problem.
The temperature at 200 A is still higher than 80◦ even with an improved
heatsink adhesive. To know which adhesive achieves the best thermal con-
tact, a test setup was built. In a few weeks the first results will be available
and another generation of coils will be built. Then the new adhesive will be
used and the electrical contact will be soldered with Indium. This simpli-
fies the procedure to attach the connectors since the temperature needed to
solder Indium is lower and thus damage of the adhesive is prevented. Fur-
thermore, the size of the connectors was doubled, which reduces the current
per area and thus the temperature near the connectors.

• In the next few months we also want to install a second imaging setup in
the horizontal direction. This would then be in the direction of the dipole
trap and the second horizontal MOT beam. This is a prerequisite to see
vortices in the atomic cloud. For this we would also use a Stingray and
the setup would be a copy of the other horizontal imaging setup. In order
to provide enough laser light for all these imaging beams and to be able
to image several spin states at the same time, we ordered another 671 nm
diode laser from Toptica (DL 100, with 35mW). The laser has just arrived
and has to be integrated in the optical setup and locked with respect to the
spectroscopy laser in the next weeks.

• As noted earlier, the standard asphere in the vertical imaging axis is planned
to be replaced by a specially designed one. By doing that, the quality of the
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imaging and more important the confinement inside the microtrap could be
improved.

• We are also thoroughly investigating the possibility to add an optical lattice
to our setup. Especially for the three-component experiments that would
give us a tool to explore SU(3) Hubbard models, for which interesting new
phenomena are predicted [Aza08, Wil07, Rap07, Rap08].
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Chapter 5

Creation of a Three-Component
Fermi Mixture

This chapter deals with the preparation of a three-component Fermi gas consist-
ing of the three lowest Zeeman substates of 6Li (|1〉, |2〉 and |3〉 in figure 2.1).
Before we explain the creation procedure of a three-state mixture in detail, we
briefly show how we can achieve Bose-Einstein condensation by evaporatively
cooling a two-component sample. For large positive scattering lengths bosonic
molecules can be formed at sufficiently cold temperatures and these are able to
Bose condense.
We then change to the three-component case and first present our motivation

producing such a sample. During the production process, several difficulties arose,
especially strong losses. To avoid those, the standard evaporation scheme had to
be changed such that molecules formation is inhibited. Section 5.3 illustrates
how we resolve these problems and we continue with the production sequence
used to produce a three-component sample. Finally in the sections 5.4.2 and 5.5
radio frequency (RF) transitions in ultracold fermions and the thermometry will
be discussed in detail.

5.1 Evaporation, Molecule Formation and Molecu-
lar BEC

A Fermi gas consisting of identical particles cannot be evaporatively cooled into
degeneracy, because the s-wave cross section vanishes for low temperatures (see
section 2.1.1). Thus one uses either a mixture of bosons and fermions, where the
bosons sympathetically cool the fermions, or two-component Fermi gases. These
components can be, for instance, different Zeeman substates of the same atom. In
the following we will explain the evaporation scheme for such a two-state mixture
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and show how bosonic molecules are formed at sufficiently low temperatures.
These molecules can then condense into a molecular Bose-Einstein condensate
(mBEC). Furthermore we explain how we are able to observe this phase transition.
The evaporation scheme starts with the transfer of atoms from the MOT to the

dipole trap. During the transfer, we optically pump all atoms into the states |1〉
and |2〉 and then we evaporate a two-component mixture consisting of these states.
Since we cannot perform plain evaporation due to thermal lensing effects, we have
to immediately start forced evaporation (see section 4.2). To ensure high thermal-
ization rates and effective evaporation we tune the magnetic field to roughly 750
Gauss where the scattering length (a12) is about 3500 a0 (with a0 being Bohr’s
radius, see appendix 7.1).
In the first part of the evaporation, the laser power is lowered to about 40 W in

two linear ramps that have been optimized independently. Afterwards, the power
is further reduced by varying the radio frequency power in two acousto-optical
modulators (AOMs), the second AOM is rotated by 90◦with respect to the first
one (originally done to enable the creation of time-averaged potential, for more
information see [Koh08]). This is normally done in three to four linear ramps.
During this “AOM evaporation”, the power in the dipole beam is monitored by
two photodiodes, one for high intensities and one for lower ones. The signals
obtained at the diodes are fed into the 100 kHz digital PID loop embedded in our
experiment control and the feedback signal is returned to the AOMs to stabilize
and regulate the power of the dipole trap beam.
A large positive scattering length is always associated with a universal bound

state right below the continuum [Lan81]. Thus at a magnetic field of 750 Gauss,
the binding energy of this dimer state is about Eb = kb 2.3µK, where kB is Boltz-
mann’s constant. If the temperature of the sample gets comparable to the binding
energy divided by kB, the molecular state is getting populated by three-body re-
combination. D. Petrov showed that these “good” three-body processes happen
quite often near a Feshbach resonance, thus ensuring sufficiently fast molecule
formation. On the other hand, the “bad” three-body processes, leading to molec-
ular relaxation and thus loss from the trap, are strongly suppressed for large
scattering lengths [Pet04, Pet05], which leads to long lifetimes of the weakly
bound molecules. This was experimentally confirmed by the Innsbruck group
in [Joc03a]. A chemical equilibrium between molecules and atoms, which de-
pends on the temperature is established [Chi04b]. This equilibrium tends towards
more molecules for temperatures small compared to the binding energy divided
by kB and can be verified by radio frequency spectroscopy [Bar05]. A thorough
examination of the atom and molecule number for different temperatures can be
found in [Koh08].
If evaporation is continued a molecular Bose-Einstein condensate (mBEC) emerges.

In our case the critical temperature is of the order of 100 nK and the number of
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molecules is about 1.5× 105. This phase transition can be shown by the observa-
tion of a bimodal density distribution after a time-of-flight. In a BEC, the ground
state of the trap is macroscopically occupied, which leads to an inverse parabola
density distribution (called Thomas-Fermi (TF) distribution) in the center, while
the wings are still thermal and can be fitted by a Gaussian. Such a bimodal distri-
bution of the density can be seen in figure 5.1. The TF distribution can be easily
deduced from the Gross-Pitaevskii equation in the Thomas-Fermi limit, which
neglects the kinetic term, because it is small compared to the interaction energy.

Figure 5.1: Emergence of a Bose-Einstein condensate of molecules. Shown is the
integrated column density of atoms for different stages of evaporation. For larger
temperatures, only a small condensate fraction is visible (left image). For colder
temperatures, the condensate fraction increases until we see an almost pure mBEC
(right image). The dashed line is a Gaussian fit to the wings of the BEC, the solid
line is the signal obtained by absorption imaging and subsequent integration in
one axis.

Compared to atomic BECs, it is more difficult to observe the bimodal distribution
in a molecular BEC consisting of fermionic atoms. The reason for this is that
we have to work with strongly interacting samples to ensure sufficiently stable
molecules (6Li : a = 3500 a0); this is not the case for bosonic atoms, where
the interactions are comparatively small (87Rb: a = 100 a0). The Thomas-Fermi
distribution obtained from the Gross-Pitaevskii equation in the TF limit is:

n(~r) =
µ− Vext(~r)

g
∝ r2/g, (5.1)

where n(~r) is the density, µ the chemical potential, Vext(~r) ∝ r2 is the external
trapping potenial and g = 4π~2a/m is the coupling strength. This shows that the
larger the interaction strength, the wider the resulting Thomas Fermi distribution
and therefore it is almost impossible to visualize the bimodal distribution in our
case. This problem can be solved by ramping the magnetic field to smaller values
(≈ 650 G). There, the interactions are weaker and thus the TF profile becomes nar-
rower and as a result easier to observe1. Another problem with imaging mBECs

1In reality, the situation is more difficult since we ramp the magnetic field so fast that we
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is that as soon as the molecules become more strongly bound, they cannot be
observed because the binding energy alters their optical transition frequency. To
avoid this, one ramps the magnetic field very close to the resonance immediately
before imaging the cloud. Here, the binding energy is so weak that the frequency
shift is negligible. To observe clear bimodal distributions as shown in figure 5.1,
one has to combine these two techniques: first one ramps the magnetic field to a
lower value to decrease interaction and then during the time-of-flight one ramps
back to the resonance to be able to observe the molecules. The images in figure
5.1 were produced using those techniques.

5.2 Motivation and Theoretical Predictions for Three-
Component Fermi Gases

In section 5.1, we showed how molecular Bose-Einstein condensation occurs
those two-component Fermi gases. Due to their stability and the possibility to
change the interactions by means of Feshbach resonances, these two-component
samples were the standard system to explore fermionic superfluidity and the BEC-
BCS crossover [Zwi05, Bar04, Reg04, Bou04].
Surprisingly, a third state was, up to now, only used to probe the two-component

sample, for example as a final state when performing radio frequency (RF) spec-
troscopy [Gup03, Bar05, Chi04a] or as a non-degenerate temperature probe [Reg05]
(see also section 5.5). Theorists however discovered that interesting physics oc-
curs inside a three-component sample years ago.
A sample of three distinguishable fermions has a totally different symmetry com-

pared to the SU(2) symmetry of the two-component sample. The system re-
sembles the three different colors of quantum chromodynamics (QCD) and has
a SU(3) symmetry, but with the advantage that they are easier to produce, observe
and understand than quarks in a baryon or in a quark-gluon plasma (QGP). Or as
the Nobel laureate F. Wilczek puts it in his article ‘Quantum chromodynamics:
Lifestyles of the small and simple’ [Wil07]:

“Ultracold atoms in optical lattices are already used to simulate com-
plex solid-state phenomena. But could the same platform also give us
a better grasp of how quarks group together?”

There were quite remarkable efforts made in the past few years concerning the
theoretical description of such a three-component Fermi gas. Some theoretical
studies have investigated the stability of multi-component Fermi gases [Blu08,

create a non-equilibrium state. This actually further improves the visibility of the TF profile after
a time-of-flight.
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Hei01], others have studied how pairing occurs in such a system [Paa06] or if
there is superfluidity in a three-component sample [Che07, Zha07, Bed06]. Other
questions that arise are e.g.:

• Is the ground state a three-body bound state (trimer or trion) [Flo08, Rap07,
Bri04] and does the system break its symmetry to form two-body bound
states (dimers) at certain interaction strengths?

• Are the three-body bound states Efimov-like and is Efimov physics applica-
ble to fermionic samples [Bra06]?

• How does BCS pairing look like in such a system [Hon04]?

• Do the different phases separate in a trap and build up shell structures
[Paa07]?

• And what happens if the whole system is loaded inside a three or one di-
mensional optical lattice [Rap08, Luu07, Aza08]?

Various theoretical approaches and models, such as functional renormalization
group, density matrix renormalization group (DMRG), other variational methods,
Hubbard models, BCS theory, Efimov physics and many more were used to de-
velop these predictions.
This vast amount of theoretical work clearly shows the relevance and impact of

such a three-component Fermi system not only for the ultracold gases commu-
nity. Therefore, stimulated and inspired by discussions with several theoreticians,
our group attempted to produce a balanced three-component Fermi gas soon after
the first realization of a molecular BEC in our experimental apparatus in January
2008.

5.3 Roadblocks
In the RF spectroscopy experiments performed with strongly interacting samples
(e.g. [Chi04a]), it was impossible to observe atoms in the final/third state. This
shows, that at least close to the resonances, the lifetime of a three-component
sample is rather short. Later, it was measured in [Sch08b] to be of the order of
30 ms (on the |1〉 − |3〉 resonance at 691 Gauss).
This means that the fast inelastic loss on resonance prevents the production of a

three-component sample in equilibrium, since the sample already starts decaying
while being produced 2. As the three-body loss rateK3 scales strongly with the in-

2The achievable Rabi frequency to populate the third state by RF is on the order of a few kHz.
This leads to timescales of several ms to incoherently balance the three-component sample.

59



teraction strength (see section 3.3), one would try to produce the three-component
sample at weaker interactions.
In section 2.1.3, we noticed that due to the large negative background scattering

lengths of 6Li no zero crossings of the scattering lengths (a12, a13 and a23) occur
on the BCS side of the resonances (see figure 2.3). Thus to obtain a weakly inter-
acting system, one has to access the magnetic field region between 530 Gauss and
560 Gauss. This is on the BEC side of the resonance, which means that there is a
bound state near the continuum. D. Petrov and coworkers [Pet04, Pet05] pointed
out that the dimers, formed out of two fermions, are stable near the Feshbach res-
onance, but they become unstable if the binding energy becomes too large. This is
explainable by the fact that near the resonance, the fermions in the bosonic dimer
are so weakly bound that they still exhibit fermionic behavior, thus suppressing
three-body events by Pauli blocking (figure 5.2 a) ). If the dimers become more
deeply bound, they behave more and more like bosons (figure 5.2 b) ) and thus
the molecule can scatter inelastically with other dimers or atoms. This leads to
relaxation into a deeper bound molecular state. Through this process, the dimers
gain additional kinetic energy and are immediately lost from the trap. Therefore it
is impossible to cool the two-component sample (|1〉 and |2〉) to low temperature
near the Feshbach resonance, where evaporation is effective, and then ramp the
magnetic field to the zero crossings in order to create a three-state mixture. Dur-
ing that ramp the molecular state would always be populated and this would lead
to a relatively fast decay at magnetic fields of about 700 Gauss.
For a three-component sample, this so-called “three-body recombination” can

occur no matter if the molecules are tightly bound, weakly bound or not bound at
all. In contrast to the two-component case the third particle is not Pauli blocked
(see figure 5.2 c) ) and thus the three-body recombination process can take place
when three atoms (one of each state) approach each other. It is then possible that
two of the atoms form a deeply bound dimer and the third particle carries away the
additional momentum. The binding energy released in such a process is so large
that all particles involved gain enough kinetic energy to immediately leave the
trap. We will later see that this is the process responsible for the strongly varying
stability of a three-component Fermi gas.
To avoid the just mentioned problems, the evaporation scheme has to be changed.

In the following section 5.4 we will explain the new evaporation scheme in detail
and thus show how we can accomplish the production of a three-component mix-
ture in equilibrium.
Another major difficulty is the production of the three-state sample by RF fields.

As mentioned in chapter 4, the widths of the respective RF transitions (caused
by the relative slope of the magnetic fields) are so narrow that even the slightest
change in the magnetic field or the frequency calibration already inhibits driving
the respective hyperfine transition (on the other hand the same effect enables us
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Figure 5.2:
a) In a two-component mixture Pauli blocking leads to relatively stable molecules
if the scattering length is quite large, i.e. near the Feshbach resonance [Pet04].
b) If the molecules are more tightly bound, they exhibit bosonic behavior and are
not Pauli blocked, this can lead to relaxation after scattering with dimers or atoms.
c) For three distinguishable fermions, the third spin state is also not Pauli blocked
(no matter if the molecule is weakly or stronger bound) and therefore the molecule
can relax into a deeper bound state. The released binding energy is converted into
kinetic energy, which is so large that atom and dimer immediately leave the trap.

to do very precise RF spectroscopy). This problem could be significantly reduced
by changing the RF setup and performing Landau-Zener passages [Lan32, Zen32]
(see section 5.4.2).

5.4 Production of a Three-Component Sample
We will now proceed to the production of a three-component Fermi gas. The
‘standard’ evaporation scheme used in previous experiments to achieve molecular
Bose-Einstein condensation, unitary interacting Fermi gases and fermionic super-
fluidity with two-component samples, is not applicable for this case. Thus we had
to develop a new evaporation scheme, which meets our requirements to access the
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region of weak interactions. In this region, we are able to populate the third state
by applying radio frequency fields and thus can realize a three-component Fermi
gas in equilibrium. Through this new approach we are able to access the rich
physics occuring in a ternary fermionic mixture by preparing the sample where
the gas is relatively stable. During the experiments, however, we can change the
magnetic field to access strongly attractive or repulsive interactions between all
three states of the Fermi gas.

5.4.1 Production Sequence
All our sequences start with a MOT loading phase of about three seconds. Subse-
quently the two-component sample is transferred into the dipole trap, where evap-
oration is commenced at 750 Gauss. In contrast to the production of a mBEC,
molecules are not desired for the production of a three-component sample. As
already mentioned, they would decay if one tries to access the region of weak
interactions near the zero-crossings of all scattering lengths. It is also not an op-
tion to populate the third state in regions where the scattering lengths are large in
amplitude, because the three-body loss scales with ∼ a4. This inhibits the for-
mation of a sample in equilibrium, because it would decay during its production.
We therefore have to stop the evaporation of the two-component mixture near
the Feshbach resonance (750 Gauss, 1. in figure 5.3) before any molecules are
formed. This means that we stop evaporation at temperatures significantly higher
than the binding energy divided by Boltzmann’s constant: the binding energy is
Eb = kB × 3.4µK in our case, hence we stop evaporation at about 10µK.
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Figure 5.3: Scattering lengths in Bohr radii for the two-body interactions as a
function of the magnetic field. Shown are the different regions of evaporation and
production of the three-component mixture (for more information see text).
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In order to access the region of small scattering lengths, we then ramp the mag-
netic field to 300 Gauss (point 2. in figure 5.3). Here, the scattering length in our
|1〉 − |2〉 mixture (a12) is about −290 a0, with a0 being Bohr’s radius. For nega-
tive scattering lengths there is no two-body bound state right below the continuum;
thus we can continue evaporation into degeneracy without forming molecules. As
the scattering length is about an order of magnitude smaller than at 750 Gauss,
the thermalization rates are not as high and consequently evaporation needs more
time and is not as effective. Nevertheless, we can reach temperatures down to
about 130 nK and roughly 7.5 × 104 atoms in each spin state (|1〉 and |2〉). This
corresponds to T/TF ≈ 0.28, which means that the quantum degenerate regime
is reachable. We then adiabatically increase the power in the dipole trap beam by
about a factor of two which leads to an increase of the temperature, but does not
change T/TF . This is necessary to guarantee that all atoms stay in the trap and are
not evaporated further due to, for instance, magnetic field gradients while ramp-
ing the field. As in the ‘standard’ evaporation scheme explained in section 5.1,
we perform our evaporation in several (4− 6) linear ramps that are independently
optimized. The only difference is that we change the magnetic field to 300 Gauss
after two of the linear ramps.
Subsequently, after finishing evaporation, we ramp the magnetic field to the re-

gion of the zero-crossings in all three scattering lengths (3. in figure 5.3), where we
create the three-state mixture by RF fields. At 560 Gauss, the scattering lengths
are a12 = 118 a0, a13 = −98 a0 and a23 = −143 a0, which is small enough to
lead to long lifetimes of the three-component mixture (∼ 30 seconds), but still
ensures decoherence due to residual magnetic fields, together with small but non-
zero interactions. The following sections will describe those RF transitions in
more detail.
The three-component samples produced in such way have a temperature of about

215 nK at T/TF ≈ 0.37 with about 50 000 atoms per state. We do not observe sig-
nificant heating by driving the radio frequency transitions, but as EF scales with
the number of atoms (∝ N1/3), we effectively increase T/TF by ‘distributing’ the
two-component mixture on three-components. This degenerate three-component
mixture is then the starting point for all experiments. For instance, we can jump to
different magnetic fields, observe the remaining fraction after a certain time and
thus investigate the three-body loss as a function of the interaction strength (see
Chapter 6).
For absorption imaging, we ramp back to 560 Gauss, where we can image one

Zeeman sublevel per experimental cycle by absorption imaging. Compared to the
time the sample stays at the magnetic field of interest (50-5000 ms), the time we
need to ramp the field is rather short (about 1 ms). Since the sample is stable at
560 Gauss (lifetime ≈ 30 s) the loss occuring during the ramps and at 560 Gauss
can be neglected if we work in the magnetic field region below 600 Gauss.
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5.4.2 RF Transitions in Ultracold Fermions
Driving radio frequency transitions is, as mentioned before, our fundamental tool
to change the internal state of atoms. In order to better understand the method,
this section will focus on the RF coupling between different Zeeman substates in
a homogeneous magnetic field.

Driving transitions
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Figure 5.4: Rabi oscillations between states |1〉 and |2〉. The fit to the data is a
squared sine; the deduced Rabi-frequency is about Ω = 1.794 kHz.

Electromagnetic coupling between hyperfine states can be described in the frame-
work of a two-level system and dressed states (see e.g. [Dal85]). The coherent
coupling leads to a non-zero probability to change from one state to another if the
frequency applied is on resonance with the energy between the respective states.
We are working in the strong field Paschen-Back regime, where the nuclear spin
and electron spin are decoupled. The electromagnetic coupling between the re-
spective hyperfine states can be described by a magnetic dipole transition Hamil-
tonian Ĥ ∝ ŜxB0 cos(wrf t). Using this as a periodic perturbation, one can
deduce the transition probability as a function of the pulse duration t:

Pex ∝ sin2

(
ΩR t

2

)
, (5.2)
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where Pex is the probabibility to be in the excited state and ΩR is the Rabi fre-
quency. The probability shows the well-known Rabi oscillations of a two-level
system as deduced for example in [Met99] for an electric dipole transition. An
example for this behavior can be seen in figure 5.4. Here, an imbalanced sample
of atoms in state |1〉 and |2〉 is being exposed to a RF pulse of different durations.
The number of atoms in each state oscillates sinusoidally in opposite phase, which
shows the coherent coupling between the Zeeman sublevels (|1〉 and |2〉).

Landau-Zener passages
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Figure 5.5: Landau-Zener passage between states |1〉 and |2〉 for different ramp
speeds during the first part of the evaporation. The absorption images are only
taken after the complete evaporation. If the imbalance is to big then no atoms in
the minority component are left after the complete evaporation. One sees that not
the whole sample can be transfered to state |2〉. The reason for that is that the
sample decoheres during the passage.

A way to produce arbitrary ratios of a mixture and at the same time a method
which is not so vulnerable to drifts of the apparatus, is given by adiabatic and non-
adiabatic Landau-Zener passages [Lan32, Zen32, Met99]. Here, the frequency is
swept over the resonance and if this is done adiabatically the complete population
of a state can be transferred into the other one. If one increases the sweep rate,
one can transfer arbitrary fractions. The probability of the transfer is given by
the Landau-Zener law: Ptransfer = 1 − e−2πΩ2

R/ω̇, here ΩR is the Rabi frequency,
which is fixed for a given RF power and a certain transition and ω̇ is the sweep
rate. After this transfer, the sample is still in a coherent superposition, which in
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this case consists of arbitrary amplitude fractions∝ a |1〉+b |2〉, depending on the
sweep rate. But due to magnetic field inhomogeneities the sample decoheres. This
process is analyzed more thoroughly in the next section. Figure 5.5 shows such a
Landau-Zener passage between states |1〉 and |2〉. Here, the passage is performed
during the first part of evaporation near resonance, afterwards the sample is evap-
orated further. During this evaporation the absolute imbalance (N1 −N2, with Ni

being the number of atoms in state |i〉) stays the same for a non-degenerate sam-
ple. But as soon as the sample becomes degenerate, the majority component is
preferentially lost. Therefore, the observed number of atoms cannot be described
by the Landau-Zener law. However, it is obvious that with this technique, we are
able to invert the initial excess of state |1〉 atoms and end up with more atoms in
state |2〉 if the sweep time is sufficiently long (Ω2

R � ω̇). But even for very long
sweep times, we are not able to transfer all atoms from state |1〉 to |2〉, this can
be explained by decoherence occuring during the passage. One therefore sees that
the timescales of decoherence in our system is on the order of several hundreds of
ms.

Decoherence during radio frequency pulses

As we observed in the previous section, it was impossible to adiabatically transfer
the complete population of a state. The reason for this is that the sample decoheres
during the passage. If one considers a Bloch sphere representation, the passage
does nothing else than rotating the pure state on the Bloch sphere. Only after some
time, decoherence occurs due to magnetic field inhomogeneities. This dephases
the pure state into a “ring” state [Zwi03a], whose average then has no coherences
(off-diagonal matrix elements in the density matrix). Decoherence denotes the
irreversible local disappearance of these coherences in the one-particle density
matrix.
Since magnetic field curvatures are the main reason for our magnetic field inho-

mogeneities, the decoherence time strongly depends on the location of the cloud
inside the main chamber. After having installed the high resolution imaging sys-
tem in the vertical axes, we were able to optimize the trap to a position, where
the magnetic field gradients are minimized. After this change, the decoherence
time changed from several tens of milliseconds to several hundred milliseconds.
Even after 15 ms no sign of decoherence, i.e. damping of the Rabi-frequencies,
can be observed (see figure 5.4). Before this change, the Rabi oscillations were
overdamped and we could at most see half a period of an oscillation. As a re-
sult, the population imbalance could be removed in the old setup by shining in
sufficiently long pulses (mostly about 850 ms), because the stationary state con-
sists of a non-coherent mixture with equal populations. Figure 5.6 shows such a
decohered transition.
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Figure 5.6: Decohered |2〉 to |3〉 transition after a rf pulse of 850 ms. Due to
magnetic field fluctuations and saturation effects the transition is broadened.

The stationary solution to the three-state system is also a balanced sample, hence
we applied the frequencies of the |1〉 − |2〉 and |2〉 − |3〉 transition for about 850
ms and finally we ended up with an equally balanced mixture of the three states
|1〉,|2〉 and |3〉. The experiments described in this thesis were performed at the
old position of the trap, with shorter decoherence time. Therefore, 850 ms was
sufficient to ensure a completely balanced and decohered sample. A problem here
was that at our magnetic field values the observed width of the |1〉 − |2〉 transi-
tion is very narrow (0.5 kHz) and thus had to be remeasured and adjusted every
day. To avoid this problem, we now use a different scheme to produce the three-
component mixture. During the first evaporation stage, we make a non-adiabatic
Landau-Zener passage in the |1〉 − |2〉 mixture, that leaves us with slightly more
atoms in state |2〉 than in |1〉. As the absolute imbalance stays the same during
evaporation of a non-degenerate sample, the relative imbalance increases if fewer
particles are left. We choose the initial imbalance so that we end up with twice as
many particles in |2〉 after finishing the evaporation at 300 Gauss. After ramping
the magnetic field to the region of the zero-crossings, we can balance the sample
by just shining in a pulse resonant with the |2〉 − |3〉 transition and wait until the
whole sample is balanced and decohered. This transition is broader and hence
easier to drive. Saturation effects additionally broaden the transition. As seen in
figure 5.6 this particular transition is then about 25 kHz wide.
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5.5 Thermometry of Ultracold Fermi Gases
In this section, we will explain how we determined the temperatures of the Fermi
gases produced in our experiments. During the experiments, we record the two
dimensional density distributions by absorption imaging after switching off the
trap and letting the cloud expand for several ms of time-of-flight. This density is
then integrated along the other radial direction, in order to reduce the noise and
to facilitate the fitting procedure. The result of this procedure is the axial density
n(z).
To determine the sample’s temperature and its atom number, we use several

schemes.
A Gauss fit is used to determine the atom number and temperature of the sam-

ple on the fly (in each experimental cycle). The resulting parameters are saved
together with the two dimensional absortion image of the density distribution
(n(x, z)) and can later be processed further. This Gauss fit is only correct for
a thermal sample, which has a Maxwell-Boltzmann distribution.
For degenerate Fermi gases, we additionally developed a fitting routine that uti-

lizes the Fermi-Dirac integral function. This fit (from here on called Fermi fit) is
more elaborate and hence takes too long (about 30 to 45 seconds) to be done in
each experimental cycle. It can, however, be employed after the actual measure-
ments for experiments with degenerate samples that rely on an accurate thermom-
etry.
After the discussion of the two fitting procedures outlined above, we will show

at the end of this section how a third component can be used as a non-degenerate
temperature probe and thus avoid the evaluation of the Fermi-Dirac integral, which
can only be solved numerically.

The Gauss fit

A thermal Fermi gas in a harmonic trap can be described by a Maxwell-Boltzmann
distribution. Thus, after letting the cloud expand for a certain time-of-flight, the
density distribution can be used to deduce the initial momentum distribution by
fitting a Gaussian profile. For this process, we assume a ballistic expansion, which
means that the interactions occuring during the expansion can be neglected. Since
we perform our thermometry near the zero-crossing of the scattering lengths and
since our Fermi gases are very dilute, this assumption is more than justified. We
normally fit the axial density distribution n(z) of a cigar-shaped sample, where the
z-direction is the long axes of the cloud (aspect ratio about 1/10). After switching
off the trap we let the cloud expand until the size is more than a factor of 20 larger
than the initial width. Therefore, the initial size of the cloud can be neglected.
The thermal energy (kB T ) of the initally trapped sample is completely converted
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into kinetic energy (mv2/2) after sufficiently long time-of-flights and thus the
temperature of the sample can be written as

T = mv2/(2 kB) = mσ2/(2 kBttof ), (5.3)

where σ is the Gaussian width of the cloud after the time-of-flight ttof . From the
integral of the axial density distribution the number of particles in the sample can
be deduced (see [Koh08]).

The Fermi fit

For a degenerate sample, the density and momentum distribution are described
by the Fermi-Dirac integral function (see section 2.2.1). We already noted that
using this function is rather complicated since it is only numerically calculable.
In addition, the chemical potential is also not analytically accessible. However,
we tried to develop a fitting routine which is able to determine the temperature of
a degenerate sample based on numerical calculations of the Fermi-Dirac integral
(numerical method described in [Goa95]).
Since we examine the axial density distribution, we employ the cylindrical sym-

metry of the sample and integrate equation 2.32 over dpx and dpy. Using the
relation 2.30 one obtains

n(pz) ∝ f5/2

(
exp

(
µ− p2

z/2m

kB T

))
. (5.4)

Thus after a time-of-flight this results in

ntof (z) = n

(
pz =

mz

ttof

)
∝ f5/2

(
exp

(
µ− m

2 t2tof
z2

kB T

))
. (5.5)

Since we only need the Fermi fit to determine the temperature below about T/TF ≈
0.5 (as we will see later, the Gauss fit still works for higher temperatures), we use
the Sommerfeld approximation for the chemical potential. This significantly sim-
plifies the problem, but still we have to evaluate the Fermi-Dirac integral. For this
we used the Gnu Scientific library (GSL) [Gnu] that includes a numerical calcu-
lation of the Fermi-Dirac integral in its special functions. We produced a look-up
table (1000 exponentially spaced values), which was then imported into an Ori-
gin C fitting routine and linearly extrapolated between every two points. Origin
uses this table and the Levenberg-Marquardt algorithm to perform non-linear fits
to axial density distributions imaged after a time-of-flight. The fitting parameters
are an overall offset, an amplitude, the center of the distribution and T/TF .
In order to check the reliability of the fit we simulated Fermi distribution func-

tions (using the Sommerfeld approximation) with different temperatures using our
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experimental parameters, for example the pixel size and resolution of our camera.
These “theoretical” distibutions were then fitted with a Gauss and the Fermi fit,
an example of such a test fit for T/TF = 0.05 can be found in figure 5.7 (a). A
experimentally measured sample with about the same temperature is analyzed in
5.7 (b).

(a) (b)

Figure 5.7: Simulated (a) and experimental (b) axial density distribution (black
squares) with a Gaussian and a Fermi fit. The number of points in the simulation
is chosen so that it resembles the Pixel size and amplification of our camera setup.
One clearly sees that for both simulation and experiment, the Gaussian fit does
not resemble the distribution very well, it overestimates the height and has wider
wings. The difference in shape between simulated T/TF = 0.05 and fitted Fermi
distribution (T/TF = 0.0003) in (a) is only marginal. The differences between
the Fermi fits with T/TF = 0 and T/TF = 0.1 to the experimental data are due
to the additional experimental uncertainty so small that they can (at our optical
resolution) hardly be distinguished.

These simulations were carried out for various temperatures. Consequently, we
were able to compare the Fermi and Gauss fit. This comparison can be found
in figure 5.8 and several interesting conclusions can be drawn from this. First,
one notices that for high temperatures (T/TF & 0.5) the Gauss fit, the Fermi fit
and the simulated density distribution in Sommerfeld approximation all coincide.
This can be explained by the fact that for temperatures above T/TF ∼ 0.5 the
fugacity z = eµ/(kBT ) is smaller than unity, hence the one in the denominator of
the Fermi distribution can be neglected and one obtains a Gaussian distribution
function. The fugacity is then only a numerical constant multiplying the overall
amplitude, but this value is a free fitting parameter and is not used for the analysis.
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Thus using the Sommerfeld approximation for higher temperatures is not an issue
and the Gaussian and the Fermi fit reproduce the simulated density distributions
well.
For colder temperatures (T/TF . 0.5), the Gaussian does not fit the simulated

data. It constantly overestimates the temperature and saturates at a value of about
T/TF = 0.3. The Fermi fit does not perform well in this region either, which
is most likely due to the little data points available in the relevant region (i.e. in
the wings), the use of the Sommerfeld approximation and the employment of a
finite look-up table for the Fermi-Dirac function. We noted earlier (section 2.2.1)
that for temperatures below T/TF = 0.3, the changes due to degeneracy are so
marginal, that given the low resolution of our camera system, it is hardly possible
to see the differences from a T = 0 Fermi gas. This explains why the Fermi fit
gives a temperature of about T/TF = 0.0003 for a simulated sample of T/TF =
0.05 (see figure 5.7 (a)).
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Figure 5.8: Comparison of a Gauss and the Fermi fit to an axial density distribu-
tion simulated in the Sommerfeld approximation with our experimental parame-
ters (more details in the text).

Although it seems that the Fermi fit does not provide a useful tool for analysis,
there were several useful conclusions that we could draw from this discussion and
evaluation. First, with our new high resolution imaging setup we could in principle
obtain better results, especially if the look-up table is enlarged or fitted better for
higher values of the fugacity. Additionally, the calibration shown in figure 5.8
can be used to deduce an approximate temperature by looking at the temperature
given through the Gauss fit and extrapolating this to the “real” temperature. This
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is not at all an exact calculation, because a lot of approximations were made and
certain parameters, for example for the resolution and pixel size were assumed. It
can nevertheless provide a good guess for the temperature of the Fermi gas.
However, for a more precise thermometry, we had to use a technique developed

at Jila [Reg05], which will be discussed in the next section.

Thermometry using the third component

Another method to determine the temperature of a degenerate Fermi gas, which
works especially well for medium degeneracy (T/TF = 0.2 . . . 0.5), is the ap-
plication of an additional spin state as a non-degenerate temperature probe. This
technique uses the fact that the Fermi energy scales with the atom number, we
recall that

EF = (6N)1/3 ~ ω̄. (5.6)

Thus if the number of atoms is smaller, the Fermi energy is also smaller. By popu-
lating an additional spin state with less particles than the initial one, the Fermi en-
ergy of the new component is lower. If one now assumes that the components are
in thermal equilibrium, then the resulting T/TF of the new component is larger.
Let us assume that we start with a two-component sample with 75 000 atoms in

each state (|1〉 and |2〉) at an absolute temperature of 215 nK and T/TF = 0.3.
If we now transfer some atoms to state |3〉(for example N3 = 20 000), then the
resulting T/TF is 0.466. This value can now already be fitted with a Gaussian
distribution because the effects of degeneracy are negligable for such values of
T/TF .
This method however, can only be applied if the three-state mixture is long lived.

Additionally, the gas should be weakly interacting, because we neglect all effects
of interaction. Both requirements are met for the magnetic field region near 550
Gauss, where we perform our thermometry. We will see later that the lifetimes of
the three-component mixture is on the order of 30 seconds. This is sufficient to
let the sample decohere after the population of the third state by radio frequency
pulses. However, the degeneracy must not be to strong if one wants to use a
Gaussian fit for the minority component.
This process, which facilitates our thermometry, is not favourable for the produc-

tion of a very cold three-component sample. It sets a limit to the lowest achievable
temperatures in a three-state mixture, since one normally cools a two-component
mixture (due to the short lifetimes for strong interactions in a three-state mixture)
and then adds the third component. Thus even if the two-state mixture has a very
low T/TF the final T/TF in a three-component gas is significantly larger (by a
factor N1/3

2 /N
1/3
3 ).
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Chapter 6

Experiments with
Three-Component Fermi Gases

This chapter focuses on the experiments with three-component samples, which
were performed during this thesis. Some of the measurements present here were
published in [Ott08]. This chapter also contains additional measurements, espe-
cially of the high-field region (600 - 1400 Gauss). Furthermore, we explain the
model used to describe the measured three-body loss and show how we extract the
three-body loss coefficient K3 from the experimental data. The observed behav-
ior of K3 cannot just be explained by the two-body scattering lengths. Therefore,
we introduce an effective interaction parameter for the fermionic three-body case,
which, together with the formulas derived in section 3.3, is able to explain our
results suprisingly well. The model used is based on universality of systems with
large scattering lengths and Efimov physics and it predicts a three-body bound
state that crosses the continuum at two different magnetic field values. At the
end of this chapter we comment on very recent theoretical work dealing with our
experiments [Bra08, Nai08, Sch08a], they all predict a trimer state crossing the
continuum although the theoretical approaches used differ significantly.
Most measurements in this chapter were done with the “old” RF setup (see sec-

tion 4.3), thus the sample was produced as explained in section 5.4.2. The imaging
was performed with the horizontal imaging setup (see section 4.4.1).

6.1 Collisional Stability of a Three-Component Fermi
Gas

The first experiments conducted, investigate the stability of the three-component
Fermi mixtures as a function of the magnetic field. We expected that in the region
of strong interaction (650 - 1200 Gauss), later referred to as “high-field region”,
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the sample was quite unstable due to the molecular states associated with the
Feshbach resonances and the large values of the scattering lengths, which enter
the three-body loss rate ∝ a4 (at that time known for the case of identical bosons
[Web03b]). Thus we first looked at the low magnetic field region from 0 to roughly
650 G (from here on called “low-field region”), where we expected the sample to
be more stable. But we were surprised by the strong variation of loss for different
magnetic fields.

6.1.1 Low-Field Region
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Figure 6.1: a) Remaining fraction of atoms after holding them for 250 ms at var-
ious magnetic fields. Each point is the average of at least five independent mea-
surements. The sample contains 50 000 atoms per state at a density of 6 × 1011

atoms/cm3 and has a temperature of roughly 215 nK. The two-body scattering
lengths for all possible combinations are shown in b) (taken from [Jul], for sym-
metry reasons aii = 0 for s-wave interaction).

The data taken in the low-field region is shown in figure 6.1. For these measure-
ments, a three-component Fermi gas was produced as explained in the previous
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chapter. Then we ramped to a certain magnetic field, waited for 250 ms and fi-
nally imaged the remaining fraction of atoms. One clearly sees strong variations
in the collisional stability of such a three-state sample. The measurements were
performed with a mixture consisting of 50 000 atoms per state at a temperature
of 215 nK and a density of 6 × 1011 atoms/cm3. The harmonic cigar-shaped op-
tical dipole trap had trapping frequencies of ωx = ωy = 2π × 386(15) Hz in
the transversal and ωz = 2π × 38(2) Hz in the longitudinal direction (measured
as explained in [Koh08]). Using the thermometry explained in section 5.5, we
measured the sample to be slightly degenerate (T/TF ≈ 0.37).
In order to exclude two-body processes, we repeated the experiments with all

possible binary mixtures (see figure 6.2). Thus we could clearly show that the
loss processes observed below 600 Gauss are solely due to three-body interactions
of three distiguishable fermions. The data produced with binary mixtures show
that the binary mixtures are stable beside the regions where molecules are formed
(above 600 Gauss). This can be expected since every three-body process in a two-
state mixture involves two identical fermions and is thus Pauli blocked. That the
interactions in our case only occur between different hyperfine states also helps
us to avoid a problem present in earlier experiments [Bur97, Web03b], which
measured three-body loss rates in bosonic samples, where it is difficult to exclude
two-body processes.
We then tried to explain the behavior in the three-component mixture by the

behavior of the two-body scattering lengths. This only worked near 0 Gauss and
at about 550 Gauss. In these regions, two or more scattering lengths are small
compared to the van der Waals length lvdW ≈ 60 a0, which represents the short
range length scale of the problem. In the case of two small scattering lengths and
a large one compared to lvdW , we effectively have an interacting two-component
sample, which is stable and an additional non-interacting ‘spectator’ Fermi gas
consisting of the third component. As a result, the three-body loss is weak. If
only one scattering length is small, then one component still strongly interacts
with both other states and therefore it can mediate the strong interaction (see figure
6.3).
Beside these regions, the two-body scattering lengths could by no means explain

the observed loss. Around 130 Gauss we observed a strong loss feature, which
could not be explained at that time. Possible interpretations were spin changing
collisions, relaxation into a deeply bound dimer state or a three-body bound state
crossing the continuum. We were especially puzzled that the two-body scattering
lengths were totally smooth and negative in that region and hence did not provide
an obvious explanation at all.
For higher fields (200 - 500 Gauss), an almost linear dependence of the three-

body loss was observed as a function of the magnetic field. This could also not be
explained using the two-body interactions. It was not clear why the loss did not
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Figure 6.2: Number of atoms after 250 ms at various magnetic fields for all binary
mixtures. The vertical dashed lines indicate the position of the particular Fesh-
bach resonance. Below 600 Gauss all samples are stable. In the region, where
the respective dimer changes from a universal weakly bound state (where still
fermionic behavior of the constituents of the dimers is observable) to a deeply
bound bosonic dimer, inelastic collisions lead to loss in the binary sample due to
molecular relaxation (process 5.2 b).

have its maximum where the scattering lengths do, namely at about 300 Gauss.
At about 500 Gauss, the stability reaches another minimum, which is not as pro-
nounced as the one near 130 Gauss. For fields above this value the behavior
changes rather drastically from a region of strong loss (near 500 Gauss) to a re-
gion where the sample is stable (530 - 610 Gauss) with lifetime up to 30 seconds.
In the magnetic field region above about 610 Gauss, |1〉 − |3〉 molecules start

to form. As we image the cloud at 526 Gauss, the molecules are not detected
when we ramp the field there. This imaging procedure is also responsible for the
behavior of state |2〉 between 650 and 750 Gauss.
In order to investigate the position of the loss ‘resonance’ near 130 Gauss and to

observe possible asymmetries, we repeated the measurements shown in figure 6.1
only with higher magnetic field resolution (see figure 6.4) . In this case, the sam-
ple had a temperature of about 1 µK and contained about 150 000 particles per
state. It was held for 250 ms at magnetic fields in the vicinity of the loss feature
and imaged at 526 Gauss. Additionally, we also recorded the temperature of the
sample as a function of the magnetic field. One clearly sees that the stronger the
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Figure 6.3: The width of the lines between the respective states indicates the
strength of the interaction. For two large (here a12 and a23) and one small (a23)
scattering length (always compared to the van der Walls length lvdW ) three-body
interactions are still possible. They are mediated by the state |2〉, which first inter-
acts with one and than with the other state (see a) ). If only one scattering length
is large (e.g. a12) three body processes are suppressed, because binary mixtures
are stable (see b) ).

loss the higher the temperature of the remaining sample. This would not happen if
all atoms of the sample decay at the same rate and immediately leave the trap after
the process took place. Therefore, either some particles remain in the sample after
getting energy in the process responsible for the loss or a kind of anti-evaporation
takes place. This means that the loss process is more likely in regions, where the
density is higher, which would be in the center of the trap. The average tempera-
ture of the atoms is here smaller than at the edges of the trap. Thus the probability
is higher to loose colder atoms. This leads to an effective increase in tempera-
ture, from our point of view this was the most probable scenario and therefore we
included this in the analysis of the three-body loss rate in section (6.2).
With the measurements shown in figure 6.4 we were able to determine the narrow

loss resonance’s location to 127 ± 2 Gauss for a temperature of 1 µK. We also
checked if the feature persists at higher temperatures. The result was that the qual-
itative behavior and the resonance position change only within our experimental
uncertainties in a quite large temperature domain (about 150 nK to roughly 10
µK).
The slope on the low-field side of the loss resonance seems to be a bit steeper

than on the other side. On the high-field side, the ‘background’ loss (beside the
resonance) is stronger. For one certain magnetic field value (214.85 Gauss), the
number of remaining atoms in state |2〉 is strongly reduced. The reason for that is
the narrow p-wave Feshbach resonance for state |2〉 located at 214.9 Gauss with a
width of 0.4 Gauss [Sch05]. This good agreement shows that our magnetic field
calibration is reasonable.
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Figure 6.4: Measurement of the remaining fraction of atoms in a three-component
Fermi gas after holding it for 250 ms in the vicinity of the “loss feature” near 130
Gauss. Additionally, the temperature was measured and one sees that the stronger
the loss, the higher the temperature of the remaining sample. At 214.85 Gauss
the number of remaining atoms in state |2〉 is significantly reduced, this can be
attributed to the known p-wave Feshbach resonance for state |2〉 at 214.9 Gauss
(width of 0.4 Gauss).

In conclusion, we were able to produce a balanced three-component mixture
which was mildly degenerate. At some magnetic field values, namely around 550
Gauss and below 50 G, the created mixture exhibits a remarkable stability with
a 1/e lifetime of more than 30 s. This leaves time for conducting more advanced
experiments, like loading the mixture into an optical lattice.
By performing reference measurements with all possible binary mixtures, we

could exclude two-body processes in the magnetic field region below 600 Gauss.
Hence all structures in the loss below that field have to be caused by three-body
processes involving one particle in each state. Furthermore, we observed a promi-
nent loss feature at 126 Gauss (with a FWHM width of about 50 Gauss) and an
almost linear increase of the loss from 200 to 450 Gauss. This linear slope leads to
a second, broader loss maximum around 500 Gauss. However, we were not able
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to explain or understand the observed behavior by means of the two-body interac-
tions. Thus further investigations were necessary. In order to get more quantitative
information, we then started to measure the loss as a function of time for different
values of the magnetic field and deduced the three-body loss coefficient from this
(see section 6.2).

6.1.2 High-Field Region
Before we investigated the low-field region in more detail, we also examined the
high-field region from 600 to 1400 Gauss (figure 6.5). Here the scattering lengths
in the different channels diverge because of the broad and overlapping Feshbach
resonances at 690 Gauss (|1〉−|3〉), 811 Gauss (|2〉−|3〉) and 834 Gauss (|1〉−|2〉).
In contrast to the region below 600 Gauss, the binary mixtures are not stable in
several magnetic field regions, where it is almost impossible to distinguish be-
tween two- and three-body processes.
Owing to the strong interactions, the lifetime of the sample is significantly shorter

than in the low-field region. We therefore held the sample for 20 ms (low-field
region: 250 ms) at the respective magnetic fields. Still, the loss was so drastic that
only a third of the sample remained at the magnetic field of strongest loss. This
supports the statement in [Sch08b] that the lifetime on resonance (691 Gauss) is
of the order of 30 ms. Our measurements were performed with a non-degenerate
sample at a temperature of 1.2µK and about 90 000 atoms per state (see figure
6.5). The number of atoms per state was not totally matched in this case. As one
can see, there was a slight imbalance towards more atoms in state |1〉 and less in
state |3〉. But we expect that this does not change the qualitative behavior of the
sample significantly. Due to molecule formation we had to image the cloud at
a magnetic field above all resonances, so the atoms initially bound in molecules
could also be observed. Thus we ramped to 1150 Gauss after each experimental
cycle and imaged the remaining cloud (one spin state per cycle). The error bars
show the statistical deviations from six independent measurements. They are only
displayed for one magnetic field value, as they are of the same order of magnitude
for the complete magnetic field region.
In contrast to the low-field region, the sample’s stability has no distinct loss ex-

trema, beside the enhanced loss in the region of 650 Gauss where the |1〉 − |3〉
binary mixture becomes unstable. In the region above 850 Gauss, the lifetime in-
creases. This can be explained by the fact that the scattering lengths decrease for
higher fields. Above 1200 Gauss the stability seems to saturate. This behavior can
also be understood by means of the two-body interactions. In this region, all three
scattering lengths reach their background value of roughly −2000 a0. As a result
the behavior in the high-field region seems to be explainable and understandable
by means of the behavior of the two-body scattering lengths. We will later analyze
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Figure 6.5: Number of atoms remaining in a three-state mixture after holding the
sample at different magnetic fields for 20 ms. The strongest loss occurs in the
region of 750 to 800 Gauss, there a23 and a12 are very large and positive. With the
decrease of the scattering lengths on the BCS sides, the loss also diminishes. But
aside the region of 650 Gauss, where the |1〉|3〉 binary mixture is unstable, there
are no distinct loss extrema observable.

this more thoroughly and show that this is not completely true.
This magnetic field region is partcicularly interesting because the interactions in

all channels are almost equal and thus the sample has a SU(3) symmetry. This is
an important point for future experiments, which could for instance try to study
SU(3) Hubbard models.

6.2 Three-Body Processes in a Three-Component Fermi
Gas

As explained earlier, we sought a more quantitative measurement of the trap loss.
On this account, we recorded the number of atoms and the temperature of the
sample as a function of time for various magnetic fields. From the recorded decay
curves, one can extract the three-body loss coefficient K3 for each state and each
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magnetic field value.
In our case, the three-body loss happens almost entirely due to three-body recom-

bination, which means two particles form a bound state and the third one carries
away the excess momentum. Therefore, we will use the terms “three-body loss”
and “three-body recombination” synonymously from now on (in our case they
only differ by a numerical factor). But a priori this is not necessarily the only
imaginable process.
From the stable binary mixtures (see figure 6.2), we can infer that below 600

Gauss two-body processes are negligible (K2 ≈ 0). Hence the relevant processes
leading to trap loss are one-body processes (e.g. collisions with the background
gas or scattering with trap photons) and three-body collisions between one atom
of each spin state |1〉, |2〉 and |3〉. All processes including atoms in the same state
or more than three particles are Pauli blocked, because they would include two
identical fermions. Therefore, we will neglect those processes in our analysis.
In this section we will follow the reasoning and model deduced in [Web03b,

Web03a] and for the numerical analysis we will use the program code developed
in Innsbruck [Web03b].

6.2.1 Theoretical Model of the Three-Body Loss
Equation for the number of atoms

The differential equation that governs the loss processes is given in the most gen-
eral case by

ṅ(r, t) = −
∑
i

Ki n
i(r, t), (6.1)

with n(r, t) being the atomic number density and Ki the i-body loss coefficient.
In our case, neglecting two-body processes and all processes with i ≥ 4, this can
be reduced to

ṅ(r, t) = −K1 n(r, t)−K3 n
3(r, t). (6.2)

Sometimes the use of the three-body recombination rate αrec is preferred. It de-
scribes the number of recombination events per time and is connected to K3 as
follows:

K3 = nloss αrec, (6.3)

where nloss is the number of atoms lost per recombination event. In our case,
the released binding energy of the deeply bound dimer state is large compared
to depth of the trap, at least in the magnetic field region <600 Gauss, where no
shallow bound state exists. Hence, all three atoms involved receive a significant
amount of kinetic energy and as a result they all leave the trap. Consequently,
nloss = 3 and we obtain arec = 1

3
K3.
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In order to obtain observable quantities such as temperature T and atom number
N , we have to average over the complete sample. We assume a harmonic trap with
an average trap frequency of ω̄ = (ωx ωy ωz)

1/3 and hence for a non-degenerate
sample a Gaussian density distribution. From the normalization N = 〈n〉 =∫
n(r), we obtain

n(r) = N
(a
π

)3/2

e−a (x2+y2+z2), (6.4)

with a = 1
2
mω̄2/(kB T ). The averaged differential equation then reads

Ṅ = −K1N −K3

〈
n3
〉
. (6.5)

Here, we omitted the explicit time dependence of the density, which is possible
since the time evolution can be separated if the thermalization rate is large com-
pared to the loss rate (see [Kra06a]). With

〈
n3
〉

=
1√
27

(
mω̄2

2 kB π

)3
N3

T 3
, (6.6)

we obtain the following differential equation for the atom number:

dN

dt
= −αN − γ N

3

T 3
, (6.7)

with α = K1 and γ = K3
1√
27

(
mω̄2

2 kB π

)3

.

Equation for the temperature dependence

As stated earlier the three-body recombination process leads to an increase of
the sample’s temperature due to “anti-evaporation”. The reason for this is that
the probability for a three-body process to occur scales with the density to the
third power (∝ n3). Hence, recombination occurs more often in the region of high
density, i.e. in the center of the trap. As the mean temperature of the atoms is lower
there, this results in heating of the cloud during the loss. For our experimental
parameters the heating through recombination amounts to about 20 per cent of the
temperature of the sample.
One now needs a model that mimics the temperature increase during the loss.

Our ansatz to include this effect, was to compare the average energy of a trapped
particle (3 kB T ) to the heating energy (kB Th). Therefore, we obtain the follow-
ing relation

Ṫ

T
=
Ṅ

N

kB Th
3 kB T

. (6.8)
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If we now plug in equation 6.7 and assume that only three-body events lead to
heating, the resulting differential equation for the temperature dependence is

dT

dt
= γ

N2

T 3

Th
3
. (6.9)

The Innsbruck model defines the heating energy as kB (T + Th) (see [Web03a]).
This results in a more difficult differential equation and thus a more unstable nu-
merical convergence. But since the increase in temperature is relatively small
compared to the absolute temperature of the sample, this does not significantly
change the result. As one can see later, our simpler model is able to describe the
increase of temperature completely satisfactory. If we examine our fitted heating
energy Th, we indeed observe that it is on the order of the temperature of the sam-
ple T . This shows that all parts of the recombination event (dimer and high energy
atom) leave the trap without depositing a significant amount of additional energy
in the sample and that other heating processes are negligable.

Numerical method

The numerical method used for the analysis was developed by T. Weber and it
is carefully discussed in his thesis [Web03a] or in [Web03b]. The main idea of
this numerical optimization process is to iteratively solve the coupled differential
equations 6.7 and 6.9 with three parameters α, γ and Th such that the sum error of
squares is minimized. Therefore one first chooses an initial α and γ (done by a fit
without temperature dependence). With those values one fits the experimentally
obtained temperatures with equation 6.9 with Th being the only fitting parameter.
Using the obtained result, one can calculate the error sum of squares between the
observed atom number and the numerical solution of 6.7. These steps are then
repeated while α and γ are changed such that they minimize the error sum. A
Matlab nonlinear optimization algorithm is used for this process [Web03a].

6.2.2 Experimental Determination of the Three-Body Loss Rate
For every state (|1〉, |2〉 and |3〉) and every magnetic field value we measured the
atom number and temperature for hold times from 0 to 5 s (250 ms steps, thus
20 different values). The measurements for each magnetic field were done in ran-
dom order and for every time, magnetic field and state we did three independent
measurements.
In total, this were more than 7 000 experimental cycles, taken in two large runs.

The first run took about 18 hours and covered the whole magnetic field area from
0 to 600 Gauss in 20 Gauss steps. The second run covered the region of the narrow
loss feature around 130 Gauss with 7 Gauss per step. After these measurements
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the data was split and separately analyzed for each spin state. These files were
then sorted with a small Matlab script according to magnetic field values and
time (using the bubble sort algorithm). Then the three independent measurements
were averaged (arithmetic mean value) and finally further processed by the code
developed in Innsbruck.
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Figure 6.6: Atom number (a) and temperature (b) of state |2〉 as a function of time
at a magnetic field of 300 Gauss. T̄ is the effective temperature of the sample
obtained by a Gaussian fit to the cloud after a time of flight. Every data point
is the arithmetic mean value of three independent measurements. The solid line
is the fit obtained with the method described in the text (see section 6.2.1). The
resulting K3 for those parameters is 1.93× 10−23 cm6

s
.

The data obtained for the atom number and temperature was fitted with the model
described in section 6.2.1. In figure 6.6 one can see the decay and heating curve
for state |2〉 at 300 Gauss. The obtained K3 is in this case 1.93× 10−23 cm6

s
.

All those experiments were performed with a sample consisting of 50 000 atoms
per state at a temperature of 215 nK and a peak density of 6 × 1011 atoms/cm3.
With trapping frequencies of ωx = ωy = 2π× 386(15) Hz and ωz = 2π×38(2) Hz
this corresponds to T/TF ≈ 0.37 (analyzed as explained in section 5.5). Hence,
the sample is slightly degenerate, which means that the density distribution of
the atoms in the trap is modified. Fortunately, the changes that occur due to the
slight degeneracy are only weak. In order to counteract these minor changes, we
fit a Gaussian distribution to the density after the time-of-flight and thus obtain
an effective temperature T̄ (see figure 6.6). For a degenerate sample T̄ is slightly
higher than the real temperature T (about 15%), this overestimation compensates
to some extent the small effects of degeneracy. The reason for this is that the den-
sity in the degenerate sample is reduced by the Fermi pressure. Therefore, the real
density of the sample is better approximated by a thermal sample with a higher ef-
fective temperature. During the loss process the number of atoms diminishes and
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the temperature of the sample increases. Hence the temperature quickly exceeds
the Fermi temperature. As a result, only the very first points are measured in a
degenerate sample. For a thermal sample (T/TF & 0.5) the effective temperature
is equal to the real one: T̄ = T . Thus it is a reasonable approximation to use T̄
instead of T for the analysis.
From the fits to our data we obtain the three-body loss coefficient K3 for all three

states and various magnetic fields (see figure 6.7). The behavior of K3 shows
a shape expected from the low-field region measurements in section 6.1.1, with
two loss maxima (a narrow and significantly wider one) at 130 and around 500
Gauss respectively, slowly rising slope between the two maxima and more stable
regions for small fields and around 550 Gauss. The values of K3 vary strongly
as a function of the magnetic field almost three orders of magnitude separate the
regions of small loss (≤50 Gauss and around 550 Gauss) and the maximal loss
near 130 Gauss (max. K3 ∼ 9× 10−23 cm6

s
).
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Figure 6.7: Three-body loss coefficient K3 as a function of the magnetic field
for the different spin states. The values are obtained by fitting experimental data
as shown in figure 6.6 with the numerical routine explained earlier. The loss
coefficient varies of nearly three order of magnitude. At about 130 Gauss a distinct
loss maximum can be observed.

The relative error of the three-body loss coefficient can be estimated by the mag-
nitude of the scatter of K3 for the different Zeeman states. It is significantly
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smaller than the observed variation of K3 and caused by processes like fitting un-
certainties, shot-to-shot number fluctuations, uncertainties in the spin balance and
fluctuations of the imaging apparatus. Additionally, there is an error affecting the
absolute scale of the measured three-body loss coefficient. K3 scales proportional
to ∝ N2 ω̄6, thus uncertainties in the absolute number of atoms of about 40% and
an error of about 7% in the mean trap frequency lead in total to an uncertainty of
about a factor of 2 in the absolute scale.
When we published these results [Ott08], we did not entirely understand most of

the observed behavior. The more stable regions could be explained by the fact that
there at least two scattering lengths were small. As explained earlier in section
6.1.1 this effectively results in a two-component Fermi gas and an independent
component that is only weakly interacting. Thus the sample is stable. The reason
for the two loss maxima and the slope in-between was at that time not yet un-
derstood. The observed three-body loss did not show in any way the expected a4

behavior, which was predicted and observed in [Fed96, Esr96] and [Bur97, Ste99]
for bosonic samples.

6.2.3 Temperature Dependence of the Three-Body Loss
In order to examine if the observed behavior showed a temperature dependence,
we repeated the measurements with warmer samples. For 7µK we measured the
decay of the cloud for different magnetic fields and extracted K3. The observed
behavior of the three-body loss as a function of the magnetic field does not change
at all compared to the sample with 215 nK sample (see figure 6.8). But the “warm”
data lie a factor of about 5.6 below the 215 nK values. One reason for this could
be that the error of the trapping frequency for higher temperature is larger than for
the cold sample. For such high temperatures the power in the dipole trap beam is
monitored and controlled by a different photo diode [Koh08]. To obtain the values
needed anyway, we had to calibrate the two photodiodes with respect to each other
and then we extrapolated the trapping frequency behavior. The result is a mean
trapping frequency of ω̄ = 5770 Hz, but the uncertainty for this value is large
and difficult to determine. For an exact accordance between warm and cold data,
the mean trapping frequency should be different by about 35 per cent. This is a
reasonable uncertainty if one considers the unprecise assumptions made to obtain
the trapping frequencies at 7µK. Another possibility to explain the discrepancy
could be that the degeneracy slighty alters the three-body loss.
In conclusion, we observed that the relative behavior of K3 as a function of the

magnetic field does not change even though the temperature is higher by a factor
of 30. Temperature effects should first of all change the overall shape of the three-
body loss [D’I04], they “wash-out” and shift resonances. Therefore, it seems that
in the examined magnetic field region, temperature effects do not affect our three-
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Figure 6.8: Three-body loss coefficient K3 as a function of the magnetic field for
the different spin states and temperatures. The solid black line is the arithmetic
mean value of K3 for the 215 nK sample (see figure 6.7). The squares, triangles
and dots are the values obtained for a 7µK sample. For a better comparison those
values were multiplied by 5.57 to directly coincide with the cold data. One sees
that the behavior of K3 as a function of the magnetic field is identical although
the temperature is different by more than a factor of 30. The offset between both
temperatures is explainable by the large error for the trapping frequency for the
7µK sample.

body loss process for temperatures below 7µK.
The absolute scale changes within our uncertainties (which are quite large, due

to the ∝ ω̄6 dependency of K3) and we can therefore not make any precise pre-
dictions for that.

6.3 Theoretical Interpretation of Our Data

Here we will examine how we can relate the experimental data of the three-body
loss (section 6.2) with the universal three-body theory developed in chapter 3.
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6.3.1 Effective Scattering Length in a Three-Component Fermi
Gas

Most of the theoretical predictions and considerations (see chapter 3) we have
discussed so far, were developed for identical bosons. Since three non-identical
fermions show some similarities to the case of identical bosons (e.g. no Pauli
blocking for three-body processes involving all states) we wanted to use those pre-
dictions for our experiements (also because three-body recombinations in fermionic
samples have only been theoretically studied for the one or two-component case
e.g. [Sun03]). However, one fundamental difference from the bosonic case is that
we are working with three dinstinguishable fermions. As a result, the interactions
in our system are governed by three different s-wave scattering lengths (a12, a13

and a23). Hence the fermionic three-body interactions are not limited to the sym-
metric case, where three particles interact with the same coupling strength. This
fact enables us to access a novel physical system, which was so far not experi-
mentally available. However, the same fact also makes the theoretical treatment
more elaborate. Therefore, it is of great help to introduce an effective “mean scat-
tering” length am. This mean scattering length should combine all three different
interactions in such a way that it resembles the systems key properties at least for
the magnetic field of interest.
Since in our system all three states are part of a nuclear spin triplet, the possible

two-body s-wave scattering lengths have some similarities (see figure 6.9). All
of them are negative for small fields, they all cross zero around 530 Gauss and at
roughly 300 Gauss they all exhibit a local minimum.
We noted earlier (see for example figure 6.3) that three-body processes still occur

when one scattering length is small and the other two are large. Therefore, the
effective interaction strength should resemble this. The cross section for a two-
body collision of distinguishable fermions in the low-energy limit is given by

σ = 4π a2. (6.10)

If one now considers a three-body collision, mediated by two subsequent two-
body collisions as shown in figure 6.3, an adequate way to combine scattering
lengths would be proportional to ∝ a2

ij a
2
jk, where j is the mediating species.

Now, one only needs to sum over all possible combinations and obtains:

a4
m = a2

12 a
2
13 + a2

12 a
2
23 + a2

13 a
2
23, (6.11)

am = 4

√
a2

12 a
2
13 + a2

12 a
2
23 + a2

13 a
2
23. (6.12)

In some cases it will also be useful to define:

am,1/3 =
4

√
1

3
(a2

12 a
2
13 + a2

12 a
2
23 + a2

13 a
2
23). (6.13)
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Figure 6.9: (a) All two-body s-wave scattering lengths as a function of the mag-
netic field. (b) shows the obtained effective scattering length in the region of
interest with and without the 1/3 factor (see equation 6.12 and 6.13). For the later
analysis the van der Waals length lvdW ≈ 60a0 and the positions of the recombi-
nation maxima (at 127 and 498 Gauss) are also plotted. One sees that |am| . lvdW
below 50 Gauss and at about 550 Gauss, in between the mean scattering length is
negative and exhibits a local minimum at about 300 Gauss.

However, the numerical factor is on the order of one and the later analysis will
only depend on the relative change of am, consequently this factor is not essential.
Figure 6.9 shows the values of am and am,1/3 obtained for the low-field region.
The van der Waals length and the maxima of the three-body loss are also plotted
to facilitate later comparisons. With this effective interaction strength we are able
to compare our data with the theory developed for bosons. One can see in figure
6.9 that the effective scattering lengths are, at the position of the two loss maxima,
significantly larger than the van der Waals length (more than a factor of 5). In
the Lithium case, this short range length scale is lvdW = 62.5 a0. This implies
that the system behaves (at least from about 100 to 500 Gauss) universal and thus
one can neglect all effects stemming from the short range characteristics of the
interaction potential. Thus we can make use of the theory developed for such
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universal systems (e.g. [Bra06] or chapter 3).

6.3.2 Limits of Three-Body Recombination and Thermal Ef-
fects

In the theoretical considerations (see section 3.3.3), it was mentioned that the
three-body recombination can be affected by temperature effects and limitations
due to unitarity. Thus we will now examine how these processes affect our exper-
iments. The original relations for these limitations were derived in [D’I04] for a
bosonic sample and we adapted their model to describe femionic systems.

Unitary limitation

The values we obtained for the three-body loss coefficientK3 are several orders of
magnitude larger than the values measured for bosonic samples [Web03b, Bur97].
Therefore, one has to check if K3 is already limited by unitarity. This limit is the
maximum value for a given temperature. It is reached if all three-body collisions
lead to three-body recombination and hence no elastic three-body collisions occur.
The limit can be easily obtained from the formula given in [D’I04]:

K̄3 =
∑
J,π

∑
i,f

32N ! (2J + 1)π2 ~
µ k4

∣∣SJ πf,i ∣∣2 . (6.14)

Here, due to a different definition of the three-body loss coefficient our K3 =
K̄3/2, J is the total orbital momentum involved, π the overall parity, µ is the
three-body reduced mass (µ = m/

√
3), k =

√
2µE/~2 is the wave number and

i and f are the possible initial and final states, respectively. N is the number
of identical particles participating in a three-body event, in our case N=1 (for
identical bosons N this would be 3). In our experiments only s-wave interactions
play a role, therefore we only take the J = 0 term into account. The initial state
is given by three scattering atoms (“i = AAA”) and the final state by all possible
“high-energy” scattering states of a deeply bound dimers plus a free atom (“f =
X”).
The unitarity limit can be obtained from equation 6.14 by setting |SX,AAA|2 = 1,

which means that every collision event leads to recombination. To account for
the fact that one has a sample with fixed temperature and not with fixed energy in
experiments, one additionally has to average K3(E) to obtain the thermal average
〈K3〉 (T ). It turns out that this only introduces another factor of 1/2 for unitarity.
Including all this, the maximal K3 is given by

K3,max =
32π2 ~
µ k4 4

=
32π2 ~5

µ3(kB T )216
. (6.15)
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If one plugs in the parameters of our experiment, the result is:

K3,max(215nK) = 1.52× 10−19 cm
6

s
. (6.16)

This is several orders of magnitude larger than our experimentally determined val-
ues (our maximum≈ 8×10−23 cm6/s), hence our data are well below the unitary
limit in the low-field region (below 600 Gauss) and for the cold sample. For the
“warmer” sample (T = 7µK) one obtains K3,max(7µK) = 1.44× 10−22 cm6/s,
which is about a factor of 10 larger than the measured values, hence we are still
below the unitarity limitation.
As we did not measure K3 for the regions of the Feshbach resonances, we are

not able to conclude anything definitively for that region so far. But if one looks
at the data of [Huc08], who determined K3 also for values in the resonance re-
gion (their maximum value is about 1 × 10−21 cm6/s), then their loss coefficient
is on the same order of magnitude than the unitary limit for their temperature
K3,max(1.9µK) = 1.95× 10−20 cm6/s.

Thermal effects

To check whether thermal effects affect the obtained results, D’Incao and cowork-
ers [D’I04] introduced a critical scattering length, defined by

ac =
~√

mkB T
. (6.17)

For scattering lengths significantly smaller than this value, temperature effects,
like washing out possible Efimov resonances, should not matter.
For T = 7µK one obtains ac = 2030 a0, which means that in the low-field

region, where all scattering lengths are smaller than 900 a0 temperature effects
are negligable for our experimental parameters. This explains why the 215nK
and 7µK data behave similarly as a function of the magnetic field, although the
temperature is different by a factor of about 30.
From equation 6.17, one can calculate a temperature Ttherm above which thermal

effects come into play. This can be done by plugging in the maximum absolute
value of the scattering length in the region of interest. From figure 6.9, we see that
am,max ≈ −800 a0, hence Ttherm is about 45µK.
For the high-field region the case is different. There, we measured loss from a

thermal sample with a temperature of 1.2µK, thus ac(1.2µK) = 4900 a0. This
means only for a � ac temperature effects should not occur. If one looks at the
scattering lengths in that region (see figure 6.5) one observes, that above ≈ 950
Gauss thermal effect should not significantly alter the results.
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If we examine again the experiments performed in [Huc08], we see that ac(1.9µK) =
3895 a0. Hence, for all data at high magnetic fields (600-1000 Gauss) |a| > ac
and thus thermal effects can not be neglected.
In conclusion, we can state that for all our measurements we are not limited by

unitarity. Additionally, we calculated that in the low-field region thermal effects
only play a role for temperatures & 45µK. This explains why we did not see any
change in the shape of K3 in the low-field region for temperatures up to 7µK (see
section 6.2.3). In the high-field region, thermal effects should not be important
for magnetic fields above 950 Gauss, but they cannot be neglected in the region
below that value. This shows that if one wants to examine the region of strong
interaction, one has to use a extremely cold sample to enshure that thermal effects
do not affect the measurements.

6.3.3 Theoretical Prediction for the Three-Body Loss Coeffi-
cient

In the present section, we will show how we can relate the experimental data of
three-body loss with theory. Since we will apply the theory developed for the case
of bosonic samples, we will use the effective mean scattering length am that was
introduced above (for the sake of simplicity we will omit the index m and refer to
the mean scattering length as a from now on).
We will first focus on the low-field region where we determined K3. For our

analysis we use formulas derived in chapter 3 and [Bra06]. This theory is based
on the universal behavior of systems with large scattering lengths.

Low-field region

Several years ago, it was shown that in the low-energy limit the three-body recom-
bination rate and thus the three-body loss coefficient into a deeply bound dimer
should scale with the scattering length to the fourth power [Esr96, Nie99]:

K3 = C(a)
~ a4

m
, (6.18)

where C is a factor, which depends on the scattering length. It was also stated
by [Esr96] that C(a) has resonances, wherever a three-body bound state crosses
the three-atom continuum. Additionally, it was predicted that those resonances
should show a log-periodic dependence on the scattering length (see [Bra06] or
section 3.3).
During the first analysis of our experiments, we were puzzled that our data of

the three-body loss coefficient did not resemble the expected a4 dependency. To
clarify the behavior of the three-body loss, it is helpful to divideK3 by a numerical
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constant×a4. The result is proportional to C(a) as defined above and can be seen
in figure 6.10. From this data it is then clearly visible that C(a) shows two distinct
peaks, a narrow one at 127 Gauss and a broader one at about 500 Gauss.
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Figure 6.10: Figure (a) shows the values of the three-body loss coefficient K3

together with a numerical constant × a4
m. In (b) the arithmetical mean of K3 is

divided by this factor, the result is C(a) (defined in the text). Here, the two peaks
are more pronounced and hence easier to observe. The peak maxima are located
at 127 Gauss and around 500 Gauss.

The observed positions of the peaks are located in a region where am > 5 lvdW ,
hence the physics should be universal and only depend on the scattering length.
In fact, we noticed in chapter 3 that to describe the three-body observables of
a universal system, one actually needs an additional three-body parameter (e.g.
κ∗). If inelastic processes occur this three-body parameter can be complex. The
imaginary part is called inelasticity parameter η∗ and can be connected to the
width of the respective three-body resonances.
If one examines the scattering lengths at the resonance positions, one notices that

the resonances occur at about the same value of am (roughly −400 a0). Addition-
ally in this magnetic field region a� lvdW , thus universality is applicable. These
two facts are strong evidences that we indeed observe one Efimov-like three-body
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bound state that crosses the continuum at two different fields. As explained ear-
lier, this three-body bound state opens an additional loss channel into a deeply
bound dimer state plus a free atom at the interaction strength, where the trimer
state reaches the zero-energy continuum. This leads to a resonantly enhanced
three-body loss rate, commonly referred to as Efimov resonance.

three atom 
threshold

atom dimer
threshold

(3)
(2)

(4)
(5)

(1)

Figure 6.11: Efimov’s scenario near a Feshbach resonance. Shown are several Efi-
mov trimers that connect the three-atom continuum with the atom dimer thresh-
old. The red line shows what happens in our case if the magnetic field is increased
from 0 to about 600 Gauss. At a certain interaction strength (2), the hyperspher-
ical potential supports a three-body bound state. If the magnetic field is further
increased, the trimer state becomes deeper bound. At about 300 Gauss the mag-
nitude of the scattering length starts to diminish again (3), thus the trimer binding
energy is reduced until the trimer state hits the continuum (4). Figure adapted
from [Kra06a].

However, in our case, the scenario is different from the one that is suggested
around a Feshbach resonance, where Efimov predicted an infinite number of three-
body bound states for diverging scattering length. In our system below 50 Gauss
the scattering length is . lvdW ( (1) in figure 6.11) but if one increases the mag-
netic field, the interactions become larger and one enters the universal regime. At
a certain interaction strength the attraction between three atoms is strong enough
to form a three-body bound state (corresponds to (2) in figure 6.11 and happens
at a field of 127 Gauss). If the magnetic field is then further increased, the trimer
binding energy grows as long as the magnitude of the scattering length increases.
Above about 300 Gauss (3), the absolute of the scattering length starts to diminish
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again, thus the trimer binding energy also decreases until the interactions become
so weak that the trimer state reaches the continuum ((4) corresponds to a magnetic
field of about 500 Gauss). At about 550 Gauss (5), the scattering length is once
again on the order of the short range length scale (lvdW ).
Since all the assumptions made for the derivation of the three-body loss into

deeply bound dimers in chapter 3 seem to be satisfied, we can try to fit the ex-
perimental data with the formula given in equation 3.32. This equation describes
three-body recombination into deeply bound states for a universal system with
a < 0 in the low-energy limit:

K3,deep =
c sinh (2 η∗)

sin2 [s0 ln (a/a∗)] + sinh2 η∗

~ a4

m
, (6.19)

here s0 = 1.00624 is the scaling parameter and c is a numerical constant. η∗
is the inelasticity parameter earlier mentioned and a∗ is one possible choice for
the three-body parameter. This three-body parameter “fixes” the position of the
Efimov reconances and those resonances occur for a = a∗

(
eπ/s0

)n (see section
3.3.3).
The overall amplitude of the three-body loss coefficient can, in principle, be cal-

culated (e.g. using effective field theory). In fact, [Bra08] is able to determine
c in our system. Their value is about a factor of 5 lower than our data, but tak-
ing into account the large uncertainty for the absolute scale in our measurements,
this is still a reasonable agreement. Their model is based on the Skorniakov-Ter-
Martirosian equations and takes all three different scattering lengths into account1.
Therefore, it is significantly more complicated and elaborate than the model we
are using here. Thus we use c as a free fitting parameter in the following analysis.
The fit and the data can be seen in figure 6.12. To obtain the fit (solid line), we

used the formula 6.19, with three free parameters (c, η∗ and a∗). The values were
chosen such thatK3,deep fits the narrow loss resonance around 127 G. For the scat-
tering length we use the mean effective scattering length defined in equation 6.12
and from this fit we obtain: c = 1871, η∗ = 0.08 and a∗ = −384 a0. One sees that
the region around the lower loss feature can be well explained using this relatively
simple model, but for magnetic fields higher than about 250 Gauss the model does
not describe the data very well. There are several explanations for this discrep-
ancy. First we utilize a simplified model, which uses the mean scattering length.
This could partcicularly lead to problems in the region where some of the differ-
ent scattering lengths that enter am are smaller or comparable to lvdW (happens for
example for fields & 500 Gauss). Here, the universal behavior breaks down and it
is not easy to predict which consequences this has for three-body recombination.
In the region where the sample is relatively stable (below about 100 Gauss), the

1In the next section we will discuss their approach and results in more detail.
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Figure 6.12: Experimental data of the three-body loss coefficient as a function
of the magnetic field. The solid line is a three parameter fit using K3,deep from
equation 6.19, which was optimized to fit the data at the narrow loss resonance.
The accordance to the lower peak is clearly visible, but the broader peak at around
500 Gauss and the linear slope between the maxima are not well discribed by this
prediction.

measured K3 is significantly above the theoretical prediction. A reason for that
could be that our model neglects the very small two-body losses. They would
only matter where the three-body recombination rate is small and their disregard
would lead to an overestimation of K3. Another explanation could be that we
used constants do describe the width η∗ and the three-body parameter. In princi-
ple, these values are smooth functions of the magnetic field (see [Bra04, Bra01]).
In these publications, E. Braaten and coworkers state that these functions can be
approximated by constants near a sufficiently narrow Feshbach resonance. In our
case, the resonances are rather broad (e.g. width for the 834 Gauss resonance in
the |1〉|2〉 channel is about 300 Gauss (from [Bar05])) and 130 Gauss is still about
twice the width away from the resonance.
Therefore, we fitted the upper half of the magnetic field region independently (see

dashed line in figure 6.13) and found that the behavior of K3 above 250 Gauss is
described best with η∗ = 0.15. Hence, to account for the observed change in
η∗ as a function of the magnetic field, we linearly extrapolated between the two
independently obtained values (η∗ = 0.08 at 127 Gauss and η∗ = 0.15 at 498
Gauss). The result is K3,deep,η(B) and can be seen in figure 6.13 as the solid line.
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The improvement compared to the simpler model with a constant η∗ is clearly
visible. Up to 400 Gauss this model describes well the measured behavior. The
region of the broader peak is however still not perfectly characterized, it looks as
if the change in the inelasticity parameter is still not adequate.

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 01 0 - 2 5

1 0 - 2 4

1 0 - 2 3

1 0 - 2 2
 K 3 , d e e p , η( B )
 K 3 , d e e p
 | 1 >
 | 2 >
 | 3 >

K 3 [c
m6 /s]

m a g n e t i c  f i e l d  [ G a u s s ]
Figure 6.13: Fit for K3, with η∗ depending linearly on the magnetic field (called
K3,deep,η(B), solid line). This enhanced model improves the accordance of model
and data especially for the linear slope between the loss maxima (dash-dotted line
shows the model for constant η∗). The dashed line shows the fit to the magnetic
field region above 250 Gauss with an inelasticity parameter η∗ of 0.15. The up-
per resonance is still not resembled perfectly. The parameters c and a∗ were not
changed with respect to the previous fit in figure 6.12.

In the 6Li system, the scattering length can be negative far on the BEC side
of the Feshbach resonances. The reason for this is the large and negative triplet
background scattering length. Thus although we are in a regime where no shal-
low bound state occurs, we know the deeply bound states, which are nearest
to the continuum, namely the states that are responsible for the respective Fes-
hbach resonances: the molecular states with S = 0, F = 0, mF = 0 and
S = 0, F = 2, mF = 2, 1, 0 (see section 2.1.3). They all tune roughly with
two Bohr magnetons compared to the continuum, thus we can make a crude esti-
mation of their binding energies:

EB = 2µB(B −B0), (6.20)

where µB is Bohr’s magneton and B0 the magnetic field of the Feshbach reso-
nance. This approximation holds only far from the Feshbach resonances, where
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the molecular states tune nearly linear with the field compared to the continuum.
Near the respective resonance, the binding energy of the then only weakly bound
(shallow) dimer is ∝ ~2

ma2 . In the magnetic field region we examined, the bind-
ing energy varies substantially. For example the S = 0, F = 2, mF = 0 bound
state, which is responsible for the narrow 543 Gauss Fesbach resonance in the
|1〉|2〉 channel, has a binding energy of about h × 120 MHz at 500 Gauss and at
127 Gauss the binding energy is already about h× 1164 MHz. Thus it is obvious
that the inelasticity parameter η∗ should change significantly in this magnetic field
region.

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 01 0 - 2 5

1 0 - 2 4

1 0 - 2 3

1 0 - 2 2  K 3 , m e a n
 K 3 , d e e p ,  n = 1
 K 3 , d e e p ,  n = 2
 K 3 , d e e p ,  n = 0 . 5
 K 3 , d e e p ,  n = 0

K 3 [c
m6 /s]

m a g n e t i c  f i e l d  [ G a u s s ]
Figure 6.14: The squares show the arithmetic mean value of the experimental data
forK3. The lines are the fits to that data using different dependecies of η∗ with the
dimer binding energy (described in the text). The solid line is a fit for η∗ ∝ 1/EB
and best resembles the behavior of the measured values.

As η∗ is a measure for the width of the respective three-body bound state it
should, at least approximately, scale proportional to ∝ 1/ (EB)n (n beeing a con-
stant > 0). This means the shallower the trimer is bound, the shorter its lifetime
and thus the broader the observed resonance. It is so far by no means clear how η∗
should scale exactly with the dimer binding energy or if there is a simple scaling
law at all, but there are theoretical efforts under way to analytically calculate this
dependency [Bra]. We tried different values for n (namely n= 0, 0.5, 1, 2) and the
n=1 case described the data the best. We define

η∗(EB) = A
1

(EB)n
, (6.21)
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with a numerical constantA, to fix the width of the narrow resonance (A is chosen
such that η∗(EB) = 0.085 at 127 Gauss and B0 = 543 Gauss). The result of this
model for n=1 can be seen in figure 6.14 as a red solid line. The other parameters
(c and a∗) are the same as in the previous fits. This model describes the data
impressively well. Especially the linear slope between the two loss resonances
is very well resembled. There are still some small discrepencies, especially at
around 500 Gauss, but they are most likely due to non-universal behavior and due
to the asymmetry in the scattering lengths.
To sum up, we were able to reproduce the experimental data for the three-body

loss coefficient with a model based on the universal description of recombination
into a deeply bound dimer plus atom. For certain interaction strengths the three-
body recombination rate is enhanced. It is most likely that an Efimov-like three-
body bound state crosses the continuum for these values of the interaction. We
observe two different magnetic fields, where such a resonant behavior occurs. The
behavior of the interaction strength in that region suggests that the same trimer
state is responsible for both observed resonances. Furthermore, the shape of these
resonances differ significantly and a model in which the width of the Efimov state
scales inversely proportional to the shallowest dimer state binding energy best
resembles the experimental data. The agreement between our relatively simple
model, which uses only a mean effective scattering length, and the data for the
three-body loss coefficient is remarkable and suprising. This shows the strong
impact of universality on three-body processes in ultracold gases.

High-field region

We have not been able to measure the three-body loss coefficient in the high-field
region so far. The reasons for that are problems with the Feshbach coils and a re-
cent upgrade of the experimental apparatus. The measurements can, in principle,
be done relatively fast and are planned to be carried out in the near future. One
important problem with those measurements will be to create a sufficiently cold
sample since the interactions are stronger for the high-field region above all Fes-
hbach resonances (> 843 Gauss) and thus thermal effects start playing a pivotal
role at higher temperatures.
Nevertheless, we can draw some conclusions on possible three-body resonances

due to Efimov trimers from the measurements where we recorded the remaining
fraction after a certain time at different magnetic fields (see figure 6.5). In section
6.1.2, we stated that it seems like the observed loss could be explained only with
the two-body scattering lengths. This is, as we showed in the theoretical con-
siderations not true for universal three-body physics. To completely describe the
system one three-body parameter (e.g. κ∗) is needed and additionally one needs
an inelasticity parameter, which describes the width of the Efimov state. From K3
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data above all resonances one should be able to extract those parameters and thus
one could predict the binding energies and possible zero-energy resonances of the
trimers. However, we are not able to provide a quantitive analysis, because we did
not measure K3 in that region. Nevertheless, we can make some predictions on
possible loss resonances in the magnetic field region above about 950 Gauss. Our
data support the statement that in the region above 950 Gauss no loss resonance
occurs. This region corresponds to a mean scattering length range from about
−5500 a0 to about −2500 a0 (we cannot access weaker interactions with am < 0
than ≈ −2500 a0 because of the large background scattering length in this re-
gion). Hence, either above or below this interaction strength a trimer state should
cross the continuum. The large loss even for moderate scattering lengths near
1400 Gauss leads us to believe that there is a trimer state relatively near below the
continuum, but as the scattering length saturates at a value of about −2000 a0 this
state does never reach the continuum. It rather stays at a constant binding energy
for fields above 1100 Gauss. This trimer state should in principle be significantly
narrower than the states we analyzed in the low-field region. The reason for this
is that above all resonances the bound dimer state closest to the three-atom con-
tinuum is extremely far away. Hence, the probability to enter this deeply bound
dimer state in three-body recombination should be rather small. Consequently this
would also lead to longer lifetimes of the possible Efimov trimer in that region,
which could pave the way to interesting new physical phenomena due to a trimer
state below the continuum and almost complete symmetric (a12 ≈ a13 ≈ a23)
interactions in all possible channels.
This analysis is, however, highly speculative and one should measure K3 with

a cold sample (order of 100 nK) in order to get more quantitative and definitive
insights.

6.4 Theoretical Responses to Our Experiments
Soon after the publication of our work [Ott08] several theorists tried to analyze
and explain our data [Bra08, Nai08, Sch08a] (all appeared within half a month).
The groups used different theoretical approaches for their predictions but their
results are all rather similar. All of them independently assumed that an Efimov-
like trimer state reaches the three-atom continuum and this leads to the observed
resonances in the three-body loss. We will now give a short overview on their
methods and their results.
[Bra08] uses the Skorniakov-Ter-Martirosian equations and the optical theorem

to directly obtain the three-body loss coefficient. This model takes into account all
different scattering lengths and predicts a scaling of the interaction which is quite
similar (up to numerical factors of the magnitude of one) to our mean scattering
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length. For the region of the narrow loss resonance, they obtain that K3 scales
with 0.37 (a a23)4, where a12 = a13 = a. For the intermediate region where all
scattering lengths are large, they obtain a scaling similar to a4

m,1/3 (as defined in
equation 6.13). Only for the region of the broad resonance where a12 < a23 < a13,
there is no simple scaling law and am is therefore not a very good approximation.
This fact could be the reason that our model does not perfectly describe the data
there, even if η∗ is varied as a function of the magnetic field.
Additionally, E. Braaten et al. also examined the high-field region. By using the

data of [Huc08] (reaching up to 950 Gauss) to determine the three-body parameter
and predict an additional Efimov resonance at around 1160 Gauss. This prediction
could not be confirmed by our measurements in the high-field region. The reason
for that could be the little amount of data available (only two data points) and
changes due to temperature effects in the experimental data of [Huc08].
In [Nai08], P. Naidon et al. use the hyperspherical description to derive an equa-

tion for the hypersperical wavefunction, which is then solved numerically. As a
result, the binding energy and width of the possible Efimov trimer could be calcu-
lated (see figure 6.15). They are also able to show that from universality and the
behavior of the scattering lengths it follows that the trimer state that crosses the
continuum at 127 Gauss reaches the continuum again at about 500 Gauss.

Figure 6.15: Binding energy of the Efimov trimer (solid line) as a function of the
magnetic field. The vertical bars corresond to the width of the state. The dashed
curves are estimates for the binding energies of trimers of other spin channels.
Figure taken from [Nai08].

To calculate the three-body loss rate, [Nai08] determine the probability that three
atoms are close together (hyperradius R ≈ 60 a0), which is in general propor-
tional to the recombination rate into the deeply bound dimer and free atom. Then
this probability is rescaled and the imaginary part of the three-body parameter is
fixed (corresponds to what we earlier called the inelasticity parameter η∗ and de-
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scribes the width and lifetime of the trimer state) such that the lower peak is well
described by this theory. The result obtained looks similar to the result of [Bra08]
and our model using a constant η∗ (see figure 6.12). P. Naidon et al. explain the
discrepancy near the broader resonance with non-universal behavior and a pos-
sible magnetic field dependence of the three-body parameter. From the binding
energy and width of the Efimov trimer state they are able to infer that the lifetime
of the trimer is about 50 ns at 300 Gauss. In addition, it could be calculated how
non-Efimov trimers originating from other channels would scale with the mag-
netic field. The result is illustrated in figure 6.15 by dashed lines and shows that
these states would tune monotonically with the magnetic field, which is not very
probable if one looks at the behavior of the three-body loss.
The third paper dealing with our data is [Sch08a]. Here R. Schmidt et al. use a

completely different approach to tackle the three-fermion problem. In a functional
renormalization framework they use an average action that takes into account free
fermiones (three types), all possible dimers (bosons), a fermionic trimer and all
possible interactions between those. The three-body loss coefficient is estimated
to be proportional to the square of the amplitude to form a trimer out of three
fermions (with energy→ 0) times the trion propagator for small momenta. This
enables them to fit our K3 data using three different parameters: an overall offset,
the location of one peak and the decay width, which was chosen to be a constant.
The result looks again similar to what the other theories observed, the model fits
well around the lower resonance but predicts a too narrow peak around 500 Gauss.
Furthermore, the binding energy of the trimer can be estimated. The result looks
similar to the binding energies obtained in [Nai08], both show a slower increase
of the binding energy near the lower resonance and a steeper rise near 500 Gauss,
a maximal binding energy of about 10 MHz and a maximal width of several MHz.
To sum up, three different groups were able to fit our data for the three-body

loss coefficent, using totally different methods they all obtained similar results us-
ing a comparable set of parameters: one three-body parameter, which can be fixed
through the lower sharper resonance, a constant parameter that describes the width
and lifetime of the trimer state and a overall offset. E. Braaten et al. [Bra08] were
able to explicitly calculate this offset and the value is of the same order of magni-
tude than our experimental data. The results of all groups showed deviations from
the experimental data in the region of the upper resonance, which were explained
with non-universal behavior and the approximation of a constant width parameter
for the complete magnetic field region. Two of the groups could actually calculate
the binding energy of the trimer state and their results are consistent, both show a
binding energy of about 10 MHz at 300 Gauss.
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Chapter 7

Conclusion and Outlook

The first realization of a balanced three-component Fermi gas, which is presented
in this thesis, paves the way for studying a novel fermionic few- and many-body
system. The present work describes how such a sample can be produced in the
quantum degenerate regime with about 50 000 particles in each of the three Zee-
man sublevels. This generic three-state system provides an excellent starting point
for future experiments, which can be confirmed by the vast amount of theoretical
work on the physics of such a three-component Fermi gas in the past few years.
For systems where the scattering lengths are significantly larger than the short

range length scale (in our case given by the van-der-Waals length lvdW ≈ 60 a0),
the physics should be universal. Thus the system should behave independently
of the short range characteristics of the interaction potential. Hence the results
obtained in such a system can be applied in principle to every fermionic system
which also behaves universally, as e.g. strongly interacting neutrons, 3He or part-
cles inside a 12C nucleus. This universal behavior, together with the possible
resonant interactions accessible through Feshbach resonances, makes our system
especially interesting for other fields of physics. As the two-component Fermi
gas can be used as a simpler system to study complex solid state phenomena, our
three-component system, together with its SU(3) symmetry, could play the same
role for high energy physics and help to understand how quarks group together
[Wil07, Rap07].
Furthermore this thesis contains the first measurements on such a three-component

Fermi gas. We were able to determine the three-body loss coefficient K3 for dif-
ferent magnetic fields and hence as a function of the interaction strength (see also
[Ott08]). The back then unexplainable structure of the three-body loss in the mag-
netic field region below 600 Gauss could be explained in this thesis with a model
based on the universality of the system. The theory that was able to describe our
data uses approaches developed in the 1960s and 1970s by L.D. Faddeev [Fad61]
and V. N. Efimov [Efi71]. Their ideas were adapted and tailored to ultracold
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bosonic systems by E. Braaten, H.W. Hammer, B. Esry, J.P. D’Incao, H. Suno, C.
Greene, E. Nielsen, J. Macek and many others [Bra06, Esr96, D’I04, Nie99].
Concerning three-body loss, the three-component Fermi gas can be treated simi-

larly to the case of identical bosons. However, in contrast to the bosonic case, the
interactions between the three states are not equal. In principle, we have to deal
with three different scattering lengths (a12, a13 and a23, where aij is the scattering
length between state |i〉 and |j〉).
We were able to combine the three different scattering lengths to an effective

interaction parameter. With this effective mean scattering length defined as

am,1/3 =

(∑
ijk

1

3
a2
ij a

2
jk

)1/4

, (7.1)

we could show that the formulas derived for the bosonic case could be applied
with only minor changes. This significantly simplified the analysis of the three-
body loss processes occuring in a three-component Fermi gas.
Consequently, we were able to explain the experimentally determined three-body

loss coefficient with the function:

K3 = C(am,1/3)
~ a4

m,1/3

m
. (7.2)

C(am.1/3) is a factor that depends on the scattering length and shows resonant en-
hancement for interactions where an Efimov-like three-body bound state [Efi71]
crosses the continuum. This is commonly referred to as an Efimov resonance
[Bra06]. Those resonances can in principle be thought of as the three-body anal-
ogy of a Feshbach resonance [Nai08].
The trimer states leading to the zero energy resonances are sometimes also re-

ferred to as “Borromean” states [Zhu93], named after the Italian aristocratic Bor-
romeo family. Their coat of arms shows the three “Borromean rings” (see figure
7.1) which are linked in such way that if one removes one of the rings, the other
two also disengage. In our case this means that the three states form a three-body
bound state in a regime where the interatomic potential is too weak to form a two-
body bound state. Hence if one removes one of the particles the other two will not
remain bound in a dimer.
In our experiments, the observed three-body loss occurs due to three-body re-

combination. In this process, two of the three interacting particles form a bound
state and the third particle carries away the excess momentum. The binding en-
ergy released in such a process is converted into kinetic energy of the dimer and
the atom. If the dimer is deeply bound, the energy is more than sufficient to leave
the relatively shallow dipole traps in our experiments. Accordingly this process
leads to loss of atoms from the trap. At an Efimov resonance, the three-body
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Figure 7.1: Borromean rings (figure from [Can06]).

bound state at the continuum opens an additional channel for three-body recom-
bination, hence enhancing the loss resonantly. To fully describe this system one
needs, in addition to the scattering lengths, a three-body parameter that fixes the
position of such resonances. Normally, one uses the so-called Efimov parameter
κ∗, which determines the binding energy of the trimer states for a → ±∞. In
the case of recombination into deep dimers one needs an additional inelasticity
parameter (in [Bra06] called η∗, sometimes also referred to as the imaginary part
of the three-body parameter [Nai08]), which effectively describes the loss into all
possible deeply bound dimers and an additional atom. This loss mechanism gives
a certain width to the zero-energy resonance and is connected to the lifetime of
the trimer state.
In the magnetic field region below 600 Gauss we were able to observe two loss

resonances and reference measurements with all possible two-component mix-
tures showed that those resonances are truly a three-state effect. The behavior
of the scattering lengths in that region strongly suggests that the resonances are
due to the same trimer state which crosses the continuum at about 127 Gauss and
around 500 Gauss and has a binding energy of about 10 MHz at 300 Gauss (bind-
ing energy from [Nai08, Sch08a]). A schematic view the trimer binding energy
can be seen in figure 7.2.
The width of the observed resonances differ significantly, this effect was so far

not considered in previous theoretical work. Seeking a satisfactory explanation
for this, we introduced a magnetic field dependence of the inelasticity parameter
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η∗. This was motivated by the fact that in the region we were examining, the fi-
nal states of the three-body recombination process (deeply bound dimers) change
their binding energy by almost one order of magnitude. It is then comprehensi-
ble that the lifetime and therefore also the width of the corresponding trimer state
should also undergo significant change. We proposed a scaling of η∗ ∝ 1/(EB)n,
where EB is the binding energy of the deeply bound dimer states. The result-
ing three-body loss coefficient obtained for n = 1 showed a surprisingly good
accordance to the experimental data (see figure 6.14).
So far, these Efimov resonances have only been observed in ultracold bosonic

133Cs [Kra06b] and predicted for three 4He atoms [Gri00, Lee07]. Our system
differs strongly from these systems and from the one Efimov initially thought of
since it consists of fermionic atoms in three distinguishable states. Accordingly,
these results provide conclusive evidence of the impressive impact of universality
in systems with large scattering lengths.
After the publication of our preprint [Ott08], the behavior in the low-field region

could be remeasured at Penn State University (group of K. O’Hara), at the Uni-
versity of Tokyo (group of M. Ueda) and at MIT (group of M. Zwierlein). Several
months later, the group of K. O’Hara also published a preprint on this subject. It
deals especially with the region of the two-body Feshbach resonances [Huc08].
The theoretical efforts made to explain our observed results [Bra08, Nai08, Sch08a]

helped to elucidate the phenomena occuring in the low-field region (. 600 Gauss)
and showed the great interest in this system.
In the high-field region (& 600 Gauss), the case is, however, still not totally

solved. Above all Feshbach resonances (“BCS” side of all resonances, with a < 0
for all possible channels) the data presented in this thesis could not verify the pre-
diction by [Bra08] of another Efimov resonance near 1160 Gauss. The strong but
smoothly varying three-body loss observed in this region suggests the existence
of a trimer state right below the continuum. Owing to the large negative back-
ground scattering length of 6Li, which is about −2100 a0, the trimer state could
then never reach the continuum but rather tunes parallel to the zero-energy thresh-
old. Additionally, in the region of the resonances in the |1〉 − |2〉 and |2〉 − |3〉
channel at about 830 Gauss, another trimer state could exist and that could then
be an excited Efimov state. However, the occurence of such a state strongly de-
pends on the three-body parameter in this region. The possible scenario for those
states, together with the already observed resonances and the two-body scattering
lengths, can be found in figure 7.2.
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atom dimer thresholds
trimer state
poss. trimer states

continuum

Figure 7.2: The possible scenario of trimer states for three-component 6Li Fermi
gases together with the scattering lengths. The black lines (dashed and solid)
show the dimer plus free atom thresholds, the grey line shows the three free atom
continuum. The solid red line is the trimer state, of which we most likely observed
the zero-energy resonances. The red dashed lines show possible trimer states for
the high-field region. It is by no means clear, what happens at the different atom-
dimer thresholds.

7.1 Outlook
Three-component Fermi gases offer the possibility to study completely new phys-
ical phenomena and they enable to access a novel field of many-body physics.
Additionally, there are still many open questions concerning the few-body physics
and possible bound states of such a system. For example one could spectroscop-
ically investigate the possible trimer states (in the low- and high-field region).
Therefore, we have already experimented extensively with radio frequency (rf)
and microwave (mw) spectrocopy. We applied multiple schemes seeking to asso-
ciate trimer states with rf and mw photons, combinations of both and multiphoton
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processes. We have not been able to resolve the trimer state so far. Possible ex-
planations for this could be the relatively large width of the trimer state (several
MHz around 300 Gauss) or unfavorable transition amplitudes. Another task on
our short term agenda will be the measurement of the three-body loss coefficient
in the region above all resonances (> 850 Gauss), from which the three-body pa-
rameters in that region could be deduced. Based on this information, one could
calculate the binding energy of the trimers in that region. Additionally, the region
between the Feshbach resonances also offers interesting physics. Since Efimov’s
original work deals with identical bosons, which have only one scattering length,
there are no predictions for this region until today.
Other plans involve the study of the system’s collective behavior and dynamics.

The short lifetimes at strong interactions could be sufficient to examine how the
third component affects the collective excitations in a strongly interacting gas and
to study how unitary interactions influence the stability of such three-component
Fermi gases. There are predictions that the three-component sample should col-
lapse above a certain interaction strength, analog to a Bose-Einstein condensate
with large attractive interactions [Blu08]. A recent theoretical work also discusses
how a large inelasticity parameter η∗ could enhance the lifetime of Efimov trimers
[Wer08]. As η∗ varies between the two peaks by a factor of about 2, it could be
interesting what happens if η∗ is further increased, e.g. by coupling the trimer
state to a deeply bound molecular state. Particularly cold samples could allow
to observe phase separation and shell structures, like for instance observed in
the case of imbalanced two-component samples [Par06, Shi06]. Since the last
experimental upgrade, we have an imaging apparatus capable of resolving such
structures (see section 4.4.2). For this, however, one would need sufficiently low
temperatures that fermionic superfluidity is established (T/TF . 0.2). It remains
questionable if this is achievable in three-component samples and if the lifetimes
of such strongly interaction samples is sufficiently long to allow such a state to
form.
To enhance the stability of this interesting system and to access rich, so far un-

explored phase diagrams it would also be interesting to load the three-component
sample into an optical lattice. One could then study phenomena related to a SU(3)
Hubbard model. Additionally there are interesting predictions on exotic phases,
like “color superfluids” [Rap07, Rap08] or strange BCS like systems [Aza08].
With an additional superlattice, there are schemes for the preparation of an ex-
tremely cold three-component sample, which could also assist the production of
“color superfluid” phases [Dal08].
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Appendix A

Fundamental constants

Symbol Value Meaning

~ 1.054571628×10−34 Js Planck’s constant over 2π
h 6.62606896×10−34 Js Planck’s constant
c 2.99792458×108 m/s Speed of light in vacuum
kB 1.3806504×10−23 JK−1 Boltzmann’s constant
a0 0.52917720859×10−10 m Bohr’s radius
ε0 8.854187817×10−12 Fm−1 Electric constant
µB 927.400915×10−26 J/T Bohr’s magneton
me 9.10938215×10−31 kg Mass of a electron

mLi 9.98834146×10−27 kg Mass of a 6Li atom
ΓLi 36.898×106 s−1 Natural linewidth of the D2 line of 6Li
λLi 670.977338×10−9 m Wavelength of the D2 line of 6Li in vacuum

Table 1: Constants used in this thesis. The fundamental constants are taken from
[NIS], the properties of 6Li can be found in [Geh].
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