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Abstract:
This thesis reports on the realization of a micrometer-sized optical dipole trap for
the preparation of a highly degenerate Fermi gas of 6Li atoms. The degenerate
ensemble in the microtrap is the starting point for future experiments with a fi-
nite number of fermions. One phenomenon to study will be the formation of a
shell structure in an interacting two-component spin-mixture. 6Li is especially
well suited for such experiments due to the easy tuneability of the inter-particle
interaction by means of Feshbach resonances.
In the course of this thesis, we present our apparatus for the creation of ultracold
Fermi gases. Thereby, the main subject is the assembly of our microtrap. After
analyzing the assembly in an external test setup, we focus on the scheme for the
transfer of atoms from our large volume optical dipole trap into the microtrap. Us-
ing a non-interacting Fermi gas we were able to determine the characteristics of
the microtrap, such as lifetime and trap frequencies. Subsequently, we can give an
estimation for the degeneracy of the Fermi gas inside. As an outlook, we present
our first promising attempts to control the particle number, which is the next mile-
stone on the way towards experiments on finite systems of fermions.

Zusammenfassung:
In dieser Arbeit wird die Realisierung einer mikrometer-großen optischen Dipol-
falle für die Herstellung eines hoch entarteten Fermi Gases aus 6Li Atomen be-
handelt. Das entartete Ensemble in der Mikrofalle ist der Ausgangspunkt für
zukünftige Experimente mit einer endlichen Anzahl von Fermionen. Ein zu un-
tersuchendes Phänemen wird die Ausbildung einer Schalenstruktur in einer zwei
komponentigen wechselwirkenden Spin Mischung sein. 6Li ist besonders dafür
geeignet, weil man die Wechselwirkung zwichen den Teilchen mit Hilfe von Fes-
chbach Resonanzen leicht einstellen kann.
Im Verlauf der Arbeit werden wir unseren Experimentaufbau zur Erzeugung von
ultrakalten Fermi Gasen vorstellen. Dabei wird der Schwerpunkt auf den Auf-
bau unserer Mikrofalle gelegt sein. Nach dem Test in einem externen Aufbau
werden wir besonders auf den Transfer von Atomen aus unserer optischen Falle,
die ein großes Volumen besitzt, in die Mikrofalle eingehen. Mit Hilfe eines nicht
wechselwirkendem Fermi Gases haben wir die Möglichkeit die Eigenschaften der
Mikrofalle, wie Lebensdauer und Fallenfrequenzen, zu bestimmen. Anschließend
können wir eine Abschätzung für die Entartung des Fermi Gases in der Falle
geben. Als Ausblick stellen wir unsere ersten vielversprechenden Versuche die
Teilchenzahl zu kontrollieren vor. Die Kontrolle über die Teilchenzahl ist der
nächste wichtig Schritt auf dem Weg zu Experimenten mit endlichen Systemen
aus Fermionen.
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Chapter 1

Introduction

In 1924 Pauli introduced the spin as an additional quantum number [Pau25] with
no classical analogon, to correctly describe the splitting of lines in the atomic
excitation spectrum. The completely new concept divides particles into two cate-
gories. The quantum state of particles possessing an integer spin quantum number,
which are called bosons, is totally symmetric. The states of the complementary
group of particles having half odd-integer spin, called fermions, is totally anti-
symmetric, which results in fundamentally different physical properties. By un-
derstanding the nature of fermions, the first known few fermionic system namely
electrons in an atom could be explicitly described by quantum mechanics. Later
on with the development of the nucleon shell model, to which Goeppert-Mayer
[May49] and Jensen [Sue49] significantly contributed, the next more complicated
few fermion system had been investigated. In the mean time Fermi and Dirac had
developed their statistical description for fermions [Dir26, Zan99] which could be
soon applied to a large array of many-body systems like electrons in metals or
neutrons in neutron stars.
The observation of the quantum statistical nature of bosons and fermions in atomic
gases became probable with the development of laser cooling, proposed in 1975
[Hae75], which was possible due to increased knowledge about the internal struc-
ture of atoms and progress in laser physics. A substantial property of these atomic
gases, prepared at low temperature, is the short range of the interaction potential
compared to the inter-particle spacing. This implies that in this so called dilute
gases, the interaction can be described by a point-like collisional interaction of the
particles. In the low energy limit the scattering process is determined by only one
parameter, the s-wave scattering length, which drastically simplifies the descrip-
tion of interaction. If the scattering length is large compared to the characteristic
length scale of the interaction potential, the system is universal. In the limit of long
distances, the atomic gas exhibits identical properties as other universal systems
with possibly completely different type of interaction, independent whether the
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short range behavior differs from each other. Due to symmetry reasons, contribu-
tions of even partial waves in the scattering process vanish for identical fermions
which is the reason why they do not interact at low temperatures. However, if
interaction is desired, this can be overcome by using a spin mixture of different
hyperfine Zeeman sublevels.
To enter a regime where the quantum statistical nature of either bosons or fermions
becomes observable, several orders of magnitude in phase space have to be gained,
which implies very low temperatures of the dilute gases, which became possible
with the development of further cooling techniques. The initial attention was
directed to the statistics of bosons which led to the first direct observation of a
Bose- Einstein condensate. Since the first realization of Bose- Einstein conden-
sation in dilute gases in 1995 [And95, Dav95], experiments on these ultracold
quantum gases have evolved to an important playground for studying interesting
new physics and to test theories which can be applied to systems in "real nature".
Studying an ideal Fermi gas with no interaction [DeM99] was the first step to var-
ious following experiments with ultracold fermions.
A big breakthrough was the discovery of Feshbach resonances in quantum gases
[Ino98]. A Feshbach resonance - the term originates from Herman Feshbachs
work on resonance phenomena in nuclear physics - occurs when a bound state of
a different interaction potential is close to the continuum of the scattering state.
The scattering length diverges when the bound state coincides with the continuum
threshold of the scattering state. Magnetically tuning these states to one another
allows the scattering length to adopt arbitrary values. Feshbach resonances opened
the door to study the wide range of weakly to strongly interacting Fermi gases. In
2003, three different groups [Reg03, Joc03a, Zwi03] independently created the
first molecular BEC, where these dimers consisting of two fermions had been
formed near a Feshbach resonance. Soon after, the crossover [Bar04, Bou04]
to the side of the resonance with attractive interaction where the molecules are
continuously transformed into many-body pairs, has been investigated. The ap-
pearance of a superfluid phase was examined by [Zwi05], working with large
ensembles of cold fermions. Introducing optical lattices to cold atoms allows
for studying phenomena which occur in solid state physics such as the fermionic
Mott-insulator phase [Joe08]. The large diversity of tunable parameters in such
systems could presumably open the possibility to investigate the phenomena of
high-temperature superconductivity, which appearance in solid states is not yet
completely understood. By studying the universal properties of ultracold gases
we could even gain insight into phenomena in high energy physics and learn about
quark matter. Therefore, a first step could be for instance the investigation of ther-
mal three component Fermi gases [Ott08, Huc09].
The previous outstanding success of ultracold quantum gases for modeling many-
body systems and the investigation of few-body phenomena, recommends to ex-
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pand the field on systems of finite size, taking advantage of the exceptional nature
of ultracold gases namely the tunability of the interaction strength. Together with
the possibility to create various forms of trapping potentials, one should gain the
possibility to create a generic system for few-fermion systems in "real nature" like
the nucleons in nuclei, the electrons in atoms or atoms in cluster. Observation of
a change in the shell structure and the appearance of orbitals in such a system
could be the first phenomena to be investigated by the variation over a wide range
from no interaction to strong interaction. Starting from a highly degenerate Fermi
gas, statistically described in the limit of large particle numbers, it is interesting
to study experimentally when the thermodynamical description by a Fermi sea
breaks down and effects of finite size becomes visible.
On the way towards these systems it will be essential to fill all quantum states of
the potential by one fermion. Commonly experiments start from thermal gases
which are evaporatively cooled to the degenerate regime. However, there still ex-
ist holes - unoccupied states whose energy are lower than the energy of another
occupied state - in the Fermi Sea. If the thermal energy is larger than the level
spacing of the states it is possible that atoms are scattered to higher levels which
can be seen as an excitation inside the potential. Hence, to obtain high level spac-
ing we need a micrometer sized trap! Furthermore, this trap in combination with
a shallow trap allows for the creation of a highly degenerate Fermi gas. The real-
ization of such a microtrap for 6Li atoms will be described in the course of this
thesis. We also aim for control of the quantum states of the microtrap. Descrip-
tively by a deep cut into the Fermi sea we want to achieve control of the particle
number as well as ensure that the probability of state occupation diverges to one.

Outline

In the beginning we summarize the interaction properties of 6Li atoms at ultra-
cold temperatures including a conceptional description of Feshbach resonances.
After discussing the properties of Fermi gases, a short summary of the principle
of Laser cooling and of the optical dipole traps we use, will be given. In the third
chapter we will focus on the idea for the realization of a highly degenerate Fermi
gas. Furthermore, our method to control the quantum states of the potential which
is required for the preparation of a finite system of fermions, is described. In
the next chapter we present our apparatus for creating a degenerate ensemble of
6Li atoms, with emphasis on the detection scheme. We give a detailed descrip-
tion of the assembly of our coils, which create the large magnetic fields for tuning
the interaction strength. The fifth chapter will concentrate on the realization of the
micrometer-sized optical dipole trap. First the requirements on the high-resolution
assembly are discussed and the actual design is presented. In an external test setup
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the optical properties of the trap are determined. From this the expected param-
eters of the microtrap for trapped 6Li atoms are calculated. The limits of the
current microtrap design are discussed and compared with simulations of differ-
ent designs, which we could be able to implement in future. In the sixth chapter
we report on the creation of a highly degenerate Fermi gas in our microtrap. Ini-
tially we describe our method of spatially superimposing the microtrap with the
shallow optical crossed-beam dipole trap. After discussing the optimised trans-
fer of atoms to the microtrap, we determine the lifetime of the trapped fermions.
We also measure the trap frequencies from which we can calculate characteristic
parameters of the trapped ensemble such as the Fermi temperature. This allows
us to give an estimation of the achieved degeneracy of the prepared Fermi gas in
the microtrap. In the outlook we discuss our next step towards a finite system
of fermions. We finish by presenting our first promising attempt to control the
particle number in the microtrap.
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Chapter 2

Ultracold Fermi Gases

Our long-term goal is the preparation of a finite system of degenerate fermions.
On the way towards this, the emphasis of this thesis lies on the realization of
a highly degenerate Fermi gas in a tiny and deep potential. Therefore, in this
chapter, we give an overview over the thermodynamical properties of a Fermi
gas in the noninteracting as well as in interacting case. First we give a short
introduction to the collisional interaction at ultracold temperatures. At the end of
this chapter the cooling and trapping techniques used in the experiment are briefly
summarized.

2.1 Two-body interaction of ultracold fermions

A fundamental property of particles with half-odd-integer spin is the antisymme-
try of their total wave function which has defining consequences on their interac-
tion properties. Whether fermionic elementary particles or compound fermions in
the dilute low energy regime, they exhibit similar physical properties. For prepar-
ing a Fermi gas at ultracold temperatures interaction is required. Elastic collisions
are favoured by the experimentalists since inelastic collisions lead to a change of
the internal state and the released energy causes the particles to escape of the trap-
ping potential. For ultracold temperatures we can describe the elastic interaction
by only one parameter, the scattering length a. A nice feature of 6Li is the avail-
ability of a broad Feshbach resonance which allows for tuning of the scattering
length to arbitrary values. Thereby, we can enter the whole region of possible in-
teractions from attractive to repulsive interaction. If the scattering length is larger
than the range of the interaction potential the system exhibits universal properties
valid for all fermions only defined by the scattering length and independent of the
type of interaction potential. Thus, ultracold gases are particularly predestined for
studying phenomena arising in fermionic systems. In the following section we
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will focus on the collisional two-body interaction.

2.1.1 Elastic scattering at the zero energy limit
We are looking for the solution of two particles with an interaction potential V (r)
with equivalent mass m. As we are interested in the collisional process we only
concentrate on the relative motion of the particles since the solution of the Schrö-
dringer equation for the center of mass motion is the one of a free particle. The
Schrödringer equation then reads

(
−~~∇2

2mr

+ V (~r)

)
Ψk(~r) = EkΨk(~r) (2.1)

with the reduced mass mr = 2m and the collisional energy Ek = ~k2/(2mr).
We look for a solution for r = |~r| far away from the range of the potential being
a superposition of an incident plane wave and a scattered spherical wave with
scattering amplitude fk(θ):

Ψk ∝ eikz + fk(θ)
eikr

r
(2.2)

whereas θ (0 ≤ θ < π ) is the angle between the incident plane wave pointing
into z-direction and the direction of observation. Using flux equations we can
determine the differential cross section from the scattering amplitude:

dσ(k)

dθ
= |fk(θ)|2. (2.3)

The symmetry of the potential allows for solving the Schrödinger equation by an
ansatz using the spherical harmonics as eigenfunctions of the angular momen-
tum operator ~L2 and Lz and by a radial function which solution is given by a
superposition of spherical Bessel functions. Additionally the plane wave in the
wavefunction of equation 2.2 can be expanded by incoming and outgoing spher-
ical waves. By comparison the latter expansion with the solution given by the
Bessel functions, one obtains for the scattering amplitude:

fk(θ) =
1

2ik

∞∑

l=0

(2l + 1)Pl(cos θ)(e2iδl(k) − 1) (2.4)

with Pl(cos θ) the Legendre polynomials. δl(k) is the phase shift of the l-th partial
wave which incorporates the effect of the potential on the collision process. Then
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the total cross section is the sum of all contributions arising from each partial wave

dσ(k)

dθ
=
∞∑

l=0

σl(k) (2.5)

with the partial cross section

σl(k) =
4π

k2
(2l + 1) sin2 δl(k). (2.6)

For identical particles we cannot distinguish of the processes where the relative
particle is either scattered to angle θ or to π − θ which is why particle exchange
yield the same result. Since we are working with fermions the total wave function
has to be antisymmetric. Because of parity−1 only partial waves with odd number
contribute to the total cross section.
For low energy, however, partial waves higher than l = 0 are suppressed. The
incident energy is not large enough to overcome the centrifugal barrier in the radial
Schrödinger equation. This is why in 6Li at energy lower than E = kB × 7mk
[Jul92] only s-wave scattering can occur. Because the cross section for identical
fermions then vanishes, interaction is switched off for low temperatures. For non
identical particles s-wave scattering, which is completely isotropic, remains. In
the limit of momentum k =

√
2mrE/~ approaching 0 the cross section for non

identical fermions can be written by

σ0(k) = 4πa2 (2.7)

with a the s-wave scattering length defined by

a = − lim
k→0

tan δ0(k)

k
(2.8)

At low energy the interaction strength can now be expressed by only one parame-
ter, the s-wave scattering length a. However, a can diverge for the phase shift δ0

approaching π/2 and so consequently the cross section diverges, which cannot be
a physical solution, since the outgoing flux cannot exceed the incoming. The limit
of outgoing flux equals the incoming is called the unitarity limit. In this regime
the relation of equation 2.7 valid for ka � 1 is not correct. A more detailed in-
vestigation [Sch07, Sak94] shows that the cross section for ka � 1 is then only
dependent on the particle momentum:

σ0(k) =
4π

k2
(2.9)
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Spin mixture

As mentioned, in the low energy limit spin polarized atoms cannot interact. As
we study interacting Fermi gases, we need a mixture of non identical fermions.
At a first glance one would think of a mixture of different species which has the
advantage of setting the relative mass as an additional parameter by selecting the
species. However, an additional specie more or less doubles the effort for build-
ing and maintaining the experiment. Instead we take a spin mixture of different
Zeeman sublevels of the lowest hyperfine state of 6Li . For zero angular momen-
tum the electron spin ~s of the valence electron and the nuclear spin ~I couple to
two hyperfine states, whereas the lowest states splits up in a Zeeman doublet for
low magnetic fields. In the Paschen Back regime for fields larger than 50G, the
electron spin decouples from the nuclear spin and is aligned in the external field.
In this regime the nuclear spin is aligned separately, with 3 different possible pro-
jections to the quantization axis. In our experiment we use a mixture of the states
|ms = −1/2,mI = 1 > connected to the |F = 1/2,mF = 1/2 > state at low
field and |ms = −1/2,mI = 0 > connected to |F = 1/2,mF = −1/2 >. These
states have the advantage that they cannot undergo inelastic spin exchange colli-
sions due to the non existence of energetically reachable final states. These two
lowest states we label by |1〉 and |2〉 taking a standard nomenclature often used in
this system . The level scheme of 6Li is illustrated in the appendix. Details on the
preparation of such a mixture are described in the experimental part in chapter 4.
Here, we concentrate on the tuneability of the interaction strength.

Resonance scattering

We are interested in how the scattering length depends on the presence of a bound
state in the interaction potential close to the continuum. In the following we as-
sume a box like potential with depth U and extend b; however, the result can be
generalized to the inter-atomic potential. If we assume a potential well, one finds
that the scattering length is always positive for the repulsive interaction [Dal98].
For a box potential with a depth/extend ratio too low for supplying any bound
state near the continuum, the scattering length is small and negative while the in-
teraction is attractive. By increasing the depth the scattering length diverges to
−∞ when the potential is large enough to hold a bound state. If the state be-
comes bound the scattering length goes from +∞ to smaller positive values with
increasing distance from the continuum during the further increase of the depth.
The scattering length has to cross zero when a second bound state is getting to be
supplied by the potential. Wouldn’t it be nice to make use of such a resonance
where a bound state is provided? If one finds a possibility to change the energy of
the bound state the scattering length could be tuned to arbitrary values.
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2.1.2 Feshbach resonances in 6Li
The difference of a Feshbach resonance to the resonance described above is, that
the scattering potential does not have to provide a bound state near the collision
energy. Instead a bound state of a different collision channel is resonantly coupled
to the scattering channel. 3

0

V
c
(R)

E

entrance channel or
open channel 

E
ne

rg
y

closed channel
Eα,c

0 Atomic separation R

V
bg

(R)

FIG. 1 Basic two-channel model for a Feshbach resonance.
The phenomenon occurs when two atoms colliding at energy
E in the entrance channel resonantly couple to a molecular
bound state with energy Ec supported by the closed channel
potential. In the ultracold domain, collisions take place near
zero-energy, E → 0. Resonant coupling is then conveniently
realized by magnetically tuning Ec near 0, if the magnetic
moments of the closed and open channel differ.

achieved by optical methods, leading to optical Feshbach
resonances with many conceptual similarities to the mag-
netically tuned case; see Sec. VI.A. Such resonances
are promising for cases where magnetically tunable reso-
nances are absent.

A magnetically tuned Feshbach resonance can be
described by a simple expression2, introduced by
(Moerdijk et al., 1995), for the s-wave scattering length
a as a function of the magnetic field B,

a(B) = abg

(
1− ∆

B −B0

)
. (1)

Figure 2(a) illustrates this resonance expression. The
background scattering length abg, which is the scatter-
ing length associated with Vbg(R), represents the off-
resonant value. It is directly related to the energy of the
last-bound vibrational level of Vbg(R). The parameter
B0 denotes the resonance position, where the scattering
length diverges (a → ±∞), and the parameter ∆ is the
resonance width. Note that both abg and ∆ can be posi-
tive or negative. An important point is the zero crossing
of the scattering length associated with a Feshbach res-
onance; it occurs at a magnetic field B = B0 + ∆. Note
also that we will use G as the magnetic field unit in this
Review, because of its near-universal usage among groups
working in this field; 1 G = 10−4 T.

The energy of the weakly bound molecular state near
the resonance position B0 is shown in Fig. 2(b), relative

2 This simple expression applies to resonances without two-body
decay channels. Some Feshbach resonances, especially the op-
tical ones, feature two-body decay. A more general discussion
including decay is given in Sec. II.A.3
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FIG. 2 Scattering length a (Panel (a)) and molecular state en-
ergy E (Panel (b)) near a magnetically tuned Feshbach reso-
nance. The binding energy is defined to be positive, Eb = −E.
The inset shows the universal regime near the point of reso-
nance where a is very large and positive.

to the threshold of two free atoms with zero kinetic en-
ergy. The energy approaches threshold at E = 0 on the
side of the resonance where a is large and positive. Away
from resonance, the energy varies linearly with B with a
slope given by δµ, the difference in magnetic moments of
the open and closed channels. Near resonance the cou-
pling between the two channels mixes in entrance-channel
contributions and strongly bends the molecular state.

In the vicinity of the resonance position at B0, where
the two channels are strongly coupled, the scattering
length is very large. For large positive values of a, a
“dressed” molecular state exists with a binding energy
given by

Eb =
h̄2

2µa2
, (2)

where µ is the reduced mass of the atom pair. In this
limit Eb depends quadratically on the magnetic detun-
ing B − B0 and results in the bend seen in the inset to
Fig. 2. This region is of particular interest because of
its universal properties. In the universal limit, the state
can be described in terms of a single effective molecular
potential having scattering length a. In this case, the
wavefunction for the relative atomic motion is a quan-
tum halo state which extends to a very large size on the
order of a; the molecule is then called a halo dimer; see
Sec. V.B.2.

A very useful distinction can be made between reso-
nances that exist in various systems; see Sec. II.B.2. For
narrow resonances with a width ∆ typically well below
1 G (see Appendix) the universal range persist only for
a very small fraction of the width. In contrast, broad
resonances with a width typically much larger than 1 G

Figure 2.1: Illustration of the Feshbach resonance. The atoms enter the collision
in the open channel with kinetic energy E. If there is a close channel bound state
near the entrance energy, the open channel couples to the closed channel. The
outgoing scattering wave experiences a phase shift which leads to a divergence
of the scattering length at resonance. If one finds a way to control the energy
difference E − Eα,c, one can tune the coupling of the states and so the scattering
length. The picture is taken from [Chi06] and slightly adapted.

In very high magnetic field state |1〉 and |2〉 are totally spin polarized. The two-
particle state has to be a triplet state because of the conservation of the spin pro-
jection quantum number. Its potential in general provides less bound states than
the singlet because the antisymmetric wave function reduces the possibility of the
electrons being close together which could decrease their total energy. In 6Li the
triplet potential provides a quasi-bound state close above the continuum, from
which the large value of the background scattering length arises.
For a pictorial explanation of the Feshbach resonance we define the channel en-
ergy Eα as the internal energy of the two separated atoms following the more
detailed description of [Chi06]. A channel is called an open channel if the total
energy Etot = Eα,o+E, with E the kinetic energy, is equal or larger then the total
energy of the initial collision state; it is called a closed channel if the energy is
lower and the atoms are not able to separate to free atoms. A Feshbach resonance
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occurs when the energy of a bound state crosses the collision energy of the open
channel. The situation is illustrated in figure 2.1. By coupling of the entrance
channel to the closed channel the atoms can be virtually in the bound state be-
fore they separate. By that, they pick up a phase shift which leads to a resonant
scattering length

ares ∝
1

Etot − Eα,c
(2.10)

which is inverse proportional to the energy difference of these states. Again the
scattering length can adopt values from −∞ to +∞ dependent on the sign of the
energy difference. In a magnetic Feshbach resonance this difference can be tuned
by the magnetic field. If there is a difference in magnetic moment of the closed
channel an the open channel,

δµ = µatoms − µc (2.11)

the energy difference tunes in the magnetic field. The resulting effective scattering
length, dependent on the background scattering length abg and the width of the
resonance ∆B which is related to the coupling strength, is then given by

a(B) = abg

(
1− ∆B

B −B0

)
. (2.12)

B0 denotes the position of the resonance. In the region from 0 to 1500G the |1〉-|2〉
spin-mixture provides two Feshbach resonances. This is due to the existence of
two different hyperfine states with nuclear spin quantum number I = 0 and I = 2
for the highest vibrational singlet state to which the triplet state couples. The
hyperfine coupling to the I = 0 is weak which expresses in a narrow resonance
at 543G. A broad resonance at 834G appears for the I = 2 state which can be
extensively used in the experiments. By tuning the magnetic field any scattering
length shown in figure 2.2 is accessible.

2.2 Thermodynamic description of a Fermi gas
In this section we want to give an overview of the properties of a Fermi gas.
We want to point out the quantum statistical effects of the fermions at low tem-
peratures leading to a degenerate Fermi gas. We focus on the discussion of the
non-interacting case and derive the density profiles for a Fermi Gas in a harmonic
potential. Additionally we describe the method of how we want to create a highly
degenerate Fermi Gas. We give an outlook of how we can achieve a system with
only few fermions where the thermodynamical description breaks down.
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2 Interactions in an ultracold gas
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Figure 2.5: S-wave scattering length between the two lowest spin states|1〉 and
|2〉 of the 6Li ground state as a function of the magnetic field. The broad reso-
nance at∼834 G tunes the scattering length over a wide range. The vertical line at
543 G marks another, very narrow Feshbach resonance. Beyond 1500 G, the scat-
tering length is well approximated by the near-resonant triplet scattering length of
∼2200a0 (The data shown are calculated by V. Venturiet al. [Ven01]).

tering length is then determined by the singlet and triplet scattering lengths that have
been determined spectroscopically in photoassociation measurements at Rice Univer-
sity to be+45a0 and−2200a0, respectively [Abr97]. This causes the background scat-
tering length to vary smoothly from zero to the large triplet scattering length as the
magnetic field is increased. The large triplet scattering length stems from a virtual
bound state just above the resonance. Consequently this scattering length is very sen-
sitive to the triplet potential. Less than a 10−3 change of the potential depth would
cause the scattering length to change sign!

The two Feshbach resonances occur when the highest vibrational stateν = 38 in
the singlet potential coincides with the continuum of the scattering state. This singlet
state is split into two hyperfine states that give rise to the two Feshbach resonances.
The hyperfine splitting results from the coupling of the two nuclear spins of the atoms.
Their unity nuclear spins add to eitherI = 0 or I = 2, resulting in total angular mo-
mentaF = 0,MF = 0 andF = 2,MF = 0, respectively. In principle, the nuclear spins
can also couple toI = 1, but this state is symmetry forbidden as it is antisymmet-
ric. The antisymmetric singlet electron wave function requires the nuclear spin wave
function to be symmetric to result in a totally antisymmetric wave function.

The Zeeman energies of the continuum state and the molecular states are shown in
Fig. 2.6. The scattering potential above 500 G is almost perfectly triplet in nature. The
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Figure 2.2: |1〉- |2〉 s-wave scattering length of 6Li dependent on the applied
homogeneous magnetic field. For low magnetic fields the singlet and triplet col-
lision states mixes and the scattering length is almost completely zero. At 543G
a narrow Feshbach resonance occurs. At 834G the system exhibits a nice broad
Feshbach resonance which allows the experimentalist to tune the interaction from
repulsive to attractive with a zero crossing of the scattering length at 530G. Be-
low the resonance, if a third particle is involved into the scattering process, it can
carry away momentum and satisfy angular momentum conservation to keep the
atoms in the bound molecular singlet state which can be used to create a molecular
BEC [Gre03, Joc03b, Zwi03]. As a many-body phenomena on the upper side of
the resonance at strong attractive interaction many-body atom-pairs [Chi04] can
be formed. For large magnetic field the scattering length converges to the triplet
background scattering length. The plot is taken from [Joc04].

2.2.1 Ideal Fermi gas in a harmonic potential
First of all, we only consider non-interacting fermions in a harmonic potential,
which we find for identical fermions at low temperatures due to the absence of s-
wave scattering as described in section 2.1. Most experiments work with magnetic
or optical traps, which can be approximated as harmonic around its minimum.
The Hamiltonian of a radially symmetric trap with an aspect ratio of the trapping
frequencies ωr/ωa = 1/λ then reads

H(~r, ~p) =
~p 2

2m
+
mω2

r

2

(
x2 + y2 + λz2

)
. (2.13)

If the thermal energy significantly exceeds the level spacing of the harmonic trap
(kBT � ~ωr) we can consider the states as a continuum of states which density
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is given by

g(E) =
E2

2λ(~ωr)3
(2.14)

whereas E denotes the total energy of one fermion. The occupation probability of
the states at a certain temperature T is given by the Fermi-Dirac distribution from
which we can approximatively deduce the number density in phase space

n(~p, ~r) =
1

(2π~)3

1

eβ(H−µ) + 1
(2.15)

with 1/(2π~)3 the phase space density and β−1 = kBT the thermal energy. For
this semi-classical approximation, valid for large numbers of fermions, we have
assumed that each fermion is represented by a wave packet with central momen-
tum ~p and position ~r in phase space. However, integrating (2.15) over the whole
phase space, which is substituted by the energy distribution of the harmonic oscil-
lator by means of (2.14), has to give the correct number of fermions

N =

∫
n(~p, ~r)d~pd~r =

1

2λ(~ωr)3

∫ ∞

0

E2dE

eβ(E−µ) + 1
(2.16)

which constrains the chemical potential µ. Unfortunately, this equation cannot be
solved for the chemical potential µ(T,N) analytically. So we first determine µ for
T = 0 before we later give some approximative solution for finite temperature.
For the description we follow [Joc09] and [But97].

Zero temperature

Assuming zero temperature the integration of equation can be performed because
the Fermi-Dirac distribution ends up in a step function. For the chemical potential
we obtain

µ(T = 0, N) := EF := kBTF = ~ωr(6Nλ)1/3 (2.17)

which can be descriptively understood as the energy that is needed to add an ad-
ditional particle at zero temperature to the edge of the Fermi sea. Thereby we also
defined the Fermi energy EF and the Fermi temperature TF which are character-
istic parameters of the Fermi gas only dependent on the particle number and the
trapping frequencies. In experiments one of the most important observable is the
spatial distribution of the particles in situ or after a certain time of flight. From the
time of flight (TOF) measurement we can determine the initial momentum distri-
bution while for large TOFs we can neglect the initial expansion [And95]. Due
to the Pauli exclusion principle we expect an expansion of the fermionic cloud
larger than the spatial distribution of the ground state. As well the momentum
distribution associated with the Pauli pressure should be comparatively large. The
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characteristic value for the size of the cloud is given by the excursion of a classical
particle with energy Ef in the harmonic trapping potential:

rF =

√
2EF
mω 2

r

(2.18)

To get the actual spatial distribution at T = 0 we have to integrate equation 2.14
over momentum space. Therefore we define for each spatial position a "local"
Fermi momentum

p 2
F,l

2m
+ V (r) = EF . (2.19)

The spatial number density at this point is then given by the volume p3
F,l of the

local Fermi sea in momentum space multiplied by the phase space density:

n(ρ, T = 0) =
N

r 3
F

8

π2

(
1− ρ2

r 2
F

)3/2

(2.20)

whereas we have defined ρ = (x2 + y2 + λz2)
1/2 as the effective distance. We

note that this approximation only gives meaningful values for distances smaller
than the rF .
Analog we can determine the momentum number density by integrating 2.14 over
position space:

n(~p, T = 0) =
N

p 3
F

8

π2

(
1− ~p 2

p 2
F

)3/2

(2.21)

with the Fermi momentum pF . In comparison to the spatial distribution which
depends on the aspect ratio of the trapping potential, the momentum distribution
is totally isotropic. So also for elongated traps the spatial distribution after long
time of flight is radially symmetric.

Finite temperature

To give some approximate solution for the chemical potential, one can expand the
Fermi-Dirac distribution around the Fermi edge by the Sommerfeld expansion.
For only week derivations from a step function which is the case for T/TF � 1
one gets

µ(T,N) = EF

(
1− π2

3

(
T

TF

)2
)

(2.22)

For large T/TF � 1 the exponential function of the denominator far exceeds one,
which is why the distribution converges to a Boltzmann distribution that can be
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analytically integrated:

µ(T ) = −kBT ln

(
6

(
T

TF

)3
)

(2.23)

The momentum and spatial distribution at finite temperature can only be given
in terms of a polylogarithmic function. To calculate the actual values one still
needs an expression for the chemical potential. One either could use the previous
approximation for the low and high T/TF limit or utilize a numerical solution.
For the actual dependency n(r, T, µ) and n(p, T, µ) we refer to [Wen09]. In plot
2.3 we show a numerical solution for different temperatures taken from [Joc09].
The shape of the plotted density distribution is the same for momentum and spatial
density, if we have presupposed an isotropic potential. Then the Hamiltonian of
(2.13) is symmetric in ~p and ~r and hence yield the same result.
In a weakly interacting two-component gas, the ration of mean field energy to
Fermi energy is determined by the interaction strength kfawith kf = pf/~. If, for
a dilute gas, the inter-particle spacing n1/3 ∝ kf is larger than the scattering length
(kfa � 1), the interaction will not change the density profile of the Fermi Gas
drastically. Nevertheless, due to interaction in a Fermi Gas, interesting phenomena
like the formation of many-body atom-pairs can occur, which effects has been
studied in [Chi04] in the strongly interacting regime. Here, besides of mentioning
the effect of interaction, we do not want to go into detail and refer to [Joc09] for
further reading.

2.3 Cooling and trapping of ultracold gases
For entering the quantum degenerate regime we are using several established tech-
niques in our experiment. Besides the so called "dimple trick" which we will
explain in detail in the following section, these techniques already have been de-
scribed extensively in previous work [Ser07, Lom08, Koh08]. Thus we here only
give a very brief overview of the cooling methods we use, and introduce the opti-
cal dipole potentials.

2.3.1 Laser cooling and evaporative cooling
The cooling relies on 2 different mechanisms. The first step, which can cool 6Li
atoms from ≈ 1K down to ≈ 500µK is based on Doppler cooling. In this dis-
sipative process an atom with velocity ~v in the presence of 2 counter-propagating
laser beams red detuned by a frequency δ to the resonance transition ω0 of the
atom, absorbs photons with a mean energy ~(ω0 − ~k~v) and spontaneously emits
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6 1 Ultracold Fermi Gases: Properties and Techniques

Fig. 1.2 Density distribution of a noninteracting Fermi gas in a har-
monic trap for various temperatures T/TF. The inset shows the region
near the Fermi radius. Only here, there is a significant difference in
density for highly degenerate gases. Note that the relative density
scale of the inset only extends to 5 % of the maximum intensity

trap, density and momentum distributions have the same shape: Just replace
the r/rF by p/pF on the abscissa. The inset of Fig. 1.2 shows that for tem-
peratures much smaller than the Fermi temperature, it is actually very hard
to make out a difference from the T = 0 -profile, making it especially diffi-
cult to fit a temperature to a measured density distribution. The edge of the
momentum distribution at pF of a highly degenerate Fermi gas is called the
Fermi surface, which is softened by thermal excitations. As deeply inside the
Fermi sphere, all quantum states are occupied, collisions can only occur near
the Fermi surface, because inside, Pauli blocking does not allow particle to
change their momentum state. Therefore, a weakly interacting Fermi gas is
completely collisionless except for atoms near the Fermi surface.

1.3
Preparing an Ultracold Fermi Gas

Many of the techniques and methods needed to trap and cool fermions had
already been developed for Bose gases and were described in the previous
chapters. Therefore we only enumerate the major steps here and point out the
particularities. So far, all experiments on ultracold Fermi gases use a magne-

Figure 2.3: Density and momentum distribution calculated for a Fermi gas in an
isotropic harmonic trap. The plot is scaled to the expansion at zero temperature
which distribution is given by the dashed line. For T/TF > 0.5 the density can
be approximated by a Gaussian function. As illustrated in the inset, for small
T/TF � 1 the distribution exhibits only small variation from which information
about temperature can be deduced. The polt is taken from [Joc09]

.

photons with ~ω0. The mean force on an atom can be written by
〈
~F
〉

= ~~k1γ1 + ~~k1γ1 (2.24)

whereas the scattering rates γ1 and γ2 depends on the line-width Γ of the transi-
tion, the detuning δv,i = ~ − ~ki~vi and the saturation intensity of the two counter
propagating beams. By inserting the two Lorentzian functions for the scattering
rates and linear approximation about v = 0 one gets a mean force

〈
~F
〉

= −β~v (2.25)

whereas β is the linear damping coefficient. According to this, if an atom was in
the capture range which is the range between the extrema of both Lorentzian, it
could be cooled to v = 0. However, due to the statistical nature of spontaneous
emission, the atom undergoes a random walk in momentum space which heats the
optical molasses. In thermal equilibrium we find a temperature of

kBT = ~
γ2/4 + δ2

−δ (2.26)
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which exhibits a minimum for δ = −γ/2. In combination with a magnetic field
the detuning to the resonant transition of different Zeeman Hyperfine sub-levels
can be written as a function of position which leads to a position depending force if
circular polarized light in different basis for the counter-propagating beams is cor-
rectly applied. In this Magneto-Optical-Trap (for details see [Met99]) the atoms
are both cooled and spatially confined.
For reaching the degeneracy regime a much larger phase space density than achiev-
able with laser cooling, limited by the photon recoil energy (Er = kB × 7µK for
the 6Li D-line), is required.
Therefore, we secondly apply the technique of evaporative cooling. Its principle
is based on the release of the hottest particles off a trapping potential and the sub-
sequent re-thermalization. If we assume a classical gas with temperature T in an
ideal trap with depth U , there will be always a fraction exp = −U/kBT of atoms
that can escape of the trap and carry away energy > U . Descriptively the cor-
responding energy distribution function is continuously cut at energy larger than
U while the residual atoms thermalize, which time constant is dependent on the
scattering rate. This process leads to a decrease of the temperature which drops to
zero for N → 0. However, in a real trap with fluctuations of the trapping poten-
tial and photon scattering in an optical trap, constant heat per particle is induced
with a certain rate which limits the lower temperature. So instead of keeping the
potential at a certain hight until an equilibrium between cooling and heating is
reached - which is called plain evaporation - , one can continuously lower the trap
depth such that the fraction exp = −U/kBT of particles able to escape, decreases
slower. This so called forced evaporation allows for reaching temperatures down
to the degeneracy regime. In this regime, further cooling of a Fermi gas is limited
by Pauli blocking which considers the fact that the phase space of possible final
scattering states is almost completely occupied by fermions and thus the scattering
rate converges to zero. For efficient cooling several parameters have to be adapted
according to the scattering and heating rate for which more than this conceptional
description is necessary. For a detailed quantitative treatment of evaporative cool-
ing we refer to [Luo06].

2.3.2 Optical dipole potentials
For generating our trapping potentials we make use of the dipole force of an atom
in a light field. In this external field with intensity I(~r) the ground state of an
two-level atom experience a shift in energy, the so called light shift, relative to
its unperturbated state due to the coupling to its exited state which is given by
[RG00]:

∆E(~r) = −3πc2

2ω2
0

(
Γ

ω0 − ω
+

Γ

ω0 + ω

)
I(r) (2.27)
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whereas ω0 is the resonant frequency of the two-level atom, Γ its linewidth and ω
the frequency of the driving light field. If the scattering rate

γ(~r) = − 3πc2

2~ω2
0

(
ω

ω0

)3(
Γ

ω0 − ω
+

Γ

ω0 + ω

)2

I(r) (2.28)

is small, which is the case for large detuning δ = (ω0 − ω) the probability of
being in the ground state is close to one. Then the potential U(~r) of an atom is
given by (2.27) and is spatialy dependent of the intensity of the light field. For
a red detuned beam we get an attractive conservative potential. If we keep the
ratio of I/δ ∝ U constant, according to (2.28) the scattering rate decreases when
we increase the intensity. A small rate is desired since photon scattering leads to
heating and loss of atoms of the trap, which is why we will select a large detuning
and high power.
A confining potential can be provided by a crossed beam configuration which is
in use for our large volume trap or by a single Gaussian beam which provides a
cylindrically symmetric potential. The radial confinement is given by the Gaus-
sian beam profile

Iz=o(r) =
2P

πw 2
0

exp

(
−2

r2

w 2
0

)
(2.29)

and the axial confinement is indirectly given by the divergence of the beam

Ir=o(z) =
2P

πw 2
0

(
1 +

(
z
zR

)2
) (2.30)

whereas w0 is the 1/e2-waist of the beam spot and zr the Rayleigh length. In a
harmonic approximation the trapping potentials reads

U(r, z) = −U0

(
1− 2

(
r

w0

)2

− 2

(
z

zR

)2
)

(2.31)

with U0 = ∆E(r = 0, z = 0)). The radial and axial frequency for an atom with
mass m in this harmonic potential are given by

ωr =

√
4U0

mw 2
0

ωa =

√
2U0

mz 2
r

(2.32)

with an aspect ratio of
ωr
ωa

=

√
2πw0

λ
(2.33)

In this thesis we realize a confining dipole potential by a single Gaussian beam,
whereas we focus on large trapping frequencies corresponding to a small focal
waist, for reasons we will give in the following chapter.
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Chapter 3

Towards a few-Fermion System

3.1 Realization of a highly degenerate Fermi gas
On the way towards a finite system of fermions starting from a thermal gas we
need to increase the degeneracy of the sample to obtain very high occupation
probability of the quantum states in the trap. For the interpretation of future ex-
periments it is crucial not to have any holes - unoccupied states with energy lower
than other occupied states - in the Fermi Gas, since we cannot detect them. In-
teracting particle change the shell structure of the non-interacting case and hence
fluctuations of holes in a sequence of experiments would lead to fluctuations in
the detected structure, which is why we aim for a high degeneracy. For enter-
ing the high degenerate regime (T � TF ) we make use of the so called "dimple
trick", with which we should be able to increase the Fermi energy of some frac-
tion of the particle number while changing the temperature to less extent. This
trick has first been used to increase the phase space density nΛ3 of a Bose gas
in the Boltzmann regime by a factor of 2 [Pin97] (n denotes the spatial density
and Λ = 2π~2/(mkBT ) the de Broglie wavelength of the gas). In a thermal gas
the trick can be descriptively understood by assuming a double box potential with
total volume V0 = V1 + V2 and identical initial depth. Now the potential depth of
box 2 is adiabatically lowered by U . The density in V2 after being equilibrated at
T is increases by the Boltzmann factor. The increase in phase space density of V2

compared to the initial phase space density of V0 is given by

ln Γ2/Γ0 =
U/kBT

1 + (V2/V1)eU/kBT
(3.1)

which was calculated using the condition of constant entropy and constant particle
number [SK98]. From that, one can deduce the maximum achievable rise in phase
space density to ≈

√
V1/V2. In [SK98] this was used to form a BEC by starting

from a Bose gas slightly above the critical temperature. By increasing the phase
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space density, phase transition in the small volume, in which the potential had
been lowered, was realized. Since no heat was induced, a reversible formation of
a BEC was possible by adiabatically ramping up and down the tiny potential. In
[Joc03b] the dimple trick has been applied to fermions for creating a BEC of 6Li
molecules.
For making use of the trick we add an optical potential (section 2.3.2) realized by
a tightly focused laser beam to a shallow potential which can be approximated as
a harmonic potential. Yet, in the presence of the shallow trap, the potential of the
tightly focused beam trap, which we will denominate microtrap in the following,
the non harmonic distribution of the Gaussian shape of the beam is not negligible,
since it is located in the middle of the Fermi sea. However, a calculation of the
density and momentum distribution for this combined harmonic and Gaussian
potential seems to be quite challenging. First of all, we are interested in how
large the occupation probability of the states inside the trap will be, for which
T/TF is the right indicator. TF,mt of the microtrap can be deduced from the
measured trapping frequencies; however, as described in section 2.2.1 , it is hard to
determine the temperature for low T/TF . For giving an idea of the temperature in
the microtrap we make the following estimation: We suppose we have a balanced
|1〉 - |2〉 mixture of weakly attractively interacting fermions which we can realize
by setting the magnetic field to a value where the scattering length is small and
negative. While both traps, the shallow trap and the microtrap, whose trap depth
Umt is set to its final value, are switched on, we apply evaporative cooling by
lowering the trap depth of the shallow trap until we have approximately reached
a certain ration of Nmt/Ns of particles in the shallow trap and the microtrap. The
situation is illustrated in figure 3.1. Now we make the assumption that, after some

Figure 3.1: Illustration of a two-component mixture of fermions in a combined
potential of a shallow and a tight harmonic trap. This "dimple trick" allows for
reaching high degeneracy. Under the condition that the fermions in the dimple
are in thermal contact to the shallow trap which acts as a reservoir, all fermions
are cooled by evaporative cooling of the reservoir. Because of the large Fermi
temperature of the combined trap one obtains high degeneracy.

20



additional sufficiently long time of holding the fermions in the potential, we are
in thermal equilibrium. Then we can measure the temperature of the fermions in
the shallow trap from which T/TF,mt is inferred. Furthermore, we are interested
in the benefit of the dimple trick, which is the gain in T/TF . To calculate the
Fermi temperature of the combined potential we make a simplification in which
we neglect the Gaussian shape of the tiny trap and assume a totally harmonic
potential for the microtrap. Then the Hamiltonian of 2.13 can be written by

H(~r, ~p) =
~p 2

2m
+
m~r 2

2

(
ω 2
s + ω 2

mt Θ

[
2Umt
mω2

− ~r 2

])
(3.2)

whereas we have defined the mean trapping frequency to

ω = (ω2
rωa)

1/3 (3.3)

while the indexes denote the shallow trap or the microtrap respectively. We as-
sume that the eigen-energy of the states in the shallow potential is not significantly
influenced by the tiny trap. Then the density of states inside the combined poten-
tial is given by

g(E) =
E2

2~

(
1

ω 3
mt

θ [U − E] +
1

ω 3
s

θ [E − U ]

)
(3.4)

From the total particle number, following the calculation for zero temperature, we
easily derive the chemical potential

µ = ωs

(
6N~3 −

(
1

ω 3
mt

− 1

ω 3
s

)
U 3
mt

)1/3

(3.5)

which defines us the desired Fermi temperature TF,c of the combined trap. For
typically realisedNmt/Ns and ωmt/ωs the Fermi temperature is mostly dominated
by the microtrap, which is why we can approximate TF,c ≈ TF,mt (note: 1 −
TF,c/TF,mt = 10−3 for the following parameters: ωs = 800Hz, ωmt = 11kHz
, Umt = kB × 4µK, Ns = 1.5 · 105, Nmt = 2 · 104). Hence, to calculate the
gain in degeneracy we have to compare the Fermi temperature of the microtrap
with the Fermi temperature of N ≈ Ns particles in the shallow trap at the same
temperature:

TF,c
TF,s
≈ TF,mt

TF,s
=

(
Nmt

Ns

)1/3
ωmt
ωs

(3.6)

According to this relation, one could go to arbitrary high degeneracy; however, for
very high trapping frequencies of the microtrap, the assumption of thermal equi-
librium may not be correct. The region of interaction, given by the spatial overlap
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of the wavefunctions of the microtrap and the shallow trap, gets very small for
high ωmt and thus thermalization cannot finalize within the lifetime of the sample.
For the mentioned values of the trapping parameters and the particle numbers
which we expect to realize, one would achieve a gain in degeneracy by a factor of
6 . So if we were able to realize T/TF,s = 0.15 in the shallow trap, we would end
up with a highly degenerate Fermi gas at T/TF,mt = 0.025! We could even reach
lower temperatures if we start with a molecular BEC in the combined trap which
can be cooled more efficiently by evaporation since Pauli blocking [DeM99] does
not occur, which is the case for fermions. Then an adiabatic magnetic field sweep
over the Feshbach resonance [Bar04] continuously separates the dimers into free
fermions ending up with a degenerate Fermi gas with very low T/TF . Addition-
ally, we are interested in the occupation probability of the states of the microtrap
potential, which is given by the Fermi-Dirac distribution

po(En) =
1

e
En−µ
kbT + 1

=
1

e
−
(
T
TF

)−1
(

1− En
EF,c

)

+ 1

. (3.7)

By plugging in the derived number of T/TF = 0.025, we get an occupation prob-
ability for the upper state in the microtrap potential with En = Umt of

po(Umt) = 0.52 (3.8)

which is still far away from 1. However, this is not surprising, since the trap depth
of the microtrap is almost equal to the Fermi temperature of the combined trap
and thus, the upper level is very close to the Fermi edge. But we still have got a
large number of particles left in the trap. Since we want to go to a few-fermion
system with ≈ 100 particles, we are interested in the occupation probability of
the lowest 100 states. If we find a way to remove all particles with larger energy,
without "exciting" the residual atoms, the probability of finding an unoccupied
state, is given by

ph(E100) = 1− po
(
Umt

(
100

Nmt

)1/3
)

= 6 · 10−15 (3.9)

Hence, if the assumption of thermalization was right and if we found a method
of removing the residual particles without further excitations, the probability of
having a hole would be zero!

3.2 Control of the quantum states
To control the particle number which is required for experiments with few fermions,
we need to spill particles off the trap in a controlled way. This also would allow
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us to remove the atoms from the non-harmonic domain of the Gaussian microtrap
potential. So we have to find a way how to tilt the potential by applying a mag-
netic field gradient. The energy of atoms with magnetic moment µ in an external
magnetic field is given by ~µ ~B. In an offset field ~B = B0~ez the spins are aligned
into z-direction. This is why we need a gradient into z-direction. The Hamiltonian
for an atom then reads

H(~r, ~p) =
~p 2

2m
+
mω2~r 2

2
+ µ

∂B

∂z
z (3.10)

which potential is illustrated in figure 3.2 b). A time independent solution for the

a) b)

Figure 3.2: a) Illustration of a two-component Fermi mixture filled up to the non
harmonic part of the microtrap. b) By applying a magnetic field gradient the atoms
can be spilled of the trap in a controlled way. Additionally the deep cut into the
Fermi sea removes the quantum states around the Fermi surface which are not
occupied. The probability of occupation of the remaining states is expected to be
be very high.

particles close to the "edge" of the potential cannot be given since the probability
of particles tunneling through the barrier into the continuum is not negligible. To
reduce the probability of tunneling the confining potential must we very narrow
which is equivalent to a high level spacing ~ω. For this purpose we need high
trapping frequencies of the microtrap which is extensively discussed in this thesis.
If the technique of bending the potential by application of a magnetic field gradient
provides the desired control of the quantum states, has to be experimentally tested.
A first test of this technique is given in chapter 7. Here we only give an estimation
to what extent the particle number can be determined, if we have control except of
the upper last shell. Therefore, we assume that the gradient does not significantly
change the states of the harmonic potential. For a non interacting Fermi gas in a
harmonic potential the degeneracy of a shell is given by:

gn =
1

2
(ñ+ 1) (ñ+ 2) (3.11)
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whereas ñ = n/Λ, with n = Λnx + Λny + nz the shell quantum number, defined
by the well known harmonic oscillator quantum number ni. Λ = 1/λ denotes
the aspect ration which we assume to be an integer for simplicity. Then the shell
quantum number of the upper last level is implicitly given by the total particle
number [O’S09]

N =

nF∑

n=0

gn =
1

6
(ñ+ 1) (ñ+ 2) (ñ+ 3) (3.12)

from which we can calculate the particles in the upper shell for T = 0 by inserting
nF in (3.11). When we detect the particle number, we do not know whether the
particles are already tunneled through the potential "edge" or not. Thus, we take
this number as an upper limit for the absolute error in particles. We get a relative
error for a total number of 110 particles of 9%, which increases with decrease of
particles. Hence, for realizing low particle numbers with an error less than the
standart deviation we definetly need control of each quantum state which is why
we aim for really high trapping frequencies.

3.3 Few-particle description
If we were able to make this deep cut into the Fermi sea with only a few 10
fermions left, we could not treat the problem in the thermodynamic limit. Pre-
sumably we will find that most of the time we measure the particle number, there
will be all states filled and only few times there will be some holes in the state
spectrum which is a statistical fluctuation of each measurement M . Only in the
case of M → ∞ measurements, we would get a distribution given by a frac-
tion of the lowest part of the Fermi-Dirac distribution. So if we had realized a
few-fermion system where each state is occupied, the thermodynamic description
would not give any further insight. Since the system is isolated from any ther-
mal bath, except of excitations induced by fluctuations of the trapping potential,
one could argue we are in the T = 0 regime, if the temperature was still an ade-
quate measure. However, to study the system, one has to go back to few-particle
description. In the case of non-interacting fermions, one would simply get the
eigenstates of the harmonic oscillator. Its shell structure (3.11) would be the first
thing to observe which can be done by gradually increasing the magnetic field gra-
dient and by counting the remaining particle number. The more interesting case
is when interaction comes into play. Then we are looking for the solution of the
Hamiltonian

H(~r, ~p) =
n∑

i,j=1

i 6=j

~p 2
i

2m
+
miω

2~r 2
i

2
+

1

2
V (ri − rj)︸ ︷︷ ︸

”g(a) δ[ri−rj ]”

(3.13)
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which is a few-particle problem and can’t be solved analytically without further
simplification. However, the interaction can still be described by contact inter-
action and the s-wave scattering length, which is indicated by the delta-potential.
We note that for a correct treatment of such potential, a regularization of the con-
tact potential has to be made [Dal98].
Experimentally one could study how the shell structure changes by the increase
of interaction strength. If we were able to modify the potential, for example by
realizing a box potential, one could even realize an analog system to different
fermionic few-particle systems like nucleons in nuclei or electrons in atoms. One
advantage of this system - which might not be as "perfect" as the systems "in real
nature" - would be the possibility of tuning the interaction strength which allows
to study the physics of the wide range of non-interacting to strongly interacting
fermions in an almost arbitrary potential.
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Chapter 4

Experimental Setup

In this chapter the apparatus and technique for the preparation of a molecular
BEC of 6Li, and a degenerate Fermi Gas respectively, is described. In an UHV
environment, lithium atoms, evaporated in an oven and collimated to form an
atomic beam, are slowed and subsequently captured by a Magneto Optical Trap
(MOT). The cooled atoms in the MOT are transfered to an optical dipole trap
where the ensemble is brought to quantum degeneracy by evaporative cooling.
This will be starting point for the experiments with few fermions. Additionally,
the coil design for creating the large magnetic fields needed to manipulate the
interaction properties of the atoms, will be discussed.

4.1 Vacuum and optical traps

The basic concept for our apparatus is keeping the design at the same time as
complex as required and as simple as possible. Although all features crucial for
our experiment with cold atoms must be properly implemented, any additions
that do not lead to an essential benefit for the experiment should be avoided to
simplify the operation of the experiment and allow for faster debugging. The
basic design is inspired by an experiment run in Innsbruck [Joc03b]. For trapping
and cooling use an all optical approach which allows for a high experimental
cycle rate. With this, we get the possibility to quickly tune parameters when we
are trying out a new experimental procedure. Additionally, a high repetition rate
allows for measurements with small statistic errors. In this section gives a brief
overview over the vacuum chamber which is explicitly described in [Ser07]. The
MOT and dipole trap will be introduced as well, their details are discussed in
[Lom08, Koh08].
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4.1.1 Vacuum chamber
Due to the possibility of collisions of with background gas, which leads to losses
from the trap, the experiments take place in an ultra high vacuum environment.
Figure 5.1 gives an insight into our vacuum chamber. An oven is heated up to

2
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3
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5

6

Zeeman Slower

Octagon

Gate valve

Titanium sublimator

Ion pump

Lithium oven

Figure 3.1: Overview of the vacuum setup with the oven chamber on the right and
the octagon on the left. The magnetic field coils for Zeeman slower, MOT and
Feshbach fields are shown in red. The gate valve (6) gives us the option to insert
upgrades into the octagon or add an additional science chamber without breaking
the vacuum.

adequate optical access.
Around the chamber a large solid aluminum breadboard provides generous space

for our MOT and dipole trap optics. The surface of the breadboard is set 10 cm
below the center of the octagon, so that all beams in the horizontal axis can be
prepared at a convenient height and sent directly through the CF40 viewports.

3.2 671nm laser System
All 671nm laser light we need for the MOT and absorption imaging is prepared on
a separate optical table and brought to the experiment through single-mode polar-
ization maintaining optical fibers. We use two grating stabilized extended cavity
diode lasers (DL 100, Toptica, 25mW) and one tapered amplifier system (TA 100,
Toptica, 500mW), consisting of one more diode laser and a tapered amplifier chip,
to produce the laser light needed for the MOT and absorption imaging. An outline
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Figure 4.1: Cut through our complete vacuum chamber

350◦C to get a large lithium vapor pressure for a sufficient flux of lithium atoms.
The vacuum in the oven region is provided by two types of vacuum pumps, a ti-
tanium sublimator and an ion getter pump. However, the pressure is limited by
outgasing material in the heated oven to ≈ 10−10mbar. For experiments with
few fermions where the atom number is a critical parameter a loss of particles
due to background collisions is undesirable. Therefore, the vacuum chamber is
divided into two sections; the octagon, our experimental chamber, is separated by
a drift tube, which serves as a differential pumping stage, and is at an a pressure
on the order of 10−12mbar. An non-evaporable getter coating [NEG] developed
at CERN coated on the octagons’ surface decreases the pressure and therefore the
number of background collisions. The spherical octagon provides optical access
via six CF40 view ports in radial direction and two reentrant view ports in axial
direction. The latter allow for a numerical aperture ofNA ≈ 0.65, which is neces-
sary to achieve a high imaging resolution an a small microtrap. Orthogonal to the
drift tube a gate valve is connected to the octagon which gives us the opportunity
to put further equipment into the octagon or to add a glass cell if better optical
access is required some day.
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4.1.2 MOT

The divergent atomic beam coming from the oven is collimated by an aperture in
the oven chamber and is decelerated by a Zeeman slower. For details to the slower
see [Ser07]. At an oven temperature of 350◦C we get a flux of 108atoms/s that
we can capture with our MOT. As the number of atoms we transfer into our opti-
cal dipoletrap saturates at a number of 108atoms/s atoms in the MOT we usually
load the MOT only for one second. The MOT consisting of a quadrupole field
and light, red detuned to an atomic transition, provides spatial confinement and
cooling. However, the achieved temperature is limited by the heating of the sam-
ple due to spontaneous emission resulting in a recoil in random direction. For the
cooling cycle we use the S1/2 (F = 3/2) → P3/2 (F = 5/2) transition of the
6Li valence electron. Since the natural line width of the P3/2 hyperfine states is
larger than the hyperfine splitting, the probability to relax to the S1/2 (F = 1/2)
ground state is on the same order as the decay to the state for the cooling tran-
sition. Therefore we need a repumper beam with almost the same power as the
cooler. The coherent light for these beams as well as for the Zeeman slower beam
is provided by a 500mW tapered amplifier (TA100, Toptica) seeded by a grating-
stabilized diode lasers. The diode laser is detuned by (+76Mhz + ωtune) via an
offset lock in respect to an identical laser stabilized on the S1/2 (F = 3/2)→ P3/2

transition by Doppler-free RF-spectroscopy of 6Li. The offset lock as well as the
spectroscopy are explained in section 4.2.1. The TA beam is divided by a polar-
izing beam splitter, the relative power of both output channels can be adjusted by
a λ/2 wave plate. The cooler is shifted by −114Mhz, half the hyperfine splitting
of the ground state, the repumpeer by +114MHz using Acousto Optical Modu-
lators (AOM driver see section 5.1.2). Adding up all shifts the MOT beams are
(38Mhz−ωtune) red detuned to the atomic transition. Since the optical setup is lo-
cated on a separate table to avoid vibrations disturbing the experiment or the laser
lock respectively, the light is distributed to the experimental chamber by 3 opti-
cal fibers, each for one retro-reflected MOT beam (Pout ≈ 40mW ), and a fourth
fiber for the Zeeman slower beam. The retro-reflection of the vertical MOT beam
is discussed in detail in section 5.1, since it has to share the same axis with the
high-resolution imaging and the microtrap. A full review of our MOT is given in
[Ser07, Lom08]. A nice feature of our MOT system is that it can be kept running
without much effort. The only thing we have to readjust every couple of weeks
are the coupling of the seed laser to the TA and the fibre coupling of the beams.
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4.1.3 Dipole trap

In the MOT we achieve a temperature of about 500µK and a phase space den-
sity of 10−5. However, to enter the quantum degenerate regime a phase space
density of the order of unity is necessary. Since both parameters are limited by
dissipative processes, we have to transfer the atoms to a conservative potential.
So we can increase the phase space density by evaporative cooling. This works
by releasing the hottest atoms from the trap and subsequent re-thermalisation of
the remaining atoms the temperature decreases. We can accept the disadvantage
of losing an order in magnitude in particle number for reaching high phase space
densities, as we want to go to a few particle system. Thermalization of course
requires interaction of the particles to interchange energy and momentum. Iden-
tical fermions cannot interact at low temperatures as there is no s-wave scattering
due to the antisymmetry of the total fermionic wave function; higher partial scat-
tering amplitudes do not contribute as the energy for overcoming the centrifugal
barrier is much higher than the temperature of the gas. A system of non identical
fermions could be a mixture of two elementary species. However, this would im-
plicate a different oven and slower design as well as a second laser system, which
takes an additional effort to built up and maintain. Instead, we use a mixture of
two different spin states of the same species, the two lowest Zeeman substate of
the 6Li hyperfine state S1/2 (F = 1/2), labeled by |1〉 and |2〉 in chapter 2.1.1.
The two states exhibit a broad Feshbach resonance (2.1.2) around 834G which
allows tuning the interaction strength by varying the magnetic field. Therefore,
we have implemented a pair of Feshbach coils described in section 4.3. To study
the physics we are interested in, it is not necessary to use an interspecies mixture.
The trapping potential in general could be created magnetically or by optical
dipole traps. However, since the lowest Zeeman substates are both high field seek-
ers for fields exceeding 30G, we cannot trap them magnetically. One could think
of a combination of optical and magnetic traps, where low field seeking states
are precooled in a magnetic trap and afterwards transfered to an optical dipole
trap. Applying Landau-Zeener sweeps could bring the atoms back to the |1〉 and
|2〉 states. Yet, a conceptually much simpler scheme is to load the atoms directly
from the MOT into an optical dipole trap. The properties of such traps for red de-
tuned light are derived in chapter 2.3.2. The trap depth for a Gaussian beam with
power P and waist w is proportional to P/(w2∆). Since we need a large detuning
∆ to suppress the scattering of trapping light by the atoms, we also need high
power to achieve a sufficient trap depth. Therefore, we use a 200W Ytterbium
fiber laser (YLR-200-LP, IPG Photonics) at a wavelength of 1070nm. In addition
to the trap depth, large spatial overlap of the MOT and the dipole trap is required
for an efficient transfer. Hence, the minimum waist of the beam is set to 50µm,
which is a compromise between good overlap and high trap depth. Restricting the
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trap to only one beam would result in an aspect ratio of radial and axial trapping
frequencies of wr/wa =

√
2πw/λ ≈ 100. To get a better axial confinement, we

reflect the beam back through the same view ports, which is depicted in figure
??. The numerical Aperture of the viewports allows for a crossing angle of 14◦

resulting in an aspect ratio of 10:1. The trapping frequencies measured by dipole
excitations are ωr = 2π1650Hz and ωa = 2π150Hz at 1W beam power. The
beams are linearly polarized which orientation is selected to be perpendicular to
each other, otherwise a significant loss of atoms is observed, which is not yet to-
tally understood. The position of the crossed-beam dipole trap can be adjusted by
a mirror, mounted on a ultra-stable mirror-mount (KS1D, Thorlabs). Due to the
lockable differential drive adjusters the angular resolution is 3µrad. A high posi-
tioning resolution and long run stability will be essential for experiments with the
microtrap. In resent experiments the crossing and its position has been optimized
for particle numbers measured after the transfer to the dipole trap. However, for
transferring a degenerate ensemble to the microtrap, the crossed-beam trap has to
be aligned for a good overlap with the microtrap since the microtrap is passively
fixed in radial direction.
To loose hot atoms during the evaporation process the trap depth is lowered by re-
ducing the beam power over four orders of magnitude. For high power from 200W
to 40W this is done by directly controlling the output power of the IPG laser. In
this regime thermal lensing can occur due to the absorption of light, which leads
to heating and subsequently to a change of the diffraction index inside the optical
material. This effect was extensively discussed in [Lom08, Koh08] and has to be
considered when operating at high power. From 40W down to 20mW the power
is controlled by an AOM in analog to the scheme described in section 5.1.2. For
a detailed description of our production sequence of a degenerate gas, we refer
[Lom08].

4.2 Detection
The only observable accessible in our experiments is the spatial distribution of
atoms, either in situ, or after a certain time of flight. The detection is done by
imaging the atoms onto a CCD camera. From this we can deduce density, particle
number and temperature of the atomic ensemble.

4.2.1 Spectroscopy and offset lock
For absorption imaging we use the same optical transitions S1/2 → P3/2 which
are used for the MOT. To be able to accurately determine the particle number,
the line width of the probe laser has to be much smaller than the natural line
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width of ≈ 6Mhz. Therefore the frequency of the laser has to be stable with
a relative precession of 10−9. For this we use a grating-stabilized diode lasers
(DL 100, Toptica) which are thermally stabilized and built to be mechanically
stable. Since the frequency can jump due to acoustic vibrations and drift due to
thermal effects, the laser also has to be actively stabilized by "locking" to the
6Li S1/2 (F = 3/2) → P3/2 transition done by Doppler free rf spectroscopy.
The principle of saturated absorption spectroscopy is pumping vapored atoms ve-
locity selective into the exited state and probing their ground state population
by a counter-propagating beam [Foo05]. The incoming beam burns a hole into
the Doppler broadened number density of atoms in the ground state, at a posi-
tion where atoms move with a velocity v so that the Doppler shifted frequency is
matched to the laser frequency. The retro-reflected counter propagating beam de-
tected on a photodiode is doing exactly the same except for burning a hole where
atoms move with velocity−v. If the laser is exactly on resonance, the pump beam
burns a hole at v = 0. The counter-propagating probe sees the reduced density of
atoms at v = 0 and is passed with less total absorption, resulting in a dip in the
detected Doppler valley.
From the spectroscopy an error signal for a feedback loop, which "locks" the laser
to the transition, has to be generated. Therefore we use a Pound-Drever-Hall laser
frequency stabilization which is explained conceptionally in [Bla01]. The fre-
quency ωc of the spectroscopy laser is modulated by a frequency ωs = 2π 20Mhz
by modulating the laser current which creates two sidebands with (ωc − ωs) and
(ωc + ωs). The carrier and the sideband experience absorption and phase shifts
in the atom vapor, which is considered by the complex absorption coefficient
F (ω) = Eabs/Einc, where Einc (Eabs) is the electrical field of the incident (outgo-
ing) beam. The AC signal recorded on a photodiode is proportional to the beating
of the two sidebands with the carrier, where we neglect the beating of the side-
bands itself:

UPD ∝ <{F (ωc)F
∗(ωc + ωs)− F ∗(ωc)F (ωc − ωs)} cos(ωst)

+={F (ωc)F
∗(ωc + ωs)− F ∗(ωc)F (ωc − ωs)} sin(ωst)

The real part denotes the intensity difference of the sideband-carrier beatings and
the imaginary part the corresponding phase difference. The signal is shifted by an
adjustable phase φ, demodulated by mixing with the modulation frequency and
low passed to eliminate AC contributions to generate the error signal. By vary-
ing the phase shift one can continuously tune the error signal from only having
an absorptive to only having an dispersive contribution. The error signal exhibits
a zero crossing at the resonant frequency which one can intuitively understand,
since for this totally symmetric configuration both sideband beatings are equal.
For the modulation of the laser current, the demodulation and for the PID con-
troller we use commercial equipment (PDD110, PID110, Toptica). The only self
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assembled design of the feedback loop is the photodiode(S9055-0, Hamamatsu),
biased with -9V using a bias tee(ZFBT-4R2G-FT+, MiniCircuits) and amplified
by an rf amplifier (ZX60-3018G-S+, MiniCircuits). This design has the advan-
tage that one can easily switch from an AC to a DC signal to directly examine the
Doppler broadened absorption signal.
The Zeeman sublevels of the hyperfine ground state tune over a range of ≈ 2Ghz
in a magnetic field up to 1500G. So our two imaging lasers (two more DL100’s)
are locked to the spectroscopy laser by beat-offset-locks [Sch99], which allows
us to tune the frequency offset by almost one octave. A schematic of our lock is
sketched in figure 4.2. For creating the error signal both lasers are superimposed
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Figure 4.2: Signal processing for creating the error signal for the offset lock.
By reversing the switch manually, the frequency range can be selected. After
operating the switch, the laser has to be relocked to a new locking point.

on a Photodiode; the beating signal ωb is mixed with a frequency ωvco from a VCO
and sent through a low pass filter to get only the frequency difference. This signal
is split up and the signal in one arm is delayed by a coaxial cable with length l,
which results in a frequency dependent phase shift φ = (ωb − ωvco) l/ccable. Then
the signals are recombined in a mixer and the output is again sent through a low
pass. This leaves only a signal that depends on the phase shift, expressed by the
frequency difference to the VCO,

U ∝ cos ((ωb − ωvco) l/ccable).

This signal is used as the error signal. The laser is locked to a zero crossing of one
fringe of the cosine, which sets the fixed frequency offset. The laser frequency can
now be tuned by varying the VCO frequency as long as the ramp speed does not
exceed the bandwidth of the feedback loop, so that the change in the lock point can
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be followed by the laser. For low field imaging the offset frequency has to be on
the order of 100Mhz while we need frequencies of 500Mhz−2GHz for the high
field region. A dynamic tuning over the whole frequency range would complicate
the circuit. One would need a synthesizer which provides continuous frequency
sweeps over the whole range and frequency dependent low pass filters. Instead,
we implemented a circuit that can be switched manually between different VCO’s
and different low pass filters for the corresponding field region.

4.2.2 Imaging in horizontal plane
For the detection we use the well established technique of absorption imaging
where we shine resonant light to the atoms and image the shadow on a CCD-chip.
The intensity of the beam after interacting with atoms of a column density n(x, y)
and cross section σ is given by

I(x, y) = I0(x, y)eσn(x,y), (4.1)

assuming that the intensity is small enough that saturation effects can be neglected.
To determine n(x, y) without having to know the intensity distribution I0(x, y)
of the beam, which can include interference patterns, the image is divided by a
second image (reference picture) with no atoms present but the same beam settings
taken shortly after the first one. A third image (background picture) is taken with
the laser light off to help canceling offsets on the CCD. From the optical density

OD = ln

(
Iabs − Ibg
Iref − Ibg

)
(4.2)

one can calculate the column density by inserting the cross section of the used
closed transition S1/2(ms = −1/2) → P3/2(mj = −3/2) for imaging in the
Paschen-Back regime at high fields:

n(x, y) = OD
2π

3λ2
(4.3)

Since the photon number in the beam have statistical fluctuations (shotnoise) of√
N , as well as the number of scattered photons, the best signal to noise ratio is

achieved for ≈ 50% absorption which corresponds roughly to an optical density
on the order of one. Light pulses should be rather short (1 − 10µs) to avoid the
information of the atoms’ position to be smeared out due to the random walk of
the atoms during the scattering. To determine temperature, particle number and
density distribution the column density is integrated along one direction and fitted
afterwards by the corresponding distribution function. Currently we can do imag-
ing in three axes with two different diode lasers. Due to the individually tunable
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axis name CCD camera label px-size[µm] resolution ε σ-scaling
-90◦ H Stingray AVT Stingray F-033B 9.9× 9.9 ≈ 4-5µm σx 1/4
-45◦ H Guppy AVT Guppy F-038 B/NIR 8.4× 19.6 ≈ 20µm πz 1/2

V Andor Andor iXon DV 887 DC 16× 16 ≈ 3µm σz 1

Table 4.1: Imaging in different axes. H denotes the horizontal plane, V the vertical
axis. The axis of the Guppy has an angle of 45◦ to the axial axis of the dipole
trap; the Stingray axis is perpendicular to the axial dipole trap axis and shares
it with one MOT beam. This is realized by using a reflective polarizer (Moxtec)
which retro-reflects the MOT beam and transmits the imaging beam. An explicitly
description to this scheme is given in section 5.1.2. Since in the 90◦ H axis the
polarization ε of the imaging beam is fixed to σx by the assembly, only the σz
fraction of this polarization is scattered. This also applies for the πz polarization
of the 45◦ H axis. Accordingly the cross section σ for the absorption has to be
scaled.

frequency of the lasers we are able to image atoms with different nuclear spin
states in the lowest hyperfine state at the same time, since in the high field region
their splitting of ≈ 80Mhz is much larger than the natural line width. For the
alignment of the microtrap it is convenient to have imaging in two independent
axes in the horizontal plane. When the crossed-beam dipole trap has to be su-
perimposed with the microtrap the positions of both traps have to be determined.
With only one horizontal imaging axis one can only trace a line of possible posi-
tions. A second independent axis fixes the position in the horizontal plane. The
properties of the different imaging axes are listed in table 4.1, the axes in the hor-
izontal plane are depicted in figure 4.3, in which the optics around our vacuum
chamber is shown.

4.2.3 High-resolution imaging for detecting few fermions

For experiments with few fermions a high detection efficiency for photons is es-
sential. This is why we use the Andor with an Electron Multiplying CCD with
a quantum efficiency of over 0.9. The details on the camera are described in
[Wen09]. A useful feature of this camera is the possibility of frame transfer. Half
of the CCD chip is covered and therefore not illuminated during imaging. The
imaged area of the chip can then be shifted to the covered region. A second im-
age, in our case the reference picture, can be taken instantaneously after the frame
transfer which takes about 1ms for a frame height of 256 pixels. This time is
about a factor of 500 shorter than normally needed for the readout of the CCD
until a second image can be taken without frame transfer. A shorter time between
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Figure 4.3: View from top to our experimental chamber. The optics and the beams
around the chamber for the MOT, the crossed-beam optical dipole-trap and for
imaging in the two different axes is shown.

absorption an reference picture is important when interference patterns move be-
tween taking these pictures, as they are no longer removed by dividing the images.
The axis for high-resolution imaging with large NA was chosen to be vertical. In
this direction we have optical access to the ensemble with NA ≈ 0.65. We im-
age the atoms directly onto the CCD by an aspheric lens without generating an
intermediate image. The magnification is fixed by the distance of the object to the
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asphere with given focal length. An aspheric lens is needed as otherwise spherical
aberrations would occur for this large NA. Such an assembly has crucial conse-
quences on the design of the microtrap, since we use the same asphere to focus
into the chamber. The total assembly including the MOT is discussed in detail in
section 5.1. Using the asphere described in the microtrap chapter which is avail-
able from stock (AL4532-B, Thorlabs), we achive a resolution of 3µm. This is
good enough for making in situ images of the atoms trapped in the crossed-beam
optical dipole trap; however, the atoms in the microtrap are much more localized.
This is why we observe them after release from trap after a certain time of flight.
We believe that in the future we will be able to improve the resolution by using a
custom designed aspheric lens (see section 5.2.4). But first we want to study the
microtrap design and its interplay with the imaging with a standard lens before
we order a custom designed lens.
When doing experiments with really few fermions, we will have atom numbers
between a few tens and a hundred atoms. Then the cloud becomes dilute after the
release from the trap that we will need single atom detection. The information
about the few-fermion system is contained in the momenta of the single particles
after time of flight. The less particles we detect the more information we loose
about our system. But since the optical density is so low, the absorption signal
disappears in the shot noise of the imaging beam. So it is difficult to study the
few-fermion system by absorption imaging. This is why in future we will have to
switch to fluorescence imaging. The idea is to illuminate the atoms from the side
and observe the scattered photons. To determine the presence of an atom we have
to detect at least one scattered photon if no stray photons are around. As this will
not be the case since there will be background light due to scattering at the vac-
cuum view ports, to distinguish a photon emitted by the atom from a stray photon
more than one fluorescence photon has to be detected. Since the atoms undergo
a random walk after scattering, the second photon might be detected on a nearby
CCD pixel. So one will have to look at the correlation between neighbored pixels
to determine whether a photon indicates the existence of an atom or is just appear-
ing due to stray light. The probability[Her08] of a spontaneous emitted photon of
a transition with change in magnetic quantum number ∆mj = −1 to be emitted
into direction with angle θ to the quantization axis is given by

f(θ) =
3

16π
(1 + cos2 θ) (4.4)

Hence, the advantage of imaging in direction of spin alignment is collecting twice
as much photons than in perpendicular direction. With an numerical aperture of
NA = 0.65 covering 12% of the total solid angle we should be able to collect 16%
of the scattered photons. With our current test assembly (NA = 0.43 corespond-
ing to 5% of total solid angle) we could collect a fraction of 7%. So in average
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we have to scatter 6 photons, or 14 photons in the case of our test assembly, for
detecting one on the CCD. To get a high scattering rate the propability to be in
the exited state has to be as large as possible, close to 1/2; therefore the atom
should be driven with several times the saturation intensity. For this we plan to
take two counterpropagating laser beams shining in from the radial direction. The
power of the beams has to be accurately balanced not to avoid a net momentum
transfer from impalanced absorbtion. Still there will be displacement of the atom
due to the spontanious emmission of n photons with recoil momentum ~prec = ~~k.
Therefore the photon scattering causes a randim walk in momentum space. By
neclecting the distribution function 4.4 we assume each direction to be equally
propable for simplicity. For an estimation of the averaged displacement in one
direction we integrate the one dimensional momentum variance:

∆x =

∫
σpx
m
dt =

∫
1

3

√
n prec
m

dn

Γs
=

2

9
n3/2 2π

λ

~
mΓs

(4.5)

With a scattering rate Γs = 1/2 Γline of 2π ·3Mhz we obtain ∆x = 1.18nm n2/3.
For 14 scattered photons, which we would need with our test asphere to detect
1 Photon on the CCD, we expect a displacement of 60nm. In a more realistic
case where we wanted to detect 10 photons to discriminate from diffused photons
we would get an average displacement of 2µm. Then these photons are possibly
distributed over few neighbored pixels. To get lower displacement one could also
think of Doppler cooling in radial direction, by slightly red detuning the excitation
beams.
One way to strongly suppress movement of the atoms over a region larger than
the diffraction limit is to capture the atoms in a near resonant lattice. After time
of flight the lattice is immediately switched on and the atoms are trapped on one
lattice site. The light the atoms scatter off the near resonant lattice could then be
used for detection.

4.3 Feshbach coils
To tune the strength of the interaction between the atoms by means of Feshbach
resonances we need a homogeneous magnetic field which can be varied over a
wide range. Due to the broad |1〉 − |2〉 Feshbach resonance (2.1.2) at 834G, the
scattering length converges slowly to the background scattering length and can be
treated as constant at 1500G. Therefore, if we want to access the whole range of
scattering length, a coil design must be able to provide these high field strengths.
Especially for creating a molecular BEC we permanently need a field of 760G;
and for doing experiments on the BCS side of the resonance the coils must gen-
erate a field up to 1500G for a sufficiently long period, which should be at least
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500ms. The created homogeneous field should be constant over the whole atomic
cloud to achieve equal scattering length over the ensemble. Also the Zeemann
splittings of the hyperfine states tune with magnetic field. If one prepares all
fermions in a single superposition state by applying a rf-pulse, the inhomogeneity
leads to dephasing of the fermions at different spatial position ending up in an
incoherent mixture due to collisions. Although the inhomogeneity was already
used in our experiment to create a three components spin mixture [Ott08], the
field should be as homogeneous as possible for studying coherent processes. Fur-
thermore, the inductance of the coils should be small to achieve high ramping and
switching speeds of the field. Another main design rule is getting a robust and
reliable coil, which is simple to built once a plan has been developed.

4.3.1 Design principle and first generation of coils
The design principle of the coils has already been described in [Ser07, Lom08,
Koh08]. Here, a brief overview of the design shall be given together with the
measured properties. We will see that the coils of the first generation do not fulfill
all requirements and cause some additional problems.
To obtain a homogeneous field, two coils close to Helmholz configuration, where
the radius of the coils is equal to the distance of the coil pair, are used. Because
the field strength scales with the inverse of the squared distance of the coils one
has to place the pair as close as possible to the center of the vacuum cell. This
is necessary to keep the needed currents on a level which can be provided with
common high current power supplies and to limit the power dissipation in the
coil. Additionally a compact design keeps the inductance small, allowing for fast
switching of the field. We place our coils inside the to the reentrant view port
lowered into the vacuum chamber (5.1). To get a high filling of the limited space,
water cooled tube wires are not useful in our setup. We have chosen a solid copper
wire with rectangular cross section of 1mm× 5mm. This aspect ratio guarantees
a reasonable number of loops as well as high filling while the negative effects on
the homogeneity of the field are still sufficiently small.
As Bz � Br and | ~B| =

√
B2
z +B2

r only the field Bz in axial direction has to be
considered in the following discussion. In a good approximation the field strength
in the z = z0 plane, with the geometric center at z0 = 0, is given by

Bz0(r) =
µ0

2π
I

n−1∑

i=0

∫ π

−π
dθ

r2
i − rir cosθ

(r2
i + a2 + r2 − 2ri rcosθ)3/2

(4.6)

where ri = (rc+(i+1/2)d) is the radius of the i-th loop, rc the inner radius of one
coil, d the distance of two neighbored loops, a = (b+h)/2 + c with b the distance
between the two coil surfaces, h the hight of wire, c the radius of the rounding of
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the wire including the polyamid coating, and n the number of loops. For the axial
magnetic field Bz(z, r = 0) plotted in 4.4 we take a calculation that was done in
[Ser07]. Because we are not in an exact Helmholz configuration (r < b), we get a
local minimum at the center. Since we are working with high field seeking states
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Figure 4.4: Axial magnetic field of the Feshbach coils calculated for a current
of 210A with n = 15 and b = 32.0mm. The value of b is calculated for the
second generation coils mounted to the experimental chamber, by the calibration
Bz0(0)[G] = −0.4598 + 3.6198 I[A], from April 28, 2009. Its increase in com-
parison with the calculated b for the previous calibration of the first generation
coils, is probably due to the larger space between the copper wire of the second
generation coils and the experimental chamber. The residual geometric parame-
ters for the calculation are also taken from the second generation coil (see figure
4.8). Although there is a local field minimum at z = 0, the inhomogeneity over
the atomic cloud is only at the order of a mG.

of the atoms, the field is anti-trapping in z-direction. But the trapping frequency
of the magnetic potential is much smaller then the usual radial trapping frequen-
cies of the optical dipole trap. Therefore, effect of the potential only becomes
relevant for extremely long time of flight measurements. Having a minimum in
axial direction results in a maximum in radial direction (see figure 4.6). Hence
the atoms are weakly trapped in radial direction which becomes noticeable if the
axial trapping frequency of the dipole trap is on the same order, especially if both
potential minima are spatially separated.
The manufacture process starts with winding the coils on a manually operated
lathe. For the first generation coils we used a filled epoxy (Stycast 2762FT, Emer-
son & Cuming) to bond the loops together. We expect a power dissipation of about
1.2kW to 1.8kW when operating at 1130G at a current of 300A. Therefore our
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water cooled copper heat sink, drawn in figure 4.5, must be connected to the coil
with good thermal contact, which turned out to be quite challenging. Since the
coils as well as the surface of the wire are not flat and the wires are coated with
a film of polyamid (thermal conductivity 0.25Wm−1K−1), the coils have to be
machined off to get a bare copper surface and a flatness of the order of 10µm for
increasing thermal contact. Afterwards the coils are bonded to the heat sink with
the filled epoxy, taking care to avoid electrical contact. In a last step the connec-
tors are soldered to the coils with common lead consisting tin-solder.
After mounting the first generation coils to the reentrant view port we calibrated
the magnetic field versus the set current. The current is controlled by a feedback
loop [Koh08], consisting of a current transducer (Danfysik, Ultrastab866-600) as
an input for our 100kHz digital PID controller (chapter 5.3), whose analog out-
put is connected to the coils’ power supply (SM15-400, Delta Elektronika). The
calibration was done by RF spectroscopy of the transition |1〉 − |2〉 which scales
with magnetic field. With the calibration, Bz0(0)[G] = 1.630 + 3.561 I[A], from
August 28, 2008, and knowing the coil parameters, we can calculate the surface
to surface distance between the coils to 29.5mm by using equation 4.6.
Although the first generation coils had been successfully used for several experi-
ments they exhibit some severe limitations we wish to overcome:

• The magnetic field maximum in the z = z0 plane is located far off center
(figure 4.6). Hence the atoms experience a force proportional to the field
gradient ∂xBz0(x = 0). For a shallow potential of our crossed-beam optical
trap with axial trapping frequencies lower than 30Hz this causes the atoms
to be pulled out of the optical trap, which is indeed a major problem.

• The coils are getting too hot at fields where we need continuous operation.
At 760G, i.e. at a current of 213A a temperature of 100◦C was reached in
continuous operation. After half a year of operation this value increased
to 160◦C which is far to hot. We believe that mechanical stress occurring
while switching the magnetic field causes the thermal connection of the
epoxy between coil and the heat sink to degrade gradually.

• The ohmic resistance between the coil and the connector seems to be too
large. We deduce this from observation of melted tin-solder next to the
connector.

• Instead of 15 windings for which we have done our calculations, we could
only realize 14.19 windings to fit to the reentrant view port, which implies
the need of a higher current for the same magnetic field.
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4.3.2 Second generation coils
The objectives for the second generation coil were the elimination of the shift of
the maximum and the improvement of the power dissipation capability. In detail
the following modifications have been done:

Figure 4.5: Second generation Feshbach coil with connectors and heat sink

Elimination of the magnetic field shift
When we first noticed the shift of the field maximum in the z = z0 plane, we
suspected that the field created by the current running through the connectors is
responsible. To cancel this effect we wound one of the coils in opposite sense of
rotation and reversed the direction of the current. This creates the same homo-
geneous magnetic field but reverses the current through the connectors. Now the
current of the upper and lower coil connectors are running in opposite direction
and the sum of their fields vanishes in the z = z0 plane due to symmetry reasons.
We haven’t done any quantitative calculations for this effect, but after calculating
the order of magnitude for other effects, we believe it to be comparatively small.
In the first generation design the two connectors of one coil are radially displaced
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simply due ease manufacture. It turned out that this design drastically changes
the shape of the field. When displacing the connectors the coil wire has to be
overwinded resulting in a non integer number of turns; in our case 14.19 which
corresponding to an overwinding of 68◦. Adding another term to equation 4.6
with radius rn and integration limits equal to the angle of overwinding one finds
that the magnetic field maximum is located 8mm off center (figure 4.6) from the
desired position (figure 4.7)! We are convinced that the gradient created by the
overwinding effected the escape of atoms from shallow optical traps. An obvious
solution to eliminate the shift is taking an integer number of loops. Therefore
the design of the connectors had been modified to be mounted at the same ra-
dial position. To fit exactly 15 loops next to the reentrant view port we decreased
the effective distance between the loops by using an unfilled epoxy (EPO-TEK
353ND) instead of Stycast. An additional advantage of the unfilled epoxy is the
easier machining of the coils.

Improvement of the thermal conductivity between coil and heat sink
Due to the high viscosity of the thermally conductive and therefore highly filled
epoxy, excessive glue and air bubbles cannot escape over the large dimensions
of the heat sink during bonding. To overcome this we implemented a quadratic,
0.3mm deep grid of 3mm spacing and 20% filling into the surface of the heat
sink. The grid acts as a reservoir into which excessive glue and air bubbles can
escape during the bonding process.
Additionally we had been looking for an epoxy which provides higher thermal
conductivity while maintaining an electrical resistivity of at least 107Ωm. There-
fore we have taken some copper samples and tested several selected epoxy. For
the test we tried to model the same conditions as we later have for the coil. This
means we used the same material - a flat copper surface and a surface with imple-
mented grid- and same curing temperature. Table 4.2 shows the specified thermal
conductivity and our test results scaled onto the conductivity of the epoxy used for
the first generation. For our application we measured the best conductivity with
the diamond filled epoxy Prima-Bond ME7159 (AI Technologies). Obviously this
is our new epoxy of choice for the second generation coils, since the other relevant
properties such as maximum continiuos operation temperature (150◦C) and shear
strength (6.9Nmm−2) are totally sufficient.
Another problem for the old coils had been the relatively high ohmic resistance
of the connection between the coil and the connectors. For improvement we use
indium instead of conventional solder which electrical conductivity is larger by
a factor of 1.4. The lower melting point of indium also allows for lower solder-
ing temperatures which prevents the epoxy from damaging during soldering. The
solder joint also acts as an emergency fail-safe: If the temperature of a coil rises
above 160◦C, the indium melts, thus hopefully preventing the complete destruc-
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Figure 4.6: Calculation of the magnetic field Bz0(x) with consideration of 68◦

overwinding of the first generation coil. The position x denotes the distance from
the geometric center into direction of the overwinding in the z = z0 plane. We
get a 8mm shift of the field maximum and a magnetic field gradient of ∂xBz0 =
300G/m at the geometric center. The residual parameters of the first generation
coil necessary for this calculation are: I0 = 213A, b = 29.5mm, c = 0.4mm,
d = 1.26mm, h = 4.4mm and n = 14.19.
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Figure 4.7: Calculation of the magnetic field Bz0(x) for an exact integer number
of turns (n = 15). The residual parameters for the calculation are taken from
the second generation coils which had been implemented to the experimental
chamber in April 2009. The actual parameters are listed in the caption of figure
4.4.
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thermal conductivity
epoxy manufacturer spec measurement

[Wm−1K−1] Λ [kWm−2K−1] relative
Stycast 2762 FT 1.37 10.2 1
Loctite 315 0.81 6.1 0.6
AIT ME7158 3.6 15.6 1.5
AIT ME7159 11.4 18.2 1.8

Table 4.2: Comparison of four different selected epoxy by measurement of the
effective thermal conductivity Λ = j/∆T , with j the heat current density and ∆T
the temperature difference between the bond copper samples.

tion of the coil. Additionally, we increased the area of contact by a factor of 1.6
up to 5mm× 16mm. Before placing the coils to the reentrant view port, we tried
to coat the whole assembly with an insulating acrylic lacquer (Plastik 70, CRC In-
dustries) to avoid electrical contact to the vacuum chamber. However, the acrylic
lacquer does not adhere well on copper without undercoating. So instead of the
lacquer we used Kapton tape to insulate the connectors from the octagon.

4.3.3 Properties of the new coils

In the following the properties of the second generation coil built with the modi-
fications presented in 4.3.2 are listed. The dimension of the coil are given in the
caption of figure 4.8. Plot 4.8a shows the measured temperature of the coil versed
the set current. One can see that the new coils are a large improvement over the
old ones. The effective thermal conductivity Λ = j/∆T , where j is the heat
current density and ∆T the temperature difference between heat sink and coil, is
fitted for the hottest and the coldest region of the coil. An infrared image of the
coil is shown in figure 4.8b. The discrepancy of Λ between the test measurement
and the cold region of the coil by a factor 2 might be explained by a different layer
of epoxy due to the asperity of the coil and the heat sink surface.
Knowing the thermal conductivity one can study the dynamics of the coil. The

following calculations are done using the conductivity of the hot region. Hence,
any following result for temperature will be an upper limit. In a good approxi-
mation one can assume that the dissipated power is equal to the time derivative of
the deposited thermal energy in the coil plus the heat current. The corresponding
differential equation reads

R0(1 + α(T − Tsink))I2 = cmm
dT

dt
+ ΛA(T − Tsink) (4.7)
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Figure 4.8: (a) Measured temperature versus set current for the hottest and coldest
region of the coil. The solid curve corresponds to the temperature fitted by the
free parameters Λ and Tsink (≈ 18◦C). For the effective thermal conductivity
one gets Λhot = 5.46kWm−2K−1 and Λcold = 9.24kWm−2K−1. The other
measured parameters of the coil are: rc = 28.5mm, d = 1.14mm, c = 0.4mm,
h = 4.4mm, A = 34, 8cm2 the area of thermal contact between the coil and the
heat sink, R0 = 13.6mΩ the resistance of the coil at Tsink and α = 3.9 10−3K−1

the resistive linear temperature coefficient. (b) IR picture taken with InfraCAM
Wester (FLIR Systems AB) at 200A. One can identify the hottest and the coldest
region. The coldest region is close to the water cooling connector of the heat sink.

with the solution
T (t) = T ∗ − (T ∗ − T0)e−Γt (4.8)

whereas T ∗ = (R0I
2)/(Γcmm) + Tsink and Γ = (ΛA + αR0I

2)/(cmm). In
figure 4.9 the temperature for different selected currents versus time is plotted.
According to the calculation we expect that we can permanently run 300A at a
constant temperature of 105C while dissipating 1.6kW of thermal power. Higher
temperatures should be avoided to prevent the vacuum chamber heating up. Fur-
thermore, we deduce that we can run the maximum current of 400A for a period
of 2.5s to reach the 100◦C limit. The static temperature at this current would
be 225◦C with a power dissipation of 3.9kW which would irreversible destroy
our coil. Hence, the absolute upper limit for any pulsed operation is equal to the
maximum continuous operation temperature of the epoxy and the melting point
of indium at 150◦C. For overheating prevention we have implemented a safety
circuit that measures the resistance R(T ) of the coil and switches the current off
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Figure 4.9: Temperature of
the Feshbach coil starting with
Tsink = 18.5◦C for different currents.
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Figure 4.10: Temperature profile of
the coil for a typical experimental se-
quence. [0-1.5]s I=0 MOT loading;
[1.5-3.5]s I=200A evaporation; [3.5-
4]s I=400A experiment at 1510G

if the temperature limit is exceeded. In figure 4.10 the temperature profile for a
typical experimental sequence is shown. It stays below 65◦C for the whole cycle
with an averaged temperature of 51◦C. The simulated sequence was applied to the
coils after both had been manufactured. The measured temperature agreed with
the calculated temperature within ± 2◦C .
We conclude that we have developed a coil assembly that can be run permanently
at 300A to create a homogeneous magnetic field of 1130G. It gives us the possi-
bility to do experiments on the BCS side of the Feshbach resonance up to 1510G
for a period of 2.5s.

4.3.4 Magnetic field gradient

To get to a finite number of fermions, we have to spill atoms out of the microtrap,
which we plan to achieve by applying a magnetic field gradient. The strength of
the gradient has to be on the order of the trapping frequencies in the direction of
the gradient. We can either create the field by our MOT coils which are already
in anti-Helmholz configuration or using the Feshbach coils. The advantage of the
latter is the higher field strength they can create due to the short distance from the
atoms. The low inductance also allows for high ramping and switching speed of
the gradient. So far a MOSFET H-bridge is implemented to switch the polarity of
one Feshbach coil to change from Helmholz to anti-Helmholz configuration and
vice versa. The H-bridge together with a different driver and a modified feedback
loop can be used to add a gradient while keeping the strength of the field constant
(figure 4.11). The field at the center is given by Bz0(0) = c1Ic1 + c2Ic2, whereas
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Figure 4.11: Schematic diagram for the stabilization of the offset field and the
magnetic field gradient. One of the coils is connected to an H-bridge [Koh08]
which allows for reversing the current in this coil (switch control by HIP). An
analog driver (to be built) allows for controlling the gate-source voltage of the
MOSFETs. Thus, a part of the total current can be bypassed around one coil. Two
feedback loops sensing the sum of the current of both coils and the difference
stabilize the field and the gradient.

Ic1 (Ic2) is the current of coil1 (coil2). If both coils have the same dimension, the
absolute field value is proportional to the sum of both currents, which can be used
as a signal for a feedback loop setting the current of the power supply. Again
assuming same coil dimensions, the gradient at the center is linearly dependent
on the difference of the currents. Tuning the gradient can be realized by chang-
ing the difference of both currents, which is done by bypassing some part of the
current around coil1 through either MOSFET ALS or BHS. A second feedback
loop measuring the current difference and setting Ic1 stabilizes the gradient. The
first feedback loop ensures that the absolute field value stays constant while the
current through coil1 gets modified by the second one. Since both loops are cou-
pled, one has to take care, while setting the PID parameters, that the feedback

48



loops do not start to oscillate. We calculated that we can achieve a gradient of
0.57G/cm · (Ic1 − Ic2). For an experiment at a field of 1130G we should be able
to apply a maximum field gradient of 114G/cm at Ic2 = 400A for 2.5s until
the temperature limit is reached. In comparison the axial gradient created by the
MOT field is 40G/cm at a current of 32A. Adding up both we can achieve a total
gradient 150G/cm.
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Chapter 5

The Microtrap Assembly

For studying systems consisting of few fermions, we need a harmonic trap with
large trapping frequencies in which we can perform experiments with a small
number of fermions. The starting point of these experiments is a degenerate Fermi
gas in a shallow optical trap at finite temperature. To obtain high occupation prob-
ability of states, the level spacing ~ω has to be much larger than the thermal energy
kBT . Hence, to fulfill this condition, we need high trapping frequencies. Atom
chips with constant magnetic wire traps which provide high trapping frequencies
can’t be used since we are working with high field seeking states. In our case, the
trap of choice is an optical microtrap created by a red detuned focused laser beam
at 1070nm. The atoms are confined in radial direction by the Gaussian shape of
the beam, in axial direction by the divergence of the beam. The properties of a
focused beam trap are given in the theory part of this thesis in section 2.3.2. In
this chapter the assembly and its performance will be described in detail. The
following requirements have to be implemented into the design of our trap.

• A small focal waist w0 of the tightly focused beam is crucial since the radial
trapping frequency is proportional to the inverse of the squared waist. Also
the aspect ratio of the radial and axial trapping frequencies depends on the
size of the waist:

ωr
ωa

=
1√
2

πw0

λ
(5.1)

To achieve an aspect aspect ratio close to one the waist has to be as small as
possible, ideally only diffraction limited.

• The microtrap has to be integrated into the existing system with imaging
and MOT already implemented. Alignment without changing any settings
of these components is wished.

• To vary the trap depth which is proportional to the beam power, we have
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to set the intensity of the beam. Noise with frequency on the order of the
trapping frequency leads to heating of the ensemble.

First we present the assembly for a small volume trap followed by the determi-
nation of its properties. Finally in this chapter the intensity stabilization will be
discussed.

5.1 High-resolution assembly

Our high-resolution assembly will be implemented into the vertical axis. An
overview of the assembly is given in the cut through our experimental chamber in
figure 5.1. What is the motivation to use the vertical axis? The adjustment of the
components would be much easier in the horizontal plane if they were mounted
on the optical table or on our bread board located 100mm underneath the center
of the experimental chamber. The homogeneous magnetic field of the Feshbach
coils points into the z-direction which aligns the atoms’ spin to the same direction
as well. As described in section 4.2.3, for imaging we take advantage of the ex-
cessive scattering rate into vertical direction. This is why our octagon is designed
to have large optical access in this direction. The incident beam for the microtrap
should propagate opposed to the scattered photons for not shining trapping light
onto the CCD before releasing the atoms. To create the focused beam trap we use
the same asphere as we use for imaging. The aspheric lens (AL4532-B, Thorlabs)
with a design wavelenth of 780nm has an effective focal length of f = 32.0mm
(focal distance to flat lens surface: f0 = 24.1mm) and a clear focusing aperture
of 37.30mm which results in a numerical aperture of NA = 0.612. The lens is
coated with a broadband anti-reflex coating covering our imaging light at 671nm
and our trapping light at 1070nm. We use this aspheric lens from stock, since
its parameters fit well to the required parameters given by the dimensions of the
octagon and the trapping light although we expect lens aberrations. Yet, an as-
sembly including this lens should give an idea of the potential of the microtrap
and should give us the possibility to learn about the obstacles and difficulties on
the way towards an optimal setup. We can examine how the alignment and the
superimposing of the microtrap with the crossed beam trap works and whether
some changes to the design have to be made. However, when we have gained
experience, we definitely aim for an assembly where we use a lens or an objective
where aberrations are corrected. At the end of this chapter we briefly discuss some
simulations for custom designed aspheric lenses.
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Figure 5.1: High-resolution assembly integrated to our experimental chamber.
The atoms trapped by an optical dipole potential created by 2 counter propagating
beams crossing at an angle of 14◦ have to be transferred to a micrometer sized
trap. Optical access with high NA is provided from the vertical direction. The
aspheric lens is mounted on top of the reentrant view port; a dichroitic mirror
separates the imaging light from the microtrap which has to be superimposed
with the crossed beam trap. Light for absorption imaging enters from the bottom.
For future fluorescence imaging we will use the view ports in the horizontal plane
to shine in resonant light.

5.1.1 Beam shaping for the microtrap

For an ideal microtrap a Gaussian beam is required which is focused by the as-
pheric lens. To get high trapping frequencies we aim for a very small spot size. In
a good approximation the waist at the focal point [Sal91] is given by

w0 =
λf

πwl
(5.2)
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which is valid for a thin lens using the paraxial approximation NA < 0.1. For
larger NA a limit of the spot can be given by the diffraction limit,

d =
0.91λ

2NA
(5.3)

whereas d is defined as the 1/e2 width of the 0-order maximum of the spot,
achieved by a Gaussian beam which is clipped by an aperture with a radius equiv-
alent to the 1/e2 waist of the beam. Hence, the larger the waist of the incident
beam, the smaller the spot size we can achieve. For a typial waist of wl = 5mm
we should get a focal waist of w0 ≈ 2µm and a corresponding Rayleigh length
of zR = πw2

0/λ ≈ 12µm. In principle we could increase the waist of the beam
further. However, at some point, the known lens aberration will limit the spot
size, which we exactly observe in the test measurement as described later. Since
the position of the lens is fixed and the atoms are not located at the focal distance
of the lens, we cannot take a collimated beam. The refractive index of the lens’
material (S-LAH64) for 1070nm light is 0.8% smaller than for 671nm which
approximately shifts the distance of the focus 250µm away from the lens. Fur-
thermore the expected distance of the atoms to the lens surface we only know by
an uncertainty of ±500µm. Thus, the working distance, which we define as the
distance bettween the lens surface and the atoms, has to be adjustable over a range
of about 1mm. The realization is done by using a diverging beam and making an
image of a virtual spot whose distance can be adjusted. An illustration is given
in Figure 5.2. The light is provided to the experiment by an optical single mode

a

hv dw

f0

aspheric lens

coupling lens
dw

zr

wo

fcl

α

Figure 5.2: Sketch illustrating the beam shaping. For focusing the beam we use
an aspheric lens from stock whose focal length f0 is shorter than the distance to
the atoms. Hence the beam has to be divergent. The angle of aperture α is set
by an position adjustable fiber coupler lens. We define the distance of a virtual
spot hv which is imaged to the working distance dw, given by equation 5.4. The
zoomed section shows the shape of the beam in the Rayleigh range.
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fiber (P3-1064PM-FC-5, Thorlabs). The TEM00 mode ensures a beam with a
nice Gaussian profile coming out of the fiber. The beam having a numerical aper-
ture of NA = 0.1 is collimated by an aspheric molded glass lens (coupling lens,
C560TM-B, Thorlabs) with fcl = 13.86mm. A totally collimated beam would be
focused by the aspheric lens to the focal distance, so we move the coupling lens to-
wards the fiber to get a slightly divergent beam. At an aperture angle of α ≈ 0.6◦,
for the asphere it looks like the light is coming from a virtual spot at distance hv
with waist wcl = λ/(πα) = 33µm and Rayleigh length zcl = wcl/α = 3.1mm.
The Rayleigh length of th virtual spot is much smaller than its distance to the as-
phere, so the distance of the image dw can be calculated in the ray optic limit. As
dw is comparably close to the focal distance, the objective distance hv has to be
large with respect to the focal length. In this regime dw can be approximated by a
series expansion to the first order around hv →∞

dw = f0 +
f 2

hv
= fb +

f 2

wl
α (5.4)

By keeping the waist wl on the lens at its optimum value the working distance can
be changed by varying the angle of aperture. This is exactly what we will do to
adjust the focal point of the microtrap. Changing α by moving the coupling lens
automatically changes wl. If wl deviates significantly from its optimum value,
it has to be readjusted by moving the coupler inclusively the fiber to a different
distance a.

5.1.2 Components of the assembly
The light for the microtrap was originally planned to be coupled out of the 200W
beam for the crossed beam optical dipole trap. The power of a transient beam
of a 45◦ mirror providing 70mW should be enough to achieve sufficiently high
trap depth for the transfer from the crossed beam trap to the microtrap. How-
ever, during the alignment process when the traps are not yet well superimposed,
more power is helpful to detect an effect of the microtrap on the crossed beam
trap. This is why we use a separate 5W Ytterbium doped Fiber laser (YLM-5-LP,
IPG Photonics). To control the intensity of the microtrap we use an Acousto-
optical modulator (AOM, 3110-197, Crystal Technology). Thereby light traveling
through a TeO2-crystal is diffracted by interacting with phonons getting momen-
tum and energy transferred from these phonons. The traveling wave of acoustic
phonons is created by a piezo-oscillator driven at a center frequency of 110MHz
at which we can achieve a maximum first order diffraction efficiency of 95%. The
intensity of the beam can now be controlled by the amplitude of the piezo oscilla-
tion frequency provided by an Voltage Controlled Oscillator (VCO). A schematic
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of the driver circuit mainly consisting of commercial RF components (Minicir-
cuits) is given in figure 5.3 which illustrates the optical setup as well. After the
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Figure 5.3: Preparation of the microtrap beam. 1070nm light from a our fiber
laser is feed through an AOM for intensity stabilization and switching. After com-
bining with an 671nm beam the light is coupled into an optical fiber. Additionally
the AOM driver, which creates an adjustable rf signal for the piezo oscillation, is
depicted.

AOM a telescope is used for matching the beam diameter to the mode of the fiber.
This is a critical issue when high power around 1.5W is used, which may destroy
the fibre when the coupling is not properly optimised. For the future alignment we
also couple a resonant 671nm beam from our imaging laser into the fiber, which
now provides both, the microtrap and the resonant beam to the experiment.
As mentioned several times before the vertical axis has to be shared by the fol-
lowing:

• microtrap

• imaging

• MOT

The assembly has to be designed to accumulate all components into one axis.
Figure 5.4 shows a draft of the implementation. First the microtrap has to be
combined with the imaging which is realized by a dichroitic mirror (15L694000,
Laser Components) which is designed to be highly reflective for 671nm (99%) and
highly transmittive for 1070nm (95%). The introduced fused silica substrate of the
mirror with refractive index n = 1.46 and constant thickness d = 6.35mm causes
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Figure 5.4: Detailed sketch of the whole microtrap assembly in vertical direction.
All relevant parameters are indicated, an detailed description is given in the text.
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rays incoming with an angle θ to the normal vector of the substrate’s surface to be
shifted parallelly by

s(θ) = d


tan θ − sin θ

n
√

1− sin2 θ
n2


 . (5.5)

This results in an unequal change of the beam waist in the plane of incidence and
in its perpendicular plane

∆w‖ =
1√
2

(
s
(π

4
+ α

)
− s

(π
4
− α

))
(5.6)

∆w⊥ = s (α)− s (−α) (5.7)

with α being the angle of the beam divergence which is the same for the tran-
sient beam due to the plane parallel substrate. This results in an astigmatism of
the focused spot created by the aspheric lens. The shift of the focus in the two
orthogonal planes along the beam is given according to equation 5.4:

∆dw = f 2
effα

(
1

wl − w‖
− 1

wl − w⊥

)
. (5.8)

With α = 0.6◦ and wl = 5mm we calculate a shift of 34µm. This value is larger
than the expected Rayleigh length of 12µm and hence would drastically change
the symmetry of the microtrap. The axial confinement would be washed out over
a range of the shift. Therefore we have to compensate the effect of the mirror
substrate responsible for the astigmatism.
For stabilization of the trap intensity we need to couple out a part of the beam for
the feedback loop. So we planned to take a 3mm thick beam sampler (BSF05-B1,
Thorlabs) with the same substrate as the mirror and place it into the beam under
the same angle of 45◦ but rotated by 90◦ to the orientation of the dichroitic mirror
which should reduce the effect of astigmatism by a factor of 2. Unfortunately the
beam sampler is wedged by 0.5◦. This changes the angle of divergence differ-
ently for the two orthogonal planes along the beam. By that, we would introduce
an additional astigmatism of 45µm. As this is not tolerable we had to remove the
wedged sampler out of the beam. Instead we use a single sided IR broadband anti-
reflex-coated window made of the same material and thickness as the dichroitic
mirror. The astigmatism ideally should now vanish completely. Due to errors of
the positioning angle of the mirror and window there could still be a contribution;
however, this should be an order of magnitude smaller than the Rayleigh length
which does not notably influence the symmetry parameters of the microtrap.
Additionally, the beam for the MOT has to be integrated to the setup. MOT and

58



imaging light enter the chamber from the bottom combined by a polarizing beam
splitter cube. A λ/4 retarder transposes the imaging polarization to σ− and the
MOT light to σ+. After passing the experimental chamber the MOT light has to
be retro-reflected. We tested how the beam is influenced when the light was first
transmitted through the aspheric lens, reflected by a mirror located at the focal
position and sent back through the aspheric lens. The shape of the profile was
strongly distorted due to the non perfect focusing and the asymmetric design of
the aspheric lens. So the idea of plugging in a reflective element after the aspheric
lens is temporarily discarded. Instead we use a much simpler element. We lam-
inated a reflective polarizer film (producer: 3M), normally used in liquid crystal
displays, onto the flat surface of the aspheric lens. This polarizer reflects one ori-
entation of linear polarization and transmits the perpendicular polarization with an
extinction ratio of 1:1000. MOT and imaging light are retarded again by λ/4 after
coming from the experimental chamber. Both beams are now linear polarized in
perpendicular direction. With this low cost and powerful construction the MOT
light is reflected by the linear polarizer film and the imaging light is transmitted.
The MOT light is retarded once more on its way back to the atoms, ending up
in σ+ light again. This design works very well for the MOT, we do not recog-
nize any change to a mirror construction. However, we have observed, that the
film reduces the resolution of the imaging and effects the size of the microtrap
unfavorably.
For the microtrap it is essential that the beam position on the lens does not vary
during the run of an experiment. Otherwise the position of the microtrap would
move. Shaking on the order of the trapping frequencies would lead to heating of
the sample. Acoustic vibrations are in the range of expected trapping frequencies.
So the mounting of the fiber coupler has to be very stable. Since the microtrap is
located in the vertical direction we need a robust construction to mount the fiber
and the coupling lens above the experimental chamber. Therefore we designed an
aluminum tower with heavy mass which should lower possible vibration frequen-
cies and fasten its damping. Furthermore several bars connected to the horizontal
breadboard stabilizes the tower. The coupler and the dichroitic mirror are mounted
on bars which can be fixed to the tower at variable height. Additionally the tower
is constructed to hold a 300mm × 450mm aluminum breadboard (MB3045/M,
Thorlabs) in the case one needs further optics in the vertical direction.

5.1.3 Degrees of freedom for alignment of the trap
With the fiber coupler assembly mounted on a bar at height h above the aspheric
lens the angle of divergence has to be set and fine tuning of the distance of the
virtual spot hv is required. Additionally, the angle and position on which the
beam hits the lens surface has to be adjustable. A picture of the complete fiber
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Figure 5.5: Fiber coupler assembly. The coupling lens can be moved inside the
lens tube. A special mount not visible on this picture holds a window which
compensates the astigmatism effect of the dichroitic mirror and couples out a part
of the light for intensity stabilization. The error signal is recorded by a photodiode
fixed on the x-y-translation mount for not losing the signal when readjusting the
microtrap. The assembly mounted on a standard kinematic mount is located on a
stage for fine- tuning the z-position.

coupler assembly is shown in figure 5.5.
The fiber holder is put into a modified lens tube system (SM1, Thorlabs) as well
as the coupling lens which is fixed on a mount which can be moved inside the
lens tube by rotating the mount. The mount is intersected into 6 parts so the
distance of the coupling lens to the fiber can be adjusted in steps of one sixth
of a full revolution of the SM1 thread. With this construction the height of the
virtual spot can be set. Into the same lens tube assembly the 6.35mm window
for the compensation of astigmatism and for coupling out a part of the beam is
integrated by a custom made 0.75 inch, 45◦ holder which also mounts an 0.5
inch, f = 20mm spheric lens that focuses the out coupled beam on a photodiode
(G8370-81, Hamamatsu). The lens tube is screwed onto a x- and y- translation
mount (LM1XY, Thorlabs) to precisely align the beam to the center of the aspheric
lens. The angle in x and y direction, labeled according figure 6.2 by θ and ξ , under
which the beams hits the lens, can be set by a standard kinematic mount. Finally,
for fine adjustment of the distance of the virtual spot, the assembly is mounted on
a precision translation stage (M-UMR5.16, Newport) which can be moved over a
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range of 15mm into z-direction.
To sum up we have enough degrees of freedom to adjust the position of the focal
point in 3D. In the following we want to study quantitatively how the degrees of
freedom effect the position and the size of the microtrap.

5.2 Properties of the microtrap
A basic prerequisite for the achievement of atom transfer from the crossed beam
optical dipole trap and for low losses inside the microtrap, is that the beam of
the microtrap exhibits same parameters as predicted. Additionally, we wish to
know the expected trapping frequencies which can be calculated from the mea-
sured waist and from the beam power. Another question tried to be answered is, if
in principle we will be able to control the atom number with the used aspheric lens
and go for a few-fermion system. Furthermore, for superimposing the microtrap
with the crossed beam trap, we need to determine the focal position dependent
on the settings of the assembly. So before implementing the assembly into our
experiment we tested it in an external test setup. Therefore, we ordered a second
identical aspheric lens, as with the removal of the first asphere, the high-resolution
imaging and the MOT would also be unmounted. However, for the first test we
excluded the polarizer film in order to get the information about the asphere un-
perturbed by the polarizer. Additionally we left out the λ/4-retarder simply due
to the non availability of a second with the same thickness, but we considered the
influence on the working distance by its refraction. For the test we use the fiber
coupler assembly described 5.1.2 which we will later implement to the experi-
ment.

5.2.1 Test measurements
To determine the properties of the beam we have to measure the beam profile at
different spatial position. Since the waist at the focal point is too small for detect-
ing directly with a CCD beam profile camera, we apply an indirect measurement
of the profile by the following method: We block a part of the beam at a position
along the beam by a sharp edged plate and measure the residual transmitted light.
Then the intensity of the beam detected by the photodiode reads

Ipd = I0

∫ ∞

x

exp

(−2(x− x0)2

w2(z)

)
= I0

(
1− erf

( √
2

w(z)
(x− x0

))
(5.9)

with erf being the Gauss error function, x the position of the plate, x0 the cen-
ter position of the beam and w(z) the waist of the beam at a certain position in
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z-direction. We note that the value for the waist we measure is defined by the
distance from the center where the intensity has dropped to 1/e2. To fit the func-
tion to a set of measurements we need to record several intensities for different
x-positions of the plate. Instead of moving a plate manually into the beam and
record the intensity individually, we move the plate with constant velocity through
the beam and measure the time evolution of the intensity. Knowing the velocity
of the plate we can substitute time by the spatial position and fit equation 5.9 to
the measured data. For the plate we use a razor plate which provides a sharp and
straight edge which is crucial for not distorting the intensity signal. The plate is
mounted onto a motorized Micro-Translation Stage (M-111.2DGX, PI) which can
be automatically moved into x-direction in multiples of the design resolution of
8.6nm. This stage is mounted onto another manually operated stage setting the
z-direction. For detection of the beam intensity we use a photodiode (S1722-02,
Hamamatsu) with a large active area to collect all light since the beam is strongly
divergent. The first test run showed that the beam is not perfectly Gaussian and
exhibits small wings on the outer region of the Gaussian. As one can see in figure
5.6 the fit of the error function is sensitive to the deviations in the outer region
of the Gaussian and does not fit the slope corresponding to the center region that
well. Since we are interested in the waist we reduced the weight of the wings com-
pared to the center by fitting the derivative of 5.9, a Gaussian, to the modified set
of data. To fit the derivative, each data point is subtracted by its previous, which
can be done without taking care about the temporal spacing of the points as the
amplitude is not a relevant parameter. One only has to ensure that the difference
in the region of interest is an order larger than the fluctuation of the data points.
This can be realized by setting a suitable razor plate velocity and sampling rate
for the detection. By applying that method as shown in figure 5.7, we believe we
can determine the waist with an relative uncertainty of about 10%. One source of
error that has not been studied quantitatively might also be defraction at the razor
plate which causes some light not beeing detected on the photodiode. However,
other aspects like the exact positioning of the manually operated stage are a larger
source of errors but still small enough to determine the waist with a sufficient
accuracy.

Minimum focal waist

The parameter of main interest is the waist at the focal point which determines
the radial trapping frequencies and the Rayleigh length determining the axial fre-
quency.
Before starting a run - a run is the procedure of driving the plate through the beam
as described - the waist of the aligned incident beam is measured at 2 different po-
sition with a beam profile CCD cam (U2382, WinCamD) to get the waist wl of the
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Figure 5.6: Intensity recorded by the
photodiode while moving the razer
plate through the beam. The tempo-
ral dependency is already substituted
by the spatial position. The fit of the er-
ror function does not fit the slope at the
beam center very well due to deriva-
tions in the outer region.
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Figure 5.7: Derived intensity profile
from left hand side figure. The Gaus-
sian fits the intensity at the center quite
well. The waist of the beam at a cer-
tain z-position is deduced from this fit.
Wings occurring from lens aberrations
are clearly visible.

beam on the asphere (extrapolated to its plane surface) and the angle of aperture.
Additionally the manually operated stage is moved to the z-position going to be
observed. From one run we can determine the waist as seen in figure 5.7. The first
measurement was done to determine the optimum waist wl of the incident beam
with which we achieve the smallest spot size. Figure 5.8 shows the result from
which we deduce an optimum waist of wl = 5.1mm. For larger incident beam
waist, lens aberrations occur and the spot size increases again. After determina-
tion of the best incident beam waist for the experiment, we also use this constant
value for all further test measurements. At an angle of aperture around α = 0.6◦

we determine the minimum waist we can achieve to

w0 = (2.98± 0.26)µm

with a statistical error calculated from 6 individual measurements.
Knowing the focal position we are now able to map the beam waist around the
Rayleigh range. Therefore we do several runs for different z-position. From figure
5.9 we can deduce the Rayleigh length:

zR = (26± 5)µm

which is in agreement with the expected Rayleigh length of 27µm calculated from
measured waist w0! The data show a non symmetric beam with a stronger diver-
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Figure 5.8: Focal waist dependent on the waist of the incident beam. From the
measurement we determine an optimum waist wl of 5.1mm. The doted red curve
shows the waist expected for a thin lens (5.1). This approximation is only valid in
the paraxial regime for NA < 0.1. The blue curve shows a simulation done with
the lens coefficients given by the manufacturer. The glass plate is also considered.
Lens aberrations occur for rays with larger distance from the optical axis. Further
aberrations occur, since after the lens, the strongly convergent beam passes a glass
plate in the test setup, which simulates the window of the vacuum chamber in the
experiment.

gence than expected for a Gaussian. This could tell us that the beam is not optimal
shaped after the transmission through the lens and the window.

Working distance

For the later superposition of the microtrap with the crossed beam trap we need to
know how we can set the working distance of the microtrap to the actual distance
of the atoms. Since the incident waist is fixed we determined the dependency of
the working distance by the angle of aperture. From figure 5.10 we can deduce
the working distance for small angle of aperture to:

dw = 27.1 mm+ 4.5 mm/◦ × α

The linear dependency is an approximation for small values of α. The fitted slope
is in the range of the expected value from equation 5.4 which is 3.6 mm/◦ for
the parameters we used. Course adjustment of the working distance is done by
setting the angle of aperture. Fine tuning the microtrap to the position of the
atoms is done by the translation stage. Moving 1mm on the stage translates to a
−6.4µm shift in working distance. This is only valid for a certain angle of aperture
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Figure 5.9: Waist of the beam around
the minimum beam size. The measure-
ment is fitted by the waist for a Gaus-
sian beam w(z) = w0
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Figure 5.10: Working distance depen-
dent on the angle of aperture α. The
linear fit with a slope of 4.1 mm/◦ is
an approximation for small α.

(α = 0.73◦) because of the reciprocal dependency of the working distance on the
distance of the imaged object. In a real performed experiment with trapped atoms
we have seen that we can move the atomic cloud by 2µm per 1mm for α = 0.5◦.
For alignment of the microtrap it is convenient to know the difference of the focal
position of 1070nm light and 671nm light coming from the same optical fiber at a
typical height h = 300mm. The shift which occurs due to the different refraction
amounts 40µm while the assembly is kept in constant position. Adapting the
parameters for the incident beam we get a shift of 200µm. Since the refraction
index of 671nm light is larger, the working distance is closer to the lens surface,
which has to be considered when resonant 671nm light is used to determine the
vertical position of the atoms with respect to the lens.

Horizontal position

Further information we need for alignment is the change of the spot location in
the horizontal plane by the variation of the angle of incidence and the beam offset
from the optical axis. Figure 5.11 and 5.12 depict the relation which had been
measured for an angle of aperture of α = 0.57◦. For large offsets on the order
of 2mm the beam is focused not very well anymore which manifests in a bigger
waist. Large angles of incidence increase lens aberrations which is getting notice-
able in the rise of the wings in the outer region of the profile.
An additional remark on position has to be made which is relevant for the align-
ment process: The coupling lens we use is not perfectly radially-symmetric mounted
in the rotational mount. A change of its radial position also varies the angle of in-
cidence. So after rotating, the beam has to be readjusted to the correct angle of
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Figure 5.11: Position of the microtrap
dependent on the offset from the op-
tical axis. The inset shows that the
waist of the focal position increases
with larger offsets compared to the on
axis waist of 3µm.
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Figure 5.12: Position of the microtrap
dependent on the angle of incidence.
For large angles the rise of the wings
due to increased lens aberrations can be
seen in the inset.

incidence.

Reflective polarizer

As mentioned in the beginning of this section we have done the previous test
measurements without the reflective polarizer film to get an idea about the possible
capability of the microtrap using the aspheric lens from stock. However, during
the experiment we need the reflective polarizer to create the MOT. So we also
applied a measurement with a reflective polarizer laminated onto the lens. The
polarizer film adds further not totally understood distortion which results in a
minimum achieved waist of about 3.7µm. One reason might be the observed
ripples on the polarizer surface visible with the eye which could introduce wave
front distortion. An alternative reflective polarizer from Moxtek which we have
already in use for one horizontal MOT beam yields not a better result. Also the
Moxtek polarizer worses the waist about 1µm.

5.2.2 Calculated trapping parameters
From the measured results we can calculate expected parameters of the microtrap
like trap frequencies or trap depth equations derived in section 2.3.2. For a waist
of 3.7µm and a beam power of 0.5mW we expect a trap depth of

U = 1.4 µK.
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ωr = 2π × 3.8 kHz

ωa = 2π × 250 Hz

are the corresponding radial and axial trap frequencies resulting in a mean trap
frequency of 2π × 1.5kHz and an aspect ratio of 15. The level spacing in axial
direction for this configuration is ≈ 2nK. If it is possible to spill atoms only of
single shells while tilting the trap by applying a magnetic field gradient, can not
yet be told exactly and has to be studied in the experiment.

5.2.3 Conclusions from the test measurements
From the test measurements we obtained various information for the alignment
and about the possible performance of the microtrap.

• The achieved focal waist is limited by lens aberrations to 3µm. If one wants
to further increase the resolution one needs to design an achromatic lens
system with consideration of the window in the convergent beam.

• The spot size is minimized for an incident beam waist of wl = 5.1mm. It
is not a too critical parameter for the setup of the microtrap, since the spot
size only slowly increases for small deviations from the optimum.

• For a beam profile with less wings it is crucial to keep the incident beam
on the optical axis. Only within a small range the deviations are acceptably
small. This has direct consequences on the alignment routine for superim-
posing the microtrap trap with the crossed beam trap. By keeping the beam
on the optical axis the horizontal position of the microtrap is totally fixed
on the position of the lens. So either the crossed beam trap or the aspheric
lens has to be rearranged for getting the required spatial overlap.

• The reflective polarizer worses the resolution of the microtrap. So far we
tolerate this but take advantage of the compact design. In future when we
want to go for smaller trap sizes, we have to find a new idea how we retro
reflect the MOT beam without affecting the resolution of the imaging and
the microtrap.

5.2.4 Future improvement and simulation
Although we will use this design of the microtrap to perform the first experiments
with highly degenerate Fermi gases, one can regard it as test assembly for learning
more about the properties of such a microtrap system. We will identify redundant
degrees of freedom as well as further degrees of freedom we would like to have.
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lens AL4532-B, Thorlabs designed asphere achromatic objective
measurement simulation for 1070nm 1070nm and 671nm

wl[mm] 5 6 - -
NA (0.13) (0.13) 0.65 0.5

w0[µm] 3.0± 0.3 2.0 0.75 0.97

Table 5.1: Comparison of the optical capability of the actual microtrap design
with simulations done for different lens systems. The custom asphere is only
designed for 1070nm and diffraction limited (5.3). In the last column a simulation
for an achromatic objective is listed, which consist of 6 individual lenses. The
spot size is the same for both wavelength. The simulation was done by Friedhelm
Servane by means of an optical design software (Oslo Premium 6.4, Lambdares).

Limitations, such as the linear polarizer film, can be realized and improvements
be done. Additionally, we first want to experience, how good the transfer of the
atoms from the crossed beam trap to the microtrap works, before we implement a
more sophisticated assembly.
Also, with this actual design, we never had the ambition to reach the diffraction
limit given by the NA of our vacuum chamber. In a new design the resolution of
the microtrap will surely be larger. To give an impression what spot size we could
reach, some simulations for different designs of a possible microtrap assembly
are listed in table 5.1. For example with a custom designed diffraction limited
aspheric lens we could reach a spot size of 0.75µm. Currently, Friedhelm Servane,
who has done the simulations, is working on a design for a second generation
microtrap. The experience we get from the actual microtrap, will have impact on
the new design.

5.3 Intensity stabilization
For an ideal microtrap the intensity of the beam should be constant in time. How-
ever, in real experiments there are always sources of noise creating contributions
in various frequency ranges. The laser itself generates not a totally constant output
power. Long term drifts depend on temperature; higher frequency noise arise from
noise of the pumping diode current. Opto-mechanical equipment like mirrors and
lenses can vibrate on the optical table and create acoustic noise since the variation
of the beam path changes the coupling to the optical fiber as well. Fluctuations
of the polarization is translated into power noise when a polarizer or a polarizing
beam splitter is in the optical path.
But not all sources effect the performance of the microtrap equally. One has to
distinguish between different frequency ranges referring to the trapping frequency
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to tell if the noise is critical:

• Frequencies lower than the trapping frequency do not effect temperature and
lifetime of the trapped ensemble. The atoms can follow the change of the
potential induced by the intensity noise adiabatically, no heat is deposited
to the atoms.

• Frequencies on the order of the trapping frequency lead to heating of the
atoms. The change of the potential is faster than the ensemble can expand
and increase its volume. The internal energy and temperature rises which
results in loss of atoms and decreased lifetime.

• Frequency noise larger than the trapping frequencies does not influence the
state of the atoms. Since the speed of the time evolution is given by the
trapping frequencies, the atoms only see the time averaged potential created
by the high frequency noise.

Hence we have to concentrate on noise up to 30kHz since the expected radial
trapping frequencies are about 3kHz at a trap depth of 1µm. All lower frequen-
cies will also be covered in the experiment when the trap depth is getting lowered.
We want to damp the noise by an active intensity stabilization. Therefore we use
the AOM assembly described in section 5.1.2. The time constant for switching
light is given by the sound velocity with which the phonons travel through crystal
and the waist of the transmitted beam. The reaction delay is the time the phonons
need from the crystal surface to the beam. For a delay of 0.5µm and a maximum
phase shift of π between the source and its feedback, the bandwidth limit of the
AOM is 1Mhz, enough for our application. We detect the process variable, pro-
portional to the intensity of the beam, by a photodiode, whose bandwidth does not
have to be larger than the one of the AOM. At last for stabilization the feedback
loop is closed by a PID controller.

5.3.1 Digital PID controller
We implemented a digital PID controller to stabilize different variables of our
experiment. Therefore we use a real-time processor (Sharc-DSP @ 300Mhz) run-
ning on a controlling system (ADwin Pro II System, Jaeger Messtechnik) with
analog and digital IO modules. The processor continuously executes a program
code within its process delay of 3000 processor cycles which is equivalent to 10µs.
Within this time the value of the photodiode is read out, compared with the set
point and an output value is generated. The output signal consists of 3 parts: The
P-fraction is proportional to the error which is the difference between the setpoint
and the process variable. The I-fraction is proportional to the sum of the current
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Figure 5.13: Suppression of noise by the PID controller at different frequencies.
The blue dotted line at 3.8kHz indicates the trapping frequency and the second
one the next higher order. The suppression for frequencies lower than 3.8kHz is
good, for higher frequency the damping could be better. If this is a problem for
the lifetime of the trapped atoms one would switch to an analog controller which
we have not done yet but kept the advantage of the digital PID. The measurement
was performed by modulating the corresponding frequency onto the laser current
at a modulation amplitude of 5%. The controller parameters had been: p=0.05,
i=0.5, d=0.

error and all previous. The D-fraction is linearly dependent on the difference be-
tween the error and the previous error. The corresponding proportionality factors
have to be set to get a large bandwidth as well as no induced oscillation. Before
the calculated value is set to the output it is feed through a look up table which
linearizes the feedback loop which is important since the AOM and the variable
attenuator do not have a linear response over the whole dynamical range.
A special feature of our implementation is the possibility of switching from open
loop to closed loop control within one cycle. The integrator always carries the
correct value for continuing controlling. This becomes interesting for fast jumps
from a low to a high set point where closed loop control would be to0 slow. An-
other nice feature is the capability to stabilize one variable on different inputs
which allows for a large dynamical range. The switching between the different
inputs proceeds within one cycle and without a jump in the controlled variable.
For the stabilization of the microtrap power we recorded the suppression of noise
which we can achieve with the digital controller. Figure 5.13 shows the depen-
dency on the frequency. Unfortunately the suppression for frequencies on the
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order of the radial trapping frequencies is not very large. So for high trapping fre-
quencies we expect losses due to heating if we have large noise on the laser power.
However, if we lower the power and enter the regime with trapping frequencies
around 1kHz we should be able to suppress noise that could cause heating and
loss inside the microtrap.
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Chapter 6

Preparation of a highly degenerate
Fermi Gas in the Microtrap

For experiments with a finite number of fermions in a potential, we have to reduce
the probability of unoccupied states in the trapping potential, since the shell struc-
ture in a finite system of Fermions gets modified by the absence of an interacting
particle. We achieve a high occupation probability of the lowest levels in the po-
tential by the preparation of a highly degenerate Fermi in our microtrap. We will
increase the degeneracy of an atomic ensemble by applying the microtrap to our
shallow crossed-beam trap as described in detail in chapter 3.1. Before any atoms
can be transfered, one needs to find a way of spatially superimposing both traps in-
side the vacuum chamber. Thus, in the first section of this chapter, we present our
developed scheme for the superposition of the microtrap with the crossed-beam
trap. To transfer the atoms fast and efficient, while staying in thermal equilibrium,
we discuss the optimization of the transfer process. The first characterization of
the microtrap will be given by the measurement of the lifetime of trapped atoms.
The loss of atoms should be kept small and its rate has to be determined, since
it has to be considered during the evaluation of future experiments. Additionally,
we will focus on the measurement of the trap frequencies. By that, we can de-
termine the harmonic part of our trapping potential from which we can calculate
characteristic parameters such as the Fermi temperature of a trapped ensemble.
Furthermore, the aspect ratio of the frequencies in axial and radial direction give
rise to the actual geometry of the trap. After we have successfully transfered atoms
to the microtrap and determined its properties we finish the work of this thesis by
giving an estimation of the degeneracy of the Fermi Gas in our microtrap .

73



6.1 Superposition of the traps and atom transfer
To be able to transfer any atoms from the crossed-beam optical dipole trap into the
microtrap for preparing a highly degenerate Fermi Gas, we first have to spatially
superimpose both traps. In principle we have to align the beams of both traps such
that the focal position of the microtrap beam coincides with the crossing of the
crossed-beam trap. However, inside the vacuum chamber, we do not have the pos-
sibility to probe the position directly. This is why we have to take a trapped atomic
ensemble as an indicator for the position of the crossed-beam trap in wich we can
transfer atoms from the MOT. Although we could reach a trap depth of 1mK with
the microtrap, transferring a significant amount of atoms from the MOT into the
microtrap does not work, since the phase space density of the MOT integrated
over the volume and the momentum space of the microtrap results in a very small
number of atom. If one does not know the expected position of the image of the
atoms on the CCD, the small imaging signal of the atoms cannot be distinguished
from noise on the CCD. Hence, we have to find a different indirect method to
determine the position of the microtrap beam. Instead of far red detuned trap-
ping light, we can use light, resonant to the imaging transition of the atom, which
should effect the atoms in the MOT along the course of the resonant beam.
If one finds a possibility to determine the position of both traps, the alignment pro-
cess will still be challenging, since the extend of the atomic cloud in the crossed-
beam trap is roughly 10× 10× 100µm and the waist of the spot of the microtrap
and its Rayleigh length are even smaller (w0 = 3.7µm, zR = 40µm). In the
following we will present our first attempt for the superposition of both traps and
discuss the arising difficulties. Subsequently, we will present an improved scheme
with which we were able to transfer atoms from the crossed-beam trap to the mi-
crotrap.

6.1.1 First attempt to superimpose the traps
In our first attempt, we particularly payed regard to set up the correct vertical po-
sition of the focal spot of the microtrap, since initially the coincidence of the focal
spot with the position of the atoms in the crossed-beam trap seemed to be essential
for the transfer. To determine the vertical position of the focal spot, we prepared
a dilute gas of atoms in a Magneto Optical Trap with weak quadrupole field, large
detuning and low power of the cooler- and repumper beams. With the a CCD cam-
era we observed the fluorescence light. By applying a beam to the MOT, 60Mhz
red detuned to the cooling transition, which came from the same fiber as the mi-
crotrap beam, we detect an increased photon scattering rate along the beam. If
this effect resulted from an increased scattering rate of the atoms along the beam
due to an induced light shift, or from the increased density of the atoms along the
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beam due to near resonance dipole trapping, was not further analysed. The impor-
tant point for the alignment process is that the shape of the beam became visible
(see figure 6.1). Hence, we were able to adjust the beam, so that the focal posi-
tion coincided with the vertical position of the crossed-beam trap. By knowing

Figure 6.1: Fluorescence images of a dilute gas in a MOT to which a 60Mhz red
detuned beam, originating from the microtrap fiber, is applied. The different im-
ages are taken to determine the vertical position of the focal spot of the microtrap
beam. The dilute gas in the MOT is realized by a weak quadrupole field, large
detuning and low cooler and repumper power. We observed an increased scatter-
ing rate along the beam of the microtrap. Thus, the shape of the beam became
visible. Starting from the upper image on the left side, followed by the next image
on the right, one can see how the position of the focal spot can be moved through
the dilute gas in the MOT. Next to the strong fluorescing atoms along the resonant
beam a second weaker beam is visible. This arises due to technical reasons. To
transmit sufficient probe light through the dichroitic mirror (see figure 5.4) into
the MOT, we need a large beam power, since the mirror is reflection coated for
671nm light. After passing the upper surface of the mirror substrate, most of the
light is reflected by the reflexion coated second surface. The upper surface partly
retro-reflects the beam again. The transmitted light of this retro reflex has an offset
due to the angle of 45◦ of the mirror to the beam axis and is also focused into the
vacuum chamber by the aspheric lens, which becomes visible in the fluorescence
image by the second beam.

the difference in the axial position of the focal points of the 671nm and 1070nm
beam, which we have measured for exactly the used microtrap configuration in
the external test setup, we could adjust the position of the 1070nm beam to the
vertical position of the crossed-beam trap. Afterwards we tried to observe an in-
fluence of the microtrap potential to a cold ensemble in the crossed-beam trap
(ωr ≈ 2π×500Hz). If the axial trap frequency of the microtrap beam was on the
order of the radial trap frequency of the crossed-beam trap, we would expect that

75



the atoms are attracted by the microtrap potential which should become visible
in the rise of density at the microtrap position and in a decrease of density in the
shallow crossed-beam trap. Additionally, we set the magnetic field to 760G to
achieve a large scattering rate with a scattering length of a = 4000 a0. For over-
lapping both traps in the horizontal plain, we planned to move the crossed-beam
trap over an area constrained by the size of the MOT, with the hope to coincide
with the microtrap beam. However, at this time we only had imaging available
in the −45◦H axis which allowed us to determine the vertical position of the mi-
crotrap and the crossed-beam trap, but the horizontal position of the traps could
only be determined to a line parallel to the −45◦H axis. Additionally, we did
not know in which direction we moved the crossed-beam trap, when we changed
the angle of its incoming beam which also effects the retro-reflected beam. This
made scanning over an area of the Mot for finding the microtrap position almost
impossible.

6.1.2 Improved scheme for the superposition of the traps
After we had tried to align both traps by estimating their horizontal position by
only using one CCD camera, it was soon clear that we had to develop a more
deterministic method for superimposing both traps. We decided to determine ex-
actly the position of the crossed-beam trap and the microtrap in 3D, which should
allow to align both traps such that the crossing of the crossed-beam trap coin-
cides with the spot of the microtrap. To determine the position in 3D, we added
an additional imaging system to an independent axis, which was already planned
some time ago. By the introduction of the new imaging system, we were able to
define a Cartesian coordinate system (figure 6.2) matching to our setup. Now, this
allows us to allocate coordinates to any point, which is observed by 2 cameras
in different axis. We defined the origin of the coordinate system by the center of
the atomic cloud in a strongly confined MOT which we also have shortly before
the transfer of the atoms from the MOT to the crossed-beam trap. This is real-
ized by ramping up the quadrupole field by increasing the current in the Feshbach
coils and by sweeping the detuning of the cooler and repumper beam closer to
resonance. As a next step, we determined the position of the crossed-beam trap
after we had optimized the atom transfer from the MOT. To pin down the position
of the microtrap, we had to switch back to 671nm light and detect the influence
of the resonant beam on a atomic cloud in a dilute MOT from which we could
deduce the horizontal position of the beam. In principle one could observe the
fluorescence light of the atoms along a slightly red detuned beam, targeting the
MOT as described in section 6.1.1. However, this would only have been possible
with one of our cameras, the guppy (figure 6.2). The second camera, the stingray,
is located on the MOT axis, where MOT light is transmitted on the CCD chip as
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Figure 6.2: Definition of our Cartesian coordinate system. The x-axis is given
by the axis of the crossed-beam optical dipole trap and possesses an angle of 45◦

to the Zeeman slower axis. The axis of the Stingray camera (−90◦H) is per-
pendicular to the x-axis, the Guppy axis (−45◦H) is located at −45◦. The ge-
ometric center is defined by the position of a MOT that is strongly confined by
a quadrupole field which is created by the Feshbach coils. The Cartesian coor-
dinates of the atoms can be found by triangulation knowing its position on the
cameras: x = s − zs, y =

√
2(g − zg) − (s − zs), whereas s is the position on

the Stingray, g the position of the Guppy, and zs and zg the corresponding zero
positions.

long as the MOT is switched on. As for fluorescence imaging we need exposure
times of several 10ms, the Stingray CCD would be completely saturated with
MOT light within that time. Thus, we have to switch off the MOT light, before
we can take images. We exactly did this and took absorption images instantly
after the MOT was switched off. Therefore we only need exposure times of 10µ s
which is short enough that the spacial position of the atoms in the MOT has not
significantly changed. Coincidently with the imaging light pulse, we flashed a
671nm beam, again coming from the microtrap fiber and directly on resonance
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to the imaging transition, onto the dilute atomic cloud. By that, we saturated the
transition of the atoms along the 671nm beam which could be observed in a de-
crease in optical density. So we could determine the horizontal position of the
671nm beam which is identical to the 1070nm, preconditioned that the incident
671nm beam is on the symmetry axis of the aspheric lens which we ensured by
a precise adjustment. A comparison of the position of the crossed-beam and the
microtrap position yielded a discrepancy of 500µm! This revealed, that the po-
sition of the passively mounted asphere strongly deviated from the position of
the Feshbach coils, since they define the position of the MOT before transfer and
subsequently the position of the crossed-beam trap. The simplest solution was to
manually displace the mount of the aspheric lens until the 671nm beam coincided
with the position of the crossed-beam trap.

6.1.3 Successful transfer of atoms to the microtrap
After we had been able to determine the position of both traps and after we had
adjusted the focal point of the microtrap to the position of the crossing of the
crossed-beam trap, we had to transfer atoms from the crossed-beam trap to the
microtrap. For the transfer of atoms it is crucial to have a large elastic scattering
rate such that the atoms can scatter to the low lying states of the deep micro-
trap potential. Therefore we set the magnetic field to 760G where the scatter-
ing length is large and positive (a = 4000a0). Additionally, we selected this
value since we are not limited by Pauli blocking when we enter the degener-
ate regime, because bosonic molecules, formed by 3-body recombination, dom-
inate the ensemble when the thermal energy is lower than the binding energy
(EB = ~2/ma2 = kB × 2.3µK) of the molecules.
Originally we planned to adjust the microtrap beam that the horizontal position
as well as the vertical position of the focal point coincides with the center of the
atomic cloud in the crossed-beam trap. Assuming correct adjustment, if the ax-
ial trap frequencies of the microtrap is comparable to the radial trap frequency
of the crossed-beam trap one expects an increase in density at the position of the
microtrap and an decrease in density in the shallow crossed-beam trap. However,
we had been lucky not to adjust the correct vertical position of the focal point
as intended, which we simply had forgotten at the late hour that day. Thinking
more precisely about the scheme, passively overlapping a beam of 3µm focal
waist with an atomic cloud of 10µm size is rather complicated when the position
of the beam can only be determined up to an uncertainty of 30µm. The situa-
tion is illustrated in figure 6.2 where the deviation of the microtrap position is
indicated by the dashed contour. However, if one adjusts the working distance
500µm vertically apart from the atomic cloud, the beam with NA = 0.13 has
a waist of 70µm at the position of the atomic cloud. If the horizontal position
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of the beam was correctly adjusted to ±30µm, this implies that the beam defi-
nitely coincides with the atomic cloud. The disadvantage is the decreased axial
trap frequency of the microtrap due to the large waist. To effect the density of the
atomic cloud, which is used as an indicator for the presence of the microtrap , the
gradient of the microtrap potential must be large enough to remove atoms of the
potential of the crossed-beam trap given by its radial trap frequency and its trap
depth (ωr,s = 2π × 450Hz, Pbeam = 110mW (UPDg = 1V )). Thus for a waist
of 70µm we definitely needed high power to achieve a sufficient gradient into the
vertical direction, which is why we slowly increased the power. We detected the
first influence on the atomic cloud at 400mW beam power, while the beam was
constantly switched on. Then at the maximum power which we could safely cou-
ple into our microtrap fiber (600mW ), the gradient was strong enough that the
potential of the crossed-beam could not trap atoms anymore, which lead to the
observed loss of all atoms. Subsequently we gradually approached the focal spot
to the cloud while lowering the beam power. At the same time we optimised the
loss of atoms by moving the horizontal position of the microtrap beam. At some
lower power level, we observed the first atoms trapped ≈ 300µm apart from the
cloud of the crossed-beam trap. By further adjustment we completely superim-
posed the microtrap with the crossed-beam trap (Figure 6.3).

6.1.4 Optimizing the atom transfer for preparing a highly de-
generate Fermi gas

The aim is to prepare a highly degenerate Fermi Gas, with which we can per-
form future experiments. For experiments with a small atom number it will be
crucial that no holes - unoccupied states whose energy are lower than the energy
of another occupied state - exist in the lowest states of the microtrap potential.
Thus, we want to keep the atoms in the microtrap in thermal equilibrium with
the crossed-beam trap such that during evaporative cooling of the reservoir in the
crossed-beam trap, atoms can be scattered to the lowest states of the microtrap.
Additionally, the rate of scattered photons, which is proportional to the power of
the trapping beam, should be kept small because photon scattering leads to heat-
ing of the ensemble. Therefore, several parameters, such as the trap depth of both
traps and the scattering length at certain stages of the atom transfer have to be set.
For an optimum transfer of atoms and for thermalization, we keep the microtrap
beam on, while we evaporate the atoms in the crossed-beam trap at large positive
scattering length (a ≈ 4000a0 at 760G), to achieve fast and efficient evaporative
cooling. Yet, we set the power of the beam to Pmt = 10mW to loose less atoms
by photon-scattering which we analysed by lifetime measurements discussed in
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Figure 6.3: Illustration of the transfer of atoms into the microtrap. The in situ im-
ages, taken by the Stingray CCD camera, show the optical density of the atomic
cloud for different trap configurations. Picture a) shows a large cloud in the
crossed-beam trap with the microtrap switched off. The optical density in the
wings of the cloud arises from atoms trapped in the single beams of the crossed-
beam trap. Picture b) shows the combined trap of crossed-beam trap and micro-
trap. One can nicely see the rise in density inside the microtrap. In picture c) the
shallow trap is switched off with only atoms remaining in the microtrap. The large
aspect ration of the trap becomes clearly visible.

the following section. However, for measurements with larger trap depth, we set
the corresponding beam power already during evaporation. The beam power is
calibrated to the voltage of the photodiode which belongs to the feedback loop for
the power stabilization (section 5.3): P [mW ] = 10.75×UPDmt[V ] ± 15% (date:
27.04.2009). The large error is a systematic error. We only know the power of
the beam inside the vacuum chamber with a relative uncertainty of 15%, since we
do not exactly know which constant fraction of the 1070nm microtrap beam is
reflected by the linear polarizer film. However, the voltage on the photodiode can
be controlled with a precession on the order of 10−3.
If we want to realize a non interacting Fermi Gas, we have to sweep to lower mag-
netic field before molecule formation sets in at about 2µK. Therefore we ramp
the field to B = 300G, where we continue evaporative cooling at a maximum
negative scattering length of a = −300a0 until we have reached a trap depth of
2µK (ωr,s = 2π × 360Hz, ωa = 2π × 33Hz, Pbeam = 68mW (UPDg = 0.5V )).
Instead of switching off the shallow crossed-beam trap, we linearly ramp down the
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trap depth to zero within 100ms, which is slow in comparison with the trap fre-
quencies. By this adiabatic release of the particles of the shallow trap, we remove
the hottest particles near the Fermi edge while they can still scatter with atoms
of the Fermi sea. However, the thermalization will stop during the release, since
the probability to scatter with the residual atoms will drop to zero because of the
large expansion of the atomic wavefunction and the subsequent reduced spatial
overlap. To remove the particles of the inhomogeneous domain of the Gaussian
shaped microtrap potential, we first ramp to the zero crossing of the scattering
length at B = 530G to switch off the attractive interaction, which would lower
the level spacing. We spill the atoms by slowly applying a magnetic field gradient
created by the MOT coils as described in 3.2, which afterwards is slowly turned
off again. For studying the cold ensemble in the microtrap the desired scattering
length is set by ramping the magnetic field to the corresponding value. In figure
6.3 and 6.4 absorption images of different stages of the transfer are selected. Pic-
ture a) shows the crossed-beam trap without the microtrap , at a trap depth were
forced evaporative cooling is finished. Picture b) captures the same situation with
the microtrap switched on. It nicely gives an expression of the different sizes of
the ensembles in both traps. Picture c) illustrates the microtrap after the final step
of the transfer. By the previous optimization of the mentioned parameters during

Figure 6.4: Optical density of the atomic cloud; (a) only in the crossed-beam trap,
(b) in the combined trap and (c) only the microtrap. The pictures are taken with
the Andor CCD camera with 60µs time of flight to reduce the optical density of
the microtrap since the density is integrated over the long axial axis. Additionally
the resolution of the Andor imaging system is to low to resolve the in situ cloud
without aberration.

the atom transfer, we successfully created a degenerate Fermi Gas in the micro-
trap. But as described in chapter 2.2.1, it is hard to determine the temperature for
very small T/TF � 0.5 from the density distribution of a Fermi gas. However,
we can still give an estimation of the degeneracy by knowing the Fermi energy of
an ensemble in the microtrap, which we will be done in section 6.4. To calculate
the Fermi energy, we first have to measure the trap frequencies of the microtrap
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which is content of section 6.3.

6.2 Lifetime measurement

In the previous section we achieved the transfer of atoms to the microtrap. With
a trapped ensemble in the microtrap, were are now able to characterize the trap.
Before we will determine the trap frequencies in the following section we first
concentrate on the lifetime of the ensemble in the microtrap. A large lifetime is
desired, since we want to be able to study loss processes on long time scales aris-
ing from atomic interaction. To separate the "interesting physics" from the loss
caused by the trap, we determine the lifetime of a non interacting Fermi gas in the
microtrap.
For the measurement of the lifetime and the trap frequency, we follow the prepa-
ration scheme presented in the previous section. Thereby it is essential to keep
the magnetic field at 530G where the scattering length is approximately zero, to
realize a non interacting Fermi gas, since a large scattering rate would increase
2- or 3-body collisions which would distort the lifetime measurement and would
damp the exited oscillation for the measurement of the trap frequency. To deduce
the lifetime we determine the particle number at constant trap depth after various
hold-times in the microtrap. Plot 6.5 shows the measured lifetime for 3 different
beam power. One sees that the particle number nicely follows an exponential de-
cay from which we can deduce that we are limited by 1-body losses. Since the
measured lifetime scales linearly with the power, the dominant process seems to
be photon scattering of trapping light (2.28) which causes the atoms to escape of
the trap. We can give an estimation for the time scale of this process by calcula-
tion the photon scattering rate at a beam power of 10.5mW (U0 = kb × 19µK).
We get γ = 0.5s−1. After scattering a photon the atom gets a recoil energy of
Er = kb × 1.4µK which leads to heating of the ensemble. Considering only a
single atom, it has to scatter 14 photons to escape the trap. This would be after
30s which is comparable to the lifetime. Another source of losses can be noise
on the power of the microtrap beam which is on the order of the trap frequencies
and leads to heating of the ensemble (see chapter 5.3). But as the timescale for
the photon-scattering is comparable with the measured lifetime, we suppose that
the contribution of the noise on the power of the beam is rather small.
At all, the lifetime we can achieve, is sufficiently long. For power lower than
10mW , where most experiments will take place, we will have more than 25s to
perform experiments.
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Figure 6.5: Lifetime measurement of a |1〉-|2〉 spin mixture at a ≈ 0 for different
beam power of the microtrap. The initial particle number in |1〉 is≈ 4500. We plot
a relative scale for a better comparison of the lifetime. The well fitting exponential
decay shows a 1-body loss process. The lifetime is linearly dependent on the
beam power from which we deduce the dominant process to be photon scattering
of trapping light.

6.3 Determination of the trap frequencies

We continue the characterization of the microtrap by measuring the trap frequen-
cies. From this measurement we will be able to conclude on the geometry of the
microtrap. Additionally we want to determine these parameters to calculate the
Fermi temperature of a number of fermions inside the microtrap. To measure the
trap frequencies, we have to excite an collective oscillation mode of the atoms in-
side the microtrap. One possibility of excitation is the dipole-oscillation. Thereby,
the center of mass of the trapped cloud oscillates with the trap frequency inside
the potential. Another possible mode of excitation is the compression mode. In
this mode the cloud is compressed an decompressed with twice the trap frequency.
Since the axial and radial frequency is expected to differ by a factor of 15, the time
scale for the excitation differs also by one order of magnitude. In the following
we will present different methods of how we excite these modes and measure its
frequencies to conclude on the trap frequencies. As already mentioned, we per-
form the measurement of the trap frequencies at a ≈ 0 to reduce the damping of
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the oscillation caused by the interaction of the atoms.

6.3.1 Axial trap frequency
The extent of the cloud in axial direction is comparatively large as one can see in
figure 6.3. So if we were able to excite a dipole-oscillation, where the center of
mass oscillates with the axial trap frequency, we should be able to observe this
oscillation by taking in situ images and recording the center position. The idea
is slowly moving the cloud away from its zero position in axial direction. An
instant release should causes the atoms to oscillate in the dipole mode with trap
frequency ωa of the microtrap. The excursion from the center position of the mi-
crotrap is done by slowly ramping on a magnetic field gradient. The minimum of
the combined potential is displaced from the center of the pure optical potential.
However, we cannot apply the gradient by the MOT coils, since their inductance
is to large. The time constant for their switch off is 30ms, which is enough that
the atoms can adiabatically follow the change in potential. Subsequently, no os-
cillation will be observed. Therefore, we apply an additional current to one of our
Feshbach coils to create the gradient, which can be switched off within shorter
than 1ms due to their small inductance. The set gradient depends on the trap
depth for which the measurement is performed (∂zBz = 3.4G/cm (Iadd = 6A )
for Pmt = 32mW (UPDmt = 3V ) and ∂zBz = 0.3G/cm (Iadd = 0.5A ) for
Pmt = 4mW (UPDmt = 0.4V )). After switching off, the center of the cloud un-
dergoes a damped oscillation as one can explicitly see in figure 6.6. We perform
this measurement for different power of the microtrap to deduce the dependency
of the trap frequency on the trap depth. If we approximate the potential harmon-
ically, the relation of ω ∝ √U0/w

2
0 is given according to (2.32). The fit of a

square-root on the measurement represents the data quite well (figure 6.7). This
shows that the harmonic contribution of the potential scales as expected with the
beam power, from which we can deduce that the trap geometry does not change
while varying the power.

6.3.2 Radial trap frequency
For exiting the radial dipole oscillation we would have to move the center of mass
of the atomic cloud in radial direction and release it within a time faster than the
radial oscillation period. Since we are working in a large offset field we cannot
excite the atoms in the direction perpendicular to the spin alignment by applying
a magnetic field gradient in radial direction. This is why we have to excite the
compression mode in radial direction. We do this by switching of the trapping
potential for 10µs. The excitation of this mode can be understood as follows:
Particles in the potential minimum realize almost no effect of the switch of the
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Figure 6.6: Axial dipole oscillation. The mode is excited by slowly moving the
cloud apart from the center of the harmonic trap by the application of a magnetic
field gradient ∂zBz = 1.4G/cm (Iadd = 2.5A). After the sudden release off
the combined potential, the cloud oscillates with the axial trap frequency of the
microtrap.

potential. However, particles at both turning points of their excursion experience
a kick when the potential is switched on after 10µs. As a consequence the cloud
starts radially to compress and decompress with twice the radial trap frequency.
We can determine this frequency by measuring the momentum distribution for
different hold-times of the atoms in the potential by imaging the expanded cloud
after a time of flight of 200µs. The measured data is shown in figure 6.8. We
observe that the oscillation is strongly damped after more than one periode. This
could be due to weak non-harmonic contributions of the potential which lead to
coupling between the different principal axis of the oscillator. However, the mea-
surement of the radial frequency for different trap depth (figure 6.9) exhibits again
a square root dependency which implies that the trap geometry in radial direction
keeps constant while the power of the microtrap beam is changed.

6.3.3 Conclusion on the profile of the microtrap beam

From the measurement of the axial and radial trap frequency we concluded that
the geometry of the trap does not change while changing the beam power of the
microtrap. We are interested how the actual profile looks like and compare it
with the results of the test measurement of section 5.2.1. If we assume a per-
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Figure 6.7: Measurement of the axial trap frequency for different trap depth. The
data exhibit a square-root dependency on the beam power. Hence, we can assume
the that trap geometry of the trapping potential in axial direction does not change
while varying the power.

fect Gaussian beam for the microtrap beam, we could determine its focal waist to
w0 = 4.3µm from the radial trap frequency. The same calculation for the axial
trap frequency would give a focal waist of w0 = 5.0µm. Here clearly a discrep-
ancy becomes visible. The aspect ration of the frequencies ωr/ωa is ≈ 25 instead
of the expected 18 for a Gaussian beam with w0 = 4.3µm. A smaller value of
the measured aspect ratio could be explained by a deviation of the Gaussian beam
profile which could be caused by aberrations. However, no beam can be less di-
vergent than this Gaussian beam. Some other reason must be responsible for this
large discrepancy. So far, we have not done any further investigation on this. We
only can bring up an argument which could explain the situation. If we assume an
astigmatism the measured aspect ratio can be realistic. A simulation showed that
a focal waist of w0 = 3.6µm and a shift of the foci in perpendicular planes along
the beam axis of 50µm is consistent with the measurement, while the harmonic
approximation is still well for the axial direction. The value of the simulated waist
would also be comparable with the result from the test measurement, where we
determined a waist of w0 = 3.7µm.
Although we have compensated the astigmatism introduced by the dichroitic mir-
ror, we still could have some astigmatism, since the microtrap beam is not exactly
aligned to the center of the aspheric lens. This is a result of the limited time, in
which the microtrap was superimposed with the crossed-beam trap. Here, further
examination has to be done. However, if the worse alignment is the reason, the
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Figure 6.8: Excitation of the radial compression mode by shortly switching of the
trapping potential for 10µs. For different hold-times the momentum distribution
is observed by the expansion of the cloud after a time of flight of 200µs.

problem will be solvable.

6.4 Estimation of the degeneracy
In the previous sections we described the preparation of a highly degenerate Fermi
Gas in the microtrap. By trapping a non interacting Fermi Gas, we were able to
determine characteristic parameters of the trap such as the trap frequencies. At
last, we want to present an estimation of the achieved degeneracy of the Fermi
Gas in the microtrap.
As described in chapter 2.2.1, the temperature for very small T/TF � 0.5 is
hard to determine from the density distribution of a Fermi gas, especially if the
atom number is small. However, we can give an estimation of its degeneracy
by the method explained in 3.1. Therefore, we assume thermal equilibrium af-
ter evaporation has finalized at a = −300a0. The temperature determination of
the atoms in the shallow trap is done without the presence of the microtrap but
with the same trap depth as we have at the final stage of evaporation in the com-
bined trap. We measure an absolute temperature of 200nK which corresponds to
T/TF,s = 0.27 (ωr,s = 2π×360Hz, ωa,s = 2π×33Hz,Ns = 150000) in the shal-
low trap. By knowing the parameters of the microtrap at a beam power of 6.1mW
(ωr,mt = 2π × 9.6 kHz, ωa,mt = 2π × 350Hz,Nmt = 5000) we can calculate the
Fermi temperature and obtain T/TF,mt = 0.04! This is an increase of a factor of
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Figure 6.9: Measurement of the radial trap frequency for different trap depth. The
data exhibit a square-root dependency on the beam power. Hence, we can assume
that the trap geometry of the trapping potential in radial direction does not change
while varying the power

6.6 compared to the shallow trap. We think this is a rather good approximation,
although a proof for thermalization of atoms in both traps has still to be given.
We believe we can even reach lower temperatures, if we form molecules at 760G
and adiabatically separate the dimers into atoms by ramping to a field larger than
900G [Bar04, Bou04].
Furthermore, we want to give another estimation for the temperature of the Fermi
Gas at a scattering length of 900G. We do this by comparison the properties of
our prepared Fermi Gas with the experiment recently performed in the group of
John E. Thomas [Du09]. They have measured the inelastic two-body and three-
body decay rates for a two-component Fermi Gas around the Feshbach resonance.
At high temperature they observed a dominant three-body decay process and at
low energy their data also showed a two-body decay process above the resonance.
They suggested that this process arises from correlated pairs, which is a many-
body process. Pair-atom or pair-pair collisions are possible which should become
visible in a two-body decay process. The existence of such pairs at a certain tem-
perature depends on the interaction strength given by kFa. For smaller kFa they
did not observe a two-body decay process. In the following we want to compare
the particle loss in our Fermi Gas at 900G with the results from John E. Thomas’
group. By that we get an idea about the temperature we have achieved in our
prepared degenerate Fermi Gas. Hence, we recently measured a loss curve (figure
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Equation y = 1/(K*(x-A)+1/N)

Adj. R-Square 0.99932
Value Standard Error

Averaged Y A 90.71204 26686.55684
Averaged Y K 8.50497E-8 2.44157E-9
Averaged Y N 7624.26338 132019.06246
Equation y = 1/sqrt(2*(K*(x-A))+1/N^2)

Adj. R-Square 0.9745
Value Standard Error

Averaged Y A 100 0
Averaged Y K 1.99699E-11 1.38709E-12
Averaged Y N 7600 0
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Figure 6.10: Loss in atoms at B = 900G (kFa ≤ −5). Recorded is the atom
number in |1〉 of a |1〉-|2〉 spin mixture. The measured data can be fitted quite well
by a two-body loss, which can arise from two-body collisions of paired atoms. A
3-body loss curve which describes three-body relaxation deviates from the mea-
sured data. By comparison with the work done in the group of John E. Thomas
[Du09], we can give an upper limit of T/TF = 0.14.

6.10) at 900G and fitted a pure two-body decay

N =
1

K2(t− t0) + 1/N0

(6.1)

as well as a pure three-body decay, which is the case for three-body relaxation,

N =
1√

2K3(t− t0) + 1/N2
0

(6.2)

with the two-body (three-body) loss coefficient K2 (K3). One sees that the two-
body decay fits well, whereas the three-body decay deviates from the measured
data. Due to the limited time we have not been able to do any detailed analysis.
For our estimation of temperature we neglect the actual density distribution and
we assume the density to be proportional to the particle number all time. Yet, this
should not disturb the conclusion of our estimation. If heating leads to a decrease
in density, the three-body losses decreases faster than the two-body losses which
would result even in an flatter curve of the fitted three-body decay for larger times.
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One-body losses are also neglected since the measured one-body decay time of
25s is one order of magnitude larger than the time scale for the observed loss pro-
cess. In the case the observed loss originates from two-body collisions of pairs, we
can compare this measurement with the work of John E. Thomas’ group. They
have not observed 2-body losses for kFa ≤ −11 (B > 860G) at E/EF = 0.7
(corresponding to T/TF = 0.14 according to [Luo08]). In our case the interaction
strength is smaller: kFa ≤ −5 ( ωr,mt = 2π × 11kHz, ωa,mt = 2π × 500Hz,
N = 5000, a = −7860a0). This implies that pairs should only exists at lower
temperature. If we still see a two-body loss, this gives us the hint that the degen-
eracy of our Fermi gas should be lower than T/TF = 0.14 of [Du09].
With this estimation we finish the characterization of the trapped Fermi Gas. The
future task will be finding a reliable method to determine the temperature of the
degenerate Fermi gas in the microtrap.
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Chapter 7

Conclusion and Outlook

In this thesis we reported on the realization of a micrometer-sized trap in which
we have created a highly degenerate Fermi gas of 6Li atoms. The microtrap is
an important milestones on the way towards experiments with a finite number of
fermions. Few-fermion systems are quite common in nature, like electrons in the
atom or nucleons in the nuclei. Ultracold quantum gases in a microtrap could
become a generic system to understand and model various of such systems.
In a two-component spin-mixture the interaction strength can be tuned by means
of Feshbach resonances. To tune the scattering length we need large magnetic
fields which is the reason why we built coils capable of conducting high currents.
Due to limited space around our experimental chamber, this task was quite chal-
lenging. However, now we are able to create fields up to 1000G constantly. We
can also enter the regime up to 1500G for at least 1swhich is sufficient to perform
experiments at this high field region.
As the focus of this thesis is the realization of a highly degenerate Fermi gas in a
microtrap, we therefore discussed the used method, the so called "dimple trick".
By applying a microtrap to a shallow trap, the phase space density in the micro-
trap can be increased. To obtain occupation probability of states in the microtrap
close to one, high level spacing is required. Since we create the trap by an optical
dipole potential of a single focused Gaussian beam, we put effort in achieving a
small focal waist. We designed a compact high-resolution assembly and tested
its performance. Thereby we used an standard aspheric lens to get an idea of the
capability of our design and learn about its properties.
After the implementation to our apparatus, we successfully transfered atoms of
our large volume optical dipoltrap into the microtrap. We were able to give a
quantitative description of the trap properties by the determination of the life-
time and the trap frequencies. The trap geometry in radial and axial direction
stays unchanged by varying the power of the microtrap beam. The reason for
the measured large aspect ration is not yet completely understood; hence further
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investigation will follow. Finally, we gave some estimation of the degeneracy of
the fermions in the microtrap with an upper limit of T/TF = 0.14.
In the future, it would be nice to find a scheme for the determination of the tem-
perature of our ensemble. Also, we are currently working on simulations for a
new lens system for the microtrap, with which we could even reach higher trap
frequencies and subsequently higher level spacing. If we want to count only few
fermions, which will be the case in future work, we will have to set up an imaging
system for detecting fluorescence light with high quantum efficiency.
Furthermore, we have ideas for moving atoms from the shallow trap to a region
with different magnetic field by means of the microtrap. This would allow us to
manipulate the internal states of the atoms in the microtrap by resonant rf, with-
out distorting the ensemble in the shallow trap. By that we could locally bring a
third spin component into a two-component mixture and observe the subsequent
dynamical processes.
Besides the various possible applications of the microtrap, the main future em-
phasis is the control of the particle number in the microtrap. For the interpretation
of future experiments it is crucial not to have any holes - unoccupied states with
energy lower than other occupied states - in the Fermi Gas, since we cannot detect
them. Interacting particle change the shell structure of the non-interacting case
and hence fluctuations of holes in a sequence of experiments would lead to fluctu-
ations in the detected structure. This is why we have created a highly degenerate
Fermi Gas where the probability for having holes in the lowest levels approaches
zero. To remove the atoms in the upper level of the microtrap and to control the
particle number we have applied a magnetic field gradient to the microtrap as
described in this thesis. Figure 7.1 shows the particle number dependent on the
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Figure 7.1: Particle number dependent on the gradient with which we spill the
atoms from the microtrap. The gradient is applied by our MOT coils to the micro-
trap with trapping frequencies ωa = 2π × 350Hz and ωr = 2π × 8.5 kHz.

applied gradient. To get an idea, to which extend we so far can control the par-
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ticle number by this technique, we observed the number fluctuations for different
measurements with constant gradient and mean particle number of 120, without
having done any optimization on the spilling process. The observed particle num-
ber is illustrated in the histogram of figure 7.2. One can see that the measured
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Figure 7.2: Illustration of the current control of the particle number. The His-
togram shows the particle number after spilling the residual atoms of the micro-
trap by applying a magnetic field gradient as described in this, repeated for≈ 200
measurements. If we have detected N particles in a measurement we added one
count to the column which incorporates the number of measurements with par-
ticle number 10n ≤ N < 10 (n + 1) (n ∈ N). The red curve is a normal
distribution fitted to the histogram. One sees that the measured particle number is
approximately normal distributed with a standard deviation of σ = 14.

particle number is approximately normal distributed, even for that small particle
number. The source of the measured fluctuations is not only the actual variation
in particle number, which can occur from tunneling of atoms of the upper level
through the potential barrier or from particle excitations during the application of
the gradient. Also detection noise, which is not extracted, contributes to the ob-
served fluctuations, which will vanish if we are able to detect single atoms after
an expansion time of the atomic cloud by using fluorescence imaging in future.
We are confident that we will also reduce the particle fluctuations by increasing
the level spacing in a new microtrap design. The long term goal is the control of
the atom number on the single particle level.
In conclusion, we are on a good way towards a finite system of fermions. If we
achieve control of the quantum states, one of the first possible things to observe,
will be the shell structure of non-interacting fermions in the harmonic potential
and its change when interaction is turned on. We are confident that in the future
we will be able to study interesting physics by the observation of few fermions in
the microtrap.
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A. Fundamental constants and 6Li level scheme

Symbol Value Meaning

~ 1.054571628×10−34 Js Planck’s constant over 2π
h 6.62606896×10−34 Js Planck’s constant
c 2.99792458×108 m/s Speed of light in vacuum
kB 1.3806504×10−23 JK−1 Boltzmann’s constant
a0 0.52917720859×10−10 m Bohr’s radius
µB 927.400915×10−26 J/T Bohr’s magneton
me 9.10938215×10−31 kg Mass of a electron

mLi 9.98834146×10−27 kg Mass of a 6Li atom
ΓLi 36.898×106 s−1 Natural linewidth of the D2 line of 6Li
λLi 670.977338×10−9 m Wavelength of the D2 line of 6Li in vacuum

Table 1: Constants used in this thesis. The fundamental constants are taken from
[NIS], the properties of 6Li can be found in [Geh]. The table is taken from
[Wen09] and slightly adapted.
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Figure 2.1: Zeeman hyperfine levels of the 6Li electronic ground state.

the cooling transition of 6Li in the MOT goes from the S1/2(F = 3/2) to the
2P3/2 states, one has to additionally use a repumper driving the S1/2(F = 1/2) to
2P3/2 transition (see [Ser07]). In order to pump the atoms into the F = 1/2, the
repumper is switched off before the cooler during the transfer to the dipole trap
and thus one automatically produces a mixture consisting of atoms in states |1〉
and |2〉 (if a homogeneous magnetic field is applied).
The states |1〉 and |2〉 are high-field seeking. They are thus not magnetically trap-

pable (as it is not possible to produce local magnetic field maxima in those traps).
Hence there is no stable and magnetically trappable two-component mixture of
6Li which means that one has to utilize a bosonic cooling agent (e.g. 23Na or 7Li)
if one insists on the use of magnetic traps.
For the reasons given above, we will use an optical dipole trap and hence the

“all-optical” approach explained in [Gra02] or [Gri07].

2.1.3 Feshbach Resonances

From low-energy scattering theory, we know that if a bound state of the inter-
action potential is close to the continuum, the scattering length and the interac-
tion strength are resonantly enhanced. For a bound state situated slightly below
the continuum this leads to a large positive scattering length (see for example
[Lan81]), which diverges to +∞ if the bound states reaches the continuum. The
scattering length then changes sign, becoming negative and large in magnitude, if
the bound state is right above the zero-energy threshold.

9

Figure 3: Zeeman hyperfine levels of the 6Li electronic ground state. Plot taken
from [Wen09].
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B. Procedure of coil manufacture (German)

1. Schritt: Spule wickeln (4 Personen)
Benötigt: Kupferdraht, gereinigte Wickelkörper, Epotec epoxy, Drehbank in Werkstatt.

• Loch in Draht bohren und an Wickelkörper befestigen. Windungssinn auswählen
• Person 1: Drehbank. Person 2: Draht spannen. Person 3: Draht mit Epoxy ein-

schmieren. Person 4: Neueste Drahtwindung mit Plastikstange an Wickelkörper
andrücken.

• Nach ca. 17 Windungen Drehbank einrasten. Epoxy mit Heissluftfön direkt in der
Drehbank curen bis Windungen fest.

• Nochmals im Backofen weitercuren.
• Spulen zum Abdrehen in Werkstatt geben.

2. Schritt: Spule aufkleben (2 Personen)
Benötigt: abgedrehte Spulen, Spulenkühlkörper, Diamantkleber, Schwefelsäure, Wasser-
stoffperoxid

• Kleber auftauen
• Ofen auf 60◦C vorheizen.
• Spule mit gewünschtem Windungssinn auswählen
• Oxidschicht auf Oberfläche von Spulenkühlkörper und Spule reduzieren. Dazu

1% -ige Schwefelsäure nehmen und kurz bevor Spule bzw. Kühlkörper eingelegt
wird 3% Wasserstoffperoxid hinzugeben, welches das Kupferoxid reduziert.

• Spule an Kühlkörper anpassen und innen auf der Spule die Kontaktstelle markieren
um beim Kleben schnell die korrekte Orientierung zu finden.

• Spulenkühlkörper auf 60◦C vorheizen
• Kleber auf Spule gleichmaessig mit dem Finger auftragen (mitteldick)
• Kühlkörper mit Kleber 10 min bei 60◦C heizen
• Backofen auf 140◦C vorheizen. Thermocouple als Temperaturkontrolle hinzule-

gen.
• Spulenkühlkörper auf Spulen auflegen, Orientierung für Anschlüsse beachten!!

Kühlkörper auf Spule andrücken mit maximal von Hand erzeugtem Druck. Scherkräfte
vermeiden. Auf elektrische Leitfähigkeit überprüfen.

• Spule bei 140◦C 2 Stunden backen.

3.Schritt: Vorbereitungen Anschlüsse löten (1 Person)
Benötigt: Diamatkleber

• Kleber auftauen
• Ofen auf 130◦C vorheizen.
• Windungen zählen. Ganzzahlig 15 Windungen. Überschüssige Windungen aussen

abwickeln und entfernen. Dazu mit Dremel in Kupfer einfräsen und beachten nicht
die Klebestelle zwischen Spule und Kühlkörper anzufeilen. Elektrischer Kontakt
prüfen.

• Fugen und Löcher des versenkten Rasters mit Diamant-Kleber ausfüllen und bei

95



130◦C backen, damit beim Fräsen keine Späne in die Löcher gelangen können.
• Kontaktstelle für Anschlüsse in der Werkstatt einfräsen lassen. Beachten, dass

nicht bis an Kühlkörper gefräst wird.

4. Schritt: Anschlüsse löten (3 Personen)
Benötigt: Anschlüsse, Indium, Flussmittel, Diamantkleber, Heizband, Thermocouple,
PID Regler, Kaptonband

• Thermocouple auf Spulenkühlkörper kleben.
• dünne Schicht Diamantkleber auf Aussparung für Anschlüsse am Spulenkühlkör-

per auftragen.
• Ofen auf 200◦C heizen (maximale Temperatur) und Anschlüsse hineinlegen
• Spule in Heizband einwickeln und mit Aluminium einpacken. Temperatur auf

140◦C stabilisieren.
• Anschlüsse auf beiden Seiten mit Indium benetzen und zurück in Ofen bei 200◦C.

Kontaktstellen mit Indium benetzen.
• erste (innere) Anschluss aus dem Ofen nehmen und anlöten. Erste Person hält

Anschluss, zweite Person lötet und dritte Person kontrolliert ob Anschluss im kor-
rekten Winkel zum Kühlkörper sitzt.

• Zwischenraum zwischen Anschluss und Kühlkörper mit Diamantkleber ausfüllen
und bei 140◦C eine Stunde curen

• Innere Kontaktstelle mit Kaptonband gegen zweiten Anschluss isolieren
• zweiter (äusserer) Anschluss anlöten, Zwischenraum mit Diamantkleber ausfüllen

und eine Stunde bei 140◦C curen.

5. Schritt: (1 Person)
Benötigt: Knetepoxy, Plastik 70, Auspufflack

• Anschlüsse und Kühlwasseranschlüsse mit Knetepoxy fixieren.
• Überschüssiges Indium und Kleber entfernen. Spule in Testhalterung einpassen.

Evtl. von Kupferanschlüssen etwas abfeilen.
• Halterungen ankleben
• Innen- und Oberseite von Kühlkörper und Anschlüsse mit Auspufflack schwarz

lackieren um Streulicht zu unterdrücken.
• Anschlüsse und blanke Kupferstellen an Spule mit Kapton tape isolieren
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C. Electronic Circuits

Figure 4: Amplifier for VCO of AOM and Beat lock
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