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Zusammenfassungen

1. Die genaue Messung des relativen Abstands und der Orientierung zweier nahegelegener
Quanten-Teilchen wird diskutiert. Wir sind insbesondere interessiert an einer realistis-
chen Beschreibung, die moglichst wenig Vorwissen iiber das System benotigt. Anders als
bei fritheren Studien betrachten wir daher den Fall einer beliebigen relativen Orientierung
der beiden Atome. Hierzu miissen die Atome mit kompletten Zeeman- Mannigfaltigkeiten
modelliert werden, damit sowohl parallele also auch orthogonale Dipol-Dipol-Kopplungen
zwischen allen relevanten Zustdnden beriicksichtigt werden. Wir zeigen, dass der Abstand
der beiden Atome unabhéngig von der Orientierung bestimmt werden kann, so lange die
Teilchen einen geringen Abstand zueinander haben. Danach diskutieren wir die Messung
der relativen Ausrichtung der Atome. Hierzu konzentrieren wir uns auf die beiden Falle
von Atomen in einem zweidimensionalen Wellenleiter und Atomen auf einer Oberflache.

2. Wir schlagen eine Methode vor fiir die Quanten-Teleportation eines verallgemeinerten
(N +1)2-dimensionalen verschr” ankten Zweiteilchenzustands. Der Zustand ist als Feldzu-
stand in zwei Kavititen von hoher Giite realisiert. Alle benétigten Schritte der Telepor-
tation einschlielich der Praparation der verschrankten Zustanden in den Kavitaten, der
Messung der verschrankten Zusande und der angewandten Transformationen sind durch
Standardmethoden der Kavitaten- Quantenelektrodynamik realisiert.

Abstracts

1. Accurate measurement of relative distance and orientation of two nearby quantum
particles is discussed. We are in particular interested in a realistic description requiring
as little prior knowledge about the system as possible. Thus, unlike in previous studies,
we consider the case of an arbitrary relative orientation of the two atoms. For this, we
model the atom with complete Zeeman manifolds, and include parallel as well as orthogo-
nal dipole-dipole couplings between all states of the two atoms. We find that it is possible
to determine the distance of the two atoms independent of the orientation, as long as
the particles are sufficiently close to each other. Next, we discuss how in addition the
alignment of the atoms can be measured. For this, we focus on the two cases of atoms in
a two-dimensional waveguide and of atoms on a surface.

2. We propose a scheme for the quantum teleportation of a generalized bipartite (N + 1)2
dimensional entangled field state in two high-() cavities. All the processes of teleportation
including preparation of entangled states in high-@Q) cavities, measurement of the basis
states and transformations are carried out using standard cavity QED techniques.
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Chapter 1

Introduction

The two projects carried out for the masters thesis are introduced in the following.

Measurement of Distance and Orientation of Two Atoms in Arbitrary Geom-
etry

Progress in many areas of science and its application is fueled by the ongoing progress
to measure and structure small objects. In many cases, light is used as a primary tool
for reading or writing. However, the resolving power of a lens is ultimately limited by
diffraction. Usually the limit to which the small distances can be accurately measured is
half of the wavelength of incident light, Rayleigh diffraction limit, if lens-based imaging
is used. So, a straightforward implementation is restricted to structures of order of the
involved wavelength [1].

Fig. 1.1 illustrates the origin of this diffraction

limit. Light from an object travels towards a g detector
near-by lens with a propagation vector K and lens z
is then detected by a detector. In order to be x

detected, the component of the wave vector K K

towards the detector must be positive. In this obect

case, k, = ,/Kz—k:?c—k:; > 0, where K =

Kyt + kyj' + k_k. This restricts the magnitude of
the transverse wave vector components to be less
than K, if they are non-zero. Now the Heisen-
berg’s position-momentum uncertainty relation Figure 1.1: Light from an object with
states AxAp ~ h. This implies that |Azx|;, = a wave vector K goes into the lens and
A which means that the position-space measure- is detected by a detector.

ments are limited to the order of .

Different methods have been invented to surpass this limit. An important technique is
to use near-field imaging [2], i.e., to place the detector closed to the object in order to
capture maximum light coming from the object. Near-field optics that do not involve any
lenses is a tool which can be used to resolve distances up to nanometers. Techniques based
on the selective addressing of nearby particles [3] also increase the spatial resolution. In
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such methods each feature is identified and isolated on the basis of one or more distin-
guishing optical characteristics and then the relative spatial coordinates are measured [4].
Resolution enhancement can also be achieved due to non-classical effects [5], e.g., highly
entangled photon states can be used to write features in an N-photon absorbing resist
which have a resolution of A\/2N. Thus a resolution by a factor of N below the classi-
cal Rayleigh diffraction limit can be achieved [6]. Multiphoton spectroscopy [7] which
involves the simultaneous absorption of more than one photon can also be employed to
obtain three dimensional resolution. Quantum lithography with classical fields [8] allows
to do subwavelength imaging in an efficient manner. Position-dependent dark states or
trapping states for which, under certain conditions, the absorption is cancelled are also
used in interferometric optical lithography [9].

Measuring the interatomic distance between two closely spaced atoms has always been
a fundamental problem in science. Therefore, many techniques have been developed to
achieve the goal. One class among these high precision measurement techniques exploits
the mutual interaction between the atoms. When the atoms are placed closed to each
other, they interact with each other via vacuum radiation field. One atom initially in an
excited state emits a virtual photon. This virtual photon is absorbed by the other nearby
atom and consequently, it becomes excited. This phenomenon is called dipole dipole
interaction [10,11]. The dipole dipole interaction between two nearby atoms affects the
optical properties of the system and it can be detected in the far field. The dipole-
dipole interaction for two identical two-level atoms has been studied in great detail in the
past [12-17].

The measurement of interatomic distance using dipole dipole interaction has been re-
cently experimentally demonstrated in [18]. This is an important experiment because
by combining the near field and far field spectroscopy techniques, two nearby fluorescent
molecules could be resolved up to 12nm inside an inhomogeneous external electric field.

So far, all the techniques based on the dipole dipole interaction to measure the interatomic
distance are limited to two two-level atoms in a specific geometry [15]. This is the case,
when the atoms are placed in a line with respect to the driving laser. However, in most
practical situations, the orientation of the atoms with respect to the laser is unknown.
Therefore, we are motivated to develop techniques for distance measurement which work
for arbitrary orientations of the two atoms. However, as one takes into account the
situation of arbitrary orientations, the orthogonal dipole dipole couplings appear between
the two atoms [13,19-22]. These couplings vanish when the atoms are aligned with respect
to the laser. They have been discussed in the recent past by [13,20,21]. The electric field
emitted by one of the particles has not only a component corresponding to the emitting
transition dipole moment, but also a component along the interparticle distance vector.
The projection of the latter field component on a transition dipole moment in the second
atom can be non-zero even if it is orthogonal to the emitting dipole [13]. The couplings
have a strong effect on the dynamics of the system. In a real atom with magnetic level
structure, these couplings lead to the population of excited states even if they are not
driven by the external laser field. So, it is required to include all the dipole dipole couplings
and to consider the two atoms with complete Zeeman manifolds.



We consider two identical four-level atoms with ground state corresponding to a singlet
S state and a triply near-degenerate set of excited states corresponding to P-triplet. The
system is driven by a standing wave field. We assume arbitrary orientations for the system
and thus consider all the dipole dipole couplings between the two atoms, Fig. 1.2. The
goal is to measure the interatomic distance in any geometry and to estimate the relative
orientation of the two atoms.

As an observable, we employ the incoherent
parts of resonance fluorescence intensity and z A
resonance fluorescence spectrum. This makes
the detection possible in the far field. Also atom 2
resonance fluorescence is not affected by the
classical resolution limit because the informa-
tion about the system is encoded in the spec-
trum of observed frequencies.

The resonance fluorescence spectrum of two
identical atoms has peaks shifted from the
laser frequency by the atomic position de-
pendent Rabi frequencies of the laser when
the interatomic separation is large. This is
because the dipole dipole interaction is negli-
gible when the atoms are well separated. The
distance dependent dipole dipole interaction
dominates in case of small interatomic dis-
tances and allows to determine the peak po-
sitions in the spectrum. Hence, resonance flu-
orescence gives a clue to the determination of the interatomic distance.

X

Figure 1.2: The position vectors of the two
atoms are r; and ro, respectively. The rel-
ative position R = ry — ry of atom 2 with
respect to atom 1 is arbitrarily chosen.

We study first the cases of known orientation and calculate the interatomic distance.
We develop a deep understanding in terms of the intuitive dressed state pictures. The
dressed states are the eigenstates of the Hamiltonian of the atoms and field, calculated
in the interaction picture. Afterwards, we extend our analysis to include the situations
of unknown orientation as well. As a result of our analysis, we have discovered that the
interatomic distance can be measured over a wide range of small interatomic distances
without any prior knowledge about the orientation of the system.

We can also measure the relative orientation of the two atoms with respect to the laser by
employing resonance fluorescence spectrum and resonance fluorescence intensity. We have
taken into account two interesting cases. In the first one, the atoms are placed inside a
planar waveguide and the azimuthal angle is determined using the spectrum of resonance
fluorescence. For the second case, the bi-atomic system is placed on a surface and the
laser field propagates perpendicular to it. In this case, the intensity of fluorescent light
emitted in a particular direction is used to determine the spherical polar angle. We also
briefly discuss the methods to determine the orientation in arbitrary geometries.

In the following, we introduce the other project for this thesis which has been carried out
partly in Pakistan and partly in Heidelberg under the supervision of Dr. M. Ikram. This
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is included as Chapter 6 in the thesis.
Quantum Teleportation of a High-Dimensional Entangled State

Entanglement is a purely quantum mechanical phenomenon having no classical analog.
The basic concept states that in a quantum system of two or more particles, even if the
particles are spatially separated, their quantum states are related to each other in such a
manner that the state of one particle cannot be described without complete reference to
the state of the other particle(s). Many applications like quantum teleportation [23] or
quantum cryptography [24] are possible only due to the ability to engineer and manipulate
the entangled states. Entanglement is the base of quantum computation. Unlike a classical
bit which can only have the value of 0 or 1, a qubit (abbreviated from 'quantum bit’” which
is the basic unit of quantum information) can be a superposition of 0 and 1 simultaneously
if the states are labelled by binary numbers. Thus more information can be transferred
if qubits are employed. Increasing the number of terms in the superposition allows one
to carry out parallel processing. A quantum register may have a superposition of many
qubits. One quantum register cannot be copied to another. Therefore, the only way to
communicate such states is quantum teleportation.

Quantum teleportation, introduced first by Bennett et al., is a method to transfer the
information securely from the sender to the receiver. It does not transfer the particle
itself but its quantum state. It mainly consists of three steps. The first step consists of
the preparation of a maximally entangled state. Both the sender and the receiver keep
one particle of this entangled state. In the second step, the information at the sender’s
station is disassembled. One part of this is sent through a quantum channel run by non-
local correlations between the two entangled quantum entities and a classical channel is
used to send the other part. Ultimately, the receiver recovers the state by making use
of the information obtained from both the classical and the quantum channel. Quantum
teleportation does not allow the communication of information at a speed higher than the
speed of light because a classical channel is involved in the process, as discussed above.
However, it can help in the transmission of a quantum superposition states, which is useful
for quantum computation.

A system of many qubit states is needed in applications where one needs to search an
unordered database or to factorize a very large number. The teleportation of a single
qubit state requires two-qubit maximally entangled state and the teleportation of a two-
particle entangled state can be done by employing two quantum states each made up of
two particles [25].

A scheme for the teleportation of a bipartite entangled state from a pair of high-Q) cavities
to another pair of high-Q cavities with quantum correlations shaping over (N + 1)? is
presented.

The preparation of the entangled states for a fixed number of photons is done by the
interaction of excited two-level atoms with high-Q cavities [26]. The cavity field is assumed
to be in a vacuum state initially. The interaction is assumed to be resonant. We employ
Jaynes-Cummings Hamiltonian. The time period of the interaction is pre-calculated for
the desired entangled state to be generated. By choosing proper interaction times, after
the interaction of the first atom with the cavity field, a one-photon entangled state is

10



created. This entangled state serves as an initial condition for the second atom and so on.
Finally, we use the condition that all the atoms must be detected in their ground states.

Measurement of the basis states includes the measurement of relative phases and the
measurement of the photon numbers. This measurement information will be sent from the
sender to the receiver through some classical channel. Standard cavity QED techniques,
for example, Ramsey interferometry [27] and adiabatic passage [28] are used for carrying
out the measurement of the photon numbers. For the measurement of the relative phases,
we need to empty the cavities which can be done using adiabatic passage.

Finally, the transformation process at the receiver’s end in order to recover the original
state can also be divided into two steps, i.e., the transformation of the photon numbers
which is done by employing adiabatic passage and the transformation of the relative
phases, for which Ramsey interferometry is required.

Our scheme needs interaction times of calculated duration which can be achieved by the
Stark field adjustments of the electric field. We also need to have no spontaneous decay
of the atoms so we propose to use rubidium atoms because they do not decay easily by
spontaneous emission. There must be no losses in the cavities so cavities whose quality
factor is high, are required.

The proposed scheme is experimentally realizable with the current experimental tech-
niques.

Now we give a brief overview of the thesis.
Overview

This thesis is organized as follows. In Chapter 2, we exploit the density matrix approach
since coherent as well as incoherent processes have to be taken into account, and derive the
master equation for the density matrix of the system. We will consider time-independent
density matrix because we wait for a long time so that the system reaches a steady state.
Chapter 3 includes a discussion of the observables in the steady state. Chapter 4
targets to explain the physical understanding about the system; particularly about the
various processes taking place in the system and the phenomenon of ac Stark effect for a
single two level atom. Chapter 5 describes the results of the project in detail. As already
said, Chapter 6 is a study of teleportation of a high-dimensional entangled state. Finally,
in Chapter 7, we give the concluding remarks from both the above mentioned projects
and give a brief outlook.

11



CHAPTER 1: Introduction

12



Chapter 2

Derivation of the Master Equation

2.1 Introduction

In this chapter, we describe the mathematical model that we use to analyze the interaction
of the electromagnetic radiation field with the atomic system. We use the master equa-
tion approach which is a standard technique for the study of atom-field interactions. The
system of atoms is usually coupled to a large reservoir such as vacuum field. The master
equation explains the time evolution of the reduced density operator of the atomic sys-
tem, and the quantized electromagnetic field having unlimited number of modes acts as a
reservoir which undergoes slight perturbations due to the presence of atoms. The deriva-
tion of a master equation for different atomic systems has already been demonstrated
in [10,11,29].

Generally, the quantum state of the radiation field is not required to be determined. This
is because the correlation functions of the scattered electromagnetic field can be obtained
from the correlation functions of the atomic operators. This will be illustrated in the next
chapter where we explain our observables.

In Sec. 2.2, we set up the Hamiltonian for our bi-atomic system as well as the radiation
field. We begin with the calculation of the Hamiltonian of the complete system, insert
this Hamiltonian in the Liouville or Von Neumann equation and obtain an equation of
motion for the combined density matrix. By tracing over all the field modes, we obtain
the reduced density matrix.

We use certain approximations for the calculation of the master equation and we will
explain each of them in Sec. 2.3. For example, the dipole approximation in which we
assume that the wavelength of the incident electromagnetic field is larger than the size of
the atom. These approximations considerably simplify the calculation of the equation of
motion of the bi-atomic system.

The actual derivation is described in detail in Sec. 2.4. The explanation of various coupling
constants that participate in the atom-vacuum coupling is presented in Sec. 2.5. In
Sec. 2.6, the interaction with the laser is described.

13
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standing
wave

atoms

detector

Figure 2.1: Scheme for the determination of relative distance and orientation of two nearby
atoms. The atoms p € {1,2} are driven on one transition by a standing wave laser field
with Rabi frequency €2(r,) and scatter light, which is registered in the far field with a
detector. The interatomic distance vector R is arbitrary, as shown in the left inset. The
right inset shows the level structure of each atom. Each atom has a single ground state
(zero angular momentum) and three excited states (angular momentum 1).

2.2 System Hamiltonian

We consider a system of two identical four-level atoms. Each atom can be visualized
as a Ca atom. The ground state corresponds to a singlet Sy state and the excited
state multiplet P; has three Zeeman sublevels corresponding to the angular momentum
eigenstates m; € (—1,0,1). The alignment of the atoms is arbitrary. The atoms are being
driven by a standing wave laser field which is polarized along the z-axis and propagates
along z-axis, Fig. 2.1. The discussion of the laser field has been postponed to Sec. 2.6. The
position of atom i is r;, i € {1,2}, Fig. 1.2. The interatomic distance vector in spherical
coordinates is given by,

R = R(sinf cos ¢,sinfsin ¢, cos ). (2.1)
The raising and lowering operators on the | 4,,) «<»| ¢,) transition of atom 1 are i € {1,2, 3}

S = i) (4, | and  S® = 4,)(, | (2.2)

where | 4,,) is assumed to be the ground state of the atom .

14



2.2. System Hamiltonian

We define wy = ckg as the mean transition frequency given by

3
1
Wy = g ;wl (23)

The Hamiltonian that describes the system is composed of three parts.

H="H,+Hs+ Hint (2.4)
where
2 3
Ho=hY Y wSH s (2.5)
p=1 =1

describes the free time evolution of the atoms. The energy of the state |i) is hw;. The
energy of the ground state is assumed to be zero.

Hf = Zhwkazsaks (2.6)

ks

explains the Hamiltonian for the electromagnetic field. ag, and al_ are the field anni-
hilation and creation operators, respectively. wy is the frequency of the mode whose
wavevector is described by k.

d"  E(r,) (2.7)
1

2
Hint = Hvac = -
M:

accounts for the interaction between the atoms and the radiation field in the electric dipole

approximation. The subscript vac denote vacuum. The (Ai(u) is independent of the atomic
index p since the two atoms are identical.

The Wigner-Eckart theorem [30] is used to determine the electric dipole moment operator
of the atom p which is given by

3
d" =3"[d.Ss® + Hel, (2.8)
i=1

where H.c. denotes the hermition conjugate and p € {1,2}. The vector d; represents the
dipole moment of the i-th dipole transition. The dipole moments are given by the matrix
elements of the electric dipole moment operator d; = (i|d|4) so that

dl = D€(+), d2 = Dez, d3 = —DE(_). (29)

Here D denotes the reduced dipole matrix element and the circularly polarized vectors
are defined as

() —

1
ﬁ(em + 1ey). (2.10)
15
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E iS deﬁned as
E(r) = E ”_k erseFTaps + H.c (2.11)
— 260‘ > Cks ks Gy .

where a, and azs are the field annihilation and creation operators, respectively. k de-
scribes the wave vector, €xs the polarization, wy the frequency and V' the quantization
volume of a field mode.

Before we start the detailed calculation of the master equation, it is important to outline
all the assumptions that we will use in Sec. 2.4.

2.3 Assumptions

We introduce a number of approximations which simplify the equation of motion consid-
erably.

(1) At some initial time ¢ = 0, it is assumed that the combined system is in a product
state where there are no correlations between the atoms and the field. The complete
density operator can be written as a direct product

0(0) = 27(0) ® 04 (0). (2.12)

where o7(0) = [07)(0;]:

(2) We use the Born approximation which means that we assume that the coupling be-
tween the atoms and the radiation field is weak. This approximation implies that the
atom-field interaction is so weak that an emitted photon is not reabsorbed by the atom.

(3) We assume the rotating wave approximation regime. The interaction between the

atoms and the reservoir will have terms such as Sfﬁ)S](-:), S S](-'i), SZ-(’_L)S](-:), SZ-(’_L)S](-Z). The
raising-raising and lowering-lowering terms are so called counter-rotating terms. They

vary very rapidly with time and so are excluded during the derivation.

(4) We assume that the future state of the system-reservoir density operator is determined
by its current state, and is not a function of the history of the bath. This is called
Markovian approximation.

(5) Our interaction Hamiltonian does not describe the relativistic effects. We consider all
modes below a cut-off frequency we of the vacuum field available for interaction with an
atomic transition. Higher frequencies correspond to relativistic effects.

2.4 Master Equation

During the derivation of the master equation, we follow the analysis done in [11].The time
derivative of the quantum state p of the atoms and the radiation field is determined by

. L

0= —7[M,a (2.13)

16



2.4. Master Equation

The above equation is called Liouville or Von Neumann equation of motion for the density
matrix. The Schrodinger’s equation, contains specific state vectors while the Liouville
equation employs the density operator and so the latter is more general. One can get the
statistical as well as the quantum mechanical information out of it.

We work in the interaction picture and employ the transformed density matrix which is
given by
@(t) — eL(Ha+Hf)t/hQ€—L(Ha+Hf)t/h. (214)

This transformed density matrix evolves in time according to the atom-field interaction.
The equation of motion obeyed by the density matrix is

_ 1.~ _
00(1) = - [Fi 1), 5(0), (2.15)
where
ﬂznt(t) _ eL(Ha+Hf)t/hHint€_L(Ha+Hf)t/h, (216)

is the Hamiltonian in the chosen interaction picture with respect to H, + H;. Now we
trace over the field variables because we are interested only in the atomic density operator.
In order to eliminate the reservoir variables, we work with the reduced density operator.
One can obtain the reduced density operator for the atoms at a time ¢ by taking the trace
over reservoir coordinates, i.e.,

0a(t) = Tryo(t). (2.17)

Such general reservoir approach is a standard technique in quantum optics and is outlined
in different textbooks, e.g., [11,27]. The equation of motion then becomes

1 N

0r04(t) = ETrf [Hint(t), 0(%)] (2.18)

We use iteration method to solve this first order differential equation. At ¢ = 0, it is
formally integrated and the first order solution in H;, () is obtained.

1

0a(t) = 34(0) + - /0 t diTr f[Fine (£), 0(1)). (2.19)

We back-substitute Eq. (2.19) into Eq. (2.18) and thus obtain the master equation for the
reduced density operator.

Bo(t) = 23T P8, 500 = 5 [ 0T Flaa0). Pl ). 260) - (220)

One can get an explicit exact solution for g,(t) if this procedure is continued. The solution
is an infinite series of integral terms, the so-called Born series.

We will however, solve the master equation in a different manner. We employ the Born
approximation and evaluate the second term of the above equation that contains the

17
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double commutator. The expression to be calculated is

;2 AT [Fo (), [Fan(F), 8(6)]] = % /0 AT ([Pl () Floae ()]

0(f) Huae()]- (2.21)

We concentrate on the first summand of the above equation. We plug in the explicit form
of H,qe and use the correlation functions for temperature 7' = 0

T gl (1)a44(£) 05 (0)] = Trylaag ()ag, (£)d7(0)] = Trylag, (t)ag(6)ds(0)] = 0,

T plaans (t)al. (£)37(0)] = 5ké5856—w<t b, (2.22)
where
ps(t) = aps(t)e " r! (2.23)
This results in the following expression:
1 [ ~ s
h2 dtTrf [Hvac (t>HvaC(t)@(t)]
= / di Y " (Dys(t) DL, (D)™ =D + DL () Dys(£) e =0) g, (t — ). (2.24)
0 ks

Here,
2 3
Dks Z Uys(ry). Z[diSi(J’i)e‘“it + H.c.. (2.25)
=1 i=1

Proceeding in a similar fashion, one can obtain the remaining three terms of the Eq. (2.21).

Now we come to the rotatlng Wave approxnnatlon In the interaction picture, the terms

proportional to .S, W) Sji and S S @) oscﬂlate at the frequency (w; +wj). On the other

hand, the terms proportional to Sl(ﬁ S - and S; W) Sj + oscillate at the frequency (w; —w;).
These terms conserve the energy. We ignore the so-called counter-propagating terms that
rotate at the frequency *(w; +wj;) since we assumed that the differences(w; —w;) between
the resonance frequencies are much smaller than the frequencies w; themselves.

Being in the non-relativistic regime, we consider only wave vectors which obey |k| < k.,
where ck, = w, is the cut-off frequency. This frequency is much larger than all relevant
transition frequencies w; of the atoms, but smaller than m.c?/h, where m, is the mass
of the electron. It follows that quasi-resonant absorption and emission processes are
still correctly described, but virtual emissions and re-absorptions of “relativistic”high
frequency photons are not taken into account. We replace the sum over discrete wave
vectors by an integral over continuum modes:

Vo[ 2
§ 2 §
ks k s=1
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2.4. Master Equation

where Q. = (O, dr)-

We have expressed the integral over the three-dimensional k-space in terms of spherical
coordinates and changed the integration over k into an integral over frequencies wy, = ck.
The master equation for the reduced density operator now simplifies to

0a(t) = %[Ha(t), (1)
+Z z{ SXE (), S+ (S (X8 () S]
+ [532@‘“( £), S+ S5 (Vi () S]}- (2.27)

The time dependent operators used follow.

XZV( ) = 2€0ﬁ 271_0 / dT/ dwkwk/koZeLk R Eks . Eks d* ]6L(WJ wi)T (t — 7_)

(2.28)
and
v LkR L(wijtwg) (T
Yin(t) = Seoh(2nc)? 27Tc / dT/ dwkwk/koZe [exs - d)[€r, - dj]e ™ @iTR) T 5t — 7).
(2.29)

In these equations, the vector R = r, — r, denotes the relative coordinates of atom p
with respect to atom v. It is to be noted that the above integrals would be divergent if
we had not introduced the cut-off frequency we. We continue with the evaluation of the
operators X/ and Y/). As the time difference 7 increases, e™*“*" oscillates faster and
faster. Therefore, this term can be neglected when 7 > 7.. This 7, is the correlation time
of vacuum fluctuations of the free electromagnetic field. Assuming 7. to be small means
that the bandwidth of the electromagnetic vacuum field is assumed to be much larger
than the atomic linewidth.

Since the atomic lifetimes 7; ' determine the timescale of evolution of the density matrix
04(t — 7), the above integrals can be further simplified as follows. During the vacuum
correlation time 7., the density operator does not change considerably; Markovian approx-
imation. We therefore, replace g,(t — 7) by 0,(t). We further extend the upper bound of
the 7 integral to infinity.

Using the relation
t

lim [ dre™™* = [mé(wy) — LB], (2.30)
t—oo 0 W

the integral over time can be written as

im [ drau (e = gu(t) o) — 1], (2.31)

t—oo [ Wk

where P denotes the Cauchy’s Principal value of the integral.
Evaluating the integrals, the operators can be written as

XP(£) = (T 4 M) 4(1) (2.32)
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and

V" = =P (). (2.33)

Here,

v ™ we *
Y =gt /0 Aol (d)TF (wn/e, R)d2)6(wr — wo).
T we — 1
L dwpwi[(d;)" F R)d;
Y 2&?&1(27?0)37) 0 wiwil(di) (wi/fe, R) ]]wo + wy,
T we — 1
r dwrwi[(d;)" F R)d; 2.34
Vg | dell@) F oo gl —— (230
The components of the tensor ?(wk/c, R) for p,q € {1,2,3} read
>
P B) = [ don Y et e, i, (239

This tensor depends only on the absolute value of k, because the spatial integration

>
extends over the whole solid angle. Additionally, all the components of F are real.
Thus, the constants obey the symmetry relations.

DW= (I, PR =(P), MY = (M) (2.36)

J

Also, we have

QL = Pl — ML (2.37)

Now, the master equation becomes

00a(t) = %[Hm AOIETDIDIPPAC A KNAC)

1

=
N
Il
—
-
Il
—
<
I

(2.38)
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In the final form, it can be written as

2 3 3
. 1 . v V) ~
0utalt) = p M 2] +0 30 30D U ISESY 2u(t)]

ptv
1 5 Lo~ -
- E[Hm Qa( )] ﬁ[HQa Qa(t)] + ‘C’Yga(t)a (239)
where
2 3 3
Mo, 6a()] = =h > > D" Q[SHSY, 6a(1)), (2.40)
w,r=1i=1 j=1
w#V
and
2 3 3
Loyda(t) == Y DD (SIS 6a(t) + 6a()S1 S — 25% 6, (1))
wn,v=1 i1=1 j=1

2 3 3
— 3 SIS 6,(1) + a0 S — 25 5,(1)SW)).  (2.41)

In the second line of Eq. (2.39), we used the parameters ~,; which are given by

d d*
= ”” = ./ 2.42
where 3|d |2
;= Greohe” (2.43)

For i = j,7;; = ~; is the half-decay rate of the i-th atomic dipole transition. For i # j,
the parameters 7;; describe the cross-damping between the transitions ¢ and j of the same
atom. According to Eq. (2.42), the cross decay rates 7;; involve a scalar product of the
associated dipole moments d; and d;. So, they depend on the mutual orientation of the
involved dipoles and contribute to the master equation only if the two dipole moments
are non-orthogonal. They describe the decay-induced coherence between atomic dipole
transitions.

If we now include the external laser field, an additional term

T GAONAG) (2.44)
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CHAPTER 2: Derivation of the Master Equation

Figure 2.2: Figure showing examples for the parallel and orthogonal couplings: Parallel
Couplings QH, FH,

will be added to the right side of Eq. (2.39). Hp(t) represents the interaction between
the atoms and the laser field. We assume that the Rabi frequencies and the detunings
associated with the laser are much smaller than the mean transition frequency wqy. So,
we are justified to assume that the atom-vacuum interaction terms in Eq. (2.39) remain
unaffected by the addition of the laser field.

In the following section, we will derive the explicit form of the tensor ?(u)k /¢, R) and
the coupling constants and give some interpretation of these parameters. We intend to
find some relations between the couplings. This will reduce the number of independent
parameters in the master equation.

2.5 Dipole Dipole Coupling Constants

Now we find out the eﬂ)licit forms of the coupling constants. First, we derive the com-
ponents of the tensor F' . For the summation over polarization components, we find

kpkq

Z[ekS]p[Ezs]q = 0pg — 2 (2.45)
>
Inserting this into F' (wg/c, R), one arrives at
Trrfe ) = [ doy [ doen(s,, — ok 2.4
pa(wi/c, R) = i D | e (Opg = =2, (2.46)
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2.5. Dipole Dipole Coupling Constants

with the wave vector k = k(sin 0y cos ¢y, sin 0y sin ¢y, cos Oy ).
For R # 0, we find

—> 1 1 1
Fpq(k, R) :47{5;»[1[(@ /{;R?’) sin(kR) + ER2 cos(kR)]
[R],[R], 1 1 3
- [(kR 3ﬁ) sin(kR) + P cos(kR)|}
T (L e ——

kR kR*> kR®
R,[R], 1 3t 3 .,
S G e e (247

In the case of R = 0, the tensor components are

8
Foa(k,0) = Sy, (2.43)

One can either directly integrate Eq. (2.46) or calculate the limit R — 0 in Eq. (2.47) in
order to obtain the above result. Now we calculate the couplings for u # v and give their
physical interpretation.

The generalized decay rates are given by

]{?3
w T
L 1660h7r2[d F(k, R)d :
3«/%% 1 1 1
— — —)sin + — cos
D] 4 Gy T S e
_ldi-R]dj-R] 1 3 3
— — —)smn + — cosn
G s+ cosi)
— (/¥ (R)d;), (2.49)

where n = kR and ImX denotes the imaginary part of the tensor ?(R) whose compo-
nents for p,q € {1,2,3} are given by

> 1 9 0? m
XP‘](R> _47T€0R[k 5pq+aRpaRq]€
k3 1 ¢ 1 R|,[R], 1 3 3.,
N L N NI

4me n n*

In the above equation JR, denotes the derivative with respect to spatial Cartesian com-
ponent R, = [R], of the vector R.

Since the parameters Pzg , it # v are present only in collective systems, they can be inter-
preted as collective decay rates. The origin of these collective decay rates is the interaction
between the dipoles that belong to different atoms. The spontaneous decay of one atom
influences the spontaneous emission of the other atom. Such a coupling between the two
atoms is induced by the vacuum.
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CHAPTER 2: Derivation of the Master Equation

We now turn to the other coupling constants €%;" = P;” — Mj;” which occur in the second
term in Eq. (2.39). They can be written as a sum of two integrals as follows:

1 wo —
oW =~ dwp?[dT X (R)d*
ij h€0(2ﬂ'0)3 (/0 wkwk[ i ( ) j]
we 2
+ WP / dur|dl X (R)d})———). (2.51)
0 Wi —w

In the first part, there are no poles so P can be omitted. This integral gives

ﬁ[ i 47T€0R3 - 5pq))dﬂ (2-52)

and represents the interaction of two static dipoles.

We now turn to the second integral and use the residue theorem 7 > 0 to find out the
following relevant principal value integrals, which are required for the calculation of the
second integral. Since the cutoff frequency we is much larger than the mean transition
frequency w, the upper limit of the integration can be extended to infinity.

73/ dwk% sin(wgT) = gCOS(WT),
0

Wi —w
73/0 dwkm sin(wgT) = —ng(l — cos(wT)),
77/0 dwkﬁ cos(wgT) = —gw sin(wT). (2.53)

Finally, after the evaluation of both the integrals and substitution into Eq. (2.51), we
arrive at )

Sl Re( X )d], (2.54)

py _
Qij o J

> >
where Re( X') denotes the real part of the tensor X' . Explicitly, the above equation can
be written as

3 Vi 1 1 )
QLY = — d; - di[(-— —)cosn— —sinny
7= Sy b 4l ) cosn = g sin
[d;-R][d:-R] 1 3 3 .
— I J [(5 — ﬁ) cosn — e sinn]}. (2.55)

These parameters describe a coherent interaction between two dipoles of different atoms.
This interaction arises solely from the vacuum-mediated coupling between different atoms.

The number of independent coup{lEg constamt%s> in the final master equation can be reduced
by using the symmetry relation X (—R) = X (R).

This implies that:
Fé‘j” = FZ’-’]“ = (Fﬁ‘j”)* = (F;’;‘)* and Qg” = Qi”j” = (ij”)* = (Q;”)* (2.56)
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Figure 2.3: The parameters are § = 7/2, ¢ = 0. (a) Plot of dipole dipole coupling
constants. (2, is shown by solid line and 23; by a dashed one. A is the mean transition
wavelength. ()7 and Qg diverge in the limit R — 0. (b) Plot of the collective decay
rates. The solid line shows I';; and dashed one manifests I's;. I'y; and I's; remain finite
in the limit R — 0.

From the above equations, it is evident that the parameters I,/ and ;" are real. Since
the system under consideration consists of two atoms, whose relative position is described
by a single separation vector R, we can omit the superscripts p and v and denote the
parameters '}/ and €7 by I';; and €, respectively.

Hq in Eq. (2.40) can now be written as

Ho = — hZ{QmSﬁ SY 4 Hey — m{Qn (5250 + S8y 4+ Hoed — h{Qs (S S

=1

+ S8 4 Hey — h{Qu(SP S + S8 s 4+ Hee}. (2.57)

Similarly Eq. (2.41) becomes

2 3

£404(t Z Z% z+ Q + QS(M S(u Sz'(;—L)QSi(-/:)) - Z{Fu’(s( )S( o+ 95(2 S(l

l":l =1 =1

~280087) + H.e} - Z {Tar (S5 0+ 0S8 51 — 25{”08Y)) + Ta1 (S
p,v=1
w#V

S\ 0+ 08§ S\ — 2517 0S{)) + Tn (S8 537 0 + 058 57 — 257 0S{)) + H.c.}.
(2.58)
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400}
= <
QN é\‘300*
E = 200,
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Figure 2.4: (a) Magnitude of few orthogonal dipole-dipole coupling constants. The pa-
rameters are 7 = 0.08\ and ¢ = 7/2. The solid curve shows |(2;3|, while the dashed curve
depicts [Qo1] = [Q32]. (b) Magnitude of few parallel dipole-dipole coupling constants at
0 = 7. The solid line shows [()s|, and the dashed line depicts |Q1| = |33].

The different €);; are as follows.

3 : : —
Q31 = 74—173[(172 — 3) cosn — 3nsinn] sin? fe 2. (2.59)
Q= 38—23 3% — 1+ (n* — 3) cos 26] cosn — n(1 + 3 cos 26) sinn}. (2.60)
le = —V2cot ‘9931€L¢. (261)
Qoy = Q1 — (2cot? 6 — 1)Q3e*? (2.62)
Qg = —Q91, Q33 = 1. (2.63)

The collective decay rates are as under.

3 109 : P
I3 = 74—773[(77 — 3)sinn + 3n cosn| sin® fe=?. (2.64)
'y = 38—773 [37* — 1+ (n* — 3) cos 2] sinn + (1 + 3 cos 20) cosn}. (2.65)
F21 = —\/7 2 cot 9F316L¢. (266)
FQQ = Fll - (2 CO)C2 0 — 1)F3162L¢. (267)
Fgg = —Fgl, F33 :Fll' (268)

From the above equations it is obvious that only €41, €231,1'1; and I's; are independent.
All the others can be expressed in terms of these. Fig. (2.2) show some parallel and
orthogonal dipole dipole coupling constants as they occur in the system. Fig. (2.3) and
Fig. (2.4) show the dependence of some parallel and orthogonal dipole dipole coupling
constants on 6 or R.

In the next section, we outline the calculation of the interaction Hamiltonian with respect
to the laser field.
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2.6. Atom-Laser Interaction

2.6 Atom-Laser Interaction

So far we have only considered the interaction of the bi-atomic system with the vacuum
field. Now we include an external driving laser field. We assume that the Rabi frequencies
and the detunings associated with the laser feild are much smaller than the mean transition
frequency wy. In this case, it is justified to assume that the atom-vacuum interaction is not
affected by the presence of the laser field [31]. The laser field is assumed to be polarized
along z-axis. Its electric field is given by

Ep =Eee*rmemrt L e, (2.69)

where &, denotes the amplitude, wy, the frequency, and e, is the polarization of the field,
and c.c. denotes the complex conjugate. The wave vector k; with wave number k;, = 27/
points along the positive z-axis. We would like to work in the interaction Hamiltonian in
a suitable rotating frame.

We define
2 3
He =0y (2:SHS¥ + H.e), (2.70)
p=1 =1
2 3
Hoa=HotHa =1 > ((w; +w) S SH + Hee), (2.71)
p=1 =1
Her =Hr — Hy. (2.72)

By these definitions, the sum H, ; remains unaltered.

Ha,L = Ha + HL = H:c,a + H:(:,L (273)

In the following, we will make a choice for z; in such a way that there remains no explicit
time dependence in the interaction Hamiltonian. In a rotating frame defined by the
unitary transformation

U = e Haat/h (2.74)

the atom-laser interaction is governed by

Hop = UM, U =H, —H,  where

:—hz ru52++Hc) and

2

Ho=hY > ASHSH (2.75)

p=1 i=1
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when we choose 11 = Ay, 15 = Ay, v3 = Az and x4 = 0. A; = w;, — w; denote the laser
detunings and A; = A; 11 + 9. ¢ is the frequency difference between consecutive excited
energy levels. The position dependent Rabi frequencies are defined by

Qr,) = Qsin(k - r,), (2.76)
since we assume the stationary driving field to be sinusoidal and

Q = DE, /h. (2.77)

k and wy, are the wave vectors and frequencies of the driving field. Due to its polarization,
the laser field couples only to the |2) < |4) transitions in the two atoms, see Eq. (2.9).

Now there is no time dependence in the interaction Hamiltonian, the system reaches a
steady state if we wait for a considerably long time.

We assume the energy difference § to be zero. This means that we apply no external
magnetic field. In this scenario, the laser detunings become equal and all the transition
frequencies reach their mean value wy.
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Chapter 3

Resonance Fluorescence Intensity
and Resonance Fluorescence
Spectrum

3.1 Introduction

In our endeavor to describe the bi-atomic system, we exploit the intensity and spectrum
of the fluorescent light emitted by the atoms as the observables. This is because of
the advantage that resonance fluorescence can be observed in the far field, and distance
determination via fluorescence is not affected by the usual resolution limitations since
the distance information is encoded in the frequency spectrum of the emitted light. In
the following sections, i.e., Sec. 3.2 and Sec. 3.3 we explain the intensity and spectrum,
respectively in detail. Sec. 3.4 explains the calculation of incoherent spectral components
using Quantum Regression Theorem. Finally, in Sec. 3.5 we show how we implemented
the calculations to our system and for this purpose, we will explain the notation in which
our basis states are defined. Since long time behavior of the system is considered, the
density matrix evolves in a time-independent steady state. The calculation of steady state
will also be explained at the end of this chapter.

3.2 Resonance Fluorescence Intensity

In this section, we present the calculation of our observables. We derive the resonance
fluorescence intensity in terms of the atomic raising and lowering operators Sfﬁ) and S ](-li),
respectively.

The total resonance fluorescence intensity is given by one-time normally ordered correla-
tion function of the electric field operators.

() -~ (+)
(

Li= (B (.0 B (r, ), (3.1)
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where st denotes the steady state. E(_)[E(+)] is the negative [positive| frequency part of

the field operators. In the far field zone, the negative frequency part can be calculated as

B (r,t) = By (r8) -

Zw £ x (8 x d;)Siy (f)e™rt, (3.2)

47reoc2

~ r
where t = t — — is the retarded time, r = rt denotes the position of the photon detector
c

and S;1(t) = exp(Fuwrt)S;p(t). The first term indicates the negative frequency part of
the free field and if the point of observation lies outside the driving field, its contribution
to the resonance fluorescence is zero [32]. The second atom describes the retarded dipole
field generated by the atom situated at the origin. The positive frequency part can be

found out by the Hermitian conjugation of E(_)(r, t).

We define = as the cross product factor:

The transition operators can be decomposed into mean values and fluctuations as follows,

S — (W 1 4 659, (3.4)

where 1 = 1; ® 1, and 1, is the identity operator in the subspace of the atom .

The mean values of Eq. (3.4) give the coherent intensity and the incoherent part of the
intensity is determined by the fluctuations. Mathematical expressions for both can be
calculated using Eq. (3.1)- (3.4) and are given below.

2 3
2 E : 2 : oy o) a(v) thot-(r,—ry)
Icoh 47T€0T02 = ]7 r)<Sz+ (t)>st <S]_ (t)>st€ 0 ) (35)

and

9 2 3
W, —_ AN\ % ~ o o(v tkot-(r,—r,
Lne = (== 05)* D7 > S D (dg, )05 (095 ()see™ ™), (3.6)
pr=14,j=1

where the subscripts coh [inc] denote coherent [incoherent|, respectively. The cross prod-
uct factors =Z(d;, ) determine whether the resonance fluorescence spectrum can be sepa-
rated into different polarizations. A separation of the light emitted by the dipole d; and
d; is possible, if and only if, the product of the cross product factors Z(d;, t)=*(d;, )
vanishes. In the following, the point of observation is assumed to be along the z direction
for the resonance fluorescence intensity, and along the y or —x direction for the resonance
fluorescence spectrum. Evaluating these cross products using Eq. (2.9), we find that our
choice of observation direction enables us to separate linearly polarized light emitted on
transitions |2) < |4) from the circularly polarized light emitted on transitions |i) < |4)
(1 € {1,3}) by means of a polarization analyzer. The light emitted by d5 is polarized in
z-direction whereas the light emitted by d; and dj is z-polarized. We designate linearly
[circularly] polarized spectra as 7 [o] ones, respectively.
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3.2. Resonance Fluorescence Intensity

3.2.1 Resonance Fluorescence Intensity: = Polarized Light

We are interested in the intensity of the light polarized in the z-direction, ¢.e., the intensity
of the fluorescent light emitted by the dipole moments d; and d3. The total ¢ intensity
is given by

2 3
o (I)U R a(v tkot-(r,—r
"= 7% D (S0 (1) seeor ), (3.7)
purv=14j5=1
1,772
W

In the above equation, ®, = (—4 5)?E(d;, )= (dy, 1), where i,j € {1,3}. &, is a
TEQTC

geometrical factor which is constant in this situation since the detector is assumed to be
at a fixed point. We have set this prefactor equal to unity in our numerical calculation.

We have placed a detector in the z-direction in order to observe the ¢ intensity because
there is no ¢ intensity observed in the y-direction. We could also place the detector for
the observation of the ¢ intensity in x-direction but we want to avoid such a setup. Since
the incident laser light propagates in z-direction, there is a possibility that the detector
fixed in x-direction may also observe it which is not desired.

®, contains the cross product factors which, for such a geometry are given by
D? ifi=j,

0 ifi#j. (3:8)

In the following, we give the mathematical expressions for the calculation of the coherent
and incoherent parts of the o intensity.

2 3
o (I)U ~ v tkot-(r,—r
= 2 3 IS ) (S (1) e o ), (3.9)
purv=14j5=1
i,J7#2
P 2 3 ~
B =7 Y > (050 (0057 (1)) seor v, (3.10)
w,r=117j5=1
i,J7#2

3.2.2 Resonance Fluorescence Intensity: z Polarized Light

The 7 intensity and its coherent and incoherent components are as under.

T (I)W Q Qv tkot-(r,—r
"= =5 % (S (157 (1)) seettor 0. (3.11)
p,v=1
O 4 -
T = D ASE0)st{S57 (1) et T, (3.12)
w,r=1
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2
Pr Q Qv tkot-(rp—r
Ie=—" Zl<6séi><t>6sé_><t>>ste bot-(ru—r), (3.13)
V=
w2
In the above equation, ®, = (——2—)%Z(dy, t)Z*(dy, ). Just like ®,, @, is also a
4dregrc?

constant prefactor.

Now we turn to our second observable, which is the spectrum of fluorescent light.

3.3 Resonance Fluorescence Spectrum

The total resonance fluorescence spectrum S(@) up to a geometrical factor is given by the
real part of the Fourier transform of the two-time correlation function of the electric field
operators [27],

S(@) = Re / e B (et 4 1) BT

— 00

(r,t))sedr, (3.14)

where @ = w — wy, is the observed frequency minus the laser frequency and E(_)[E(+)

have already been defined in Eq. (3.2).

]

Using Eq. (3.4), the resonance fluorescence spectrum can also be decomposed into a
coherent and an incoherent part. The coherent part is given by the mean values and can
be written as

9 s 2 3
~ o Wo 2 — 10T — S\ =k A (1) (v)
S(u))coh = <_47T€07’C2> /0 e luzl/::“'j:1~(di7I')H (d],I‘)<SZi (t +7')>st<Sj_ (t>>st
« eLkof“-(ru—rU)dT. (3.15)

The incoherent spectrum contains the fluctuation parts of the atomic transition operators
and is given by

9 2

~ _ “o 2 > —LoT o S\ N (») )
S(@)ine = <_47T€07”02> /0 e M;“jZI_(di, 1)Z*(d;, £) (0S54 (t + 7)0S;7 (1)) st
% ebkof-(r#—ry)dr (3.16)

As discussed in Sec. 3.2, the spectrum of fluorescent light can also be split into 7 and o
parts.

3.3.1 Spectrum of Resonance Fluorescence: z Polarized Light

We place the detector in the y-direction. The cross products =(d;,1)=*(d;, ) where
i € {1,3} and j = 2 are zero.
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The total spectrum of resonance fluorescence emitted by the dipoles with z-polarized light
is given by

2

~\TT (I)W > —OT & o tkot-(r,—r
S@ =" / T Y (S (TS @), (37)
p,v=1

where Z(da, )Z*(ds, #) = D2

Now we give the expressions for the coherent part of the 7 spectrum.

2
1~ . D A
S(@) oo = = / e " (S (S5)spehor u ) (3.18)
T Jo
pn,v=1
This can be expressed in terms of coherent resonance fluorescence 7 intensity (Eq. (3.12))
as

1 0
S((‘D)Zoh = % / _LwTIcoth
0

= (@) (3.19)

coh*
This means that the coherent part of the 7 spectrum is a § function centered at the
frequency @ = 0 multiplied by coherently emitted 7 intensity.

Our interest chiefly lies in the calculating of the incoherent, inelastic spectral components
as we found above that the coherent part is just a ¢ function times the coherent intensity.
In the following, we will discuss the incoherent part of the spectrum and the actual
calculation will be presented in Sec. 3.4.

The incoherent 7 spectrum is given by

ch _ _/ —10T 55§i) (t 4 T)égél:) (t)>steLkof"(I'u—ru)d7—_ (320)

IINZS 1

The required vectors in order to evaluate the above equation are 52 Ly S ,Séi) and §§2_)
Four different combinations of the these operators are required in order to evaluate the
incoherent 7 spectrum.

3.3.2 Spectrum of Resonance Fluorescence: r Polarized Light

The total spectrum of resonance fluorescence emitted by the dipoles with xz-polarized light
is given by

~\o q>a —oT v tkot-(r;,—ry
swm_—/ Z Z (4 7)8Y) (1) e oF e, (3.21)

wr=14,j=1
1,572
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where
+D?%/2 ifi=j,
—D?/2 ifi#j.

Now we give the expressions for the coherent part of the o spectrum.

coh _ _/ —oT Z Z € Lkoi'-(r#—rl,)dT. (323>

wr=14,j=1
1,572

=(d;, )= (d;, ) = { (3.22)

This can be expressed in terms of coherent resonance fluorescence o intensity (see Eq. (3.9))
as

1 0
S((‘D)Zoh = ; /(; _LwTIcoth
- 5( ) coh*

Just like the 7 spectrum, the coherent part of the ¢ spectrum is a ¢ function at @ = 0
multiplied by coherently emitted o intensity.

/—\
\_/

The incoherent ¢ spectrum is given by

D)o = — / e Z Z S (t + 73S (1) )spetom e dr, (3.25)

ur=11,j5=1
1,572

The elght tran51t10n opgratqrs required in order to evaluate the above equation are
Sl+,5 53+,S ,Sl+,S @ Séi) and 53(,2_) There will be 16 terms in the incoherent o
spectrum as different combinations of the above operators.

Having given the mathematical expressions for different incoherent parts of the spectrum,
we now show how they can actually be calculated using quantum regression theorem.

3.4 Calculation for the Incoherent Spectral Compo-
nents

In the studies of spectral density, two-time correlation functions are involved. Using the
Markovian approximation, the two time correlation function can be evaluated if one knows
the single time expectation values.The correlation functions involving two-time averages
which need to be evaluated are stated below.

/ e‘LJ’T<5§i(f:) (t+ 7')55'5—? (t))sedr. (3.26)
0

We employ the generalized Bloch equations and quantum regression theorem [33, 34],
occasionally called Onsager-Laz theorem for this purpose. The theorem can be stated in
terms of the time-evolution of single atom correlation functions, governed by

B(t+ ) Z a; (1) (B;( (3.27)
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where B;(t) is some complete set of operators, and the functions «;(7) solve the averaged
equations of motion for (B;(t)). Now, the theorem states that we can write:

(At)B(t+1)C(t)) = Z a; (T){A(t)B;(t)C(1)). (3.28)

i
The order of the operators is important since A, B;, C' are non-commuting operators.

We define a vector S which has 256 components and includes all the transformed transition
operators of the basis states. According to the theorem, the time evolution of two-time
averages (0S(t + 7)8[S(t)];) where i € {1,2,...,255} obey the same equations of motion
as the one time averages (9S(t)) do, which implies that

0. (6S(t + 7)5[S()]:) = M(6S(t + 1)3[S()]:)  for 7> 0. (3.20)

The Laplace transform of both sides of the above equation with respect to 7 gives
/ e *TO(8S(t + 7‘)5[§(t)],~>d7‘ = / e *TM(6S(t + T)é[S(lﬁ)]QdT. (3.30)
0 0
The integral on the left hand side can be expressed as

[e‘”(ég(t + T)é[é(t)m]g" — /OOO<5§(1€ + T)(S[g(t)]i>(—z)e_”d7'
= —(0S(1)8[S(1)):) + 2L{(S(t + T)3[S(1)]:) }(=). (3.31)
This implies that
L{IS(t + 7)) }(2) = (2T — M)~ (8S(1)6[S(1)]:) (3.32)

We replace z by (@ in order to evaluate the correlation functions stated in (3.26) and thus
obtain

(57 = M)~ Jim (6S()I(S(1)) = Jim £{(6S(t+ T)S@IHE).  (33)

More explicitly, we can write
o

lim [ e ¥ (8S(t + 7)8[S()])dr = (1T — M)~ lim (5S(£)5[S(¢)),). (3.34)

t—o0 0 t—o00

In the limit ¢ — oo, the system reaches the steady state.

3.5 Implementation to our system

We showed in the above sections that the observables can be expressed in terms of different
transion operators of the two atoms. We now discuss the representation of these operators
in term of the basis states. As a first step, we introduce the linearly independent spanning
set of basis vectors that represents our two-atom product states. Next we show how
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the operators are represented using these basis states. This is exactly the way how we
implemented the calculation in our numerical code.

For the basis vectors, the notation that we exploit is a ket having two numbers where
the first number corresponds to the state of first atom and the second one determines the
state of the second atom. Mathematically,

|(state of atom1)(state of atom2)). (3.35)

As an example, |13) means that the first atom is in the first excited state and the second
atom is in the third excited state. We also use a state index which will be the only
non-zero element in the column vector of length 16. All the basis vectors and their state
indices are listed below.

) state index € {1,2,3,4}
|i2) state index € {5,6,7,8}
) state index € {9,10,11,12}
) state index € {13,14,15,16}, (3.36)

where ¢ € {1,2,3,4}. The vector representation of |13}, state index = 9 is given by
{0,0,0,0,0,0,0,0,1,0,0,0,0,0, O,O}T (3.37)

The density matrix elements are given by the expectation values.

o[1,3] = (1]]3) = (Ss) = (3)(1])
0[16,15] = (163]15) = (Ss5) = (|15)(16])
0[16,16] = (16]2]16) = (Sas6) = (|16)(16]) (3.38)

We proceed towards the representation of the atomic raising and lowering operators. We
have a total of 12 operators corresponding to the 2 atoms and 6 (3 raising, 3 lower-
ing) transitions in each of them. As an example, we demonstrate the calculation of the

transition operator Sﬁ)

SE =14l @ 1
= |11)(41] + |12) (42| + |13) (43| + |14)(44]|
= [1){4| 4+ [5)(8| 4+ [9) (12| 4 [13) (16| in terms of state indices
= S49 + S117 + S185 + S253- (3.39)

The subscripts following the kets on the left hand side of Eq. (3.39) denote the atom. In
a similar manner, the expressions for all the operators can be evaluated. From the above
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equations, it is evident that each atomic transition operator is a sum of four components
of the vector S. All other operators can be listed as follows.

Séi) = S50 + S118 + S1s6 + S254> Sél_) = Sao + Sss + Sis6 + S224>

Séi) = Sous + S197 4+ Saus + S231> Séz_) = S198 + S77 + Sou + S111> (3.40)

will be used in the calculation of the inelastic m spectrum while

gﬁ) = Su9 + Si17 + Siss + Sass, gfl_) =S4+ Sz2 + Sia0 + Savs,
gg(,i) = Sos5 + Ss1 + Si1g + Sisr, g;)(,l_) = So10 + S36 + Sioa + Sir2,

Sﬁ) = Sous + S103 + Sar0 + S227> S§2_) = Ses +S13 + S0 + S47>
Séi.) = Soso + Sao1 + Sas + S235> 5952_) = Si92 + S1a1 + Suss + S175> (3.41)

will be employed for inelastic o spectrum.
The time evolution of the density matrix may be written as
010a(t) = Masg0a- (3.42)

The matrix Mysg is not invertible so there is no unique solution to the above equation.
Therefore, we eliminate the last element of g, i.e., 9[16, 16](¢) by exploiting the population
conservation. We can use the trace condition Tr,[9,] = 1 and the Eq. (3.42) becomes,

004(t) = Mg, + K. (3.43)

In the above equation, M is a 255x 255 matrix and K is a column vector with 255 elements.
In the limit ¢ — oo

tlim 0a(t) = 0Ost (3.44)
is independent of time. The steady state solution reads

0ss = —M 'K (3.45)

for the situation in which M is not singular. If M is not singular the steady state is
independent of the initial state of the system. Using Eq. (3.4), the vector S can be
written as,

(S(t)) = (S)st + (6S(1)).- (3.46)
The mean values in the stationary state can be written as
(S)st = 05t = —M K. (3.47)
Substituting this into Eq. (3.43), after simplification we obtain
94 (S)st + 0,(5S(t)) = M(6S(¢)) + 0. (3.48)

The time derivative of the (S)g vanishes and hence we have,

9,(68(t)) = M(55(1)). (3.49)
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Chapter 4

Relevant Processes

In order to develop the physical understanding of our system, it is important to know
what processes take place when the atoms interact with the vacuum. Later we will discuss
in detail the ac Stark splitting in the context of the interaction of a two-level atom with
the laser field in Sec. 4.2.

4.1 Vacuum Induced Processes

The processes of the exchange of virtual photons via the common vacuum radiation field
are of fundamental nature and take place between dipole transitions of two nearby atoms.
They are responsible for the collective effects in a multi-atom system. Consider the case of
two identical two-level atoms. One of the atoms initially in an excited state emits a virtual
photon and comes to the ground state. This virtual photon is absorbed by a nearby atom
which becomes excited after the absorption of the photon Fig. 4.1. The condition for this
photon transfer process is that the distance between the two atoms is fairly small, i.e., it
should not exceed the respective transition wavelength. This is because the dipole dipole
coupling parameters depend inversely as the cube of the interatomic distance vector [15].

If a photon emitted on one transition in one atom is absorbed by the same transition in
the other atom, we refer to it as parallel dipole dipole coupling. An example has been
shown in Fig. 4.1. Contrary to this, if a photon emitted by one transition in the first atom
is coupled to a transition with a different polarization in the other atom, it is termed as
orthogonal dipole dipole coupling. Of course, the orthogonal vacuum-induced couplings
do not occur in two-level atoms as there is only one transition channel available. Fig. 4.2
shows an example of orthogonal dipole dipole coupling in two nearby identical multi-level
atoms. In (a) left atom is in its excited state |es) while the right atom is in the ground
state |g). In (b) the left atom emits a virtual photon as a result of spontaneous decay. In
(c) the electron in the atom on the right absorbs the virtual photon emitted by the left
atom and thus goes to the excited state |e;) instead of |e3). Thus the transition |e;) < |g)
in the left atom is coupled to the transition |eg) < |g) in the right atom. The dipole dipole
interaction varies as 1/r, 1/r* and 1/73. As already briefly discussed in chapter 1, with
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le2) le2)
[91) | 92) lg1) | 92)
|61>(C) [e2)
_T_ +
iv V
p v
lg1) |g2)

Figure 4.1: Dipole dipole coupling in two near by atoms. (a) Left atom is in its excited
state while the right atom is in the ground state. (b) The left atom emits a virtual photon
as a result of spontaneous decay. (c¢) The atom on the right absorbs the virtual photon
emitted by the left atom and thus becomes excited.

the occurrence of the orthogonal dipole dipole couplings in multi-level atoms, few-level
approximation can no more be applied to the Zeeman sub-levels of an atomic system.

Now it is worth giving a detailed account of the basic physics involved when a single two-
level atom interacts with a laser field. This will help the reader understand the results
of Chapter 5 much better. We introduce the concept of Stark splitting of the entangled
atom-field states when a single two-level atom is subject to an intense laser beam.We
demonstrate that the occurrence of the different peaks in the resonance fluorescence spec-
trum originates from the different transitions taking place between the eigen states of the
atom-field interaction Hamiltonian in the interaction picture.

4.2 AC Stark Splitting

We start with a simple system of a single two-level atom driven by a laser field of frequency
wr, Fig. 4.3. We assume a very weak driving such that 2 << ~, where €2 is the Rabi
frequency associated with the laser and ~ is the atomic decay rate. The spectrum of
elastic scaterring will be a delta function centered at the laser frequency. The spectral
width of the scattered light is very narrow following the conservation of energy, i.e., the
atom absorbs a photon at the laser frequency and then re-emits it at the same frequency.

We increase the Rabi frequency of the laser such that 2 > v. We go to the dressed state
picture now. By dressed state we mean the quantum state of an atomic system interacting
with a laser, roughly like an atom plus photons. The driving laser field dresses the atom
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Figure 4.2: Orthogonal dipole dipole couplings in two near by multilevel atoms. (a) Left
atom is in its excited state |e3) while the right atom is in the ground state |g). (b) The
left atom emits a virtual photon as a result of spontaneous decay. (c¢) The electron in the
atom on the right absorbs the virtual photon emitted by the left atom and thus goes to
the excited state |e;) instead of |es).

with laser photons. Dressed states are always the eigenstates of the atom-field interaction
Hamiltonian. The dynamics of the system can easily be understood if dressed states are
employed.

We consider a general case when the frequency of the laser and the atomic transition
frequency are different from each other. We use the Jaynes-Cummings Hamiltonian which
is given by

H = h(we|e){e| +wylg){g]) + hwrala + hg(a'|g)(e] + ale)(g]), (4.1)

where |e) and |g) designate the excited and ground state, respectively. ¢ is a coupling
constant related to the generalized Rabi frequency, 2, by g = Q,,/v/n + 1 and wy = w.—wy.
The interaction picture Hamiltonian is given by

V = —hAle)(e| + hga'|g)(e| + hgale)(g], (4.2)
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Figure 4.3: A two-level is being driven by a laser of frequency wp. wy is the atomic
transition frequency.

where A = wy, — wy. We consider the excitation of n + 1 quanta. The basis states are
chosen to be |g,n + 1) and |e,n) i.e., either the atom is in its ground state with n + 1
quanta or it is in the excited state accompanied by n quanta. The matrix V is given by

—hA hgvn +1
hgv/n + 1 0 ‘

The eigenvalues of the above matrix are

—hA
% + Z\/N +4g%(n +1). (4.3)

For A > 0, the dressed state picture of the atom is shown in Fig. 4.4. This phenomenon
is known as dynamic Stark splitting.

In Fig. 44, S, = hy/A?2+4¢%n, S,y1 = hy/A?2+4¢%(n+ 1) and so on. The different
transitions are shown by colored arrows. Every transition corresponds to the frequency
difference of the starting and the ending energy levels. For example, the blue, pink,
golden and light blue transitions correspond to the frequency wy — (Spi2 + Sni1)/2,
wr, + (Spa2—Snt1)/2, wp — (Spao— Sna1)/2 and wr + (Spi2+ Spi1) /2, respectively. These
transitions determine the positions of the peaks in the resonance fluorescence spectrum.

In the classical limit, we assume a large number of photons and so we have n—1 ~ n ~ n+1
and so S,_1 ~ S5, ~ 5,41 = s. The transition frequencies of pink and golden transitions
simplify to wy while the other two reduce to wy & s. One would obtain a three peak
spectrum of resonance fluorescence. The pink and golden transitions determine the middle
peak and the other two locate the side peaks.

If we now consider the resonant case and assume that the laser frequency and the atomic
transition frequency are the same, the effect of coupling is that the previously degenerate
stationary states |e,n) and |g,n + 1) are split into a doublet of dressed states separated
by the Rabi frequency €2 associated with the laser. A similar splitting occurs in n-quanta
states as well, Fig. 4.5. We have four possible transitions if the n + 1 states decay to
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JAY 1 Sn+2
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Figure 4.4: Splitting of the atomic levels of a two-level atom by the dynamic Stark
effect. Double headed arrows indicate the frequency separation while single headed arrows
indicate transitions.
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_A_ n+1l quanta

Wy~ Q Q+ouy,

! 0 n quanta

Figure 4.5: Splitting of the atomic levels of a two-level atom by the dynamic Stark effect.
The laser frequency is assumed to be equal to the atomic transition frequency. Dou-
ble headed arrows indicate the frequency separation while single headed arrows indicate
transitions.

n states. Two of them correspond to the frequency wy 4 €). The other two have equal
frequency wy, [27,35]. We see a three peak spectrum of the resonance fluorescence, Fig. 4.6.
The middle peak is at wy = wy, and the symmetrically located side peaks are at wy, £ €.

The side peaks move away from the middle peak as the Rabi frequency is increased and
they move closer if one decreases the Rabi frequency. So one would obtain a single peak
specrum of fluorescent emission in the case {2 < v as depicted in the Fig. 4.7.
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w—wy (unitsof y)

Figure 4.6: Incoherent resonance fluorescence spectrum of a two-level atom. 2 = 307.
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Figure 4.7: Inelastic spectrum of resonance fluorescence of a two-level atom. €2 = 0.95~.
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Chapter 5

Results

5.1 Introduction

The resonance fluorescence spectrum Eq. (3.14) emitted by the two atoms in general is
rather complicated, but it simplifies considerably in certain parameter cases, as it was
found already in the case of two nearby two-level systems [15]. In the following, we will in
particular refer to the case of either small or large interatomic spacing, on a length scale
given by the involved transition wavelength. For small inter atomic distance, the coherent
part of the dipole-dipole interaction dominates the system dynamics, with corrections due
to the much weaker laser field Rabi frequencies. In the opposite case of larger separa-
tion, the Rabi frequencies dominate, with corrections from the dipole-dipole interaction.
Spectra for situations in which the dipole-dipole interaction and the Rabi frequencies are
comparable usually can not be interpreted in a straightforward way. In these cases, the
driving field intensity can be increased or decreased in order to evolve in one of the two
simpler cases. In the following, we will make use of this general observation, and present
our results in two steps. First, we will describe methods to determine the interatomic
separation in various cases of interest. Second, we will discuss the determination of the
relative orientation of the two atoms.

For the numerical analysis, we assume that r; = (0.05X,0,0). Our measurement tech-
niques, however, also apply to other values of r;. A special case arises if one of the atoms
is at a node of the standing wave field. Such situations can be circumvented by shifting
the phase of the standing wave slightly.

We also assume the resonance condition, i.e., wy = wy, A; = 0, see Eq. (2.75).

5.2 Measurement of the Interatomic Distance

We will discuss the techniques for the measurement of the interatomic distance. The
strategy adopted is first to keep just R as a variable and fix 6 and ¢ in such a way that
the orthogonal dipole dipole couplings between the two atoms are zero. Afterwards, we
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Figure 5.1: Inelastic spectrum of resonance fluorescence. The parameters are R = 0.3,
¢ =0,0 =m/2 and Q = 100y. The side peaks are located at the Rabi frequencies,
Q(ry) = 30.9017y and Q(ry) = 80.9017y

try to find the interatomic distance when none of the spherical variable R, 0, ¢ is known
to us.

5.2.1 Fixed Orientation

As a first step, we will present results for the situation of a fixed, known orientation.
In particular, for simplicity, we analyze the cases in which the orthogonal dipole-dipole
couplings Qy; and T'y; (¢ € {1,3}) vanish. Thus, the population is trapped only in the
levels |2,,) and |4,), and the system essentially reduces to that of two two-level atoms [15].
As the main result of this section, we will interpret each case in detail in terms of the
corresponding dressed state picture. This will enable us to explain later results for general
geometries.

In principle, the results in this section also generalize to more complicated known orienta-
tions. While then the dressed-state analysis still gives rise to valid results, the analytical
expressions are often considerably more complicated. In any case, if the orientation is
known, a numerical fit of the measured spectrum leads to the desired distance informa-
tion. In Sec. 5.2.2, we will extend our analysis to arbitrary orientations.

5.2.1.1 Large Separation Case

If the atoms are well-distant, e.g., the separation between them is A/10 < R < A\/2, the
dipole-dipole interaction can be neglected, since it varies inversely as first, second and
third power of the interatomic distance. In this regime, the driving field Rabi frequencies
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Figure 5.2: The ac stark splitting of two two-level atoms. Each of the level in an atom
splits by the amount of effective position dependent Rabi frequency.

Q(ry) and Q(rz) are much stronger than the dipole-dipole coupling.

The spectrum of resonance fluorescence has five peaks, Fig. 5.1. The first side peaks in
the spectrum symmetric around the middle peak occur at wy, £+ Q(ry) and the end peaks
are found to be at wy + Q(ry). In such a scenario, the atomic levels undergo a Stark
splitting due to the position dependent Rabi frequencies as defined in Eq. (2.76). The
atomic levels split as shown in the Fig. 5.2. This is a situation similar to a single two-level
atom, Sec. 4.2 (see Fig. 4.5) except that due to large interatomic distance, the two Rabi
frequencies are position dependent and are different from each other. The ground state
and the excited state of both the atoms split by the amount of respective Rabi frequency
i.e., the atomic levels in the ith atom split by Q(r;) where i € {1,2}. There are four
possible transitions in an atom and so eight total transitions. Four out of these eight
transitions correspond to the same frequency. They have been shown in black colour in
the picture of the system with split atomic levels, Fig. 5.2. The four transitions with
the frequency wy form the middle peak in the spectrum. The other transitions are at
the frequencies wy, + (r;) where ¢ € (1,2). These form four side peaks in the resonance
fluorescence spectrum. The frequencies wy + €2(r;) are situated on the right hand of the
middle peak and wy — Q(r;) appear at the left part of the spectrum. This means that
the positions of the peaks relate directly to the positions of the two atoms relative to the
nodes of the standing wave laser field inside the cavity. Thus by knowing the positions of
the individual atoms from the positions of the peaks, one can find the mutual distance.
Our results for Fig. 5.1 are in agreement with the results presented in [15].

In Fig. 5.1, we have chosen R = 0.3\. The different parallel coupling constants are 2;; =
Q33 = 0.047, Qo9 = —0.577y. The orthogonal coupling constants are {213 = {237 = —0.62v
and 215 = Q9 = Q39 = (o3 = 0 in this case. The corresponding Rabi frequencies are
Q(r1) = 30.90y and (ry) = 80.90. From the comparison of the numerical values, one
can see that the Rabi frequencies associated with the driving field dominate the coupling
constants associated with the dipole dipole interaction between the two atoms.
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Figure 5.3: Incoherent spectrum of resonance fluorescence. The parameters are R = (.08,
¢p=m/2,0=mand Q="75y. Qr;) = Q(re) = 26.26

5.2.1.2 Intermediate Separation Case

When the separation between the atoms is intermediate (approx. A/30 < R < A/10), the
dipole-dipole interaction becomes prominent. The two atoms are no more independent.

The spectrum in Fig. 5.3 is difficult to interpret quantitatively. The main atomic level
splitting due to one interaction is comparable to the further splitting due to the second
interaction as both have comparable magnitudes. In this way, the split atomic levels
overlap. It is difficult to associate a unique frequency to a transition because the driving
field Rabi frequencies are comparable to the dipole dipole energy shifts. For a comparison,
we state the numerical values. The parallel coupling constants are 217 = 233 = —10.59~
and (299 = 26.427 whereas the coupling constants due to the interaction between the
orthogonal dipole moments in the two atoms vanish. The Rabi frequencies are (r;) =
Q(re) = 26.267. To avoid such a situation, we increase the driving field intensity so that
the position-dependent driving field Rabi frequencies increase.

In Fig. 5.4, the laser Rabi frequency have been increased considerably, to the values 200~.
We see a spectrum in which there is a middle peak and two side band structures on its each
side. The middle peak appears at the driving field frequency wy. The complete spectrum
is symmetric around the middle peak. These side band doublets appear due to the dipole-
dipole interaction between the two atoms. The position dependent Rabi frequencies lie at
the centre of the side band structure. Again, this confirms the correctness of our analysis
since this result is the same as the second result, Fig. 2c of [15].

Fig. 5.5 shows the dressed state picture. We simplify the eigen states and eigen values of
the interaction picture Hamiltonian in the limit Q(r;) >> 9y and assume that Q(ry) >
Q(ry). As in Fig. 5.5(i), in the absence of any interaction between the atoms, the four
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Figure 5.4: Incoherent spectrum of resonance fluorescence for intermediate distances.
The parameters are R = 0.08\, § = 7/2, ¢ = 0 and Q = 200, such that the laser Rabi
frequencies are larger than the relevant dipole-dipole coupling constants. The centre of
the side band structures are located at the respective position dependent Rabi frequencies,
+Q(r1) &~ +£61.8y and +£Q(ry) ~ £145.79\.

product states are degenerate. In Fig. 5.5(ii), there is no dipole dipole interaction. A
strong laser field is applied which lifts the degeneracy and causes the product states to
shift. The new states |p), [I),|¢) and |m) are formed by combining the states |+),|—), |s)
and |a). For example, the laser causes the levels of a single two-level atom to combine
like |e,n) £ |g,n + 1). For two two-level atoms, if we ignore the number of photons for
simplicity and consider the un-normalized level |p) only, we find that

Ip) = (le)1 +[9)1) x (le)2 + [g)2)
= (le)1 + [g)1)le)2 + (le)1 +19)1)|9)2
= lee) + [gg) + leg) + |ge). (5.1)

In the last line of the above equation, we utilized the product states of two non-interacting
two-level atoms which serve as the basis states. The level |p) level has been shifted by the
amount A((ry) + Q(ry))/2. Similarly, the levels |m), |l) and |¢) have been shifted by the
amounts —h(Q(ry)+8(rs))/2, £A(2(re) —Q(r1))/2, respectively. In Fig. 5.5(iii), the weak
dipole dipole interaction comes into play and it further shifts the levels by the amounts
+h95/2. When the dipole dipole interaction is much smaller than the driving field, the
eigen vectors and the eigen energies are listed in Tab. 5.1. There are sixteen possible
transitions between the eigen kets having n + 1 and n photons. Transitions |[p,n + 1) —
Ip,n), |lLm+1) — |l,n) and |¢g,n + 1) — |¢,n) and |m,n + 1) — |m,n) correspond to
the same frequency, i.e., wy, the laser frequency which is assumed to be equal to the
atomic transition frequency. The eight transitions having frequencies wy, 4 (Q(r;) £ Qa9),
i € {1,2} are important because they form the two prominent side band doublets (eight
side peaks) which are crucial for the localization of the two atoms. The remaining four
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L) + ()

Figure 5.5: Dressed-state representation. (i) shows the system without couplings. (ii)
includes the dominant laser field couplings. (iii) in addition includes corrections due to
the dipole-dipole interaction.

transitions that involve both Rabi frequencies wy, £ (£2(r2) & Q(ry)) are hardly visible.

In this case, distance measurement is possible in two ways. First, the center of the side-
band peak doublets correspond to €(r,), such that again a direct position determination
of the two atoms is possible via Eq. (2.76). Second, the doublets are split by the dipole-
dipole coupling strength €25. Thus, the distance can also be obtained by using Eq. (2.62).
Best results are obtained by a combination of the two methods.

At 6 € {0,7}, Q(r1) = Q(re) and so the side band doublets coincide as shown in Fig 5.6.
The splitting between the two peaks in a side band structure is 26.2y. In this case,
Q99 = 26.427y is used to calculate the distance between the atoms. We solve Eq. (2.62)
numerically to find the separation between the atoms. The distance obtained is 0.0802A.
We determine the percentage error using the formula

Xcalculated - Xa

ctual
100 5.2
Xactual i %’ ( )

where X qicuateq 1S the value obtained through numerical calculation while X, 0 refers
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Eigen vectors Composition Eigen values

|pvn+ 1) (1/2)(1717171) h(Q(rl) —I—Q(r2) +Q12)/2
|mvn+ 1> (1/2)(17_17_171) _h(Q(rl)Q(r2) - Q12)/2
lg,n+ 1) (1/2)(=1,-1,1,1) A(Q(r1) — Qry) — Q12)/2
|l,n+ 1) (1/2)(=1,1,-1,1) —h(Q(r1) — Qrz) + Q12)/2

Table 5.1: Eigenvectors and eigenvalues of the interaction Hamiltonian of two two-level
atoms in the limit Q(r;) > Qo9

0.207“”“‘””]‘
’ r,)
0.15} . ,
]
_ :
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’ ' Qo
0.05' I ]
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Figure 5.6: Incoherent spectrum of resonance fluorescence. The parameters are R = (.08,
¢ =m7/2,0 =mand Q = 2007. The centre of side band structure is at the Rabi frequencies,
Qry) = Qr2) =61.87

to the actual value of the quantity X. The percentage error in the measurement of
interatomic distance is 0.29.

This shows that for the interatomic distance determination, different intensities of the
laser field are required for different positions of the atoms.

5.2.1.3 Small Separation Case

Now we discuss the situation when the interatomic distance is even smaller i.e., R < \/30.
In this case, the dipole dipole interaction is very strong because the atoms are very closed
to each other. We learn from the discussion done in the previous case that we should
employ weak laser field in this case because we want to keep the strengths of the two
interactions i.e., the dipole dipole interaction and the laser field different from each other.

We obtain the spectrum shown in Fig. 5.7. The explanation of the peak positions follow.
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Figure 5.7: Incoherent resonance fluorescnce spectrum. The parameters are R = 0.04),
¢»=0,0=m/2and Q = 20v. The side peaks occur at wy, £ Q.

In the presence of a strong dipole dipole interaction, the eigen states of the system are
the collective states listed below.

|g) :|91>‘92>7
) z%uemgg T lgn)lea)).

a) z%uemgg ~ lgn)lea)).

le) =lex)]ea). (5.3)
The corresponding non-degenerate eigen energies are

Eg = 0, ES = h(wo —|— 922), Ea = FL(QJ() — Qgg), Ee = QhLUQ (54)

The states (5.3) form a complete set of states. The ground state |¢g) and the upper state
le) are not affected by the dipole dipole interaction. The states |s) and |a) have been
shifted from their unperturbed energies by the amount £, the dipole dipole interaction
energy. These are maximally entangled states of the two atom system. They are linear
superpositions of the product states and cannot be separated into the product states of
the individual atoms.

The collective states of two-identical atoms are shown in the Fig. 5.8. It is seen that
in the collective state representation, a two-atom system behaves like a single four-level
system, the ground state is |g), the upper state is |e) and the states |s) and |a) behave
like intermediate states. The energies of the states |s) and |a) depend on the dipole
dipole interaction and undergo a large shift when the atoms are closed to each other.
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le)
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wo — Qo2 :

| 000
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|a)
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Figure 5.8: Collective states of two identical atoms. The energies of the symmetric and the
antisymmetric states are shifted by the dipole dipole interaction {255. Each single-headed
arrow indicates a one photon transition.

There are two transition channels |e) — |s) — |g) and |e) — |a) — |g), each with two
cascaded nondegenerate transitions. For two identical atoms, the transitions in these
channels are damped with significantly different rates. The symmetric transitions decay
with an enhanced (superradiant) rate 7 + I'yo and the asymmetric transitions decay with
a reduced (subradiant) rate v — I'yo. When the interatomic separation is much smaller
than the transition wavelength, the two decay rates become equal, 7.e., v = ['99. In this
situation, the asymmetric channel completely decouples from the system and the system
decays only through the transitions involving the symmetric state. So, the system reduces
to a three level cascade system. There are three possible transitions at the frequencies
wy, + Q99 and wy, as shown in Fig. 5.8.

So, in the presence of a weak laser driving, when the atoms are very close to each other,
they interact only through the dipole-dipole interaction, the spectrum of resonance fluo-
rescence has three peaks. The peaks are located at the frequencies w; and wy, £ (295.

In Fig. 5.7, the numerical values for the driving field Rabi frequencies are Q(r;) = Q(rs) =
6.18y whereas the dipole dipole coupling constants are €2;; = {233 = —91.64y and 9 =
194.84~. As the side peaks are found to be at wy, + 9, Eq. (2.62) is solved numerically
to find the distance. The measured value of the interatomic distance comes out to be
0.039\. The percentage error using Eq. (5.2) is —0.02. This result coincides again with
the results presented in [15].

If the Rabi frequency associated with the laser is high, the peaks in Fig. 5.7 split. We
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Figure 5.9: Incoherent spectrum of resonance fluorescence. The parameters are R =
0.04)\,0 = 7/2, ¢ = 0, Q = 757, such that the dynamics is dominated by the dipole-
dipole interaction, but notably perturbed by the driving field.

Dressed State Composition Energy

a,n +1) (0,-1,1,0)/v2  —h(Qa + (1) — Q(r2))?/(4022))
|+> n+ 1) (_17 07 07 1)/\/5 h(Q(rl) - Q(r2))2/(4922)

|- n+1) (1,0,0,1)/v2  —h(Qr1) + Q(r2))?/(4Qs2)
0,n+1) (0,1,1,0)/v2  A(Qag + (Qr1) + Q(r2))?/(402))

Table 5.2: Eigen vectors and eigen values of two identical two-level atoms in the limit
Q(I‘M) < QQQ

obtain a spectrum as shown in Fig. 5.9. The explanation in terms of dressed states follow
in Fig. 5.10, assuming Q(r,) < . Starting from the non-interacting system in (i),
in part (ii), the dominating dipole-dipole interaction is included. It combines the states
leg,n+1) and |ge, n+1) to form |s,n+1) and |a,n+1) as symmetric and anti symmetric
combinations, respectively, and shifts their energies by the amount of the dipole-dipole
interaction energy. In part (iii), the laser field is included into the dynamics. After
another basis transformation to also dress the system with the laser field, this results in
the further shifting of the eigenstates by approximately [Q(r1) 4= Q(r2)]?/(4€22), as shown
in (iv). The corresponding eigenenergies and eigenstates are listed in Tab. 5.2.

Sixteen transitions between the eigenkets having n+1 and n quanta take place. Transitions
0,n+1) — [0,n), |[+,n+1) — |[+,n), |-,n+1) — |—,n) and |a,n + 1) — |a,n) occur
at transition frequency wy. Transitions |0,n + 1) — |+,n) and |[+,n + 1) — |0,n) have
respective frequencies wy, & Qgs £+ Q(r1)Q(r3) /Q22. The transitions |0,n+1) — |—, n) and
|—,n+1) — |0, n) involve frequency differences equal to wr,+Q9+(Q(r1)+Q(r2))%/(2092),
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(iv)
|0,n+ 1)
(ii) (iii)
|s,n+1) |s,n+1) 'ﬁi h(Q1 + Q2)2 /409
(Q1 + Qy)?
(€2 AL T
(Qa2 + 10 )
2o hfdao RS |+, n+1)
(1) o oy
% ! \! \V 499
| ee:n) lee.m) |ee,n) \ A + Q)2 /4092
lg9,n+2) lgg,n+2)
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lge;n +1) 2
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4Q299
la,n+1)

Figure 5.10: Dressed state representation of Fig. 5.9. (i) uncoupled states. (ii) includes
the dipole-dipole splitting. (iii) indicates the additional coupling to the laser field, and
(iv) shows the full dressed states induced by the dipole-dipole coupling perturbed by the
laser field Rabi frequencies, §2; means §(r;).

respectively. The separation in frequency for the transitions |0,n+ 1) — |a,n) and |a, n+
1) — |0, n) approximates to wy, + 209y &+ (Q%(ry) + Q%(r2))/(2Q92), respectively. Finally
the transitions |[+,n + 1) — |—,n) and |—,n 4+ 1) — |+, n) correspond to the frequency
difference wy, &+ (2%(ry) + Q2(r2))/(2€42), respectively. These transition frequencies are
the positions of the peaks in the resonance fluorescence spectrum of Fig. 5.9(a). The
corresponding frequencies for the transitions |+,n + 1) — |a,n) and |a,n + 1) — |4+,n)
are wy & Qoo & (Q(r1) — Q(ry))?/(2Q2) and for the transitions |—,n + 1) — |a,n) and
la,n+ 1) — |—,n) are wr, £ Qoo F Q(r1)$2(r2) /a2, respectively. The last four transitions
do not show up in the spectrum.

Next we discuss the case when the two position-dependent Rabi frequencies are equal to
each other. This is the situation when 6 € {0,7}. We employ Q(r;) = Q(r2) = 55.62y
such that we are still in the regime where the laser field acts as a small perturbation to the
dipole dipole interacting system. The incoherent spectrum of resonance fluorescence is
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Figure 5.11: Incoherent resonance fluorescence spectrum. The parameters are same as in
Fig. (5.7) except §2 = 1807.

Dressed State Composition Energy
la,n + 1) (1/v/2)(0,—1,1,0) —hQy
+,n+ 1) 1/v/2)(~1,0,0,1) 0

( )(—
|—,n+1) (1/v2)(1,0,0,1)  —hQ%(r,)/ Q2
0,1+ 1) (1/v/2)(0,1,1,0) (a9 + Q2(r,,)/Q22)

Table 5.3: Eigenvectors and eigenvalues of two identical two-level atoms in the limit
Q(r,) < Qg for Q(ry) = Q(r2)

shown in Fig. 5.11 and Fig. 5.12 explains the underlying physics in terms of dressed states.
The explanation of Fig. 5.12 is same as that of Fig. 5.10 except that the laser field will
not affect the transition channel that involves the asymmetric state when Q(r;) = Q(rs)
because

(a|Hplg) =0 and (e|Hp|a) =0, (5.5)

and H, is given by Eq. (2.75). The laser induces transitions only in the symmetric channel
shown in Fig. 5.8. The eigen energies and the eigen vectors of the interaction Hamiltonian
simplify as in Tab. 5.3.

There are nine possible transitions between the eigen kets having n + 1 and n quanta.
Transitions [0,n 4+ 1) — |0,n), |+,n+ 1) — |+,n) and |—,n+ 1) — |—,n) correspond to
the same frequency, i.e., wy, which is assumed to be the atomic transition frequency as
well. Transitions |0,n 4+ 1) — |+,n) and |+,n + 1) — |0,n) have respective frequencies
wr, £ (Qa2+Q2(r,) /Qa2). The transitions |0,n+1) — |—,n) and |—,n+1) — |0, n) involve
frequency differences equal to wy £ (Qa2 + 2Q%(r,)/Q2) and finally the corresponding
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(iv)
(i) (i) 0,0 4+1)
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Figure 5.12: Fig. 5.10 simplified for Q(r;) = Q(r3). (i) product states with no interaction.
(ii) dipole dipole interacting atoms. (iii) laser field is introduced to the dipole dipole inter-
acting system. (iv) Shifting of the dressed states caused by the dipole dipole interaction
and perturbed by the laser field.

frequencies for the transitions |+,n + 1) — |—,n) and |—,n + 1) — |+,n) are wy £
Q?(r,) /a2, respectively. The transition frequencies are the positions of the peaks in the
resonance fluorescence spectrum, Fig. 5.11.

In Fig. 5.11, the peak in the middle is situated at the frequency wy = wy. The very
next peaks on both sides of this peak are determined by the frequencies wy, +Q?(r,,)/Qs0.
The second next peaks symmetrically located on both sides correspond to the frequencies
wr, £ (Qag +Q2(r,) /Qa2) and wo £ (D22 + 202 /Qys) determine the end peaks on both sides.
Hence, all the peaks can be determined by the transitions that take place between the
eigenstates of the interaction Hamiltonian.

5.2.2 Arbitrary Orientation

The methods presented so far allow for a determination of the interatomic distance if
the orientation of the two atoms is known and fixed. Often, however, the orientation is
unknown. Therefore, in this section, we turn to our main results, and present a method
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Figure 5.13: Incoherent spectrum of resonance fluorescence for small distance and weak
driving fields. The parameters are R = 0.04\, ¢ = 7/15, § = 7/5 and Q = 20~.

to obtain the interatomic distance for arbitrary orientations. This method can be applied
if the interatomic distance is sufficiently small, such that the dipole-dipole interaction
dominates the system dynamics. Fortunately, this usually is exactly the parameter range
in which a distance determination is desired. In order to explain the method, we first
imagine the two atoms without any driving fields. Then, it turns out that the eigenen-
ergies of the dressed states are independent of the orientation of the two atoms [20]. An
interpretation of this fact is that without external field, there is no preferred direction in
space, such that the energies cannot depend on the orientation. Since the spontaneously
emitted light is emitted at frequencies corresponding to the dressed state energies, it
follows that the positions of the peaks in the fluorescence spectrum of the atoms are un-
affected by the orientation of the atoms. This property is approximately preserved if the
atoms are driven by a weak driving field, which has a Rabi frequency much smaller than
the dipole-dipole couplings. We therefore find that at small distance and weak driving,
the resonance fluorescence spectrum has peak positions independent of the alignment of
the two atoms. Only the relative widths and heights of the spectral features change with
the orientation. It is important to note that these properties of the two-atom system are
only described correctly if all dipole-dipole couplings are included in the modelling [20].
This is the reason why we included complete Zeeman manifolds in our analysis.

It remains to deduce the interatomic distance from the peak positions in the resonance
fluorescence spectrum. For this, we again analyze the eigenvalues of the full interaction
Hamiltonian of two four-level atoms, which determine the peak positions. Since the peak
positions and thus these eigenvalues are independent of the orientation, it suffices to eval-
uate analytic expressions for the peak positions in a simple configuration. Investigating
the eigenvalues for § = 0, and assuming €(r,) < €;, we find that the eigenenergies are
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given by 0, £Q41(0 = 0), and £Q9(0 = 0). An example is shown in Fig. 5.13. The
four side peaks are located at wy, 4= 217 and wy, + 95, and the interatomic distance can
be gained from both coupling constants via Eq. (2.60) and (2.62). As can be seen from
Fig. 2.4(b), for 8 € {0, 7}, the coupling constant |{2es] is larger than |€;| for small inter-
atomic distances R. Thus, the inner [outer| peaks in Fig. 5.13 correspond to |11 [|Q2]].
Due to the dependence of the amplitude of the spectral peaks on the orientation, the
peaks at wy, + y; visible in Fig. 5.13 may be suppressed. For example, in Fig. 5.7, we
found only a single pair of sidebands corresponding to +{255. This can be understood by
observing that these peaks at wy 4+ €95 correspond to states |2) populated by the driving
laser field, while states |1) and |3) are only populated in certain geometries.

We end this section by noting that in the case of large interatomic separation, the dipole-
dipole interaction vanishes, such that the interatomic coupling also becomes independent
of the orientation. The driving field Rabi frequencies experienced by the two atoms,
however, may not be the same, as they depend on the scalar product ky, - r,. Thus,
by applying a driving field with larger Rabi frequency, it is possible to measure the
position of the atoms projected on the propagation axis of the driving field. For arbitrary
orientations, however, a single measurement of this type does not allow to deduce the
interatomic distance since the position transverse to the wave vector remains unknown.

We thus conclude that by applying weak driving fields, the interatomic distance can be
measured from a pair of nearby atoms independent of their mutual orientation, as long
as the dipole-dipole interaction is strong enough to dominate the system dynamics.

5.3 Determination of the Orientation

So far, we have discussed techniques for the measurement of the interatomic distance, and
have demonstrated how the distance can be measured independent of the orientation of
the interparticle distance vector. In this section, we augment our analysis by discussing
the determination of the relative orientation of the two atoms. We discuss two different
cases, corresponding to two different methods to determine the orientation. First, we
discuss the case of unknown ¢, assuming 6§ = 7/2. This case corresponds to an effective
two-dimensional geometry of the system which can be realized, e.g., by embedding the
atoms in a planar matter waveguide [36-38]. In this case, the orientation is deduced from
the ¢-dependent peak positions in the fluorescence spectrum induced by the driving laser
field. Second, we study the case of unknown 6 and ¢ = 7/2. This corresponds to atoms
on a surface, driven by a laser field propagating perpendicular to the surface. In this
case, we will determine f via the resonance fluorescence intensity emitted in a particular
direction.

5.3.1 Unknown ¢: Planar Waveguide

In this section, we assume that the two atoms are confined in the z-y plane (0 = 7/2) as
shown in Fig. 5.14, as it is the case, for example, in a planar waveguide. A standing wave
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Figure 5.14: Setup with the two nearby atoms confined inside a two-dimensional waveg-
uide. The atoms are located in the x-y plane.

inside a planar waveguide could be realized, e.g., in a photonic crystal waveguide [39].
The waveguide is formed by a line defect in the crystal structure, and the end of the
waveguide inside the crystal forms a retro-reflector that leads to the standing wave. A
different implementation could be photonic crystal fibers. The atoms could be embedded
into a filled central core, or flow through a hollow core, and at the same time interact
with light fields propagating through the fiber [40]. Since such a setup may also constrain
the observation direction, we assume detection in a direction anti-parallel to the incident
driving field, i.e., along the —x direction. This way, the spectrum can be measured without
background from the incident laser field. In this geometry, the coupling constants 9,
and 235 are zero for all values of ¢. Since only the second transition |2) < |4) is driven,
the populations of the levels |1) and |3) are zero for the whole range of ¢. The parallel
coupling constants 217 = 233 and )y are independent of ¢. Nevertheless, the spectra
depend strongly on ¢ because of the ¢-dependence of the Rabi frequency Q(ry). The
obtained spectra are identical if ¢ is replaced by 27 — ¢.

From the results of Sec. 5.2.2 it is clear that the peak positions in the resonance fluores-
cence spectrum cannot be used to determine the orientation as long as the dipole-dipole
interaction dominates the dynamics. Therefore, we apply stronger driving fields, such
that the external driving dominates the dynamics.

In this case, for most values of ¢, a typical spectrum obtained is shown in Fig. 5.15. Using
the results of Sec. 5.2.1, we conclude that the two doublets on each side corresponding
to Mollow sidebands at the two Rabi frequencies experienced by the atoms, split by the
dipole-dipole interaction. The doublets can thus be used to approximately read off the
two position-dependent Rabi frequencies. Assuming that the distance is known from a
measurement with a weaker driving field as described in Sec. 5.2.2, the components of
the position vectors of the individual atoms as well as the relative alignment of the atoms
along the laser can be found out by using the position dependent Rabi frequencies (r,)
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Figure 5.15: Incoherent spectrum of resonance fluorescence. The parameters are R =
0.07\, ¢ = 0.17, Q = 200~.

as follows:

o o (280) - (B}

In Fig. 5.15, the parameters are R = 0.07X\, ¢ = 0.17, 2 = 200y. The position dependent
Rabi frequencies are Q(r;) = 61.8y and €(ry) = 133.74y. The parallel dipole dipole
coupling constants are 2;; = Q33 = 11.17y and 9 = —16.16y. The peak separation
in the side band doublets is found to be 32.32v. It is evident that this peak separation
corresponds to 2|Q92|. We find the peaks in the second side-band doublet on right side of
the spectrum occur at 118.765y and 151.08y. The numerical calculation using 29 gives

the interatomic distance. The error in the calculation of interatomic distance using Eq.
(5.2) is 0.015%. Using this Reqicutatea = 0.07001\ we proceed to find the value of ¢.

It is noted that these parameters are not favorable for the calculation of ¢. We pro-
pose making use of even higher amplitudes of the driving field for better determina-
tion of ¢ so that the two side band doublets are well separated. In Fig. 5.16, we have
increased §2 to 3507y. The peaks in the spectrum of resonance fluorescence occur at
0,+91.68v, £123.95v, £218.59v, £250.86y. Considering the mean values of the peak sep-
aration in the inner side band doublets as 2(r;) and that in the exterior side band doublets
as Q(rs), we use Eq. (5.6) to estimate ¢. Thus we obtain 0.0917 as the value of ¢, which
deviates from the true value by about 9%. Eq. (5.2) is used to determine the percentage
error.

This deviation can be attributed to the imperfect determination of the Rabi frequencies
as the mean value of the two peaks in the doublets.

Increasing ¢ from the value that has been used in Fig. 5.16, the position-dependent Rabi
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Figure 5.16: Incoherent spectrum of resonance fluorescence for two atoms in a geometry
as shown in Fig. (5.14). The parameters are R = 0.07A, 0 = 7/2, ¢ = 0.17, and Q = 350~.

frequencies change, until the sideband doublets corresponding to the two Rabi frequencies
start to overlap, as the two position-dependent Rabi frequencies approach each other. In
this case, it is difficult to estimate ¢ directly from the spectrum, since a clear identification
of the different peaks is not obvious. One strategy is to increase the driving field intensity.
Since the peak separation [€2(r;)—(r2)| is proportional to €2, this increase eventually leads
to a splitting larger than the line widths of the involved peaks, such that an identification
becomes possible. In any case, it can be concluded from overlapping peaks that ¢ is close
to m/2 or 3w /2, since then Q(r;) ~ Q(rs).

In summary, the relative orientation of the two atoms with respect to the laser can be
determined using stronger laser fields. This works well if the position dependent Rabi
frequencies are different from each other, since then the spectral lines are well separated.
This is the case for ¢ not close to /2 or 37 /2. Accordingly, if the corresponding spectral
peaks overlap, it can be concluded that ¢ is close to 7/2 or 37/2.

5.3.2 Unknown 6: Atoms on a Surface

In this section, we consider the case of two atoms on a surface, driven by a laser field
propagating perpendicular to the surface, Fig. 5.17. Thus, ¢ is fixed to /2, while 0 is
unknown. A setup of this type was realized, for example, in [18]. In this experiment,
two fluorescent molecules were kept in a fixed geometry by putting them inside a thin
organic crystal. From the measurement of a position-dependent Stark-shift map, the
distance of the two particles was determined as 12nm. The measured data was then
shown to be compatible with theoretical predictions from a system of two dipole-dipole
interacting two-level systems. It can thus be concluded that this setup allowed to fix the
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Figure 5.17: Example setup. ¢ = 7/2, atoms in the y-z plane
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Figure 5.18: Fluorescence intensity emitted on the o-transitions observed in z direction
from two atoms on a surface. A6 is the relative angle between laser polarization and
interatomic distance vector. The green dashed lines indicate the four possible values of
A6 corresponding to a possible measured intensity indicated by the solid red line. The
parameters are R = 0.07\, ¢ = 7/2 and Q = 200~.

position of the two quantum particles in space and time using the organic crystal host,
essentially without perturbation of the optical properties. For atoms on a surface, the
two Rabi frequencies experienced by the atoms are equal and independent of R and 6.
Therefore, the standing wave driving fields can be replaced by running-wave driving fields
without change in the results. This observation is of relevance if the surface of the host
material does not allow for the application of standing wave fields. The standing wave
driving would only provide more information in more general cases, such as atoms inside
a host material at unknown depth, or with atoms which are not aligned parallel to the
surface. Since no information can be gained via the position-dependent Rabi frequencies,
in contrast to the previous Sec. 5.3.1, here, we determine the value of # with the help of
the resonance fluorescence intensity. In particular, we consider the o-intensity emitted
by the dipoles d; and d3, measured by a detector placed in z direction since there is no
o-spectrum in y direction.

It turns out that the configuration is symmetric in the sense that a rotation of the laser
polarization and the detectors around the x direction is equivalent to a corresponding ro-
tation of the interatomic distance vector. Therefore, the measured resonance fluorescence
intensity depends only on the relative angle Af between the laser polarization direction
and the orientation of the two atoms € on the surface. In Fig. 5.18, we show this resonance
fluorescence intensity versus the relative angle Af. A plot like this can either be recorded
by rotating the sample in the y-z plane, or by rotating the polarization vector of the laser
field around its propagation axis.
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From Fig. 5.18, we find that the intensity is symmetric around Af = 7/2, and it is easy
to see that one value of ¢ intensity corresponds to at most four values of Af. These four
values of Af can be roughly divided into the four ranges 0 — 7/4, 7/4 — 7/2, 7/2 — 37 /4
and 3mw/4 — 7, respectively. This can be understood by noting that the orthogonal
coupling constants responsible for the o intensity are the same for orientations 6, w/2 — 6,
w/2+ 6 and 7 — 6. At A0 € {0,7/2, 7}, the o intensity is zero since the orthogonal
dipole dipole coupling constants €235 and {29 vanish at these points, see Fig. 2.4(a). Thus
there is no population in states |1) and |3), and the intensity of light emitted from these
states is zero. The points of zero o intensity Af € {0,7/2, 7} correspond to situations in
which the polarization vector is parallel, perpendicular, or anti-parallel to R, respectively.
Since these values of Af with vanishing intensity can easily be identified, they allow to
determine 6 from the amount of sample or driving field polarization rotation required to
reach these values. In particular, the symmetry point Af = /2 is well-suited for such a
measurement.

5.4 Summary and Discussion

We have discussed methods to measure the relative distance and orientation of two nearby
atoms in arbitrary geometry. Our methods are based on the driving of the two atoms with
a standing wave field, and on detection of the resonance fluorescence intensity and spec-
trum in the far field. The distance and orientation information is encoded in the scattered
light via the position-dependent Rabi frequencies and via the distance- and orientation-
dependent dipole-dipole couplings. Since unlike in previous studies, we consider the case
of arbitrary orientation, the atoms must be described using complete Zeeman manifolds
in order to correctly model all relevant dipole-dipole couplings between parallel dipole
moments as well as between orthogonal ones.

As preliminary work, we have analyzed the fluorescence spectra in particular known ge-
ometries, in order to identify dressed-state interpretations in the various limiting cases
of interest. These in particular are the case of dominating laser-induced dynamics per-
turbed by the dipole-dipole interaction, and the case of dominating dipole-dipole coupling
modified by the presence of a weaker laser field. Next, we have shown that the case of
dominating dipole-dipole interaction enables one to measure the distance between two
nearby particles independent of the relative orientation. The reason for this is that the
eigenvalues of the total Hamiltonian describing the dynamics, and thus the position of the
system dressed states, are independent of the orientation if the two atoms are undriven.
We found that a weak driving field allows to probe these dressed states without perturbing
the independence on the orientation. Finally, we discussed the measurement of the rela-
tive orientation. We presented two methods. The first is based on the position-dependent
Rabi frequencies, which under certain conditions reveal the orientation of the two par-
ticles. The second method is based on the measurement of the resonance fluorescence
intensity in a particular direction. This intensity is a measure for the population in the
excited states not driven by the laser field, and therefore a signature for the magnitude
of the dipole-dipole coupling between orthogonal dipole moments. We applied the two
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methods to the two cases of atoms confined in a two-dimensional waveguide, and to atoms
on a surface, in which either the polar or the azimuthal angle of the interatomic distance
vector is known.

In principle, these methods to determine the orientation can also be applied for the deter-
mination of both polar and azimuthal angle. The most promising ansatz is to make use
of the resonance fluorescence intensity in a particular direction as discussed in Sec. 5.3.2
together with a rotation of the sample or of the driving laser polarization in order to
fix one of the two angles at a value which renders the spectrum simpler (e.g., 0, 7/2 or
7). Then, the methods described in Secs. 5.3.1 and 5.3.2 can be used to determine the
other angle. The most straightforward implementation, however, strongly depends on the
experimental possibilities to modify the setup. For example, in many cases, a rotation of
the sample will be difficult.

Our results rely on a number of model assumptions. First, we have neglected possible
residual motion of the two atoms. This is justified, for example, if the two atoms are
fixed on a surface, but not in other setups such as tightly trapped atoms. Some effects of
residual motion on the dipole-dipole coupling were studied, for example, in [22]. Residual
motion could also lead to Doppler effects in the laser driving. Second, if the particle
motion is constrained by a host material, interactions with the host could lead to modifi-
cations of the optical properties of the atoms. Finally, imperfections in the experimental
implementation would lead to uncertainties in the measurements. Examples are light
intensity fluctuations, misalignment of light polarizations, or the phase stability of the
standing wave field.

For many applications, the generalization to more than two particles is desirable. It
remains to be seen whether methods based on the dipole-dipole interaction can also be
applied in such cases. One approach could be to combine methods presented here together
with a selective addressing of individual atoms at least in one or two dimensions, for
example, by position-dependent state transfer.
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Chapter 6

Quantum Teleportation of a High
Dimensional Entangled State

6.1 Introduction

Entanglement, which leads to nonlocal correlations between observable physical proper-
ties of the system, is one of the most counterintutive features in quantum mechanics.
Assisted with entangled states, tasks that are impossible within the classical world can
be accomplished. It has been realized for long that the striking non-classical nature of
entanglement reveals fundamental issues in quantum mechanics, as witnessed by Einstein,
Podolsky and Rosen [41], Bell in his famous Bell’s theorem [42], and its subsequent ex-
perimental verifications [43,44]. A more promising view of entanglement is shown up
when it is considered an essential resource for many ingenious applications such as quan-
tum teleportation [23,45] and quantum cryptography [24]. These applications rely on the
ability to engineer and manipulate entangled states in a controlled manner. So far, the
generation and manipulation of entangled states have been demonstrated with photon
pairs produced in optical processes such as parametric down-conversion [45,46], with ions
in an ion trap [47], and with atoms in cavity-QED experiments [48].

A new interest in quantum entanglement is triggered by the discovery that it allows
us to transfer (teleport) an unknown quantum state from one particle to another distant
particle without sending the particle itself. As the particle itself is not sent, this represents
a method of secure transfer of information from the sender to the receiver (commonly
called Alice and Bob). The idea of teleportation was first given by Bennett et al. [23],
who proposed a scheme for the teleportation of an unknown quantum state from one
observer to another through dual channels based on quantum entanglement and classical
communication. It can be accomplished in three steps. First, both the parties, the sender
(Alice) and the receiver (Bob) prepare a maximally entangled state, one particle of which
is kept by either of them. Second, the sender disassembles the information of the quantum
state of her particles into two parts, one of which is sent through a quantum channel run
by the non-local correlations between the two entangled quantum entities and the other
is sent through the classical channel. Finally, the receiver reconstructs the state utilizing
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the information gained through the quantum and classical channels.

Owing to its vital importance, quantum teleportation has been intensively explored both
on theoretical as well as experimental grounds with the investigations yet being hectically
persuaded [49-53]. Many proposals for quantum teleportation in a variety of systems have
been presented [54-66]. Recently Yang et al. [67] and Tao et al. [68] proposed deterministic
schemes for the teleportation of unknown atomic entangled states. Their schemes do not
need Bell state measurements and are insensitive to cavity decay. Furthermore, quantum
teleportation has been experimentally verified in systems with continuous variables [69],
photonics based techniques [45] as well as systems utilizing cavity QED tools [70].

However, in many potential applications of quantum computing such as factorizing a very
large number [71] or searching an unordered database [72], one needs the system of many
qubit states. For the teleportation of a single qubit state, a two-qubit maximally entangled
state is needed. Now the question arises: What kind of entangled state is required if a two-
particle entangled state is to be teleported? Lee [73], in his scheme for the teleportation
of two-qubit entangled state, showed that entangled state of four-particle is a prerequisite,
with Alice and Bob sharing two-particles each forming a quantum channel between them.
Ikram et al. [25] showed that for the teleportation of a two-particle entangled state, the
entangled state of four-particles is not necessary. Two entangled states of two-particles
each can form the quantum channel for the teleportation of two-qubit entangled state.

Entangled states are of utmost importance in quantum computation and it will not be
wrong to say that quantum computation relies only on quantum entanglement. The
quantum computer is based on the superposition principle of quantum mechanics. A qubit
can have the value of both 0 and 1 simultaneously if the quantum states are labelled by
binary numbers. However, increase in the number of terms in the superposition allows one
to do parallel processing on more numbers. A quantum register may have a superposition
of many qubits in N-dimensions or more, and we know that this state cannot be copied
to another quantum register [74]. The only way for the communication of such states is
the quantum teleportation. Here we present a scheme for the teleportation of a bipartite
entangled state with quantum correlations shaping over (N + 1)2 states of each system.

The chapter is organized as follows. In section 6.2, we present our model for the tele-
portation of a bipartite entangled state of (N + 1)2 dimensions, elaborating all the three
steps of teleportation process. Then in the proceeding Secs. (6.3, 6.4 and 6.5) we give
the implementation detail of each step of teleportation process of our proposed entangled
state using the standard cavity QED techniques. We conclude our discussion in Sec. 6.6
emphasizing that our proposed scheme is experimentally realizable with the current ex-
perimental techniques.

6.2 Teleportation of a Bipartite Entangled State

We consider the teleportation of a two-particle entangled state of radiation field in two
separate high-@Q) cavities A; and Ay to another pair of high-@Q) cavities C; and Cy. The
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Figure 6.1: Quantum teleportation of a bipartite entangled state |VU(A;, Ay)) =

N
Z Cryna [11) 4, IN2) 4, |¥(B1,C1)) and [¥(By, Cy)) are entangled states forming a

ni,n2=0

quantum channel for the teleportation process.

entangled state of radiation field is assumed to be

N
[U(A1, A2)) = Y oy ) g, I12) 0, (6.1)
ni,n2=0
N
with Z |C’mm|2 = 1. It is a bipartite entangled state which is a correlated superpo-
n1,n2=0

sition of (N + 1) states. The method we describe here is valid only if N +1 = 2" (n
being an integer). It is because of the measurement of the basis states and explained in
Sec. 6.4. The teleportation of entangled state (6.1) can be done in three steps as shown
in Fig. 6.1. In the first step of teleportation, Alice and Bob share a four-particle state of
the form

1

N
|W (B, By, C1,Cy)) = NIl Z D), [0 5, IN = D)oy IN — @), - (6.2)

p,q=0

A careful look at Eq. (2) shows that it is not an entangled state of four particles but a
product state of the form

|V (By, By, C1, Cy)) = [¥(By,Ch)) ® |[¥(By, Ca)) , (6.3)
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where
1 N
V(B ,C = N — )
| ( 1 1)> \/m;|p>Bl| p>C’1
1 N
U(By, C5)) = N — 6.4
| ( 2 2)> \/m; ‘q>B2 ‘ q>02 ’ ( )

are the entangled states for fixed number of photons in two cavities B; and C; (i = 1,2).
Thus for the teleportation of two-particles entangled state it is not necessary to have a
four-particle entangled state but two entangled states of two-particles are enough for the
teleportation procedure to take place. The cavities B; and B, are possessed by Alice
while the cavities (' and C5 are possessed by Bob, thus forming a quantum channel for
the teleportation between two parties.

The combined six-particles state is written as

N
1
N + 1 Z CTL1,TL2 |n1>A1 ‘n2>A2 ‘p>B1 ‘q>B2 ‘N - p>01

ni,n2,p,q=0

X IN =q)g, - (6.5)

The four particles Ay, Ay, By and Bs, out of these six particles are kept by Alice. Here we
define the (N + 1)4 basis states containing the particles kept by Alice as

|\II(A17 A27 Bl7 B27 Cl7 CQ))

2Lﬂ(3p+kq)
| W k1m(AL, Az, B, By)) N+1Z€ N+ A1 ‘Q>A2|(N p—l)mod(N+1)>

p,q=0

X |(N —q—m)mod (N +1))p , (6.6)

where 7 and k are relative phases between A; and B;, Ay and B,, respectively, while [ and
m refer to photon numbers in two high-() cavities By and Bsy, respectively. The subscripts
j,k,l and m vary from 0 to NN, thus for N = 3, we have 256 basis states. The combined
field state in six cavities in terms of basis states can be written as

2um(jptka)
|\I’(A1,A2731,B2,C1,C2 Z Cpqe e oo |\Ilj,k,l,m(A17A2aBlaB2)>

l,m,p,q=0

X |(p+1)mod (N 4+ 1)), |[(g+m)mod (N +1)),, . (6.7)

In the next step of teleportation, Alice makes measurements in the cavities A, Ay, By and
B, possessed by her. A detection of the four-particles basis state |V, j;m(A1, As, By, By))
projects the field state in the cavities C; and C5 as

W(Cy, Cs)) Zcpqe R | (p+ Dymod (N 4+ 1)), [(q +m) mod (N + 1)),

p,q=0

(6.8)
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This state is possessed by Bob. Alice communicates the outcome of her measurement
through some classical channel to Bob and then Bob makes necessary transformations to
bring back the quantum state of the field in the cavities C; and C5 to the quantum state
(1). In the following sections we give the details of each step of teleportation using the
cavity QED techniques .

6.3 (Generation of the Entangled State

In order to generate the entangled field states in two cavities as in Eqs. (4), we use our
earlier technique [26]. We consider a stream of N two-level atoms in their excited states
undergo an interaction with two high-@) cavities B and C. The atoms are resonant with
the field inside the cavities and interact through Jaynes-Cummings Hamiltonian. The
field inside the two cavities is initially in vacuum state. The atoms interact with the
field inside the cavities for pre-calculated interaction times for the entangled state to be
generated. For the generation of N photons entangled state between two cavities, we
need to know 2N parameters, the interaction time of each atom with two cavities, before
carrying out the actual procedure.

A single two-level atom interacts with the quantized cavity field through the unitary
operator [27]

U(r) = cos(gmvata + 1) |a) (a] + cos(gmVata) |a) (al
sin(g7vata + 1) tsin(grvala + 1)

— ala) (b| — a
vata +1 @) 0] vata+1

where ¢ is the coupling constant, a and a' are the field annihilation and creation operators,
respectively. |a) and |b) are upper and lower states of the two-level atom and 7 is the
interaction time of the atom with the field. After interaction of the first atom with the
fields in the two cavities B and C, the atom field-state can be determined by

1) {al, (6.9)

W (B,C)) = Ulrio)U(mip) |82 (B, C)) (6.10)

where 75 and 71¢ are interaction times of the first atom with the field inside the cavities
B and C, respectively. If the initial field state in the two cavities is taken as vacuum then
the state evolves as

}\If(Tl)(B, C)> = cos (g1B) cos (g7ic) |a, 0, 0c) — icos (gmi) sin (g7ic) |b, 0B, 1c) — isin (g71B)
X |b, 1B700>- (611)

If we choose the interaction times gmp = 7/4 and gric = 7/2, then the field inside the
two cavities become one-photon Bell state

(B, C) = % (105, 16) + [15.0¢)) (6.12)

with the unit probability of detecting the atom in ground state |b). This one photon
entangled state serves as initial condition for the interaction of second atom with the field
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inside the cavities. This procedure is continued till the final N** atom in its excited state
|a) is passed through the two cavities. After interaction with the N** atom, the atom-field
state can be determined by

WM (B,C)) = Ulrvo)U (rvs) [0 (B, C)) (6.13)

where Ty and Ty are interaction times of N** atom with the cavities B and C, respec-
tively. We use the condition that all the atoms must be detected in their ground states
after interaction with the cavities for the entangled state (4) to be generated, otherwise
we need to empty the cavities and repeat the procedure. When the N** atom is detected
in ground state |b), we have

N
(OB, C)) = Kn D> GYN_ b, js, (N = 5)c) (6.14)

J=0

where Ky is the normalization constant and Gg}f\?_ ; 1s the probability amplitude of the
state after the passage of the Nth atom through the two cavities having j photons in the
cavity B, N — j photons in the cavity C' and the atom in the ground state |b). This is the
required entangled state (4) with all C](.fVN)_ ; same. For the calculation of interaction times
of the atoms with the cavity fields, we use the condition that after detecting the atom
in ground state, all the probability amplitudes should be same, which gives N equations.
For further N equations, we choose N probability amplitudes of excited states equal
to zero. Then we solve these 2N equations for 2N interaction parameters, keeping the
probability of detecting all the atoms in ground state maximum. Therefore this scheme
for the generation of entangled state is probabilistic. As an example, for the generation
of entangled state of four photons in two cavities B and C' as

1
V5

the interaction times g7ip, gTic, 9TeB, 9Tec, 9T3B, T3, 9Tap, Tac are 5.6042, 1.5708,
3.0506, 1.1107, 3.9331, 0.6069, 1.9425, 0.7854, respectively, with 0.1956 probability of
detection of atoms in ground state [26].

|\I’<B, C)> = [‘03,40> + ‘13,30) + |23, 20) + |3B, 1c> + |4B,OC>] , (615)

6.4 Measurement of the Basis States

For the measurement of basis states |V, 11 (A1, A2, By, Bs)), we need to find out precisely
the relative phases (7, k) and the photon numbers (I,m) i.e., four bits of classical infor-
mation, which Alice has to communicate to Bob through classical channel. The state of
Ay, Ay, By, By system can be determined in two sets of measurement, the first determining
[ and m via total number of photons in the selected cavities and then determining 7 and
k via the relative phases between A, B; and A,, B, respectively.
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6.4.1 Measurement of Photon Numbers

There are number of ways for the determination of number of photons inside the cavities.
We propose to use Ramsey interferometry. In this scheme we consider two-level atoms
initially prepared in ground state |b) and which are off resonant with the radiation field
inside the cavities. The cavities are placed between two classical microwave fields (Ramsey
zones Ry and Ry) driving the |a) — |b) transition. When the atom passes from first zone
Ry with a microwave field tuned at frequency wg, it is prepared in a coherent superposition
of states (|a) + |b)) /v/2 . This atom is then passed through the two selected cavities with
the same interaction time € in each cavity. During the passage through the cavities, a
phase shift proportional to the photon number s in the two cavities is introduced as a
phase of the state |b) [27]. The resulting state of the atom then becomes

1 18

7 [|a) + €™’ |b)] . (6.16)
The atom is then passed through the second zone R, again resonant with w,,. The
interaction time and the coupling parameters are chosen such that |a) — (|a) + |b)) /v/2

and |b) — (|a) — |b)) /v/2. The final atomic state is
e*0/% [cos (s0/2) |a) — isin (s0/2) |b)] . (6.17)

The complete atom field state is entangled and is rather complicated. We have therefore
not reproduced it here. It is however clear that a measurement of the atom in state |a)
or |b) would reduce the fields inside the cavities to states with only appropriate number
of total photons in the two cavities.

For the determination of [ of the basis state |V, j (A1, As, By, By)), let us fix j, k and
m as 0 and measure the photon number in the cavities A; and B; by the procedure
mentioned above.

N
1
|Wo,00,0(A1, Az, By, By)) = mp%zjo D) A, |0 4, (N —p = 1) mod (N + 1)) 5.
X |(N —¢g)mod (N +1))p . (6.18)

For N = 3, the basis state |U,;0(A1, A2, B1, B2)) can be written as

1
|\IIO,O,O,O(A1> A2> Bla BQ)) = ZHOa 07 37 3> + |O> 17 37 2) + |O> 27 37 1> + |07 37 37 O> + |17 07 27 3>

+01,1,2,2) 4+ |1,2,2,1) + [1,3,2,0) +2,0,1,3) + |2, 1,1, 2)
+12,2,1,1) 4 2,3,1,0) + [3,0,0,3) +3,1,0,2) + |3,2,0,1)
+13,3,0,0)],

1
|‘;[]0,0,1,0<A17 A27 Bla B2)> = ZHOa 07 27 3> + ‘07 17 27 2) + |O7 27 27 1> + ‘07 37 27 O> + ‘17 07 17 3)

+11,1,1,2) +[1,2,1,1) + |1,3,1,0) +]2,0,0,3) + |2, 1,0, 2)
+12,2,0,1) +12,3,0,0) +[3,0,3,3) +[3,1,3,2) +[3,2,3,1)
+13,3,3,0)],
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1
|\IIO,O,2,O(A1> A2> Bla B2)> = EHOa 07 17 3> + |O> 17 ]-7 2) + |O> 27 ]-7 1> + |07 37 17 O> + |17 07 07 3>

+11,1,0,2) +11,2,0,1) +[1,3,0,0) + [2,0,3,3) + |2,1, 3, 2)
+12,2,3,1) 4+ 2,3,3,0) +[3,0,2,3) +3,1,2,2) + |3,2,2,1)
+13,3,2,0)],

1
|\IIO,O,3,O(A1> A2> Bla BQ)) = ZHOa 07 Oa 3> + |O> 17 07 2) + |O> 27 07 1> + |07 37 07 O> + |17 07 37 3>

+11,1,3,2) +11,2,3,1) +[1,3,3,0) + [2,0,2,3) + |2,1,2,2)
+12,2,2,1) 4 2,3,2,0) + [3,0,1,3) +3,1,1,2) + 3,2, 1, 1)
+13,3,1,0)].

We can clearly see that if we make measurement in the cavity A; and the cavity By then
|Wo.0.00(A1, A, B, By)) and [V 02.0(A1, A2, By, By)) contain odd number of photons, while
the states |Wo0.1,0(A1, Ao, B, Ba)) and |V 30(A1, Aa, By, By)) contain even number of
photons. The first atom is sent through the cavities A; and By with § = 7. It follows
from Eq. (15) that if the atom is detected in |a),, the number of photons s is even which
implies that [ is odd (1,3) and the detection of atom in |b), corresponds to odd value of
s and thus even value of [ (0,2). The subscript 1 represents the atomic level of the first
atom. For the first atom detected in |a), i.e., odd value of I, send second atom through
the same cavities A; and By with § = /2. If the atom is detected in excited state |a),
then | = 3, otherwise [ = 1. If the first atom was detected in ground state |b), i.e.,
even value of [, then add a photon in the cavity B; and send the second atom through
the cavities Ay and B; with § = 7/2. Second atom found in excited state |a), means
[ =0,4,..., N —3. If the second atom is found in ground state |b), then | =2,6,..., N —1.
If the second atom is found to be in excited state, send third atom with 6 = 7/4. If the
second atom is found in ground state, add two photons in the cavity B; before sending
the third atom with § = 7 /4. If the third atom is found in excited state, send fourth atom
with @ = 7/8. However, if third atom is found in ground state, add three photons in the
cavity By and then send the third atom through cavities A; and By with § = 7/8. This
process is repeated until the N outcomes uniquely determine [. The detection of first two
atoms in the sequence below determines the value of [ as

), la), — 1 =0,4,.., N —3

For N = 3, the passage of two atoms uniquely determines the value of [. For higher
values of N, we have to send another atom through the cavities A; and B; according
to the procedure mentioned earlier. The third atom uniquely determines the value of [
ranging from 0 to 7. Thus the scheme is valid only for those values of N which satisfy
the relation N 4+ 1 = 2", where n is an integer and represent the number of atoms which
we pass through the high-Q) cavities in order to uniquely determine the value of [ in the
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Figure 6.2: (a) A three level atom . (b) Proposed configuration for the adiabatic trans-
fer of photons using three-level atoms. The propagation direction of the pump laser is
perpendicular to the page.

basis states. The other value m can be found in a similar manner by passing the atoms
through the cavities A; and Bs.

For the determination of [ and m we have to add photons in the cavities B; and Bs
depending upon the detection of atom in ground states or excited states as mentioned
above. There are many ways for the addition or removal of photons in the cavities. We
propose the addition of photons employing the technique based on adiabatic passage [28].
Here we describe it briefly as it is very crucial for the determination of phase factors j
and k.

Consider a three-level atom in A configuration as shown in Fig. 6.2. The lower levels |b;)
and |be) are coupled to the upper level |a) via a classical field of Rabi frequency §2(t) and
a cavity field with coupling strength ¢(t), respectively. The interaction Hamiltonian is
given by

hQ(t)

H(t) = hg(t)(la) (ba| a + a'[bo) (al) = == (la) (ba] + [ba) (al), (6.19)
where a and a' are the annihilation and creation operators of the cavity field. This
Hamiltonian has an eigenstate that contains no contribution of the level |a) and is given
by

_ g(t)vn+11by,n) +Qt)/2 by, n + 1>.

o 6.20
. V()2 (n+1) +Q(t)%/4 (6.20)
As a function of time, |E,) behaves asymptotically as
_ b1, 1) for Q(t)/g(t) — 0
1En) { |ba, n + 1) for g(t)/Qt) — 0 - (6.21)

According to adiabatic theorem, if the Hamiltonian at time ¢, is in an eigenstate of H ()
and its time evolution is slow, the system will evolve into the eigenstate H(¢;), where
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t; > to. Thus if the atom-cavity system is initially in state |b;), for the pulse sequence
in which Q(t) is time delayed with respect to g(t), the state with which the atom exits is
|ba, m + 1). This produces a single photon shift in the cavity-field state. The reverse will
remove a single photon from the field state. We can shift multi-photons in a similar way
by considering virtual levels between |by) and |a) .

6.4.2 Measurement of the Phases j and &k

Next we determine the phase factors j and & in the basis state (6). The basis states after
determination of [ and m have the form

2W(Jp+kq)

|\Ifj’k7l7m(A1,A2,Bl,Bg N+1 Al ‘q>A2 |(N p— l) mod (N"— 1) +LIZ‘>

WZ
X |(N—q—m)mod(N +1)+y)g , (6.22)

where x and y are the number of photons added during the measurement process in
A1, By and A,, By systems, respectively. For the determination of j, which is relative
phase between the radiation fields in the cavities A; and By, we have to evacuate the
cavities A, and B,. The relative phase may change while we carry out the process of
evacuating the cavities. The evacuation can be done by the process of adiabatic passage
mentioned earlier.

After evacuating the cavities Ay and B, we consider the cavities A; and B; only. The index
j designates their relative phase. We remove all the photons from the cavity B; using
adiabatic passage so that the cavities A; and B; become decoupled. For this purpose we
send N + z three-level atoms in A configuration in level |by) interacting with field in the
cavity Bj only and a classical field via interaction Hamiltonian (17). The first x atoms
remove x photons and so are found in |b;) . The remaining N atoms, after passage from the
cavity B; undergo a mixing of levels by a classical field such that |by) — (|b1) + [b2))/V/2
and |by) — (|b1) —|b2))/v/2. Detection of the atom in |b;) does not add any phase whereas
detection of the atom in |by) would add a phase 7 for all those constituent states where the
cavity By has no photon. We consider only the cases when all the N atoms are detected
in |by). In this case the cavity B; has no photons and is decoupled from the cavity A;.
The state of the cavity A; is

N
1 2mujp

== ¢V D)y, (6.23)
VN +14

[W;(Ar)) =

Now we send (N + 1) /2 three-level atoms in A configuration in |by) through the cavity
A;. The first atom removes (N + 1) /2 photons via multi-photon transition and ends up
in |b1) . Then we apply strong classical field which transforms the states |b;) and |bs) in
such a way that |b1) — (|b1) — |b2))/v/2 and |b2) — (|b1) + |b2))/v/2. The atom is then
detected in |by) or |by). If the atom is detected in |b;), then j = 0,2,..., N — 1, whereas,
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if it is detected in |by), then j = 1,3,...,N. In both cases, the field inside the cavity

becomes
7 (N+1)/2-1 .
TP
\\Ifj(Al»z,/iNH > enip), . (6.24)

p=0

The second atom removes (N + 1) /4 photons from the cavity A;, followed by the strong
classical field which transforms the states |b;) and |by) into (|by) + e |by))/v/2 and
(te™ |by) + |b2))/V/2, respectively. We choose ¢ = 7/2 or 7 depending upon whether
the first atom was detected in |by) or |bs), respectively. The detection of the atoms in the
sequence below determines the value of phase factor j as

b1), [b1)y — j =0,4,...,N —3
b1), [b2)y — j =2,6,...,N —1
Do)y [b1)y — j=1,5,.., N —2
Do) |b2)y — § =3,7,..., N

For N = 3, the passage of two atoms completely determines the phase j. However for
larger NV, the resulting state will be

9 (N+1)/4-1
W (A4)) = > ey (6.25)
N+1 = !

The third atom removes (N + 1) /8 photons. Then comes the strong classical field and fol-
lows the detection process. If the sequences of measurements are |by) |b1) , |b1) |b2) , |b2) [b1)
or |by) |b2), we choose p = 7/2, m, ?jf or %’T, respectively. After the passage of third atom,
the sequence of measurements gives the value of phase j as

|b1>1 ‘b1>2 |bl>3 —Jj=0,8,..,N-7
1b1)y |01, [Bo)y — j=4,12,..,N —3
161), |b2)y [b1)s — § =2,10,..., N =5
1b1) [b2), [ba)g — j = 6,14,..., N — 1
Do)y [b1)y [b1)g — = 1,9,.., N — 6
Do) [D1)5 [D2)g — § = 5,13,..., N — 2
Do)y [b2)y [b1)g — § = 3,11,.., N — 4
Do), [b2)g [b2)y — j =T7,15,..., N

Thus for N = 7, the passage of three atoms and their detection in different atomic states
completely determine the phase factor j.

For larger value of N we continue the process. The subsequent atoms remove (N + 1) /16,
(N +1)/32,...,1 photons from the cavity A; having an adequate number of photons, then
atomic levels are mixed by a strong classical field with appropriate choice of ¢ and follows
it the detection process. The N outcomes uniquely determine the phase factor j. The
other phase factor k£ can also be determined in the same way treating cavities As and Bs
divorced from the cavities A; and By, i.e., after evacuating the cavities A; and B;.
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6.5 Transformation

A determination of the entangled state of the field inside the high-@Q cavities A;, As, By
and By, say, in state |V, m(A1, A2, By, By)) , projects the state of the field in the cavities
C} and C} into the state |¥(Cy, Cy)) as given by Eq. (8). In the final step of teleportation,
Bob transforms this state into the original state (1). It is quite vivid that the above state
differs from (1) in terms of phase factor e?7(P+ka)/(N+1) and the displacement of photon
numbers. Thus the transformation of the state |U(Cy,Cs)) into the state given by Eq.
(1) involves two steps. One is the removal of phases exp(imj) and exp(irk) and other is
an appropriate transformation of photon numbers [ and m.

6.5.1 Transformation of Phases

For the transformation of phases exp(imj) and exp(irk), let us consider the situation
when [ = m = 0, then

_ 2um(jptkq)
|W(Cy, Cy)) Z Cpqe™ NI ‘p>cl |q>02 : (6.26)

p,q=0

The state in the cavities C and Cy is the same as the state in the cavities A; and B,
(Eq. (1)) except the phase factor e~ 2m(P+ka)/(N+1) \We employ Ramsey interferometry to
remove these phase factors. We pass a non-resonant atom in its superposition state (|a;)+
1b1))/+/2 through the cavity C; such that |b;) of the atom picks up a phase e2™P/(N+1),
where p is the number of photons present in the cavity C;. This reduces the state function
to

_ 2en(jptha) _ 2umkg
W (Cy, C) | Atom), Z o (55 ), W) lan) + ¢ 5 o), labe 01}
pq 0

(6.27)
If the first atom is detected in excited state |a;), we repeat the process until it is detected
in the ground state. When the atom is detected in the ground state |b;), we pass another
non-resonant atom in its superposition state (|ag) + |b2))/+/2 through the cavity Cy such
that |by) of the atom picks up a phase €>™9/(N+1) where ¢ is the number of photons
present in the cavity Cs. Then the above state becomes

(€, o) |Atom), Zcpq (5 1), la)e, L) + o)y ladcy 102)) - (6.28)

pqO

If the second atom is detected in ground state |bg) then the state is recovered, otherwise
we repeat the process until the atom is detected in ground state.

6.5.2 Transformation of Photon Numbers

The procedure of this phase transformation becomes complicated if [ and m are non-zero.
In this case we have to transform the photon numbers in the cavities C; and Cs such that
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the number of photons in two cavities corresponds to subscripts p and ¢ of the probability
amplitude C, , of the quantum state (24). For this purpose we first add N + 1 —1[ photons
in Cy and N 4+ 1 — m photons in (s, using the method of adiabatic passage as discussed
earlier. This will transform the state (8) into

1 (Cy, Cs)) Zcpqe R (p+ Dmod (N +1) + N 41— 1),
p,g=0

(g +m)mod (N +1) + N +1—m), . (6.29)

Then we remove N + 1 photons from each of the cavities C'; and C5 via multi-photon
absorption process mentioned in the adiabatic passage scheme. This process removes N+1
photons from the [N + 1 +1). with p <, and N + 1 photons from the [N + 1 +m).,
with ¢ < m. First we remove N + 1 photons from C7, which results in the entanglement
of the full atom-field state

N -1 N
2umjp _ 2umjp
[T(Ch, Cy)) @ |Atom), Z €N Gl D)y [b2) + D €™ N Cpy ), 1b1)
=0 Lp=0 p=l
x e Xt |(q+m)mod (N +1) + N +1—m),, . (6.30)

Atomic levels of the atom exiting C; are mixed by a classical field such that [b;) —
(|b1) — |b2))/V/2 and |by) — (Jb1) + |b2))/V/2. If the atom is detected in |b;), we get

v (jptka)
|T(Cy, Cy)) Z Cpge™ e P)e, [(g+m)mod (N +1) + N +1—m), . (6.31)

p,q=0

If the atom is detected in |by), a negative sign appears in phase with the terms having
less than N + 1 photons in the cavity C; since the absorption process does nothing to
such states. Then we repeat the same process with the cavity Cs. Removal of the N + 1
photons from C5 and detection of second atom in |by) transform the above state to (24),
however if the atom is detected in |by), a negative sign appears in phase with the terms
having less than N + 1 photons in the cavity C5. Correction of these phase factors brings
the state in the form (24). Then we remove the phase factors by the method discussed
earlier for the transformation of phases.

6.6 Conclusions

We have presented a scheme for the quantum teleportation of an entangled field state of
the form (6.1) from a pair of high-Q) cavities to another pair of high-@) cavities. All the
three steps of teleportation process i.e., generation of entangled state for fixed number of
photons in two high-Q) cavities, measurement of basis state and finally the transformations
are carried out using standard cavity QED techniques including the Ramsey interferom-
etry and adiabatic passage. The scheme demands controlled interaction times between
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atoms and cavities, no spontaneous decay of atoms and no cavity losses during the whole
teleportation process.

The interaction times of the atoms with the cavity fields can easily be controlled through
Stark field adjustment to the atomic levels of the two-level atoms i.e., by applying timed
sequences of pulsed electric fields on the atoms while they interact with the cavity fields.
48,56, 75]. The atoms can be made resonant or off-resonant so that the interaction of
the atoms with the cavity fields can be made resonant or dispersive for a pre-calculated
time. For the suppression of spontaneous decay, we propose to use Rubidium atoms with
adjacent circular Rydberg states of principal quantum numbers 50 and 51 (frequency
51.099 GHz). These atoms have long radiative life times (~ 30 ms) and very strong
coupling to radiation [76]. High-@) cavities is another requirement in order to complete
the teleportation before the field decoherence. For the teleportation of entangled state
with N = 3, the total number of interactions of the atoms with the fields in all the
processes is around 40. The interaction times of the atoms with the fields vary from
1 ps to 6 ps. On the average if we take 3 ps per interaction and include all spacing
and other times, the total time for the teleportation to be completed is less than 250
us, whereas the superconducting cavities with quality factors 10® — 10'° corresponding
to photon life time in the range 1 — 200 ms have been reported [70,77]. It ensures that
the whole teleportation process can be completed before any decoherence occurs due to
atomic decay or cavity loss. The above parameters show that the proposed teleportation
scheme is experimentally realizable with the current experimental techniques.
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Chapter 7

Summary and Outlook

In the project related to high-precision measurements, we have presented the techniques
for the measurement of interatomic distance as well as the relative orientation of two near-
by four-level atoms in arbitrary geometry. We make use of the dipole-dipole interaction
between the two atoms and observe its effects on the optical properties of the system
through the inelastic components of resonance fluorescence spectrum and intensity.

The generally complicated spectra of resonance fluorescence simplify considerably when
studied under certain limiting cases, e.g., when the distance separating the atoms is
very large or when the atoms are very closed to each other. This is because in the former
situation the dipole-dipole interaction is negligible so the main interaction is that between
the atoms and the laser and the latter scenario corresponds to a strong dipole-dipole
interaction in which the laser acts as a small perturbation.

The system is studied first for a simple, fixed, known orientation in which the atoms are
placed in a line with respect to the incident laser. The intuitive understanding of the
positions of the differnet peaks in the resonance fluorescence spectra is developed by the
analysis of the eigen values of the interaction picture Hamiltonia. The pictorial dressed
state descriptions have been illustrated for this purpose. Afterwards, the analysis has
been extended for a completely unknown orientation. The interatomic distance can be
measured without any prior knowledge of the orientation of the two atoms via the strong
dipole-dipole interaction at small interatomic distances. The orientation of the system
can be determined by putting the system inside a planar wave guide and by observing the
resonance fluorescence intensity while the atoms are confined to a surface and the laser
field propagates perpendicular to the surface.

For practical purposes, it may be required to generalize the discussion to many particle
systems. It remains to be seen whether methods based on the dipole-dipole interaction can
also be applied in such cases. One approach could be to combine methods presented here
together with a selective addressing of individual atoms at least in one or two dimensions,
for example, by position-dependent state transfer.

In the project based on quantum teleportation of a high dimensional entangled state, a
scheme for the quantum teleportation of an entangled field state from a pair of high-@
cavities to another pair of high-() cavities has been presented. The process is divided
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into three major steps. First is the preparation of the entangled state which is done by
assuming a resonant interaction with high-() cavities whose initial state is assumed to be
a vacuum state. Second step involves the measurement of the basis states and in the third
step, transformation process is carried out by the receiver such that he recovers the original
state sent by the sender. All the three steps of teleportation process i.e., are carried out
using standard cavity QED techniques including the Ramsey interferometry and adiabatic
passage. The scheme demands controlled interaction times between atoms and cavities, no
spontaneous decay of atoms and no cavity losses during the whole teleportation process.

Stark field adjustment to the atomic levels of the two-level atoms can help control the
atom-field interaction time i.e., by applying timed sequences of pulsed electric fields on the
atoms while they interact with the cavity fields. The atoms can be made resonant or off-
resonant so that the interaction of the atoms with the cavity fields can be made resonant
or dispersive for a pre-calculated time. The unwanted decay due to spontaneaous emission
can be handled by using Rydberg atoms. These atoms have long radiative life times and
very strong coupling to radiation. To make the field decohernce time large, cavities with a
high quality factor are needed so that no losses due to the cavity obstacle the teleportation
process. Thus we show that the proposed teleportation scheme is experimentally realizable
with the current experimental techniques.
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