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Zusammenfassung

Das primare Ziel dieser Dissertation ist, das Verstasmawin Laser-unterstitzten relativisti-
schen Prozessen hoherer Ordnungen der Quantenelelarody(QED) zu vertiefen. Dadurch
wird eine Formulierung notwendig, die stark Laser-modsfiie fermionische Propagatoren be-
nutzt. Die heute vorliegenden Laserquellen erzeugennmemtal3ig elektromagnetische Felder,
die stark genug sind, um Elektronen auf Geschwindigkeitmender Lichtgeschwindigkeit
zu beschleunigen. Im Unterschied zur Storungsentwickbler gewdhnlichen QED, erfordert
die starke Laser-Materie-Kopplung eine Behandlung alletin@ngen. In dieser Dissertation
wird der Einfluss eines starken Laserfelds auf zwei gruretidg Prozesse der QED theore-
tisch studiert. Der erste Prozess, Bremsstrahlung eines Goulombfeld eines Atomkerns
gestreuten Elektrons, wird bei Anwesenheit eines Laserseegananten Fall berechnet. Der
Wirkungsquerschnitt wird numerisch ausgewertet, mitéddiner Formel, die aus den Feynman-
Regeln fur starke Felder folgt. Der zweite Prozess, EtektPositron-Paarbildung von Photon
und Coulombfeld, wird fur den Fall untersucht, dass diedf#&rke des Lasers kleiner als die
kritische Feldstarke ist. Der totale Wirkungsquersahmitd dabei nicht vom Laser verandert,
wahrend der differentielle Querschnitt drastisch mouaifizwird. Schliel3lich wird eine detail-
lierte Studie und ein neuer Algorithmus fur die verallgemeete Besselfunktion, eine spezielle
Funktion, die in Laser-modifizierter QED naturlich vorkomy prasentiert.

Abstract

The primary aim of this thesis is to advance the understandirhigher-order laser-assisted
relativistic processes within quantum electrodynamids@Q which necessitates a formulation
using fully laser-dressed fermion propagators. This sigdyotivated by presently available
laser sources which routinely produce electromagnetidgistrong enough to accelerate the
electron to velocities close to the speed of light. The graser-matter interaction requires an
all-order treatment, different from the perturbative exgian of the usual QED. In this thesis,
the influence of a strong laser field on two fundamental pseEesf QED is studied theoreti-
cally. The first process, bremsstrahlung from an electrattes@d at the Coulomb potential of
a nucleus, is found to show a resonant behavior in the pres#ribe laser. The cross section is
numerically evaluated from the formula resulting from gfpd the strong-field Feynman rules.
The second process, electron-positron pair creation byrargaphoton and a Coulomb field is
studied in the case when the laser field strength is belowrttieat field. Here the total cross
section is unchanged by the laser, while the differentiatsrsection is drastically modified.
Finally, a detailed study and a novel evaluation algorittrithe generalized Bessel function, a
special function occurring naturally in laser-modified QE®presented.
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Chapter 1

Introduction

The theory of quantum electrodynamics (QED) describestiegaction between fundamental,
charged particles like the electron, and light. Founded bbgdin the 1930’s with the invention
of the relativistic wave equation bearing his name, andifiedlin the 1950’s by Feynman,
Tomonaga and Schwinger, QED remains one of the most suatas#ntific theories ever.
Predictions made by QED agree with experiment with up to §Riscant figures [87], with
further improvements, both theoretically and experimignt® be expected. The diagrammatic
technique introduced by Feynman, the “Feynman diagrameVgs to be a very powerful tool
to organize the terms in the perturbative expansion of uarghysical quantities, such as the
gyromagnetic ratio of the electron or the cross section f@m@ton scattering. One thing is
sure: Results obtained by flawless calculations made aicgptd the rules of QED will be
believed by anyone. There is no doubt of the soundness arettoess of QED, once correctly
applied.

As already mentioned, QED deals with the interaction of eradtich as electrons, positrons
or muons, with external fields such as photons or the Couloehd. fiThe textbook examples
all deal with problems where the field is weak: The scatteahgn electron by the field of a
nucleus (Mott scattering), the scattering of a photon byea &lectron (Compton scattering),
creation of an electron-positron pair by absorption of tvm@tons, to name a few. In all the
preceding examples the external field is assumed to be we#kasthe main contribution to the
guantum mechanical amplitude is given by the first term irpreurbation series, and the next
order terms are expected to be smaller by the order of thesfmeture constant ~ 1/137.
As a consequence, in the case of oscillating photon fields;ribss sections are independent of
the amplitude of the field. Naturally, the next question th i@swhat happens if the external
field considered is strong. For a field sufficiently strongisiinevitable that at some point
perturbation theory will break down. If we limit our discums to strong fields that may be
produced in the laboratory, and thereby omit the astroghjigiinteresting case of ultra-strong
magnetic fields (for example around pulsars, see calcawitio[9,12,55] and [63,74,77,79]),
two types of strong fields are perceivable:

(). The Coulomb field around heavy nuclei. In the case of tbhel@nb interaction, the
expansion parameter k&, whereZ is the nuclear charge number. For snialihis expansion
makes sense, but is clearly not applicable for hightoms like lead or uranium. The theory
of QED in a strong nuclear field has advanced very far, seexamele [78, 88, 107] for high-
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CHAPTER 1: Introduction

precision calculations in heavy ions, or [19, 75,146, 168 éviews of pair production in heavy
ion collisions. Especially interesting is here the case@balomb potential with charge number
Z > 1/a =~ 137, since the ground state dives into the Dirac sea, and spamtarproduction of
electron-positron pairs is expected. In the case of a st@mugomb field, two types of nonlinear
effects of QED that have actually been measured, apart fnenhigh-precision measurements
mentioned above, are Delbriick scattering [3, 85, 111] dratgn splitting [2, 100]. Delbriick
scattering is the classically forbidden scattering of atphan the Coulomb field of a nucleus,
photon splitting is the splitting of one initial photon intwo photons with the same total energy
in a nuclear Coulomb field.
(2). The electromagnetic field produced by a laser. Herexparesion parameter with respect
to the laser field is

£ = —ea/m, (1.1)

wheree = —|e| is the charge of the electrom is the electron mass andis the peak value

of the vector potential of the laser field. The peak electatdf’ of the laser is related to as

E = aw, wherew is the frequency, meaning that the paramétdescribes the amount of work
performed by the peak electric field of the laser over one lpsgod, scaled with the electron
massm. Note that we will use relativistic units such that= ¢ = 1, wheres is the reduced
Planck constant and is the speed of light, throughout this thesis, for furthescdssions of
units and notation used we refer to section 1.1. Presentagays routinely reach values where
¢ is of the order of unity up t§ = 10? [106, 161], and therefore a nonperturbative approach is
called for when describing the interaction between elestiand strong laser fields.

Modern lasers can be divided into two categories: (a). Lawdency high-power lasers. Lasers
of this kind have low frequency of order 1 eV, but can deliveghhintensities, that is, large
electric field amplitudes. The current record is an intgnsitl 022 W/cm? [8, 179], which cor-
responds to a value gf= 300. Such high intensities has been made possible with theipotin
of chirped pulse amplification [119]. There are also two ryesthrted projects: the Extreme
Light Infrastructure (ELI) [65], and the European High PoJaser Energy Research facility
(HIPER) [80], both aiming at extreme intensities of up toenrth?® W/cm?.

(b). The other class is the high-frequency, low-power lasgresented by the X-ray Free Elec-
tron Laser (X-FEL). At present intensities of ord&*'® W/cm? can be achieved at a frequency
of 100 eV [53]. This leads to a value = 3 x 1073, so that this regime can be treated with
perturbation theory. According to an optimistic view in [5with future upgrades of the
FLASH facility in Hamburg, it could be possible to reach iméies as high as0?® W/cm? at
frequencies of 10 keV, if focusing to the diffraction limitthe laser beam can be achieved.

High intensities imply that the motion of the electron in fieéd of the laser becomes relativistic.

A measure of when the transition to the relativistic regirtegts is when the mean kinetic
energy, or the ponderomotive energjy, of the electron becomes of the same order as its rest
mass. For a nonrelativistic electron in an oscillating &ledield E cos(wt) we have from
Newton’s equation of motion

d2
md—tf = eF cos(wt), (1.2)
which leads to a kinetic energy, assuming the electronsstarest,
1 dz\” 1 [eE > m 9 . 9
ot 4Ty _ i — ey . 1.
Ukin 5 (dt) o ( - sm(wt)) 2£ sin®(wt) (1.3)
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The peak nonrelativistic velocity is thgs Averaging Eq. (1.3) over one period of the oscillation
we finally obtain the ponderomotive energy as
e2E?  e%a?

m .o
= in— T 5 — . — — . 1'4
Up = Uk 4mw? 4m 4 ¢ (1.4)

The conditionl, = m gives¢ = 2. In the relativistic regime the concept of a ponderomotive
potential is not as straightforward, but can still be defified. As we will see in section 2.1,
here not only the electric field of the laser but also the magmemponent will contribute to
the acceleration of the electron.

With these high-power lasers comes a field of research, whieelmay call “laser-modified”
QED. The goal is to investigate how the presence of a strasgg feeld modifies the fundamen-
tal processes of QED, and how they depend on the laser paanaenplitude, frequency and
polarization, et cetera. The laser also opens up new reactiannels, which means that pro-
cesses that were forbidden by energy-momentum consemammme possible by virtue of the
energy and momentum provided by the field. Laser-modified @&B initiated in the 1960's,
long before the advent of powerful laser sources, with timeiisal papers [38,129, 147]. Very
important is that with the experimental availability of nalintense laser facilities and bright
prospects of pushing the intensity-limits even furtheereexotic processes in laser-modified
QED can be experimentally verified. We divide the processtestwo groups, depending on if
they can occur in absence of the field:

Laser-induced processes. Here the laser is necessarynh@ttsiog to happen. To this group
belong among others electron-positron pair creation bynalaser mode photon [105,129,147],
photon emission by a laser-dressed electron (also calkst-laduced Compton scattering)
[38, 129, 138], which was only recently observed in expentié, 61,97, 110, 116], pair pro-
duction by a Coulomb and laser field [58, 89, 95, 96,112, 124,124,167, 176], and splitting
of a photon in a laser field [57].

Laser-assisted processes. To this group processes bkhirage: allowed without the laser, and
are modified in its presence. All laser-assisted scattéaihon this group, such as laser-assisted
Coulomb scattering (also called Mott scattering) [52, 183, electron-electron scattering (or
Mgller scattering) [35, 36, 130, 140, 158] and laser-asdiStompton scattering (here one non-
laser mode photon scatters of a laser-dressed electroe, destinguished from laser-induced
Compton scattering which is the emission of a non-laser npiigon from a laser dressed
electron) [23, 131]. Also light emission in the collision diarged particles, bremsstrahlung,
has been considered with an external laser field [33,6080 157, 164]. Particle decay can be
modified by the laser: [4,22,154].

For the processes that are of intrinsically quantum natuhéch would not occur in classical
electrodynamics [84], there appears another parameteldsgs calledy, that will govern the
probability of the process in question. An invariant defomtof y is

()’

m3

X = —e , (1.5)

where Fﬁfa" is the peak value of the field tenséi, = 0,4, — 0,A, andp” is the four-
momentum of the incoming particle involved, electron or foimo For a massive particle, we
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CHAPTER 1: Introduction

can write Eq. (1.5) in the rest frame of the particle as
w
X=E&—. (1.6)
m

Since there is no rest frame for photons, for a probing phetith momentumk’ we have
instead

!/

w w
X =26——, (1.7)
mm

in a frame where the photon with frequencyis counterpropagating with the laser wave with
frequencyw. The physical meaning of is the amount of work, in units of., that the field
performs (at its peak value) over the Compton wavelength- 1/m of the particle. We have

Work = Forcex Distance= caw\o = &w. (1.8)

According to the seminal work by Sauter [162] and later byv@8oger [165], pairs will be
produced spontaneously out of vacuum by a static electiat fldowever, the production rate
will be exponentially damped unless the field exceeds theafled critical field, which in our
notation corresponds t9 = 1. This conclusion holds for other field-configurations aslwel
For the field to participate in the pair-production proceks,corresponding parametemust
be close to unity. We also note that even thogdgbkee Eq. (1.1)] may be largeg,is small for
particles at rest, if an optical laser is assumed. As an el@me havey = 4 x 10~ for an
infrared laser with frequency = 1 eV, ¢ = 200, and corresponding intensitlyy = 4 x 102
W/cm?. To overcome this obstacle, we note that Eq. (1.5) is valithanrest frame of the
probing particle. Therefore, if a particle beam with gammaetdr, is used to collide head-
on with the laser, the laser frequency in the rest frame optticle beam is blue-shifted or
enhanced with a factor of approximately. This was the scheme employed in the experiment
performed at the Stanford Linear Accelerator Center [1643P where an electron beam of 50
GeV was collided with a high-power, low-frequency laserrédeonlinear Compton scattering,
with up to four laser photons participating, produced higltuency gamma rays (frequency
of the order 30 GeV) which subsequently decayed inside ther led form electron-positron
pairs. In this experiment, peak valugs= 0.25 and¢ = 0.4 were obtained. Unfortunately, this
experiment remains to date the only one dealing with noatipair production in a laser field.
A lot of theoretical proposals for experiments of the abossatibed type have been published,
in particular for pair production by an ion beam collidingkva laser [121,123, 124] or photon
merging in the combined field of a proton’s Coulomb field andsef [56, 177].

For the theoretical treatment of laser-modified QED, we watreat the laser-electron (or laser-
positron) interaction in a nonperturbative way, that islto@ers. This is so since f@r > 1, we
expect the probability for one laser-mode photon to be echitir absorbed in a certain process
to be comparable to that of absorbing or emitting severariasode photons. The interaction
with other fields, such as the Coulomb field of an atomic niglewn the emitted or absorbed
non-laser mode photon (such as a bremsstrahlung photaggaied with perturbation theory.
This nonperturbative treatment of the laser-electron bogps possible due to the fact that
the basic system of an electron moving in the potential ofaa@llaser wave can be exactly
solved. The analytic solution to the Dirac equation with angl wave potential was found by
Volkov in 1935 [172]. From the expression for the wave fuoitithe Green’s function can be

14



written down comparatively easily [113, 154]. Using the Réol states, one obtains a concrete
way to deal with laser-modified QED: Draw the usual Feynmagidim in coordinate space,
and replace the free electron and positron lines with ldsessed lines, Volkov wave functions,
and replace the intermediate propagator lines with the-sssed Dirac-Volkov propagator.
Integration over the interaction coordinates then yighgsamplitude of the considered process.

In this thesis, we investigate the influence of a strong lfskeron two fundamental processes of
particle physics: bremsstrahlung, which is light emisdigran electron scattered at a Coulomb
potential and laser-assisted pair production by a highggnghoton and a Coulomb field. Fol-
lowing some notes on the conventions used in section 1.1hapter 2, we present the the-
oretical foundations needed for the later analysis. Ini@agr, we review the derivation of
the Volkov solution to the Dirac equation, the expressiarthie Dirac-Volkov propagator, and
we also review the solution to the classical, relativisgaaion of motion of an electron in a
plane wave electromagnetic field, since it is required toeustand the behavior of the quan-
tum system. We point out the strong classical-quantum spadence between the quantum
Volkov solution and the classical solution. In particuldms correspondence can be used to
derive, by physical arguments, cutoff rules for the genmeedl Bessel functions, by which the
Volkov solution is expressed. The appendix A explains théhoakof calculation employed in
laser-modified QED, in which the free electron lines areaegtl by Volkov states and internal
propagator lines are replaced with the laser-dressed DNolov propagator.

In chapter 3 we study in detail the process of laser-assisttisstrahlung. In this process, a
laser-dressed electron is deflected by the Coulomb field afcéens, emitting radiation as a
result. Being described by a Feynman diagram with two vestithe calculation of the matrix
element and cross section demands proper use of the Ditkowpropagator. We show that
it is possible to evaluate the cross section concretely éwelarge values of. The results
presented in this thesis are the first concrete numericali&wans of the cross section of a
second-order laser-dressed QED process involving theeMo#ov propagator, for relativis-
tic laser intensities. Previous studies of second-ordsrianodified processes [36, 157] were
limited to the weak field{ < 1) regime.

Chapter 4 deals with the process related to laser-assis¢gasktrahlung by a crossing sym-
metry [see section A.3]: laser-modified pair production lghaton in a Coulomb field. Here
laser-dressed electron-positron pairs are created byladmgrgy photon with frequency,
(where~ is a label to distinguiskv,, from the laser frequenay) and a Coulomb field. Espe-
cially interesting here is the fact that this process ispetiag to the definitions made above,
either laser-induced or laser-assisted depending on e @hw.. Although the formal ex-
pression for the cross section is similar to that of laserséed bremsstrahlung, the dynamics
of the process and the numerical evaluation are quite difte’MVe evaluate the cross section of
pair production for large values gf but small values of the quantum parameteBy numer-
ical calculations and intuitive arguments it is shown tinet total number of pairs produced is
almost unchanged by the laser field, provided the gamma plicgquency is above threshold,
wy, > 2m. The differential cross section is however drasticallyrgfed. We find that in a
specific setup of laser beam and gamma photon beam, thectedatgrons and positrons are
strongly focused by the laser into a narrow angular regidrn¢clvalso facilitates experimental
observation. Also here, the numerical results presentedhar first for this kind of process,
previously only analytical results for weak fields« 1) have been obtained [30, 31].
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CHAPTER 1: Introduction

As they are crucial for the modeling of electrons dressed Iager, the Bessel functions have
earned themselves a chapter of their own: chapter 5. Herewiear all definitions and prop-
erties of the Bessel function. In particular we study thealbled generalized Bessel function,
a generalization of the usual Bessel function characikefist description of electrons dressed
by a laser field of linear polarization. Particular emph&saced on the numerical evaluation
of the generalized Bessel functions. We present a novetsieualgorithm for calculation of
generalized Bessel functions, thereby generalizing theaied Miller’s algorithm to work also
for generalized Bessel functions.

1.1 Notation and conventions

1.1.1 Units

In this thesis, we will use conventional high-energy uritsit ish = ¢ = 1. This means that
all dimensionful quantities are measured on one singleesd¢hhothing else is stated, we take
this scale to be energy, measured in MeV. We have the eleotemsm = 0.511 MeV. Some
conversion factors read:

1
(MeV)? = 2.568 x 10°' —,
CcIm
MeV = 1.602 x 107J,
MeV = 1.519 x 10211, (1.9)
S
v
(MeV)? = 0.507 x 10*|e|—,
m

(MeV) ™' =0.1973 x 10~ "m.

We use the Heaviside-Lorentz conventions, so that theioalétetween the negative electric

chargee = —|e| and the fine-structure constanteads
e =—2yrma ~ —0.3028, (1.10)

with o ~ 1/137.04. A useful formula for conversion of laser intensitiess

2
=2.325 x 10%y?, (1.11)

]— 2
L —3.12Tx10% ( e ) — 8.906 x 10%¢> (

(W /cm?2) (MeV)?2 M—eV)

which is valid for linear polarization. In the case of ciraupolarization there is an extra factor
of 2. For photon wavelengths(not to forget the extra factor @fr!) we have

A 12401 x 10713

(m)  w/(MeV) (1.12)
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1.1. Notation and conventions

1.1.2 Dirac matrices and metric

The metric used is

1 0 0 0
0O -1 0 O
Hry
WI=10 0 -1 o | (1.13)
0O 0 0 -1
and vector products will be written with a dotso that
p-qa=pug"=0"¢"-p-q. (1.14)

Boldcase letters denote three-vectors, and summatiorGresk indicesy, v, ...) is implied.
Partial derivatives are written like 5

“T oan
If a specific representation should be needed (like in a coengarogram), we use the Dirac
representation of the gamma matrices:

(1.15)

10 0 0 0 0 01
o o1 0 o0 O
T oo -1 0| 7T 0o =100
00 0 -1 1 0 00
(1.16)
0 00 —i 0 01 0
, | 0o 0 i 0 . | 0o 00 -1
Tl o io0o o0 7T T =100 o0
i 00 0 0 10 0

The~'s satisfyy#v” + v¥~#* = 2¢". The hat” operator is used to denote the Feynman dagger,
the “slash”:

P =YDy, (1.17)

for any four-vectorp. This notation is standard in Russian literature [129, I&@high-field
QED. The reason why to use the Hainstead of the conventional slash is simply that slashed
capital letters, which will be employed heavily later on whbe theory is introduced, do not
look good: comparg with A. The bar-conjugate operation on spinors is defined as

U = Pls0 (1.18)

and for matrices\/ o
M =~°MTA0. (1.19)
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Chapter 2

The relativistic laser-dressed electron:
classically and quantum mechanically

In this chapter we review the properties of the system cangisf an electron plus an electro-

magnetic wave, the laser field. We will see that this systembessolved exactly in an analytical

form, both classically and quantum mechanically. The coowlis that the laser wave can be
treated as a plane wave, that is, a wave that propagates girecgon only. The fact that there

is such exact solutions makes it possible to develop a ation theory with these states as
basis states, and thereby taking the interaction with ther ifeld into account to all orders.

2.1 The motion of a classical, relativistic electron in a laer
field

The classical equations of motion for a charged particlenrelectromagnetic field can be
solved analytically, if the electromagnetic field is a plamave. This problem is treated in
[7,17,83,98,109]. We will review the necessary steps legath the analytic expressions for
the trajectories, momentum and energy of the electron. tticpéar the expression for the
energy will be important for the physical interpretatiortloé generalized Bessel functions.

2.1.1 Solution of the equations of motion by the Hamilton-Jaobi method
The laser field is described by the vector potential
At =AM9) = (0, A(9), ¢ =a"ky, (2.1)

wherek" is the wave vector, and the gauge is chosen soithat = 0 (Lorenz gauge). The
relativistically invariant equation of motion read

A2zt da”

— (9" A, — 0, A"
P e(0"A, = 0y )dT’

(2.2)
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CHAPTER 2: The relativistic laser-dressed electron: classically quantum mechanically

wherez* is the coordinate of the particle andthe proper time. This equation can be solved
directly [83, 109], but we will do it with another method, thlamilton-Jacobi method, since
this method employs the action functiortaJsee Eq. (2.8)], which appears also in the quantum
mechanical solution. The relativistic Hamiltoniahof a classical charged particle with charge
e and massn coupled to the potential” reads

H=+\/m2+ (P —cA)?, (2.3)

or squared

H?>=m?+ (P —eA)? (2.4)
where P is the canonical three-momentum of the particle. The camabfiour-momentum is
given by P* = (H, P). Note however thaP* is not a gauge-invariant quantity. The physical,
gauge invariant momentum is the kinetic momentum= P* — eA*. The derivative of the
classical actiort should satisfy

MS = (—H,—P) = —P*, (2.5)
which inserted into equation (2.4) lead to
(0,8 + eA,) (O"S + eAr) = m?. (2.6)

This equation is now solved with the ansatz that the the mcim be split up into one field-free
part and one field-dependent part, depending only on the hsese):

S = —puat + S(e). (2.7)

Herep* is determined by the initial conditions. It is interpretesithe momentum at infinity,
that is, the asymptotic momentum of the particle in abseffiteeofield, where§(¢) = 0. As

a four-momentumyp* should satisfyp?> = m?. Equation (2.6) with the ansatz (2.7) can be
integrated, with the solution

5 _ ¢
56 = 5,75 99 (0~ [ A @) [ +eA(9)
1 ¢

—2p'k ¢0

(2.8)
A’ (pup" — m® + 2 A(¢) A(¢)) — 2e A, (¢)p") |

with ¢, given by the initial conditions, the initial phase of thedasThe derivative of the total
action .S with respect to the asymptotic momentyrh equals the (constant) initial position
—ZTou,

25
o~

_a+ /d)dcb’[ b (e ()" — A M) + — (b — eAL()
w7t ), 99 (3. e e () + 5 o = eAul )]
(2.9)
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2.1. The motion of a classical, relativistic electron in seliafield

so that the trajectories of the particle are given by

¢ / k ! 4 14 ! / 1 /
=t [ 06 [ QA S AL + L ()]
’ (2.10)
For the instantaneous canonical four-momentum we have
P,=-0,8
k , , (2.11)
=p, + Qp—f‘k (2¢A,(9)p” — €AY ($) AL (0)) |

from which it is easily verified that the kinetic momentym = P, — eA,, is gauge invariant
underA, — A, + Ak,, with an arbitrary function\ (the gauge should remain in the Lorenz
gauge). Specializing on a laser wave of the form

A, (¢) = a, cos ¢, (2.12)

we get for the trajectories, withy = k - 2o = 0,

- Du e?a? ep-a eay, . e?a? .
T =t <p ko 4(p- k)Qk”) ot <(p T ) /f) WO g e (20)
(2.13)
Note that the trajectory is not given as an explicit functign), but rather as a function of the
laser phase. The phase is proportional to the proper timeof the particle likep = & - dfl(f)r,
which can be seen by multiplying Eq. (2.2) by and integrating, using - A = 0. For the
energy-momentum four-vectdi, we get

k
P,=p,+ 5 Mk (26& - pcos ¢ — e*a® cos® (b) , (2.14)
p-

with the phase average

— e%a?

P, =p,—

k,. 2.15
Of interest for the cutoff properties of the quantum VolkoWsion is the solutions to the equa-
tion %—i’f = 0, since this will tell us the maximum and minimum of the ingtareous energy of
the particle. The solutions are

cos ¢ = £1; cos ¢ = % if |a] < 8|5, (2.16)
with the corresponding energies
32 2 2
Po=po—2wB+w(-20%a),  Py=po—2wf+ w%, (217)
where we have introduced the parameters
2.2
ea-p e“a
= = 2.18
(0% k: p Y /B 8]{: . p? ( )
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CHAPTER 2: The relativistic laser-dressed electron: classically quantum mechanically

and written Eqg. (2.17) on a form so that to facilitate comgami with the quantum Volkov
solution in section 2.2 [See Eq. (2.47)]. In the nonrelaticilimit whenk - p ~ wm we can
express the ponderomotive energylgs= 2w|3| [See Eq. (1.4)]. Note thai < 0, always,
sincea? = a,a* < 0andk-p = Ew — p - k > 0, and that the minimal and maximal energies
given by Eq. (2.17) are independentwaf Another remark is that sinceé < 0, it might seem
that P, < m is possible. Careful inspection shows that this is not tise care always have that
PMn > m for both the case wheR"" = py — 4w 3 —w|a| and the case wheR"" = p, +w166

2.1.2 Direct numerical solution

In the previous subsection, the expression Eq. (2.13) wagedk providing an expression for
the coordinates of a laser-dressed electron as a functitwe aivariant phase. If an expression
for the orbit as an explicit function of the timein some frame is searched for, there is no
exact solution, but the equations of motion have to be iategr numerically. This approach
also allows for inclusion of other forces besides the Lardatce of the laser field, such as a
Coulomb field. The classical equation of motion for a reiatie particle reads

L — (2.19)
dt 1_ (5)2

whereF' is the force acting on the particle. Here we write explicttig factorc (the speed of
light) to better see which terms are important in the noatngktic limit. To put this equation
on a computer, we want to have it on the foin: = # = f(v,7). If we letr = (z,y,2)

andF = (F,, F,, F.), we get a system of equations for the acceleration vettgwe ignore
the y-component, since we want to look at the laser case, thee thi#éronly be two force
components, one in the laser propagation direction androtieilaser polarization direction)

oy L s #? 2\ R 2\
S@r+2)+i|ll-5 -5 )=—(1-= :
c

c c m c?

z( v+ (1 PP\ _E (7 3/2 (2.20)

02 Tx ZZ z 02 02 = m 02 .

This is solved to yield
3/2 -
(-5) +&i-5 ) [CF
m:L’ = - x_Q Z7

(2.21)

(2 2

In the case with a monochromatic laser field with electricl(aragnetic) field amplitudge| =
|B| = E,, frequencyw, propagating in the-direction and linearly polarized in thedirection
we have

F, = eEycos(wt —wz/c)(1 — 2/c), F, = eEycos(wt —wz/c)(i/c). (2.22)
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2.2. The Volkov solution

2.2 The Volkov solution

That the Dirac equation, coupled to an electromagneticepleave, possesses an exact analytic
solution was first found by Volkov over 70 years ago [172]. Moékov solution is remarkable
in several ways. Firstly, analytical solutions to the Diegpiation are rare, especially for field
configurations that are realizable in the laboratory. (S¢&of other fields for which the Dirac
equation is solvable, most of them quite exotic.) Secoritllg, Volkov solution is strongly
connected to the solution to the classical equations ofonptiiven by Eqg. (2.8). As we will
see, the phase of the Volkov wave function is given by thesatataction. Usually this kind of
guasi-classicality of a wave function is the result of sograximation, but here it is the exact
wave function (apart from the spin term). The Volkov solatforms the foundation for laser-
modified QED, since it provides the basis set from which thetedng theory is developed.
Knowing the wave function for arbitrary momentum, it is sepgently an easy task to construct
the propagator.

2.2.1 Derivation of the Volkov solution

In this section we follow [24], but we note that other, alggby approaches also exist [7, 128].
The starting point is the Dirac equation coupled to an ebastignetic plane wave, described by
the four-vector potentiall(¢) as in Eq. (2.1):

(ié — eA(e) — m) W(w) =0, (2.23)

where(z) is a spinor, & x 1 complex matrix. The vector potential’(¢) depends on the
coordinates only through = k - = and satisfies the Lorenz gauge condition

dA
6-A:k:-@:0, (2.24)

which impliesk - A = 0. Here we assumed thdtis on the general form

At (@) = af f1(®) + ab f2(9). (2.25)

Takinga, = 0 gives linear polarization, an&f = a3 corresponds to circular. Note also that we
in general do not assum&" = (0, A), since we want to keep open the possibility of making
gauge transformations later. It turns out that with the gméslirect approach of solution, it is

easier to work with the squared Dirac equation. Thus, byﬂp@l(ié — e/l(qb) + m) to both
sides of Eqg. (2.23) we end up with

(—02 —2ieA -0+ e* A% —m? — z’el%%> Y(z) = 0. (2.26)

This is just like the Klein-Gordon equation [24] with an extmatrix term, arising from the
spin-laser interaction. The standard way of obtaining tblk&X solution is now to make the
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CHAPTER 2: The relativistic laser-dressed electron: classically quantum mechanically

ansatz)(z) = e"?*F(¢), analogous to the classical case in Eq. (2.7). Insertirsgpthsatz into
Eqg. (2.26) and integrating yields the sought Volkov solaitio

by(x) = \/g (1 + eiﬁf?) u(p) exp (—z’p x— Z'/(: {ep ];Iflz()éb') B 6221411;.(;?,)} dgb’) :

(2.27)

wherep is a four-vector labeling the solutioR/ ;- is a normalization factor containing =

pY, the quantization volum&, andu(p) is so far an arbitrary column vector of four complex
numbers. The phasg depends on the initial conditions. We note that the initfe$ep, only
gives rise to a constant phase in the wave function, whidrcaricel when forming the absolute
value squared, thus being unimportant for the evaluaticaangfmeasurable quantities such as
cross sections. Now, we are searching for a solution to teedider Dirac equation, and not
the square one. To single out the required solutions, we déma

(p—mu(p) =0,  p*=m? (2.28)

which can be seen by letting — 0 in Eq. (2.27). The spinorg(p) are normalized according
to

u(p)u(p) = 1. (2.29)
Eqg. (2.28) has two linearly independent solutions, callgd sip and spin down. If we label
these byr = 1, 2, then the sum over spin satisfies

2
r=1,2 m

which is all that we need, since we will always calculate sgprrraged or spin-summed quanti-
ties in this thesis. We then interppeas the four-momentum of the particle outside the field, or
the momentum at infinity, where the field is zero. We also oles#rat Eq. (2.27) allows solu-
tions+_,, with negative zeroth componepit. These negative-energy solutions will correspond
to positrons when we treat pair creation in chapter 4, seetlésdiscussion in subsection 2.2.2.

We close this subsection with giving the expression for tbékdt state in a laser of linear
polarization, since this is the laser polarization we wilinwwith in this thesis. Assuming

A¥(p) = a* cos ¢, (2.31)
and taking the initial phas¢, = 0, we have

Up(z) = | /% (1 + _€k2dk6f);gb) u(p) exp (—iq X — Z,eka.-;o sin ¢ + Se]jc‘ﬂp sin(2¢)) )

(2.32)

Note thata” is a four-vector. If we take* in the radiation gauge” = (0,a), we haves? =
—a?. With the absolute valug| of a,, we always meafu| = /|a?| . Here we have defined the
effective four-momentum of the Volkov state as

€2|a,|2

4k - p

g=p+ 3 (2.33)

24



2.2. The Volkov solution

which satisfies
€2|a‘2 2
q2 =m?+ —5 =m3, (2.34)

with m, called the effective mass, argl = ¢° the effective energy. We remark thiat p =
k-qanda-p = a-q. The effective momentum is also called the average momentum, and
corresponds to the phase-average value/ofisee Eq. (2.15)] from section 2.1. Note the choice
of normalization factor in Eq. (2.32). With this choice, tielkov states are normalized with
respect to the effective four-momentym

[l @) = 5(a ~ @) (2.35)

wherer, r’ label the spin. The validity of the normalization conditi@35), which is not self-
evident, is discussed further in subsection 2.2.5.

Volkov wave functions for circular polarization of the laser

Since we present results in chapter 3 also for circular paiaon of the laser field, we give
here the expression for the Volkov wave function in a cirdylpolarized laser, without further
discussion. The laser vector potential is here given as

A (@) = al cos ¢ + ab sin ¢, (2.36)
with polarization vectors, » satisfying
a; -as =0, a? = a3 = —a’. (2.37)

Circular polarization is particular in the sense that thrextlc (and magnetic) field is constant
intime, A2 = —a2. The Volkov solution is, with initial phase, = 0 (see also [163]),

w;irc(x) _ [m L+ ek (y cos ¢ + d sin @) ul(p)
QV 2k - p (2.38)
2~2 . .
X exp <—z’p X — i;kjc‘bp — iezl‘ pp sin ¢ + iegé pp cos gb)) ,

where an unimportant constant phase factor has been dropfesl main difference is that
there is no term proportional ton(2¢) in the exponential in Eq. (2.38). This means that when
expanding the wave functionz);"c(:c) into a sum of plane waves [see subsection 2.2.3], the
coefficients are usual Bessel functions, instead of gemethBessel functions as one gets in
the linear polarization case. Another difference is that effective mass is larger [compare
Eq. (2.34)],

_ 2~2 2
mi'rCQ =|p+ O E) =m? g e*a?, (2.39)
2k -p

which can be explained by the larger average valud®fFor the same peak valug of the
vector potentiald*(¢) we have

|A2| = @jcos? ¢ = ag /2 (2.40)
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CHAPTER 2: The relativistic laser-dressed electron: classically quantum mechanically

for linear polarization, but

|A%| = ag (2.41)

in the circular case.

2.2.2 Positron Volkov states and charge symmetry

To start with, we write down explicitly the negative energyution to Eq. (2.23), obtained by
lettingp — —p in Eq. (2.27),

YY) = \/% (1 i e;f(?) v(p) exp (ip x— Z/j {GP l-{:/‘lz(jb') n 62;1;‘(;5')] dgb’) :

(2.42)

which is still a solution of Eq. (2.23), but only if the spinoow satisfiegp + m)v(p) = 0. How
does one know that the negative energy solutifi¥ of the Dirac equation (2.23) actually has
negative charge? The positive energy positron wave fumetjox) should be a positive energy
solution to the Dirac equation with the charge reversed

(z’é +eA(e) — m> Ye(x) = 0. (2.43)

The transformation from the negative energy solution of 23) to the positive energy so-
lution of Eq. (2.43) is provided by applying the charge cgajtion operatot”’ to the negative
energy solution, so that; = C (zp;eg) [28]. In the Dirac representation of the gamma matrices,
we haveC'(y)) = iv*y*. To within a constant phase factor, we have for the consfgEinossu
andv

C(u) = v, C(v) = u. (2.44)

Now, applying the operatiof' to the negative energy solution (2.42), noting in partictiet
v2k* A* = kA~?, we obtain (up to a constant phase)

=g (1 902)

2k - p

X u(p) exp (_ip i /(b ’ {— v AP) _ 62’42@,)} d¢’) ,

. k-p 2k - p

(2.45)

which is equal to the solution (2.27) with the replacement —e, and indeed solves Eq. (2.43).
The conclusion is that the operatiGhon the wave function combined with the shif{z) —
—A(z) leaves the Dirac equation invariant.

2.2.3 Fourier expansion of the Volkov solution and classidaguantum cor-
respondence

As will be evident from the discussion in chapter 3, to eviduwascattering matrix element, the
initial and final wave functions have to be harmonic planeesgathat is, the dependence on the
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2.2. The Volkov solution

coordinates should be of the foren®*, for some momentum vectérand the coordinate.

The Volkov solution (2.32) is of the formr @ f(k - z), a product of two plane waves, of which
only the first has the requireddependence. However, by Fourier’s theorem, we can expand
the Volkov wave function into its harmonic components. Tig #tnd we employ a special case
of the generating function for the generalized Bessel fonct(n, o, 3):

OO — S 45, e, (2.46)

S§=—00

to yield

() = ,/Qﬂv D <A0<s,a,ﬁ> +

wherea and 3 were defined in Eg. (2.18), and

a

ek
2k - p

Ai(s, a, ﬁ)) u(p) exp [~i(q + sk) - x|, (2.47)

Ai(s, . B) = % (Ao(s+ 1,0, 8) + Ao(s — 1, 0, 3)) (2.48)

The generalized Bessel functiohy(s, o, ) is defined and described in detail in chapter 5. The
interpretation of the expansion (2.47) is clear: The quantlkov state is a superposition of
plane waves with well-defined four-momenga-+ sk, corresponding to the absorption of
number of laser-mode photons from the laser wave,isf positive, and emission @§| num-

ber of photons into the laser field isis negative. We can speak of a momentum spectrum
composed of one continuous part, the effective momentyrplus one discrete parik”. The
constant increase in momentum represented by the adeftiok* /(4% - p) to p* in the defini-

tion (2.33) corresponds to the interaction with the lasehaut any net absorption of photons,
making the electron heavier. Note from Eq. (2.34) that > m. Every plane wave compo-
nent is multiplied with its corresponding amplitudg(s, a, 3) [for now disregarding the spin

term ;,’jfZ)Al(s, o, 3)], whose squaréA, (s, a, 5)]° gives the instantaneous probability of find-
ing the laser-dressed electron in that particular momerstiate. For consistency, this implies
S [Ao(s,a, 3)]° = 1, which is indeed one of the characteristic properties ofgeeralized
Bessel function. Since the sum ovein the expansion (2.47) extends froavo to 400, the
electron can, in the quantum case, acquire arbitrarilyelargergies in the laser field. However,
beyond a certain value of = smaxmin (different for negative and positive, the generalized
Bessel function shows a sharp decrease in amplitude, sdhiagirobability of absorbing (or
emitting) s > smax (s > |smin|) laser-mode photons is effectively zero. The actual depecel
of smaxmin ON o @and g3 follows directly from the maximally and minimally allowedassical

energy, using the results from Eq. (2.17), noting ftat P

Smax =2|6] + |,
9
a
Smin = — 2|8| — m7

smin = — |a| +2|8], i 88| <«

if 815| > a, (2.49)

which is valid for negativel. The general case and the mathematical proof of the cutieff ru
are shown in chapter 5. This classical-quantum correspuadis illustrated in the two figures
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CHAPTER 2: The relativistic laser-dressed electron: classically quantum mechanically

Fig. 2.1 and Fig. 2.2. Concluding this subsection on the ieoexpansion of the Volkov state,
we have seen that the four-momentum spectrum of the quanalkowstate consists of two
parts, one continuous [the effective momentgrand one discrete [thek* in the exponent of
Eq. (2.47)]. However, the probability to occupy an energyestvith energy greater or smaller
than the classically allowed value is very small [factdyigimall, as we shall see in chapter 5].

2.2.4 Generalized Bessel functions from the Floquet ansatz

There is another direct, physical way to see where the geregd@essel functions come from.
The result of this approach definel (s, «, 3) in terms of a recurrence relation and a nor-
malization condition. In section 5.3, we use this recureeredation for fast and accurate nu-
merical evaluation of the generalized Bessel function. \&girb with inserting the Floquet
ansatz [17,166]

wFloquel(x) =e 1" Z AseiiSk.xa q2 = mi, (2.50)

where the coefficientd, are independent af, into the Klein-Gordon equation with an external
laser field of linear polarizatioA,,(z) = a, cos(k - x),

0= [—82 — 2ieA - 0+ A% — mQ} VFioquel )

202 251
= [—82 — 2iecos(k - x)a- 0+ % cos(2k - z) — mi} Yeioquel Z)- (2:31)

We take the Klein-Gordon equation, since our goal is to oldta properties ofiy(s, «, 3), and
we therefore neglect the spin of the electron, the inclusiowhich would be an unnecessary
complication. Eqg. (2.51) leads to a relation for the coeffits A,

2.2

eq-a _ e B is
Z {2 kg cos(¢) o g cos(2¢) 23} Ase™ % = 0. (2.52)

S

Multiplying Eq. (2.52) withe™***, and integrating/”_d¢ leads to the recurrence relation for
AO(Sv Q, ﬁ),

28A0(S,Oé,ﬁ) =« [Ao(S + 170575) + AO(S - 170575)]

_ 26 [A()(S + 2, a, ﬁ) + AO(S _ 2’ a, 6)] ’ (253)

if ea - q/(k - q) ande?a?/(8k - ) are identified withn and 3, and A, with Ay(s, a, 3). For the
wave functions (2.50) constructed from the solution to #&@urrence relation (2.53) to solve
the Klein-Gordon equation (2.51), we must demahds, «, 5) to be normalizable. This is
expressed by the condition

> Ad(s,a,B8) =1, (2.54)
a special case of the general sum rule Eq. (5.21).
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Figure 2.1: An illustration of the correspondence betwdendassical solution and the cut-
off of the generalized Bessel functions, which are used fwaed the quantum mechanical
Volkov solution in a Fourier series. In this figure, the asyomtic momentump of the elec-
tron makes an anglé = 80° with the laser field polarization vectar = (0, |a|,0), so that
p = |p|(sind, cos6,0), and the asymptotic energy = p, = 100m = 51.1 MeV. The laser
wave propagates in the negativalirection,k = (—w, 0,0), the laser frequency is = 1 eV,
and¢ = 100, which corresponds to an intensity= 8.9 x 102! W/cn?. The upper graph shows
the correspondence between the classical en@ygy) from Eq. (2.14) as a function of the laser
phasep and the generalized Bessel functidg(s, «, 3) from Eq. (2.47). The laser and electron
parameters here give = 4.47 x 10° and = —3.22 x 10°. The red line corresponds to the

2

lowest possible value aPy(¢), P"" = E — T5i5 = 50.7 MeV, which amounts to emission of

|s| =208+ #;l photons into the laser. The purple dashed line corresparttie time averaged
energyP, = E + 2w|3| = 57.5 MeV, the effective energy [See Eq. (2.15)]. It is clear tHes t
effective energy corresponds to not absorbing any photbals, ghat iss = 0. A transition to
another “plateau” indy(s, «, 3) is visible at the light blue line, which corresponds exattly
the local maxima inFy. The peak value of the amplitude df (s, «, ) is lower here, since the
electron spends less time on average in levels over thellightone. Finally, the green line is
the maximal classical energy)"® = E +4w|5|+ |«| = 68.5 MeV, corresponding to absorption
of s = 2|3| + || photons. The lower picture shows the corresponding clalssajectory from
Eq. (2.13). Here the trajectory of the particle is plottechaglicit function of ¢ in thez-y plane,

in units of the dimensionless parametersandwy.
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CHAPTER 2: The relativistic laser-dressed electron: classically quantum mechanically
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Figure 2.2: Another illustration of the classical-quantaanrespondence of the Volkov state.
The same parameters as in Fig. 2.1 are used, except that here /2, which meangp =
Ip|(1,0,0). This givesa. = 0 and = 3.19 x 10°. There is now no momentum component of
P, in the polarization direction, and therefore no plateaucitire inAy(s, o, 3). A vanishing
average momentum in the polarization direction is refleaeted in the trajectory, shown in the
lower panel. In the upper graph, the purple line going thioug: 0 corresponds to the effective
energyP, = E + 2w|3| = 57.5 MeV. It follows that P"™ = E + 4w = 63.9 MeV (the light
blue line), andP™" = E = 51.1 MeV (the red line). In this particular case the generalized
Bessel function simplifies to the usual Bessel functidp(s, 0, 5) = J_,/2(3) for evens, and

is zero otherwise.
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2.2. The Volkov solution

2.2.5 Laser dressed Green'’s function: the Dirac-Volkov prpagator

There are many representations for the electron’s Greentibn in the presence of an electro-
magnetic wave, also called the Dirac-Volkov propagatoedry attempts [38,149], the Green’s
function was found by direct solution of the inhomogeneoirm®equation. The form pre-
sented in these references is however not well suited fdrcapipn and can not easily be used
for calculation of actual matrix elements. Another apploacthe so-called operator method
of writing the electron propagator, which is very powerfulem making calculations involving
closed electron loops [9-11,57]. We use an elegant andluseftidescribed in [113, 154], of
writing the laser-dressed Green'’s function of the elegtsoitable for applications in scattering
theory. Following this method, we introduce the Volkov smo without the free spinor, the
so-calledE-function [113, 154], which is still & x 4 matrix:

| ekAW) ep-Al9) A9 -
E(p,x) = [1+ ok p exp <—2p x—z/o [ T dgb) (2.55)
We also define the adjoint by
E =7"E(p,z)"y"
[, Ak e AG) ea2d)] - (2.56)
= 2% p exp <Zp-x+z/0 kp - % - p déb)-

If we consider momenta off the mass shell, that is, we do notaselp? = m?, we can show
the following properties of thé&’s:

(10— €A(9)) E(p,) = Ep, 2)p, (2.57)
—i0, E(p, x)7y" — eE(p, 1) A(¢) = pE(p, v), (2.58)
(271T>4 / d'zE(p,x)E(p',x) = d(p — p'), (2.59)
and . i
@) /d4pE(p, r)E(p,a') = 6(x — o). (2.60)

A couple of remarks concerning the above properties. Thetitiks (2.57) and (2.58) follow,
together with the definition (2.28) of the spinor, from thetfthat the Volkov solution (2.27)
solves the Dirac equation. Eqs. (2.57) and (2.58) are alspteacheck explicitly. The orthog-
onality identity (2.59) is a very important property of thelkbv solutions, if they are going to
be used as a basis for perturbation theory. It can be seemdamtenumber of ways. The hand-
waving argument, found in [24], is first to observe that Eg592 holds forA = 0. The field is
turned on adiabatically, “slowly”, fromd = —oo, which does not alter the value of the integral
(2.59). In other words, the orthogonality integral only degs on the behavior of the function
E(p, x) at infinity, where the field is assumed to be turned off. An afegroof using change
of variables can be found in [154, chapter 1, section 2], acdmtly a mathematically rigorous
proof was published in [180]. The property (2.60) is mordiclit, and it seems that there is
no published proof of completeness of the Volkov statesrdieno doubt, however, that it is
true. In section B.1 we present a proof by direct integratibiime left side of Eq. (2.60), which
is the first published proof of this property, to the auth@riswledge.
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CHAPTER 2: The relativistic laser-dressed electron: classically quantum mechanically

The property (2.60) of/(p, x) means that we can easily write down a solutiora Green’s
function, to the equation

(i0 — eA —m)G(z,z') = 6(zx — 2'). (2.61)

By using the properties (2.57) and (2.60), it is easy to shaw t

/ 1 p+m _ ,
G(x7x) :<27T)4 /d4pE(p, l’)mE(p’x)
1 4 ckA@@)|  p+m eA(¢)k
= 1
(27T)4/dp * 2k -p | p2 —m? +ic * 2k - p (2.62)
ep- A(9)  A%(9)

¢
X exp <—ip(a: —2') — z/ d</~>> ;

wheree is small and positive. This choice of boundary conditiorresponds to the “Feynman
boundary condition” [66, 67], exactly as in the case withthg laser field [141]. With this
choice of boundary conditions, pair production is accuyasecounted for, by ensuring that
waves with negative energy, are propagated backwards in time. That the sigpydbr qo,
see Eg. (2.33)] can be used to distinguish particle and amigpe states even if the energy is
not conserved, is due to the fact that a plane wave can notipeqaairs of its own [154]. See
the discussion in chapter 4. In the limit— 0, the Dirac-Volkov propagata® (x, ') naturally
goes to the free electron propagatéfee(z, »’) [141],

k-p 2k - p

1 ﬁ +m —ip(z—a’
Gfree(l‘,l‘l) = (27‘(‘)4 /d4pm€ P ) (263)

Eq. (2.62) can be rewritten using the expansion into geizedhlBessel functions, assuming
linear polarizatiord = a cos ¢, as

1 > eka p+m
AN 4
Gz, 2') (20 /d pss;oo <Ao(570475) + o _p/h(S,Oé,ﬁ)) PR
’ edl% ’ . / . 1.0
< Aol 0,0) 4 o Ay 0,) | exp (igy - (2 ') — ik - (57— '),
w4
(2.64)
where )
e a
Gp =D — 4/{:~pk (2.65)
and
oo 8P 5 e?a? (2.66)
kep’ - 8k-p’ '

The Green’s function is thus the free propagator insertégden the Volkov-like function&
andF.
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2.2. The Volkov solution

To make the dependence on the integration variable in therexgial simple, we make the
change of variables

62&2
=p- k. 2.67
1=PT (2.67)
The Jacobian of this transformation is
OgH e2a’k? ko o0" 0q¢° 0q* 0¢* Oq*
J=det [ L) = det (o 4 ST R0 ) _ e
) (319”) ) ( * A(k - p)? ) © o o o P
_uwaB (50# N e2a2k;uk;,y5v0) (51y N eQQQkukwévl)
4(k - p)* 4(k - p)? (2.68)
v e*a?k® k072 g5, €’k k07
4(k - p)? 4(k - p)?
=1.

Heree**# is the usual anti-symmetric symbol with'?> = 1. The last step can be seen most
easily by choosing an explicit coordinate system, letting (w,w, 0,0). We then have

dpPdpldp?dp® = J1d¢°dqtd¢?d¢® = d¢dgtdg?de’. (2.69)

Written in the new integration variable, and noting thatp = £ - ¢ anda - p = a - ¢, the
expression for the propagator reads (renamging p)

N 62(12 7
D+ 4k,pl€ +m

1 b e eka
) /d pss; (Ao(s,oz,ﬁ)+ 2k~pA1(S’a’ﬁ)> P omltic

Gz, ") =

cak
2k-p

X <A0(3’, a, )+ Aq(S, a,ﬁ)) exp (—ip- (x — ') —ik - (sx — §'2")) .

(2.70)

We see that the poles are shifted to the effective mass ghel,;m?2.

With the all the building blocks constructed, the Volkovteta(2.27) as basis functions and the
propagator (2.62), we can proceed to write down laser-nemtifiatrix elements and calculate
cross sections. However, due to the numerous infinite sumsBessel functions, the actual

evaluation of cross sections is numerically quite involved
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Chapter 3

Laser-assisted bremsstrahlung

3.1 Introductory remarks

Bremsstrahlung is the process where a charged particlejricase an electron, collides with
a nucleus, decelerates and thereby emits radiation. Ifdickens is heavy enough, it can be
treated as an external field, which means that the interacfighe electron with the nucleus
can be approximated with the scattering of an electron ima-independent external potential.
This approximation means that only energy will be conselivetthe process, as the nucleus
can absorb any momentum from the electron. The relativigtemtum mechanical problem of
bremsstrahlung in a Coulomb field in the first Born approxioraivas solved some 70 years ago
by Bethe and Heitler [25], and the problem is now a standastilpm in QED textbooks [141].
The Born approximation means that the interaction with tkiere@al nuclear Coulomb field
is treated in first-order perturbation theory, and is validtv < v. Here Z is the atomic
charge numbeyry is the fine-structure constant, ands the velocity of the electron. The most
important feature for the laser-free bremsstrahlung specis that it is non-resonant. The total
(or differential) cross sectioa is a smooth function of,, wherew, is the angular frequency
of the emitted radiation, decreasing approximately asw, ' until the cutoff atu, = E; — m,
where E; is the energy of the initial electron. The maximal energyt ttem be carried away
by the photon is obviously; — m, since the electron must keep at least an amount of energy
equal to its rest mass after the collision. At the cutoff katletic energy of the initial electron
is transformed into the emitted photon. Explicit formulas the Bethe-Heitler cross section
with different degrees of freedom integrated out, like tireation of the final electron, can
be found in [72], and [93] provides a large collection of a@@ection formulas in different
approximations.

If the whole system of incoming and outgoing electron antistary nucleus is placed in a
background laser field, we call the process laser-assis@uddstrahlung. The modification
of the bremsstrahlung spectrum by the presence of an ektese field has been studied
previously by several authors, mainly in the nonrelatigistgime. The most important result
is that of Karapetyan and Fedorov [90], who study laserséesgibremsstrahlung in the non-
relativistic regime, in first Born approximation and dip@pproximation for the laser field.
Here resonances af, equals integer multiples of the laser frequencgre found in the limit
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CHAPTER 3: Laser-assisted bremsstrahlung

of large laser intensities. It should be stressed that $het the same kind of Green'’s function
resonances that we find in our work (see section 3.4). In@e&i6, the relativistic formulas
employed in this work are compared to and found to agreejmilkie regimes of validity, with
the formula of [90]. Other articles that go beyond the firstriBapproximation include [181],
where a low laser frequency approximation is developedyé¢kent [68], and [42] includes
a numerical approach to the problem by solving the Schgetirequation. In [59, 60] the
formulas of Zhou and Rosenberg [181] and Karapetyan andrbed80] are compared by
numerical means. An interesting contribution is [44] whtrte problem is treated in dipole
approximation for the laser-electron coupling, but beydralfirst Born approximation: Here
distinct resonances where the bremsstrahlung frequen@isgn integer multiple of the laser
frequency are found, as a consequence of an extended Coulagudarity. This should be
compared with the discussion in subsection 3.4.3, whereagince due to the Coulomb field
is found, even in the Born approximation.

To find a resonant behavior of the propagator similar to osulte, one has to go beyond the
dipole approximation for the laser. This is done for the mdativistic case in [99], where
indeed resonant peaks are found. The fully relativistioigla was presented for the first time
in [156, 157], however, without performing any numericalcatations, and even limiting the
analytical investigations to the weak-field case where 1. We also mention further studies
by the same author, treating the generalization to a twordaser [159, 160].

In this chapter, we start in section 3.2 with reviewing the@est of all laser-modified QED
diagrams, laser-induced Compton scattering. This prdsdasdamental to the understanding
of laser-assisted bremsstrahlung. In section 3.3 we udbelbeetical building blocks of chapter
2 and appendix A to write down the matrix element and the tegutross section of laser-
assisted bremsstrahlung. Our main results [104, 164] &septed in section 3.5, preceded by
a detailed discussion about the fundamentally interesjuestion about the Green’s function
resonances in section 3.4. In section 3.6, we explain whyponeelativistic treatment does not
result in any resonances, and we also check that the nanigtiatresult is recovered from the
relativistic formula in the appropriate limit.

3.1.1 Validity of the approximations made in the description of the laser
field

To be able to write down transition matrix elements betweelkdx states, we make certain
approximations, as is always the case when trying to des®#dture by means of a physical

model. In this subsection we discuss the different apprafons and their limitations. A
similar discussion can be found in [113, 154].

Approximation of a plane wave of infinite extent

In this and all following chapters, we approximate the ldg#d A*(z) with a monochromatic
plane wave laser field of infinite extent,

At (x) = a* cos(k - z), (3.1)

36



3.2. Laser-induced Compton scattering: photon emissicalager-dressed electron

for linear polarization. Consequently, for our calculasao be valid, the involved patrticles
should spend a large number of laser cycles, at least sagsifeithe laser field. In some cases,
there are other constraints, like the radiation time, cgnfiom the particular process involved
(see the discussion regarding Compton scattering in stibse:4.2). Provided that the laser
pulse is long enough, the plane wave approximation is a gnegdomnce more realistic Gaussian
beams are close to plane waves near the focus [161, 170]ndactiany electromagnetic field
looks like a plane wave in the rest frame of a relativistidiobe [154]. For example, an electric
field Eiap = [f(2#), 0, 0] in the lab frame transforms under a Lorentz transformatiamthe
direction [to the rest frame of a relativistic particle witalocity v = (0, 0, |v|), gamma factor
~] to the combined electric and magnetic fields [84]

Ey = [7]0(?/“)7 0, 0]7 By = [07 _7|v|f(yu)v 0]7 (32)

wherey# = (A"H)* 2 = (ya° + y|v|2?, 21, 2%, y2® + y|v|z°), so that if|v| ~ 1, we have
|Ex| ~ |By| and Eys - By ~ 0, close to a plane wave field configuration.

External classical field approximation

The laser field used in our model is assumed to behave as &alasdernal field. This implies
that an arbitrary amount of energy and momentum can be takemdr emitted into the field
without changing it. Evidently, this approximation breakswn if a large number of laser
photons, enough to deplete the laser field considerablfassraed form the laser field during
the process under consideration. To get a feeling for thegphdensities involved, consider
the photon number density in a typical strong laser fi\gy = 2wm?/e? ~ 4 x 10?8
photons/cm, if £ = 10 andw = 1 eV is assumed. Therefore, in for example a pulse ef 1

ps duration, focused to an area of 100 squared wavelengthsaveN = 100£%m?*r/(we?) ~

2 x 10%! photons. Now, as discussed in sections 3.2, 3.3, and 4.Byrtiest number of photons
absorbed during a laser-dressed QED process is controltéetiparamete = £2m?/(8k - p),
entering as argument of the generalized Bessel functicrgifie definition, see Eq. (3.6) in the
case of Compton scattering, Eq. (3.33) for bremsstrahlmagEay. (4.8) for the pair creation
case]. The maximal value gfis obtained for a relativistic particle moving in the sameediion

as the propagation direction of the laser wave. Howeven éwvea particle energyr = 100m,
much larger than we consider in this thesis, we have for theegaarameters as considered
above that? ~ £?F/(4w) ~ 1.3 x 10%, much smaller than the number of photons contained in
one laser pulse.

3.2 Laser-induced Compton scattering: photon emission by
a laser-dressed electron

Laser-induced Compton scattering is the simplest of adirkasduced QED processes. The first
theoretical treatments of this problem can be found in [88, 129]. Recently, the process was
numerically investigated in [138], and [15] provides a coafensive treatment. In [30, 125,
126], the process is treated in a two-color laser. We treaté#se of linear polarization of the
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di af

Figure 3.1: Feynman diagram for laser-induced Comptortesirag. The incoming (effective
four-momentumy;) and outgoing (effective four-momentuin) electron is denoted by a zig-
zag line on top of a straight line to stress that it is dressea &trong laser. The emitted photon
has four-momenturmg,. The Feynman diagrams in this thesis were drawn with the dietipe
program JaxoDraw [27].

laser here. One initial Volkov state classified by effectementumy; spontaneously emits
a photon with four-momentur, and ends up with final effective four-momentum The
Feynman diagram is shown in Fig. 3.1. To compute the matesmeht)M for this process, we
employ the wave function of the emitted photon

1 ‘
Al (x) = e ethoe 3.3
b,)\( ) \/W b,A ( )
where) = 1, 2 labels the two polarization directions aagd, is the polarization vector satisfy-
inge;, = €5, = —lande,» -, = 0. Note the plus sign in the exponential in Eq. (3.3), photon

emission is the process we wish to describe. That this inigattte correct sign will be clear
from the four-momentum conserving delta function [see Bd){. This is consistent with the
expression for momentum modg of the second-quantized electromagnetic fiéff],.(=) of
a plane wave [141],

Aguant(x) =

1 —iky-x iky-x
NG Zeﬁ/\ (akb,xe v aLb’/\e b ) , (3.4)

whereag, » is the creation operator am:L . is the annihilation operator of a photon with
three-momentunk, and polarization state labeled with Since we are only interested in
photon creation, only the term Wlﬁ‘);b)\ in expression (3.4) should be retained. Using now the
\olkov state in its Fourier expanded form (2.47), we are a&blgerform the required space-time
integration over the interaction coordinatsvith the result [38, 129]

M= / d4m/3qf () Ayt ()

eaké,y  épakae
)| Aol Ay 2 A
QQ wabvz% nz_oo [ o(n, a, B)épx + <2k'qf + 2k~qi> 1(n, o, B)

2a2k . Eb)\/{i

- mAQ(na a, ﬁ):| Ur, (p@)CS(TLk} +¢ —qp — kb)

(3.5)
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Herer; ; labels the spin state of the initial (final) electron, and

2 2
ea-q; ea-(qs e‘a 1 1
= — , b= ( - ) 3.6

k-g  k-q 8 \k-¢ Fk-qs 3.9

We note several things. The matrix element (3.5) is gaugariamt under the gauge trans-
formation under both, » — €, , + A1k, anda — a + Aqk for arbitrary constantd; ;. The
a-invariance is easy to see, and thg-invariance can be proven directly from Eq. (3.5) by using
the recursion relation (5.23) of the generalized Bessadtfan Ay(n, «, 3), or more elegantly
by the same method as in section B.2. Gauge invariance caxdonple be used to transform
€ — € — 1= ’“k:b, so thatk - ¢, = 0 and the term containings(n, «, 5) in Eq. (3.5) vanishes.
More important however, is that gauge invariance makesssite to use the relation [141]

> (eon - M)’ = —M? (3.7)

A=1,2

for photon sums in squared matrix elements. Taking the squfav/ and multiplying with the
final phase space volumEq,d*k,V?(27)~°, averaging over the initial spin, and summing
over final electron spim; and polarization\ of the photon we obtain the differential rate per
unit timedW [129]

e*m2d3q;d3k,
dw = Z/ 50, wabé(nk—i—qi—qf—kb)

(k - ky)?

— Al(n,a,B) + & (1 + m

) (A% (n, e, B) — Ao(”aaaﬁ)A2(”7o‘75>)]

_ewy 1
~ 16m2 nzzl bqi kT nk - kg

— QmQAS(n,a,ﬁ)

k- ky)?
Flae (2 50 (a20,0,9) - A ) n,0,9) |,
k- qik - qy
(3.8)
where in the last step we used the delta function to integnaged®q;dw;, so that
wy = —— 1k (3.9)

g - kT o+ k- kI

andq; = nk + ¢ — k. By k'™ we mean thev,-independent four-vectdt,™ = k,/w, =

(1, ky/|ks|). EQ. (3.9) is sometimes called the nonlinear Compton foar{8, 138], because the
frequency of the emitted photon depends;grihe effective momentum, and thereforegithe
intensity. For < 1 we haveyg; ~ p; and Eq. (3.9) goes to the normal Compton formula [141]
for the emitted frequency, since only terms with= 1 contribute to the sum in Eq. (3.8) in
this limit. The rate (3.8) is differential in the solid angbg = df sin fd¢ of the emitted photon
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Figure 3.2: The dependence of the mass opetatdithe electron in the laser on the parameters
k- q; and¢ = |ea|/m. In the right graph, the dependence on the proportionatibstanty, on

¢ is shown, withl = b,k - ¢;. The same value df for linear and circular polarization implies
that we compare laser fields with the same peak value of tictrieléield. The laser intensity,
however, differ by a factor of /2 between circular and linear polarization of the same vafue o

€.

(by fixing the direction of the emitted photon and the ordeboth the photon energy, and
the four-momentuny; of the final electron are decided by energy-momentum coasen).
The vectork, is written in terms of the anglesand¢ ask;, = w;(cos ¢ sin 6, sin ¢ sin 6, cos 0).
Important for the discussion in subsection 3.2.2 is the taiiz 1/, integrated over the solid
angle(, of the emitted photon:

T 2w d
W:/dW:/ desme/ o W (3.10)

The total rate (3.10) can by gauge and Lorentz invariance loala function of the invariants
k - ¢; and¢ = |ea|/m. We have evaluated the functibh= <1V, also called the mass operator
(see subsection 3.2.2) for different values of these paemevith the results shown in Figure
3.2. Here we also show results for circular polarizatiorhef laser, which were evaluated from
an expression similar to Eq. (3.8) [105, 164]. For small galof¢, these graphs agree with the
approximate formulas of Becker and Mitter [113], and we hals® checked for consistency
with the results in [105].

The evaluation is made as follows: For eaghve choose to evaluaiéin the special center-of-
mass frame wherg,+nk = g;+k;, = 0. Note that this frame is not physical, since itis different
for everyn, but it simplifies the evaluation of the total rate. If we irdétbn choosek to pointin
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Figure 3.3: lllustration of the slow exponential convergerf the partial sums involved in
the calculation ofl’. Shown in the graph above is the quantity, (to be defined below)
as a function ofn. The functionl's,, is defined as follows. First, let theth total rate for
laser-induced Compton scattering B, = [ dWW,,, wheredW,, is thenth term in the sum in
Eq. (3.8). Then, lef'p, = % S A Wu. HereA = 10 The total value of" is then given

asI' = > Tan. The other parameters used for the calculationtare; /m? = 1.53 x 107,
£ =474,

the negative:-direction, i.e.k = (w, —w, 0,0), thisimpliesk-¢; /w = Q;++/ Q7 — m2 = Q;+
nwso thato = (k-q;)2/v/(nk + @)% = (k- ¢.)*/y/(nwo + Qo2 = (k- )/ \/2nk g, + m?).
Moreover, by energy conservation (3.9) we haye= nk - ¢;/(Q; + nw) = nw in this special
frame. We now have to perform the integration over the solgl@ofk,. Numerically, the sum
overn in Eqg. (3.8) is a quite demanding task wheis large. To reach convergence, a number
of terms of order~ 10° has to be summed. The convergence rate is exponentialuglhary
slowly exponential, as illustrated in Fig. 3.3.

Surprisingly, the functiod is linear ink - ¢; for values ofk - ¢; of the order10—* MeV?
or smaller. Indeed, in [129], they find a linear dependencé: on; if the inequality chain
1 < elal/m < m?/(k - ¢;) is satisfied (limit of a crossed field) according to

(3.11)

We see from our graphs that Eq. (3.11) gives the slop&ifor 20 MeV, but differs slightly for
la| = 80 MeV.

3.2.1 Discrete level interpretation of the Compton scatteng matrix ele-
ment

A nice interpretation of the Compton scattering amplituglas a spontaneous decay from one

discrete Volkov level to another. Recall that the Volkoustzan be thought of as a superposition
of states with definitive four-momentum, with generalizezkBel functions as coefficients (see
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q; +nk qr + (0" +2)k
¢+ (n—1)k g + (' + 1k

G + (n— 2k  ——— S— P

Figure 3.4: Laser-induced Compton scattering in a leaidition picture, introduced in sub-
section 3.2.1. The electron in state with momentum nk decays by emitting a photdf to a
state with momentum; + n’k. The differenceAn = n — n' is dictated by energy-momentum
conservation, and to obtain the total amplitude, one must®ter all allowedAn.

subsection 2.2.3),

Y(@) =Y Ualx) =Y Ag(n,a, B)e ke, (3.12)

where we have dropped the spin terms for simplicity. In thetype, an initial state: with
momentumy;+nk can decay spontaneously to a final stét@ith momentumy;+n’k, emitting

a photon with momenturh, = (wy, k) in the process, as illustrated in Fig. 3.4. Consequently,
only the differenceAn = n — n’ is constrained by four-momentum conservation:

¢ +nk —ky = qp + n'k, (3.13)
which leads to the demand "
b A, (3.14)
k- Qf

In other words, the fraction, - ¢;/(k - ¢f) has to be integer valued. If we let the amplitude
of each level in the initial Volkov state hé,(n, o, 3), and the amplitude of the levels in the
final Volkov stateA,(n’, o/, 5’), then the total amplitud#/ for the transition is expressed as the
product of the level amplitudes, summed over all possilalegitions

M = Z AO(na «, ﬁ)AO(nlv 0/7 ﬁ/)é(QZ — 4y — kb + [’I’L - nl]k)

e (3.15)
:ZAO(An, a—a,B—0(q — qr — ky + Ank),
An

by the summation formula (5.21). Eq. (3.15) gives, apamnfithe spin terms, the essential
physics of the full amplitude (3.5). We see that for very diinatjuenciesv, < w, the transition
must go to the same levet (= »') of the final stateg, ~ ¢;, and the transition amplitude is
approximately one,

M =~ ZAO(n, o, 8)%6(q; — qr) = 8(qi — q5)- (3.16)
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3.2. Laser-induced Compton scattering: photon emissicalager-dressed electron

Figure 3.5: The mass operator of the electron in the laser.

For higher frequencies, > w there will in general be destructive interference betwden t
different pathways (levet — »n’, n +1 — n’ + 1 etc.) so that the probability for Compton
scattering will show an exponential falloff as a functionugf This will be seen clearly from
the numerical results in section 3.5. Compare also Fig. 3.3.

3.2.2 Decay width of Volkov states

The laser-dressed electron is not stable. The fact thatemtreh submitted to a laser field can
spontaneously radiate makes it possible to speak aboetialdr of the laser-dressed electron.
This lifetime is given by precisely the inverse of the tottkerof Compton scattering, Egs. (3.8),
(3.10),

As for other decaying states [141], this implies an imagircantribution to the effective energy
of the electron,
Q — Q —iW, (3.18)

so that the wave function actually decays over time:
w(x) x efiQmOJriq-m N efiQmofi/VmOJriq-m. (319)

An imaginary contribution to the energy implies, via theati@ng? = m?2, an imaginary contri-
bution to the electrons mass. If we tet. — m, — [, this means

(@ —iW)* — ¢* = (m, — i), (3.20)

so that to first order i1’ (the imaginary mass contribution is expected to be a smalkitm-
tion) we have

r—%w (3.21)
m

The quantityl’ is shown in Fig. 3.2.T" is related to the mass operator, or the self energy of
the electron in the laser. The Feynman diagram for the selfggnis shown in Fig. 3.5, and
constitutes the first radiative correction to the Dirackésl propagator (2.62). As in the usual
QED [141], this diagram is the first correction to the masfiexdenominator of the propagator,
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CHAPTER 3: Laser-assisted bremsstrahlung
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Figure 3.6: Equivalence of the mass operator and the tatagmility of laser-induced Compton
scattering via the Cutkosky rules. The sdm(integration) is over all final states of the electron
and photon.

so that (using the notation of subsection 2.2.5)
1 4 ptm -
G(z,2) :W/d PE(p, iﬁ)mE(p, ')

p+m _
d*pE E(p,z).

(3.22)

1
-
(2m)*
This modification is oversimplified, the true modificationtbe propagator is more complex
[21], but the imaginary mass shift is, as we will see in secB8c4, enough to regularize the
cross section when the propagator momentum reaches thestmelss® = m?2. The diagram
in Fig. 3.5 has in general one real part and one imaginary pas real part gives a small real
shift of the mass in the propagator, but we consider onlyrtreginary part, since this is enough
to obtain finite cross sections. The complete mass opemastudied in [10, 21] with different
methods.

The imaginary part of the mass operator and the totalliafer Compton scattering are related
according to the Cutkosky rules, as discussed in sectionPh2se rules, depicted graphically
in Fig. 3.6, tell us that instead of calculating the imagynpart of the mass operator, we can
instead calculate the total rate for Compton scatteringchvturns out to be more manageabile.

3.3 Bremsstrahlung matrix element and cross section

In this section we derive the matrix element and cross sedétiothe process of laser-assisted
bremsstrahlung. The Feynman diagrams, to be added todetbbtain the total amplitude of
the process, are shown in Fig. 3.7. To get a feeling what iswti®aan “all-order” treatment,
we show in Fig. 3.8 the perturbative expansion of one of teerl@ressed diagrams in Fig. 3.7,
to first order in the electron-laser coupling.

3.3.1 Matrix element for linear polarization
Laser-assisted bremsstrahlung describes the interdmioveen an electron and three external
fields: the laser field, the Coulomb field, and the field of therganeously emitted bremsstrah-

lung photon. Of these three fields, the interaction with éset field is treated to all orders, non-
perturbatively, by using Volkov states and the Dirac-Velkwopagator for the electron lines.
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3.3. Bremsstrahlung matrix element and cross section

k’b kb
di Dy qi ar
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Figure 3.7: The Feynman diagrams for laser-assisted bteahisg. External electron lines
and propagators are denoted with a wiggling line superimgas a straight line, to stress that
the laser-electron interaction is treated nonperturbtivi he initial electron has effective four-
momentunmy;, the finalg; and the intermediate electron propagator momentum is derimt
pi.r The emitted bremsstrahlung photon has four-momerityrand the virtual Coulomb field
photon, depicted with a dashed line, has three-momegtuhime flows from left to right.

The interaction with the Coulomb field and the emitted phatentreated as perturbations, they
act only in one vertex each in the Feynman diagram Fig. 3.@.liflearly polarized laser is as
in chapter 2 described by the four-vector potential

AH(p) = a* cos ¢, (3.23)

where¢ = k - x is the laser phase, atd= (w, k) the laser wave four-vector. The polarization

vectora satisfies: - £ = 0 in Lorenz gauge. In this section we only consider linear poddion

of the laser. Note also that we do not enfor€e= 0, since we want to keep open the possibility

of gauge-transforming” — a* + Ak* later. The four-vector potential of the static screened
Coulomb field in Coulomb gauge, with atomic numbgrreads [76]

o 6—|:1:|/€ Op 1 4 Ze —iq-T 0y su0

where the Fourier transform in the last step is introducedfactical reasons. Here we have
introduced a parametéy the screening length. As will be obvious in the discussiosdction
3.4, a finite screening length is needed to obtain finite ceas$ions for small momentum
transferq. In the limit / — oo we retrieve the usual Coulomb potential. Observe that the
expression (3.24) is not relativistically invariant, byodsing this form of the potential we
choose the frame of calculation to be the rest frame of théenac For a nucleus at rest this
frame coincides with the laboratory frame. We also needdbevector potential of the emitted
photon:

Ap(x) = ep e, (3.25)
the same as (3.3). Putting the two potentials Eqgs. (3.282)4)3together with the initial and
final Volkov wave functions,, . . ,, EQ. (2.32), with effective four-momentugm; and spirr;
and the Dirac-Volkov propgatd¥(z», z1 ), EQ. (2.62), we can write the second order transition
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CHAPTER 3: Laser-assisted bremsstrahlung

+77@ §+ %§+§§
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Figure 3.8: Laser-dressed Feynman diagrams in the petiwel@cture. Here is shown the
perturbative expansion of one of the diagrams in Fig. 3.#irgborder in the electron-laser cou-
pling, that is, with one interaction with a laser photon. Hie tliagrams above, the laser photon
is drawn as a wavy line with comparatively long wavelengtig ¢he emitted bremsstrahlung
photon as a wavy line with short wavelength. The Coulomb fiddton is drawn with a dashed
line. The first line shows the fully laser-dressed diagrartholeft, and the field-free diagram
to the right, the second line shows diagrams where one lds®op is absorbed, and the last
line displays diagrams where one laser photon is emittedtimg laser field. In the perturbative
expansion, the number of diagrams to take into account geatvemely fast, already in second
order (not shown in this figure) there are an additional 24rdauting diagrams. By employ-
ing the exact wave functions in the laser field, the Volkovestaall diagrams to all orders are
accurately accounted for.
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3.3. Bremsstrahlung matrix element and cross section

matrix elementSy; for laser-assisted bremsstrahlung corresponding to thereat sum of the
two Feynman diagrams in Fig. 3.7:

Spi =S5 + 5
_ ¢ / i, / 0050, 1, (02) 1A (22)iG (2, 71 )i A (1)
i Ac(w2)iG w1 )iAg (1) G (1)

—omi Y Zetm  0(Qp — Qi+ nw +wp)

Uy
oo V2w QiQ VP q>+ (2 +(py)

e2

= ) 2 e2a2 7
[ Drtapgk+m g kT m
X

(3.26)

S—Nn S npl S
f T T Mi] Uy, (Pi)-

~2 2 ~2 2

Here

M§ = Ao(s,ap — g, By — By)éva

~

- eka cak
p NS .
+ Ai(s, a5 = ay, By = fy) (ew% T ok .p]f“) (3.27)

ik ka -
+ QZC_Lpfgb,A e As(s,ap — ay, By — By),

2k - py
F™" = Ap(s —n,0; — Gy, B — Bf)’yo

+ Ay(s —n,a; — ay, B — By) <70 cha + cak 70>

2k - p; 2k-]§f
k 0 ek

Y )

Dy 2k - p;

(3.28)

5 ~ ea
+ As(s —n, 0 — ay, B — ﬁf)2k~

Ffs+n = Ao(s +n,ap — &, B — 3:)y°

- ka ek
A — &, by — G " ’
+ Ai(s+n,ar — &, By 5)(7 Qk-ﬁi+2k‘Pf7> (3.29)

. ek 0 eka
Qk?'va 2k - pi

AQ(n + S, Qf — dl)ﬁf - Bl)a
and

M; = Ao(s,a; — &, B — Bz’)€b,)\

R - (. cka cak
+ Ai(s, o — &, Bi — s) <€b,>\ % - pr + 2k - p; Ebv’\> (3.30)

eka
2]{3 - Di ’

- eak
A i — Qy, B — s —€
+ Ag(s, 0 — &, 8 ﬁ)Qk'piEb’/\

with
Pr = q + sk + ks, Di = i + sk — ks, (3.31)
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CHAPTER 3: Laser-assisted bremsstrahlung

q=4q;—qi tnk+k, (3.32)
2.2
ea - pi,f e‘a
i = , = 3.33
Qg f /{?'pi,f ﬁ,f Spi,f'k ( )
" P [V W (3.34)
Q; = = s i f = = . .
7f k . pz,f 7f sz’f . k

The spinorsu,, , describe the spin state of the in- and outgoing electromes/ely. Note

thatk - p; s = k - ¢ s, and that due té> = 0, &; ; and ; ; are independent of the summation
indexs. Equation (3.26) was first obtained in [156]. A few remarkgareling the derivation of
Eq. (3.26) are in order. To be able to perform the space-tiegration over the two interaction
coordinates in the second row of Eq. (3.26), it was necedsargsort to the Fourier decom-
position into infinite sums of plane waves of both the wavectiomsv,, ,, Eq. (2.47), and the
Dirac-Volkov propagator, Eq. (2.64).

In general, one has to formulate &amatrix scattering problem as transition from a collection
of initial plane waves, defined d@t= —oc, to a collection of final plane waves, defined at
t = 4o0. In other words, in th&-matrix formalism, only space-time integrations of thenfior

/ dhrA(p)e = (2m) A(p)5' (p) (3.35)

are defined, wittp being the sum of momenta flowing into the vertex atigh) being some
space-time independent part of the amplitude. They gieeta®nergy-momentum conserving
delta functions at the vertices of the Feynman diagram.

Inserting the Fourier decomposed expressions for the giesnt,, ., G, Ac, and A, in the
second row of Eq. (3.26), all integrations can be taken,ihgaone energy-conserving delta
function. Since each of the wave functions involves one itgfisum, and the propagator two,
the matrix element is a quadruple infinite sum. Two of thesesscan fortunately be performed
using the addition theorem [Eq. (5.21)], leaving the ma#lizment expressed as two infinite
sums overn ands. We summarize the calculation procedure leading to theession (3.26) by
noting that this method of calculating transition ampléads very similar to Fourier's method
of solving a differential equation: The solution for one reaaf the initial wavefunction scat-
tered into one final mode is known, and to obtain the total #og# (to satisfy the boundary
conditions) one has to sum over all modes.

From the delta function(Q); — Q; + nw + wy,) we gather two things: First, different from the
field-free process, in the laser-dressed case it is thetiotfeenergy(); ; = qg s that enters in
the energy-conservation relation. The effective energgleted to the energy outside the laser
in a nontrivial way, if we writep = (E, v E? —m? p/|p|) we have, according to the definition
(2.33),

Q:E+f;! . %p _ (3.36)

which in general does not have a unique solutibaven ifQ and the directiop/|p| is known.
Note however thaf) > m, impliesE > m. Second, even though the laser field was introduced
as a classical, external field, due to the periodicity of #set, the matrix element is expressed
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3.3. Bremsstrahlung matrix element and cross section

as an infinite sum over a discrete indexthe quantity appearing in the energy-conservation
relation beingnw. The interpretation is clear: we can speak of a net numben|gbhoton
exchanged with the laser during the process. In our corventiegativen corresponds to
absorption and positive to emission of laser-mode photons. In the same way, the s@msov
represents the propagation of the electron under the irduefthe laser, the total amplitude for
propagation from the first interaction coordinate to theosélchbeing given by a coherent sum
over amplitudes in whicld photons are exchanged. It is also intuitively clear thatumthir
sum is needed; in general a laser-modified Feynman diagramNmiumber of vertices results
in N infinite sums.

3.3.2 Gauge invariance

The matrix element (3.26) must be invariant under the gatagestormations
a' — at + A k" (3.37)

and
eyr — e T Naky, (3.38)

whereA, 5 is an arbitrary constant (that may dependkoor £,). In general, a gauge transfor-
mation in QED involves a shift
A, — A, +0,9(x), (3.39)

where A, is an arbitrary light field (laser or single photon) agd) is an arbitrary function
of the space-time coordinate However, by requiring the vector potentid], to be a plane
wave, A, = €,f(s - x), with wave vector, and polarization vectos,, and that the gauge
transformation (3.39) should not change the space-timeraignce of4,, [24], then it follows
that the most general transformationdg — A, + >, Af(sc - x), ore, — €, + Asz,. HereA

is an arbitrary constant that is independentroiit is the gauge symmetry (3.39) that gives rise
to current conservation: from the QED Lagrangi@gp [141], by construction invariant under
(3.39),

Loeo = B — m) — §(Fow)? — DA, (3.40)

with 7, = 0,4, — 0,.A,., we obtain the Euler-Lagrange equation for the field tetSgr the
inhomogeneous Maxwell equation,

O FM = epy"tp = ej". (3.41)

Current conservatio6i, ;¥ = 0 follows automatically from the antisymmetry &, .

To explicitly show invariance under the transformation8¢3, (3.38), it is easier to look at the
expression for the matrix element before making any integra and Bessel function expan-
sions. To see invariance under the transformation (3.3&hote that because k = k- k = 0,
terms likeA? and Ak are invariant. Under the transformation (3.37), the coafjagvavefunction
qu (x2) picks up an exponentiakp (i fok'“ eAlng), the wavefunction),, (x; ) picks up an expo-
nentialexp(—i fok'“ eA,d¢) and the Green’s function picks up the factap(—i f,fff eAydg).
These contributions cancel when forming the matrix element
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CHAPTER 3: Laser-assisted bremsstrahlung

To see invariance under the transformation (3.38) is dlighore difficult. That the matrix
element indeed is invariant is shown in section B.2.

3.3.3 Differential cross section

The differential cross sectialv, or the rate divided by the incoming particle flux, is calteth
from the matrix element in the usual way [76]

1 2 Vdgkb Vd3Qf

do = e il e @y

(3.42)

HereT is the long observation time and the incoming particle ff{| /V is expressed through
the effective velocityw®", with which we understand the average velocity of the lasessed
electron a
eff v

v; o (3.43)
Since we are not interested in investigating polarizatiospin properties, we average over the
spin of the incoming electron, and sum over the spin of the &letron. This summation can
be performed with the usual formulas, resulting in the cezsgion being expressed as a trace
over a4 x 4 matrix. Another way is to use an explicit representatiorhef$pinors., , and to
do the summation explicitly. For further discussion on th@sums, see subsection 3.5.2. For
the photon sums, gauge invariance (as shown in section Bp2aga 139) in principle allows to

use the formula [76]
Z Ao — —g". (3.44)
A=1,2

However, here it is better to use an explicit basis of the qmation vectors, 1, €, and sum
explicitly, when evaluating the cross section numerically

Inserting the matrix elemen;; from Eq. (3.26) into Eq. (3.42), rewriting the phase space
factors as
d3]€b = u)gdwbde, d3Qf = ‘qu|Qfdede, (345)

where(2, ; is the solid angle of the corresponding particle, summireg spins and polarization,
and making the standard substitutitiz) = T6(z)/(27) [76], we obtain the differential cross
sectiondo /(dw;,d$2,d€2) for laser-assisted bremsstrahlung,

do )2wy \Qfl 1
(3.46)
x Tr (ﬁf + m) <Z Hs,ﬂ) (ﬁz + m) (Z ﬁsl’n> ] ,
where
ﬁ+eak3+m :‘_'_eak—i‘m
Hon = [M; 7 akas — F Fs+n Hh M] (3.47)
py =y p; —m;
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3.3. Bremsstrahlung matrix element and cross section

and
My =7"H, 2" (3.48)

The matriced’; ; andM; ; were given in Egs. (3.27), (3.28), (3.29) and (3.30).

The cross section is thus expressed as an infinite sum ovegrpbi@ers:, through one internal
sum over intermediate photon ordsrsAfter integration overl() s, so thatQ) ; = Q; — nw — wy
everywhere, the sum overin (3.46) is bounded by the conditi@gp; > m., but the sum over

s ands’ goes from—oo to co. Note also that this integration makes the argumenis— &; ;,
Biy — Bi,f implicitly dependent om throughg; and@ ;. Another thing worth commenting is
that the final phase space for the electron is expressedgihtoe laser-dressed momentgin
This is the most convenient way, since the energy conservegiation is expressed through the
effective energies); ;. An equally valid approach, pursued in [138, 139], is to esgrthe final
phase space through the momentum at infiriity,. This will however create problems, since
the correspondence between the effective en@rggndE'; is not one-to-one, as discussed after
Eg. (3.36). The two approaches are equivalent if the final srdom of the electron is inte-
grated out, and the normalization factor of the electronefanctions are changed accordingly,
since we have®q;/Q; = d®p;/ E; [24].

3.3.4 Limit of vanishing laser field

In the limit of vanishing laser field; — 0, we expect that the matrix element (3.26) goes to
the field free case, the Bethe-Heitler matrix element. Iddedens = 0, the arguments of the
generalized Bessel functions vanishes due to the progg(ty, 0,0) = 4,0, and the double sum

in (3.26) collapses to a single tenm= s = 0. Consequently, we end up with the Bethe-Heitler
matrix element, found in many textbooks [76,141],

Z€3m 5(Ef—EZ—|—wb)
\/ waEiEfV?’ q2 + (2

g ky +m D, —ky+m

MBethe—HeitIer —

271

€p | Ur;,y
2p5 - Ky 2p; - ky

(3.49)

using the same notation as in Eq. (3.26), in particglar p; — p; + k,. Constructing the spin
and polarization-averaged cross section with formula2)3.taking the trace (possible since
there is at most products of 8 gamma matrices involved, sedifitussion in subsection 3.5.2),
we end up with the Bethe-Heitler cross section

do _a(Za)? |py 1 Wy
dQdUdw, 472 |pi| (@2 + 072)2 (ky - pi)? (ks - py)?

X [2(12]{71; -piky - s (E} + E} — pi - py) (3.50)
+ (ko - pi)* + (ks - pp)?) (@*m? — 2k - piky - py)
—4m*(Etky - ps — Eiky 'pi)2:| ;
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wherew; is bounded from above by the demahd = E; — w, > m. Eq. (3.50) is the preferred
way to write the Bethe-Heitler cross section, expressedlativistically invariant dot products
of the different vectors involved. However, the originaln¢25], and most textbooks [24, 76]
write the formula in a more explicit way, expressed in thelas@petween the vectors. To show
the equivalence is a nice exercise in algebra.

3.3.5 Matrix element for circular polarization

Since we present results also for the case of circularlyrizeld laser light in section 3.5, we
give the final result for the formula for the matrix elementeéhtor completeness, without any
detailed discussion. See Eq. (2.38) for the expressioneoYtitkov wave function for circular

polarization. For convenience, we repeat the expressiothéovector potential of a circularly
polarized laser,

At (@) = aff cos ¢ + aly sin ¢, (3.51)
with polarization vectors, , satisfying
a; -as =0, a? = a3 = —a’. (3.52)

The matrix element has the same form as Eq. (3.26), but wghdims-£
_Wk andM3, ", F;*” andM? replaced by (see also [163])

°_k replaced by

4k Di, f

097, 7
_ _ R €CL/{7€b)\/{7

M . = By(s,at —ab a2 —a?) | é _—

f,circ 0(7 f HYrf f) b7>‘+4]{;.qfk.ﬁf

~1 1 ~2 9 eéb,Al%&l 6&1];@(,7)\
+ Bi(s, &y — ay, a5 — ) ( 2% By + o-gs ) (3.53)
~ ~ eéb )\];:&2 edglsz)\
+ By(s,at —alt,a? — a?) SR ’
4 Py ! 2k - py 2k - gy
s—n * ~ ~ 62&2]%”}/0];'
cmwc_BO(S_naO‘}_O‘ilaa;_a?) (70+m
+ B*( ~1 e’YOkal €d1if’70 (3.54)
sS—n,x .
! i k- 2k Py
0k o kO
+ B3(s —n, d} e S L )
2k - q; 2k:-pf
262k~ k
v
Fs+n B . i A
ficirc — o(s +n, a afva af) <7 + 4k - qrk - pz’)
~1 1 ~ ey ]i]CLl 6&1]%”}/0
+ Bi(s+n,da; — oy, & —af) <2k 7 + 2 -q; (3.55)

11 o ekiy  edgkn”
+ Ba(s +n,a; — oy, & — af) <2k AT
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and

9~97 4 7
e a kEb)\/{Z
,7\{8 B* ~1 1 ~2 2 ~ )
i,circ — O(Saai — 0y, Ay — az‘) (EbJ\ +

4k - gik - pi

- - €€b )\]%&1 6&1/%&,)\
+ Bi(s,al —al,a? — o? ’ + - 3.56
1( ) 7 ) z) 2/{? - g 2]€ - P ( )
ol A1 1 ~2 2 eéb,)\fffh edzif@b,,\
+Bz(8’af_af’af_af)<2k'q@' * 2]€'ﬁi>7
with the obvious notation
eal s - q; . eals - P;
()éll”fQ = 7172 4 ’f7 Ozi’fQ = 7172 p ’f7 (357)

k- qiy k- piy
and theB;’s are defined through the usual Bessel functiom,f iy = re’? andz — iy = re’?,
with ¢, ¢ € (=, 7], then

it

Bo(n,z,y) = J,(r)e# =9, Bj(n,z,y) = = [Bo(n — 1,z,y) + Bo(n+ 1,2,y)],

(3.58)
with j = 1, 2. The main difference is thus that the matrix element is esged in terms of the
usual Bessel functiodi, («) instead of the generalized Bessel functityin, «, 5) as is the case
for linear polarization. The reason is, as discussed in@e2t2 [page 25], that the amplitude of
the vector potential (and consequently also the amplitdidesoelectric and magnetic field) for
circular polarization is constant in timé?(¢) = —a?, and therefore the Volkov wave function
contains nain(2¢) term, and can consequently be expanded into a Fourier semegining
the usual Bessel functios,(«) only. Since the usual Bessel function is considerably easie
to handle from a numerical point of view (see chapter 5), tésns that the evaluation of the
cross section for circular polarization is less demandavgn though there are more terms to
deal with (polarization vectorg anda instead of just*).

3.4 Resonances in the laser-dressed propagator and unphys-
ical infinities

The most obvious, and also most interesting, feature ofaberidressed cross section (3.46) is

the possibility for the momentum of the intermediate elactio satisfy the energy-momentum

relation of a real Volkov particle,

ﬁfc—mi :2((]f'k’b+8qu'k’+8k’-k’b) :0, (359)

and
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At values of the parameters satisfying either Egs. (3.5250), the cross section is formally
infinite. Physically, this divergence has the followingsea: Since in a strong laser, both pro-
cesses corresponding to the two vertices in the Feynmaredineipr laser-assisted bremsstrah-
lung, laser-induced Compton scattering (see the disaussigection 3.2) and laser-assisted
Coulomb scattering (see [139, 169]) can occur indepenge@tbnsequently, if the intermedi-
ate electron satisfies the conditions (3.59), (3.60), theixn@lement (3.26) factorizes into the
product of the matrix elements for the first-order procesa@sipton scattering and Coulomb
scattering, with a divergent factor in between. One may kiieat the matrix\/? in Eq. (3.30)
goes to a matrix element equivalent to the one for Comptotiesaag, Eq. (3.5), in the limit
where (3.60) is satisfied. At the resonances, perturbatieary actually breaks down, and to
obtain finite results, either all-order corrections havdoéotaken into account, or one has to
introduce some kind of cutoff. We solve the problem, as dised below in subsection 3.4.1,
by including an imaginary part to the energy of the electrdn.this section we also elab-
orate somewhat on other possible ways of regularizing thiergénce. Mathematically, the
divergence comes from the integration over an infinite vaumthe second line of Eq. (3.26).
Important is here that the sum ovein Eq. (3.26) is discrete. Were the sum ouaeplaced by
an integral, we could use the Feynman prescription (thelsmadjinary termie in the propaga-
tor 1/[73§7f — m? + igl), and perform the integral. Compare the treatment of poléisé photon
propagator in an external magnetic field in [13, page 167].

Solving Egs. (3.59), (3.60) for the frequengcywe obtain

wpeakl _ _SQf -k '
b sk - kglr + qs - k;;)ﬂlr? (3 61)
peak2 Sq; - k

“b

sk kT4 g kYT

with k3" = (1, k;/|ks|), equivalent to the nonlinear Compton formula (3.9). Not th general
we havew}feakl =+ ngea“. The spacing between the peaks depends bothtbroughg;  and
the direction of the emitted photon. One can also convineselfithat in the frame where the
electron is on average at regt,= (m., 0), the light will be emitted at integer multiples of the
laser frequency, if the termk - k9" can be neglected, which is the casedf < @; ;. Also
whenk,/w, ~ k/w the resonance frequencies will be close to harmonics. leratases, the

intensity-dependent positions of the harmonics may bepne¢éed as a Doppler shift [92].

3.4.1 Regularization by imaginary energy

To obtain finite results at the resonances, we use the rdsuitssubsection 3.2.2, and add a
small imaginary part to the energy of the initial and final Rt state, and also shift the mass
appearing in the propagator by an imaginary amount. This @faggularizing the Green’s
function divergences was used previously by several asitimof21, 36, 130, 131, 157]. This
procedure is directly analogous to the inclusion of a snmaéiginary part in the energy of a
discrete atomic state, to obtain finite results in resonacegtering [73]. The result after the
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3.4. Resonances in the laser-dressed propagator and urgdhiyBnities

imaginary shift for the first propagator in Eqg. (3.26) reads:

~2

.m
pf—mi—> qr + sk +ky —i—

Qy
m

= 2(qf - ko + sqp - k + sky - k) — ZiQ—(sw +wp)l'(k-qr) +2imI(k - k)  (3.62)
!

= 2(qs - by + 8q5 - k + sky - k) + 2imI¢ {k'kb—(struJb)

2
INGE qf)t] —m? 4 2imI(k - py)

]i]'(]f
Qs |’

wheret* = (1,0,0,0) is a timelike unit vector. We writ&'(x) (which should not be confused
with the mathematical Gamma function) to show the deperelendhe variable = & - p. In
the last line we have used thiatz) = I'cx, a linear function ofc, which will be valid for our
choice of parameters. The crucial thing to notice is thadr the final state depends éng; but

I' in the imaginary mass in the propagator depends on the patgagtermediate momentum
ps throughk - p;. For the second propagator we have in the same way

2
p; —m: — qﬁsk—kb—z’gr(k-%)t} —mZ + 2imI(k - ;)
— 9k - g — 2q; - ky — 25k - ky — 2imD(k - ky) + Qig(wb —sw)T(k-q) (3.63)

Qi(wb—sw)—/{:~kb .

i

:25k-qi—2ql-~kb—25k~kb+2imf‘c{

It should be noted, that regularization by insertion of aagmary mas®nly, that is, without
also letting the energy acquire an imaginary part, which thkasmethod proposed in earlier
investigations of the problem [156,157], overestimatesciioss section (both for forward scat-
tering anglesq;/|g;| ~ q/|q;| for the fully differential cross section, and for the crosstson
integrated ovef),) by up to 10 orders of magnitude. This is an example whereghtslbut
understandable, mistake makes a huge difference in thermeathresult. The reason is that due
to the Coulomb field factot /q* in the cross section (3.46), the major contribution to the-in
grated cross section comes from small valuegZfwhich occurs at forward scattering angles
g:/la;| ~ q;/|gs| at smallw. However, for forward scattering (smajf) also the interfer-
ence between the two amplitudes in Fig. 3.7 is large. Inagidinly the imaginary mass shift
destroys the interference, with a huge overestimation@ttbss section as a result.

3.4.2 Validity of the imaginary energy method and other way®f regular-
ization

Some remarks are in order regarding the inclusion of theefimitths of the intermediate states
in the Dirac-Volkov propagator. First, we recall that oulcegation is valid only if the electron

spends enough time in the region where the laser field is peas discussed in subsection
3.1.1. For our approach to be correct, this time period shbalmuch larger than the period
of the laser field and the spatial extent of the laser focu®neshould be much larger than the
laser wavelength. In this case, it is permissible to use thel@yed approximation of a laser
pulse of infinite duration (continuous-wave) and of infirgpatial extension, that is, to describe
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CHAPTER 3: Laser-assisted bremsstrahlung

the laser four-vector potential by*(¢) = a* cos ¢. In the regime of short laser pulses, our
approximation breaks down, and another approach is catledA pulsed laser field can in
principle be dealt with by the same theoretical frameworisased in this thesis, since Volkov
wave functions [Eq. (2.27)] exist also for laser vector ptitds of the form

A() = g(0) (af cos ¢ + Sa sin ), (3.64)

whereg(¢) is an envelope function anilis a parameter controlling the polarization € 1
gives circular polarization) = 0 linear). The only condition is that the laser field is a plane
wave. Laser-induced Compton scattering in a pulsed laderffie the case wheg(¢) is a
slowly varying function was treated in [127].

Although we have not performed any concrete calculatidra,d laser pulse of finite duration
actually would provide a cutoff can be seen as follows. If ldeer field is given by a vector
potential of the form (3.64), the Volkov solution would na periodic, and an expansion in
discrete modes like Eg. (2.47) can not be made. Instead,dlk@Wwstate would be an integral
over the continuous spectrum of laser modes,

P(x) = %/dwC(w)e_iP'”C—mk'x, (3.65)

where N is some normalization factor and(w) is the continuous equivalent of the Bessel
function factor multiplying the exponential in Eq. (2.4YYhen calculating the matrix element,
we would instead of a sum end up with an integral [compare Xpeession (3.26)],

Dj(w) D;(w)
S [ d . (3.66
foc/ w[(pf+Wk3+k?b)2—m2+i€+(pi+Wk—k?b)2—m2+i€ (3.66)

with some non-diverging function®;(ww). The point is now, that the integral over can be
performed using the Feynman contaey with finite results. This integration is however not
trivial, and can probably only be done numerically even forde pulse shapeg o).

For the radiative corrections, implemented by includinig the propagator denominator, to be
the dominant regularization mechanism, it is crucial thatelectron is allowed to travel in the
laser field for a time span longer thanl /T" before (or after) scattering at the Coulomb field.
If this is not the case, the electron will not have enough timeadiate independently of the
Coulomb interaction, and the peaks will necessarily disappAs follows from Fig. 3.2, in the
regime of parameters we are considerikg ¢;/m? ~ 107°) we havel' ~ w. The electron
travels in the laser field over many wavelengths by assumpgiod thus- > 1/I" as required.
We also note that in an actual experiment, other externanpaters like the frequency width
of the laserAw and the width of the energy distribution of the incoming &lec AE; may
additionally provide a cutoff for the resonances. For ttgiative corrections to dominate as
damping mechanism here, it is required that; and Aw are smaller thai'. In our numerical
examples in subsection 3.5.3, whére- w, v = 1.17 eV andE; = 5.11 MeV, this condition
may be difficult to realize foAE;.

Another alternative is to separate out the non-divergemiriiiution in a parameter-independent
way, as is done in [13, 153]. Here divergent integrals in tipgased matrix element, coming

56



3.4. Resonances in the laser-dressed propagator and urgdhiyBnities

from the photon propagator, are regularized according to

M20</d \:c+ze|2 / rf(x F—ma( )} {ngmé(x)]

—pp / 1@ 42 b 0)s0),

(3.67)

whereP signifies the principal value. The factor containi(@) represents the diverging part
of the probability, corresponding to the particle (in [1Bgtphoton) going onto the mass shell,
and thereby becoming real. The double principal value itieted according to [13]

PP/dx% — PPt [ ded D ppim [anl {f(;) - f(‘”x_ hq

h—0 (J: + h)x h=0 h
_p/d wl (@) P/d i | (o>]:7)/dxw’
‘ (3.68)
which is now finite in the principal value sense. However, ititegrand?'(x) = [f(z) —

f(0)]/«* is no longer positive definite, and we can no longer speak taitisi quantity as a
differential cross section. To obtain positive definiteues one has to perform the integral.
Note also that in this way only the squared matrix elementadarfinite, not the matrix element
itself. For the case of laser-assisted bremsstrahlungawe the corresponding squared matrix
element [see Eq. (3.26)]

2
(2)

f(5, i, ko, k) f1(8s @i oo, )
OCSZS:[(k G —Fk-ky) — k- qi +ie] [s'"(k-q — k- ky) — Ky - q; — ]
(3.69)

regularlzez f S, qi, kba fT(S qi, kb) k:) - f(sa (jia %ba ];:)fT(Sla Cjia ]%ba ];:)
s(k-qi—k-ky) —ky-q][s'(k-q —k-ky) —ko-qi]

whereg;, k, andk are such that' (k- G, — k- k) — k- ¢ = 0 ands(k - G; — k- ky) — ky - G = 0.
We wrote down only one of the four terms resulting from theasgd matrix elemenjS;|* =
|S}1i) + Sﬁ) 2, and we have not written out the dependence on the summaitilexi, since
the cross section should be finite separately for ewetfowever, if we regularize the squared
matrix element in this way, retaining only the virtual cobtition to laser-assisted bremsstrah-
lung, we must perform at least one additional integratiohi€W is finite in the principal value
sense) to obtain a positive definite differential crossisact This integration could be over
the frequency,, averaging over the initial energy; or momentuny;, or the laser frequency
w. Integrating over);, g; or w requires the introduction of an additional distributiomdtion,
describing the initial momentum or frequency distribution

3.4.3 Divergence due to the infinite range of the Coulomb field

Related to the Green’s function divergence discussedquely in this section, is the fact that
the Coulomb field will introduce a divergence of its own. Theuw®mb divergence is well

57



CHAPTER 3: Laser-assisted bremsstrahlung

known from quantum mechanical scattering theory [73], @ad divergence of the scattering
matrix element at zero momentum transfer from the Coulonid, fighich occurs at forward
scattering. When the initial momentum of the projecjileequals the final momentumy,
the factorl/q* = 1/(p; — py)? in the matrix element diverges. The physical origin of this
divergence is the slow decay of the Coulomb field at largeadts. Due to this long-range
behavior, it is impossible for the initial particle to avadattering, and imposing such a demand
consequently results in an unphysical divergence. Foraberifree bremsstrahlung [25] there
is no such problem, since here we can haye- p, only if the energyw, of the emitted photon
vanishes, and then the matrix element diverges anyway,altrestinfrared divergence [141].
See formulas (3.49), (3.50). To see that the Coulomb factqf poses a problem in laser-
assisted bremsstrahlung we note that the condition

vanishing momentum transfer, is equivalent to the on-stwilditions (3.59), (3.60), with
changed taw. Thus, whenever we have a frequengysuch that either of the conditions in
Eq. (3.61) is satisfied, there exists a veaggrand an integer. such thatg?> = 0, with an
infinite cross section as a result. In particular the integvar the final electron solid angle
dQ, diverges whenever, satisfies Eq. (3.61). The usual solution to the Coulomb ityfiisi

to include screening, that is to cut the Coulomb potentia gmooth way at a certain distance
from the nuclear core. Physically, this choice can be mtd#tvay other electrons being around,
shielding the nucleus, other particles being around, oh&extreme case the walls of the
laboratory provide a cutoff for the Coulomb field. As we haeers, we have implemented this
screening in our formulas by employing the Yukawa potentiat/‘/|x| [Eq. (3.24)] instead
of the bare Coulomb potential. For large valuesagf > ¢, the exponential provides damping
so that no interaction occurs, and for small < ¢ the exponential factor is close to unity, so
that the bare Coulomb potential is recovered.

3.5 Numerical results for different laser intensities and fno-
ton emission angles

In this section, we present our main results on laser-asslatemsstrahlung. The results are
presented as a series of graphs for different values of ttarders involved, resulting from
numerical evaluation of the formula (3.46). We mention thatstatus of the problem of laser-
assisted bremsstrahlung and in fact of second-order éssested QED processes involving
the Dirac-Volkov propagator in general before our conttidms [104, 164] was that some an-
alytical results had been published [131, 157], but nunaéresults were lacking completely.
On the nonrelativistic side some numerical studies weréopaed [60, 68], which however
lacked the feature of the resonant behavior discussed tiose&4. In [68], where the laser-
assisted bremsstrahlung problem was treated beyond thBdins approximation, resonances
were found as higher order termsdnbut it was argued that they should be discarded in the
low-field, nonrelativistic approximation. By our concretealuation of the cross section for
laser-assisted bremsstrahlung, the complex analytigaiesgions resulting from the theory has
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Figure 3.9: The scattering geometry considered. The Indiectron with effective four-
momentumy; = (Q;, g;) counterpropagates with the laser with wave four-vegter (w, k).
The direction of the effective momentupp = (@, g) of the final electron is described By,
and the direction of the emitted bremsstrahlung photon feiti-momentunk, = (wy, ky) is
described by the anglg. All the vectors are in the same plane (the plane, or the plane of
the paper). The nucleus with atomic numbes 1 is situated in the origin.

for the first time been expressed in real numbers, so thatimm@kwhat to expect from a future
experiment.

3.5.1 Parameters used for evaluation

Here we discuss the parameters used for the evaluationh&dager, we always consider an
infrared laser of angular frequeney= 1.1698 eV, which corresponds to the typical wavelength
A = 1.06 pm of a neodymium-yttrium-aluminum-garnet (NdYAG) laseypical values ot we
consider aré < ¢ < 20, which correspond to intensitiés) x 10 W/cn? < I < 4.9 x 10%°
W/cm?, well in the range of what modern lasers can produce nowaddesgeometrical setup
of our scattering problem is shown in Fig. 3.9.

We always consider, if not otherwise stated, an initial etecwith £; = 10m = 5.11 MeV,
counterpropagating with the laser beam, thaj;j8q;| = —k/w. Recall thatE; is the energy

of the electron beam outside the laser, given the enékgyhe effective energy; follows as

Q: = E; + m*&w/(4p; - k). The angled; describes the angle between the incoming electron
and the outgoing electron, arig the angle between the emitted bremsstrahlung photon and
the initial electron. Botl¥,; andd, are only considered in the-y plane. In the case of linear
polarization this plane corresponds to the plane spannditaser propagation directidn/w

and polarization direction/|a).

For the screening length we have performed calculations for two rather large valie§
¢ =105y ~ 2.7x 10% MeV~! for the graphs where only linear polarization is shown (F&y%0,
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3.12 and 3.16), and = 2 x 10%7, ~ 5 x 10! MeV~! for the graphs where linear and circular
polarization are compared (Figs. 3.11, 3.13 and 3.14). Here 270 MeV~! ~ 5.3 x 107!

m is the Bohr radius. As a physical motivation for the two clesi, we have that the distance
¢ = 10%r, corresponds to the average distance between the parti@degais at ultrahigh vacuum

(a pressure of x 10~® Pa at room temperature), afid= 2 x 10, corresponds to the mean

free path in a medium vacuum. The choice @ arbitrary, all that is needed is a finite value to
regularize the Coulomb infinities, as discussed in subme&i4.3. When performing an actual
experiment, the value dfwill depend on the experimental conditions.

All calculations are without exception made for atomic n@m6 = 1, corresponding to pro-

tons. Since the interaction with the Coulomb field is taken Bccount in first Born approx-

imation, the cross section (3.46) of the process scale&’ agVe note that to learn something
about theZ-dependence of bremsstrahlung, one has to go to higheriatdegictions inz, that

is to include several Coulomb vertices.

3.5.2 Comments on the numerical evaluation

In this subsection we discuss a number of issues connectiedh&inumerical evaluation of the
cross section (3.46). To make this evaluation feasible,mal@u of approximations have to be
made. We also discuss some nonstandard methods to evaluraseisis.

Sums over electron spin and photon polarization

As already mentioned in section 3.3.3, gauge invarianceeséln principle possible to use the
formula (3.44) to calculate sums over photon polarizatiates. However, since the identity
(3.44) involves cancellation of equally sized terms, itusnerically advantageous to choose an
explicit base for the polarization vectogg,—, » and do the sum over these two vectors. For
linear polarization, we make the choice

ép1 = (0,sin By, — cos 6, 0), 2 = (0,0,0,1), (3.71)

if &, is given byk, = wy(0, cos 6y, sin 6y, 0), as in Fig. 3.9. For the electron spin sums, they can,
according to the theorem [141]

3t (p) Mun(p)F = T (Mp IRy gl *m) , (3.72)

2m 2m

ry,ri=1,2

valid for any matrixM, be converted into a trace over gamma matrices. The usuedapis
now to use the properties of the gamma matrices, in partitieidentity [141]

TT(Z;lBQ e Bn) = b1 'bQTl"(ZA)g e Z;n) —bl 'bgTr(l;284 e Z;n) +.. +b1 bnTr(Eg tee Bn—l)a (373)

valid for an even number four-vectorsh; ,,, to perform the trace in an analytic way, either by
hand, or by using a computer program capable of symbolic pugations (for example [82]).
However, to remove. number of four-vectors from the trace, the identity (3.73jsinbe used
repeatedly:/2 times, yielding(n—1)!! = (n—1)(n—3) - - - 3-1 terms, each containing/2 dot
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products of four-vectors. Since in our matrix element (326 have up to 7 matrices in between
the spinors, it means that the spin-summed cross sectid®)(@ontains traces of up to 16 hatted
four-vectors. Evaluating such a formula, resulting it! ~ 2 x 10° terms (or actually slightly
less, since some terms vanish due:tok = k? = 0), is clearly not manageable. Printed out,
the formula obtained in this way would fill several printecdypa. Different from usual field-
theoretic calculations, where cancellations betweerewdfit terms resulting from a gamma
matrix trace occur almost without exception and therebyicedthe number of terms, such
cancellations do not seem to occur in laser-dressed pratdsrthe one at hand. Our approach
is instead to use an explicit representation of the Diraelaig, the Dirac representation (see
subsection 1.1.2 on page 17) and perform the trace numigriédlernatively, one can use an
explicit representation of the spinors [76]

ur(p) = \/E;Tm (a-pg/CEE+m) ) G = (g;) (3.74)
(L) em

and do the spin sum explicitly over; = 1,2. We also mention, that although the spin sum
is not the bottleneck of the numerical calculation, evahgas trace like (3.73) numerically is
much faster than to first do the trace analytically, and thetuating the resulting expression.
Multiplying » number of4 x 4 matrices takedV,"™ = 64(n — 1) multiplications, while tracing
out and performing the dot products tak§d"@ = 4(n/2 — 1)(n — 1)!! multiplications. The
number of multiplications (which is the numerically mosh&-consuming operation, compared

to additions) are thus greater in the analytical case even fo 3, N213l > NuD.

Approximations for the sum overn and s

As is seen in 3.5.3, the bremsstrahlung spectra consissohamce peaks, generated by Comp-
ton scattering, superimposed on a smooth background cenergted by bremsstrahlung from
Coulomb scattering. In the region where the peaks still #ible, due to the factors/q*
and1/(p;7, — m?2) in the cross section, the indicesn closest to the (not necessarily integer)
numbers
e — Qi * ky S _ —qy - kp
max maxq k:-qi—k-kb’ max, f k?'k?b+k'(]z‘

will contribute the most to the cross section. In practibés akes it possible to approximate
the sums oven ands with say 20-30 terms each around the resonant indices (3.76)

(3.76)

Integration over d€2

Most of the spectra we present in section 3.5.3 are intedji@ter the directions of the final
electron, that is, we show
do do
= | ————dQ;. 3.77
dedwb / dedwbde f ( )
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As expected, most of the contribution to the integrand inBd/7) comes from a small cone
whereg? is small. For small, w, < Q;, this cone will point roughly in the forward direction
g:/|q:|. However, at values of; such thatg? is small, we also have that the interference
between the two diagrams for laser assisted bremsstra{derghe Feynman diagrams Fig. 3.7
on page 45) is the largest. This means that evaluation of rib&s csection (3.46) involves
subtraction of equally sized terms, which is prone to cdatieh error. In other words, close
to the resonant frequencies with smgl| the modulus of the total sufh¥y;| [see Eq. (3.26)] is

many orders of magnitude smaller than the absolute valudgeahdividual diagram$3}?| and

|Sﬁ) |. Consequently, the calculation has to be done in quadruptggion, something that slows
down the numerical integration considerably. By splittiymthe task of evaluating a spectrum
over an interval < w, < w™ into several subintervals < w, < W', N =1,..., Nmax,
and calculating these subintervals simultaneously oedifft processors in a computer cluster,
computing time could be reduced to a reasonable amount. $pacitrum (integrated ovef) )
shown in subsection 3.5.3 demands about 1 week of cluster tising about 10-30 different
processors. We employ a Romberg integration routine [1idj,in general a relative precision
of 1073,

Furthermore, in the cas® = 179°, a further speed-up of the calculation comes from the
observation that if we writg; as

45 = (Qf, /QF — m? [cos O sin ¢, sin O sin ¢ 7, cos dy]), (3.78)

where the plane of the vectors in Fig. 3.9 correspondsyte- 7/2, then since effectively only

a small cone around; = 7 /2, §; = 0 contributes to the integral, we can in the integration
overde, approximatesin ¢; ~ 1, cos ¢; ~ 0 in the arguments,; ; — a; s, Bi.; — (3. of the
generalized Bessel functions. This means that the gepeddiessel functions do not depend of
¢, and that we only need to calculate the required arfaySmin < s < Smax, Qi f — Q. r, Bif —
B3:.7) once for every new value &f; in the integration ovedQ; = sin ¢ ;d¢ ;dé;.

Numerical tests of validity

We have performed the following tests of validity for the qmuter program used for the evalu-
ation of the cross section (3.46).

Gauge invariance of the cross section (3.46) under theftianationse;, , — €, » + Ak, and

a — a + Ask, for arbitrary constantd, ,, has been numerically tested. Sometimes quadruple
precision has to be used to do this test, due to cancellatronse Gauge invariance actually
provides the most sensible test of correctness, sinceyhimetry is broken by any incorrect
plus or minus sign, or inexact value of the generalized Bégsetions. For the analytic proof

of gauge invariance, we refer to section B.2.

Correct non-relativistic limit. In region of parametersevé the nonrelativistic formula (3.102)
applies (see the discussion in section 3.6), the two exipres£3.102) and (3.46) were found to
agree numerically, as expected from the analytical consiias in section 3.6.

Correct limit of vanishing laser field. In the limit| — 0, we should recover the Bethe-Heitler
cross section (3.50), as discussed in subsection 3.3.4 hakibeen tested numerically, both for
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Figure 3.10: The cross section fgr= 179°, differential in solid anglé&?, and energy, of the
emitted bremsstrahlung photon, for linear polarizatiotheflaser. The values on the peaks are
shown with crosseg (= 20.9) and circles{ = 5.9) for clarity. The values of used correspond
to laser intensitieg = 5.2 x 102° W/cn? for £ = 20.9 (solid blue curve) and = 4.3 x 10%°
Wi/cn? for £ = 5.9 (dashed red curve). The screening length is hetel 0°ry. A magnification

of the left graph for small values of the cross section is shtmthe right. Here it is interesting
to note that forf = 5.9 the background curve is below the Bethe-Heitler curve dsblack
line), but for¢ = 20.9 it is above. The transition occurs at approximatehy 12. We comment
that in the nonrelativistic case [90], the curve always dodew the laser-free curve.

the fully differential cross section and for the cross settntegrated oveds),.

3.5.3 Numerically evaluated spectra

In this subsection we present the results of the numeriezijyuated cross sections, both inte-
grated overl(2; and fully differential ones. In most graphs, the cross sedwr the laser-free
case, calculated with the formulas in [25, 72], is included domparison. Departure of the
parameters used from the ones discussed in subsectiom8li%h# stated explicitly.

Spectra integrated overd(2 ¢

Figure 3.10 shows the spectrum, integrated over the doetj of the final electron, for pho-
ton emission anglé, = 179°, which corresponds to almost the same direction as the laser
propagation direction. As expected, the spectrum is coegbosa number of very high peaks,
with positions(ygjea“ given by the resonance condition (3.61), and a backgroumaagfitude
comparable to the laser-free curve. For this valué,pthe peaks appear very close to integer
multiples of the laser frequency. Here the magnitude of takp drops exponentially very fast,
and only up to 13 peaks can be seen. In Fig. 3.11, the spectiadar and circular polarization
are compared, fof, = 179°. More interesting is the case with = 1°, which corresponds
to bremsstrahlung emission in a direction close to the tloeo©f the initial electron, or in the
backward direction of laser propagation. This correspdod®-called backscattering with re-
spect to the laser. The spectra are displayed in Fig. 3.1@vfindifferent values of and linear
polarization, and in Fig. 3.13 for a comparison betweerdlirzad circular polarization. Clearly,
in this geometry much a larger number of Compton peaks arergtsd, and the background
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Figure 3.11: The differential cross section #yr = 179°, comparing circular (green dashed
curve) and linear polarization (solid blue curve) at the saalue of¢ = 17.8. In the left graph,

the values oflo/(d€2,dw;) on the peaks are plotted with green circles (circular ppédion)
and blue squares (linear polarization) for clarity. Notat tlor the same value @f the intensity

for linear polarization is smaller than the the one corresig to circular polarization by a
factor of two. The right graph shows a magnification of thedeie for small values of the cross
section. In this graphy, = 2 x 10, is used. We see that the behavior for linear and circular
polarization for this photon emission angle is very similar
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Figure 3.12: The differential cross section tjr= 1°, integrated oved(),;. Except forg,, the
parameters used are the same as in Fig. 3.10,§vith20.9 for the solid blue curve§ = 5.9

for the dashed red curve agd= 0 for the solid black curve. As the zoom-in graph to the
right shows, a peculiar feature is that the background ie lmever than the Bethe-Heitler cross
section for small order harmonics, but overtakes it foréarglues ofu;,.
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Figure 3.13: The differential cross section fgr= 1°, comparing linear (solid blue curve, peak
values shown with squares) and circular (dashed red cueaik palues shown with circles)
polarization for the same value 6f= 17.8, and/ = 2 x 10°r,. Here there is a clear difference
between the circular and linear case. The circular curveeis Bimilar to the one fof, =
179° (see Fig. 3.11), with rapidly decaying peaks, while thedmeurve features peaks up
to large values ofu,, compare Fig. 3.12. The background for the linear case isirtbied
by contributions from around the Compton/Coulomb peaksclwprovides the reason for the
background being so large.

is much larger that the laser-free case, at least for laepuéncy values,, > w for linear
polarization. Also observe that the position of the peaksraw no longer harmonics of the
laser frequency, but depend on the valu€ atcording to Eq. (3.61). In the casefpf= 1° this

results inwP** ™ ~ 9,P%8* 9% ag is seen in Fig. 3.13.

Peculiar behavior of the fully differential cross section

Assuming a fixed energyy,; = 10m, (as for the all of the graphs Fig. 3.10, Fig. 3.11, Fig. 3.12,
Fig. 3.13, Fig. 3.16), and fixed directign/|p;| for the initial electron outside the laser, the
initial effective energy); and effective three-momentuga depend on the intensity parameter
¢. In fact, assuming the directign;/|p;| = —k/w of the electron outside the laser field, the
electron counter propagates with the laser field, that igc = —w|q;| , for small values of.
However, at some valug of &, the electron is at average at rest in the laser fi@ld= m.,

and for larger values of > &, the electron moves in the same direction as the laser wave,
g; -k = wl|q;|. The numerical value af, can be solved for, by demanding that theomponent

of the effective momentum vanishes:

gom’
* =0 =+/E —m? + L 3.79
q " ) (3.79)

which gives¢, = 28.2 for linear polarization andv; = 10m = 5.11 MeV. For circular po-
larization one gets instead, due to a factor ¢? instead ofl /4 in the effective momentum,
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Figure 3.14: The fully differential cross section, diffetil in the solid angl€; of the final
electron, frequency, and solid anglé€2, of the emitted photon, for two different valueséf
In this graphg, = 179°, andw, is taken to be exactly half way between the first peak and the

second peak. That is, we have from Eq. (3.61) that (w}fea“(s = 1) + WP (s = 2)) /2.
Note that sincé), is close to180°, w, defined in this way is only weakly dependent&nThe

graph illustrates the dramatic decrease in the differeot@ss section as a function ¢f for
circular and linear polarization. The thin black line inalies the value ofy, when@; = m...

& = 19.9. The result is that, as a function §f the differential cross section with observation
directiond; = 0 or §; = 180° (see Fig. 3.9) shows a steep step-like decay at the \@lue
Fig. 3.14 illustrates this behavior for both linear and glac polarization. The physical reason
is that the cross section for forward scattering, whetg;| ~ q/|q;|, is very large compared
to that of backward scattering;/|q:| ~ —q;/|q;|, due to the Coulomb factdr/q* in the cross
section (3.46). The valug from Eq. (3.79) signifies the transition from forward scattg to
backward scattering for an initial electron with three-nemmum antiparallel to the laser, out-
side the lasetp; - k = —w|p;|, and the final electron observed in the forward directipa= 0.

If the final electron is instead observed in the directigr= 180°, values of¢ < &, correspond
to backward scattering with small cross section, ane &, corresponds to forward scattering
with large cross section.

3.5.4 Comparison with the free propagator

One motivation for the present project, evaluation of thessrsection for laser-assisted brems-
strahlung, was to investigate if the matrix element of tmecess could be well approximated by
the matrix element obtained by removing the dressing ofakerlin the propagator. The Feyn-
man diagrams corresponding to this situation are showngn 3i5. In other words, would

it be a good approximation to use, instead of the full Diratkdv propagatoiG(x, z’) [see
Eq. (2.62)], the free electron propagatef.c(z, ') [see Eq. (2.63)]? A handwaving argument
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Figure 3.15: The Feynman diagrams for laser-assisted Istegthfing, using the free propagator
approximation. Here external electron lines are Volkovestaand therefore denoted with a
wiggling line superimposed on a straight line, while themiediate line is the free propagator
in absence of the laser. As before, the initial electron Hesteve four-momentuny;, the
final ¢, and the intermediate electron propagator momentum is ddrwtp,  The emitted
bremsstrahlung photon has four-momentiynand the virtual Coulomb field photon, depicted
with a dashed line, has three-momentgnTime flows from left to right.

shows that it is at least reasonable to assume so for largadneiesy,: If the frequencyw,
of the emitted photon is large, it means that the time betweeiCoulomb interaction and the
emission of the photow, is short, then the comparatively slow oscillations of theelacan be
neglected, since there is simply not enough time to intexéttthe laser. We will see that this
is indeed the case, but that the condition for when the apmation is good is nob, > w, but
ratherw, > E;. The matrix element in this approximation (for linear p@ation, the circular
case is similar) is exactly as the laser-dressed matrixeeffy, from Eq. (3.26) on page 47,

but with the factor between the large brack%tsy] replaced by

A~

s 2 ﬁf+m s—n s+n ﬁi+mA s
MfreeEbJ\ m’yof‘free + Mfr;re 70m6b7Aﬂreev (3.80)
with )
N eak
Miree = AO(]V?O‘fvﬁf)+ Qk_qul(Naafaﬁf) ) (3.81)
N eka
Fiee = | Ao(N, i, 3;) + o . qAAl(N7 i, 3) | (3.82)

and the same definitions as in Egs. (3.33), (3.31) of the vggtoand the Bessel function
argumentsy; r, (; ;. However, from the denominatotg (57 ; — m?) in Eq. (3.80), we see that
using this approximation will give Green’s function resnoes at different positions than in
the laser-dressed matrix element (3.26). Thus, a bettepziopation is to taken, instead of
m in the propagator denominator. We note that a similar appratton has been tried before
[33]. The result of a calculation comparing the approximatf employing the free electron
propagator, but with the effective mass instead ofn in the propagator denominator, with the
fully laser-dressed cross section is displayed in Fig..37t6m the lower graph of Fig. 3.16 itis
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Figure 3.16: The differential cross section fgr= 90°. In the upper graph the cross section
using the full, laser-dressed propagator for the desonptif the virtual states in Fig. 3.15
is shown for{ = 20.9 (solid blue curve) and = 5.9 (dashed red curve, with peak values
shown with circles), and the solid black curve represergdaber-free case. In the lower graph
we compare calculations performed using the full, lasessied propagator (dashed red curve,
circled peak values) with the cross section obtained udiegfriee electron propagator with
effective massn, (solid green curve, peak values shown with green crosset) for ¢ = 5.9.

The screening length 5= 10°r, in both graphs.
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Figure 3.17: lllustration of the intuitive explanation diet failure of the free propagator ap-
proximation. The left diagrarf:) shows the Feynman diagram for photon emission (Compton
scattering) of a photok, from a Volkov state with effective momentugninto a free electron
state with momenturg,. The right diagrantb) shows the corresponding level picture.

clear that the free electron propagator-approximatiomtsargood one, even for largg > w.

In this regime of parameters, where Compton peaks are gleaible, the shortcoming of the
free electron propagator can be explained intuitively.act fsince here the contribution to the
integral overdQ2; comes from a small region whegg is small, it means that the interaction
with the Coulomb field is very small. To get the intuitive pice it is therefore sufficient to just
consider photon emission by Compton scattering, discusssection 3.2, Feynman diagram
in Fig. 3.1. To remove the laser-dressing of the propagataoiv roughly the same thing as
requiring that the final state of the Compton scattering @seds not dressed at all by the laser,
but simply a free electron with momentum Anillustration is given in Fig. 3.17, the Feynman
diagram in graptia). Another way of viewing the free electron approximationiieyided by
the level picture, shown in gragh), Fig. 3.17. Here the final level is constrained to only one.
The amplitude of this process is therefore approximatehthie same arguments as the ones
leading to Eq. (3.15),

-]Wfree - Z Ao(ATL, Q;, ﬁi)AO(Oa ag, ﬁf)&(ql —qf — k:b + Ank)) (383)

An

where we note that there is only one sum, as opposed to E§) (T he amplitudé//;e for one
transition with level differencé\n in this case is proportional td,(An, «;, 3;)Ao(0, ag, By),
and not toAy(An, a; — ay, 3; — B¢) as in the fully laser-dressed case. The reason is that the
restriction of the final level removes the destructive ifei@nce between the different pathways
with the same level differencé&n. It is this destructive interference that gives rise to tkgoe
nential decay of the peak amplitude seen in the upper graplyo8.16 (and also in Figs. 3.10,
3.12). Mathematically speaking, we see, by using the daltation in Eq. (3.83), that since
herew, < @Q; y the arguments, 3, are almost independent of, so that the peak amplitude
is almost constant as a function ©f (see lower graph of Fig. 3.16), but that the difference
ap —a; = —ea - ky/(k - ¢;) depend linearly ony,. For the second argument of the generalized
Bessel function we havé; — 3; ~ 0.

On the other hand, if we consider the case whgn> E; ;, and also choose the gauge so that
a - k, = 0 (this can be done by gauge transforming- a — Z—’ZZk) then it follows that for the
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CHAPTER 3: Laser-assisted bremsstrahlung

arguments of the generalized Bessel functions in Eq. (3.26)

ea-ps ea-pr+ea-ky

af_af:/{?pf kpf+/{3 k?b
_ea-psk-prt+ea-ppk-ky —ek-pra-pr—ea-kyk - Py €a-py .
k-pp(k-ky+ k- py) T kep, 7
(3.84)
and also
- e%q? 1 1 e?a?

I - — ~~ = . 3.85
ﬁf ﬁf 8 (kpf kpf—i‘kkb) Skpf ﬁf ( )

Similarly oy, — &y; =~ o; and 3; — sz ~ (. In addition,w, > Ezf means that we can
ignore terms proportional tg— compared to terms proportional 1;{9— Using all these
approximations in the matrix element (3.26), we have that

Spim SpEPOPMTI Ly > By (3.86)
However, to have, > E; ; we have from the energy conservation relation that
w=0Q;i—Qf —nw= —nw> FE;, (3.87)

if we in addition conside®);  ~ E; ;, which holds for the laser intensities and electron ensrgie
we have considered in section 3.5.3. But for the argumeritseofeneralized Bessel functions
we now have

B
i |+ 214 ~ =5 < I, (3.88)

from Eq. (3.87). It follows from the cutoff rules (2.49) (seage 27) that the generalized Bessel
functions Ay(n, a; 5, 5;,r) are vanishingly small. We thus conclude that when the cardit
E;; ~ Qs is satisfied, the free electron propagator will only be a gapproximation in the
region where the cross section is very small, and therefoirgeresting.

3.6 Comparison with the nonrelativistic laser-assisted lms-
strahlung cross section

In the nonrelativistic limit and for small fields, the crogxgon should go to the one found by
Karapetyan and Fedorov in [90]. We show in this section thiatreally is the case, following
the lines in [157].

3.6.1 Derivation of the first Born matrix element for laser-assisted
bremsstrahlung in the dipole approximation

In this subsection, we derive the result found in [90], forelr polarization of the laser. To
make the dipole approximation for the laser field (and alsor#diation field) means that the
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3.6. Comparison with the nonrelativistic laser-assisterisstrahlung cross section

dependence on space in the vector potential is dropped,
A(x) = acos ¢ =~ acoswt. (3.89)
To calculate the matrix element, we need the nonrelatd/igilkov state,

¢;onrel(x’ t) — exp (—iEt +ip-x — Qp sin wt) , (3.90)

with the nonrelativistic energ¥ = p?/(2m) and where

ea - p
op =

(3.91)

wm

Note in particular that we have dropped tHé-term in the argument of the exponential in
Eq. (3.90) already at this stage, since we asstiree 1 here [see Eq. (3.105)]. The Volkov
solution solves as it should the Schrodinger equation wattexternal plane wave laser with
linear polarization,

1 .
(g + 5w =i V) ety (3.92)
The nonrelativistic Volkov-Schrodinger propagator re§zi]

/ d3 p(;dEG

. &P [—iEq(t —t) +ipg - (x — x') — ag(sin(wt) — sin(wt’)]

Gnonrel(x :E/) _
Y

(27m)*

Fo— B 4 ’
G~ 5, T
(3.93)

whereas = ea - pe/(wm). The potentials of the Coulomb field(z) and the emitted photon
Ay(x) are

1 Ze —ig-x 1 iw
Vi(z) = _(2ﬂ)3/d3q?6 e, Ay(z) = N G (3.94)

where the important thing to note is that in the vector paém,(x) for the bremsstrahlung
photon, the dipole approximation is made. This will be calan the understanding of why
Green’s function resonances do not appear in the nonrskativnatrix element. The matrix
element is now given by the standard formula, the nonregiivequivalent to the two Feynman
diagrams in Fig. 3.7 on page 45 (see also [99]):

Snonrel _Snonre(l) + Snonre(2)
i —Mfi i

—ic? / @ 4t A () [V () GO, ! YW () (3.95)

+ M/<x)Gnonrel<x7 SL’I)V(x/)] nonrel(x/>’

pi
with the nonrelativistic interaction energy

—iV CAp(z)  ea- Ayp(z) Cos(wt).

W(z) = (3.96)
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Before we write down the result fcﬂ‘}?”fe', a couple of comments are appropriate. We know [90]
that no propagator resonances occur in the nonrelatiagpeession for the matrix element, as
presented below in Eqg. (3.101). What is the reason for thed@Bwe restrict the discussion to
the first matrix elemenfnonre(1 with completely analogous arguments Hﬂ‘)”rem First, due

to the dipole apprOX|matlon i, (z) = €, exp(iwyt)/+/2w, , MOMentum conservation yields

PG =pi; q=Pp;—pi (3.97)
Second, energy conservation gives
Ef—EZ-—nw+wb:O, EG:Ef—nw, (398)

wheren is the index used in the Bessel function expansion, it rgmisshe number of photons
absorbed during the process. Observe that due to proped)(3ve haver; = «,,, so at the
timet, in EQ. (3.95), thein-term in the exponential cancel:

exp [t sin(wty) — iay, sin(wty)] = 1, (3.99)

so that no Bessel function expansion is needed at tim&Ve conclude that the intermediate
sum overs [see the relativistic expression (3.26), page 47] is abisethie nonrelativistic case.
Moreover, by combining (3.97) and (3.98) we obtain for thepgargator denominator

2
EBo—P6 — B —nw—E = —w, (3.100)
2m
which is clearly different from zero, except @ = 0. This demonstrates that there will be
no propagator denominator resonances in the nonrelaticese. The matrix element resulting
from Eq. (3.95) is

7 3 A o, 2 12
S MWZ% PP ) o) (pf - +wb—nw>, (3.101)

mwg’/Q (pf - Pz‘)2 2m

n

where we have dropped the terms proportional-&, ,, since after summation over polarization
A they give contributions proportional t@?, which should be dropped for consistency. In
Eqg. (3.101),J,(«) is the usual Bessel function, and= —*a - (p;y — p;). Multiplying with
the appropriate phase factors [like in Eq. (3.42)] and dingdvith the incoming electron flux
(velocity) |p;|/m (throughout this section we have let the quantization valum = 1 for
simplicity) gives the differential cross section (see dtsodiscussion in [60], to which formula
(3.102) is in agreement):

do™” s [eon - (pr — o)) <p2 - p;
= J2(a)é J L wy — nw)
ded|pf|dedwb u}b7T2 Z Z m|p | pf — pz) ( ) 2m b

_ Wr? Z ps? (pr — p)* — [K&" - (pr — py)] (o)

m|p| (py —pi)?
2
X 0 <pf Pi +wb—nw) ,
2m

(3.102)
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where we have summed over polarizations of the bremsstrgighoton to obtain the last line.
Herekd" = k,/|k,|. Energy conservation gives

P} = P} + 2m(nw — w,) (3.103)

and the sum overn is limited by the conditiorpff > 0. Thus, we have shown that since
Karapetyan and Fedorov [90] use the dipole approximatiothi®laser, the singularities where
the virtual electron goes on shell disappear. Thus, it wilyde possible to compare the cross
section (3.46) with the nonrelativistic formula (3.102)@gions where there are no resonances,
that is, at frequencies, far from wherep; ; — m2 = 0 [see Eq. (3.61)].

3.6.2 Demonstration of the correct nonrelativistic limit o the relativistic
Cross section

For nonrelativistic formulas to apply, we must have the ingand outgoing translational ve-

locities much smaller that one:
\ /El.zf —m?2

1. 3.104
B, (3.104)

i ¢ =
Also the peak velocity of the electron’s motion in the laser field must be small,

1> Ll 109

In addition, it is assumed that the kinetic energy of thedlaional motion of the electron (the
kinetic energy outside the field) is much larger than the &rdgrequency of the laser,

m|vz',f|2

ST > w, (3.106)

from whichw < m obviously follows. Now look at the energy conservation tiela, from the
delta function in Eqg. (3.46)

2 2 2 2
0 e’|al e’lal*w
—Ej+—— " —E, — .
q f 4pf _k:dlr 4pi,kd|r

+nw +wp =0, (3.107)

wherekd" = k/w is a four-vector independent an For nonrelativisticZ;, £, this relation is
approximated by
o _Pi-p  la’  laf
Anonrel = m 4pf _ Jedir - 4p; - . dir

+ nw +w, = 0. (3.108)

We will now argue that for nonrelativisti€; ; ~ m, the bremsstrahlung frequency must be
smaller than the momentum of the electipn;|, that isw, < |p; f|, just as the nonrelativistic
case without the laser field [24]. For nonrelativistic emesdg”; ~ E; ~ m, by the energy
conservation relation we must hayg ~ w,/w. To have nonvanishing generalized Bessel
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functions, the (absolute value of the) argumemtand 5 of the generalized Bessel functions
must satisfyla| + 2|3 £ |n|. In the factorF; [see Eq. (3.28)] we have the arguments=
«; — &y andf = 5; — 3;. Moreover,3 is proportional tda|?, and therefore small. Now

ea-p; ea-pr+ea-ky

; — O = — . 3.109
i k - p; k-pr+k-k ( )

However, ifw, ~ |p;¢| we have|a; — af| ~ |eal|p;|/(mw) which is much smaller than
In| = |pi r|/w, Since we havéea|/m < 1, and the generalized Bessel functions vanish. Thus,
we must havey, < |p; | to have non-vanishing non-relativistic matrix elementsfollows

that the argumentis; — &y, o, — &; are small, and that the sum ovecan be approximated by
only one terms = 0, if we also ignore terms proportional tea|, since from Eq. (3.105) we
have|ea| < m. Observe that even if we use the expansion (5.28), this tgvess in powers of
la|/w for which we havelg‘ > gi‘ We thus get for the matrix element

approx — 97 Z Zesm 5(qnonrel) —

V2B, (pr — pi)? ;s (p)

~ = R ﬁf+l%b‘|‘m 0
Ao(n,ap — oy, By — Bi)€
o(n, ay By — Bi) Py

ﬁz - ]%b +m

+ Ao(n, op — &, B — Bz‘)WO

ea- (py —pi
- Z MBHé(qgonrel)Jn (#) )
(3.110)

where we in the last step, according to the above discusaproximatedy = q; — q; +
nk +ky, ~ p;y —pi, k-pr = k-p = wm, ﬁf—ﬁz Nﬁf—ﬁl ~ 0, &; 5 ~ «a;f, and used
Ao(n,a,0) = J,(a). The factorMB is the Bethe-Heitler matrix element [24] without the
delta function,

. Zedm, 1 B
MBH = 27 s (pf)

V2w EiEf (Py — i

. ﬁf+i€b+m 0 o bi—kytm
X o),
€b,>\(pf+kb)2_m27 + (pi—k?b)Q—mQEb’)‘ Uy, (p;)

(3.111)

When treating the energy conservation relation, we haveeta httle careful. Rewriting the
nonrelativistic energy conservation relation (3.108) as

0 B pfc _pZZ N 62|a|2(k,dz’r ps— Ldir 'Pz‘)

Gnonrel = om a2 + nw + wp = 0, (3.112)

we see that to recover the Karapetyan-Fedorov result fognkeegy conservation relation

2 2

by —D;
qgonrel = f2m +nw +wp = 0, (3.113)
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Figure 3.18: lllustration of the validity of the relativistformula for the cross section of
laser-assisted bremsstrahlung. The light blue squarew she differential cross section
do/(dQdw,dS2) evaluated with the fully relativistic formula (3.46), anldetsolid red line
was calculated by the nonrelativistic expression (3.1@2jch makes the dipole approxima-
tion for the laser field. For comparison, we also display tbklffree case [the Bethe-Heitler
cross section (3.50)], the black dashed line. The afgleefers to the angle relative to the
direction of the initial electron (see Fig. 3.9), so thgt = |py|(cosfy,sinf;,0). The other
parameters used in the calculation &re- 6 x 1073, w = 1.17 eV (corresponding to a laser
intensity / = 4.4 x 10'®* W/cm?), E; = m + 10 eV, w, = 5.5w, 8, = 179°. Note that at
this low value of¢, the asymptotic momentumy in practice equals the effective momentum
qr = py + m*&?k/(k - py), sinces? is very small.

we have to demand
2|a|2

< |pis| = |vifIm, (3.114)

or
£ < |viygl. (3.115)

Constructing the cross section from the matrix element(®.,lsumming over photon polariza-
tions and taking the nonrelativistic limit [24] of the Bethiitler cross section, we end up with
precisely the Karapetyan-Fedorov formula (3.102).

That the cross sections (3.46) and (3.102) actually coméidl parameters satisfying EQs.
(3.104) and (3.105) have been checked numerically for th@l@red computer program used
for the numerical evaluation of the relativistic cross s@ttn section 3.5. One example for the
fully differential cross section is shown in Fig. 3.18.
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Chapter 4

Laser-assisted pair creation

4.1 Introduction

The creation of an electron-positron pair by an externaltedenagnetic field is a striking man-
ifestation of the equivalence of matter and energy, anthsitrally very interesting. Intuitively,
the possibility to create matter from electromagnetic gnés clear from Einsteins relation

E=m, (4.1)

for an electron at rest, its ener@gyis equal to its rest mass. The usual way to think of pair
production is by two energetic gamma photons, where the dutimeotwo frequencies must
overcome the threshold of twice the electron mass+ ws > 2m. That pair production by
only one photon, no matter how high frequency, is impossitde be seen from the energy-
momentum conservation relation. et be the four-momentum of the created electronthat

of the created positron, arid the wave four-vector of the gamma photon. We must then have

p—+pr = ky, (4.2)

which is however impossible to satisfy; in the center-ofssirame we havp_ + p, = 0,
which is not compatible with the requiremelrﬁ = 0. The second standard way of producing
pairs in the laboratory is by one gamma photon and the Coulia@hd of a heavy nucleus.
Theoretically, this process was treated by Bethe and Héitlheir bremsstrahlung paper [25].
Here the threshold is., > 2m for the gamma photon, since no energy is absorbed from the
Coulomb field.

That not only energetic photon fields, but also strong, nsmopic electric fields can produce
pairs was first predicted by Sauter [162] and later constdbyeSchwinger [165]. The basic
prediction is that pairs are spontaneously created, butatieeis exponentially damped unless
the electric field strength is of the order of the so-callétical field £, = m?/|e|, that is, the
parametery = Eyea/ Ee, Where Epeq is the peak electric field, must be at least of the order
of unity. For the generalization to oscillating electridd the nature of the pair production
process is governed by the parameteFor { < 1, the process is a multiphoton process (for
purely electric fields, the photons are virtual) with thelmbilities scaling ag?", wheren is
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CHAPTER 4: Laser-assisted pair creation

the minimum number of photons required to create one paesit iThis is the normal case of
pair production by gamma photon absorption. In the oppasise of¢ > 1, pair production
takes place as tunneling, where the positron from the Deadsnnels through th&an-barrier
to produce one free electron and one Dirac-sea hole, orpositVe note that this is in direct
analogy with field-ionization of an atom, which is governgale Keldysh parameter [91]

I
=g\ oL (4.3)

where [, is the ionization potential, and in which case we have thetiphdton regime for
vk > 1 and the tunneling regime fory < 1. We see that/x corresponds tg—! in the case
of pair creation, wheré, = 2m.

The transition from the nonperturbative, tunneling regforgair production to high-frequency
perturbative pair production was studied by Brezin andkson [37] and also by Popov [142,
143]. The strongest electromagnetic fields available ingheratory are not purely electric, but
laser fields with a magnetic component. However, a plane V@aee cannot alone produce any
pairs from the vacuum due to the impossibility of satisfyargergy-momentum conservation,
just like a single photon. Like in the case with a static maigrfeeld [9, 12], a probing particle
is needed in order to break the symmetry and obtain nonvagigfair production rates. If the
laser wave is not a plane wave but a focused pulse [40], ondisiglaser wave [5,29,54,171],
pair production is possible without a second agent.

This brings us to the subject of laser-induced pair productiPair production in a laser field
with an additional source of momentum was first investig#tedretically in the context of pair
production by simultaneous absorption of one non-laserenpdtton and a number of laser-
mode photons [129, 147]; quite recently, this process was@bserved experimentally [16,41].
Another possibility which is currently discussed in thel#ture is laser-induced pair creation in
the vicinity of a nucleus. Unfortunately, for a nucleus atyéhe pair production rates are very
low for presently available low-frequency high-power lasg6,112,114, 176]. Recently, this
process has been reexamined, with the idea of introducingvangnnucleus [89,121-124,167].
By letting the nucleus collide head on with the laser beanmigit horentz factory, in the rest
frame of the nucleus the frequency of the laser beam is biifeed or enhanced with a factor
of approximately2v. In this way, the peak electric field seen by the nucleus ineiss frame
approaches the critical fielfl., and the rates are calculated to reach observable valuesle
the recent experiment [70], where the laser is used to aeteléhe electrons, before they are
converted into positrons using lead. Very interestingesttieoretical proposal to use a powerful
laser to symmetrically accelerate the electron and pasitr@ positronium atom, so that they
collide at high velocity and small impact parameter, to jpieEla muon-antimuon pair [120].
Here however the muon-antimuon pair is not created by the itietlf, but by the collision of
the electron with the positron.

In this section, we investigate the possibility to creatiegfaom vacuum in the presence of three
external fields: a laser field, a Coulomb field and a singleqmothose frequenay, is of the
order2m. The Feynman diagrams are shown in Fig. 4.1. The matrix elefoe this process
was first calculated by Roshchupkin [155], and also by Beretoal.in [31, 32, 34], however
without performing any concrete numerical evaluations.e Timtrix element has a crossing
symmetry (see the discussion in section A.3) with the onddser-assisted bremsstrahlung,
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which permits to write down the matrix element immediatdlige dynamics of the process will
however be rather different.

In our case, pair production is possible in the absence da#ez field through the Bethe-Heitler
process [25,62,118,178], if we assume the angular frequenof the single non-laser mode
photon to be larger than the thresha@ld. The presence of the laser then modifies the process,
so that we can speak about laser-assisted pair productipeofdrast, ifw., < 2m, the laser
field would not really assist; it would be even necessary twlpce any pairs at all, and we
would call the process laser-induced rather than justdassisted. In particular the transition
between these two regimes is interesting, by tuning the gapiraton frequency from, < 2m

tow., > 2m, we can study the transition from a laser-induced to a lassisted process.

We note the general observation [22] that for the laser feldatrticipate in producing an ap-

preciable number of pairs, the laser electric field in theé frasne of the nucleus has to exceed
the critical field. Alternatively we can obtain a large valoley with respect to the photon

four-momentunk? = (w,, k,),

Xy = = __gv (44)

if the gamma photon and laser photons are counter propagatirk, = 2ww,. In this section
we however consider only moderate gamma photon energiesdef-o m, so thaty., ~ wf/m.
We thus expect that for a subcritical field, ttodal cross section of laser-assisted pair produc-
tion is essentially unaffected by the laser field. Howevee, differential cross section, that
is, the dependence of the cross section on the directionsrergy of the produced patrticles,
can change drastically, since a strong laser is able to eratelthe produced patrticles after
the creation. For the same reasons, we expect the rate taypsmell for a subcritical field
andw, < 2m, where the Bethe-Heitler cross section vanishes ideiticalll of the asser-
tions above will be demonstrated in section 4.3 by expliainerical evaluation. As the total
number of pairs produced even by low energy energy phatons 2m, is large enough to be
experimentally measurable [51, 62], the addition of a gjri@ser makes it possible to experi-
mentally measure nonlinear laser effects on a pair prooiigiiocess, for nuclei at rest. Other
proposals [95, 121] require a beam of charged ions, movitig relativistic velocities.

In the following, after deriving the laser-modified crosstsen for pair creation, we present
results for two different scenarios: In the first (sectio)4we let the gamma photon counter
propagate with the laser beam. This represents the thealigtnost interesting setup, and also
the most numerically demanding. A considerable simplificabccurs if the gamma photon
with four-momentunk,, and the laser with wave four-vectbmpropagate in the same direction,
a condition that implies - £, = 0. Numerical results and discussion on this configuration are
found in section 4.4.
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CHAPTER 4: Laser-assisted pair creation

Figure 4.1: The Feynman diagrams for laser-assisted peation. External electron and
positron lines and propagators are denoted with a wiggimg superimposed on a straight
line, to stress that the laser-lepton interaction is tikat@nperturbatively. The electron is cre-
ated with effective four-momentumn_, the positron is created with effective four-momentum
¢+ and the intermediate electron propagator momentum is ddrimtp... The absorbed non-
laser mode photon has four-momentimand the virtual Coulomb field photon, depicted with
a dashed line, has three-momentgniTime flows from left to right.

4.2 Matrix element and cross section for laser-assisted pai
creation in a linearly polarized laser field

In this section we derive the matrix element and the expoaskir the cross section of the
considered process, pair production in the combined fiela ghmma photon, Coulomb field
and a laser. Here, we will treat linear polarization of theeleonly, but circular polarization can
be handled in the same way as for bremsstrahlung, see sions@&.5.

4.2.1 Matrix element

By the crossing symmetry of QED processes, also applicablaser-assisted processes as
discussed in section A.3, the matrix element for pair prtidads precisely given by the corre-
sponding bremsstrahlung matrix element (3.26), with tipaeements, — —k,, p; — —p-,

py — p— andu,,(p;) — v, (py). Of course, it is also possible to derive the matrix element
using the usual Feynman rules from appendix A, which cartstan independent check of
validity. In any case, the matrix elemesif™" for the process of pair creation in the combined
field of a gamma photon, Coulomb field and a linearly polarilesgr is the sum of the two
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laser field
diagrams in Fig. 4.1:
P _ o Z Zedm Qs + Q- +nw —w,)
V2w, Q,Q_V3 q’
i P +k62a2/(4k p_)+m
MS FS n
X Uy_(p )( P (4.5)
Dy + ke?a?/(4k - py) +m
Fs+n Ms
+ p+—m2+2K + Uy (p+)
where
M3 = Ao(s,as — Ga, T — Ba)éyn
~ eka cak
+ Ai(s, 0 — @y, FO: — Fa) <€7,A — + = é’y,A)
2 () 2k () (46)
~ cak eka
A e B .
+ 2(S7O[i aiuzFﬁi Bi)(:F2k’-p:t)€%)\2]€‘ﬁi’
F = Ao(s, ax — dz, TP — Fe)°
~ eka cak
+ Ai(s,ax — O, TP+ — BJF) (70 - + = '70>
2k- (7*) 2k () (4.7)
cak eka
A = O
+ Q(Saaj: Oé:FazFﬁﬂ: BZF)2]€ p:F (ZFQ/{:-pi)’
andp, = —q4 + sk + k, andp_ = ¢_ + sk — k, is the intermediate momentum of the

propagatorsk., = (w,, k,) ande, , is the wave four-vector and the polarization (labeled with
A = 1, 2) four-vector of the absorbed non-laser mode photon. Thenaegts of the Bessel
functions are similar to the bremsstrahlung case,

ay =ea-py/(k-py), By = e*a*/(8k - py), (4.8)

ar =ea-ps/(k-py), By = e*a®/(8k - ), (4.9)

The+ and— signs refer to the charge of the involved particles, that isiefers to the positron
momentum ang_ to the electron momentum. If needed, the denominators gbriygagators
are regularized by the terii’,., which is explained in detail in subsection 4.2.2.

4.2.2 Regularization of the propagators
For a proper regularization of the propagators [104,164] ds for the bremsstrahlung case (see
subsection 3.4.1), crucial to include both the imaginargsmshift in the propagator according

tom? — m?2 — 2imI'(k - p.) and the imaginary energy shift in the positron and electoum-f
momentumy,. as@Q+ — Qi+ — z F(k; q+). The corrected denominators of the propagators
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look like

P2 —m?—pt —mi+2ml(k-p_) — Qiﬂ(Q_ + sw —wy)I'(k-qo)

Q-

m (4.10)
=p> —m?—2imDl(k - k,) — ZiQ—(sw —wy) (k- qo),
and
Py —m?—pr—m?+2iml(k-py) + QZ'QE(QJr — sw—wy)'(k-q4)
e (4.11)
=pi —mi +2iml(k - k) — QiQ—(SW +wy)L(k - q4),
Jr

where the last line in both equations hold$'{fr) (again, not to mix up with the mathematical
Gamma function) is linear in the argumentWe have seen in Fig. 3.2 that this holds for small
values ofr/m? < 1074, but if the pairs are produced at very high energies, or iftbguency

w of the laser is large, the behavior Bfz) must be investigated in the considered parameter
range. Equations (4.10) and (4.11) define fheused in the expression for the matrix element
(4.5).

The above discussion makes clear how to, in principle, exqad the propagators so finite
results are obtained even if the on-shell condition is Batls However, as is discussed in
subsection 4.3.2, we only discuss the subcritical case: 1, and therefore our results are
independent of the actual regularization method.

4.2.3 Cross section

From the matrix element we obtain by the usual methods [#tltfierential cross sectioio,
averaged over the polarization of the gamma photon and sdrores the spins of the electron
and positron,

21
T

1 Py g | gpa
do == pair
°=3 2 (27)3 (27)3 }Si

spin, pol.

d’q, d*q-
I% ) (273;3 (27?)3 15,%0(Q4 + Q- + nw — w,), (4.12)

spin, pol.
n

where the last line defines the partial squared amplittide Numerically, the spin and po-
larization sums are performed in the same way as for the lsteaimbung matrix element, see
subsection 3.5.2.
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4.3 Numerical results and discussion on laser-assisted pai
creation: gamma photon and laser wave counter propa-
gating

In this section, we present results of a concrete numericuation of the differential cross
section. If not stated otherwise, we take the atomic nuniber 1, but we remark that since
the amplitude is calculated in first Born approximation, thess section scales a&. Close

to the thresholdv., ~ 2m, Coulomb corrections to the first Born approximation areeexed

to make significant contributions [136], at the level of a fegrcent forZ = 1. In particular,
the differential cross section will no longer be symmetrithwespect to electron-positron ex-
change, since the positron is repelled by the nucleus. Hervewce our aim here is to compare
the laser-modified cross section with the Bethe-Heitlesgrgection, and we can assume that
the magnitude of the Coulomb corrections to the laser-drbssoss section is of the same size
as for the laser-free case, we restrict ourselves to thedfid&r Born approximation here. The
frequency of the laser is taken to be= 1 keV, and the amplitude is chosen such that the
classical nonlinearity parametér= —ea/m is of order unity. Experimentally, this choice of
parameters can be realized in either of the two followinghades. For a high-power laser,
operating at a photon energy bV and intensity of) x 10" W/cn?, head-on collision with a
relativistic nucleus with a Lorentz boost factpr~ 500 will give ¢ = 1 andw = 1 keV in the
rest frame of the nucleus. In an alternative scenario, askatx-ray free electron laser [151]
applied to a nucleus at rest may also give access to the pamaabove. Heré = 1 andw = 1
keV in the laboratory frame requires an intensitydot 10?3 W/cnm? at the focus of the laser.
In this regime, the peak electric field of the laser is stillamsmaller than the critical field,
Epea E. = —€ew/m < 1. We also expect that the qualitative behavior of the crosgmes is
independent of, as long as < 1. We consider the case where the laser counter propagates
with the gamma photon, and describe the directions of thdymed electron and positron by
the angle®_ andd, , as depicted in Fig. 4.2.

4.3.1 Energy cutoff

In principle, since the sum overin Eq. (4.5) extends from-oo to +00, the created positron
and electron can acquire arbitrarily high effective eres@,, @_. This should be compared
to the field-free case, given by the Bethe-Heitler formuls] [®vhere the cross section vanishes
identically for positron (or electron) energiés. > w., — m. In practice, however, an apparent
cutoff occurs in the energy spectrum, and thereby limitsatreglable energy for the produced
pair. In the following, we assume the directiops/|q_|, g /|g.| of the electron and positron
given, and consider the differential cross section (4.%2) tunction of the effective energy,
of the positron. The effective energy_ of the electron is fixed by energy conservation for each
n. It follows from the expression (4.5) that to find the energyof, we should consider the
behavior of the function

Hn _ i AO(Sva— - d)ﬁ— - ﬁ)AO(S —n, &y — &7ﬁ+ - ﬁ)

s+ C

(4.13)

S=—00
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z T

Figure 4.2: lllustration of the geometrical setup of thesidared problem of laser-assisted pair
creation.

as a function of.. As follows from the discussion in section 4.3.2, we can assthatC' is
non-integer. As shown in subsection 5.3.5, the functiob3yhas the same cutoff properties as
the generalized Bessel function

AO(nv Q. — Qg ﬁ— - ﬁ-i—)a (414)

providedC' is larger than the cutoff index of both of th&’s in the numerator in Eq. (4.13).
AsfB. — By = [(k-q ) '+ (k-qy) Y e%a?/8 < 0, and high values of), are obtained by
absorbing photons, that is, for negativat follows thatQ‘i“tOff is the largest positron energy for
which the inequality

Tpos. cutoff > |n|7 (4.15)

is still satisfied. For the integer,.s. cuons S€€ EQ. (2.49). Since the quantitiesq_ andk - ¢4
involve direction cosines, it becomes clear that the energgff is direction dependent. In
particular, this implies that the maximal ener@g"™°" will depend not only on the direction
of the positron, but also on the direction of the electronoider to determine the direction-
dependent energy cutoff, one therefore proceeds as folldwghe first step, one fixes the
directions of the electron and positron, which defings. cuorr@s a function of: and@),.. In
the second step, one vari€s and in this way finds the largest positron effective enepgy
satisfying Eq. (4.15).

As a concrete example, we let the positron and electron loeegjat equal angleés. = 6_ = 6,
and show in Fig. 4.3 the cutoff as a functiorgdbr different values of the intensity parameger
The frequency of the single photonus = v/6 m, which corresponds exactly to the threshold
value2m, for ¢ = 1. In Fig. 4.4, we also show a concrete evaluation of the diffeal cross
section for the corresponding parameters, compared ta#ez-free case. The magnitude of
the differential cross section is here significantly lartjt the case without the laser, and also
displays a complex oscillatory behavior.
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Orad]

Figure 4.3: Effective energy cutoff as a function of the angl= 6, = 6_, resulting from
the solution of Eq. (4.15). For comparison, we also show ffeztive energy that would result
if the positron were created with the largest available gynén absence of the laseF, =
Enax = m — w,, and then placed in the laser field with fixed directiongaf (all curves are
labeled accordingly). The difference of the latter two @#vo the laser-dressed solution is
because of the correlation between the electron and positduced by the laser. This kind of
correlation was also observed in [121].

§ =10, x50
6 8

4
Q+/m

Figure 4.4: Here we show a concrete example of the crossebtir = 2.8 rad, chosen to
maximize the cutoff energg" for £ = 2. We havet = 0 for the red curve$ = 1 for the blue
curve, andt = 2 for the green curve. The “laser-assisted” curves show a agscillatory
behavior, with a peak just before the cutoff. The cutoff poas predicted by Eq. (4.15) are
indicated by vertical arrows. Note that the curvesgfor 1 and¢ = 0 were multiplied by a
factor50; the ordinate axis is kept on a linear scale.
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4.3.2 Resonances and competing processes

In principle, the matrix element (4.5) diverges if one of ihiermediate momenta., p, satis-
fies the on-shell condition

P2 = (g +sk—k)?=mi Pl =(ky—qp +sk)?=m] (4.16)

for somes. Physically, this means that the considered second-ordeeps splits up into two
consecutive first-order processes, laser-induced patioreby a gamma photon followed by
Coulomb scattering of the electron or the positron. As dised in subsection 4.2.2, the usual
way to regularize the matrix element, so that it remainsdiaiso at the condition (4.16), is
to add a small imaginary part to the energy of the electrosi{pm) [21], related to the total
probability for the intermediate state to decay by Comptattering. Finite values will results
also if the finite extent of the laser field or the frequencytWidf the laser or photon beam is
taken into account, like for the bremsstrahlung case. Ictieent thesis, however, we consider
a regime of parameters where the resonances are stronglyesgpd. Mathematically, this
means that the value af needed to satisfy the resonance condition (4.16) is latwer the
corresponding cutoff index for the generalized Besseltion¢ and that the contribution from
this index in the sum over is negligible, once properly regularized. Physically $peg, we
are dealing with laser parameters such that purely laskregd processes, that cannot occur in
the absence of the laser, have vanishingly small probgbaioccur. The basic requirement for
laser-induced processes like pair creation by a photon [B2$hoton frequency., ~ 2m, ~
2m) or pair creation by a nucleus [176] to have substantial @lodhy is that the peak electric
field Epeak = aw should be comparable to the critical fielfl,ea/ E. ~ 1, and, as mentioned
before, we consider only laser parameigrs such thatEpea < E.. This also means that at
the field strengths considered, there will be no competinggsses, so that our process will
indeed be the dominating one.

4.3.3 Apparent singularity

For some specific values of the parameters involved, we mag that
k-p-=k-q-—k-k,=0, (4.17)
or

Due to the numerous factors of (k - p,) and1/(k - p_) in the matrix element (4.5), it looks
as if the matrix element diverges. For definiteness, in tlleviitng discussion, we assume
parameters such that condition (4.18) holds, or is closeld. Solving Eq. (4.18) explicitly,
with k - k, = 2ww.,, and assuming, = (Q+, v/ Q% —m?,0,0) for simplicity, we obtain

m
= — 4.19
Q-i— wv + 4&)77 ( )
which makes it clear that the conditions (4.17), (4.18) cetnally be satisfied fow., ~ m.. If
Q)+ is fixed by (4.19)()_ becomes fixed by the energy conservation relafjon= w., — nw —
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@, . Another difficulty is that the arguments of the generaliBedsel functions tend to infinity,
lax — ay| — oo, ’ﬁi - BJF’ — 00, (4.20)

ask-p, — 0, since bothi, andg3, include a factot /(k-p..). For the propagator denominator,
we have
ﬁi - mi =2[sk - (ky —qy) — Ky q4], (4.21)

which becomes-independent a& - p, — 0. Therefore, one might think that the sum oyen
the matrix element (4.5) can be performed using the summ#ieorem (5.22) (see page 105).
However, in general we have, in the limit— 0,

Z Ao(s,a1 —c/x,by — d/x)Ao(s — n,as — c/x, by — d/x) y Ap(n,a; — ag, by — by)
xs + F F ’
(4.22)
for constant, », b1 2, ¢, d, andF, even though it is tempting to assume equality. We should say
that the limitz — 0 gives a finite result for the left hand side of Eq. (4.22).

S

As it turns out, the matrix element s finite, evenin the liknif.. — 0. We have not been able to

show this analytically, but accurate numerical evaluatitthe cross section (4.12) proves that it
istrue. There is also no physical argument why the crosgsesitiould be resonantatp.. = 0.

In fact, the requirement that the cross section should bt faticonditions (4.17), (4.18) can

be used as a sensible numerical check of the computer code¢aisealuate the cross section,
since finiteness requires a proper evaluation of#tseim of products of generalized Bessel
functions, and is furthermore sensible to sign errors antbaglifferent terms constituting the

cross section.

4.3.4 Angular distribution

For the field-free case, the pairs prefer to emerge at an dngle:/w., with the vectork,, [25].
When the laser field is turned on, we expect to find more paithendirection of the laser
wave vectork. This tendency is expected to increase as the intensityneess grows, since
with rising intensity the Lorentz force of the laser field pas the pairs increasingly in the
propagation direction. In Fig. 4.5, we display the diffa@raincross section integrated owér
andd@_, for ¢ = 1,2. The peak is seen to shift from the direction of the gammaghtid the
direction of the laser wave.

4.3.5 Total cross section

The total cross section is obtained by integrating the wfféal cross section (4.12) over the
energies) ., _ and solid angle§),, 2_ of the produced positron and electron:

N Q+|Q+‘dQ+dQ+Q lq_|dQ_dQ2_
Utot—/ Z (27?)

1S, 26(Q4 + Q_ +nw—w,). (4.23)

spln pol.
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Figure 4.5: The differential cross section integrated dkiereffective energie®.., for ¢ = 0
(solid red line),¢ = 1 (solid blue line) and fo€ = 2 (dashed green line). As in Fig. 4.3,
Wy = V6 m. The pair is emitted at equal anglés = #_ = 6 (see Fig. 4.2), in the plane
spanned by anda. We note that the area under these curves are notably diffesdich
implies that the presence of the laser enhances the numlmirsf produced af, = 6_.
The differential cross section integrated over all angldshawever, as we will see later (see
Fig. 4.6), be almost unchanged as compared to the laserdsee ¢
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Figure 4.6: The total cross section as a function of the feegyw, of the non-laser mode
photon, compared with the case without the laser field. Téerlxequency used is = 1 keV.
Due to the laser, there remains a finite probability of pa#ation below the field-free threshold
w~ = 2m. However, the magnitude drops exponentially, as expected.

Here, itis convenient to replace the sum over the numberafanged photons by an integral,
and to evaluate this integral with the delta function so thaquals the integer closest tqg,
with

no = (wy — Q4 — Q-)/w. (4.24)

Thisis a good approximationdf < (). ,w,, andifn, > 1, which is the case for the parameters
used. The remaining six-fold integral,

_1 ~ * Q+)g+| Q-lq-|
vy 3 [ a0 [ ao [ao [ SEEAEE s @2

spin, pol.” m

has to be performed numerically, we employ a Monte Carlo okefti44]. We note that this
method has been used before to obtain total rates for theugtiod of pairs from a colliding
laser beam and a nucleus [89, 167]. In general, Monte Casgiation is the method of choice
for integrals of high dimensionality where the accuracy dethis modest. In fact, for such
high dimensionality as 6, and with the evaluation of thegré@d being numerically expensive
(mainly due to the generalized Bessel functions with lamaes of both arguments and index),
we have not found any other integration method than the MGat#o integration method that
can deliver modestly accurate numerical results withisseable computer time. The result of
one such calculation is shown in Fig. 4.6, where we presentiotial cross section as a function
of the frequency, of the perturbative photon. As expected, in the region wpaneproduction

is possible without the laser, the rates are almost indjatghable.
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Figure 4.7: Schematic picture of the considered pair avagirocess. A low-frequency, high-
intensity laser beam of linear polarization and a highfiestcy gamma photon, propagating in
the same direction, impinge on a stationary nucleus, degies a filled black circle, to produce
an electron and a positron. The an@ledenotes the ejection angle in the plane spanned by the
propagation direction and the polarization direction & thser. Note that the wavelengths of
the two waves are not drawn to scale, in reality we considec#ise where the laser wavelength
is many orders of magnitude larger than the wavelength ofémema photon.

4.4 Numerical results and discussion on laser-assisted pai
creation: collinear gamma photon and laser wave

In this section, we present results on the setup, where tbtoptbeam and the laser beam
propagate in the same direction, schematically picturefl7n This configuration is actually
nothing else than pair creation by a Coulomb field and a plaaeeywwith one weak, high-
frequency component, and has been studied before: see2]3&{8wever, no numerical work
was performed, and we are the first to actually evaluate thes@ection. The idea behind con-
sidering the configuration shown in Fig. 4.7 is the followirlgis known from the field-free
case [25,118] that the pairs prefer to come out roughly irsttree direction as the propagation
direction of the creating photon. However, for low photoemgmesw., ~ m, the angular distri-
bution is quite broad. If a high-power laser is added, theshtx force of this laser pushes the
pairs in the forward direction, and therefore focuses tloelpced pairs to mainly appear in the
forward direction. The total number of pairs produced, ertthtal cross section, is not changed
for subcritical lasers, as argued in the introduction o tthiapter.

4.4.1 Simplification of the matrix element in the collinear gometry

That the laser, with wave four-vectbt = (w, k), and the gamma photon, with four-momentum
k# = (w,, k,) propagate in the same direction means that

ky k= 0. (4.26)
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This fact provides for a considerable simplification of thatnx element, under the condition
(4.26) the expression (4.5) can be written as

00 3 B B
Spop. =2mi Z ZePm  0(Qy + Q- —nw —w,)

2w, ELE_"(g- +q+ —nk—k,)’

—— Ak’y_pf_m ﬁJr_kﬁ/_mA
— L+ L/ + 4.27
X U, <€v TS + TR €& |u,, ( )
where now
F, :A0<n7 Qy — _ﬁJr - 67)70
0, A7 ~7.~0
Yeak  eaky
A —a_,—fy — (-
+ 1(n7a+ o ) ﬁJr ﬁ ) <2kp++2kp>
e® a?wk
+ As(n, oy —a, =4 — ﬂ)m’ (4.28)
and .
ea- p+ e‘a
= = ) 4.29
a4 L - Dt ) ﬁ:l: 8k e ( )

Note that if we choose the propagation direction of the lasgt/w = (1,0,0) = k,/w.,
thennk + k, = (Q+ + @_,0,0) by energy conservation, so that the Coulomb momentum
g = q_ + g — nk — k, is independent ofi. From the expression (4.27) we gather several
differences compared to the general matrix element (4.8)(4127), there is only one sum
overn, the intermediate propagator sum oveis absent. This means that the possibility of
the intermediate particle to go on-shell has vanished. éncthllinear geometry there are no
resonances. The reason is simple: As already mentionethttidield gamma photon + laser
wave is a plane wave, and is as such unable to produce patsafn. Pair production by a
plane wave together with a Coulomb field is indeed possildl@,[121, 176], but absorption of
a photon from a plane wave by a free electron is not, so thatefjgence process pair creation
by Coulomb field and plane wave followed by photon absorpsompossible. We conclude
that the split-up of a second order laser-dressed processan first-order processes does not
take place here.

4.4.2 Angular distribution: focusing of the produced pairs

Here we present the evaluation of the angular distributiothe pairs, the differential cross
section. We note that due to symmetry reasons, the diffi@tecross section is symmetric
under the exchange of electron and positron, and we shoW follawing figures, the positron
spectrado/d€), . The differential cross section is formed from the matrieneént according
to formula (4.12), just as the case with counter propagaamgma photon and laser wave. The
laser frequency is chosen as= 10 eV. However, we expect that the qualitative behavior of
the cross section is independentugfas long asy < 1. Again, instead of performing the
sum over photon orders in Eq. (4.27), it is convenient to replace the sum with angraé
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‘ eo[rad] C1 c b [ MeV_Z]
=6 |0.15 130 15 0.95 x 10~*
10 | 0.11 150 25 1.1x1073

Table 4.1: Table showing the numerical values used in E§0§40 produce the solid lines in
Fig. 4.8.

and to utilize the delta function to integrate overso thatn = ny = (Q+ + Q- — w,)/w.
The remaining fourfold integral in the differential crosscgon is evaluated by employing a
Monte-Carlo integration routine [144]. To better guide &ye, we furthermore perform a fit of
the pointwise obtained Monte-Carlo differential crosstiesec which is necessarily plagued by
numerical sampling error, to a function of the form

doit b

dQ+ - 6*‘31(9-%*90) —+ 602(9+*90)’ (430)

whereb, ¢, » andf, are positive constants. We found this functional form to benarically
adequate, and this is probably the form of the true expregsicthe differential cross section.
At least the exponential decay for angteslarger than the peak anglg has been numerically
confirmed.

In Fig. 4.8, we show the cross sectida/dS2,, which remains differential only in the solid
angle(), of the created positron. Observe that here the solid andgesréo the direction
p./|p+| of the positron outside the laser, to allow explicit compani with the laser-free case.
The gamma photon energy, is w, = 1.25 MeV > 2m, so that pair production is possible
without the laser. However, as is clearly seen in Fig. 4 8atigular distribution in the field-free
case [25] is broad, indistinguishable from an isotropidrdbation within the parameter range
plotted in Fig. 4.8. Quite to the contrary, the laser-drdssgrves show sharp peaks, with the
peak height increasing with increasing laser intensity, #u@ peak position given roughly by
Boeak = 1/€. Also observe that the laser introduces a “splitting” of #mgular distribution, so
that very few positrons appear in the laser propagatiorctimed, = 0. The numerical values
of the constants used to produce the dashed and solid linés#$d® and¢ = 10 are displayed
in table 4.4.2.

Actually, the peak anglé,..« = 1/ can be intuitively explained by the classical equations
of motion. A similar way of reasoning can be applied to iotimainduced by a laser, and
is called “simple man’s theory” [18]. If we assume that thesipron is created during a time
much shorter that the laser field period, at the laser phgseith initial momentuny_; (with
momentum distribution according to the Bethe-Heitler sresction), the kinetic momentum
p. evolve according to Eqg. (2.11):

pi(0) =pl; + e [A*(¢o) — A*(9)]

zplj — (26[40(6) — A (@)1, — (47 (6) 4,(6) — A (60) Au(0)] ).

. (4.31)

depending on the initial phasg at the moment of creation, and the initial momentum.
Now, what is actually measured is the asymptotic momenium- p(¢ = oo), that is, when
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Figure 4.8: The differential cross sectidn/d(2, as a function of the angle of ejectidn (see
Fig. 4.7), in the plane spanned by the propagation diredijonand the polarization direction
a/|a|. The laser frequency is = 10 eV and the gamma photon energy.is = 1.25 MeV.
Here, the parameter valug¢s= 6 and¢ = 10 correspond to laser intensitiéds= 3.2 x 102!
Wicm? andl = 8.9 x 102! W/cn?, respectively. The nuclear atomic numbetds= 1, and
we remark that as the cross section is evaluated in the first 8aproximation, it scales &&’.

In the graph, circles represent numerical estimates of ifferehtial cross section obtained by
fourfold Monte-Carlo integration, and the red dashed aneé Bblid lines are analytical fits [see
Eq. (4.30), numerical values in table 4.4.2] to the numériabues. For comparison, the solid
black line shows the laser-free case, multiplied by a faofor0* (the laser-free differential
cross section would otherwise not be visually distinguid&érom zero). For the conversion to
other frequently used units for the cross section, one L=V 2 ~ 4 x 102 barn= 4 x 1022

cm’.
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the laser pulse has passed. Since it is assumed that the petdatial is adiabatically turned
off, and satisfiesi*(oo) = 0, we have

Py =pl; + eA"(¢o)

K v, o (4.32)
o (26 (G0)pt+ A () A (o))
so that the anglé, is given by
Y Vo1 eAY
0+ = arctan @ = arctan ’p“ te (¢0)’
25 VLo 5 (€ A200) 20 AG)| gy 53
2k - pyi

~wlea cos ¢y’

where we have assumdd = (w,0,0), A*(¢) = (0,acosp) = (0,0, |alcos¢,0) and the
last approximation is valid for small anglés < 1 and for small initial energie&’,; so that
the terme2A? is the dominating one in the denominator of the first line 088}. Typically,
for w, ~ 2m, according to the Bethe-Heitler distribution [25], the &yyeis shared between
the positron and electron so that; = w,/2. Now, using the Bethe-Heitler distribution of
positron momenta (assuming the energy tathe = w,,/2), so that positrons initially emitted
with momentump’;, end up at angl@, after interaction with the laser field, and summing
the contributions from all laser phases/2 < ¢, < 7/2, we obtain a modified momentum
distribution, as shown in Fig. 4.9.

4.4.3 Total cross section

We show in Fig. 4.10 the total cross sectigf, obtained in the same way as for the counter
propagating case, see Eq. (4.23). Note that the parameged#farent compared to those used
to produce Fig. 4.6. Here we have= 10 eV and{¢ = 10. This is a more realistic choice
of parameters, which however makes it more demanding to rtrekentegration algorithm
converge. As a result, we could only do the calculation foaléwalues ofw, ~ 2m close to
the threshold.

4.4.4 Experimental realization

In this subsection we elaborate on the possible experirheatizgation of the results found in
section 4.4, focusing of the created positrons in the aadlirsetup of gamma photon beam and
laser beam. A good way of obtaining photon beams of modgrhtgh energy is by Compton
backscattering of photons from a laser (for example an XF&E])[on high-energy electrons.
If we look at the formula (3.9) for the emitted frequency, for= 1 (since the laser is assumed
to be weak { < 1), only one photon is absorbed, which also means¢hat p;), we retrieve
the usual Compton formula [141] for the frequencyof the scattered photon in the lab frame,

k- p; N 4F?w

= R 4.34
Di - kyJwy + k- kyfw, m2 "’ (4.34)

Wy
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Figure 4.9: lllustration of the modification of the diffeted cross section with inclusion of
the laser. The dashed red curve and blue solid curve arenebtély summing over all laser
phases, assuming that the positron is created with the momegiven by the Bethe-Heitler
distribution. The laser-modified cross sections are naeedlso that the number of created
positrons is the same as for the field-free case. From thghgrae see by comparing with the

quantum treatment, Fig. 4.8, that the positig ~ 1/¢ is correctly predicted, but that the
peaks are much narrower in Fig. 4.8. This implies that a quigntum treatment is necessary to

obtain the detailed features of the spectrum.
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198 2 2.02 2.04 2.06 2.08

Wy /m

Figure 4.10: The total cross section for electron-posipain creation close to the threshold,
displayed in logarithmic scale as a function of the perttivegphoton energyw.,. The solid
black line shows the field-free case, given by the Bethelétdibrmula [25]. The cross section
is in this case identically zero below the pair productiaresfold., /m = 2. Below threshold,
the laser-induced (rather than laser-assisted) pairioreatoss section exhibits an exponential
decrease. Parameters in the calculation are the same ag.i#.& w, = 10 eV, { = 10,

Z = 1. Note that in this graph the gamma photon is propagatingarsime direction as the
laser, as opposed to Fig. 4.6, where the gamma photon améladaken to counter propagate.
Although this makes a considerable difference in the aiafgtmula for the matrix element
[compare Eq. (4.27) with the more complex expression E§))4he behavior of the two curves
is very similar. One quantitative difference is that theajeof the laser-induced cross section
below the threshold,, = 2m is here even faster than the corresponding curve in Fig. 4.6,
which can be explained by the lower valuexofin Fig. 4.6, we havey = (w/m = 2 x 1073,

as compared tg = 2 x 10~* in this figure.
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where E; > m is the energy of the incoming electron, and the last appraton assumes
w < m, that the initial electron and the laser collide head on atallkangle p;-k+|p;| | k| < 1,
and that the photon is scattered in the same direction ast¢baning electronp; - k-, = |p;||k, |,
which represents the geometry where the largest photogeneis achieved. From Eq. (4.34)
we gather that high energy photons can be obtained by dogttaser light at high-energy
electrons in for example a storage ring. As an example, taiolackscattered photon energy
w~ = 2m (pair creation threshold) at = 10 eV, one needs electrons with enetgy~ 80 MeV.
Now for the experimental realization, we propose to synciz@®photon pulses produced from
Compton backscattering with a laser pulse from a strong.lasecording to [81, 134], pulse
duration of the gamma photon pulse is determined by therelestn the storage ring. We
can therefore assume gamma photon pulse length 1 ps, wehtrep rate 1 Hz (much higher
repetition rates can be obtained, but as will be clear bellosvjimitation of the repetition rate
comes form the strong laser), add, = 107 photons per pulse [81, 134]. For the photon
energy, we assume, = 1.25 MeV, to comply with the parameter values assumed in Fig. 4.8.
We note that much higher photon energies are available,ifigation being the energy of
the electron beam [16, 81]. As the atomic target, we assumenm Xhick foil of lead ¢ =
82). Lead has average atomic masg = 207.22 g/mole, densityl1.34 g/mole, so that the
number area density in the 1-mm-foil ¥, = 3.3 x 10*! atoms/cm (Avogadro’s number
N4 = 6.022 x 10%). From the numerical evaluation and theoretical argumevisknow that
the total number of pairs is determined by the gamma photensyhich w, = 1.25 MeV
andZ = 82yieldsoy = 1.3 x 1074 MeV—2 = 5.4 x 10726 cm?, in accordance with the
Bethe-Heitler cross section. The number of paigs.- produced during one pulse is therefore
Neto- = o10tN, Ny = 1.8 x 10°. If now a long laser pulse of duration 1 ps (same duration
as the gamma photon pulse) is synchronized with the gammambpalse, it follows from the
preceding discussion and results in this section that #er f@cuses the produced particles to
emerge at a typical angle~ 1/£. To obtain the tight focusing shown in Fig. 4.8gat= 10,
the pulse energy required is 1.4 J, if a laser wavelength 1054 nm and focusing of the
pulse down to one wavelength is assumed. This kind of lomgngtlaser pulses are available
at for example the Vulcan laser facility in the UK [173]. Ify addition, the same repetition
rate is assumed, it follows that essentially all palrs (x 10 per pulse) emerge with the angle
0 = 6° + 2° (see Fig. 4.7). The uncertainty out of the plane spanneddyater polarization
direction and the propagation direction is approximately3°.
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Chapter 5

An essential ingredient of laser-modified
QED processes: generalized Bessel
functions

5.1 On special functions in general

Special functions like the Bessel function have always hegrortant to theoretical physics.
What makes a special function special? Most often, a spaaiation is defined through its
differential equation. However, just by stating that onetipalar function solves a differen-
tial equation contributes nothing to the understandindghefdolution. A function is only pro-
moted to be “special” once its properties are well undeitddeveral representations should
be known, asymptotic expansions in different regimes ofpdn@meters together with analytic
properties should be there so that a feeling for the funatiaquestion can be developed. The
definitive source of information about special functionsfigourse the classical reference [1].
Finally, one should not only be able to make a graph of thetfanan reasonable time, but also
be able to use the function as a building block in more corap#id formulas, for making actual
calculations of physical processes. This last demand i®rixg underestimated, since itimplies
that there is an efficient numerical algorithm for evaluatwailable. If one is to sum or inte-
grate over complicated functions depending on the spaaakion, fast evaluation is called for.
For many special functions this is the case, the common oésded in commercial software
such as MATLAB® or Mathematic®.

In theoretical physics one sometimes reads the word “exactanalytical” for an expression

describing some physical quantity. Usually this means tthatexpression is free from inte-
gration or indefinite summations. Expressions containpegsl functions are however often
considered to be analytical, even when this means nothsgtbhn replacing the integration
over one function with another symbol. To obtain real nuralmrt of the formulas, numeri-

cal algorithms for evaluation are necessary. A complex tdancontaining a large number of
special functions is useless unless definite numbers carodeged out of it.

In this chapter we present an overview of two special fumgtiomportant to the theoretical
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description of laser-modified QED, the usual Bessel fumctiod the generalized Bessel func-
tion. In the description of relativistic laser-matter irggetion, the generalized Bessel function is
extremely important in the case of a linearly polarizedla3é&e reason is that the nonpertur-
bative, exact solution, to the basic problem “electron irarg) laser field” can be expressed
through generalized Bessel functions [see chapter 2], atidtins solution as a basis we can
include the interaction with other fields in a perturbativeyw

In this chapter, being more mathematical in charactergtterin does not stand for the electron
mass, but is used as an integer index, and used as a real variable and does not have the
meaning of the fine-structure constant.

5.2 Usual Bessel functions

First introduced by Bernoulli, and systematically studidBessel, the usual Bessel func-
tion J,(«), for integer index:, is one of the most widely used special functions in theoaéti
physics. The standard reference on Bessel functions id.[1A4the context of laser-matter
interaction, Bessel functions appear as coefficients irFtheier series expansion of the wave
function of an electron in a plane wave electromagnetic fiakiwe have seen in chapter 2, for
electrons dressed by a circularly polarized laser field, etetge normal Bessel functiof, («)
directly. In the case of a laser of linear polarization, wstéad have the generalized Bessel
function Aq(n, a, 3), which however can be defined as a sum over ordinary Besselidos.
The Bessel function and the generalized Bessel functiorvameg similar, and share several
properties. A thorough understanding of the generalizess8efunction thus necessitates a
knowledge of the properties of the usual Bessel functionthénfollowing, we discuss some
properties of/, («), and most important, we describe a numerical algorithngiaily due to
Miller [26], for efficient calculation of large arrays of Bes function.

5.2.1 Basic properties of the usual Bessel function

Our viewpoint of the Bessel function is that it is the coe#fidi in the Fourier series expansion
of the periodic functiorexp (i« sin 6):

eiasinez Z Jn(a)eme. (51)

n=—oo

By performing “Fourier’s trick”, that is we multiply witlexp(—im#) on both sides of Eq. (5.1)
and integrate over one perigdl /" _d6, we find the integral representation

" 2r m

1 T 1 T
I () / elsint=mdgy — — / cos(asin @ — m#)dé, (5.2)
—m 0

where the last equality follows from symmetry arguments. Exq2) can be taken as a definition
of J,,(«) for real values ot and integer. (which are the only cases we deal with). The equation
(5.2) gives immediately two symmetries:

To(@) = Jn(—a) = (=1)"Ju(—a). (5.3)
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Another property that follows from the definition is
Jn(0) = don, (5.4)

whereJdy, is Kronecker’s deltaj,, = 1 if n = 0, and vanishes otherwise. The relation (5.2)
may also be used to check that the Bessel function satisédsitbwing recursion relation:

2nJ,(a) = a[Jpo (@) + Jpo1(a)] . (5.5)

The recursion relation (5.5) is an important tool in the ntina evaluation, described in sub-
section 5.2.3. For sums of products of Bessel functions we ha

n(0+6")—mb—m’0'+asin 0+Lsin 0’ ]dedel
nz_oo Jn+m n+m nz_oo A2 /
_ 1 / U i[0(m/ —m)+(a—p) sin@}de (56)
" or o
:Jm,m/<04 - 5)7
where we have used the identity
1 ‘
) e = > 62k + ) = (), (5.7)
n k
since we have in this case| < 27. Eq. (5.6) yields as a particular case
> @ =1. (5.8)

n=—oo

Another expression for the Bessel function is through amitgfisum [174],

Jn(@) = (%) 2 % (5.9)

Jj=

The two representations (5.2) and (5.9) are the only onesilivesg, there exists however many
more ways [174].

5.2.2 Saddle point approximation and cutoff properties

The integral representation (5.2) can also be used to edécabymptotic expansions &f(«),

for large values of, and «, by the saddle point method. In short, the saddle point ntetho
works as follows: By Cauchy’s integration theorem [145], @e& deform the integration path
in Eq. (5.2) into the complex plane, without changing theueabf the integral. If the path is
taken to go through the saddle points (also called statyopaints) of the integrand, that is,
where the argument of the exponential has vanishing demyahost of the contribution to the
integral will come from an area close to the saddle point. G@io a first order approximation,
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we expand the integrand around the saddle point, and extendtegration limits to infinity, so
that the integral can be taken analytically. In generalcfioms expressed likg = [ '/ @) de,
with large|f(z)|, have a sizeable value if there are real stationary points,aae at least ex-
ponentially small if the stationary points are imaginar@3]. To find the asymptotics for the
Bessel function,, («), we first find the stationary poidt of the exponential, which satisfies

cosf, = n (5.10)
a

Based on Eq. (5.10), we thus expect that|fofa| > 1, the Bessel functiod,(«) is exponen-
tially small. Written out, the saddle point approximation@unts to, withf (6) = —nf+asin 0,

Jn(o) = Re l /7T e f@4d9 ~ Re l / f (0)+1"(8:)(6=6:) 4
0 ™ Jc

T

(5.11)

~ R i )% 2

| f7(0s)]

where the curve’ is a straight line with constant imaginary part passing uggiothe saddle
point, and we useq;,* cost?dt = [;*sint?dt = /27 /4. We use formula (5.11) to compute
two asymptotics:

a > n. We assume positive anda. Here the saddle point is real and tendcte 6, = 0,
or ;, = w/2 in the limit n/a — 0. If we take the saddle point witsin6, = 1, we get
f(0s) = —nm/2 and f"(0s) = —a, which inserted into Eq. (5.11) gives

2
Jn(a) ~ “E cos (a — %T - Z) , a>>n. (5.12)

n > a. Herecosfy = n/a > 1, which means thad; is purely imaginary. This time we
have to take the saddle point with negative imaginary parthatsin 6, = —in/a, andf, =
—i(In 2n — In «), which together with Eq. (5.11) produces

1 ea\"
~ ca , 1
(@)~ (2n) . n>a (5.13)

Thus, we can speak of a “cutoff” at= «, beyond which the amplitude of,(«) drops sharply.
This cutoff is depicted in Fig. 5.1.

5.2.3 Miller’s algorithm for numerical evaluation

As mentioned in the introduction, to be able to use the Besseltions in actual numerical
evaluation, a fast, stable numerical algorithm is necgsséhe most widely used algorithm
is originally due to Miller [26], and has later been extendeul refined by various authors
[1,71,115,144]. Another good method of numerical eva@rats direct integration through
a path of steepest descent [108]. In this work we use Millgigorithm, since it is suitable
for producing many Bessel functions of the same argumenpfadifferent indices, needed to
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Figure 5.1: The graph to the left shows the Bessel functigfa) as a function ofn, with

a = 10%, the right graph shows the absolute valug(«)| on a logarithmic scale. The cutoff
atn = « is clearly visible. In both graphs, the points are conneutil blue lines. The rapid
oscillations then causes the left plot to look “filled”.

calculate the generalized Bessel function. Miller’s aitlon is based on the recursion relation
Eq. (5.5) and Eq. (5.1), which with= 0 can be rewritten as

Jo() + 2iJn(a) =1, (5.14)

where we used_,,(a) = (—1)"J,,(a). We consider the case for positiveandn. First we note
that we cannot use the recursion relation (5.5) directhhendase of growing, since besides
J.(a) there is also a second functidf)(«) satisfying the same recursion relation [174]. This
function however, goes as [174]

V(o) ~ —\/% (i—Z)n (5.15)

asn > «, a factorial growth. Thus, when trying to apply the recumsielation (5.5) in the
direction of growingn, any round-off error that introduces a little bit &f,(«) besides the
desired solution/,,(«) will soon dominate completely over the factorially smdll(«). The
solution is now to begin the recursion at some largg: > «, and apply Eqg. (5.5) in the
direction of decreasing. In this direction, any erroneous,(«) will disappear exponentially
fast. In addition, Miller’s observation was that it is pd#sito start the recursion with arbitrary
initial values, say/,.(«) = 0 andJ,g,.+1(c) = 1, compute the arrayy 1. nq.+1(c) @and then
normalize the values with the suth(«) + 25 J,(«) from Eq. (5.14). Miller’s algorithm
gives roughlyN number of significant figures of accuracy féy,(«), provided the downward
recursion relation is started at ag, satisfying at leastsit > m + N+y/m’, with nggar, m > «
[144]. Form < «, the recursion should be startednat: > o + N+/a' to obtainNV significant
figures (roughly) for/,, («).
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Miller’s recursive algorithm is a very efficient algorithrarfthe numerical calculation of Bessel
functions, especially if large arrays v _n+1,.. .n—1,n(a) are needed. This is indeed the case
when we want to calculate generalized Bessel functions frardefinition (5.18), see section
5.3. It should also be mentioned that Miller’s algorithm d@ncoded in a superior way [71],
[86, appendix C], to circumvent the problem of overflow on tleenputer. When starting the
backward recursion from a large index, at arbitrary initial conditions, subsequent values
of J,(«) tend to grow very fast, due to the extremely rapid increag@eérregionn > «, for
decreasing: [see Eq. (5.13)].

5.3 Generalized Bessel functions

As can be understood from the name, the generalized Bessetldn Ay(n, «, ) is a gener-
alization of the usual Bessel functioh) («), and is a function of one integer indexand two
real variablesy and . It was first introduced by Reiss [147] in the context of paeation by

a photon and a laser beam (later for field-induced ionizdtid8, 150]), and has subsequently
been studied by many authors [46—48, 50, 129]. Although tam @pplication area so far has
been laser-matter interaction, use of generalized Besggetibns is also made in other fields
such as crystallography [137]. The generalized Besselifumbas been even further general-
ized to several indices and more than two variables [45,4]9,0n the numerical side, there
has been comparatively little work. Apart from the impottaork of Leubner [101-103], no
publications on numerical algorithms for generalized Befsnctions exist. There is so far
nothing like the Miller algorithm fordy(n, «, 3). In the work leading to this thesis, we have
accomplished exactly this: a generalization of Millerg@ithm so that it works also for the
generalized Bessel function. This algorithm is presenesiibsection 5.3.3.

5.3.1 Basic properties

The generalized Bessel function share many of the propeofighe usual Bessel function.
Since the generalized Bessel function depends on two Vesiaistead of only one, things are
however more complicated. Similarly to the usual Bessettion, we view the generalized
Bessel functiond,(n, a, 3) as the coefficient in the Fourier series expansion of theogri
functionexpliasin 6 — i3 sin(20)]:

ei[asin@—ﬁsin(Q@)] _ Z A0<n’a’ﬁ>€in9’ (516)

n=—oo

which by virtue of Fourier’s trick yields the integral regentation

_i " —ing+iasin(¢p)—ifsin(2¢)
Almo.p) =5 [ e v 517
! /7r cos [—n¢ + asin(¢) — [sin(2¢)] de.
0

™
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5.3. Generalized Bessel functions

If we now insert the Fourier expansion (5.1) for each of thpagentialsexp (i sin §) and
exp(—i0 sin 20), the integral ovep collapses the double sum to a single one, so that the gen-
eralized Bessel function can be expressed as an infinite senpooducts of the usual Bessel
function:

m=—0Q

Either of Egs. (5.17) or (5.18) can be taken as the definitioAn, a, 3). The subscripf in
Ap(n, a, #) has the following meaning: We define

COS 962a51n9 Bsin(26)] Z AL TL a ﬁ) m@ (519)

n=—oo

with L =0, 1,2, .... From definition (5.19) follows that

Ar(n,a,8) = 5 [Araln— L f) + Apa(n+1,0,6)], (5.20)

with positive integell.. The A;’s are needed in the applications in chapters 3 and 4. Using th
sum rule (5.6), we derive the sum rule f&§(n, o, 3):

Z Ag(N +m,aq, B1)Ag(M + m, az, f2) = Ag(N — M, a1 — az, 1 — (), (5.21)

m=—00

or more generally forl, (n, a, 3)

Z Ai(m + N, oy, B1)Aj(m + M, 0z, B32) = A j(N = M,y — aa, 81 — 32),  (5.22)

m=—0oQ

for integer N and M. From partial derivation of the integral representatiod (% follows the
recursion relation

2nAg(n, o, 3) =a[Ag(n — 1, a, 3) + Ag(n + 1, a, )]

—20[Ao(n — 2,0, 8) + Ag(n + 2, v, B)] , (5.23)

which we found by physical means in section 2.2.4. Note thatelation (5.23) is more com-
plex than that forJ,(«), here every index depends on the four neighboring ones. riarge
since the recurrence relation (5.23) is of order four, tiaeedour linearly independent solutions,
see Fig. 5.6. Of the four solutions, only the trdg(n, «, 3) is normalizable. Still, Eq. (5.23)
can be used in a meaningful way for the numerical evaluatiofyén, «, 3), as we will see in
subsection 5.3.3.

Evident from the definitions (5.17) and (5.18), the geneealiBessel functions have the fol-
lowing symmetries:

Ao(naav _ﬁ) = (—1)”A0(—n,a,ﬁ),
A(J(n? _avﬁ) = (_1)11140(”’&’5)’
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from which follows
AO(_nv «, B) = AO(na -G, _ﬁ) (525)

When either of the argumentsor (5 is zero, the generalized Bessel functidg(n, «, 5) sim-
plifies to the usual Bessel function:

AO(nu «, 0) = Jn<a)7 (526)
and ;
-n N Eeve
Ao(n,0,0) = { A (5.27)

We conclude this subsection with the Taylor expansion falsarguments and/ > 0, correct
to second order:

Ao(N, . B) =00 + Lonr — 25 +(9)2 Lo o)+ (2) (Lons— s
0( , O )—No 2N1 2N2 9 2N2 NO B 2N4 NO
L af

4 (6N1 - 6N3) + O(agaﬁga OzQﬁ,BQOZ),

(5.28)

which is derived using Egs. (5.9) and (5.18). H&res Kronecker’s delta function. For negative
N we use the symmetry relation (5.25). This means also that

AN, ,5) =3 (Ao(N —1,0,8) + Ao(N + La, )

«

1 o 2 1 1
=5 On1 + §5N2 + v (=0n1 — dn3) + <—) (—551\/1 + 551\73)

2 2
2
1 1 o
+ (g) (§5N3 + §5N5 - 5N1) — TﬁéNzl

for N > 0. For the casé&V = 0 we have

+0(a?, 3%, %3, F*a),

(5.29)

A1(0,a, B) = ==+ O(a®, 3%). (5.30)

Finally, the case withi, gives

af
4

1
AN, @, 0) =3 (AN ~ Lo, ) + AN +1,0,))
1 21
=1 On2 + % (20N1 + Ons) + g (—20Nn2 — Ona) + (%) §5N4
2
1
+ (g) (51\74 + §5N6) — % (Ons +0n3) | +O(a?, 32,028, %),
(5.31)
N >0, and
1 o’ ? 3 43 24 52
AQ(O,a,ﬁ)Zé—g—z+0(a,ﬁ,aﬁ,ﬁa). (5.32)
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5.3.2 Saddle point approximation and cutoff properties

As already mentioned in section 2.2.3, understanding o€tteff properties ofdy(n, «, ) is
important for the understanding of physical processegewiin terms of generalized Bessel
functions, and has also practical significance. A rule isladdor how many terms that should
be included in sums for the matrix elements, Eq. (3.26) and4§). In this subsection, without
loss of generality, we restrict the discussion to positigeimnentsy and s in Ag(n, a, 3). This
will cover the general case, by virtue of the symmetries4).2nd by treating both positive and
negative values of. If eithera or 5 equals), the generalized Bessel functieh(n, «, 3) can
be expressed as the usual Bessel function, see Egs. (526 .aid).

For the usual Bessel function,(«) we have the well known cutoff diz| > |a/, but for the
generalized Bessel function (5.18) the cutoff behavior ssercomplex. A naive guess for the
cutoff of Ay(n, a, B) is |n| > 2|a| + |B], since according to the cutoff rule for normal Bessel
functions we must have

o] <2s+n<lal, -8l <s <8 (5.33)

to have nonvanishingss,,(a) and.Js(/3), so that

Smax

TL « ﬁ Z J2s+n s ) (534)

S=Smin

with

Spin = Max (—|ﬁ|, #) . Smax = mMin (|ﬁ| ol = ) ) (5.35)

For |n| > 2|8] + |a| we obtains,,i, > smax, and thereforedy(n, x, y) ~ 0. This rule correctly
gives an upper limit for the cutoff, and is correct for negati, but for positiven the cutoff will
occur sooner, due to cancellation among the terms in the Asra.comparison, if we apply the
above reasoning to the function

TL i y ZJern s (536)

we obtain the cutoffn| > |z| + |y|. However, we know from the addition theorem of Bessel
functions [Eq. (5.6)] thatBy(n,z,y) = J.(y — x), and therefore the correct cutoff law is
|n| > |y — x|, which is smaller than (or equal t&)| + |y|.

Saddle point treatment

As we have seen in chapter 2.2.3, the correct cutoff law feigéneralized Bessel function can
be derived from the maximal and minimal classical energfeslaser-dressed electron. Here
we derive them from the position of the saddle points in the@ex plane of the integrand
in Eqg. (5.17). As follows from the general treatment of sadabint expansions [133], saddle
points found on the real axis give substantial contributiorthe integral (5.17), imaginary
saddle points give exponentially small contributions. Fhddle pointg, are found from the
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requirement that the first derivative with respectftof the argument of the exponential in
Eqg. (5.17) should vanisi, therefore satisfies

—n + a.cos Os — 23 cos(26,) = 0, (5.37)
with solutions |
o o? 1 n
0, = — + - — — 5.38
cos 6, 83 \/64ﬁ2+2 18 ( )

Inspection of Eq. (5.38) gives two different cases (redadt tve assume positive and 3 but
arbitraryn):

Case 1. 83 > a. Here there are four regimes. When< —a — 2/, both saddle points are
imaginary, and,(n, a, 3) is exponentially small. Fora — 28 < n < =23 + «, one saddle
point is imaginary, and one is on the real axis. Here the gdized Bessel function exhibits an
oscillatory behavior. In the regime23 + o < n < 23 + «*/(160) there are two real saddle
points. HereAy(n, «, 3) oscillates, but with larger amplitude than for the previoegime
with only one real saddle point since there are two real gaddints contributing. Finally, for
n > 203 + o?/(163) both saddle points are again imaginary, ahdn, o, 3) is exponentially
small.

Case 2. 83 < «. Inthis case, there are three regimes. As for case 1, when—a — 27,
both saddle points are imaginary. Fe23 — a < n < —23 + «a there is one real saddle point
contributing, and fon > —23 + « both saddle points are imaginary.

Whena = 8, case 1 and case 2 coincide. The two cases are illustrated dxpticit example
in Fig. 5.2. Further numerical examples are shown in Fig3. 5.4 and 5.5, to get a feeling
for the behavior of the generalized Bessel function as atiomof the indexn and of the
argumentsy and 3. We conclude that a mathematical treatment confirms theigddysutoff
law, EqQ. (2.49).

Asymptotic formulas

As for the Bessel functiod, («) in section 5.2.1, we can use the saddle point approximation t
obtain asymptotic formulas for the generalized Besseltfangcorresponding to the asymptotic
limits (5.12) and (5.13) of the usual Bessel function. Thisenulas are valid far from the
turning points, that is, where the saddle point configurativanges character, and are exact in
the limit where either ofy, 3, |n| — oc. In the following formulas [102] we set

F(z) =i(—nz+ asinz — @sin(22)), (5.39)
and |
2
z4 = + arccos (% + \/6252 + % - %) : (5.40)

We have the for the two different cases, using the labeliognfFig. 5.2 (the following asymp-
totic formulas were first found in [102]):
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0.05 0-1
= 0.05
<
—0.05 a=p4=10° 003 a=108=10?
-2000 0 2000 -1000-500 0 500 1000

Figure 5.2: Different saddle point contributions #p(n, «, 3). In the left graph, we have
83 > a, with four regions labeled,—d;. We haven < —23 — o = —3 x 10% in regiona,,
28 —-a<n< —28+a=-10%inregionb;, 28+ a <n <23+ % = 2062.5 in region

¢y, andn > 25 + % in regiond;. In the right graph we have < —23 —a = —1.2 x 10%in
regionas, —20 —a < n < =23 + a = 800 in regionby, and—25 + «a < n in regionc,. The
transition between the different regions are clearly Wsibnd makes it possible to speak about

a “plateau” and “cutoff” of the generalized Bessel function

Case 1. 84 > a.
Forn < —a — 203, regionay,

1 < exp[ReF(z_)]  exp[ReF(z:)]

o2 1 ' \/— sinh Imz_" \/— sinh Imz,
4\/”5 o7 T2 7 15 (5.41)

n<—20-a 1 Be —2 ,% N il
~ — e cosh | =4/ —
vV—mn \—n 2V B )7

for —a — 26 < n < =20 + «, regionb,,

cos [ImF(z_) — =]

1
= R sin z_
2\ ™0\ Gim + 2~ a5 (5.42)
—2B—a<kn< —28+a 2 ( nm 7r>
~ \/|— cos (o — — — —
TQ 2 4/’
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Figure 5.3: Plots of the generalized Bessel functiin, =, y) to illustrate the cutoff rules. In
all graphs the solid red line is,.q = |z| + 2|y|, the green dashed lineig,c., = |z — 2y| and
the pink dash-dotted line s, = (32y* + 2?)/(16y). The lower left and below middle left
are related by the symmetiy(n, —z,y) = (—1)"Ao(n, z,y), and this is also the reason why
the first plateau cutoff is not correctly predicted by theegrdashed line.
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100 _ 10
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Figure 5.4: Demonstration of the complex behaviorlgfn, «, 3) as a function ofv and3, for

a moderately large value of the index= 50. The left graph shows a two-dimensional graph of
the generalized Bessel functiofy(n = 50, «, ), with the value indicated by the color coding
of the adjacent color bar. Recognizable is the central ateareviy(n, «, 3) is exponentially
small, according to Egs. (5.41) and (5.44). The right grdpiws the cut atv = 42, along the
dashed line in the left graph. In the right graph, the absokatue|Aq(n = 50, = 42, 3)| is
displayed as a function ¢f in logarithmic scale, to display in detail the hole in the tegn

209
| 0.5
] @ B
10! S OMME N
el s Tt e R 0.25
i '
S ' \ v/ 0
v
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k 4
] 0.5
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Figure 5.5: Another demonstration of the rich behaviotgtn, «, 3) as a function ofx and
B, for small indexn = 5. The left graph pictures a two-dimensional plot&f(n = 5, «, 3),
with the function value indicated by the color. To the righshownAy(n = 5,«, 3 = 8) as a
function ofa, as obtained by cutting the left graph along the dashed firne §).
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the same asymptotics as for the usual Bessel function, EXR)(5For—25 + a < n < 26 +
a?/(164), regionc;,

Ao(n,a, B) ~ 1 . <COS [ImF () — 2]  cos [ImF(24) + ﬂ)

. + .
2\/7Tﬁ o 1 _n V/sin z_ V/sin 24
6432 T 2 T 43

—26+a<<n<<25+165 2 o nm (ﬁ m mr)
~ — CcOS| —= — — | cos - = —
3 V2 2 4 4/

and forn > 23 + a*/(164), regiond;,

(5.43)

exp [ReF(z_)]cos [ImF(z_) + ¢_]

Ao(n, o, B) = i

' 2 8
n 1 a?
W"ﬁ 5w 2 {(”Wé) ‘—ﬁ} (5.49)
">>2ﬁ+165 1 Be 2 %25 ™m o« [n
~ — | ew’scos| — — —,/—
NZZORWD 2 2V B )7

b = 1 arcten [ = cos(Rez_) sinh(Imz_)
) sin(Rez_) cosh(Imz_)
Note that the asymptotic formulas (5.41) and (5.44) comewth the asymptotics (5.13) of the

usual Bessel function it = 0, and Eq. (5.27) is used. The asymptotics (5.43) coincidl wit
(5.12), witha = 0 and Eq. (5.27).

with

(5.45)

Case 2. 84 < a.
Forn < —a — 203, regionas, and—25 — a < n < —20 + «, regionb,, the asymptotic formula
is the same as in case 1, regignandb,. However, in regiom, we may have very smatl, for
which formula (5.41) is correct only for very large| > o?/(163). To see that the limi — 0
leads to the asymptotics (5.13) for the normal Bessel fongtive note that in regiom,,

cosz_ 223 ﬁ, (5.46)

[0

which together with the first line in Eq. (5.41) leads to thgmptotics (5.13). Fon > —23+«,
regionc,, we have the same asymptotic formula (5.44) as in case Jyrédgi The first line in
Eqg. (5.44) has the correct limit fgi — 0.

We conclude this subsection by remarking that for numepuogboses, it is better to use the full
expressions [the first lines of Egs. (5.41)—(5.44)], simeedsymptotic expressions [the second
lines of Egs. (5.41)—(5.44)] are valid only for large valoéthe parameters, within the specified
regions. Ifa andj are large, the asymptotic expressions are not valid fdose to the turning
indicesn; (with turning index is meant the index separating two regioidifferent saddle point
configuration), even though the actual distapce— n| may be large|n, — n| > 1. The full
expressions are in general good approximations, provided n| > 1.
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5.3.3 Generalized recursive Miller’s algorithm for generdized Bessel
functions

For many applications in laser-modified QED, in particutardalculation of the cross section
(4.12) for laser-assisted pair creation, a large numbeeémlized Bessel function (s, a, 3)

of the same arguments, § but of different indicess, has to be numerically evaluated. The
fastest way to do this is to observe that the generalizeddBéssctions satisfy the recurrence
relation [a rewritten form of Eq. (5.23)]

26140(8 + laaaﬁ) - aAO(Svaaﬁ) + 2(8 - 1)A0(5 - laaaﬁ)

—ady(s —2,a,0) +284(s — 3,a,8) =0, (5.47)

a five-term (fourth order) recurrence relation, with fomelarly independent solutions, of which
Ap(s, a, 3) constitutes only one. This should be compared with the gnmelcurrence relation
for the usual Bessel functioh («):

—adsi(a) +2sJs(a) — ads—1(a) =0, (5.48)

which is obtained if you set = 0 in equation (5.47). However, contrary to the case with
Js(«), the recurrence relation (5.47) can not be used directlyéonerical evaluation, since
it is numerically unstable in both directions ef We illustrate this statement by showing in
Fig. 5.6 the character of the four different solutions tordeurrence relation (5.47).

The trick is now to define a new three-term recursion relatvbich is numerically stable. The

price for reducing the five-term recurrence relation is thatv also the coefficients have to
satisfy another recursion relation. The idea here comes fi85], where a similar technique is

used in connection with calculations on gravitational veaw&e make a transformation so that
the following recursion relation holds:

25140(8 o 17 «, 6) + Cl(S)AO<S7 «, ﬁ) + C2<S>AO<S + 17 «, 5) = 07 (549)
with
_ 46
Bl(S) = — Q0 — m,
Ba(s) =2(s + 1) — %, (5.50)
B 26By(s + 1)
B3(S)——Oé— 83(8+1) P
and
. 2ﬁBg(S)
C1(s) =Bi(s) — Cols+ 1)’ 51
Cals) =Bals) -

These recursion relations are now stable, if the recurdd0j, (5.51) for the coefficients is
performed in the direction of decreasingand the recursion (5.49) for the generalized Bessel
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Figure 5.6: The four linearly independent solutions to tbeurrence equation (5.47), here
called Ay(s) (the true generalized Bessel functidg(s, «, 3), the red line),X (s) (light blue
line), Y(s) (blue line), andZ(s) (green line). The values = § = 1000 were used for the
calculation. The dashed lines indicate the turning poits= —3000, s; = —1000, and
s3 = 2062.5. Note that the constant prefactors of the solutiohs), Y (s), and Z(s) are
chosen so that the different curves are easily visible os¢hee used for this graph, to illustrate
the different qualitative behavior. Out of the four soluiso only Ay (s, «, 3) is normalizable
(finite sum)__ |Ao(s, a, 3)]). The graph clearly shows why the recurrence equation SaT-
not be used directly for numerical evaluation. For examipighe regions; < s < s,, the
sought solutioy(s) neither dominates nor is dominated by the other solutioeshave here
Y (s)| > |Ao(s)| > |Z(s)|. This means that recursion in both directions is numesicat-
stable, since eithéx'(s) or Z(s) will swamp the calculated solution. The algorithm desatibe
in this subsection effectively filters away two solutioS,s) andY (s), or X (s) andZ(s) de-
pending on the recurrence direction, so that only two smhstremain. With only two solutions
remaining, a variant of Miller’s algorithm (see subsectto.3) can be formulated, and allows
for fast evaluation of the generalized Bessel functifs, «, 3).
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functionsAy(s, «, 5) themselves in the other direction, that is, increasintn the other direc-
tion, we have correspondingly

26A0(s + 1,0, B) + Cy(s)Ag(s, o, B) + Cos)Ag(s — 1,0, 3) = 0, (5.52)
with
- o 432
Buls) = By(s— 1)’
Ba(s) =2(s — 1) — Q%fgji_l)l), (5.53)
- 26Bsy(s — 1)
Bslo) =—o g 21
and

Gi(s) =By(s) — 20D
02(8 — 1)

~ —B s) — Cl(f — 1)83(8)

CQ(S — 1)

(5.54)

I

where the recurrence (5.53), (5.54) for the coefficientstaiele for increasingand recurrence
(5.52) for decreasing. In addition, numerical experiments show that the both th&rdvard
[upward] recursion (5.50), (5.51) [(5.53), (5.54)] for theefficients and the upward [down-
ward] recursion (5.49) [(5.52)] is exponentially stablehigh means thaany non-vanishing
initial condition will do, provided the recursion is stadtat enough large index. The reason
for this remarkable stability can be traced back to the rgpmivth of the complementary so-
lution Z(s) (or Y (s), depending on the direction of recurrence) beyond the titdéx. See
Fig. 5.6. There are now two ways of utilizing the stable reence formulas for calculation of
large arrays ofd(s, «, 3), described below.

Calculation of Ay(s, a, 3) with the recurrence relation and the normalization condition
Together with the normalization condition

i Ao(s,a, ) =1, (5.55)

S§=—00

obtained by setting = 0 in Eq. (5.16), the recurrence relations described abovébeamsed
to compute the complete arrayy(so- < s < soy, , 3) with so_ (so+) smaller (bigger) than
the corresponding cutoff index [see Eq. (2.49)] by usindhimgf but the recurrence relations.
Remarkably, no initial conditions are needed. In practice algorithm proceeds as follows:
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Step 1. Fix the starting indicesy > spos. cutof@Ndsg— < speg. cutoi Calculate the four arrays
Cia(so— < s < so4) [using recurrence relations (5.50), (5.51), starting frora= sq. with
arbitrary initial conditions and recurring towards smakgand C, »(so- < s < so4) [using
recurrence relations (5.53), (5.54), starting frers= so_ with arbitrary initial conditions and
recurring towards larget.

Step 2. Calculate the two arrayK (so- < s < so) [using recurrence relation (5.49), start-
ing from s = so_ with arbitrary starting values, for examplé(sy_) = 1, K(so_ + 1) = 0,
and recurring upwards] anlf (so_ < s < so ) [using recurrence relation (5.52), starting from
s = sg. With arbitrary starting values, and recurring downwards].this step one must be
careful against computer overflow and underflow.

Step 3. The arraysk and K are now approximately proportional to the trde(s, a, 4), in
the region where they are converged:

K(Sneg. cutoff < 8 < 50+) X AO(Sneg. cutoff < 8 < Sy, @, ﬁ)) (5.56)
K(S()f < $ < Spos. cutoff) 08 AO(SOf < 8 < Spos. cutof Y, 5) .

We now normalizex’ and & with respect to each other at= 0 (or any other suitable index, if
K (0) happens to be very small):

L(sp- < s < s04) = K(so- <5< 504)K(0)/K(0). (5.57)
Then merge the two arrays and L into one array\/,

_ L(s) ifsp- <s<0,
M(sg- < s<s03) = { K(s) if1<s< so,. (5.58)

Step 4. Finally, the approximation to the true generalized Bessetfion is given by normal-

izing M with the condition (5.55):

M(so- < s < s04)
2 M(s)

Figure 5.7 illustrates the accuracy that is obtained by egipg the algorithm described above.

For this purpose, we Ieﬁo(sneg. cutoff < 8 < Spos. cutof @, 3) be the values obtained by the
generalized recursive Miller’s algorithm, starting atices

AO(SOf S S S SO+7O[76> ~ (559)

So+ = Spos. cutoff 1 As, S0— = Sneg. cutoff — As, (5.60)

(seeStep 1.above), andy(sneg. cutoft < s < Spos. cutofs @, 3) be the true value of the generalized
Bessel function. We then define the average relative epas

Zspos. cutoff Ao(s,a,ﬂ)—Ao(s,a,ﬁ)
_ S=Sneg. cutoff AO(SJLB)
6re| - i . (561)

Spos. cutoff — Sneg. cutoff
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Figure 5.7: This graph displays the average relative efgrdefined in Eq. (5.61), of the
calculated generalized Bessel functié(g(s, a, 3), as a function of the starting index difference
As, defined in Eq. (5.60). We see that up to 25 significant figuaeseasily be obtained. At a
certain value~ 1073°, the obtainable accuracy is limited by the machine pregjdiothis case
qguadruple precision arithmetic was used (roughly 32 delsiimacuracy).

The reference value, the “true” valug(s, a, 3), is calculated by the same algorithm, but with
a sufficiently largeAs so that highest obtainable precision is reached.

Calculation of Ay(s, o, 3) with the recurrence relation and initial values

An alternative way to utilize the stable recurrence refsioequires two initial values, say
Ap(0, v, B) and Ag(1, «, 3). These values have to be calculated in some independentivay,
ther by the definition (5.18) and Miller’s algorithm for theual Bessel function as described in
5.2.3, or by a suitable asymptotic expansion, see secti®a &nd [102]. Below, we describe
the algorithm for positive indices the case for negativeis completely analogous.

Step 1. Fix the starting indexo, > spos. cutot Calculate the two arrayS; 5(1 < s < sqo4)
[using recurrence relations (5.50), (5.51), starting from sy, with arbitrary initial conditions
and recurring towards smalls}.

Step 2. Use the recurrence relation (5.49) in the direction of gnmi, starting from the ini-
tial valuesAy (0, o, ), Ao(1, «, §) and calculate in a stable way the whole array0 < s <

SO+7O[76>'
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This way of using the recurrence relation demands fewerrregoe runs, to the price of
having to calculate the initial conditions by some indepmaridvay. We have numerically
tested that essentially no significant figures get lost inrgwirsion step, so the accuracy
of this method is limited by the precision of the initial vakiAy(0, «, 5) and Ay(1, a, 3).
We estimated numerically the minimum value 8§, = so — Spos. cutoti the difference be-
tween the cutoff index and the starting index, that is rezflito reach the same precision for
all valuesAy(2 < s < sou,,3) as the initial valuesdy (0, o, 8), Ao(1,, 3), and found
Niin = Z (Spos. Cutoff)o'?’. HereZ is a constant depending enand 5 of order O(10). As a
numerical example, take = 10% = 3, so thatspes. cutot~ 2.06 x 10°. ThenNpin &~ 100, which

is one order of magnitude smaller than the cutoff indgx ..o The fast convergence is due
to the rapid falloff of the generalized Bessel function (aapid growth of the complementary
solution) beyond the cutoff index.

5.3.4 Explanation of the stability of the generalized recusive Miller’s al-
gorithm

Why the algorithm described in subsection 5.3.3 works idarpd by the theory in [132,175].
The key observation is that solving the recurrence systef7)%or A, 2<s<»—2, With a, b being
some integers, and with the boundary valdes,, A,. 2, A,_1, A, assumed to be known (in the
rest of this discussion we suppress the dependeneeaoml 5 and write A for Ay (s, a, 3) for
increased readability), is equivalent to solving the mxaggquation

PY =p, (5.62)
where
2a+3) —a 28 0 .
—a  2(a+4) —a 243 0 .
203 —a  2(a+D5) - 203 0 .
0 203 —a  2(a+6) —a 208 0
0 28 —a  20b-5) -a 23 0
0 243 —a  2(b—4) —a 203
0 203 —a  20b-3) —«
0 28 o 20b—2)
(5.63)
Aa+3
Aa+4
y=| : |, (5.64)
Ap-s
Ap—2

118



5.3. Generalized Bessel functions

and
QBAa-H - aAa—i—Q
2ﬁf4a+2

p=— : . (5.65)
0
28Ap1
2BA — aAy_y
We see that the vectar carries the boundary condition information. Now, one camws[132]

that the generalized Miller’s algorithm described in saetb.3.3 is equivalent to solving the
matrix equation (5.62) by factorizing the matd#Xinto P = LU, with

a+3 a+3 a+3
L = 0 Loy Loy L3 O ) (5.66)
0 0 0
0 Ly Lis Lys O

0 Lpy Lia Liy

and
UC%H UO}H Uc?Jrl 0
0 U3+1 U61+1 Ua?ﬂ 0
0 0 0o ...
U= .0 Uk, UL, U, 0 | (5.67)
0 Ul Ups Uy
0 Uls Uy
0 Ui,

and back-substituting using the intermediate vector

Ca+3
¢= : , (5.68)
Cb—2
satisfying
L¢ = p, (5.69)
Uy =¢, (5.70)

so thatPY = LUY = p. Solving the matrix equation (5.70) is in turn equivalenstdving
the recurrence relation

UZAsia + U Az + UL Agys = 0, s>a+1, (5.71)

with boundary conditions contained ¢h The recursion relation (5.71) is now of second order.
Thus, instead of solving the fourth-order recurrence i@ta5.47), it is sufficient to solve the
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second-order system (5.71). It can be shown [132] that tleestiutions to the second-order
recurrence relation (5.71) [corresponding to Egs. (5.4@) &.52)] are precisely the sought
Ap(s, a, ) and another functiop(s, «, 3) which falls off much faster as a function efcom-
pared toA(s, «, 3) [for example, for forward recursiod, (s, a, 3) /y(s, o, ) == 0], so that
a variant of Miller’s algorithm, without initial values, nde used. Our algorithm can be said to
separate the recursion relation, so that the exponengablying solutions are factorized out,

leaving the generalized Bessel functidg(s, «, 5) as the dominant solution.

5.3.5 The functionS,,

Important for the applications of the generalized Bessettions, in particular in chapter 4, is
the functions,,, a function of 5 variables and one integer index, defineduidpnoa sum over
products of generalized Bessel functions,

e e}

Su(Cra B 0) = Y AO(S’“’BlAf(é_"’&’B>, (5.72)

S§=—00

whereC' is non-integer. Convergence of the sum (5.72) is guarartigdtie fast asymptotic
falloff beyond the cutoff index of the generalized Besselidtions. It is this function that is
responsible for the intermediate propagator sum in theixnelgment (4.5).

Expansion for large C

If 11 > lal, 3

, then by using the expansion

1 1 S 52

stC C oo

(5.73)

we can obtain an expansion of the functi§naround the simpler generalized Bessel function
Ap(n,d,7), whered = a — & andy = 3 — 5. We have

AO(n7 57 ’}/) + W2(n757 7) + Wg('ﬂ, 57 ’}/) + W4<n7 57 ’}/)
C C? C3 Ct

S, = o (5.74)

where

[0}
W2<n7 57 ’}/) = _5 [AO(n - 17 57 ’}/) + AO(n + 17 57 7)] + ﬁ [AO(n - 27 57 ’}/) + A(](n + 27 57 7)] )
(5.75)
and the more involved third and fourth order correctionsirea

2
Q
W3(n7 57 7) :Z (2*’40(”7 57 7) + AO(n + 27 67 7) + AO(n - 27 67 7))

- ﬁOé(Ao(n - 1757 ’Y) + AO(n + 1757 7) + AO(n + 3757 7) + AO(n - 3757 ’}/))

+ 52 (2140(71, 57 7) + AO(n + 47 57 ’}/) + AO(n - 47 57 7))7
(5.76)
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and
3
Wa(n,8,7) = — % (3A0(n +1,8,7) + 3Ag(n — 1,6,7) + Ao(n + 3,8,7) + Ao(n — 3,6,7))
302
+ (3A0<n7 57 ’}/) + 3A0(n + 27 57 ’}/) + 3A0<n - 27 57 7)
+ AO(n + 47 57 ’}/) + A(](n - 47 57 7))
_ 3a3?

(SAO(n + 17 57 7) + 3A0(n - 17 57 ’}/) + A(](n - 37 57 7)

+ Ao(n+3,6,7) + Ao(n — 5,0,7) + Ag(n +5,6,7))

+ 53(3"40(” - 27 57 fy) + 3140(71 + 27 57 7) + AO(n + 67 57 fy) + AO(n - 67 57 ’}/))
(5.77)

2

From the expansion (5.74), it is clear thatG(fis larger than both of the cutoff indices for
Ao(s, o, B) and Ag(s — n, &, 3), the cutoff behavior of the functiofi, (C, o, 3, &, 3) is equiv-
alent to that of the generalized Bessel functityin, o« — &, 5 — B), which is easy to analyze.
The transition fromC' smaller than the cutoff index @' larger than the cutoff index is shown
in Fig. 5.8.

Relation between different indices

We also state some useful relations betwggrand sums of products of generalized Bessel
functionsAx (n, a, 3) of different indicesk'. First, recall the definition

(AK,l(s —1,0,0)+ Ag_1(s+ 1, a,ﬁ)), (5.78)

DO | —

AK(37Q7B) =

whereK is a positive integer. We have (supressing the dependeneed, )

A Ai(s —n, @,
Z o(s,a,ﬁl +(é n,a, [3) _ %[Sn_}_l(c) + Sn—l(C):|7 (5.79)
3 A (s, o, BlAf(é_ n,a,pB) % [Sp41(C = 1) + S,1(C + 1)], (5.80)
Al(sv aaﬁ)Al(S -n, daB) _ 1
zs: s+C = 1S5 (CH D+ Sna(C 1) (5.81)
Z Ap(s, a, ﬁ)SAj(é— n,a, 3) _ 3[2571(0) + Sp-2(C) + Spia(C)], (5.82)
A2(37 a7ﬁ)AO<S -n 5‘75) _ 1
> 1 C = 7 [9n(C = 1) + Supa(C = 1) (5.83)

S

+ Sp2(C + 1) + S,(C + 1)],
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Figure 5.8: Cut-off properties of the functidhy (B, «, 5, &, B) [for definition, see Eq. (5.72)],
for different values of3. In all graphsa = 2300, 8 = 1230, & = 1340 and3 = 1560. The
blue line shows the functiofi, (B, «, 3, &, 3), the green line shows for comparison the function

M, multiplied with a factorl0—* for clarity. Visible is the multiple plateau structure

of the functionsS,,(B, «, 3, &, B). For values of5 2 4860 the cutoff occurs in practice at the
same value for as forAy(n, o« — &, 5 — [3), which has the cut-off values [see equation (2.49)

on page 27h = |a — a| 4 2|8 — (| = 1620 andn = %—3_25*3‘2 ~ —835.
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Z Aq(s, o, B)As(s — n, @&, B)

1
— = 2 [S1(C+ 1) +25,4(C +1) + 5,5(C + 1)

+ 81 (C = 1) + 28,11 (C = 1) + Spy3(C — 1)],
(5.84)

A2<S7 Q, ﬁ)Al(S -n, 5‘7 B) _ 1
; e =3 [Sn1(C +2) + S, 3(C +2) + 25,11 (C) (5.65)

+25,21(C) + Spy3(C = 2) + Sy (C = 2)],
and finally

A2(37Q7B)A2<S_n75‘73> 1
Z s+C T 16

[48,(C) + 25,-2(C) + 25,42(C) + 25,42(C — 2)

S

4 5,(C = 2) + Spsa(C = 2) + 25, 5(C +2)
+ S (C +2) + S,—a(C + 2)].
(5.86)

Also needed is

3A0(37 a7B)AO<S -n, &7 B) _ 2 .
; st C =5 [Sn-1(C+ 1) + 81 (C = 1)] (5.87)

— B[Sn—2(C +2) + Sn12(C + 2)],

S A DA = B g (04 1) 4 Sl 1) 4 5,01 1)

+ S, (C—1)] - g[snl(c +2) + S, y3(C = 2)

+Sn-3(C +2) + Spya(C = 2)],
(5.88)

obtained using the recursion relations (5.23). Anothefulsgmmetry is

Sn(c_naaaﬁada/é) :S_n(C,@,B,Oé,B)- (589)
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Chapter 6

Conclusions and outlook

6.1 General conclusions and summary of obtained results

The aim of this thesis was to advance the understanding ohdearder laser-modified QED
processes. This goal has been achieved, resulting in ylartio a thorough investigation of the
following processes: laser-assisted bremsstrahlung asef-bssisted/laser-induced pair cre-
ation. Apart from theoretical results, special emphasis p on the actual numerical evalua-
tion of the formulas involved. The main results of this tlsemie the numerical values produced
from the formulas of laser-modified QED, presented in a nurobplots in chapters 3 and 4.

After an introduction to the subject of QED in strong laseldfsan chapter 1, in chapter 2, we
reviewed the solution of the problem of the motion of an etatin an electromagnetic plane
wave in two ways, both classically and quantum mechanic&yyintegrating the relativistic,
classical equations of motion and the Dirac equation, we thaivthis system allows for an
analytic solution. Moreover, we recognized the strong twanclassical correspondence of the
classical solution and the quantum Volkov solution. In jgatar, the probability for a quantum
electron in a laser wave to occupy instantaneous energislesth energies larger (or smaller)
than the classically allowed values is exponentially smgliis correspondence also provided
an intuitive, physical explanation for the cutoff behavwbthe generalized Bessel functions, the
special functions that appear as coefficients in the plarve Waurier expansion of the Volkov
wave function.

An expression for the Dirac-Volkov propagator was also @nésd, suitable for application to
calculation of differential cross sections for higher-@rtaser-dressed QED processes. In the
appendix section B.1, we demonstrated the completenepenpyaf Volkov states.

In chapter 3 we described in detail the evaluation of thescsegtion for laser-assisted brems-
strahlung. While the analytic expression for the crosd@egtas known previously, no concrete
numerical evaluation had been performed. This step is aetlim this thesis. Furthermore, we
showed how to properly regularize the Green’s function @iaugties by adding an imaginary
part to the laser-dressed electron’s mass and energy. Bhegpdarities arise due to the pos-
sibility of the second-order bremsstrahlung process tit splinto two first order processes,
laser-induced Compton scattering and laser-assistecb@dugcattering. There are other ways
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of regularizing these singularities, but the discussiosaation 3.4.2 showed that the method
employed in this thesis gives the dominant contributiorhm limit of long laser pulses. Anal-
ogous to the lifetime of a discrete energy state, the lowsd#romaginary correction to the
electron’s mass can be calculated as the total rate of complidecay of a Volkov state. Em-
ploying the mentioned way of regularizing the Green'’s fumtisingularities, we performed a
number of calculations of the laser-assisted bremssingtdross section for different values of
the intensity parameterand directions of the emitted bremsstrahlung photon. Cenisig a
head-on collision of an electron and a laser beam, a largéauaf resonant peaks was found,
mainly when the photon is emitted in almost the same dirac® the incoming electron. In
section 3.5.4 we showed that quite surprisingly, the faliei-dressed Dirac-Volkov propagator
cannot be well approximated by the free electron propagaten if the bremsstrahlung pho-
ton energyw, is much larger than the laser energy Both direct numerical calculations were
performed and an intuitive picture was found to supportctasm.

As a second project, we have applied the formalism desciibetiapter 2 to the process of
laser-modified pair creation by a gamma photon and a nuclealo@b field, with the results
presented in chapter 4. The formal expression for the makeiment is related to that of laser-
assisted bremsstrahlung by a crossing symmetry, howdwegharacteristics and qualitative
behavior as well as the numerical evaluation of this proeessather different compared to
the laser-assisted bremsstrahlung case. Here we inviestitpee influence of a subcritical (with
respect to Schwinger’s critical field) laser field on the mssof pair creation. That the field
is subcritical means that the laser itself cannot createpaimg, so that the total cross section
stays almost unchanged. This assertion was shown both byetieal arguments and by ex-
plicit numerical evaluation of the laser-dressed crost@gowhich required sixfold numerical
integration. Differential cross sections were calculdtedwo configurations of laser field and
gamma photon: the collinear case, where the photon andsbelb@am propagate in the same
direction, and the counter propagating case where the gaohwtan and the laser beam are
set up to collide head on. The latter case with counter prajpag gamma photon and laser
field is the most interesting from a theoretical point of vievhile the first case with collinear
gamma photon and laser may be most useful for applicatiargarticular, we found that in the
collinear case, both the gamma photon and the laser workhtegi® strongly focus the created
pairs. The pairs are created by the highly energetic gamm#pland then accelerated by the
laser field to emerge outside the laser field at a charadteaisgled ~ 1/¢. This setup may
thus provide a realizable way of measuring nonlinear laects related to electron-positron
pair production.

A necessary ingredient in our approach to laser-modified @fBourier expansion of the wave
functions and propagators was the generalized Besselidandt (n, o, 3), a special function
occurring naturally in problems where the laser is line@dyarized. In chapter 5 we gave a
thorough review of the properties of generalized Besseadtfans, together with references to
literature perhaps not so widely read by physicists. We &sad an important new result:
a stable recursive algorithm for evaluation of generaliBedsel functions. This kind of al-
gorithm, usually referred to as Miller’s algorithm, is thasdard way of evaluating the usual
Bessel function/,,(«) based on the second-order recurrence relation satisfigl(loy. How-
ever, for Ayg(n, a, 3) such an algorithm was not previously known, due to the moreptex
behavior of the fourth-order recurrence relation satishgdhe generalized Bessel function.
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This algorithm was crucial for the evaluation of the crosgisa for laser-dressed pair creation
in the counter propagating configuration in section 4.3.

In conclusion, we have shown that it is possible to numdyicataluate second-order laser-
assisted QED cross sections in the relativistic domaimguie Dirac-Volkov propagator.

6.2 Outlook

In chapter 3 we described the calculation of the cross seatiolaser-assisted bremsstrahlung
in the resonance region. We employed the imaginary enegyftagzation, although other ways
of regularization are possible, for example by limiting fhése length of the laser field. One
important future project is therefore to do the calculatioanother regularization scheme, and
compare the results. One open question is how the bremisstgatross section compares to the
corresponding rate of laser-induced Compton scattetfiaginite laser pulse length is assumed.
For an infinite laser field, as was assumed in this thesis,ateefor laser-induced Compton
scattering as a function of the emitted photon frequencth ¥ixed direction of the emitted
photon, is a series of delta function peaks and cannot bea@dplirectly to the bremsstrahlung
cross section. However, by introducing a finite pulse lentité delta function peaks acquire a
width, and the rate can then be compared to the correspobdangsstrahlung rate.

Regarding the pair creation process, it would be intergdtninvestigate the behavior of the
total cross section more in detail. For the collinear casks, should be possible, at least in
some limiting cases, since the polarization operator irsarlield is known for arbitrary laser
polarization and frequency [14], and the collinear systdrmore laser wave + one energetic
photon is nothing else than a plane wave with one strong fteguency, and one weak, high-
frequency component. The total probability for pair praitut can then be calculated as the
imaginary part of the polarization operator contractedhthie Coulomb field photon, much like
it is done in [112]. Presumably, the correction to the Betedtler cross section, fav, < 2m,

is proportional toy? = £2w?/m?, wherew is the frequency of the laser field in the rest frame of
the nucleus.

Other laser-modified QED processes may be treated with the saeoretical framework pre-
sented in this thesis, with fast numerical evaluation ptediby the novel recursive evalua-
tion algorithm for the generalized Bessel functions. Ortergsting process is field-induced
pair production by an electron, which has not been treatedlaser field before (calculations
for the case of an external magnetic field exist, see [9], @ndhe crossed field configura-
tion [117,153]). The Feynman diagram is shown in Fig. 6.1reHbe electron emits a virtual
photon that decays into a laser-dressed electron-pog&ionin this process, the virtual photon
can become real, and this Green’s function pole has to betrearrectly.

Finally, a theoretically challenging question is how toluae the Coulomb-field interaction
in laser-dressed problems on a nonperturbative level,riticpéar in connection with electron-
positron pair production. By employing the Dirac-Volkowopagator one can calculate second-
order, and maybe third-order, corrections to the rate afspaioduced by a laser field and a
Coulomb field. However, if an all-order treatment for the @oob field becomes necessary
(for Z ~ 100, say), then something beyond the perturbative approackadad. The first
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Figure 6.1: Feynman diagram for electron-positron paidpotion by a laser-dressed electron.
The diagram where the two final electrons are exchangeddlatad be added.

step should be to find an approximate form of the electron farsitron) wave function in the
combined system of a strong laser and a strong Coulomb field.
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Appendix A

Basics of strong-field QED

A.1 The Furry picture in the presence of a strong laser field

In this section we establish the Feynman rules for intenserdmodified QED, used for the
calculations in chapters 3 and 4. This way of treating onel frednperturbatively, and the
interaction with all the other fields perturbatively is aniglly due to Furry [69], who used it to

treat electrons bound in a Coulomb field. We follow a simpdifreay, the propagator approach,
similar to the one in [28, 66, 67]. To this end, we start witk irac equation, coupled to an
electromagnetic field

(ié —m— e/itota.) U(z) = (Dfree - e/itota.> U(z) = Dioa¥(z) = 0, (A1)
whereApa = Ajasert Ainter, IS the total interaction potential, the sum of the laserwegbtential
and of the rest of the interactions (perturbative photormsjl@nb fields). The goal is now to

solve EqQ. (A.1) in a perturbative way, and for the moment wsiaee that the laser is weak as
well. We note that the exact solution to Eq. (A.1) can be enitas

U(x) =(r)+ /d4x’Gfree(:C,x’)eAtota|(a:’)\If(a:’), (A.2)
providedGiee(z, '), the free Green'’s function, satisfies
DireeGiree(w, ') = 0(x, 2'), (A.3)
and wherey(x), satisfyingDseet) () = 0, is a function inserted to satisfy the boundary con-

ditions when the potential is turned off. The Green'’s fumctior propagator, of the free Dirac
equation is known [141],

1 p+m . ,
Gfree(l‘, IE/) = / d4pp—e—lp(a:—x )

(2m)4 p?—m? +ic
. 2020 o (A.4)
—1i oo Lpy —p-Yy+m .
— 3, | | P iEp|z’—x
(2m)3 2FE, ’
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where £, = /p? —m?. This free Green’s function realizes the Feynman boundangie
tions [28, 66, 67], which ensure that frequency componeiits megative frequency are prop-
agated backwards in time, while positive frequencies aopagated forward in time. The
Feynman boundary conditions make it possible to treat paimtmn problems as scattering
problems, by taking the initial state a8 = —oo to be a negative-energy state which scatters
into a positive energy state, with the interpretation theg positron and one electron have been
created. Equation (A.2) is an implicit solution, that ise thave functionV(z) is expressed in
terms of itself. However, Eq. (A.2) provides a way to obtaipeaturbative solution, valid if
the interaction is weak. To see this, replaog’) under the integral in Eq. (A.2) with the same
expression,

U(z) =9(z) + /d4$/Gfree($C,$/>€Atota|($l>'l/1($€l)
(A5)
+ /d4xld4anfree(5€7x/)eAtotal(xl)Gfree(xla xn)eAtotal(xn)\I](xn)a

a double integral, with terms up to second order in the icteya Ayy. This procedure can
be iterated up to arbitrary orders, and it is assumed thaetpansion converges, even if a
strict proof of convergence is difficult [28]. To obtain thpproximate wavefunction, we take
U(z") = ¥(2") (with the free wave function satisfyin®s.ct> = 0) under the integration in
Eqg. (A.5), so that

U(x) m() + / 04 Gieel, 7' A2 ) (o)
A A (A.6)
+ /d4$,d4x,/Gfree(xa xl)eAtotal(xl)Gfree(xlax,/)eAtotal(x,/)w(x”)a

a second-order approximation to the true wave functiorhdfibteraction potential is a sum of
two different terms,
Atotal(x) = Al (x) + AZ(x)a (A-7)

and we want to account for first-order interaction in botheptitls, the second-order term [the
last term in EqQ. (A.5)] has two terms,

U(z) = /d4:1:’d4a:"Gfree(:U, x') [efll(x')Gfree(x', z")eAy(z")
(A.8)

+ e Ay (1) Grree(', 2" e Ay () | W (2").
To obtain a second-order transition amplitudesve assume an initial free wave functiopn(x)

and afinalV ;(x) and calculate the overlap integral (considering only sdemdler terms), using
the approximation (A.6) fod ;(x):

S:/dd‘x@f(x)\lfi(x)
_ / A2 ' 02 Py (") Ara(”) Crreels”, 1" Avoai(s”) Crneelr, € )s(z)  (A9)
_ / A2’ A% Piren 5 (1" Arorai(2") Grreola”, 2 )e Avai(' i (2).
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A.2. Cutkosky'’s rules and the optical theorem

If we now let the interaction consist of a Coulomb potentla! and the vector potentiad, of

an emitted photon, that is we ldiy, = Az + A, In (A.9), we recover the matrix element for
bremsstrahlung (without a laser), leading to the Bethelétaiross section [see Eqs. (3.49) and
(3.50) on page 51].

The trick that makes it possible to treat the strong laseemi@l nonperturbatively is now to
include the laser interaction potential in the operddgg., that is, we let

Diaser= Zé —m — 6Alaser (A.lO)

replace the free operatdkee in Eq. (A.1). All the steps following Eq. (A.1) now go through
unchanged, provided we identifyqee With the laser-modified operat@? se, and the free wave
function« (x) with the Volkov states, exact solutions to

DiasetIvolkov (l‘) =0, (A-ll)

and the free Green'’s functidh.e with the Dirac-Volkov Green’s functiof¥pirac-voikov, Satisfy-
ing
DlaserGDirac-VoIkov(l‘a xl) = 5(55 - IE/)- (A.12)

Thus, to calculate a laser-modified QED amplitude, we draavusual Feynman diagram in
coordinate space, but replace the external electron lints Wolkov statesy\okov, and the
internal propagator lines with Volkov propagaté#giac-voikov- 1he ensuing integration over the
interaction space-time coordinates gives the amplitudes method relies on the assumption
that the laser is a plane wav8ycer) = Ajasedk - ). The functionSGpirac-volkov @Nd Yvoikov
are described in detail in chapter 2. Transition amplitiaesow calculated between different
Volkov states, with the transition caused by a perturbatiom a non-laser mode photon or
another external field, or both. That this works relies onftua that a Volkov state can be
uniquely labeled by its asymptotic momentwior equivalently its effective momentugpisee
Eqg. (2.33)]. The asymptotic momentum does not change irssigl@ane laser wave, which is
crucial for pair creation processes: Since a plane lasee wannot create pairs, the sign of the
zeroth component® does not change unless the Volkov state is perturbed.

A.2 Cutkosky’s rules and the optical theorem

The Cutkosky rules, originally derived in [43], basicalglates the imaginary part of a forward
scattering amplitude with the total probability, or the saamplitude squared. This is also
called the optical theorem, and has a classical countef®4ft For Feynman diagrams, we
have that for the amplitude of any loop diagram, twice thegimary part of that diagram can be
calculated by cutting through all loops in all such ways thatpropagators can simultaneously
be put on shell, that is real particles, and summing (integgaover all possible final states
[141]. This also works for the strong-field Feynman rules va@ehderived in section A.1.
Further discussion and application to various forwardtecalg amplitudes can be found in
[152, 153]. Recently, the optical theorem has been usedltolate the total probability of
pair creation by a laser field and a Coulomb field [112], usimg known expression for the
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Figure A.1: lllustration of the optical theorem, providiagvay to calculate the imaginary part
of the self energy of the laser-dressed electrgrby instead cutting along the dashed line and
calculating the total probability of Compton scatterifdy. In both graphs, the initial electron
has four-momenturp, the final electron four-momentuphand the intermediate electrgnThe
initial and final momenta refers to the momenta outside teerlaThe emitted photon [which
is absorbed again ifn)] has four-momentunt’. The sum and integration ifb) are over all
possible final states, that is spin, direction and energyheffinal electron and polarization,
direction and energy of the final photon.

forward scattering amplitude of an arbitrary field quantaisp called the photon polarization
operator [14, 20].

Here we do not prove the general strong-field Cutkosky riesye are satisfied with proving
the identity shown in Fig. 3.6 on page 44. We display the sara@idg again in Fig. A.1, but
this time with labels attached to facilitate the discussitm prove the identity in Fig. A.1, we
start with the expression for the amplitud& for the graph(a) in Fig. A.1, with the photon

propagator given by

v o —1 4 guu —ik! - (z—a'
Gghoton(x7x/) = (27) /d k/me (@=a) (A.13)

Defining the phase

_ep-A(g)  €A%(9)
 kep 2k -p ’

(A.14)
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we have

M@ = — e? / d455d437%p(37)%Ggﬁoton(3% :CI)G(:L’, 37')%%' (x/>

—ie?  m eA(o)k 1 keA(¢)
- didia’ dpd*T, |1 2
<2ﬁ>8\/TEf/ TP ey | e | 2k
p+m cA()k

Up

keA(o)k
1 PR N
a [ + 2k - p

p? —m? +ie 2k - p
X exp [i(p—k’—ﬁ)-x+i(}5+k’—p’)~x’

b @'
L / 1/ () — F) +i / 1@ — F)].

(A.15)
If we now use the mathematical identity (the Dirac presaipt[141]
/ 9% _ —irg(0) + P / 9. (A.16)
T+ e x
or
9@ irs(@)g(e) + LY, (A.17)

T + 1€ T

whereP stands for the Cauchy principal value, for the integrativarelk’’, we see that the
imaginary contribution td/® comes from the double delta function contribution whenaepl
ing the propagators according to Eq. (A.17) [the doublegpia valuePP does not contribute
to the imaginary value of the amplitude]. However, only twidle four poles contribute, so
that to obtain the imaginary value one should replace [141]
1
~2

P> —m? +ie

where©(z) is the step function. In addition, for forward scattering meguirep = p’, the
electron momentum should not change, and we also assumea-avgpaged initial electron.
This requirement together with remembering the formulgptooton polarization and electron
spin sums

— —2imd (p* — m?) O(°), — =2ind(K*)O(K?),  (A.18)

k? + ie

S ——g" Y ulpatp) = 2 (A19)

. 2m
pol. spin
and the identities

/d4ﬁ5(ﬁ2 —m*)0(°)g(p) =/d3p9(ﬁ° = 2;22 + m? )’

/ A'KS(K)O(K")h(K) = / d%'h(klo;f,g/’?),

for some functiong(p) andh(k'), we see that making the replacement (A.18) in Eq. (A.15),
we get exactly the squared amplitude for Compton scattgintegrated and summed over final
states. This proves the identity in Fig. A.1.

(A.20)
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M, (p,p) My(p, ')

Up

=
’U\

Figure A.2: lllustration of the crossing symmetry of QED.€Tleft diagram pictures the scat-
tering amplitudel/, (p, p’), the amplitude for the incoming particle with wavefunctippand
momentump to scatter by some process (indicated by the grey box) ana @arhwith mo-
mentump’. The right diagram, amplitud&/,(p, p’), describes pair production of one particle
with wavefunctiony,, momentuny’ and one antiparticle with wavefunctiep and momentum
p by the same process (the grey box). The amplitudesand M, are related by the crossing
symmetry (A.21).

A.3 Crossing symmetries

A crossing symmetry of a QED process means that the matnmesieof some scattering pro-
cess can be transformed into the matrix element of a cormelsipg antiparticle creation pro-
cess [141]. There is a close connection between the crosgmgetry and Feynman’s inter-
pretation [67] of negative energy solutions of the Diracan as positive energy particles
travelling backwards in time. A general pair creation atogle like M, (p, p’) in Fig. A.2, can
be obtained from the corresponding scattering amplitufi¢p, p’) by lettingp’ — p/, and

p — —pin M, so that we have

My(p,p') = Mu(—p, D). (A.21)

In addition, when summing over the spin degrees of freedberetappears an extra minus
sign [141]. In the spin-summed squared matrix element flileeone for bremsstrahlung (3.46)
or for pair creation (4.12)] there appear sums like

> ulp)u(p) = prm (A.22)

spin

whereu(p) is a positive energy spinor satisfyitg — m)u(p) = 0. If now we change — —p
in Eq. (A.22), then we get
—p+m
2m

==Y v(p)u(p), (A.23)

spin

where nowv(p) is a negative energy spindgp + m)v(p) = 0. We see that we get an overall
minus sign in the squared amplitude, which has to be coddayehand. The final crossing
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symmetry formula thus reads

S 1My, ) =~ T [(m 4 ) Hal =, ) m — 5) (.1 (A.24)
spin

with M, (p,p’) = u(p')Hu(p, P’ )u(p), and whereVl, and M, refer to the scattering and pair cre-
ation amplitudes in Fig. A.2. That the crossing symmetrgesalso for laser-modified Feynman
diagrams follows directly from the positive energy Volkadgtion v, [see Eq. (2.27)], from
which the negative energy Volkov solution (correspondmghie antiparticle, the laser-dressed
positron) can be obtained by lettipg— —p.
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Appendix B

Completeness and gauge invariance

B.1 Demonstration of the completeness property of the func-
tion E(x,p)

The task is to show the equality

1 A e
(2 /d pE(p,2)E(p,2") = d(x — a'), (B.1)
whereE(p, z) and E(p, z) are defined in Egs. (2.55) and (2.56). First, write the irtbgut as

(2;)4 / d*pE(p, ) E(p, 2)

ek (A - Aw)
:(271r)4 / I ( )}

1+

2k -p

¢ -
xexp(—ip-(x—x’)—i/d dgb)

We see that ifr = 2/, then equation (B.1) holds. For definiteness, we now takectse

of linear polarization, and choose our coordinate systerthabA* = (0,0, a,0) cos(¢) and
k* = (w,w,0,0). The integral becomes

(B.2)

ep- A(9)  EA(9)

k-p 2k - p

5yt | 4B ) )

1 /d4p !1 . ek (A(g) - A(cb’))}

(2m)t 2w(po — p1)

(B.3)
X exp (—ipo(zo — xy) + ip1(x1 — 2)) + ip2(22 — x5) + ips(z3 — 25))

o (1 [ ]mcos@) @) o
P < /¢/ [W(po —p1) * 2w(po _pl)] d¢> .
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Here we see that they-integral always gives a delta function. How about the ofhep; and
po-dimensions? It is easy to see thatif = x;, andz; = 2/, then Eq. (2.60) holds. The two
difficult cases are the following.

Case lxy # xj, zizo = x,.(The treatment of the case # 2}, ;.1 = x is done analogously)
We have

! / d'pE(p,z)E(p, ')

)
Lo [ ek (A - Aw))
= / d'p !1 LR —" } (B.4)

? | epod cos e2 A2 -
X exp <—ip0(x0 — xy) +i/ [ b (9) + A9) ] d<z5> :

/ W(po - pl) 200(170 - pl)

Integration ovep, now gives

1 4 n !
5t | P .
! ek (A(g) - A(¢"))
~(2n)3 /dpodpldp3 1+ 20 (p0 — p1) ] (B.5)

¢ e2A2(6 - ea [ cos(d)dd
X exp <—ipo(xo — x) +i/¢ A7<¢))d¢> 5( f¢> (¢) ¢> .

/ 2w(p0—p1 W(po-}h)

This expression equals zero, since the argument of the fueltéion has no roots. (The delta
function satisfieg>"_6(1)dz = 0.)

Case 2.xy # x|, x2 # x4, ¥1 = x} andxs = x5. Again the case, # x|, vy # 7)), xg = 7,
andz; = zf is analogous.

This time the integral reads

1 ) o
21)! /d PE(p, ) E(p, 2')
1o [ ek (A - Aw))
) /d ! !1 T 2w p) ] (B.6)

¢ | epod cos(o e2 A%(o -
X exp <—ip0(x0 — xg) + ip2 (22 — ) +i/ [ P (9) + A%(9) )] d(b) .

/ w(po - pl) QW(Z?O — M
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After py-integration we get

1 n /
oyt | 4PE ) ()
I ck (A(9) - A(9"))
:(27r)3 /dpodp1dp3 1+ 2o(p0 = 1) (B.7)
N L LN L, e fyeos(9)dd
X exp < ipo(zo — ) —H/qy ol _p1>d¢>> 5 (:cg xh + (o= 1) .
Now, the equation
~ ro 7 It
, cos(¢)do
Ty — T eaj?pzo_s(pl)) =0 (B.8)
has the root
oot €0 f;,) cos(¢)do
1 CU(SCQ _ .CCIQ) +pOa (Bg)
so that
o BB) s
’ <x2 o w(po — p1) ) e f? cos(d)da | (8.10)

w(po—p1)?

Integrating also ovep; using the delta function (note that the singularitypat= pg, is no
problem, since the delta function gives zero at this poirglg

(271r)4 / d'pE(p, 2) E(p, 2')

| ch(ws —a5) (A(9) = A(¢)))

ex —innl(za — 2 ; ¢ e2A2<¢~))(x2 — xé)d~> w (IQ — xé)
e ( polto =) /45/ 2ed f; cos(¢)dg ¢ ea ff, cos(d;)dd;.

This integral however gives zero after integrating opgr since we assumed, # z;. In
summary, we have shown thatd*pE(p, x) E(p, ) is different from zero only when = 2/,
and at that point equal@r)*5(z — 2').

B.2 Demonstration of gauge invariance

In this section we demonstrate that the laser-assisteddstesthlung matrix element (3.26) is
gauge invariant. Gauge invariance of the pair creationimatement (4.5) can be shown in
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the same manner. We here use fwmotation of Mitter [113] (originally of Ritus [154]), see
equation (2.55) and (2.56). Following Mitter [113], we fisktow that

/ '@ E(x, p) ko Bz, ps)e™®

:(pl - m) /d4xE(x7p1)E(xap2)€ikb.x - /d4$E_1(x7pl)E("EapZ)eikb.m(pQ - m)

This is seen by partial integration:

(B.12)

/d4xE(x,pl)l%bE(x,pg)eikb'x = /d4xE(:E,p1) [—iéeikb'x] E(x,p9)
/d%@ [E(x, p1)y" ekt Bz, p2)] +i/d4x [0, E(z,p1)] e B (2, py)
—i—i/d‘le(:c,pl)’y“eikb'x [0,E(x,ps)]
— —i/ dSME(x,pl)v“eikb'mE(x,pg) + /d4x [ﬁlE(x,pl) + eE(:}c,pl)A} e* T B (2, py)
+ /d‘la:E(:c,pl)e”“b'm [—E(:U,pg)ﬁQ — eAE(:c,pl)}
=(p1 —m)/d%E(:c,pl)E(:c,pQ)eikb'x - /d4a:E(a:,p1)E(:c,p2) ko (hy —m),

(B.13)

where the surface integral is zero due to the rapid osaHtatat infinity of the exponentials in
EE. Now we show that replacing, with &, in the matrix element will give zero, and that the
matrix element therefore is invariant under the transfaiona;, — €,, + Ak, with arbitrary
constant\. Writing the matrix element with,, — k; as (omitting constant prefactors)

M., —k, = /d4x2d4x1d4p U, (29)kpe™ ™2 G (9, 1) Ao, (21)

(B.14)

— ~

+ U, (22) AcG (g, 21 ) ke ™1, (21) ],
where A is the Coulomb potential, we use the rule (B.12) to show

/d4372d4p‘1’p2(xz)/%beikb'mG(%Jfl)AC‘I’pl (1)

1 _ A
E(xlv )AC\IIM (1‘1)

:/ Ao iy, (p2) E (2, pa) ke™ ™ By, p)—

’E>

(B.15)

3>

= [ dadtpn, (52 B, pa)e™ B, ) _mE<x1,p>Acwpl<x1>

3>

_/d4x2d4p\11p2(xQ)eikb.mE(x% ) (1‘1, )A p1(x1)7
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and in the same fashion

/ Az d' PV, (22) AcG (2, 1) kye™ ™1 W, (1)
1

- mE(azl,p)l%beikb'“E(xl,pl)un (p1) (B.16)

= [ deidiply,(a2) Ac Bz, )
:/d4x1d4p@p2(x2)AcE(x2,p)E(xl,p)eikb'm\prl(xl).
Here we made use of the relatigh— m)u(p) = 0 = u(p)(p — m). From the equation

/d4pE(5517p)E(5527p) = (27T)45(371 — T3) (B.17)
we finally conclude that
M,,, .k, = 0. (B.18)
Thus it becomes possible to use the sum rule for photon gatawn sums
> e M€ M, = —M,M". (B.19)
A=1,2

However, since this relation involves exact cancellatietwen equally sized terms, numer-
ically it is better to do the photon polarization sum by attsammation over two suitable
polarization vectors. Gauge invariance is also useful amaenical check of the correctness of
the computer code used for evaluation of the different csestions.
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Laser Channeling ofBethe-Heitler Pairs

Erik Lotstedt! Ulrich D. Jentschura, and Christoph H. Keitel
Max-Planck-Institut fur Kernphysik, Postfach 103980089 Heidelberg, Germany
(Dated: February 1, 2008)

Electron-positron pair creation is analyzed for an arramg@ involving three external fields: a high-
frequency gamma photon, the Coulomb field of a nucleus antbagstaser wave. The frequency of the in-
coming gamma photon is assumed to be larger than the thdefrgbair production in the absence of a laser,
and the peak electric field of the laser is assumed to be muakex¢han Schwinger’s critical field. The total
number of pairs produced is found to be essentially unctdhibgethe laser field, while the differential cross
section is drastically modified. We show that the laser camphbl the angular distribution of electron-positron
pairs into a narrow angular region, which also facilitategezimental observation.

PACS numbers: 12.20.Ds, 25.75.Dw, 32.80.Wr

The creation of arelectron-positron pair by an external to energy-momentum conservation. Just like in a pure mag-
electromagnetic field—the conversion of field energy intonetic field [7], a second particle is necessary to provideghe
matter—remains an intriguing phenomenon, and its exploguired momentum. In a focused laser pulse [8] or a standing
ration continues to enhance our understanding of the foundavave [9-11], pair creation is possible, since the field canfig
tions of field theory. Usually, pair creation is accomplidhg  ration is different from a plane wave. Indeed, pair creaiioam
weak, high frequency fields, gamma photons, with the stanstrong laser field induced by an additional high-energy gamm
dard examples being the merging of two high-energy photonphoton has been studied both theoretically [12—-14] andrexpe
into an electron-positron pair or the conversion of a photorimentally [15, 16]. If the probing particle is replaced by a
into a pair in the vicinity of a nucleus (the Bethe—Heitleopr nuclear field [17-21], it was shown that the pair production
cess, see Ref. [1]). Strong, static macroscopic fields carate is exponentially suppressed for nuclei at rest, ant tha
also create pairs, as first predicted by Sauter [2] and Iater bacceleration of the nucleus to highly relativistic vel@stis
Schwinger [3] for the case of a static electric field. Inthesse necessary to obtain observable rates.
of QED perturbation theory, pair creation by a static field is
nonperturbative phenomenon, and its magnitude is coattoll
by a parametey, defined as

In this Letter, we study the creation of an electron-positro
pair by three fields: a high-energy gamma photon (possibly
produced by Compton backscattering), the Coulomb field of a

E eh nucleus and an intense, low-frequency laser field, as sadhema
X = o =Tt 1) i_cally shown in Fig._l. _Numeri_cal estimates _of the Cross sec-
tion for pair production in this field configuration are abisen
where E is the peak value of the electric field, = —|e|  the literature, to the best of our knowledge. Previous swidi

and m are the electron charge and mass, respectively, andf related processes [22, 23] obtained approximate asalyti
Eqit = 1.3 x 10'¢ V/cm is the so-called critical field. The formulas for weak { < 1) fields or ultrarelativistic gamma
basic result, which holds for any strong static electronegign

field, is that the probability for pair creation is exponaiii

suppressed unlesgis at least of the order of unity. If the

field is allowed to oscillate, another parameferelated to et
the angular frequency of the oscillation, becomes relevant: laser field
=— . 2
5 mcw ( ) .

amma photon
The value of¢ governs the nature of pair production. Specif- # Pt
ically, the regime¢ < 1 is called the multiphoton regime,
while for £ > 1 the pairs are created by tunneling through
the tilted potential gap of magnitudenc?, and one may call FIG. 1: Schemati_c pi_cture c_)f the considered p_air creati«nv:ums. A
¢ the Keldysh parameter of vacuum ionization. The transitiord®"-frequency, high-intensity laser beam of linear patation and
between the two regimes for an oscillating electric field was? high-frequency gamma photon, propagating in the sametiting

L. impinge on a stationary nucleus, depicted as a filled blaoHegi
treated by Brézin and ltzykson [4] and also by Popov [5, 6], proguce an electron and a positron. The arfgledenotes the

Nowadays, strong lasers offer the best possibility to &xper ejection angle in the plane spanned by the propagationtitireand
mentally test nonlinear strong-field pair production. Mode the polarization direction of the laser. Note that the wargths of
lasers achievé > 1 for infrared frequencies, but even for the two waves are not drawn to scale, in reality we considec#se
the strongest lasers available we have< 1. As is well where the laser wavelength is many order of magnitudesrsinge

known, a plane laser wave cannot create pairs by itself, dutie wavelength of the gamma photon.
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photon energies [24]. Here we find that an interesting laser
channeling phenomenon requires the opposite lgmit 1,
and we have accessed this region by a full numerical treat-
ment.

We assume the laser beam and gamma photon beam to
propagate in the same direction. For the laser field, we gmplo

a low-frequency §w ~ 10 eV), high-power laser beam with vy
typically ¢ ~ 10, corresponding to an intensify = 9 x 102! q
Wi/cn?. Since we still havey < 1, and we consider a nucleus N

at rest, the laser field will affect the total probability diet

pair creation only marginally. This can be justified by the fo FiG. 2: The Feynman diagrams for lasessisted pair creation. Ex-
lowing heuristic argument: The electron-positron pair)s e ternal electron and positron lines, as well as propagatmsde-
pected to be created over a distance of the order of the Compoted by a wiggly line superimposed on a straight line, tesstthat
ton wavelengtt\c = %i/(mc). Over this distance, the peak the laser-lepton interaction is treated nonperturbativelhe elec-

electric field of the laser accomplishes an amount of worko" is created with an effective four-momentym, and the four-
W — thw. which i h ller than the threshaidic? momentum of the positron ig-. The intermediate electron propa-
= &hw, which is much smaller than the thres ne gator momentum is denoted Iy.. The absorbed non-laser mode

to create a pair, since we assufme < mc?. We thus expect photon has four-momentui,, and the virtual Coulomb field pho-
that the total number of pairs, or the total cross sectiop&r  ton, depicted with a dashed line, has three-momenguifime flows
production, is not changed even for a strong laser. Howevefgom left to right.

the differential cross section, that is the dependence en th

directions and energies of the produced pairs, is expeoted
differ drastically from the laser-free case, due to therate ] ) .

tion with the laser field after the actual creation. In paite, ~ VOIKOV propagatot:(z, '), the Green's function of Eq. (3).
we find that the laser field strongly focuses the pairs to forn}'€ @S0 need the potential (z) = —Zed*"/(4xx|) of
a narrow beam. In this way, laser-assisted signatures of tnge _nucleus with atomllcc.(;harge numlﬁlanq the vector po-
created pairs become experimentally observable, sinceowe dential 44(x) = efe™**//2w, of the high-energy pho-
not suffer from the exponential smallness of the creatioa ra ©©1 With wave vectok’; = (w,, k) and polarization vector
as other proposals do. e = (0, €,).

From here on, we use natural units with= ¢ = ¢, = 1. The amplitudes),, ,_ for laser-dressed creation of one elec-

Furthermore, we denote four-vector dot products with a dotFron with 'asymptotlc momenturp_. and one posﬂron with
so thata,b* = a-b = agby — a - b for two four-vectors asym_ptopc momenturp.,. can be calcglated by_ ad(_jlng the
a andb*"'. Contraction with the Dirac gamma matrices is contributions from the two Feynman diagrams in Fig. 2. We

written with a haty#b, — b. Quantum electrodynamics in consider a collinear arrangement of the gamma photon and the
Aoy = b.

the presence of a strong laser can be treated with athezdretidé_1ser beam, Wh'.Ch in partl_cula_rllmpllés- ky =0, a_nd pro-
framework [25] analogous to the Furry picture, that is oth_V|des for a considerable simplification of the matrix eleten
erwise used to describe electrons bound in strong CoulomWe have
fields. Since the laser is strong,> 1, the lepton-laser in- g . 2/‘ 4 4 5 NA

; i =1 d*zd*2'v, (2)][Ay(2)G(z,2")Ac(x
teraction needs to be treated nonperturbatively to allisgde  ~P+P~ ~ ¢ v, (@)[4y(@)G(a,2") Ao ()
while we include the interaction with the Coulomb field and + Ac(ﬂc)G(Iyx')Aw(m’)}w; (a')
the gamma photon in first-order perturbation theory. We con- - 5
sider linear polarization of the laser field, described by th _ o, Z Zelm  6(Qy + Q- —nw — Ww)ufwo
vector potentiald® (¢) = a* cos ¢, wherea* = (0, a) is the W 2w EfE_ (a- + g+ —nk—ky)? "
polarization vector, and = k- x is the Lorentz invariant laser . . R .
phase, expressed through the wave vektor= (w, k). The éwqu—p—f—an + an% ub,, o (8)
amplitude of the vector potential is related to the paramgte 2p— - ky 2py - ky
as{ = —elal|/m. where

The basis states for the electron and positron are the Volkov

statesy,; (=) [26], which are exact solutions of the Dirac F,, =Ag(n,ay —a—,—f4 — B_)y°
equation coupled to an external laser field:

‘utions, it is relatively easy [25, 27] to construct the Rira

AOe ak e aky°
N n +A1(7L,(M+*(l,,*ﬂ+fﬂf) (2/]{‘74’2]{7/)
(i@ —m— eA(¢)> 1/;;; () =0. ?) C- Pt Sp_
. e? a’wk
Here p+ is the asymptotic momentum of the electron or +Az2(n, 0 —a, B4 —d—)ms (%)

positron outside the laser, and we defife = (Q+,q+) =
P + k'e?|al?/(4k - pz), the effective momentum of the o = ea-p+/(k-ps), B+ = ¢*a®/(8k-p+), andu;¥_ are con-
electron or positron inside the laser. From the Volkov so-stant spinors satisfyinfp+ = m)ui¥ = 0. The generalized
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Bessel functiom i (n, «, 8) is defined as [12, 13]

o
AK(”» Oé,ﬂ) _ L / COSKSDE—ML'\J«H& sin ;p—i[isin(&p)d(p.

27

(6)
The expression (4) was first obtained in Ref. [23]. We note
that the matrix element (4) is related to that of laassisted
bremsstrahlung [28, 29] by a crossing symmetry. Energy con-
servation is enforced by the delta functiti@ . + Q- —nw—
w~), which clarifies the meaning of the integer It signifies
the net number of photons absorbed during the process. To
obtain the total amplitude, one should sum over all photen or
dersn. Note, however, that energy conservation is expresseg. 3: (Color online) The differential cross sectidn /dS2; as
through the effective energi€g-, and that photon number 3 function of the angle of ejectiofl; (see Fig. 1), in the plane
is bounded from below by the laser-dressed pair-productiospanned by the propagation directieyw and the polarizatiodirec-
threshold conditiom w > 2m., — w,. tiona/|a| (polaranglep; = m/2). Note thatlo /dS2 is symmetric

The laser-modified differential cross sectimis given by ~ aroundé, = 0, we show only positivé)... The laser frequency is
the standard formula w = 10 eV and the gamma photon energy.is = 1.25 MeV. Here,

) ) the parameter valuegs= 6 and{ = 10 correspond to laser intensi-
2 d®p_ d3py ties]; = 3.2x 102 W/cn? andI; = 8.9x10%! W/cm?, respectively.
(2m)3 (27)3 The nuclear atomic number s = 1, and we remark that as the cross
. . section is evaluated in the first Born approximation, it esasZ?.
= Z 5n0(Q4 + Q- — nw — w) dp_ d'sp+7 (7) In the graph, circles and squares represent numericalassof the
n differential cross section obtained by fourfold Monte-lBantegra-

where the large observation tirfigis cancelled by the relation tion, and the red dashed and pink solid lines are analytisaidithe
numerical values. For comparison, the solid black line shtve

*(x) = T46(x)/(2m). Note that the final-state phase space IS ey free case, multiplied by a factor t* (the laser-free differ-

expressed in terms of the momeptaoutside the laser. ential cross section would otherwise not be visually digtishable
We have evaluated the differential cross section (7) for dif from zero). For the conversion to other frequently usedsufuit the

ferent values of the parametér In all cases, we have av- cross section, one usédeV 2 ~ 4 x 102 barn = 4 x 10722 cm?.

eraged over the polarization of the initial gamma photon and

summed over the spins of the final electron and positron. Due

to symmetry reasons, the differential cross section is sym-

metric under the exchange of electron and positron, and Wﬁere\A(QO)\ is the amplitude of the vector potential at the

show the positron spectrum. The laser freque_nc_y Is chosen #Foment of creation. Taking into account the initial momen-
w =10ev. Howz_aver, we expect that the qualitative beha\"ortum distribution given by the Bethe-Heitler formula, onedfin
of the cross sections is independentofas long ag¢ < 1.

- . : that the angular distribution after the laser pulse, iratest
In Fig. 3, we show the cross sectielr/dS)y, resulting over all phases of the laser, has a peak clos® @ = 0)
from fourfold Monte Carlo integration, which remains dif- so thatd — 0.(0) ~ 1/’§ Note that the anglé is’
ferential only in the solid anglé$), = df,dy sin e, of peak = U, : peak

. . . independent ofv. The differential cross sectiaiy /d$2; as
the created positron. Herg, is the corresponding polar

. " . a function of the polar angle ., is peaked sharply around
angle. Observe that the solid angle refers to the direction P 9@+ P Py

. . p, = 7 /2 for fixed 0+ = 6, with a peak width of approx-
p+/|p+| of the positron outside the laser, to allow compar-;-- v/ -+~ Upeas P pp

: ith the | p Th hot imately 0.01 rad for the case = 10. The Lorentz force of
1son wi € laser-lree case. € gamma photon Energy i, |,5e; field, with rising intensity, transfers an inciegly

w?'thz hi‘% II\'IeV T—I 2m, S0 tha_t p?'r plroduct|c_)nF|_s pgs;;ble larger amount of momentum to the positron in the propagation
without Iné faser. However, as IS clearly Seen in Fig. 5, theé a direction, compared to the amount transferred in the prdari

gular distribution in the field-free case [1] is broad. Quae tion direction, which consequently leads to the described
the contrary, the laser-dressed curves show sharp pedks, Wthanneling of the pairs into a narrow angular region.

the peak height increasing with increasing laser inteyaity To demonstrate the assertion that the total cross section, o

the peak position given roughly Wgeay = 1/¢. This value the total number of produced pairs is unchanged even by a

can be understood intuitivgly by classical arguments: If Waser field as strong &s= 10, we show in Fig. 4 the total cross
ua)ssu_mf ;??’Ig\l/e é) ofggogétshgﬁfieﬂirﬁor?cii pxﬁaopegﬂﬁ_rgsyectionmm = [ do, resulting from sixfold numerical integra-
inZ] r?]orﬁeontunp“ ythen from the classiial equé\tions of mo tion over the created electron and positron momenta. Due to
i+ - : -~ ;
tion for p/; we have, outside the laser field for small angIesiﬂgggi?nsfr;’fntlobnélg\:fvllﬁsr: :{?’Z;rs?]s:ss?’sﬂzr; ?h‘f:gsir:a
1 o v L . )

O <1, is included, absorption of a sufficient number of laser phsto

to overcome the laser-modified threshatd.. results in a fi-
nite, but small, total cross section. Since we may speak of a

-7

do /S, [MeV~?]

So N M O

1
do =7 ‘Spwf‘

P 2k-piy

b4(00) ~ 7 ™ CleAoo)

®)
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4

5107 a detector in this direction will therefore detect esséiytl

I o™ of the created pairs. We conclude that the proposed scheme of
% 14 pair creation by a gamma photon together with channeling of
S 10_16 O 5 the pairs with a strong laser is a realistic way to observe non

?10 = linear laser effects, accessible to current laser fagdljtvith-
810" O out resorting to ultrahigh-energy photon or proton beams.

198 2 2.02 2,04 2.06 2.08
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Bethe—Heitler pair creation assisted by a subcritical lasefield

Erik Lotstedt! Ulrich D. Jentschura, and Christoph H. Keitel
Max-Planck-Institut fur Kernphysik, Postfach 103980089 Heidelberg, Germany
(Dated: January 15, 2008)

We investigate the cross section for the productioelettron-positron pairs in the field of a laser wave and
a nucleus. Specifically, we consider pair production by tisdn of a non-laser mode photon, whose energy
exceeds the pair production threshold, with an arbitraminer of laser photons. The peak electric field of the
laser is assumed to be much smaller than the critical fielce total cross section is estimated to be almost
unchanged with respect to the Bethe—Heitler formula by thegnce of the laser, whereas the differential cross
section is found to be drastically modified.

PACS numbers: 12.20.Ds, 25.75.Dw, 32.80.Wr

. INTRODUCTION values.
In this paper, we investigate the possibility to create air
The creation of arelectron-positron pair by an external from vacuum in the presence of three external fields: a laser

electromagnetic field is a striking manifestation of theiequ field, a Coulomb field and a single photon, whose frequency
alence of matter and energy. That not only energetic photofxceeds the pair production threshold. The Feynman dia-
fields, but also strong, macroscopic electric fields canpeed 9rams are shown in Fig. 1. The matrix element for this
pairs was first predicted by Sauter [1] and later consideyed bProcess was first calculated by Roshchupkin [27], and also
Schwinger [2]. The basic prediction is that pairs are spontaby Borisov et. al.in [28, 29], however without perform-
neously created, but the rate is exponentially damped sinledNg any concrete numerical evaluations. The matrix ele-
the electric field strength exceeds the so-called critieatifi Ment has a crossing symmetry with the one for laser-assisted

E, = m2?/Je|, wherem is the electron masg, = —|e| the ~ Pbremsstrahlung, which was studied previously in many pa-
electron charge, and we use natural units suchcthah — 1. Pers, including Ref. [30], and by us recently in [31, 32].
The transition from the nonperturbative, tunneling regfore In our case, pair production is possible in the absence of

pair production to high-frequency perturbative pair produ the laser field through the Bethe-Heitler process [33], bsea
tion was studied by Brezin and Itzykson [3] and also by Popowve assume the angular frequency of the single photon to

[4, 5]. At present, the strongest electromagnetic fieldsl-ava be larger than the threshodn (we denote the frequency of
able in the laboratory are laser fields. However, a plane lasdéhe single photon by a superscript rather than a subscript in
wave cannot alone produce any pairs from the vacuum dugiew of a rather large number of Lorentz subscripts that we
to the impossibility of satisfying energy-momentum conser Will need to introduce in the analysis later). The preserfce o
vation. Just like in a static magnetic field [6, 7], a probingthe laser will then modify the process, so that we can speak
particle is needed in order to obtain a nonvanishing pair proabout laser-assisted pair production. By contrasty ik 2m,
duction rate. If the laser wave is not plane but a focusedepulsthe laser field would not really assist; it would be even neces
[8], or a standing laser wave [9-11], pair production is poss Sary to produce any pairs at all, and we would call the process
ble without a second agent. laser-induced rather than just laser-assisted.

Laser induced pair production with an additional source We note the general observation [34] that to produce an ap-
of momentum was first investigated theoretically in the consPreciable number of pairs, the electric field in the rest &arh
text of pair production by simultaneous absorption of onethe nucleus has to exceed the critical field. We thus expattth
non-laser-mode photon and a number of laser-mode photorﬁ@f a subcritical field, theotal rate of laser-assisted pair pro-
[12, 13]; quite recently, this process was also observedrexp duction will be essentially unaffected by the laser fieldwHo
imentally [14, 15]. Another possibility discussed in thefa-  €ver, thedifferentialrates, that is, the dependence of the pro-
ture is laser-induced pair creation in the vicinity of a murd. ~ duction rate on the directions and energy of the produced par
Unfortunately, for a nucleus at rest, the pair productidesa ticles, can change drastically. For the same reasons, vezexp
are very low [16-20]. Recently, this process has been reexanihe rate to be very small for a subcritical field ant < 2m,
ined, with the idea of introducing a moving nucleus [21_26]_Where the Bethe-Heitler rate vanishes identically. All loé t
By letting the nucleus collide head on with the laser beanfssertions above will be demonstrated in the paper by éxplic
at high Lorentz factor, in the rest frame of the nucleus the humerical evaluation.
frequency of the laser beam will be blue-shifted or enhanced The paper is organized as follows. In Sec. II, we introduce
with a factor of approximatelgy. In this way, the peak elec- the theory necessary to describe the laser-assisted praces
tric field seen by the nucleus in its rest frame approaches theluding Volkov states and the Dirac-Volkov propagatorgdiea
critical field, and the rates are calculated to reach obsteva ing to the expression for th§-matrix elements. Next, we

present numerical results together with a detailed disonss
in Sec. lll. An Appendix is dedicated to an efficient algomith
for the numerical evaluation of generalized Bessel fumstjo
*Electronic addres<Er i k. Loet st edt @wpi - hd. npg. de which occur quite naturally in the treatment of the problem.
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2

X wheree, = (0, €) is the polarization vector satisfying =
—1, k- e = 0, anda is the amplitude of the vector potential.
The integral in Eq. (3) can then be performed analytically an

reads
2 2 .
Sx(z,p)=Fp v F fka Zz?pe sin ¢
a2
5
8k bm(2¢) )
FIG. 1: Feynman diagrams describing the process of Jassisted =Fq-z— asing £ 3sin(2¢),

pair creation. Laser-dressed fermions are denoted by thiek.

The electron effective four-momentum in the laser fielddsand

the laser-dressed positron has an effective momemtunThe mo- . . . .

mentum of the virtual state in the laser-dressed propagsigy.p. where in the Iagt ]lne we have defined the effective momen-
The virtual Coulomb photon with spatial momentupis drawn as ~ tumg,, = p, + e?a’k,,/(4k - p), with corresponding effective
adashed line, and the absorbed high-energy photon with mome ~ massm? = ¢ = m? + e2a?/2, effective energyQ = qo,

k™ as a wavy line. The direction of time is from left to right. and the other parameters aie = ca(p - €)/(k - p) and
B = —e%a?/(8k - p). Later, when we write down the ma-
trix element we will use the following Fourier decompositio
Il. THEORY of the wave function (2):

In this section, we review the theory used to describe faser
matter interaction. The interaction of the electron andtpms

with the laser field will be treated non-perturbatively, wéms ;) = [ Z exp (Fiq - @ — ik - x)
the interaction with the high-frequency photon field and the

Coulomb field is taken into account by first-order perturdvati e
theory. X <A0(s,a,iﬁ) + ;Z ¢ Al(s,a,iﬂ)> uz(p),
P

(6)

s=—00

A. Volkov wave functions and propagator

We start from the Dirac equatlon coupled to an external
plane electromagnetic wave, (¢ where the generalized Bessel functidn(s, «, 3) is defined

as an infinite sum over products of ordinary Bessel functions
(i0 — eA(¢) = m)v(x) =0, @
where¢ = k*z,, is the phase of the wave, akd is the wave

vector. Scalar products will be written with a dotasb = Ao(s,a, J a)J, 7
a,b* = agh® —a-b, and a hat denotes the contraction with the ols e, 0) = Z 2nt(@)Tn(6), )

Dirac gamma matricesd = # A,. The solution to Eq. (1)
is the well known Volkov solution [35] and reads

) Ak _ and for positive integer
Yx(z) = \/g (1 ¥ ;Tp) uf exp [iSx(z,p)], (2)

where

n=-—00

Ais, 0, B) = % (Aicr(s — 1,0, 8) + Air (s + 1,0, 5)).
¢ (ep-AW@) _ A @)Y 8
Sewp)=Fp-oF /<z>n < k-p ok p ) 49’ The generalized Bessel function was first introdut(:e)d by
(3) Reiss [12], and was later studied by several authors [13, 36—
Here,y_(x) denotes the electron wave function, and(x) 39]. In the Appendix, we discuss some of the properties of
is the corresponding positron wave function. Note that-  Ay(s,«, 8) and also present an efficient algorithm for their
ways denotes the charge of the electron. The spifosat-  numerical evaluation.
isfies (p F m)u,f = 0. In the following, we specialize to a

monochromatic laser wave of linear polarization, To write down a second-order matrix element we also
need the Dirac-Volkov propagat6f(x, 2’), which can be ex-
A,(d) = aeycos(o), (4)  pressed in a number of different ways [40]. We use the repre-
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3
sentation [41, 42] Fig. 1:
. S = S$n0(Qp + Qe +nw —w7)
o) = / d'p (1 N ekAw)) p+m 2 e
’ = 1 . > _ 02 1, . .
(27) 2k-p | p2—m?2+1i0 . Z Am o 8(Qp+ Qo+ nw — w?)
eA(g)k , o W V20Q,Qc (@ + gy +nk — k7)?
S Eys » exp [iS—(z,p) — iS-(z', p)] '
. 2 7.9 9 =
. : iy, ( Fig(en) PG LA PO 0y
d'p eaké Pe P2 —m?2 :
= / < Z Ao(s, o, ) + Ai(s,a,3)
(2m)* —~ 2k-p 5y — lee2a?)(4k - p
s,8'=—00 s+n /. 0\Pp ea®/( Pp) +m |+
N + Fipoy () TR Fiy12(€7) |ug,
. Tphtm o (e =) —ik-(sa—s'a") Pp =1
p? —m2 +1i0 11
x (Aons’, 0,0) + et A a)> : @ Where
FRrun(X) = Ao(m,ax — ar, Bk — Br)X
Al 3 3 Xeake eackX
where in the last equality have used the specific form (4) of T 1(m, ax —ar, Bx = Br) 2% -par o .
the vector potential, expanded the propagator into a ptafuc ISP
two Fourier series, and finally changed variallgs— p, + + As(m, ax — ar, B — Br) e*akXka 12)

e%a?k,, /(4k-p). This transformation makes the appearance of 4k - pyk - pn’
the effective massu,. in the propagator denominator explicit.

with K, L, M, N € {1,2,3,4}, X € {&7,7°},
ak = eae-pr/ (k- pK), Br = —e*a®/(8k-pk), (13)

P1=—Qp, P2 = Pp = —qp+sk+k",p3 = pe = ge+sk—k?
andps = ¢.. We recall that index (p) is used to label the
B. Matrix element and cross section electron (positron) momentum vector. The expression (11)
was first obtained in [27]. The first line in Eq. (11) impligit!
defines theauth order matrix element,,, and the argument of
In our treatment, the final states of the electron and of thehe delta function in Eq. (11) expresses energy conservatio
positron are described by Volkov states, andifrac-Volkov  in terms of the effective energi€y, andQ.. The number-n
propagator is employed for the intermediate, virtual state (+n) can be interpreted as the number of photons absorbed
i.e. the interaction of all fermions with the laser field ikega  from (emitted into) the laser during the process. In palticu
into account to all orders. The effect of the Coulomb field ofthe threshold)” — nw > 2m, for pair creation is higher than
the nucleus and the gamma photon are calculated using pehe field-free case, due to the larger effective mass> m.
turbation theory. To this end, we introduce the vector pigén From the matrix element we obtain by the usual methods [43]
Afj(x) of the nucleus with atomic charge numiiee= 1 (the  the differential cross sectiotlr, averaged over the polariza-
scaling withZ can later be restored easily) and the vector potion of the gamma photon and summed over the spins of the
tential A7 (x) of the perturbative photon electron and positron,

1 3 SE 1
do == Z gy d°q \S|2—

N 3 3
Clz) = —edu0 a(x) = 1 e (10) 2 Spin,pol_(27T) (2n) T
' dmfal T T Vawr 1 &, dq |,
= > e g, 125 ) .
dm Sp%m (2m)? (2m)3 [S]%6(Qp + Qe + nw — W),

Here,w” denotes the frequency arkg the uth component (14)

of the momentum four-vector of the gamma photon. Note

the minus sign in the exponential #f) (z), since photon ab- where in the last line the delta function is explicitly weitt
sorption is the desired process. Expressions (2), (9), Hdid ( out. The matrix element (11) is gauge invariant, both under
now permit us to write down the matrix elemefitfor the  the gauge transformatian, — €, + C1k, of the laser field
production of one electron with effective momentymand andel — e;—o—Cgk;{, whereC', , are constants. Gauge invari-
one positron with effective momentut, by absorption of  ance, especially for the gamma photon field, provides asensi
one photonk”, corresponding to both Feynman diagrams inble numerical check of the computer code used to evaluate the
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4
differential cross section (14). In principle, gauge inaace
also makes it possible to use the replacement b €
O kY k
‘ZFZ = Y (15) 017
polarization €
qe

for the calculation of the polarization sum. However, numer
ically the polarization sum is more conveniently done using
specific representation of the polarization vectors. The su FIG. 2: The geometrical setup of the considered processpfiben
over spins is written like a trace over Dirac gamma matri-with three-momentunk” collides head on with the laser beam with
ces, which is performed numerically. Quite counterinteity, wave vectork and polarization vectat, producing one positron with
this procedure can be computationally advantageous foedgra  ffective three-momentum,, making an anglé,, with thek”-axis,
over Dirac gamma matrices occurring in laser-related prob@nd one electron with effective three-momentymand anglef...
lems, where the expressions obtained after taking thetdae The vectorsy, andg. lie in the plane spanned by ande.
not simplify as much as in typical problems from high-energy
physics [31, 32].

Another numerical test of correctness is the behavior of th
cross section at the apparent singularity wienp. , — 0
in the F’ functions in the expression on the right-hand side o
Eq. (11) (we recall thap, = p, andps = p.). The matrix
element can be shown to be finite in this limit, but the caleula
tion constitutes a test of numerical stability as the arguse
of the generalized Bessel functions tend to infinity.

gvailable energy for the produced pair. In the following, we
will assume the directiong. /|q.|, g, /|g,| of the positron and
felectron given, and consider the differential cross sadtld)
as a function of the effective energy, of the positron. The
effective energyy). of the electron is fixed by energy conser-
vation for eachn. It follows from the expression (11) that to
find the energy cutoff, we should consider the behavior of the
function

Hn _ i AO(Svac - d,ﬁc — /3)

Ill.  RESULTS AND DISCUSSION
s+ C (16)

S§=—00
In this section, we present results of a concrete numeri- x Ao(s —n,ap — &, By — B)

cal evaluation of the differential cross section (14). Tre f
quency of the laser is taken to be= 1keV, and the ampli- as a function ofn. As follows from the discussion in
tudeq is chosen such that the classical nonlinearity parametep€c. I B, we can assume thét is non-integer. As shown
& = —ea/m is of order unity. Experimentally, this choice in the Appendix, the function (16) has the same cutoff prop-
of parameters can be realized in either of the two followingerties as the generalized Bessel function
scenarios. For a high-power laser, operating at a photon en-
ergy of 1 eV and intensity of x 10'7 W/cm?, head-on col-
:sgn;(l)vg r\]/viélll rgeilvagl\‘/flsic 1n:ﬁlgzs:vw§hk2\ll_ ?r:etr%tez rl::ac;ct)sfﬁ;cranc é _providedC is Iarggr than the cutoff index of the first of tlmg
of the nucleus. In an alternative scenario, a focused x—rag the numerator in Eq. (16). AS. — 3, = —[(k - ¢.)™" +

. —17 2,2 i i
free electron laser [44] applied to a nucelus at rest may als; f qtf) t])'e @ /h8 t< 0, ?thhlg? valuestqQPt ‘?rﬁ obtatlgetd
give access to the parameters above. Here1 andw = 1 y absorbing photons, that 1S, Tor negatweit follows thal

keV in the laboratory frame requires an intensityot 1023 Q;uwﬁ Is the largest positron energy for which the inequality

Wi/cm? at the focus of the laser. In this regime, the peak elec-
tric field of the laser is still much smaller than the critifiald,
Epeai/ Ec = —Eew/m < 1. We will consider the case where s gfil| satisfied. The integefpos, cuofis defined in Eq. (A.1).
the laser counter propagates with the gamma photon, and dgince the quantities: ¢, andk- g, involve direction cosines, it
scribe the direction of the produced electron and position bhecomes clear that the energy cutoffis direction dependient
an angle.,, as depicted in Fig. 2. particular, this implies that the maximal enex@§"" will de-
pend not only on the direction of the positron, but also on the
direction of the electron. In order to determine the di@tti
A.  Energy cutoff dependent energy cutoff, one therefore proceeds as follows
In the first step, one fixes the directions of the electron and
In principle, since the sum overin Eq. (11) extends from  positron, which definespos. cutorr@s a function ot and@,,.
—oo to +00, the created pair can acquire arbitrarily high ef- In the second step, one vari€s, and in this way find the
fective energie§),, Q.. This should be compared to the field- largest positron effective energy, satisfying Eq. (18).
free case, given by the Bethe-Heitler formula [33], wheee th  As a concrete example, we let the positron and electron be
cross section vanishes identically for positron (or efmten-  ejected at equal angles = 6. = 6, and show in Fig. 3
ergiesE > wY — m. In practice, however, an apparent cut- the cutoff as a function of for different values of the in-
off will occur in the energy spectrum, and thereby limit the tensity paramete¢. The frequency of the single photon is

Ao(n, e — ap, Be — Bp) an

Mpos. cutoff > [n], (18)
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»

Q;utoff /m/

S

B. Resonances and competing processes

In principle, the matrix element (11) diverges if one of the
intermediate momenta,, p, satisfies the on-shell condition

Pe = (go+sk—k7)% = m2, pp = (K7 —qp+sk)> =m?

(19)
for somes. Physically, this means that the considered second-
order process splits up into two consecutive first-order pro
cesses, laser-induced pair creation by a gamma photon fol-
lowed by Coulomb scattering of the electron or the positron.

This phenomenon has been studied before in the context of
laser-assisted electron-electron scattering [45-47]aset-
assisted bremsstrahlung [30-32, 48]. The usual way to regu-
larize the matrix element, so that it remains finite also at th

do/(dQ,dS,d, ) [MeV 2]
N

condition (19), is to add a small imaginary part to the energy
of the electron (positron) [49], related to the total prabigb

for the intermediate state to decay by Compton scattering. F
nite values will results also if the finite extent of the lafeld

or the frequency width of the laser or photon beam is taken
into account. In the current paper, however, we consider a
regime of parameters where the resonances are strongly sup-
pressed. Mathematically, this means that the valuenefeded

to satisfy the resonance condition (19) is larger than theeeo
sponding cutoff index for the generalized Bessel functiom

that the contribution from this index in the sum oves negli-
gible, once properly regularized. Physically speaking anes
dealing with laser parameters such that purely laser-ieduc

£=0, x50 processes, that cannot occur in the absence of the laser, hav
vanishingly small probability to occur. The basic requissth
2 4 6 € for laser-induced processes like pair creation by a phdt8h [
Q,/m (at photon frequency” ~ 2m,) or pair creation by a nucleus

[16] to have substantial probability is that the peak electr

FIG. 3: (Color online) Upper panel: Effective energy cutaff a  field Epeak = aw should be comparable to the critical field,
function of the angle) = 6, = 0., resulting from the solution of Epea/ E. ~ 1, and, as mentioned before, we consider only
Eq. (18). For comparison, we also show the effective endngy t laser parameters w such thatEpeak < E.. This also means
would result if the positron were created with the largestilable  that at the field strengths considered, there will be no cempe

energy in absence of the lasdf, = Emax = m — w7, and then  ing processes, so that our process will indeed be the dominat
placed in the laser field with fixed direction @f (all curves arda- ing one.

beled accordingly). The difference of the latter two curt@ghe
laser-dressed solution is because of the correlation leettves elec-
tron and positron induced by the laser. This correlation alas

observed in [22]. In the lower panel, we show a concrete el@mp

C. Angular distribution

of the cross section, fdt = 2.8 rad, chosen to maximize the cutoff

for ¢ = 2. The “laser-assisted” curves show a complex oscillatory

behavior, with a peak just before the cutoff. The cutoffsipred by For the field-free case, the pairs prefer to emerge at an angle
Eq. (18) are indicated by arrows. Note that the curvegfer1and 6 ~ m/w” with the vectork” [33]. When the laser field is

& = 0 were multiplied by a factob0; the ordinate axis is kept on a turned on, we expect to find more pairs in the direction of the

linear scale.

laser wave vectok. In Fig. 4, we display the differential
cross section integrated ové),, anddQ., for§ = 1,2. The
peak is seen to shift from the direction of the gamma photon
to the direction of the laser wave.

w7 = /6 m, which corresponds exactly to the threshold value
2m, for ¢ = 1. In the same figure, we also show a concrete
evaluation of the differential cross section for tr@respond-

ing parameters, compared to the laser-free case. The magni-

D. Total cross section

tude of the differential cross section is here significaletiger
that the case without the laser, and also displays a contpdica  The total cross section is obtained by integrating the giffe
oscillatory behavior. ential cross section (14) over the energigs Q. and solid
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0 FIG. 5: (Color online) The total cross section as a functibithe
0 2 3 frequencyw” of thenon-laser mode photon, compared with the case
0 [rad] without the laser field. The laser frequency used is- 1 keV. Due

to the laser, there remains a finite probability of pair doeabelow
the field-free threshold,” = 2m. However, the magnitude drops

FIG. 4: (Color online) The differential cross section int&gd over exponentially, as expected.

the effective energy),,.., for { = 0 (solid red line) £ = 1 (solid blue
line) and foré = 2 (dashed green line). As in Fig. ) = v/6m.
The pair is emitted at equal anglés = 6. = 6 (see Fig. 2), in the
lane spanned bk ande. We note that the area under these curves
Zre notgbly diff(?ryent, which implies that the presence ef ltser IV CONCLUSIONS
enhances the number of pairs produced,at .. The differential
f;fesrs(sssgt:_f;” 'Q;eg;aﬁgqgsvfﬂfc”hzﬂgfs ‘;"S'"Cr;cr’n""?r‘;g ?gm‘:‘: In this paper, we have presented a calculation of the laser-
case. 9- ), 9 P assisted Bethe-Heitler process, i.e. pair production bigla-h
frequency photon in the presence of a nuclear Coulomb field
and an intense laser field. The regime of parameters consid-
ered was for a subcritical laser field, that is the peak elec-
tric field of the laser was much smaller than the critical field
angles(2,, {2, of the produced positron and electron: E. = m?/|e|, but with a the nonlinear parametgof order
unity and the gamma photon frequency > 2m. In this
regime, pair production is possible without the field, and as
1 QplapldQpdy Q.lqeldQ.dS2, the laser field strength is below the critical field, it is esteel _
Otot = / 3 Z (2m)? 2n)? that the total rates are almost unaffected by the laser. This
- was confirmed by evaluating the six-fold integral for theatot
5 5 cross section numerically (see Fig. 5). However, the differ
X |Su6(Qp + Qe +nw —w7). (20)  gngial cross section was found to be drastically alterechby t
presence of the laser wave, as shown in Fig. 4. Finally, we
note that all cross sections shown here are evaluated for a nu
Here, it is convenient to replace the sum over the number olear charge numbef = 1 and scale ag/?, since we have
exchanged photonsby an integral, and to evaluate ttiige-  taken into account the Coulomb field in first-order perturba-
gral with the delta function so thatequals the integer closest tion theory.
to (w? — Qp — Qc)/w. This is a good approximation since  Cjear laser-assisted signatures are thus expected infthe di
w < Qe ,p, . The remaining six-fold integral has to be per- ferential cross sections, and these might provide an opport
formed numerically (we employ a Monte Carlo method). Wejty for interesting experiments in the near future.
note that this method has been used before to obtain toésl rat
for the production of pairs from a colliding laser beam and a
nucleus [25, 26]. In general, Monte Carlo integration is the
method of choice for integrals of high dimensionality where
the accuracy dem_and‘is modest. The result of one such cal- Acknowledgments
culation is shown in Fig. 5, where we present the total cross
section as a function of the frequengy of the perturbative
photon. As expected, in the region where pair production is We thank A. Di Piazza for useful discussions. One of
possible without the laser, the rates are almost indistsfigu  the authors (U.D.J.) acknowledges support by the Deutsche
able. Forschungsgemeinschaft (Heisenberg program).

spin, pol.
n
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APPENDIX: CUTOFF PROPERTIES AND EVALUATION OF

THE GENERALIZED BESSEL FUNCTIONS = 0.02
—
1. Cutoff rules é 0
Important for the understanding of physical processes e -«
pressed through generalized Bessel functions is the dugeff -0.02 T”neg. cutoff ¢7lint Tlpos. cuto
havior. A rule is needed for how many terms should be in-
cluded in sums like Eq. (11) to reach convergence. For the -2 0 2
usual Bessel functiod,, (a), the cutoff rule is well known: nx 107

for n > « (positiven, «) the magnitude of/,, () will drop ) ) i

sharply as/,(a) ~ an/n,ﬂ_% and the cutoff is therefore FIG. 6: (Color online) The generalized Bessel functids(n, c, 5)
— Ply n . ! g as a function of, with @ = 8 = 10*. Indicated are the positive

n = a. For the generalized Bessel functidp(n, a, 8), the o5 Tipos. auott = 25 + a2 /(168) = 20625, the negative cutoff

correct rule reads for positive and3 Nneg. cuolf = —28 — a = —3 x 10* as well as the index for the
transition to another “plateau”, given by = —26 + o = —10%.
{(172ﬂ if 86 < «
Mpos. cutoff = TRV 5
2ﬂ+1‘;—ﬁ if 86 > « (A1)

. We also give the expression for the first correctity:
Tneg. cutoff = —C& — 20.

Wa(n, a, 8,7, 0) = 7%[Ao(nf 1,T,A)

+ Ag(n +1,T,A)]
Ao, @, =f) = (=1)"Ao(=n, 0, B), +BlAo(n = 2,T, A) + Ao(n + 2,1, A)],
Ao(n,—a, 8) = (=1)"Ao(n, a, B). (A-2) (A.6)

For negativey, 3 we use the symmetries

Beyond the cutoff,|Ay(n,a, 3)| will show inverse facto- Wherel'’ = o —y andA = 3 —4. Itis now clear
rial decreasev n—"—%, similar to Jn(c). An example of that H,(a, 3,7,9) will have the same ct_Jt_off behavior as
Ag(n, a, 3) is displayed in Fig. 6. These cutoff rules can be 4o(n, @ — 7,4 — ), under the stated conditions.

derived from the asymptotic expansion by the saddle point
method [13, 36, 50] or from the maximal and minimal value
of the classically allowed energy for an electron moving in a
plane electromagnetic wave [51].

3. Algorithm for numerical evaluation

In order to investigate the problem in the present paper nu-
merically, a large number of generalized Bessel functions f
different indices, but of the same arguments were needed, in

2. The function i, particular to accurately evaluate functions like, discussed
above. In analogy with the usual Bessel function, genedliz
Regarding the functiof,,, as appeared in Eq. (16) Bessel functions satisfy a recursion relation, relating om

dex with its four neighbors:

L Ag(s,a, B) Ag(s —n, 7,6
H, = Z of ﬂ)s +0(C’ 1 >7 (A3) 2nAo(n,a, B) = a[Ao(n — 1, B) + Ao(n + 1, v, B)]
= —28[Ag(n —2,0,8) + Ao(n + 2,0, 0)]. (A7)
we can use the expansion The recursion relation (A.7) is however numerically stable
5 only for certain intervals of the index and cannot be used di-
1 1 s /5 A4 rectly for a numerical evaluation. We have found that it ispo
g e (4 e : foun
s+C C Cc* sible to make the recursion stable for arbitraryif we trans-

. . form the recursion relation (A.7) into a third-order retatiby
and then perform the sum ovewith the addition theorem for |eting each of the coefficients satisfy its own recursida-re
generalized Bessel functions, for each term in the expansioon 1 the following, we describe the algorithm for positi
(A.4). Prow_decC is larger the_m the cut(_)ff index of the first of n, the treatment of negative is completely analogous. We
the generallzed_ Bessel functions entering the sumin EG)(A. /50 assume. 0. In the casex = 0 the generalized Bessel
we can then write function Ay (n, o, 8) can be expressed as an ordinary Bessel

_ _ . function. After the transformation, the functioty(n, «, 5)
Hy (v, 8,7,6) :Ao(n-ﬂ 7,8—46) + WZ(nvmv‘ﬁ«,’Y:é) will satisfy
c c?
W3 (s 0,0
n 3(n, @ B,7,9)
C(S

(A5) 28A0(n—1,a, B) +kndo(n, o, B)+ A Ao(n+1,a,5) =0,

e (A8)
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if the coefficients:,, and)\,, are defined recursively like

20¢n
Kn = Gn — )
C )\n+1
)\n = Nn — H?H»_lén’ (Ag)
An+l

where(,, n, and¢,, are again defined recursively as

32
Cn = —a— 4d 3
En+1
M = 2(n+1)_25€_n+17
n+1
2[31n
o = —a— 2L (A10)

The above definitions provide a numerically stable algarith
for calculating Ay (n, «, 3) as follows. The recursion (A.9)
for the coefficients is started at a large index> npos. cutoft
[see Eq. (A.1)] withnon-zero but otherwise arbitrary ini-
tial conditions, in the downward direction far. When the

8

coefficientsr,,, Kng—1,-- -, %1 @nd Ay, Ang—1, ..., A1 are
calculated, the recursion relation (A.8), this time applie

the direction of increasing, together with two initial values
Ao (0, e, B), Ao(1, e, B) is used to calculate the complete ar-
ray Ao(0 < n < ng,a, ). The two initial values are com-
puted efficiently either from the definition (7), or for largai-

ues of the arguments, 3 by an asymptotic expansion [36].
The described algorithm provides a very efficient way of cal-
culating a large number of generalized Bessel function ef th
same arguments, but of different order. As far as the accu-
racy is concerned, essentially no significant figures are los
during the recursion, even for very high orders- npgs, cutoft

The accuracy is therefore limited by that of the initial val-
uesAy(0,a, B), Ao(1,a, 3). We also estimated numerically
the minimum value of the quantit = ng — npos. cutoff
needed to reach the precision of the initial values, anddoun
Nmin & B(npos. cuto)->. Here B is a constant depending on
a andg of the orderO(10).
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QED effects in strong laser fields

A. Di Piazza, E. Lotstedt, K. Z. Hatsagortsyan, U. D. Jentschura, and C. H. Keitel
Max-Planck-Institut fiir Kernphysik, D-69117 Heidelberg, Germany

Quantum electrodynamical processes occurring
in the presence of a strong laser field are dis-
cussed. We review the processes of vacuum high-
harmonic generation and light-by-light diffraction
that we have studied recently as a means of test-
ing vacuum polarization effects in a strong laser
field. Then, we investigate in detail two processes
which are more feasible experimentally: laser pho-
ton merging in laser-proton collisions and laser-
assisted bremsstrahlung.

1 Introduction

Quantum Electrodynamics (QED) has been tested exper-
imentally under very different conditions. Its predictions
especially in atomic physics have been confirmed by exper-
iments with very high accuracy like those on the anoma-
lous magnetic moment of the electron or the Lamb shift
(see the recent reviews [1, 2] and the references therein).
However, many of these tests relate to perturbative QED
in which the theoretical predictions are extracted starting
from the Dyson expansion of the S-matrix with respect to
the fine-structure constant o = e%/4r ~ 1/137 [3]. Here,
we have introduced the electron charge —e < 0 and we
have used, as throughout this Report, natural units with
h = ¢ = 1. Experimental tests of QED in the presence
of classical strong electromagnetic fields have so far been
successful mostly in the case of strong Coulomb fields, i. e.
the fields created by highly charged nuclei. In the context
of QED the expression “highly charged nuclei” indicates
nuclei with a charge number 7 < 1/« ~ 137. In fact,
these nuclei produce an electric field of the order of the
“critical” electric field E., = m?/e = 1.3 x 106 V/em (m
is the electron mass) at the typical QED length given by
the Compton length A\ = 1/m. In turn, an electric field of
the order of the critical field E., is able to create electron-
positron pairs in vacuum [4]. The Coulomb field produced
by highly charged nuclei is so strong that higher orders in
Z o contribute significantly to the QED predictions at the
current level of experimental accuracy, even for low nu-
clear charge number (see the recent Refs. [5, 6, 7, 8, 9]).
In some cases, as for the vacuum polarization effects in-
duced by strong classical electromagnetic fields, even all
orders in Z« have to be included because nonperturbative
effects cannot be neglected. This has been experimentally
tested in the case of the Delbriick scattering [10], i. e. the
scattering of a photon by the Coulomb field of a heavy
nucleus and of the photon splitting in a strong Coulomb
field [11]. The theoretical predictions developed in [12, 13]
have been confirmed.

Vacuum polarization effects in strong constant and uni-
form magnetic fields have also been studied theoretically.
These effects become apparent in the presence of magnetic
fields with an amplitude of the order of the so-called crit-
ical magnetic field B., = m?/e = 4.41 x 10'3 G [14, 15].

Such strong magnetic fields cannot be created in labora-
tory and this is why vacuum effects in the presence of
strong magnetic fields can significantly occur only in as-
trophysical environments like around highly magnetized
neutron stars [16, 17, 18].

The rapid development of laser technology allows for
the use of intense laser fields even to probe QED in the
presence of a strong wave field. Table-top multiterawatt
lasers which are already available are employed to cre-
ate new x-ray and v-ray radiation sources [19], to ac-
celerate electrons, protons and ions to high energies [20]
and even to prime nuclear fusion reactions [21]. More-
over, theoretical proposals have been put forward to reach
the critical electric field by focusing the high-order har-
monics generated in the reflection of a strong laser beam
by a plasma surface [22]. A laser field with an elec-
tric field amplitude E., would have an intensity of I, =
E2,./8m = 2.3 x 10% W/em?. The most intense laser field
ever produced in a laboratory has an intensity of “only”
7 x 10*" W/em? [23]. Numerous Petawatt laser systems
are under construction in different laboratories, as e. g.
at GSI [24] and at Jena [25], capable, in principle, to at-
tain an intensity of about 10%* W/cm? [26]. Also, the
Extreme Light Infrastructure (ELI) is expected to reach
unprecedented intensities of about 1025-102¢ W/cm? [27].
Although spontaneous pair creation in vacuum is expo-
nentially suppressed at fields below the critical field, vac-
uum manifests nonlinear properties due to the presence
of virtual electron-positron pairs (see the recent reviews
(28, 29, 30]). However, the only successful experiment on
vacuum nonlinearities induced by intense laser beams, so
far was performed at SLAC where electron-positron pairs
have been produced in the collision of a high-energy elec-
tron beam with a strong laser pulse [31].

In the following, we first review a few processes that have
been considered in order to measure nonlinear vacuum po-
larization effects. Then, two examples which indicate the
possibility of testing QED in the presence of strong laser
beams are reported. In the first example we consider the
possibility of laser photons merging when they interact
with the electromagnetic field of a high-energy proton [32].
In the second one we study laser-assisted bremsstrahlung
33, 34].

2 Vacuum nonlinearities in strong laser
fields

In this Section we shortly review a few processes that we
have recently studied to detect the nonlinear properties of
quantum vacuum in the presence of strong laser beams ex-
perimentally. In [35] we have investigated the possibility of
observing high-harmonic generation in the collision in vac-
uum of two ultra-strong laser beams. We have found that
nowadays only the scattering of two photons is experimen-
tally feasible by making three lasers collide (laser-assisted
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Proton field Outgoing photon

Virtual electron-positron pair

Figure 1: Feynman diagram corresponding to the process
of laser photon merging in a proton field induced by vac-
uum polarization effects.

photon-photon scattering). This process seems to be the
most promising to detect for the first time vacuum nonlin-
earities in a strong laser field and could, in principle, be
observed with the next generation of Petawatt laser sys-
tems. In [36] we have investigated how a strong optical
standing wave can “diffract” an x-ray probe beam that
passes through it. The diffraction affects the polarization
of the probe beam of an amount large enough that it could
be measurable in the near future. Finally, in [37] we stud-
ied the process of photon splitting in a strong laser field
of arbitrary shape and polarization. However, the exper-
imental observation of this process is more problematic;
more details can be found in [37].

3 QED effects in laser-proton collisions

In this section we investigate the vacuum polarization ef-
fects arising from the head-on collision of a high-energy
proton and a strong laser beam. The proton has unique
features that allow, as we will see, the detection of these
effects. In fact, on the one hand, the proton is light enough
to be accelerated to very high energies like up to 7 TeV at
the Large Hadron Collider (LHC) [38]. This implies that
the laser field in the rest frame of the proton is enhanced
by a large factor compared to its value in the laboratory
frame. On the other hand, the proton is heavy enough that
the multiphoton Thomson scattering of the laser photons
by the proton is negligible. This feature is very impor-
tant because, in general, multiphoton Thomson scattering
represents a background of our process. The Feynman
diagram of the photon merging process is represented in
Fig. 1. The diagram shows that the proton is consid-
ered, due to its large energy, as an external field. The
thick electron-positron loop in Fig. 1 indicates that the
propagators are calculated by exactly taking into account
the presence of the laser field. From a physical point of
view, the merging of the laser photons is mediated by the
virtual electron-positron pair that absorbs a certain num-
ber of laser photons and emits only one. From the Furry
theorem it can be inferred that only an even number of
photons can be merged in the process [3]. The calcula-
tion of the rate Ra,, of photons resulting from the merging
of 2n (n > 1) laser photons follows the usual steps. One
calculates the amplitude of the process according to the
Feynman rules and then applies the Fermi golden rule [3].
The details of the calculations can be found in [32]. Be-
low, we consider only the case of an ultra-relativistic op-
tical laser field with amplitude Fp, intensity Iy = EZ /87

and frequency wg such that the parameter £ = eEy/mwq
is much larger than unity. We assume that the laser beam
propagates along the positive y direction and that it is lin-
early polarized along the z direction. The proton moves
with velocity 3 along the negative y direction. If 9 is the
angle between the outgoing photon and the y direction, it
can be shown that the differential rate dRa,/dV is given
by

dRon _ o® (14 B)m*

_ sin® 9 Jer2n)? + [c2,00]?
d 6472 wi '

(1 — cosv)* n3
1)

In this expression we have introduced the coefficients ¢; 2,
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with I,(z) being the modified Bessel function of order n
and I} (x) its derivative. As it is clear, the rate depends

only on the parameter Y2, which is given by
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We consider below a numerical example illustrating the
possibility of observing the process of photon merging
experimentally. We consider the interaction between a
proton bunch with parameters available at the LHC and
a Petawatt laser pulse. We use the following laser pa-
rameters [39, 27]: a pulse energy of 5 J, a pulse dura-
tion of 5 fs at 10 Hz repetition rate and an intensity of
Ip = 5 x 10*2 W/cm?. The main parameters of the proton
bunch are [38]: a proton energy of 7 TeV, a number of pro-
tons per bunch of 11.5 x 10'%, a bunch transversal radius
of 16.6 yum, a bunch length of 7.55 cm. As we have men-
tioned, the (2n)-photon Thomson scattering of the laser
photons by the proton beam is a competing process of
(2n)-photon merging. In fact, it can be seen that the en-
ergies of the photons produced via (2n)-photon merging
and via (2n)-photon Thomson scattering are equal. Then,
the total photon rate has to be calculated by summing up
the amplitudes of the two processes. In Fig. 2 we compare
the differential rate dWW(® /dv of the photons emitted only
via 2-photon Thomson scattering with the total differen-
tial rate d7 () /di) which also includes the photons result-
ing from the merging (continuous line). The contribution
of the vacuum effect is rather large. This becomes more
apparent if we compare the total rate of photons emitted
only via 2-photon Thomson scattering with the total rate
of the two processes together. In fact, it can be shown that
approximately 888 events per hour are obtained in the first
case while about 1850 events are predicted per hour in the
second case. The total rate of photons resulting only from
2-photon merging is about 1140 photons per hour. This
implies a small, destructive interference effect between the
two processes. Finally, it is evident in Fig. 2 that the
values of the parameter ys in the relevant region of the
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Figure 2: The rate per unit angle 1 of photons emitted only
via 2-photon Thomson scattering (dashed line) and via
both 2-photon Thomson scattering and 2-photon merging
(continuous line). The upper horizontal axis shows the
parameter y2 as a function of 9 [see also Eq. (4)].

spectrum are of the order of unity: the perturbative ap-
proach, which is valid as y2 < 1, does not apply. Finally,
one can also show that the rate of photons resulting from
the merging of four laser photons amounts to 19.5 events
per hour. In this case it can be seen that the 4-photon
Thomson scattering is safely negligible due to its scaling
as €8, with & = (m/M)¢ ~ 8.3 x 1072 (here M indicates
the proton mass).

4 Laser-assisted bremsstrahlung

As we have mentioned in the Introduction, one of the goals
of theoretical high-energy laser physics is to study the in-
fluence of a strong laser field on fundamental processes of
QED. However, since the strong coupling to the laser field
does not allow for the perturbation theory to be used, the
formulas resulting from the theory tend to be complex and
difficult to follow. Here, numerical work becomes impor-
tant. Bremsstrahlung is the process of light emission from
an electron scattering at the Coulomb potential of a nu-
cleus. In the absence of the laser, the problem in the first
Born approximation was solved by Bethe and Heitler. In
[33, 34] we have studied and numerically evaluated the ef-
fect of an intense laser on the process of bremsstrahlung
in a Coulomb field. The second order Feynman diagrams
for this process are displayed in Fig. 3 and the resulting
transition matrix element Sy; takes the form of a double
sum over photon orders:

(5(Qf — Qi — nwo + wb)
q2 +£72

oo

Spi= >

n,8=—00

o )

As,n
X\ = g VP B )
py—mi+ iMy  p; —m2+iM;

where ¢/’ ; = plf ; +kym?€? /(dko - pi 5) is the effective four-
momentum of the electron in the laser field (p;, s is the elec-
tron four-momentum outside the laser field), where kg =
(wo, ko) is the wave four-vector of the laser, Q; 5 = q?’ f
is the effective energy, m? = qif = m?(1 + €2/2) is the

q
ke s ! qfn
F77q77><
Dr 4 ks 15
e
q
N\ 44

Figure 3: Feynman diagrams describing the process of
laser-assisted bremsstrahlung. Thick lines indicate that
Volkov wave functions and Volkov propagators are used
for the electron, thus treating the electron-laser interaction
nonperturbatively. The effective four-momentum of the
initial (final) electron is ¢; (gs) and the four-momentum
of the intermediate electron state is denoted by p; . The
virtual Coulomb photon with three-momentum q is drawn
as a dashed line, and the emitted photon with momentum
ky as a wavy line.

squared effective electron mass, wy is the frequency of the
bremsstrahlung photon, p; r = ¢;,y — sko + kp is the inter-
mediate four-momentum, ¢ is a screening length, and Af;f
are certain functions depending on the laser parameters.
In a strong laser field, photon emission can occur even
without a Coulomb field through laser-induced Compton
scattering. This means that for values of wy satisfying
the modified Compton formula, we may have p7 ; = m7,
with a formally diverging matrix element as a result. This
divergence can be rendered finite by the inclusion of an
imaginary contribution to the electron energy, represented
by the term iM;; in the matrix element (5). We note
that other methods, such as taking into account a finite
space-time duration of the laser or energy spread of the
initial electron also would produce finite results, and that
our method is valid in the limit of long laser pulses. An
example of a photon spectrum resulting from the matrix
element (5), characterized by a large number of peaks, is
shown in Fig. 4. This kind of resonances are absent in the
nonrelativistic treatment of the problem [40] where the
dipole approximation for the laser is employed.

5 Conclusion

In this Report we have considered two examples in which
QED can be tested in the presence of strong laser fields.
We have seen that even non-perturbative vacuum polar-
ization effects can be detected in the collision of high-
energy protons and strong laser fields. Also, the dramatic
influence of the presence of a strong laser beam on the
bremsstrahlung process has been pointed out.
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