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Zusammenfassung

Das primäre Ziel dieser Dissertation ist, das Verständnis von Laser-unterstützten relativisti-
schen Prozessen höherer Ordnungen der Quantenelektrodynamik (QED) zu vertiefen. Dadurch
wird eine Formulierung notwendig, die stark Laser-modifizierte fermionische Propagatoren be-
nutzt. Die heute vorliegenden Laserquellen erzeugen routinemäßig elektromagnetische Felder,
die stark genug sind, um Elektronen auf Geschwindigkeiten nahe der Lichtgeschwindigkeit
zu beschleunigen. Im Unterschied zur Störungsentwicklung der gewöhnlichen QED, erfordert
die starke Laser-Materie-Kopplung eine Behandlung aller Ordnungen. In dieser Dissertation
wird der Einfluss eines starken Laserfelds auf zwei grundlegende Prozesse der QED theore-
tisch studiert. Der erste Prozess, Bremsstrahlung eines vom Coulombfeld eines Atomkerns
gestreuten Elektrons, wird bei Anwesenheit eines Lasers imresonanten Fall berechnet. Der
Wirkungsquerschnitt wird numerisch ausgewertet, mit Hilfe einer Formel, die aus den Feynman-
Regeln für starke Felder folgt. Der zweite Prozess, Elektron-Positron-Paarbildung von Photon
und Coulombfeld, wird für den Fall untersucht, dass die Feldstärke des Lasers kleiner als die
kritische Feldstärke ist. Der totale Wirkungsquerschnitt wird dabei nicht vom Laser verändert,
während der differentielle Querschnitt drastisch modifiziert wird. Schließlich wird eine detail-
lierte Studie und ein neuer Algorithmus für die verallgemeinerte Besselfunktion, eine spezielle
Funktion, die in Laser-modifizierter QED natürlich vorkommt, präsentiert.

Abstract

The primary aim of this thesis is to advance the understanding of higher-order laser-assisted
relativistic processes within quantum electrodynamics (QED), which necessitates a formulation
using fully laser-dressed fermion propagators. This studyis motivated by presently available
laser sources which routinely produce electromagnetic fields strong enough to accelerate the
electron to velocities close to the speed of light. The strong laser-matter interaction requires an
all-order treatment, different from the perturbative expansion of the usual QED. In this thesis,
the influence of a strong laser field on two fundamental processes of QED is studied theoreti-
cally. The first process, bremsstrahlung from an electron scattered at the Coulomb potential of
a nucleus, is found to show a resonant behavior in the presence of the laser. The cross section is
numerically evaluated from the formula resulting from applying the strong-field Feynman rules.
The second process, electron-positron pair creation by a gamma photon and a Coulomb field is
studied in the case when the laser field strength is below the critical field. Here the total cross
section is unchanged by the laser, while the differential cross section is drastically modified.
Finally, a detailed study and a novel evaluation algorithm of the generalized Bessel function, a
special function occurring naturally in laser-modified QED, is presented.
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Chapter 1

Introduction

The theory of quantum electrodynamics (QED) describes the interaction between fundamental,
charged particles like the electron, and light. Founded by Dirac in the 1930’s with the invention
of the relativistic wave equation bearing his name, and finalized in the 1950’s by Feynman,
Tomonaga and Schwinger, QED remains one of the most successful scientific theories ever.
Predictions made by QED agree with experiment with up to 12 significant figures [87], with
further improvements, both theoretically and experimentally, to be expected. The diagrammatic
technique introduced by Feynman, the “Feynman diagrams”, proves to be a very powerful tool
to organize the terms in the perturbative expansion of various physical quantities, such as the
gyromagnetic ratio of the electron or the cross section for Compton scattering. One thing is
sure: Results obtained by flawless calculations made according to the rules of QED will be
believed by anyone. There is no doubt of the soundness and correctness of QED, once correctly
applied.

As already mentioned, QED deals with the interaction of matter such as electrons, positrons
or muons, with external fields such as photons or the Coulomb field. The textbook examples
all deal with problems where the field is weak: The scatteringof an electron by the field of a
nucleus (Mott scattering), the scattering of a photon by a free electron (Compton scattering),
creation of an electron-positron pair by absorption of two photons, to name a few. In all the
preceding examples the external field is assumed to be weak, so that the main contribution to the
quantum mechanical amplitude is given by the first term in theperturbation series, and the next
order terms are expected to be smaller by the order of the fine-structure constantα ≈ 1/137.
As a consequence, in the case of oscillating photon fields, the cross sections are independent of
the amplitude of the field. Naturally, the next question to ask is what happens if the external
field considered is strong. For a field sufficiently strong, itis inevitable that at some point
perturbation theory will break down. If we limit our discussion to strong fields that may be
produced in the laboratory, and thereby omit the astrophysically interesting case of ultra-strong
magnetic fields (for example around pulsars, see calculations in [9,12,55] and [63,74,77,79]),
two types of strong fields are perceivable:
(1). The Coulomb field around heavy nuclei. In the case of the Coulomb interaction, the
expansion parameter isZα, whereZ is the nuclear charge number. For smallZ this expansion
makes sense, but is clearly not applicable for high-Z atoms like lead or uranium. The theory
of QED in a strong nuclear field has advanced very far, see for example [78, 88, 107] for high-
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CHAPTER 1: Introduction

precision calculations in heavy ions, or [19,75,146,168] for reviews of pair production in heavy
ion collisions. Especially interesting is here the case of aCoulomb potential with charge number
Z > 1/α ≈ 137, since the ground state dives into the Dirac sea, and spontaneous production of
electron-positron pairs is expected. In the case of a strongCoulomb field, two types of nonlinear
effects of QED that have actually been measured, apart from the high-precision measurements
mentioned above, are Delbrück scattering [3, 85, 111] and photon splitting [2, 100]. Delbrück
scattering is the classically forbidden scattering of a photon in the Coulomb field of a nucleus,
photon splitting is the splitting of one initial photon intotwo photons with the same total energy
in a nuclear Coulomb field.
(2). The electromagnetic field produced by a laser. Here the expansion parameter with respect
to the laser field is

ξ = −ea/m, (1.1)

wheree = −|e| is the charge of the electron,m is the electron mass anda is the peak value
of the vector potential of the laser field. The peak electric fieldE of the laser is related toa as
E = aω, whereω is the frequency, meaning that the parameterξ describes the amount of work
performed by the peak electric field of the laser over one laser period, scaled with the electron
massm. Note that we will use relativistic units such that~ = c = 1, where~ is the reduced
Planck constant andc is the speed of light, throughout this thesis, for further discussions of
units and notation used we refer to section 1.1. Present-daylasers routinely reach values where
ξ is of the order of unity up toξ = 102 [106, 161], and therefore a nonperturbative approach is
called for when describing the interaction between electrons and strong laser fields.

Modern lasers can be divided into two categories: (a). Low-frequency high-power lasers. Lasers
of this kind have low frequency of order 1 eV, but can deliver high intensities, that is, large
electric field amplitudes. The current record is an intensity of 1022 W/cm2 [8, 179], which cor-
responds to a value ofξ = 300. Such high intensities has been made possible with the technique
of chirped pulse amplification [119]. There are also two newly started projects: the Extreme
Light Infrastructure (ELI) [65], and the European High Power laser Energy Research facility
(HiPER) [80], both aiming at extreme intensities of up to order1026 W/cm2.
(b). The other class is the high-frequency, low-power laser, represented by the X-ray Free Elec-
tron Laser (X-FEL). At present intensities of order1016 W/cm2 can be achieved at a frequency
of 100 eV [53]. This leads to a valueξ = 3 × 10−3, so that this regime can be treated with
perturbation theory. According to an optimistic view in [151], with future upgrades of the
FLASH facility in Hamburg, it could be possible to reach intensities as high as1028 W/cm2 at
frequencies of 10 keV, if focusing to the diffraction limit of the laser beam can be achieved.

High intensities imply that the motion of the electron in thefield of the laser becomes relativistic.
A measure of when the transition to the relativistic regime starts is when the mean kinetic
energy, or the ponderomotive energyUp, of the electron becomes of the same order as its rest
mass. For a nonrelativistic electron in an oscillating electric field E cos(ωt) we have from
Newton’s equation of motion

m
d2x

dt2
= eE cos(ωt), (1.2)

which leads to a kinetic energy, assuming the electron starts at rest,

Ukin =
1

2
m

(
dx

dt

)2

=
1

2m

(
eE

ω
sin(ωt)

)2

=
m

2
ξ2 sin2(ωt). (1.3)
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The peak nonrelativistic velocity is thusξ. Averaging Eq. (1.3) over one period of the oscillation
we finally obtain the ponderomotive energy as

Up = Ukin =
e2E2

4mω2
=
e2a2

4m
=
m

4
ξ2. (1.4)

The conditionUp = m givesξ = 2. In the relativistic regime the concept of a ponderomotive
potential is not as straightforward, but can still be defined[17]. As we will see in section 2.1,
here not only the electric field of the laser but also the magnetic component will contribute to
the acceleration of the electron.

With these high-power lasers comes a field of research, whichwe may call “laser-modified”
QED. The goal is to investigate how the presence of a strong laser field modifies the fundamen-
tal processes of QED, and how they depend on the laser parameters amplitude, frequency and
polarization, et cetera. The laser also opens up new reaction channels, which means that pro-
cesses that were forbidden by energy-momentum conservation become possible by virtue of the
energy and momentum provided by the field. Laser-modified QEDwas initiated in the 1960’s,
long before the advent of powerful laser sources, with the seminal papers [38, 129, 147]. Very
important is that with the experimental availability of ultra-intense laser facilities and bright
prospects of pushing the intensity-limits even further, even exotic processes in laser-modified
QED can be experimentally verified. We divide the processes into two groups, depending on if
they can occur in absence of the field:
Laser-induced processes. Here the laser is necessary for something to happen. To this group
belong among others electron-positron pair creation by a non-laser mode photon [105,129,147],
photon emission by a laser-dressed electron (also called laser-induced Compton scattering)
[38, 129, 138], which was only recently observed in experiment [6, 61, 97, 110, 116], pair pro-
duction by a Coulomb and laser field [58, 89, 95, 96, 112, 114, 121–124, 167, 176], and splitting
of a photon in a laser field [57].
Laser-assisted processes. To this group processes belong that are allowed without the laser, and
are modified in its presence. All laser-assisted scatteringfall in this group, such as laser-assisted
Coulomb scattering (also called Mott scattering) [52,139,169], electron-electron scattering (or
Møller scattering) [35, 36, 130, 140, 158] and laser-assisted Compton scattering (here one non-
laser mode photon scatters of a laser-dressed electron, to be distinguished from laser-induced
Compton scattering which is the emission of a non-laser modephoton from a laser dressed
electron) [23, 131]. Also light emission in the collision ofcharged particles, bremsstrahlung,
has been considered with an external laser field [33,60,90,104,157,164]. Particle decay can be
modified by the laser: [4,22,154].

For the processes that are of intrinsically quantum nature,which would not occur in classical
electrodynamics [84], there appears another parameter besidesξ, calledχ, that will govern the
probability of the process in question. An invariant definition of χ is

χ = −e

√∣∣∣∣
(
F peak

µν pν
)2
∣∣∣∣

m3
, (1.5)

whereF peak
µν is the peak value of the field tensorFµν = ∂µAν − ∂νAµ and pν is the four-

momentum of the incoming particle involved, electron or photon. For a massive particle, we
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CHAPTER 1: Introduction

can write Eq. (1.5) in the rest frame of the particle as

χ = ξ
ω

m
. (1.6)

Since there is no rest frame for photons, for a probing photonwith momentumk′ we have
instead

χ = 2ξ
ω

m

ω′

m
, (1.7)

in a frame where the photon with frequencyω′ is counterpropagating with the laser wave with
frequencyω. The physical meaning ofχ is the amount of work, in units ofm, that the field
performs (at its peak value) over the Compton wavelengthλC = 1/m of the particle. We have

Work = Force× Distance= eaωλC = ξω. (1.8)

According to the seminal work by Sauter [162] and later by Schwinger [165], pairs will be
produced spontaneously out of vacuum by a static electric field. However, the production rate
will be exponentially damped unless the field exceeds the so-called critical field, which in our
notation corresponds toχ = 1. This conclusion holds for other field-configurations as well:
For the field to participate in the pair-production process,the corresponding parameterχ must
be close to unity. We also note that even thoughξ [see Eq. (1.1)] may be large,χ is small for
particles at rest, if an optical laser is assumed. As an example, we haveχ = 4 × 10−4 for an
infrared laser with frequencyω = 1 eV, ξ = 200, and corresponding intensityI = 4 × 1022

W/cm2. To overcome this obstacle, we note that Eq. (1.5) is valid inthe rest frame of the
probing particle. Therefore, if a particle beam with gamma factorγ, is used to collide head-
on with the laser, the laser frequency in the rest frame of theparticle beam is blue-shifted or
enhanced with a factor of approximately2γ. This was the scheme employed in the experiment
performed at the Stanford Linear Accelerator Center [16,39,41], where an electron beam of 50
GeV was collided with a high-power, low-frequency laser. Here nonlinear Compton scattering,
with up to four laser photons participating, produced high-frequency gamma rays (frequency
of the order 30 GeV) which subsequently decayed inside the laser to form electron-positron
pairs. In this experiment, peak valuesχ = 0.25 andξ = 0.4 were obtained. Unfortunately, this
experiment remains to date the only one dealing with nonlinear pair production in a laser field.
A lot of theoretical proposals for experiments of the above described type have been published,
in particular for pair production by an ion beam colliding with a laser [121,123,124] or photon
merging in the combined field of a proton’s Coulomb field and a laser [56,177].

For the theoretical treatment of laser-modified QED, we wantto treat the laser-electron (or laser-
positron) interaction in a nonperturbative way, that is to all orders. This is so since forξ > 1, we
expect the probability for one laser-mode photon to be emitted or absorbed in a certain process
to be comparable to that of absorbing or emitting several laser-mode photons. The interaction
with other fields, such as the Coulomb field of an atomic nucleus, or the emitted or absorbed
non-laser mode photon (such as a bremsstrahlung photon) is treated with perturbation theory.
This nonperturbative treatment of the laser-electron coupling is possible due to the fact that
the basic system of an electron moving in the potential of a plane laser wave can be exactly
solved. The analytic solution to the Dirac equation with a plane wave potential was found by
Volkov in 1935 [172]. From the expression for the wave function, the Green’s function can be
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written down comparatively easily [113, 154]. Using the Volkov states, one obtains a concrete
way to deal with laser-modified QED: Draw the usual Feynman diagram in coordinate space,
and replace the free electron and positron lines with laser-dressed lines, Volkov wave functions,
and replace the intermediate propagator lines with the laser-dressed Dirac-Volkov propagator.
Integration over the interaction coordinates then yields the amplitude of the considered process.

In this thesis, we investigate the influence of a strong laserfield on two fundamental processes of
particle physics: bremsstrahlung, which is light emissionby an electron scattered at a Coulomb
potential and laser-assisted pair production by a high-energy photon and a Coulomb field. Fol-
lowing some notes on the conventions used in section 1.1, in chapter 2, we present the the-
oretical foundations needed for the later analysis. In particular, we review the derivation of
the Volkov solution to the Dirac equation, the expression for the Dirac-Volkov propagator, and
we also review the solution to the classical, relativistic equation of motion of an electron in a
plane wave electromagnetic field, since it is required to understand the behavior of the quan-
tum system. We point out the strong classical-quantum correspondence between the quantum
Volkov solution and the classical solution. In particular,this correspondence can be used to
derive, by physical arguments, cutoff rules for the generalized Bessel functions, by which the
Volkov solution is expressed. The appendix A explains the method of calculation employed in
laser-modified QED, in which the free electron lines are replaced by Volkov states and internal
propagator lines are replaced with the laser-dressed Dirac-Volkov propagator.

In chapter 3 we study in detail the process of laser-assistedbremsstrahlung. In this process, a
laser-dressed electron is deflected by the Coulomb field of a nucleus, emitting radiation as a
result. Being described by a Feynman diagram with two vertices, the calculation of the matrix
element and cross section demands proper use of the Dirac-Volkov propagator. We show that
it is possible to evaluate the cross section concretely evenfor large values ofξ. The results
presented in this thesis are the first concrete numerical evaluations of the cross section of a
second-order laser-dressed QED process involving the Dirac-Volkov propagator, for relativis-
tic laser intensities. Previous studies of second-order laser-modified processes [36, 157] were
limited to the weak field (ξ < 1) regime.

Chapter 4 deals with the process related to laser-assisted bremsstrahlung by a crossing sym-
metry [see section A.3]: laser-modified pair production by aphoton in a Coulomb field. Here
laser-dressed electron-positron pairs are created by a high-energy photon with frequencyωγ

(whereγ is a label to distinguishωγ from the laser frequencyω) and a Coulomb field. Espe-
cially interesting here is the fact that this process is, according to the definitions made above,
either laser-induced or laser-assisted depending on the value of ωγ. Although the formal ex-
pression for the cross section is similar to that of laser-assisted bremsstrahlung, the dynamics
of the process and the numerical evaluation are quite different. We evaluate the cross section of
pair production for large values ofξ, but small values of the quantum parameterχ. By numer-
ical calculations and intuitive arguments it is shown that the total number of pairs produced is
almost unchanged by the laser field, provided the gamma photon frequency is above threshold,
ωγ > 2m. The differential cross section is however drastically changed. We find that in a
specific setup of laser beam and gamma photon beam, the created electrons and positrons are
strongly focused by the laser into a narrow angular region, which also facilitates experimental
observation. Also here, the numerical results presented are the first for this kind of process,
previously only analytical results for weak fields (ξ � 1) have been obtained [30,31].
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CHAPTER 1: Introduction

As they are crucial for the modeling of electrons dressed by alaser, the Bessel functions have
earned themselves a chapter of their own: chapter 5. Here we review all definitions and prop-
erties of the Bessel function. In particular we study the so-called generalized Bessel function,
a generalization of the usual Bessel function characteristic for description of electrons dressed
by a laser field of linear polarization. Particular emphasisis placed on the numerical evaluation
of the generalized Bessel functions. We present a novel recursive algorithm for calculation of
generalized Bessel functions, thereby generalizing the so-called Miller’s algorithm to work also
for generalized Bessel functions.

1.1 Notation and conventions

1.1.1 Units

In this thesis, we will use conventional high-energy units,that is~ = c = 1. This means that
all dimensionful quantities are measured on one single scale. If nothing else is stated, we take
this scale to be energy, measured in MeV. We have the electronmassm = 0.511 MeV. Some
conversion factors read:

(MeV)2 = 2.568 × 1021 1

cm2
,

MeV = 1.602 × 10−13J,

MeV = 1.519 × 10211

s
,

(MeV)2 = 0.507 × 1019|e|V
m
,

(MeV)−1 = 0.1973 × 10−12m.

(1.9)

We use the Heaviside-Lorentz conventions, so that the relation between the negative electric
chargee = −|e| and the fine-structure constantα reads

e = −2
√
πα ≈ −0.3028, (1.10)

with α ≈ 1/137.04. A useful formula for conversion of laser intensitiesI is

I

(W/cm2)
= 3.127×1029

(
aω

(MeV)2

)2

= 8.906×1029ξ2
( ω

MeV

)2

= 2.325×1029χ2, (1.11)

which is valid for linear polarization. In the case of circular polarization there is an extra factor
of 2. For photon wavelengthsλ (not to forget the extra factor of2π!) we have

λ

(m)
=

12.401 × 10−13

ω/(MeV)
. (1.12)
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1.1. Notation and conventions

1.1.2 Dirac matrices and metric

The metric used is

(gµν) =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 , (1.13)

and vector products will be written with a dot·, so that

p · q = pµq
µ = p0q0 − p · q. (1.14)

Boldcase letters denote three-vectors, and summation overGreek indices (µ, ν, . . . ) is implied.
Partial derivatives are written like

∂µ =
∂

∂xµ
. (1.15)

If a specific representation should be needed (like in a computer program), we use the Dirac
representation of the gamma matrices:

γ0 =




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1


 , γ1 =




0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0


 ,

γ2 =




0 0 0 −i
0 0 i 0
0 i 0 0
−i 0 0 0


 , γ3 =




0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0


 .

(1.16)

Theγ’s satisfyγµγν + γνγµ = 2gµν . The hat̂ operator is used to denote the Feynman dagger,
the “slash”:

p̂ = γµpµ, (1.17)

for any four-vectorp. This notation is standard in Russian literature [129, 154]on high-field
QED. The reason why to use the hatˆ instead of the conventional slash is simply that slashed
capital letters, which will be employed heavily later on when the theory is introduced, do not
look good: compare/p with /A. The bar-conjugate operation on spinors is defined as

Ψ = Ψ†γ0, (1.18)

and for matricesM
M = γ0M †γ0. (1.19)
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Chapter 2

The relativistic laser-dressed electron:
classically and quantum mechanically

In this chapter we review the properties of the system consisting of an electron plus an electro-
magnetic wave, the laser field. We will see that this system can be solved exactly in an analytical
form, both classically and quantum mechanically. The condition is that the laser wave can be
treated as a plane wave, that is, a wave that propagates in onedirection only. The fact that there
is such exact solutions makes it possible to develop a perturbation theory with these states as
basis states, and thereby taking the interaction with the laser field into account to all orders.

2.1 The motion of a classical, relativistic electron in a laser
field

The classical equations of motion for a charged particle in an electromagnetic field can be
solved analytically, if the electromagnetic field is a planewave. This problem is treated in
[7, 17, 83, 98, 109]. We will review the necessary steps leading to the analytic expressions for
the trajectories, momentum and energy of the electron. In particular the expression for the
energy will be important for the physical interpretation ofthe generalized Bessel functions.

2.1.1 Solution of the equations of motion by the Hamilton-Jacobi method

The laser field is described by the vector potential

Aµ = Aµ(φ) = (0,A(φ)) , φ = xµkµ, (2.1)

wherekµ is the wave vector, and the gauge is chosen so thatkµA
µ = 0 (Lorenz gauge). The

relativistically invariant equation of motion read

m
d2xµ

dτ 2
= e(∂µAν − ∂νA

µ)
dxν

dτ
, (2.2)
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CHAPTER 2: The relativistic laser-dressed electron: classically and quantum mechanically

wherexµ is the coordinate of the particle andτ the proper time. This equation can be solved
directly [83, 109], but we will do it with another method, theHamilton-Jacobi method, since
this method employs the action functionalS [see Eq. (2.8)], which appears also in the quantum
mechanical solution. The relativistic HamiltonianH of a classical charged particle with charge
e and massm coupled to the potentialAµ reads

H =
√
m2 + (P − eA)2 , (2.3)

or squared
H2 = m2 + (P − eA)2, (2.4)

whereP is the canonical three-momentum of the particle. The canonical four-momentum is
given byP µ = (H,P ). Note however thatP µ is not a gauge-invariant quantity. The physical,
gauge invariant momentum is the kinetic momentumpµ = P µ − eAµ. The derivative of the
classical actionS should satisfy

∂µS = (−H,−P ) = −P µ, (2.5)

which inserted into equation (2.4) lead to

(∂µS + eAµ) (∂µS + eAµ) = m2. (2.6)

This equation is now solved with the ansatz that the the action can be split up into one field-free
part and one field-dependent part, depending only on the laser phaseφ:

S = −pµx
µ + S̃(φ). (2.7)

Herepµ is determined by the initial conditions. It is interpreted as the momentum at infinity,
that is, the asymptotic momentum of the particle in absence of the field, whereS̃(φ) = 0. As
a four-momentum,pµ should satisfyp2 = m2. Equation (2.6) with the ansatz (2.7) can be
integrated, with the solution

S̃(φ) =
−1

2p · k

∫ φ

φ0

dφ′
(
m2 − [−pµ + eAµ(φ′)] [−pµ + eAµ(φ′)]

)

=
1

2p · k

∫ φ

φ0

dφ′
(
pµp

µ −m2 + e2Aµ(φ′)Aµ(φ
′) − 2eAµ(φ′)pµ

)
,

(2.8)

with φ0 given by the initial conditions, the initial phase of the laser. The derivative of the total
actionS with respect to the asymptotic momentumpµ equals the (constant) initial position
−x0µ,

∂S

∂pµ
= −x0µ

= −xµ +

∫ φ

φ0

dφ′

[
kµ

2(p · k)2

(
2eAν(φ

′)pν − e2Aν(φ′)Aν(φ
′)
)

+
1

p · k (pµ − eAµ(φ′))

]
,

(2.9)
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2.1. The motion of a classical, relativistic electron in a laser field

so that the trajectories of the particle are given by

xµ = x0µ +

∫ φ

φ0

dφ′

[
kµ

2(p · k)2

(
2eAν(φ

′)pν − e2Aν(φ′)Aν(φ
′)
)

+
1

p · k (pµ − eAµ(φ′))

]
.

(2.10)
For the instantaneous canonical four-momentum we have

Pµ = − ∂µS

=pµ +
kµ

2p · k
(
2eAν(φ)pν − e2Aν(φ)Aν(φ)

)
,

(2.11)

from which it is easily verified that the kinetic momentumpµ = Pµ − eAµ is gauge invariant
underAµ → Aµ + λkµ, with an arbitrary functionλ (the gauge should remain in the Lorenz
gauge). Specializing on a laser wave of the form

Aµ(φ) = aµ cosφ, (2.12)

we get for the trajectories, withφ0 = k · x0 = 0,

xµ = x0µ +

(
pµ

p · k − e2a2

4(p · k)2
kµ

)
φ+

(
ep · a

(p · k)2
kµ − eaµ

p · k

)
sinφ− e2a2

8(p · k)2
kµ sin(2φ).

(2.13)
Note that the trajectory is not given as an explicit functionx(t), but rather as a function of the
laser phaseφ. The phaseφ is proportional to the proper timeτ of the particle likeφ = k · dx(0)

dτ
τ ,

which can be seen by multiplying Eq. (2.2) bykµ and integrating, usingk · A = 0. For the
energy-momentum four-vectorPµ we get

Pµ = pµ +
kµ

2p · k
(
2ea · p cosφ− e2a2 cos2 φ

)
, (2.14)

with the phase average

P µ = pµ − e2a2

4p · kkµ. (2.15)

Of interest for the cutoff properties of the quantum Volkov solution is the solutions to the equa-
tion ∂P0

∂φ
= 0, since this will tell us the maximum and minimum of the instantaneous energy of

the particle. The solutions are

cosφ = ±1; cosφ =
α

8β
if |α| ≤ 8|β|, (2.16)

with the corresponding energies

P0 = p0 − 2ωβ + ω(−2β ± α), P0 = p0 − 2ωβ + ω
32β2 + α2

16β
, (2.17)

where we have introduced the parameters

α =
ea · p
k · p , β =

e2a2

8k · p, (2.18)
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CHAPTER 2: The relativistic laser-dressed electron: classically and quantum mechanically

and written Eq. (2.17) on a form so that to facilitate comparison with the quantum Volkov
solution in section 2.2 [See Eq. (2.47)]. In the nonrelativistic limit whenk · p ≈ ωm we can
express the ponderomotive energy asUp = 2ω|β| [See Eq. (1.4)]. Note thatβ ≤ 0, always,
sincea2 = aµa

µ ≤ 0 andk · p = Eω − p · k > 0, and that the minimal and maximal energies
given by Eq. (2.17) are independent ofω. Another remark is that sinceβ ≤ 0, it might seem
thatP0 < m is possible. Careful inspection shows that this is not the case, we always have that
Pmin

0 ≥ m for both the case whenPmin
0 = p0−4ωβ−ω|α| and the case whenPmin

0 = p0 +ω α2

16β
.

2.1.2 Direct numerical solution

In the previous subsection, the expression Eq. (2.13) was derived, providing an expression for
the coordinates of a laser-dressed electron as a function ofthe invariant phaseφ. If an expression
for the orbit as an explicit function of the timet in some frame is searched for, there is no
exact solution, but the equations of motion have to be integrated numerically. This approach
also allows for inclusion of other forces besides the Lorentz force of the laser field, such as a
Coulomb field. The classical equation of motion for a relativistic particle reads

m
d

dt

ṙ√
1 −

(
ṙ
c

)2 = F , (2.19)

whereF is the force acting on the particle. Here we write explicitlythe factorc (the speed of
light) to better see which terms are important in the non-relativistic limit. To put this equation
on a computer, we want to have it on the formd

dt
ṙ = r̈ = f(ṙ, r). If we let r = (x, y, z)

andF = (Fx, Fy, Fz), we get a system of equations for the acceleration vectorr̈: (we ignore
the y-component, since we want to look at the laser case, then there will only be two force
components, one in the laser propagation direction and one in the laser polarization direction)

ẋ

c2
(ẍẋ+ z̈ż) + ẍ

(
1 − ẋ2

c2
− ż2

c2

)
=
Fx

m

(
1 − ṙ2

c2

)3/2

,

ż

c2
(ẍẋ+ z̈ż) + z̈

(
1 − ẋ2

c2
− ż2

c2

)
=
Fz

m

(
1 − ṙ2

c2

)3/2

.

(2.20)

This is solved to yield

mẍ =

(
1 − ṙ2

c2

)3/2

+ ẋ2ż2

c4

√
1 − ṙ2

c2

1 − ż2

c2

Fx −
ẋż

c2

√
1 − ṙ2

c2
Fz,

mz̈ =

(
1 − ż2

c2

)√
1 − ṙ2

c2
Fz −

ẋż

c2

√
1 − ṙ2

c2
Fx.

(2.21)

In the case with a monochromatic laser field with electric (and magnetic) field amplitude|E| =
|B| = E0, frequencyω, propagating in thez-direction and linearly polarized in thex-direction
we have

Fx = eE0 cos(ωt− ωz/c)(1 − ż/c), Fz = eE0 cos(ωt− ωz/c)(ẋ/c). (2.22)
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2.2. The Volkov solution

2.2 The Volkov solution

That the Dirac equation, coupled to an electromagnetic plane wave, possesses an exact analytic
solution was first found by Volkov over 70 years ago [172]. TheVolkov solution is remarkable
in several ways. Firstly, analytical solutions to the Diracequation are rare, especially for field
configurations that are realizable in the laboratory. (See [7] for other fields for which the Dirac
equation is solvable, most of them quite exotic.) Secondly,the Volkov solution is strongly
connected to the solution to the classical equations of motion, given by Eq. (2.8). As we will
see, the phase of the Volkov wave function is given by the classical action. Usually this kind of
quasi-classicality of a wave function is the result of some approximation, but here it is the exact
wave function (apart from the spin term). The Volkov solution forms the foundation for laser-
modified QED, since it provides the basis set from which the scattering theory is developed.
Knowing the wave function for arbitrary momentum, it is subsequently an easy task to construct
the propagator.

2.2.1 Derivation of the Volkov solution

In this section we follow [24], but we note that other, algebraic, approaches also exist [7, 128].
The starting point is the Dirac equation coupled to an electromagnetic plane wave, described by
the four-vector potentialA(φ) as in Eq. (2.1):

(
i∂̂ − eÂ(φ) −m

)
ψ(x) = 0, (2.23)

whereψ(x) is a spinor, a4 × 1 complex matrix. The vector potentialAµ(φ) depends on the
coordinates only throughφ = k · x and satisfies the Lorenz gauge condition

∂ · A = k · dA

dφ
= 0, (2.24)

which impliesk · A = 0. Here we assumed thatA is on the general form

Aµ(φ) = aµ
1f1(φ) + aµ

2f2(φ). (2.25)

Takinga2 = 0 gives linear polarization, anda2
1 = a2

2 corresponds to circular. Note also that we
in general do not assumeAµ = (0,A), since we want to keep open the possibility of making
gauge transformations later. It turns out that with the present direct approach of solution, it is

easier to work with the squared Dirac equation. Thus, by applying
(
i∂̂ − eÂ(φ) +m

)
to both

sides of Eq. (2.23) we end up with

(
−∂2 − 2ieA · ∂ + e2A2 −m2 − iek̂

dÂ

dφ

)
ψ(x) = 0. (2.26)

This is just like the Klein-Gordon equation [24] with an extra matrix term, arising from the
spin-laser interaction. The standard way of obtaining the Volkov solution is now to make the
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CHAPTER 2: The relativistic laser-dressed electron: classically and quantum mechanically

ansatzψ(x) = e−ip·xF (φ), analogous to the classical case in Eq. (2.7). Inserting this ansatz into
Eq. (2.26) and integrating yields the sought Volkov solution:

ψp(x) =

√
m

EV

(
1 +

ek̂Â(φ)

2k · p

)
u(p) exp

(
−ip · x− i

∫ φ

φ0

[
ep · A(φ′)

k · p − e2A2(φ′)

2k · p

]
dφ′

)
,

(2.27)

wherep is a four-vector labeling the solution,
√

m
EV

is a normalization factor containingE =
p0, the quantization volumeV , andu(p) is so far an arbitrary column vector of four complex
numbers. The phaseφ0 depends on the initial conditions. We note that the initial phaseφ0 only
gives rise to a constant phase in the wave function, which will cancel when forming the absolute
value squared, thus being unimportant for the evaluation ofany measurable quantities such as
cross sections. Now, we are searching for a solution to the first-order Dirac equation, and not
the square one. To single out the required solutions, we demand

(p̂−m)u(p) = 0, p2 = m2, (2.28)

which can be seen by lettingA → 0 in Eq. (2.27). The spinorsu(p) are normalized according
to

ū(p)u(p) = 1. (2.29)

Eq. (2.28) has two linearly independent solutions, called spin up and spin down. If we label
these byr = 1, 2, then the sum over spin satisfies

∑

r=1,2

ur(p)ūr(p) =
p̂+m

2m
, (2.30)

which is all that we need, since we will always calculate spin-averaged or spin-summed quanti-
ties in this thesis. We then interpretp as the four-momentum of the particle outside the field, or
the momentum at infinity, where the field is zero. We also observe that Eq. (2.27) allows solu-
tionsψ−p with negative zeroth componentp0. These negative-energy solutions will correspond
to positrons when we treat pair creation in chapter 4, see also the discussion in subsection 2.2.2.

We close this subsection with giving the expression for the Volkov state in a laser of linear
polarization, since this is the laser polarization we will work with in this thesis. Assuming

Aµ(φ) = aµ cosφ, (2.31)

and taking the initial phaseφ0 = 0, we have

ψp(x) =

√
m

QV

(
1 +

ek̂â cosφ

2k · p

)
u(p) exp

(
−iq · x− i

ea · p
k · p sin φ+

e2a2

8k · p sin(2φ)

)
.

(2.32)

Note thataµ is a four-vector. If we takeaµ in the radiation gaugeaµ = (0,a), we havea2 =
−a2. With the absolute value|a| of aµ we always mean|a| =

√
|a2| . Here we have defined the

effective four-momentumq of the Volkov state as

q ≡ p+
e2|a|2
4k · pk, (2.33)

24



2.2. The Volkov solution

which satisfies

q2 = m2 +
e2|a|2

2
≡ m2

∗, (2.34)

with m∗ called the effective mass, andQ = q0 the effective energy. We remark thatk · p =
k · q anda · p = a · q. The effective momentumq is also called the average momentum, and
corresponds to the phase-average value ofP µ [see Eq. (2.15)] from section 2.1. Note the choice
of normalization factor in Eq. (2.32). With this choice, theVolkov states are normalized with
respect to the effective four-momentumq:

∫
d3xψ†

q,r(x)ψq′,r′(x) =
1

V
δ(q − q′)δrr′ , (2.35)

wherer, r′ label the spin. The validity of the normalization condition(2.35), which is not self-
evident, is discussed further in subsection 2.2.5.

Volkov wave functions for circular polarization of the laser

Since we present results in chapter 3 also for circular polarization of the laser field, we give
here the expression for the Volkov wave function in a circularly polarized laser, without further
discussion. The laser vector potential is here given as

Aµ(φ) = aµ
1 cosφ+ aµ

2 sin φ, (2.36)

with polarization vectorsa1,2 satisfying

a1 · a2 = 0, a2
1 = a2

2 = −ã2. (2.37)

Circular polarization is particular in the sense that the electric (and magnetic) field is constant
in time,A2 = −ã2. The Volkov solution is, with initial phaseφ0 = 0 (see also [163]),

ψcirc
p (x) =

√
m

QV

(
1 +

ek̂ (â2 cosφ+ â2 sinφ)

2k · p

)
u(p)

× exp

(
−ip · x− i

e2ã2

2k · p − i
ea1 · p
k · p sinφ+ i

ea2 · p
k · p cosφ)

)
,

(2.38)

where an unimportant constant phase factor has been dropped. The main difference is that
there is no term proportional tosin(2φ) in the exponential in Eq. (2.38). This means that when
expanding the wave functionψcirc

p (x) into a sum of plane waves [see subsection 2.2.3], the
coefficients are usual Bessel functions, instead of generalized Bessel functions as one gets in
the linear polarization case. Another difference is that the effective mass is larger [compare
Eq. (2.34)],

mcirc
∗

2
=

(
p+

e2ã2

2k · pk
)2

= m2 + e2ã2, (2.39)

which can be explained by the larger average value ofA2. For the same peak valuẽa0 of the
vector potentialAµ(φ) we have

|A2| = ã2
0cos2 φ = ã2

0/2 (2.40)
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for linear polarization, but
|A2| = ã2

0 (2.41)

in the circular case.

2.2.2 Positron Volkov states and charge symmetry

To start with, we write down explicitly the negative energy solution to Eq. (2.23), obtained by
lettingp→ −p in Eq. (2.27),

ψneg
p (x) =

√
m

|E|V

(
1 − ek̂Â(φ)

2k · p

)
v(p) exp

(
ip · x− i

∫ φ

φ0

[
ep ·A(φ′)

k · p +
e2A2(φ′)

2k · p

]
dφ′

)
,

(2.42)

which is still a solution of Eq. (2.23), but only if the spinornow satisfies(p̂+m)v(p) = 0. How
does one know that the negative energy solutionψneg

p of the Dirac equation (2.23) actually has
negative charge? The positive energy positron wave functionψc

p(x) should be a positive energy
solution to the Dirac equation with the charge reversed

(
i∂̂ + eÂ(φ) −m

)
ψc

p(x) = 0. (2.43)

The transformation from the negative energy solution of Eq.(2.23) to the positive energy so-
lution of Eq. (2.43) is provided by applying the charge conjugation operatorC to the negative
energy solution, so thatψc

p = C
(
ψneg

p

)
[28]. In the Dirac representation of the gamma matrices,

we haveC(ψ) = iγ2ψ∗. To within a constant phase factor, we have for the constant spinorsu
andv

C(u) = v, C(v) = u. (2.44)

Now, applying the operationC to the negative energy solution (2.42), noting in particular that
γ2k̂∗Â∗ = k̂Âγ2, we obtain (up to a constant phase)

C(ψneg
p ) =

√
m

|E|V

(
1 − ek̂Â(φ)

2k · p

)

× u(p) exp

(
−ip · x− i

∫ φ

φ0

[
−ep ·A(φ′)

k · p − e2A2(φ′)

2k · p

]
dφ′

)
,

(2.45)

which is equal to the solution (2.27) with the replacemente→ −e, and indeed solves Eq. (2.43).
The conclusion is that the operationC on the wave function combined with the shiftA(x) →
−A(x) leaves the Dirac equation invariant.

2.2.3 Fourier expansion of the Volkov solution and classical-quantum cor-
respondence

As will be evident from the discussion in chapter 3, to evaluate a scattering matrix element, the
initial and final wave functions have to be harmonic plane waves, that is, the dependence on the
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2.2. The Volkov solution

coordinates should be of the forme−ib·x, for some momentum vectorb and the coordinatex.
The Volkov solution (2.32) is of the forme−iq·xf(k ·x), a product of two plane waves, of which
only the first has the requiredx-dependence. However, by Fourier’s theorem, we can expand
the Volkov wave function into its harmonic components. To this end we employ a special case
of the generating function for the generalized Bessel functionA0(n, α, β):

e−iα sin θ+iβ sin(2θ) =
∞∑

s=−∞

A0(s, α, β)e−isθ, (2.46)

to yield

ψp(x) =

√
m

QV

∞∑

s=−∞

(
A0(s, α, β) +

ek̂â

2k · pA1(s, α, β)

)
u(p) exp [−i(q + sk) · x] , (2.47)

whereα andβ were defined in Eq. (2.18), and

A1(s, α, β) =
1

2
(A0(s+ 1, α, β) + A0(s− 1, α, β)) . (2.48)

The generalized Bessel functionA0(s, α, β) is defined and described in detail in chapter 5. The
interpretation of the expansion (2.47) is clear: The quantum Volkov state is a superposition of
plane waves with well-defined four-momentaqµ + skµ, corresponding to the absorption ofs
number of laser-mode photons from the laser wave, ifs is positive, and emission of|s| num-
ber of photons into the laser field iss is negative. We can speak of a momentum spectrum
composed of one continuous part, the effective momentumqµ, plus one discrete part,skµ. The
constant increase in momentum represented by the additione2|a|2kµ/(4k ·p) to pµ in the defini-
tion (2.33) corresponds to the interaction with the laser without any net absorption of photons,
making the electron heavier. Note from Eq. (2.34) thatm∗ ≥ m. Every plane wave compo-
nent is multiplied with its corresponding amplitudeA0(s, α, β) [for now disregarding the spin
term ek̂â

2k·p
A1(s, α, β)], whose square[A0(s, α, β)]2 gives the instantaneous probability of find-

ing the laser-dressed electron in that particular momentumstate. For consistency, this implies∑
s [A0(s, α, β)]2 = 1, which is indeed one of the characteristic properties of thegeneralized

Bessel function. Since the sum overs in the expansion (2.47) extends from−∞ to +∞, the
electron can, in the quantum case, acquire arbitrarily large energies in the laser field. However,
beyond a certain value ofs = smax,min (different for negative and positives), the generalized
Bessel function shows a sharp decrease in amplitude, so thatthe probability of absorbing (or
emitting)s > smax (s > |smin|) laser-mode photons is effectively zero. The actual dependence
of smax,min on α andβ follows directly from the maximally and minimally allowed classical
energy, using the results from Eq. (2.17), noting thatqµ = P

µ
:

smax =2|β| + |α|,

smin = − 2|β| − α2

16|β| , if 8|β| > α,

smin = − |α| + 2|β|, if 8|β| ≤ α,

(2.49)

which is valid for negativeβ. The general case and the mathematical proof of the cutoff rule
are shown in chapter 5. This classical-quantum correspondence is illustrated in the two figures
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CHAPTER 2: The relativistic laser-dressed electron: classically and quantum mechanically

Fig. 2.1 and Fig. 2.2. Concluding this subsection on the Fourier expansion of the Volkov state,
we have seen that the four-momentum spectrum of the quantum Volkov state consists of two
parts, one continuous [the effective momentumq] and one discrete [theskµ in the exponent of
Eq. (2.47)]. However, the probability to occupy an energy state with energy greater or smaller
than the classically allowed value is very small [factorially small, as we shall see in chapter 5].

2.2.4 Generalized Bessel functions from the Floquet ansatz

There is another direct, physical way to see where the generalized Bessel functions come from.
The result of this approach definesA0(s, α, β) in terms of a recurrence relation and a nor-
malization condition. In section 5.3, we use this recurrence relation for fast and accurate nu-
merical evaluation of the generalized Bessel function. We begin with inserting the Floquet
ansatz [17,166]

ψFloquet(x) = e−iq·x
∑

s

Ase
−isk·x, q2 = m2

∗, (2.50)

where the coefficientsAs are independent ofx, into the Klein-Gordon equation with an external
laser field of linear polarizationAµ(x) = aµ cos(k · x),

0 =
[
−∂2 − 2ieA · ∂ + e2A2 −m2

]
ψFloquet(x)

=

[
−∂2 − 2ie cos(k · x)a · ∂ +

e2a2

2
cos(2k · x) −m2

∗

]
ψFloquet(x).

(2.51)

We take the Klein-Gordon equation, since our goal is to obtain the properties ofA0(s, α, β), and
we therefore neglect the spin of the electron, the inclusionof which would be an unnecessary
complication. Eq. (2.51) leads to a relation for the coefficientsAs,

∑

s

[
2
eq · a
k · q cos(φ) − e2a2

2k · q cos(2φ) − 2s

]
Ase

−isφ = 0. (2.52)

Multiplying Eq. (2.52) withe−inφ, and integrating
∫ π

−π
dφ leads to the recurrence relation for

A0(s, α, β),

2sA0(s, α, β) = α [A0(s+ 1, α, β) + A0(s− 1, α, β)]

− 2β [A0(s+ 2, α, β) + A0(s− 2, α, β)] ,
(2.53)

if ea · q/(k · q) ande2a2/(8k · q) are identified withα andβ, andAs with A0(s, α, β). For the
wave functions (2.50) constructed from the solution to the recurrence relation (2.53) to solve
the Klein-Gordon equation (2.51), we must demandA0(s, α, β) to be normalizable. This is
expressed by the condition ∑

s

A2
0(s, α, β) = 1, (2.54)

a special case of the general sum rule Eq. (5.21).
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Figure 2.1: An illustration of the correspondence between the classical solution and the cut-
off of the generalized Bessel functions, which are used to expand the quantum mechanical
Volkov solution in a Fourier series. In this figure, the asymptotic momentump of the elec-
tron makes an angleθ = 80◦ with the laser field polarization vectora = (0, |a|, 0), so that
p = |p|(sin θ, cos θ, 0), and the asymptotic energyE = p0 = 100m = 51.1 MeV. The laser
wave propagates in the negativex-direction,k = (−ω, 0, 0), the laser frequency isω = 1 eV,
andξ = 100, which corresponds to an intensityI = 8.9× 1021 W/cm2. The upper graph shows
the correspondence between the classical energyP0(φ) from Eq. (2.14) as a function of the laser
phaseφ and the generalized Bessel functionA0(s, α, β) from Eq. (2.47). The laser and electron
parameters here giveα = 4.47 × 106 andβ = −3.22 × 106. The red line corresponds to the
lowest possible value ofP0(φ), Pmin

0 = E − ωα2

16|β|
= 50.7 MeV, which amounts to emission of

|s| = 2β+ α2

16|β|
photons into the laser. The purple dashed line corresponds to the time averaged

energyP 0 = E + 2ω|β| = 57.5 MeV, the effective energy [See Eq. (2.15)]. It is clear that the
effective energy corresponds to not absorbing any photons at all, that iss = 0. A transition to
another “plateau” inA0(s, α, β) is visible at the light blue line, which corresponds exactlyto
the local maxima inP0. The peak value of the amplitude ofA0(s, α, β) is lower here, since the
electron spends less time on average in levels over the lightblue one. Finally, the green line is
the maximal classical energyPmax

0 = E+4ω|β|+ |α| = 68.5 MeV, corresponding to absorption
of s = 2|β|+ |α| photons. The lower picture shows the corresponding classical trajectory from
Eq. (2.13). Here the trajectory of the particle is plotted asimplicit function ofφ in thex-y plane,
in units of the dimensionless parametersωx andωy.
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Figure 2.2: Another illustration of the classical-quantumcorrespondence of the Volkov state.
The same parameters as in Fig. 2.1 are used, except that hereθ = π/2, which meansp =
|p|(1, 0, 0). This givesα = 0 andβ = 3.19 × 106. There is now no momentum component of
P µ in the polarization direction, and therefore no plateau structure inA0(s, α, β). A vanishing
average momentum in the polarization direction is reflectedalso in the trajectory, shown in the
lower panel. In the upper graph, the purple line going throughs = 0 corresponds to the effective
energyP 0 = E + 2ω|β| = 57.5 MeV. It follows thatPmax

0 = E + 4ωβ = 63.9 MeV (the light
blue line), andPmin

0 = E = 51.1 MeV (the red line). In this particular case the generalized
Bessel function simplifies to the usual Bessel function:A0(s, 0, β) = J−s/2(β) for evens, and
is zero otherwise.
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2.2. The Volkov solution

2.2.5 Laser dressed Green’s function: the Dirac-Volkov propagator

There are many representations for the electron’s Green’s function in the presence of an electro-
magnetic wave, also called the Dirac-Volkov propagator. Inearly attempts [38,149], the Green’s
function was found by direct solution of the inhomogeneous Dirac equation. The form pre-
sented in these references is however not well suited for application and can not easily be used
for calculation of actual matrix elements. Another approach is the so-called operator method
of writing the electron propagator, which is very powerful when making calculations involving
closed electron loops [9–11, 57]. We use an elegant and useful way, described in [113, 154], of
writing the laser-dressed Green’s function of the electron, suitable for applications in scattering
theory. Following this method, we introduce the Volkov solution without the free spinor, the
so-calledE-function [113,154], which is still a4 × 4 matrix:

E(p, x) =

[
1 +

ek̂Â(φ)

2k · p

]
exp

(
−ip · x− i

∫ φ

0

[
ep · A(φ̃)

k · p − e2A2(φ̃)

2k · p

]
dφ̃

)
. (2.55)

We also define the adjoint by

Ē = γ0E(p, x)†γ0

=

[
1 +

eÂ(φ)k̂

2k · p

]
exp

(
ip · x+ i

∫ φ

0

[
ep · A(φ̃)

k · p − e2A2(φ̃)

2k · p

]
dφ̃

)
.

(2.56)

If we consider momenta off the mass shell, that is, we do not demandp2 = m2, we can show
the following properties of theE’s:

(
i∂̂ − eÂ(φ)

)
E(p, x) = E(p, x)p̂, (2.57)

−i∂µĒ(p, x)γµ − eĒ(p, x)Â(φ) = p̂Ē(p, x), (2.58)
1

(2π)4

∫
d4xĒ(p, x)E(p′, x) = δ(p− p′), (2.59)

and
1

(2π)4

∫
d4pE(p, x)Ē(p, x′) = δ(x− x′). (2.60)

A couple of remarks concerning the above properties. The identities (2.57) and (2.58) follow,
together with the definition (2.28) of the spinor, from the fact that the Volkov solution (2.27)
solves the Dirac equation. Eqs. (2.57) and (2.58) are also easy to check explicitly. The orthog-
onality identity (2.59) is a very important property of the Volkov solutions, if they are going to
be used as a basis for perturbation theory. It can be seen to hold in a number of ways. The hand-
waving argument, found in [24], is first to observe that Eq. (2.59) holds forA = 0. The field is
turned on adiabatically, “slowly”, fromφ = −∞, which does not alter the value of the integral
(2.59). In other words, the orthogonality integral only depends on the behavior of the function
E(p, x) at infinity, where the field is assumed to be turned off. An elegant proof using change
of variables can be found in [154, chapter 1, section 2], and recently a mathematically rigorous
proof was published in [180]. The property (2.60) is more difficult, and it seems that there is
no published proof of completeness of the Volkov states. There is no doubt, however, that it is
true. In section B.1 we present a proof by direct integrationof the left side of Eq. (2.60), which
is the first published proof of this property, to the author’sknowledge.

31



CHAPTER 2: The relativistic laser-dressed electron: classically and quantum mechanically

The property (2.60) ofE(p, x) means that we can easily write down a solutionG, a Green’s
function, to the equation

(i∂̂ − eÂ−m)G(x, x′) = δ(x− x′). (2.61)

By using the properties (2.57) and (2.60), it is easy to show that

G(x, x′) =
1

(2π)4

∫
d4pE(p, x)

p̂ +m

p2 −m2 + iε
Ē(p, x′)

=
1

(2π)4

∫
d4p

[
1 +

ek̂Â(φ)

2k · p

]
p̂+m

p2 −m2 + iε

[
1 +

eÂ(φ′)k̂

2k · p

]

× exp

(
−ip(x− x′) − i

∫ φ

φ′

[
ep · A(φ̃)

k · p − e2A2(φ̃)

2k · p

]
dφ̃

)
,

(2.62)

whereε is small and positive. This choice of boundary condition corresponds to the “Feynman
boundary condition” [66, 67], exactly as in the case withoutthe laser field [141]. With this
choice of boundary conditions, pair production is accurately accounted for, by ensuring that
waves with negative energyp0 are propagated backwards in time. That the sign ofp0 [or q0,
see Eq. (2.33)] can be used to distinguish particle and antiparticle states even if the energy is
not conserved, is due to the fact that a plane wave can not produce pairs of its own [154]. See
the discussion in chapter 4. In the limitA→ 0, the Dirac-Volkov propagatorG(x, x′) naturally
goes to the free electron propagatorGfree(x, x

′) [141],

Gfree(x, x
′) =

1

(2π)4

∫
d4p

p̂+m

p2 −m2 + iε
e−ip(x−x′). (2.63)

Eq. (2.62) can be rewritten using the expansion into generalized Bessel functions, assuming
linear polarizationA = a cosφ, as

G(x, x′) =
1

(2π)4

∫
d4p

∞∑

s,s′=−∞

(
A0(s, α, β) +

ek̂â

2k · pA1(s, α, β)

)
p̂+m

p2 −m2 + iε

×
(
A0(s

′, α, β) +
eâk̂

2k · pA1(s
′, α, β)

)
exp (−iqp · (x− x′) − ik · (sx− s′x′)) ,

(2.64)

where

qp = p− e2a2

4k · pk (2.65)

and

α =
ea · p
k · p , β =

e2a2

8k · p. (2.66)

The Green’s function is thus the free propagator inserted between the Volkov-like functionsE
andĒ.
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2.2. The Volkov solution

To make the dependence on the integration variable in the exponential simple, we make the
change of variables

q = p− e2a2

4k · pk. (2.67)

The Jacobian of this transformation is

J =det

(
∂qµ

∂pν

)
= det

(
δµν +

e2a2kνkαδ
αµ

4(k · p)2

)
= εµναβ ∂q

0

∂pµ

∂q1

∂pν

∂q2

∂pα

∂q3

∂pβ

=εµναβ

(
δ0µ +

e2a2kµkγδ
γ0

4(k · p)2

)(
δ1ν +

e2a2kνkγδ
γ1

4(k · p)2

)

×
(
δ2α +

e2a2kαkγδ
γ2

4(k · p)2

)(
δ3β +

e2a2kβkγδ
γ3

4(k · p)2

)

=1.

(2.68)

Hereεµναβ is the usual anti-symmetric symbol withε0123 = 1. The last step can be seen most
easily by choosing an explicit coordinate system, lettingk = (ω, ω, 0, 0). We then have

dp0dp1dp2dp3 = J−1dq0dq1dq2dq3 = dq0dq1dq2dq3. (2.69)

Written in the new integration variable, and noting thatk · p = k · q anda · p = a · q, the
expression for the propagator reads (renamingq → p)

G(x, x′) =
1

(2π)4

∫
d4p

∞∑

s,s′=−∞

(
A0(s, α, β) +

ek̂â

2k · pA1(s, α, β)

)
p̂+ e2a2

4k·p
k̂ +m

p2 −m2
∗ + iε

×
(
A0(s

′, α, β) +
eâk̂

2k · pA1(s
′, α, β)

)
exp (−ip · (x− x′) − ik · (sx− s′x′)) .

(2.70)

We see that the poles are shifted to the effective mass shell,p2 = m2
∗.

With the all the building blocks constructed, the Volkov states (2.27) as basis functions and the
propagator (2.62), we can proceed to write down laser-modified matrix elements and calculate
cross sections. However, due to the numerous infinite sums over Bessel functions, the actual
evaluation of cross sections is numerically quite involved.
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Chapter 3

Laser-assisted bremsstrahlung

3.1 Introductory remarks

Bremsstrahlung is the process where a charged particle, in our case an electron, collides with
a nucleus, decelerates and thereby emits radiation. If the nucleus is heavy enough, it can be
treated as an external field, which means that the interaction of the electron with the nucleus
can be approximated with the scattering of an electron in a time-independent external potential.
This approximation means that only energy will be conservedin the process, as the nucleus
can absorb any momentum from the electron. The relativisticquantum mechanical problem of
bremsstrahlung in a Coulomb field in the first Born approximation was solved some 70 years ago
by Bethe and Heitler [25], and the problem is now a standard problem in QED textbooks [141].
The Born approximation means that the interaction with the external nuclear Coulomb field
is treated in first-order perturbation theory, and is valid if Zα � v. HereZ is the atomic
charge number,α is the fine-structure constant, andv is the velocity of the electron. The most
important feature for the laser-free bremsstrahlung spectrum is that it is non-resonant. The total
(or differential) cross sectionσ is a smooth function ofωb, whereωb is the angular frequency
of the emitted radiation, decreasing approximately asσ ∝ ω−1

b until the cutoff atωb = Ei −m,
whereEi is the energy of the initial electron. The maximal energy that can be carried away
by the photon is obviouslyEi −m, since the electron must keep at least an amount of energy
equal to its rest mass after the collision. At the cutoff, allkinetic energy of the initial electron
is transformed into the emitted photon. Explicit formulas for the Bethe-Heitler cross section
with different degrees of freedom integrated out, like the direction of the final electron, can
be found in [72], and [93] provides a large collection of cross section formulas in different
approximations.

If the whole system of incoming and outgoing electron and stationary nucleus is placed in a
background laser field, we call the process laser-assisted bremsstrahlung. The modification
of the bremsstrahlung spectrum by the presence of an external laser field has been studied
previously by several authors, mainly in the nonrelativistic regime. The most important result
is that of Karapetyan and Fedorov [90], who study laser-assisted bremsstrahlung in the non-
relativistic regime, in first Born approximation and dipoleapproximation for the laser field.
Here resonances atωb equals integer multiples of the laser frequencyω are found in the limit
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of large laser intensities. It should be stressed that this is not the same kind of Green’s function
resonances that we find in our work (see section 3.4). In section 3.6, the relativistic formulas
employed in this work are compared to and found to agree, within the regimes of validity, with
the formula of [90]. Other articles that go beyond the first Born approximation include [181],
where a low laser frequency approximation is developed, therecent [68], and [42] includes
a numerical approach to the problem by solving the Schrödinger equation. In [59, 60] the
formulas of Zhou and Rosenberg [181] and Karapetyan and Fedorov [90] are compared by
numerical means. An interesting contribution is [44] wherethe problem is treated in dipole
approximation for the laser-electron coupling, but beyondthe first Born approximation: Here
distinct resonances where the bremsstrahlung frequency equals an integer multiple of the laser
frequency are found, as a consequence of an extended Coulombsingularity. This should be
compared with the discussion in subsection 3.4.3, where a divergence due to the Coulomb field
is found, even in the Born approximation.

To find a resonant behavior of the propagator similar to our results, one has to go beyond the
dipole approximation for the laser. This is done for the nonrelativistic case in [99], where
indeed resonant peaks are found. The fully relativistic formula was presented for the first time
in [156, 157], however, without performing any numerical calculations, and even limiting the
analytical investigations to the weak-field case whereξ � 1. We also mention further studies
by the same author, treating the generalization to a two-color laser [159,160].

In this chapter, we start in section 3.2 with reviewing the simplest of all laser-modified QED
diagrams, laser-induced Compton scattering. This processis fundamental to the understanding
of laser-assisted bremsstrahlung. In section 3.3 we use thetheoretical building blocks of chapter
2 and appendix A to write down the matrix element and the resulting cross section of laser-
assisted bremsstrahlung. Our main results [104, 164] are presented in section 3.5, preceded by
a detailed discussion about the fundamentally interestingquestion about the Green’s function
resonances in section 3.4. In section 3.6, we explain why thenonrelativistic treatment does not
result in any resonances, and we also check that the nonrelativistic result is recovered from the
relativistic formula in the appropriate limit.

3.1.1 Validity of the approximations made in the description of the laser
field

To be able to write down transition matrix elements between Volkov states, we make certain
approximations, as is always the case when trying to describe Nature by means of a physical
model. In this subsection we discuss the different approximations and their limitations. A
similar discussion can be found in [113,154].

Approximation of a plane wave of infinite extent

In this and all following chapters, we approximate the laserfieldAµ(x) with a monochromatic
plane wave laser field of infinite extent,

Aµ(x) = aµ cos(k · x), (3.1)
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3.2. Laser-induced Compton scattering: photon emission bya laser-dressed electron

for linear polarization. Consequently, for our calculations to be valid, the involved particles
should spend a large number of laser cycles, at least say 10, inside the laser field. In some cases,
there are other constraints, like the radiation time, coming from the particular process involved
(see the discussion regarding Compton scattering in subsection 3.4.2). Provided that the laser
pulse is long enough, the plane wave approximation is a good one, since more realistic Gaussian
beams are close to plane waves near the focus [161, 170], and in fact any electromagnetic field
looks like a plane wave in the rest frame of a relativistic particle [154]. For example, an electric
field Elab = [f(xµ), 0, 0] in the lab frame transforms under a Lorentz transformationΛ in thex3

direction [to the rest frame of a relativistic particle withvelocityv = (0, 0, |v|), gamma factor
γ] to the combined electric and magnetic fields [84]

Erf = [γf(yµ), 0, 0], Brf = [0,−γ|v|f(yµ), 0], (3.2)

whereyµ = (Λ−1)µ
νx

ν = (γx0 + γ|v|x3, x1, x2, γx3 + γ|v|x0), so that if|v| ≈ 1, we have
|Erf| ≈ |Brf | andErf · Brf ≈ 0, close to a plane wave field configuration.

External classical field approximation

The laser field used in our model is assumed to behave as a classical external field. This implies
that an arbitrary amount of energy and momentum can be taken from or emitted into the field
without changing it. Evidently, this approximation breaksdown if a large number of laser
photons, enough to deplete the laser field considerably, is absorbed form the laser field during
the process under consideration. To get a feeling for the photon densities involved, consider
the photon number density in a typical strong laser field,N/V = ξ2ωm2/e2 ≈ 4 × 1028

photons/cm3, if ξ = 10 andω = 1 eV is assumed. Therefore, in for example a pulse ofτ = 1
ps duration, focused to an area of 100 squared wavelengths, we haveN = 100ξ2m2τ/(ωe2) ≈
2× 1021 photons. Now, as discussed in sections 3.2, 3.3, and 4.2, thelargest number of photons
absorbed during a laser-dressed QED process is controlled by the parameterβ = ξ2m2/(8k ·p),
entering as argument of the generalized Bessel functions [For the definition, see Eq. (3.6) in the
case of Compton scattering, Eq. (3.33) for bremsstrahlung and Eq. (4.8) for the pair creation
case]. The maximal value ofβ is obtained for a relativistic particle moving in the same direction
as the propagation direction of the laser wave. However, even for a particle energyE = 100m,
much larger than we consider in this thesis, we have for the same parameters as considered
above thatβ ≈ ξ2E/(4ω) ≈ 1.3 × 109, much smaller than the number of photons contained in
one laser pulse.

3.2 Laser-induced Compton scattering: photon emission by
a laser-dressed electron

Laser-induced Compton scattering is the simplest of all laser-induced QED processes. The first
theoretical treatments of this problem can be found in [38,105,129]. Recently, the process was
numerically investigated in [138], and [15] provides a comprehensive treatment. In [30, 125,
126], the process is treated in a two-color laser. We treat the case of linear polarization of the
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qfqi

kb

Figure 3.1: Feynman diagram for laser-induced Compton scattering. The incoming (effective
four-momentumqi) and outgoing (effective four-momentumqf ) electron is denoted by a zig-
zag line on top of a straight line to stress that it is dressed by a strong laser. The emitted photon
has four-momentumkb. The Feynman diagrams in this thesis were drawn with the helpof the
program JaxoDraw [27].

laser here. One initial Volkov state classified by effectivemomentumqi spontaneously emits
a photon with four-momentumkb and ends up with final effective four-momentumqf . The
Feynman diagram is shown in Fig. 3.1. To compute the matrix elementM for this process, we
employ the wave function of the emitted photon

Aµ
b,λ(x) =

1√
2ωbV

εµb,λe
ikb·x, (3.3)

whereλ = 1, 2 labels the two polarization directions andεb,λ is the polarization vector satisfy-
ing ε2b,1 = ε2b,2 = −1 andεb,2 · εb,2 = 0. Note the plus sign in the exponential in Eq. (3.3), photon
emission is the process we wish to describe. That this in factis the correct sign will be clear
from the four-momentum conserving delta function [see Eq. (3.5)]. This is consistent with the
expression for momentum modekb of the second-quantized electromagnetic fieldAµ

quant.(x) of
a plane wave [141],

Aµ
quant.(x) =

1√
2ωbV

∑

λ

εµb,λ

(
akb,λe

−ikb·x + a†kb,λe
ikb·x
)
, (3.4)

whereakb,λ is the creation operator anda†kb,λ is the annihilation operator of a photon with
three-momentumkb and polarization state labeled withλ. Since we are only interested in
photon creation, only the term witha†kb,λ

in expression (3.4) should be retained. Using now the
Volkov state in its Fourier expanded form (2.47), we are ableto perform the required space-time
integration over the interaction coordinatex with the result [38,129]

M = e

∫
d4xψ̄qf

(x)Âb,λψqi
(x)

=
e(2π)4

√
2QiQfωbV 3

∞∑

n=−∞

ūrf
(pf)

[
A0(n, α, β)ε̂b,λ +

(
eâk̂ε̂b,λ
2k · qf

+
ε̂b,λk̂âe

2k · qi

)
A1(n, α, β)

− e2a2k · εb,λk̂
2k · qfk · qi

A2(n, α, β)
]
uri

(pi)δ(nk + qi − qf − kb).

(3.5)
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Hereri,f labels the spin state of the initial (final) electron, and

α =
ea · qi
k · qi

− ea · qf
k · qf

, β =
e2a2

8

(
1

k · qi
− 1

k · qf

)
. (3.6)

We note several things. The matrix element (3.5) is gauge invariant under the gauge trans-
formation under bothεb,λ → εb,λ + Λ1kb anda → a + Λ2k for arbitrary constantsΛ1,2. The
a-invariance is easy to see, and theεb,λ-invariance can be proven directly from Eq. (3.5) by using
the recursion relation (5.23) of the generalized Bessel functionA0(n, α, β), or more elegantly
by the same method as in section B.2. Gauge invariance can forexample be used to transform
εb → εb − εb·k

kb·k
kb, so thatk · εb = 0 and the term containingA2(n, α, β) in Eq. (3.5) vanishes.

More important however, is that gauge invariance makes it possible to use the relation [141]
∑

λ=1,2

(εb,λ ·M)2 = −M2 (3.7)

for photon sums in squared matrix elements. Taking the square ofM and multiplying with the
final phase space volumed3qfd

3kbV
2(2π)−6, averaging over the initial spinri and summing

over final electron spinrf and polarizationλ of the photon we obtain the differential rate per
unit timedW [129]

dW =
∞∑

n=1

∫
e2m2d3qfd

3kb

4(2π)2QiQfωb
δ(nk + qi − qf − kb)

×
[
−A2

0(n, α, β) + ξ2

(
1 +

(k · kb)
2

2k · qfk · qi

)(
A2

1(n, α, β) −A0(n, α, β)A2(n, α, β)
)
]

=
e2ωb

16π2

∞∑

n=1

dΩb
1

qi · kdir
b + nk · kdir

b

×
[
− 2m2A2

0(n, α, β)

+ |a|2e2
(

2 +
(k · kb)

2

k · qik · qf

)(
A2

1(n, α, β) − A0(n, α, β)A2(n, α, β)
)
]
,

(3.8)

where in the last step we used the delta function to integrateoverd3qfdωb, so that

ωb =
nk · qi

qi · kdir
b + nk · kdir

b

, (3.9)

and qf = nk + qi − kb. By kdir
b we mean theωb-independent four-vectorkdir

b = kb/ωb =
(1,kb/|kb|). Eq. (3.9) is sometimes called the nonlinear Compton formula [38,138], because the
frequency of the emitted photon depends onqi, the effective momentum, and therefore onξ, the
intensity. Forξ � 1 we haveqi ≈ pi and Eq. (3.9) goes to the normal Compton formula [141]
for the emitted frequency, since only terms withn = 1 contribute to the sum in Eq. (3.8) in
this limit. The rate (3.8) is differential in the solid angleΩb = dθ sin θdφ of the emitted photon
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Figure 3.2: The dependence of the mass operatorΓ of the electron in the laser on the parameters
k · qi andξ = |ea|/m. In the right graph, the dependence on the proportionality constantba on
ξ is shown, withΓ = bak · qi. The same value ofξ for linear and circular polarization implies
that we compare laser fields with the same peak value of the electric field. The laser intensity,
however, differ by a factor of1/2 between circular and linear polarization of the same value of
ξ.

(by fixing the direction of the emitted photon and the ordern, both the photon energyωb and
the four-momentumqf of the final electron are decided by energy-momentum conservation).
The vectorkb is written in terms of the anglesθ andφ askb = ωb(cosφ sin θ, sin φ sin θ, cos θ).
Important for the discussion in subsection 3.2.2 is the total rateW , integrated over the solid
angleΩb of the emitted photon:

W =

∫
dW =

∫ π

0

dθ sin θ

∫ 2π

0

dφ
dW

dΩb
. (3.10)

The total rate (3.10) can by gauge and Lorentz invariance only be a function of the invariants
k · qi andξ = |ea|/m. We have evaluated the functionΓ = Qi

m
W , also called the mass operator

(see subsection 3.2.2) for different values of these parameters, with the results shown in Figure
3.2. Here we also show results for circular polarization of the laser, which were evaluated from
an expression similar to Eq. (3.8) [105,164]. For small values ofξ, these graphs agree with the
approximate formulas of Becker and Mitter [113], and we havealso checked for consistency
with the results in [105].

The evaluation is made as follows: For eachn, we choose to evaluateΓ in the special center-of-
mass frame whereqi+nk = qf+kb = 0. Note that this frame is not physical, since it is different
for everyn, but it simplifies the evaluation of the total rate. If we in addition choosek to point in
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Figure 3.3: Illustration of the slow exponential convergence of the partial sums involved in
the calculation ofΓ. Shown in the graph above is the quantityΓ∆n (to be defined below)
as a function ofn. The functionΓ∆n is defined as follows. First, let thenth total rate for
laser-induced Compton scattering beWn =

∫
dWn, wheredWn is thenth term in the sum in

Eq. (3.8). Then, letΓ∆n = Qi

m

∑n
n′=n−∆Wn′ . Here∆ = 104. The total value ofΓ is then given

asΓ =
∑

n Γ∆n. The other parameters used for the calculation arek · qi/m2 = 1.53 × 10−3,
ξ = 47.4.

the negativex-direction, i.e.k = (ω,−ω, 0, 0), this impliesk ·qi/ω = Qi+
√
Q2

i −m2
∗ = Qi +

nω so thatω = (k · qi)2/
√

(nk + qi)2 = (k · qi)2/
√

(nω +Qi)2 = (k · qi)2/
√

2nk · qi +m2
∗) .

Moreover, by energy conservation (3.9) we haveωb = nk · qi/(Qi + nω) = nω in this special
frame. We now have to perform the integration over the solid angle ofkb. Numerically, the sum
overn in Eq. (3.8) is a quite demanding task whenξ is large. To reach convergence, a number
of terms of order∼ 105 has to be summed. The convergence rate is exponential, although very
slowly exponential, as illustrated in Fig. 3.3.

Surprisingly, the functionΓ is linear in k · qi for values ofk · qi of the order10−4 MeV2

or smaller. Indeed, in [129], they find a linear dependence onk · qi if the inequality chain
1 � e|a|/m� m2/(k · qi) is satisfied (limit of a crossed field) according to

Γ = k · qi
5e3|a|

8
√

3 πm2
. (3.11)

We see from our graphs that Eq. (3.11) gives the slope for|a| = 20 MeV, but differs slightly for
|a| = 80 MeV.

3.2.1 Discrete level interpretation of the Compton scattering matrix ele-
ment

A nice interpretation of the Compton scattering amplitude is as a spontaneous decay from one
discrete Volkov level to another. Recall that the Volkov state can be thought of as a superposition
of states with definitive four-momentum, with generalized Bessel functions as coefficients (see
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qi + nk

qi + (n− 1)k

qi + (n− 2)k

kb

qf + (n′ + 2)k

qf + (n′ + 1)k

qf + n′k

Figure 3.4: Laser-induced Compton scattering in a level-transition picture, introduced in sub-
section 3.2.1. The electron in state with momentumqi +nk decays by emitting a photonkb to a
state with momentumqf + n′k. The difference∆n = n− n′ is dictated by energy-momentum
conservation, and to obtain the total amplitude, one must sum over all allowed∆n.

subsection 2.2.3),
ψ(x) =

∑

n

ψn(x) =
∑

n

A0(n, α, β)e−i(q+nk)·x, (3.12)

where we have dropped the spin terms for simplicity. In this picture, an initial staten with
momentumqi+nk can decay spontaneously to a final staten′ with momentumqf +n′k, emitting
a photon with momentumkb = (ωb,kb) in the process, as illustrated in Fig. 3.4. Consequently,
only the difference∆n = n− n′ is constrained by four-momentum conservation:

qi + nk − kb = qf + n′k, (3.13)

which leads to the demand
kb · qi
k · qf

= ∆n. (3.14)

In other words, the fractionkb · qi/(k · qf) has to be integer valued. If we let the amplitude
of each level in the initial Volkov state beA0(n, α, β), and the amplitude of the levels in the
final Volkov stateA0(n

′, α′, β ′), then the total amplitudeM for the transition is expressed as the
product of the level amplitudes, summed over all possible transitions

M =
∑

n,n′

A0(n, α, β)A0(n
′, α′, β ′)δ(qi − qf − kb + [n− n′]k)

=
∑

∆n

A0(∆n, α− α′, β − β ′)δ(qi − qf − kb + ∆nk),
(3.15)

by the summation formula (5.21). Eq. (3.15) gives, apart from the spin terms, the essential
physics of the full amplitude (3.5). We see that for very small frequenciesωb < ω, the transition
must go to the same level (n = n′) of the final state,qi ≈ qf , and the transition amplitude is
approximately one,

M ≈
∑

n

A0(n, α, β)2δ(qi − qf ) = δ(qi − qf ). (3.16)
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3.2. Laser-induced Compton scattering: photon emission bya laser-dressed electron

Figure 3.5: The mass operator of the electron in the laser.

For higher frequenciesωb > ω there will in general be destructive interference between the
different pathways (leveln → n′, n + 1 → n′ + 1 etc.) so that the probability for Compton
scattering will show an exponential falloff as a function ofωb. This will be seen clearly from
the numerical results in section 3.5. Compare also Fig. 3.3.

3.2.2 Decay width of Volkov states

The laser-dressed electron is not stable. The fact that an electron submitted to a laser field can
spontaneously radiate makes it possible to speak about a lifetimeτ of the laser-dressed electron.
This lifetime is given by precisely the inverse of the total rate of Compton scattering, Eqs. (3.8),
(3.10),

τ =
1

W
. (3.17)

As for other decaying states [141], this implies an imaginary contribution to the effective energy
of the electron,

Q→ Q− iW, (3.18)

so that the wave function actually decays over time:

ψ(x) ∝ e−iQx0+iq·x → e−iQx0−Wx0+iq·x. (3.19)

An imaginary contribution to the energy implies, via the relationq2 = m2
∗, an imaginary contri-

bution to the electrons mass. If we letm∗ → m∗ − iΓ, this means

(Q− iW )2 − q2 = (m∗ − iΓ)2, (3.20)

so that to first order inW (the imaginary mass contribution is expected to be a small contribu-
tion) we have

Γ =
Q

m
W. (3.21)

The quantityΓ is shown in Fig. 3.2.Γ is related to the mass operator, or the self energy of
the electron in the laser. The Feynman diagram for the self energy is shown in Fig. 3.5, and
constitutes the first radiative correction to the Dirac-Volkov propagator (2.62). As in the usual
QED [141], this diagram is the first correction to the mass in the denominator of the propagator,
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2

Figure 3.6: Equivalence of the mass operator and the total probability of laser-induced Compton
scattering via the Cutkosky rules. The sum

∑
(integration) is over all final states of the electron

and photon.

so that (using the notation of subsection 2.2.5)

G(x, x′) =
1

(2π)4

∫
d4pE(p, x)

p̂+m

p2 −m2
Ē(p, x′)

→ 1

(2π)4

∫
d4pE(p, x)

p̂+m

p2 −m2 + 2imΓ
Ē(p, x′).

(3.22)

This modification is oversimplified, the true modification ofthe propagator is more complex
[21], but the imaginary mass shift is, as we will see in section 3.4, enough to regularize the
cross section when the propagator momentum reaches the massshellp2 = m2

∗. The diagram
in Fig. 3.5 has in general one real part and one imaginary part. The real part gives a small real
shift of the mass in the propagator, but we consider only the imaginary part, since this is enough
to obtain finite cross sections. The complete mass operator is studied in [10, 21] with different
methods.

The imaginary part of the mass operator and the total rateW for Compton scattering are related
according to the Cutkosky rules, as discussed in section A.2. These rules, depicted graphically
in Fig. 3.6, tell us that instead of calculating the imaginary part of the mass operator, we can
instead calculate the total rate for Compton scattering, which turns out to be more manageable.

3.3 Bremsstrahlung matrix element and cross section

In this section we derive the matrix element and cross section for the process of laser-assisted
bremsstrahlung. The Feynman diagrams, to be added togetherto obtain the total amplitude of
the process, are shown in Fig. 3.7. To get a feeling what is meant by an “all-order” treatment,
we show in Fig. 3.8 the perturbative expansion of one of the laser-dressed diagrams in Fig. 3.7,
to first order in the electron-laser coupling.

3.3.1 Matrix element for linear polarization

Laser-assisted bremsstrahlung describes the interactionbetween an electron and three external
fields: the laser field, the Coulomb field, and the field of the spontaneously emitted bremsstrah-
lung photon. Of these three fields, the interaction with the laser field is treated to all orders, non-
perturbatively, by using Volkov states and the Dirac-Volkov propagator for the electron lines.
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qi qip̃f

kbkb

qf

qf

q q
p̃i

Figure 3.7: The Feynman diagrams for laser-assisted bremsstrahlung. External electron lines
and propagators are denoted with a wiggling line superimposed on a straight line, to stress that
the laser-electron interaction is treated nonperturbatively. The initial electron has effective four-
momentumqi, the finalqf and the intermediate electron propagator momentum is denoted by
p̃i,f The emitted bremsstrahlung photon has four-momentumkb, and the virtual Coulomb field
photon, depicted with a dashed line, has three-momentumq. Time flows from left to right.

The interaction with the Coulomb field and the emitted photonare treated as perturbations, they
act only in one vertex each in the Feynman diagram Fig. 3.7. The linearly polarized laser is as
in chapter 2 described by the four-vector potential

Aµ(φ) = aµ cosφ, (3.23)

whereφ = k · x is the laser phase, andk = (ω,k) the laser wave four-vector. The polarization
vectora satisfiesa · k = 0 in Lorenz gauge. In this section we only consider linear polarization
of the laser. Note also that we do not enforcea0 = 0, since we want to keep open the possibility
of gauge-transformingaµ → aµ + Λkµ later. The four-vector potential of the static screened
Coulomb field in Coulomb gauge, with atomic numberZ, reads [76]

Aµ
C(x) = −Zee

−|x|/`

4π|x| δ
0µ = − 1

(2π)3

∫
d4q

Ze

q2 + `−2
e−iq·xδ(q0)δµ0, (3.24)

where the Fourier transform in the last step is introduced for practical reasons. Here we have
introduced a parameter`, the screening length. As will be obvious in the discussion in section
3.4, a finite screening length is needed to obtain finite crosssections for small momentum
transferq. In the limit ` → ∞ we retrieve the usual Coulomb potential. Observe that the
expression (3.24) is not relativistically invariant, by choosing this form of the potential we
choose the frame of calculation to be the rest frame of the nucleus. For a nucleus at rest this
frame coincides with the laboratory frame. We also need the four-vector potential of the emitted
photon:

Aµ
b,λ(x) =

1√
2ωbV

εµb,λe
ikb·x, (3.25)

the same as (3.3). Putting the two potentials Eqs. (3.25), (3.24), together with the initial and
final Volkov wave functionsψqi,f ,ri,f

, Eq. (2.32), with effective four-momentumqi,f and spinri,f

and the Dirac-Volkov propgatorG(x2, x1), Eq. (2.62), we can write the second order transition
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=

++ +
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Figure 3.8: Laser-dressed Feynman diagrams in the perturbative picture. Here is shown the
perturbative expansion of one of the diagrams in Fig. 3.7, tofirst order in the electron-laser cou-
pling, that is, with one interaction with a laser photon. In the diagrams above, the laser photon
is drawn as a wavy line with comparatively long wavelength, and the emitted bremsstrahlung
photon as a wavy line with short wavelength. The Coulomb fieldphoton is drawn with a dashed
line. The first line shows the fully laser-dressed diagram tothe left, and the field-free diagram
to the right, the second line shows diagrams where one laser photon is absorbed, and the last
line displays diagrams where one laser photon is emitted into the laser field. In the perturbative
expansion, the number of diagrams to take into account growsextremely fast, already in second
order (not shown in this figure) there are an additional 24 contributing diagrams. By employ-
ing the exact wave functions in the laser field, the Volkov states, all diagrams to all orders are
accurately accounted for.
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3.3. Bremsstrahlung matrix element and cross section

matrix elementSfi for laser-assisted bremsstrahlung corresponding to the coherent sum of the
two Feynman diagrams in Fig. 3.7:

Sfi = S
(1)
fi + S

(2)
fi

= e2
∫

d4x1

∫
d4x2ψqf ,rf

(x2)
[
iÂb,λ(x2)iG(x2, x1)iÂC(x1)

+ iÂC(x2)iG(x2, x1)iÂb,λ(x1)
]
ψqi,ri

(x1)

= 2πi

∞∑

n,s=−∞

Ze3m√
2ωbQiQfV 3

δ(Qf −Qi + nω + ωb)

q2 + `−2
ūrf

(pf )

×
[
Ms

f

ˆ̃pf + e2a2

4k·p̃f
k̂ +m

p̃2
f −m2

∗

F s−n
i + F s+n

f

ˆ̃pi + e2a2

4k·p̃i
k̂ +m

p̃2
i −m2

∗

Ms
i

]
uri

(pi).

(3.26)

Here

Ms
f = A0(s, αf − α̃f , βf − β̃f )ε̂b,λ

+ A1(s, αf − α̃f , βf − β̃f)

(
ε̂b,λ

ek̂â

2k · p̃f

+
eâk̂

2k · pf

ε̂b,λ

)

+
eâk̂

2k · pf
ε̂b,λ

ek̂â

2k · p̃f
A2(s, αf − α̃f , βf − β̃f ),

(3.27)

F s−n
i = A0(s− n, αi − α̃f , βi − β̃f)γ

0

+ A1(s− n, αi − α̃f , βi − β̃f)

(
γ0 ek̂â

2k · pi

+
eâk̂

2k · p̃f

γ0

)

+ A2(s− n, αi − α̃f , βi − β̃f)
eâk̂

2k · p̃f
γ0 ek̂â

2k · pi
,

(3.28)

F s+n
f = A0(s+ n, αf − α̃i, βf − β̃i)γ

0

+ A1(s+ n, αf − α̃i, βf − β̃i)

(
γ0 ek̂â

2k · p̃i

+
eâk̂

2k · pf

γ0

)

+
eâk̂

2k · pf
γ0 ek̂â

2k · p̃i
A2(n + s, αf − α̃i, βf − β̃i),

(3.29)

and

Ms
i = A0(s, αi − α̃i, βi − β̃i)ε̂b,λ

+ A1(s, αi − α̃i, βi − β̃i)

(
ε̂b,λ

ek̂â

2k · pi
+

eâk̂

2k · p̃i
ε̂b,λ

)

+ A2(s, αi − α̃i, βi − β̃i)
eâk̂

2k · p̃i

ε̂b,λ
ek̂â

2k · pi

,

(3.30)

with
p̃f = qf + sk + kb, p̃i = qi + sk − kb, (3.31)
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q = qf − qi + nk + kb, (3.32)

αi,f =
ea · pi,f

k · pi,f

, βi,f =
e2a2

8pi,f · k
, (3.33)

and

α̃i,f =
ea · p̃i,f

k · p̃i,f
, β̃i,f =

e2a2

8p̃i,f · k
. (3.34)

The spinorsuri,f
describe the spin state of the in- and outgoing electron, respectively. Note

thatk · pi,f = k · qi,f , and that due tok2 = 0, α̃i,f andβ̃i,f are independent of the summation
indexs. Equation (3.26) was first obtained in [156]. A few remarks regarding the derivation of
Eq. (3.26) are in order. To be able to perform the space-time integration over the two interaction
coordinates in the second row of Eq. (3.26), it was necessaryto resort to the Fourier decom-
position into infinite sums of plane waves of both the wave functionsψqi,f

, Eq. (2.47), and the
Dirac-Volkov propagator, Eq. (2.64).

In general, one has to formulate anS-matrix scattering problem as transition from a collection
of initial plane waves, defined att = −∞, to a collection of final plane waves, defined at
t = +∞. In other words, in theS-matrix formalism, only space-time integrations of the form

∫
d4xA(p)e−ip·x = (2π)4A(p)δ4(p) (3.35)

are defined, withp being the sum of momenta flowing into the vertex andA(p) being some
space-time independent part of the amplitude. They give rise to energy-momentum conserving
delta functions at the vertices of the Feynman diagram.

Inserting the Fourier decomposed expressions for the quantities ψqi,f
, G, AC , andAb,λ in the

second row of Eq. (3.26), all integrations can be taken, leaving one energy-conserving delta
function. Since each of the wave functions involves one infinite sum, and the propagator two,
the matrix element is a quadruple infinite sum. Two of these sums can fortunately be performed
using the addition theorem [Eq. (5.21)], leaving the matrixelement expressed as two infinite
sums overn ands. We summarize the calculation procedure leading to the expression (3.26) by
noting that this method of calculating transition amplitudes is very similar to Fourier’s method
of solving a differential equation: The solution for one mode of the initial wavefunction scat-
tered into one final mode is known, and to obtain the total amplitude (to satisfy the boundary
conditions) one has to sum over all modes.

From the delta functionδ(Qf − Qi + nω + ωb) we gather two things: First, different from the
field-free process, in the laser-dressed case it is the effective energyQi,f = q0

i,f that enters in
the energy-conservation relation. The effective energy isrelated to the energy outside the laser
in a nontrivial way, if we writep = (E,

√
E2 −m2 p/|p|) we have, according to the definition

(2.33),

Q = E +
e2|a|2
4k · pω = E +

e2|a2|
E −

√
E2 −m2 p

|p|
· k
|k|

, (3.36)

which in general does not have a unique solutionE even ifQ and the directionp/|p| is known.
Note however thatQ ≥ m∗ impliesE ≥ m. Second, even though the laser field was introduced
as a classical, external field, due to the periodicity of the laser, the matrix element is expressed
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as an infinite sum over a discrete indexn, the quantity appearing in the energy-conservation
relation beingnω. The interpretation is clear: we can speak of a net number of|n| photon
exchanged with the laser during the process. In our convention, negativen corresponds to
absorption and positiven to emission of laser-mode photons. In the same way, the sum over s
represents the propagation of the electron under the influence of the laser, the total amplitude for
propagation from the first interaction coordinate to the second being given by a coherent sum
over amplitudes in whichs photons are exchanged. It is also intuitively clear that no further
sum is needed; in general a laser-modified Feynman diagram withN number of vertices results
in N infinite sums.

3.3.2 Gauge invariance

The matrix element (3.26) must be invariant under the gauge transformations

aµ → aµ + Λ1k
µ (3.37)

and
εµb,λ → εµb,λ + Λ2k

µ
b , (3.38)

whereΛ1,2 is an arbitrary constant (that may depend onk or kb). In general, a gauge transfor-
mation in QED involves a shift

Aµ → Aµ + ∂µg(x), (3.39)

whereAµ is an arbitrary light field (laser or single photon) andg(x) is an arbitrary function
of the space-time coordinatex. However, by requiring the vector potentialAµ to be a plane
wave,Aµ = εµf(κ · x), with wave vectorκµ and polarization vectorεµ, and that the gauge
transformation (3.39) should not change the space-time dependence ofAµ [24], then it follows
that the most general transformation isAµ → Aµ + κµΛf(κ · x), or εµ → εµ + Λκµ. HereΛ
is an arbitrary constant that is independent onx. It is the gauge symmetry (3.39) that gives rise
to current conservation: from the QED LagrangianLQED [141], by construction invariant under
(3.39),

LQED = ψ(i∂̂ −m)ψ − 1

4
(Fµν)

2 − eψÂψ, (3.40)

with Fµν = ∂µAν − ∂νAµ, we obtain the Euler-Lagrange equation for the field tensorFµν , the
inhomogeneous Maxwell equation,

∂µFµν = eψγνψ = ejν . (3.41)

Current conservation∂νj
ν = 0 follows automatically from the antisymmetry ofFµν .

To explicitly show invariance under the transformations (3.37), (3.38), it is easier to look at the
expression for the matrix element before making any integrations and Bessel function expan-
sions. To see invariance under the transformation (3.37), we note that becausea · k = k · k = 0,
terms likeA2 andÂk̂ are invariant. Under the transformation (3.37), the conjugate wavefunction
ψqf

(x2) picks up an exponentialexp(i
∫ k·x2

0
eΛ1dφ̃), the wavefunctionψqi

(x1) picks up an expo-

nentialexp(−i
∫ k·x1

0
eΛ1dφ̃) and the Green’s function picks up the factorexp(−i

∫ k·x2

k·x1
eΛ1dφ̃).

These contributions cancel when forming the matrix element.
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To see invariance under the transformation (3.38) is slightly more difficult. That the matrix
element indeed is invariant is shown in section B.2.

3.3.3 Differential cross section

The differential cross sectiondσ, or the rate divided by the incoming particle flux, is calculated
from the matrix element in the usual way [76]

dσ =
1

T |veff
i |/V |Sfi|2

V d3kb

(2π)3

V d3qf
(2π)3

. (3.42)

HereT is the long observation time and the incoming particle flux|veff
i |/V is expressed through

the effective velocityveff
i , with which we understand the average velocity of the laser-dressed

electron
veff

i =
qi

Qi
. (3.43)

Since we are not interested in investigating polarization or spin properties, we average over the
spin of the incoming electron, and sum over the spin of the final electron. This summation can
be performed with the usual formulas, resulting in the crosssection being expressed as a trace
over a4 × 4 matrix. Another way is to use an explicit representation of the spinorsu1,2 and to
do the summation explicitly. For further discussion on the spin sums, see subsection 3.5.2. For
the photon sums, gauge invariance (as shown in section B.2 onpage 139) in principle allows to
use the formula [76] ∑

λ=1,2

εµb,λε
ν
b,λ → −gµν . (3.44)

However, here it is better to use an explicit basis of the polarization vectorsεb,1, εb,2 and sum
explicitly, when evaluating the cross section numerically.

Inserting the matrix elementSfi from Eq. (3.26) into Eq. (3.42), rewriting the phase space
factors as

d3kb = ω2
bdωbdΩb, d3qf = |qf |QfdQfdΩf , (3.45)

whereΩb,f is the solid angle of the corresponding particle, summing over spins and polarization,
and making the standard substitutionδ2(x) = Tδ(x)/(2π) [76], we obtain the differential cross
sectiondσ/(dωbdΩbdΩf ) for laser-assisted bremsstrahlung,

dσ

dΩfdΩbdωb
=
α(αZ)2ωb

8π2

∑

λ,n

|qf |
|qi|

1

(q2 + `−2)2
δ(Qf −Qi + nω + ωb)dQf

× Tr

[
(p̂f +m)

(
∑

s

Hs,n

)
(p̂i +m)

(
∑

s′

H̃s′,n

)]
,

(3.46)

where

Hs,n =

[
Ms

f

ˆ̃pf + e2a2

4k·p̃f
k̂ +m

p̃2
f −m2

∗

F s−n
i + F s+n

f

ˆ̃pi + e2a2

4k·p̃i
k̂ +m

p̃2
i −m2

∗

Ms
i

]
(3.47)
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and

H̃s′,n = γ0H†
s′,nγ

0. (3.48)

The matricesFi,f andMi,f were given in Eqs. (3.27), (3.28), (3.29) and (3.30).

The cross section is thus expressed as an infinite sum over photon ordersn, through one internal
sum over intermediate photon orderss. After integration overdQf , so thatQf = Qi − nω−ωb

everywhere, the sum overn in (3.46) is bounded by the conditionQf ≥ m∗, but the sum over
s ands′ goes from−∞ to ∞. Note also that this integration makes the argumentsαi,f − α̃i,f ,
βi,f − β̃i,f implicitly dependent onn throughqf andQf . Another thing worth commenting is
that the final phase space for the electron is expressed through the laser-dressed momentumqf .
This is the most convenient way, since the energy conservation relation is expressed through the
effective energiesQi,f . An equally valid approach, pursued in [138,139], is to express the final
phase space through the momentum at infinity,d3pf . This will however create problems, since
the correspondence between the effective energyQf andEf is not one-to-one, as discussed after
Eq. (3.36). The two approaches are equivalent if the final momentum of the electron is inte-
grated out, and the normalization factor of the electron wave functions are changed accordingly,
since we haved3qf/Qf = d3pf/Ef [24].

3.3.4 Limit of vanishing laser field

In the limit of vanishing laser field,ξ → 0, we expect that the matrix element (3.26) goes to
the field free case, the Bethe-Heitler matrix element. Indeed, whenξ = 0, the arguments of the
generalized Bessel functions vanishes due to the propertyA0(n, 0, 0) = δn0, and the double sum
in (3.26) collapses to a single termn = s = 0. Consequently, we end up with the Bethe-Heitler
matrix element, found in many textbooks [76,141],

MBethe-Heitler= 2πi
Ze3m√

2ωbEiEfV 3

δ(Ef −Ei + ωb)

q2 + `−2

× ūrf

(
ε̂b,λ

p̂f + k̂b +m

2pf · kb
γ0 − γ0 p̂i − k̂b +m

2pi · kb
εb,λ

)
uri
,

(3.49)

using the same notation as in Eq. (3.26), in particularq = pf − pi + kb. Constructing the spin
and polarization-averaged cross section with formula (3.42), taking the trace (possible since
there is at most products of 8 gamma matrices involved, see the discussion in subsection 3.5.2),
we end up with the Bethe-Heitler cross section

dσ

dΩfdΩbdωb
=
α(Zα)2

4π2

|pf |
|pi|

1

(q2 + `−2)2

ωb

(kb · pi)2(kb · pf)2

×
[
2q2kb · pikb · pf(E

2
f + E2

i − pi · pf)

+
(
(kb · pi)

2 + (kb · pf)
2
)
(q2m2 − 2kb · pikb · pf )

− 4m2(Efkb · pf −Eikb · pi)
2
]
,

(3.50)
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whereωb is bounded from above by the demandEf = Ei −ωb ≥ m. Eq. (3.50) is the preferred
way to write the Bethe-Heitler cross section, expressed in relativistically invariant dot products
of the different vectors involved. However, the original work [25], and most textbooks [24, 76]
write the formula in a more explicit way, expressed in the angles between the vectors. To show
the equivalence is a nice exercise in algebra.

3.3.5 Matrix element for circular polarization

Since we present results also for the case of circularly polarized laser light in section 3.5, we
give the final result for the formula for the matrix element here for completeness, without any
detailed discussion. See Eq. (2.38) for the expression of the Volkov wave function for circular
polarization. For convenience, we repeat the expression for the vector potential of a circularly
polarized laser,

Aµ(φ) = aµ
1 cosφ+ aµ

2 sin φ, (3.51)

with polarization vectorsa1,2 satisfying

a1 · a2 = 0, a2
1 = a2

2 = −ã2. (3.52)

The matrix element has the same form as Eq. (3.26), but with the terms e2a2

4k·p̃i,f
k̂ replaced by

− e2ã2

2k·p̃i,f
k̂, andMs

f , F s−n
i , F s+n

f andMs
i replaced by (see also [163])

Ms
f,circ = B0(s, α̃

1
f − α1

f , α̃
2
f − α2

f)

(
ε̂b,λ +

e2ã2k̂ε̂b,λk̂

4k · qfk · p̃f

)

+B1(s, α̃
1
f − α1

f , α̃
2
f − α2

f )

(
eε̂b,λk̂â1

2k · p̃f
+
eâ1k̂ε̂b,λ
2k · qf

)

+B2(s, α̃
1
f − α1

f , α̃
2
f − α2

f )

(
eε̂b,λk̂â2

2k · p̃f
+
eâ2k̂ε̂b,λ
2k · qf

)
,

(3.53)

F s−n
i,circ = B∗

0(s− n, α̃1
f − α1

i , α̃
2
f − α2

i )

(
γ0 +

e2ã2k̂γ0k̂

4k · qik · p̃f

)

+B∗
1(s− n, α̃1

f − α1
i , α̃

2
f − α2

i )

(
eγ0k̂â1

2k · qi
+
eâ1k̂γ

0

2k · p̃f

)

+B∗
2(s− n, α̃1

f − α1
i , α̃

2
f − α2

i )

(
eγ0k̂â2

2k · qi
+
eâ2k̂γ

0

2k · p̃f

)
,

(3.54)

F s+n
f,circ = B0(s+ n, α̃1

i − α1
f , α̃

2
i − α2

f )

(
γ0 +

e2ã2k̂γ0k̂

4k · qfk · p̃i

)

+B1(s+ n, α̃1
i − α1

f , α̃
2
i − α2

f )

(
eγ0k̂â1

2k · p̃i
+
eâ1k̂γ

0

2k · qf

)

+B2(s+ n, α̃1
i − α1

f , α̃
2
i − α2

f )

(
eγ0k̂â2

2k · p̃i
+
eâ2k̂γ

0

2k · qf

)
,

(3.55)
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and

Ms
i,circ = B∗

0(s, α̃
1
i − α1

i , α̃
2
i − α2

i )

(
ε̂b,λ +

e2ã2k̂ε̂b,λk̂

4k · qik · p̃i

)

+B∗
1(s, α̃

1
i − α1

i , α̃
2
i − α2

i )

(
eε̂b,λk̂â1

2k · qi
+
eâ1k̂ε̂b,λ
2k · p̃i

)

+B∗
2(s, α̃

1
f − α1

f , α̃
2
f − α2

f)

(
eε̂b,λk̂â2

2k · qi
+
eâ2k̂ε̂b,λ
2k · p̃i

)
,

(3.56)

with the obvious notation

α1,2
i,f =

ea1,2 · qi,f
k · qi,f

, α̃1,2
i,f =

ea1,2 · p̃i,f

k · p̃i,f
, (3.57)

and theBj ’s are defined through the usual Bessel function, ifx+ iy = reiϕ andx− iy = reiϕ̃,
with ϕ, ϕ̃ ∈ (−π, π], then

B0(n, x, y) = Jn(r)e
is(ϕ−ϕ̃), Bj(n, x, y) =

i1−j

2
[B0(n− 1, x, y) + B0(n+ 1, x, y)] ,

(3.58)
with j = 1, 2. The main difference is thus that the matrix element is expressed in terms of the
usual Bessel functionJn(α) instead of the generalized Bessel functionA0(n, α, β) as is the case
for linear polarization. The reason is, as discussed in section 2.2 [page 25], that the amplitude of
the vector potential (and consequently also the amplitude of the electric and magnetic field) for
circular polarization is constant in time,A2(φ) = −ã2, and therefore the Volkov wave function
contains nosin(2φ) term, and can consequently be expanded into a Fourier seriescontaining
the usual Bessel functionJn(α) only. Since the usual Bessel function is considerably easier
to handle from a numerical point of view (see chapter 5), thismeans that the evaluation of the
cross section for circular polarization is less demanding,even though there are more terms to
deal with (polarization vectorsaµ

1 andaµ
2 instead of justaµ).

3.4 Resonances in the laser-dressed propagator and unphys-
ical infinities

The most obvious, and also most interesting, feature of the laser-dressed cross section (3.46) is
the possibility for the momentum of the intermediate electron to satisfy the energy-momentum
relation of a real Volkov particle,

p̃2
f −m2

∗ = 2(qf · kb + sqf · k + sk · kb) = 0, (3.59)

and
p̃2

i −m2
∗ = 2(−qi · kb + sqi · k − sk · kb) = 0. (3.60)
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At values of the parameters satisfying either Eqs. (3.59), (3.60), the cross section is formally
infinite. Physically, this divergence has the following reason: Since in a strong laser, both pro-
cesses corresponding to the two vertices in the Feynman diagram for laser-assisted bremsstrah-
lung, laser-induced Compton scattering (see the discussion in section 3.2) and laser-assisted
Coulomb scattering (see [139, 169]) can occur independently. Consequently, if the intermedi-
ate electron satisfies the conditions (3.59), (3.60), the matrix element (3.26) factorizes into the
product of the matrix elements for the first-order processesCompton scattering and Coulomb
scattering, with a divergent factor in between. One may check that the matrixMs

i in Eq. (3.30)
goes to a matrix element equivalent to the one for Compton scattering, Eq. (3.5), in the limit
where (3.60) is satisfied. At the resonances, perturbation theory actually breaks down, and to
obtain finite results, either all-order corrections have tobe taken into account, or one has to
introduce some kind of cutoff. We solve the problem, as discussed below in subsection 3.4.1,
by including an imaginary part to the energy of the electron.In this section we also elab-
orate somewhat on other possible ways of regularizing the divergence. Mathematically, the
divergence comes from the integration over an infinite volume in the second line of Eq. (3.26).
Important is here that the sum overn in Eq. (3.26) is discrete. Were the sum overn replaced by
an integral, we could use the Feynman prescription (the small imaginary termiε in the propaga-
tor 1/[p̃2

i,f −m2
∗ + iε]), and perform the integral. Compare the treatment of poles in the photon

propagator in an external magnetic field in [13, page 167].

Solving Eqs. (3.59), (3.60) for the frequencyωb we obtain

ωpeak 1
b =

−sqf · k
sk · kdir

b + qf · kdir
b

,

ωpeak 2
b =

sqi · k
sk · kdir

b + qi · kdir
b

,

(3.61)

with kdir
b = (1,kb/|kb|), equivalent to the nonlinear Compton formula (3.9). Note that in general

we haveωpeak 1
b 6= ωpeak 2

b . The spacing between the peaks depends both onξ throughqi,f and
the direction of the emitted photon. One can also convince oneself that in the frame where the
electron is on average at rest,qi = (m∗, 0), the light will be emitted at integer multiples of the
laser frequency, if the termsk · kdir

b can be neglected, which is the case ifsω � Qi,f . Also
whenkb/ωb ≈ k/ω the resonance frequencies will be close to harmonics. In other cases, the
intensity-dependent positions of the harmonics may be interpreted as a Doppler shift [92].

3.4.1 Regularization by imaginary energy

To obtain finite results at the resonances, we use the resultsfrom subsection 3.2.2, and add a
small imaginary part to the energy of the initial and final Volkov state, and also shift the mass
appearing in the propagator by an imaginary amount. This wayof regularizing the Green’s
function divergences was used previously by several authors in [21, 36, 130, 131, 157]. This
procedure is directly analogous to the inclusion of a small imaginary part in the energy of a
discrete atomic state, to obtain finite results in resonancescattering [73]. The result after the
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imaginary shift for the first propagator in Eq. (3.26) reads:

p̃2
f −m2

∗ →
[
qf + sk + kb − i

m

Qf

Γ(k · qf)t
]2

−m2
∗ + 2imΓ(k · p̃f)

= 2(qf · kb + sqf · k + skb · k) − 2i
m

Qf

(sω + ωb)Γ(k · qf ) + 2imΓ(k · kb)

= 2(qf · kb + sqf · k + skb · k) + 2imΓC

[
k · kb − (sω + ωb)

k · qf
Qf

]
,

(3.62)

wheretµ = (1, 0, 0, 0) is a timelike unit vector. We writeΓ(x) (which should not be confused
with the mathematical Gamma function) to show the dependence on the variablex = k · p. In
the last line we have used thatΓ(x) = ΓCx, a linear function ofx, which will be valid for our
choice of parameters. The crucial thing to notice is thatΓ for the final state depends onk ·qf but
Γ in the imaginary mass in the propagator depends on the propagator intermediate momentum
p̃f throughk · p̃f . For the second propagator we have in the same way

p̃2
i −m2

∗ →
[
qi + sk − kb − i

m

Qi
Γ(k · qi)t

]2

−m2
∗ + 2imΓ(k · p̃i)

= 2sk · qi − 2qi · kb − 2sk · kb − 2imΓ(k · kb) + 2i
m

Qi
(ωb − sω)Γ(k · qi)

= 2sk · qi − 2qi · kb − 2sk · kb + 2imΓC

[
k · qi
Qi

(ωb − sω) − k · kb

]
.

(3.63)

It should be noted, that regularization by insertion of an imaginary massonly, that is, without
also letting the energy acquire an imaginary part, which wasthe method proposed in earlier
investigations of the problem [156,157], overestimates the cross section (both for forward scat-
tering angles,qi/|qi| ≈ qf/|qf | for the fully differential cross section, and for the cross section
integrated overΩb) by up to 10 orders of magnitude. This is an example where a slight, but
understandable, mistake makes a huge difference in the numerical result. The reason is that due
to the Coulomb field factor1/q4 in the cross section (3.46), the major contribution to the inte-
grated cross section comes from small values ofq2, which occurs at forward scattering angles
qi/|qi| ≈ qf/|qf | at smallω. However, for forward scattering (smallq2) also the interfer-
ence between the two amplitudes in Fig. 3.7 is large. Including only the imaginary mass shift
destroys the interference, with a huge overestimation of the cross section as a result.

3.4.2 Validity of the imaginary energy method and other waysof regular-
ization

Some remarks are in order regarding the inclusion of the finite widths of the intermediate states
in the Dirac-Volkov propagator. First, we recall that our calculation is valid only if the electron
spends enough time in the region where the laser field is present, as discussed in subsection
3.1.1. For our approach to be correct, this time period should be much larger than the period
of the laser field and the spatial extent of the laser focus region should be much larger than the
laser wavelength. In this case, it is permissible to use the employed approximation of a laser
pulse of infinite duration (continuous-wave) and of infinitespatial extension, that is, to describe
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the laser four-vector potential byAµ(φ) = aµ cos φ. In the regime of short laser pulses, our
approximation breaks down, and another approach is called for. A pulsed laser field can in
principle be dealt with by the same theoretical framework asis used in this thesis, since Volkov
wave functions [Eq. (2.27)] exist also for laser vector potentials of the form

Aµ(φ) = g(φ) (aµ
1 cos φ+ δaµ

2 sinφ) , (3.64)

whereg(φ) is an envelope function andδ is a parameter controlling the polarization (δ = 1
gives circular polarization,δ = 0 linear). The only condition is that the laser field is a plane
wave. Laser-induced Compton scattering in a pulsed laser field for the case wheng(φ) is a
slowly varying function was treated in [127].

Although we have not performed any concrete calculations, that a laser pulse of finite duration
actually would provide a cutoff can be seen as follows. If thelaser field is given by a vector
potential of the form (3.64), the Volkov solution would not be periodic, and an expansion in
discrete modes like Eq. (2.47) can not be made. Instead, the Volkov state would be an integral
over the continuous spectrum of laser modes,

ψ(x) =
1

N

∫
d$C($)e−ip·x−i$k·x, (3.65)

whereN is some normalization factor andC($) is the continuous equivalent of the Bessel
function factor multiplying the exponential in Eq. (2.47).When calculating the matrix element,
we would instead of a sum end up with an integral [compare the expression (3.26)],

Sfi ∝
∫

d$

[
Df($)

(pf +$k + kb)2 −m2 + iε
+

Di($)

(pi +$k − kb)2 −m2 + iε

]
, (3.66)

with some non-diverging functionsDf,i($). The point is now, that the integral over$ can be
performed using the Feynman contouriε, with finite results. This integration is however not
trivial, and can probably only be done numerically even for simple pulse shapesg(φ).

For the radiative corrections, implemented by includingΓ in the propagator denominator, to be
the dominant regularization mechanism, it is crucial that the electron is allowed to travel in the
laser field for a time spanτ longer than1/Γ before (or after) scattering at the Coulomb field.
If this is not the case, the electron will not have enough timeto radiate independently of the
Coulomb interaction, and the peaks will necessarily disappear. As follows from Fig. 3.2, in the
regime of parameters we are considering (k · qi/m2 ∼ 10−5) we haveΓ ∼ ω. The electron
travels in the laser field over many wavelengths by assumption, and thusτ � 1/Γ as required.
We also note that in an actual experiment, other external parameters like the frequency width
of the laser∆ω and the width of the energy distribution of the incoming electron ∆Ei may
additionally provide a cutoff for the resonances. For the radiative corrections to dominate as
damping mechanism here, it is required that∆Ei and∆ω are smaller thanΓ. In our numerical
examples in subsection 3.5.3, whereΓ ∼ ω, ω = 1.17 eV andEi = 5.11 MeV, this condition
may be difficult to realize for∆Ei.

Another alternative is to separate out the non-divergent contribution in a parameter-independent
way, as is done in [13, 153]. Here divergent integrals in the squared matrix element, coming
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from the photon propagator, are regularized according to

M2 ∝
∫

dx
f(x)

|x+ iε|2 =

∫
dxf(x)

[P
x
− iπδ(x)

] [P
x

+ iπδ(x)

]

=PP
∫

dx
f(x)

x2
+ π2f(0)δ(0),

(3.67)

whereP signifies the principal value. The factor containingδ(0) represents the diverging part
of the probability, corresponding to the particle (in [13] the photon) going onto the mass shell,
and thereby becoming real. The double principal value is evaluated according to [13]

PP
∫

dx
f(x)

x2
= PP lim

h→0

∫
dx

f(x)

(x+ h)x
= PP lim

h→0

∫
dx

1

h

[
f(x)

x
− f(x− h)

x

]

= P
∫

dx
d
dx
f(x)

x
= P

∫
dx

d
dx

[f(x) − f(0)]

x
= P

∫
dx
f(x) − f(0)

x2
,

(3.68)

which is now finite in the principal value sense. However, theintegrandT (x) = [f(x) −
f(0)]/x2 is no longer positive definite, and we can no longer speak about this quantity as a
differential cross section. To obtain positive definite values one has to perform the integral.
Note also that in this way only the squared matrix element is made finite, not the matrix element
itself. For the case of laser-assisted bremsstrahlung, we have the corresponding squared matrix
element [see Eq. (3.26)]

∣∣∣S(2)
fi

∣∣∣
2

∝
∑

s,s′

f(s, qi, kb, k)f
†(s′, qi, kb, k)

[s(k · qi − k · kb) − kb · qi + iε] [s′(k · qi − k · kb) − kb · qi − iε]

regularize−→
∑

s,s′

f(s, qi, kb, k)f
†(s′, qi, kb, k) − f(s, q̃i, k̃b, k̃)f

†(s′, q̃i, k̃b, k̃)

[s(k · qi − k · kb) − kb · qi] [s′(k · qi − k · kb) − kb · qi]
,

(3.69)

whereq̃i, k̃b andk̃ are such thats′(k̃ · q̃i − k̃ · k̃b)− k̃b · q̃i = 0 ands(k̃ · q̃i − k̃ · k̃b)− k̃b · q̃i = 0.
We wrote down only one of the four terms resulting from the squared matrix element|Sfi|2 =

|S(1)
fi + S

(2)
fi |2, and we have not written out the dependence on the summation indexn, since

the cross section should be finite separately for everyn. However, if we regularize the squared
matrix element in this way, retaining only the virtual contribution to laser-assisted bremsstrah-
lung, we must perform at least one additional integration (which is finite in the principal value
sense) to obtain a positive definite differential cross section. This integration could be over
the frequencyωb, averaging over the initial energyQi or momentumqi, or the laser frequency
ω. Integrating overQi, qi or ω requires the introduction of an additional distribution function,
describing the initial momentum or frequency distribution.

3.4.3 Divergence due to the infinite range of the Coulomb field

Related to the Green’s function divergence discussed previously in this section, is the fact that
the Coulomb field will introduce a divergence of its own. The Coulomb divergence is well
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known from quantum mechanical scattering theory [73], and is a divergence of the scattering
matrix element at zero momentum transfer from the Coulomb field, which occurs at forward
scattering. When the initial momentum of the projectilepi equals the final momentumpf ,
the factor1/q2 = 1/(pi − pf )

2 in the matrix element diverges. The physical origin of this
divergence is the slow decay of the Coulomb field at large distances. Due to this long-range
behavior, it is impossible for the initial particle to avoidscattering, and imposing such a demand
consequently results in an unphysical divergence. For the laser-free bremsstrahlung [25] there
is no such problem, since here we can havepi = pf only if the energyωb of the emitted photon
vanishes, and then the matrix element diverges anyway, due to the infrared divergence [141].
See formulas (3.49), (3.50). To see that the Coulomb factor1/q2 poses a problem in laser-
assisted bremsstrahlung we note that the condition

q2 = −q2 = −(qf − qi + nk + kb)
2 = 0, (3.70)

vanishing momentum transfer, is equivalent to the on-shellconditions (3.59), (3.60), withs
changed ton. Thus, whenever we have a frequencyωb such that either of the conditions in
Eq. (3.61) is satisfied, there exists a vectorqf and an integern such thatq2 = 0, with an
infinite cross section as a result. In particular the integral over the final electron solid angle
dΩf diverges wheneverωb satisfies Eq. (3.61). The usual solution to the Coulomb infinity is
to include screening, that is to cut the Coulomb potential ina smooth way at a certain distance
from the nuclear core. Physically, this choice can be motivated by other electrons being around,
shielding the nucleus, other particles being around, or in the extreme case the walls of the
laboratory provide a cutoff for the Coulomb field. As we have seen, we have implemented this
screening in our formulas by employing the Yukawa potentiale−|x|/`/|x| [Eq. (3.24)] instead
of the bare Coulomb potential. For large values of|x| > `, the exponential provides damping
so that no interaction occurs, and for small|x| < ` the exponential factor is close to unity, so
that the bare Coulomb potential is recovered.

3.5 Numerical results for different laser intensities and pho-
ton emission angles

In this section, we present our main results on laser-assisted bremsstrahlung. The results are
presented as a series of graphs for different values of the parameters involved, resulting from
numerical evaluation of the formula (3.46). We mention thatthe status of the problem of laser-
assisted bremsstrahlung and in fact of second-order laser-assisted QED processes involving
the Dirac-Volkov propagator in general before our contributions [104, 164] was that some an-
alytical results had been published [131, 157], but numerical results were lacking completely.
On the nonrelativistic side some numerical studies were performed [60, 68], which however
lacked the feature of the resonant behavior discussed in section 3.4. In [68], where the laser-
assisted bremsstrahlung problem was treated beyond the first Born approximation, resonances
were found as higher order terms inξ, but it was argued that they should be discarded in the
low-field, nonrelativistic approximation. By our concreteevaluation of the cross section for
laser-assisted bremsstrahlung, the complex analytical expressions resulting from the theory has
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Figure 3.9: The scattering geometry considered. The initial electron with effective four-
momentumqi = (Qi, qi) counterpropagates with the laser with wave four-vectork = (ω,k).
The direction of the effective momentumqf = (Qf , qf) of the final electron is described byθf ,
and the direction of the emitted bremsstrahlung photon withfour-momentumkb = (ωb,kb) is
described by the angleθb. All the vectors are in the same plane (thex-y plane, or the plane of
the paper). The nucleus with atomic numberZ = 1 is situated in the origin.

for the first time been expressed in real numbers, so that one knows what to expect from a future
experiment.

3.5.1 Parameters used for evaluation

Here we discuss the parameters used for the evaluation. For the laser, we always consider an
infrared laser of angular frequencyω = 1.1698 eV, which corresponds to the typical wavelength
λ = 1.06 µm of a neodymium-yttrium-aluminum-garnet (NdYAG) laser. Typical values ofξ we
consider are5 < ξ < 20, which correspond to intensities3.0 × 1019 W/cm2 < I < 4.9 × 1020

W/cm2, well in the range of what modern lasers can produce nowadays. The geometrical setup
of our scattering problem is shown in Fig. 3.9.

We always consider, if not otherwise stated, an initial electron withEi = 10m = 5.11 MeV,
counterpropagating with the laser beam, that isqi/|qi| = −k/ω. Recall thatEi is the energy
of the electron beam outside the laser, given the energyEi, the effective energyQi follows as
Qi = Ei + m2ξ2ω/(4pi · k). The angleθf describes the angle between the incoming electron
and the outgoing electron, andθb the angle between the emitted bremsstrahlung photon and
the initial electron. Bothθf andθb are only considered in thex-y plane. In the case of linear
polarization this plane corresponds to the plane spanned bythe laser propagation directionk/ω
and polarization directiona/|a|.
For the screening length̀, we have performed calculations for two rather large valuesof `,
` = 106r0 ≈ 2.7×108 MeV−1 for the graphs where only linear polarization is shown (Figs. 3.10,
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3.12 and 3.16), and̀= 2 × 109r0 ≈ 5 × 1011 MeV−1 for the graphs where linear and circular
polarization are compared (Figs. 3.11, 3.13 and 3.14). Herer0 ≈ 270 MeV−1 ≈ 5.3 × 10−11

m is the Bohr radius. As a physical motivation for the two choices, we have that the distance
` = 106r0 corresponds to the average distance between the particles in a gas at ultrahigh vacuum
(a pressure of3 × 10−8 Pa at room temperature), and` = 2 × 109r0 corresponds to the mean
free path in a medium vacuum. The choice of` is arbitrary, all that is needed is a finite value to
regularize the Coulomb infinities, as discussed in subsection 3.4.3. When performing an actual
experiment, the value of̀will depend on the experimental conditions.

All calculations are without exception made for atomic numberZ = 1, corresponding to pro-
tons. Since the interaction with the Coulomb field is taken into account in first Born approx-
imation, the cross section (3.46) of the process scales asZ2. We note that to learn something
about theZ-dependence of bremsstrahlung, one has to go to higher orderinteractions inZ, that
is to include several Coulomb vertices.

3.5.2 Comments on the numerical evaluation

In this subsection we discuss a number of issues connected with the numerical evaluation of the
cross section (3.46). To make this evaluation feasible, a number of approximations have to be
made. We also discuss some nonstandard methods to evaluate spin sums.

Sums over electron spin and photon polarization

As already mentioned in section 3.3.3, gauge invariance makes it in principle possible to use the
formula (3.44) to calculate sums over photon polarization states. However, since the identity
(3.44) involves cancellation of equally sized terms, it is numerically advantageous to choose an
explicit base for the polarization vectorsεb,λ=1,2 and do the sum over these two vectors. For
linear polarization, we make the choice

εb,1 = (0, sin θb,− cos θb, 0), εb,2 = (0, 0, 0, 1), (3.71)

if kb is given bykb = ωb(0, cos θb, sin θb, 0), as in Fig. 3.9. For the electron spin sums, they can,
according to the theorem [141]

∑

rf ,ri=1,2

∣∣ūrf
(pf)Muri

(pi)
∣∣2 = Tr

(
M
p̂i +m

2m
M
p̂f +m

2m

)
, (3.72)

valid for any matrixM , be converted into a trace over gamma matrices. The usual approach is
now to use the properties of the gamma matrices, in particular the identity [141]

Tr(b̂1b̂2 · · · b̂n) = b1 ·b2Tr(b̂3 · · · b̂n)−b1 ·b3Tr(b̂2b̂4 · · · b̂n)+ . . .+b1 ·bnTr(b̂2 · · · b̂n−1), (3.73)

valid for an even numbern four-vectorsb1..n, to perform the trace in an analytic way, either by
hand, or by using a computer program capable of symbolic manipulations (for example [82]).
However, to removen number of four-vectors from the trace, the identity (3.73) must be used
repeatedlyn/2 times, yielding(n−1)!! = (n−1)(n−3) · · · 3 ·1 terms, each containingn/2 dot
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products of four-vectors. Since in our matrix element (3.26) we have up to 7 matrices in between
the spinors, it means that the spin-summed cross section (3.46) contains traces of up to 16 hatted
four-vectors. Evaluating such a formula, resulting in15!! ≈ 2 × 106 terms (or actually slightly
less, since some terms vanish due toa · k = k2 = 0), is clearly not manageable. Printed out,
the formula obtained in this way would fill several printed pages. Different from usual field-
theoretic calculations, where cancellations between different terms resulting from a gamma
matrix trace occur almost without exception and thereby reduce the number of terms, such
cancellations do not seem to occur in laser-dressed problems as the one at hand. Our approach
is instead to use an explicit representation of the Dirac algebra, the Dirac representation (see
subsection 1.1.2 on page 17) and perform the trace numerically. Alternatively, one can use an
explicit representation of the spinors [76]

ur(p) =

√
E +m

2m

(
ζr

σ · p ζr/(E +m)

)
, ζr =

(
δr1
δr2

)
, (3.74)

σ =

([
0 1
1 0

]
,

[
0 −i
i 0

]
,

[
1 0
0 −1

])
, (3.75)

and do the spin sum explicitly overrf,i = 1, 2. We also mention, that although the spin sum
is not the bottleneck of the numerical calculation, evaluating a trace like (3.73) numerically is
much faster than to first do the trace analytically, and then evaluating the resulting expression.
Multiplying n number of4× 4 matrices takesNnum.

n = 64(n− 1) multiplications, while tracing
out and performing the dot products takesNanal.

n = 4(n/2 − 1)(n − 1)!! multiplications. The
number of multiplications (which is the numerically most time-consuming operation, compared
to additions) are thus greater in the analytical case even for n > 3,Nanal.

n>3 > Nnum.
n>3 .

Approximations for the sum over n and s

As is seen in 3.5.3, the bremsstrahlung spectra consist of resonance peaks, generated by Comp-
ton scattering, superimposed on a smooth background curve generated by bremsstrahlung from
Coulomb scattering. In the region where the peaks still are visible, due to the factors1/q4

and1/(p̃2
f,i − m2

∗) in the cross section, the indicess, n closest to the (not necessarily integer)
numbers

nmax = smax,i =
qi · kb

k · qi − k · kb
, smax,f =

−qf · kb

k · kb + k · qi
(3.76)

will contribute the most to the cross section. In practice, this makes it possible to approximate
the sums overn ands with say 20-30 terms each around the resonant indices (3.76).

Integration over dΩf

Most of the spectra we present in section 3.5.3 are integrated over the directions of the final
electron, that is, we show

dσ

dΩbdωb
=

∫
dσ

dΩbdωbdΩf
dΩf . (3.77)
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As expected, most of the contribution to the integrand in Eq.(3.77) comes from a small cone
whereq2 is small. For smallω, ωb < Qf,i, this cone will point roughly in the forward direction
qi/|qi|. However, at values ofqf such thatq2 is small, we also have that the interference
between the two diagrams for laser assisted bremsstrahlung(see the Feynman diagrams Fig. 3.7
on page 45) is the largest. This means that evaluation of the cross section (3.46) involves
subtraction of equally sized terms, which is prone to cancellation error. In other words, close
to the resonant frequencies with smallq2, the modulus of the total sum|Sfi| [see Eq. (3.26)] is
many orders of magnitude smaller than the absolute values ofthe individual diagrams|S(1)

fi | and

|S(2)
fi |. Consequently, the calculation has to be done in quadruple precision, something that slows

down the numerical integration considerably. By splittingup the task of evaluating a spectrum
over an interval0 ≤ ωb ≤ ωmax

b into several subintervalsωN
b ≤ ωb ≤ ωN+1

b , N = 1, . . . , Nmax,
and calculating these subintervals simultaneously on different processors in a computer cluster,
computing time could be reduced to a reasonable amount. Eachspectrum (integrated overdΩf )
shown in subsection 3.5.3 demands about 1 week of cluster time, using about 10-30 different
processors. We employ a Romberg integration routine [144],with in general a relative precision
of 10−3.

Furthermore, in the caseθb = 179◦, a further speed-up of the calculation comes from the
observation that if we writeqf as

qf = (Qf ,
√
Q2

f −m2
∗ [cos θf sinφf , sin θf sinφf , cosφf ]), (3.78)

where the plane of the vectors in Fig. 3.9 corresponds toφf = π/2, then since effectively only
a small cone aroundφf = π/2, θf = 0 contributes to the integral, we can in the integration
overdφf approximatesinφf ≈ 1, cos φf ≈ 0 in the argumentsαi,f − α̃i,f , βi,f − β̃i,f of the
generalized Bessel functions. This means that the generalized Bessel functions do not depend of
φf , and that we only need to calculate the required arraysA0(smin ≤ s ≤ smax, αi,f − α̃i,f , βi,f −
β̃i,f) once for every new value ofθf in the integration overdΩf = sinφfdφfdθf .

Numerical tests of validity

We have performed the following tests of validity for the computer program used for the evalu-
ation of the cross section (3.46).

Gauge invariance of the cross section (3.46) under the transformationsεb,λ → εb,λ + Λ1kb and
a → a + Λ2k, for arbitrary constantsΛ1,2, has been numerically tested. Sometimes quadruple
precision has to be used to do this test, due to cancellation errors. Gauge invariance actually
provides the most sensible test of correctness, since this symmetry is broken by any incorrect
plus or minus sign, or inexact value of the generalized Bessel functions. For the analytic proof
of gauge invariance, we refer to section B.2.

Correct non-relativistic limit. In region of parameters where the nonrelativistic formula (3.102)
applies (see the discussion in section 3.6), the two expressions (3.102) and (3.46) were found to
agree numerically, as expected from the analytical considerations in section 3.6.

Correct limit of vanishing laser field. In the limit|a| → 0, we should recover the Bethe-Heitler
cross section (3.50), as discussed in subsection 3.3.4. This has been tested numerically, both for
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Figure 3.10: The cross section forθb = 179◦, differential in solid angleΩb and energyωb of the
emitted bremsstrahlung photon, for linear polarization ofthe laser. The values on the peaks are
shown with crosses (ξ = 20.9) and circles (ξ = 5.9) for clarity. The values ofξ used correspond
to laser intensitiesI = 5.2 × 1020 W/cm2 for ξ = 20.9 (solid blue curve) andI = 4.3 × 1019

W/cm2 for ξ = 5.9 (dashed red curve). The screening length is here` = 106r0. A magnification
of the left graph for small values of the cross section is shown to the right. Here it is interesting
to note that forξ = 5.9 the background curve is below the Bethe-Heitler curve (solid black
line), but forξ = 20.9 it is above. The transition occurs at approximatelyξ = 12. We comment
that in the nonrelativistic case [90], the curve always goesbelow the laser-free curve.

the fully differential cross section and for the cross section integrated overdΩb.

3.5.3 Numerically evaluated spectra

In this subsection we present the results of the numericallyevaluated cross sections, both inte-
grated overdΩf and fully differential ones. In most graphs, the cross section for the laser-free
case, calculated with the formulas in [25, 72], is included for comparison. Departure of the
parameters used from the ones discussed in subsection 3.5.1will be stated explicitly.

Spectra integrated overdΩf

Figure 3.10 shows the spectrum, integrated over the directionΩf of the final electron, for pho-
ton emission angleθb = 179◦, which corresponds to almost the same direction as the laser
propagation direction. As expected, the spectrum is composed of a number of very high peaks,
with positionsωpeak 2

b given by the resonance condition (3.61), and a background ofmagnitude
comparable to the laser-free curve. For this value ofθb, the peaks appear very close to integer
multiples of the laser frequency. Here the magnitude of the peaks drops exponentially very fast,
and only up to 13 peaks can be seen. In Fig. 3.11, the spectra for linear and circular polarization
are compared, forθb = 179◦. More interesting is the case withθb = 1◦, which corresponds
to bremsstrahlung emission in a direction close to the direction of the initial electron, or in the
backward direction of laser propagation. This correspondsto so-called backscattering with re-
spect to the laser. The spectra are displayed in Fig. 3.12 fortwo different values ofξ and linear
polarization, and in Fig. 3.13 for a comparison between linear and circular polarization. Clearly,
in this geometry much a larger number of Compton peaks are generated, and the background
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Figure 3.11: The differential cross section forθb = 179◦, comparing circular (green dashed
curve) and linear polarization (solid blue curve) at the same value ofξ = 17.8. In the left graph,
the values ofdσ/(dΩbdωb) on the peaks are plotted with green circles (circular polarization)
and blue squares (linear polarization) for clarity. Note that for the same value ofξ, the intensity
for linear polarization is smaller than the the one corresponding to circular polarization by a
factor of two. The right graph shows a magnification of the left one for small values of the cross
section. In this graph,̀ = 2 × 109r0 is used. We see that the behavior for linear and circular
polarization for this photon emission angle is very similar.
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Figure 3.12: The differential cross section forθb = 1◦, integrated overdΩf . Except forθb, the
parameters used are the same as in Fig. 3.10, withξ = 20.9 for the solid blue curve,ξ = 5.9
for the dashed red curve andξ = 0 for the solid black curve. As the zoom-in graph to the
right shows, a peculiar feature is that the background is here lower than the Bethe-Heitler cross
section for small order harmonics, but overtakes it for large values ofωb.
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Figure 3.13: The differential cross section forθb = 1◦, comparing linear (solid blue curve, peak
values shown with squares) and circular (dashed red curve, peak values shown with circles)
polarization for the same value ofξ = 17.8, and` = 2 × 109r0. Here there is a clear difference
between the circular and linear case. The circular curve is here similar to the one forθb =
179◦ (see Fig. 3.11), with rapidly decaying peaks, while the linear curve features peaks up
to large values ofωb, compare Fig. 3.12. The background for the linear case is dominated
by contributions from around the Compton/Coulomb peaks, which provides the reason for the
background being so large.

is much larger that the laser-free case, at least for large frequency valuesωb � ω for linear
polarization. Also observe that the position of the peaks are now no longer harmonics of the
laser frequency, but depend on the value ofξ according to Eq. (3.61). In the case ofθb = 1◦ this
results inωpeak2, lin.

b ≈ 2ωpeak2, circ.
b , as is seen in Fig. 3.13.

Peculiar behavior of the fully differential cross section

Assuming a fixed energy,Ei = 10m, (as for the all of the graphs Fig. 3.10, Fig. 3.11, Fig. 3.12,
Fig. 3.13, Fig. 3.16), and fixed directionpi/|pi| for the initial electron outside the laser, the
initial effective energyQi and effective three-momentumqi depend on the intensity parameter
ξ. In fact, assuming the directionpi/|pi| = −k/ω of the electron outside the laser field, the
electron counter propagates with the laser field, that isqi · k = −ω|qi| , for small values ofξ.
However, at some valueξ0 of ξ, the electron is at average at rest in the laser field,Qi = m∗,
and for larger values ofξ > ξ0 the electron moves in the same direction as the laser wave,
qi ·k = ω|qi|. The numerical value ofξ0 can be solved for, by demanding that thex-component
of the effective momentum vanishes:

qx
i = 0 =

√
Ei −m2 +

ξ2
0m

2

4(Ei +
√
Ei −m2 )

, (3.79)

which givesξ0 = 28.2 for linear polarization andEi = 10m = 5.11 MeV. For circular po-
larization one gets instead, due to a factor of1/2 instead of1/4 in the effective momentum,
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Figure 3.14: The fully differential cross section, differential in the solid angleΩf of the final
electron, frequencyωb and solid angleΩb of the emitted photon, for two different values ofθf .
In this graph,θb = 179◦, andωb is taken to be exactly half way between the first peak and the

second peak. That is, we have from Eq. (3.61) thatωb =
(
ωpeak 2

b (s = 1) + ωpeak 2
b (s = 2)

)
/2.

Note that sinceθb is close to180◦, ωb defined in this way is only weakly dependent onξ. The
graph illustrates the dramatic decrease in the differential cross section as a function ofξ, for
circular and linear polarization. The thin black line indicates the value ofξ0, whenQi = m∗.

ξ0 = 19.9. The result is that, as a function ofξ, the differential cross section with observation
directionθf = 0 or θf = 180◦ (see Fig. 3.9) shows a steep step-like decay at the valueξ0.
Fig. 3.14 illustrates this behavior for both linear and circular polarization. The physical reason
is that the cross section for forward scattering, whenqi/|qi| ≈ qf/|qf |, is very large compared
to that of backward scattering,qi/|qi| ≈ −qf/|qf |, due to the Coulomb factor1/q4 in the cross
section (3.46). The valueξ0 from Eq. (3.79) signifies the transition from forward scattering to
backward scattering for an initial electron with three-momentum antiparallel to the laser, out-
side the laser,pi · k = −ω|pi|, and the final electron observed in the forward directionθf = 0.
If the final electron is instead observed in the directionθf = 180◦, values ofξ < ξ0 correspond
to backward scattering with small cross section, andξ > ξ0 corresponds to forward scattering
with large cross section.

3.5.4 Comparison with the free propagator

One motivation for the present project, evaluation of the cross section for laser-assisted brems-
strahlung, was to investigate if the matrix element of this process could be well approximated by
the matrix element obtained by removing the dressing of the laser in the propagator. The Feyn-
man diagrams corresponding to this situation are shown in Fig. 3.15. In other words, would
it be a good approximation to use, instead of the full Dirac-Volkov propagatorG(x, x′) [see
Eq. (2.62)], the free electron propagatorGfree(x, x

′) [see Eq. (2.63)]? A handwaving argument
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qiqi p̃f

kbkb

qf
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qq

p̃i

Figure 3.15: The Feynman diagrams for laser-assisted bremsstrahlung, using the free propagator
approximation. Here external electron lines are Volkov states, and therefore denoted with a
wiggling line superimposed on a straight line, while the intermediate line is the free propagator
in absence of the laser. As before, the initial electron has effective four-momentumqi, the
final qf and the intermediate electron propagator momentum is denoted by p̃i,f The emitted
bremsstrahlung photon has four-momentumkb, and the virtual Coulomb field photon, depicted
with a dashed line, has three-momentumq. Time flows from left to right.

shows that it is at least reasonable to assume so for large frequenciesωb: If the frequencyωb

of the emitted photon is large, it means that the time betweenthe Coulomb interaction and the
emission of the photonωb is short, then the comparatively slow oscillations of the laser can be
neglected, since there is simply not enough time to interactwith the laser. We will see that this
is indeed the case, but that the condition for when the approximation is good is notωb � ω, but
ratherωb � Ei. The matrix element in this approximation (for linear polarization, the circular
case is similar) is exactly as the laser-dressed matrix elementSf,i from Eq. (3.26) on page 47,

but with the factor between the large brackets
[
· · ·
]

replaced by

Ms
freêεb,λ

ˆ̃pf +m

p̃2
f −m2

γ0F s−n
free + Ms+n

free γ
0

ˆ̃pi +m

p̃2
i −m2

ε̂b,λF s
free, (3.80)

with

MN
free =

[
A0(N,αf , βf) +

eâk̂

2k · qf
A1(N,αf , βf)

]
, (3.81)

FN
free =

[
A0(N,αi, βi) +

ek̂â

2k · qi
A1(N,αi, βi)

]
, (3.82)

and the same definitions as in Eqs. (3.33), (3.31) of the vector p̃i,f and the Bessel function
argumentsαi,f , βi,f . However, from the denominators1/(p̃2

i,f −m2) in Eq. (3.80), we see that
using this approximation will give Green’s function resonances at different positions than in
the laser-dressed matrix element (3.26). Thus, a better approximation is to takem∗ instead of
m in the propagator denominator. We note that a similar approximation has been tried before
[33]. The result of a calculation comparing the approximation of employing the free electron
propagator, but with the effective massm∗ instead ofm in the propagator denominator, with the
fully laser-dressed cross section is displayed in Fig. 3.16. From the lower graph of Fig. 3.16 it is
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Figure 3.16: The differential cross section forθb = 90◦. In the upper graph the cross section
using the full, laser-dressed propagator for the description of the virtual states in Fig. 3.15
is shown forξ = 20.9 (solid blue curve) andξ = 5.9 (dashed red curve, with peak values
shown with circles), and the solid black curve represents the laser-free case. In the lower graph
we compare calculations performed using the full, laser-dressed propagator (dashed red curve,
circled peak values) with the cross section obtained using the free electron propagator with
effective massm∗ (solid green curve, peak values shown with green crosses), both for ξ = 5.9.
The screening length is̀= 106r0 in both graphs.
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3.5. Numerical results for different laser intensities andphoton emission angles

qi

qf

kb

kb...

...
qi + (n− 2)k

qi + (n− 1)k

qi + nk

qi + (n+ 1)k

qf

(a) (b)

Figure 3.17: Illustration of the intuitive explanation of the failure of the free propagator ap-
proximation. The left diagram(a) shows the Feynman diagram for photon emission (Compton
scattering) of a photonkb from a Volkov state with effective momentumqi into a free electron
state with momentumqf . The right diagram(b) shows the corresponding level picture.

clear that the free electron propagator-approximation is not a good one, even for largeωb � ω.
In this regime of parameters, where Compton peaks are clearly visible, the shortcoming of the
free electron propagator can be explained intuitively. In fact, since here the contribution to the
integral overdΩf comes from a small region whereq2 is small, it means that the interaction
with the Coulomb field is very small. To get the intuitive picture it is therefore sufficient to just
consider photon emission by Compton scattering, discussedin section 3.2, Feynman diagram
in Fig. 3.1. To remove the laser-dressing of the propagator is now roughly the same thing as
requiring that the final state of the Compton scattering process is not dressed at all by the laser,
but simply a free electron with momentumqf . An illustration is given in Fig. 3.17, the Feynman
diagram in graph(a). Another way of viewing the free electron approximation is provided by
the level picture, shown in graph(b), Fig. 3.17. Here the final level is constrained to only one.
The amplitude of this process is therefore approximately, by the same arguments as the ones
leading to Eq. (3.15),

Mfree =
∑

∆n

A0(∆n, αi, βi)A0(0, αf , βf)δ(qi − qf − kb + ∆nk), (3.83)

where we note that there is only one sum, as opposed to Eq. (3.15). The amplitudeMfree for one
transition with level difference∆n in this case is proportional toA0(∆n, αi, βi)A0(0, αf , βf),
and not toA0(∆n, αi − αf , βi − βf ) as in the fully laser-dressed case. The reason is that the
restriction of the final level removes the destructive interference between the different pathways
with the same level difference∆n. It is this destructive interference that gives rise to the expo-
nential decay of the peak amplitude seen in the upper graph ofFig. 3.16 (and also in Figs. 3.10,
3.12). Mathematically speaking, we see, by using the delta function in Eq. (3.83), that since
hereωb � Qi,f the argumentsαf , βf are almost independent ofωb, so that the peak amplitude
is almost constant as a function ofωb (see lower graph of Fig. 3.16), but that the difference
αf − αi ≈ −ea · kb/(k · qi) depend linearly onωb. For the second argument of the generalized
Bessel function we haveβf − βi ≈ 0.

On the other hand, if we consider the case whenωb � Ei,f , and also choose the gauge so that
a · kb = 0 (this can be done by gauge transforminga → a− a·kb

k·kb
k), then it follows that for the
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arguments of the generalized Bessel functions in Eq. (3.26)

αf − α̃f =
ea · pf

k · pf
− ea · pf + ea · kb

k · pf + k · kb

=
ea · pfk · pf + ea · pfk · kb − ek · pfa · pf − ea · kbk · pf

k · pf (k · kb + k · pf)
≈ ea · pf

k · pf
= αf ,

(3.84)

and also

βf − β̃f =
e2ã2

8

(
1

k · pf

− 1

k · pf + k · kb

)
≈ e2ã2

8k · pf

= βf . (3.85)

Similarly αi − α̃f,i ≈ αi andβi − β̃f,i ≈ βi. In addition,ωb � Ei,f means that we can
ignore terms proportional to 1

k·p̃i,f
compared to terms proportional to1

k·pi,f
. Using all these

approximations in the matrix element (3.26), we have that

Sfi ≈ S free prop,m→m∗

fi , ωb � Ei,f . (3.86)

However, to haveωb � Ei,f we have from the energy conservation relation that

ω = Qi −Qf − nω ≈ −nω � Ei,f , (3.87)

if we in addition considerQi,f ∼ Ei,f , which holds for the laser intensities and electron energies
we have considered in section 3.5.3. But for the arguments ofthe generalized Bessel functions
we now have

|αi,f | + 2|βi,f | ∼
Ei,f

ω
� |n|, (3.88)

from Eq. (3.87). It follows from the cutoff rules (2.49) (seepage 27) that the generalized Bessel
functionsA0(n, αi,f , βi,f) are vanishingly small. We thus conclude that when the condition
Ei,f ∼ Qi,f is satisfied, the free electron propagator will only be a goodapproximation in the
region where the cross section is very small, and therefore uninteresting.

3.6 Comparison with the nonrelativistic laser-assisted brems-
strahlung cross section

In the nonrelativistic limit and for small fields, the cross section should go to the one found by
Karapetyan and Fedorov in [90]. We show in this section that this really is the case, following
the lines in [157].

3.6.1 Derivation of the first Born matrix element for laser-assisted
bremsstrahlung in the dipole approximation

In this subsection, we derive the result found in [90], for linear polarization of the laser. To
make the dipole approximation for the laser field (and also the radiation field) means that the
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3.6. Comparison with the nonrelativistic laser-assisted bremsstrahlung cross section

dependence on space in the vector potential is dropped,

A(x) = a cosφ ≈ a cosωt. (3.89)

To calculate the matrix element, we need the nonrelativistic Volkov state,

ψnonrel
p (x, t) = exp (−iEt+ ip · x − αp sinωt) , (3.90)

with the nonrelativistic energyE = p2/(2m) and where

αp =
ea · p
ωm

. (3.91)

Note in particular that we have dropped theA2-term in the argument of the exponential in
Eq. (3.90) already at this stage, since we assumeξ � 1 here [see Eq. (3.105)]. The Volkov
solution solves as it should the Schrödinger equation withan external plane wave laser with
linear polarization,

(
i
∂

∂t
+

1

2m
∇

2 − i
ea · ∇ cos(ωt)

m

)
ψnonrel

p (x, t) = 0. (3.92)

The nonrelativistic Volkov-Schrödinger propagator reads [24]

Gnonrel(x, x′) =
i

(2π)4

∫
d3pGdEG

× exp [−iEG(t− t′) + ipG · (x − x′) − αG(sin(ωt) − sin(ωt′)]

EG − p2
G

2m
+ iε

,

(3.93)

whereαG = ea · pG/(ωm). The potentials of the Coulomb fieldV (x) and the emitted photon
Ab(x) are

V (x) = − 1

(2π)3

∫
d3q

Ze

q2
e−iq·x, Ab(x) =

1√
2ωb

εb,λe
iωbt, (3.94)

where the important thing to note is that in the vector potential Ab(x) for the bremsstrahlung
photon, the dipole approximation is made. This will be crucial in the understanding of why
Green’s function resonances do not appear in the nonrelativistic matrix element. The matrix
element is now given by the standard formula, the nonrelativistic equivalent to the two Feynman
diagrams in Fig. 3.7 on page 45 (see also [99]):

Snonrel
fi =S

nonrel(1)
fi + S

nonrel(2)
fi

=ie2
∫

d3x d3x′dt dt′ψnonrel∗
pf

(x)
[
V (x)Gnonrel(x, x′)W (x′)

+W (x)Gnonrel(x, x′)V (x′)
]
ψnonrel

pi
(x′),

(3.95)

with the nonrelativistic interaction energy

W (x) = −i∇ · Ab(x)

m
− ea · Ab(x) cos(ωt)

m
. (3.96)
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Before we write down the result forSnonrel
fi , a couple of comments are appropriate. We know [90]

that no propagator resonances occur in the nonrelativisticexpression for the matrix element, as
presented below in Eq. (3.101). What is the reason for this? Below we restrict the discussion to
the first matrix elementSnonrel(1)

fi , with completely analogous arguments forS
nonrel(2)
fi . First, due

to the dipole approximation inAb(x) = εb,λ exp(iωbt)/
√

2ωb , momentum conservation yields

pG = pi, q = pf − pi. (3.97)

Second, energy conservation gives

Ef −Ei − nω + ωb = 0, EG = Ef − nω, (3.98)

wheren is the index used in the Bessel function expansion, it represents the number of photons
absorbed during the process. Observe that due to property (3.97), we haveαG = αpi

, so at the
time t1 in Eq. (3.95), thesin-term in the exponential cancel:

exp [iαG sin(ωt1) − iαpi
sin(ωt1)] = 1, (3.99)

so that no Bessel function expansion is needed at timet1. We conclude that the intermediate
sum overs [see the relativistic expression (3.26), page 47] is absentin the nonrelativistic case.
Moreover, by combining (3.97) and (3.98) we obtain for the propagator denominator

EG − p2
G

2m
= Ef − nω −Ei = −ωb, (3.100)

which is clearly different from zero, except atωb = 0. This demonstrates that there will be
no propagator denominator resonances in the nonrelativistic case. The matrix element resulting
from Eq. (3.95) is

Snonrel
fi =

Ze3π
√

2

mω
3/2
b

∑

n

εb,λ · (pf − pi)

(pf − pi)2
Jn(α)δ

(
p2

f − p2
i

2m
+ ωb − nω

)
, (3.101)

where we have dropped the terms proportional toa·εb,λ, since after summation over polarization
λ they give contributions proportional toa2, which should be dropped for consistency. In
Eq. (3.101),Jn(α) is the usual Bessel function, andα = e

mω
a · (pf − pi). Multiplying with

the appropriate phase factors [like in Eq. (3.42)] and dividing with the incoming electron flux
(velocity) |pi|/m (throughout this section we have let the quantization volume V = 1 for
simplicity) gives the differential cross section (see alsothe discussion in [60], to which formula
(3.102) is in agreement):

dσKF

dΩbd|pf |dΩfdωb
=
Z2α3

ωbπ2

∑

λ

∑

n

|pf |2
m|pi|

[εb,λ · (pf − pi)]
2

(pf − pi)4
J2

n(α)δ

(
p2

f − p2
i

2m
+ ωb − nω

)

=
Z2α3

ωbπ2

∑

n

|pf |2
m|pi|

(pf − pi)
2 −

[
kdir

b · (pf − pi)
]2

(pf − pi)4
J2

n(α)

× δ

(
p2

f − p2
i

2m
+ ωb − nω

)
,

(3.102)
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where we have summed over polarizations of the bremsstrahlung photon to obtain the last line.
Herekdir

b = kb/|kb|. Energy conservation gives

p2
f = p2

i + 2m(nω − ωb) (3.103)

and the sum overn is limited by the conditionp2
f ≥ 0. Thus, we have shown that since

Karapetyan and Fedorov [90] use the dipole approximation for the laser, the singularities where
the virtual electron goes on shell disappear. Thus, it will only be possible to compare the cross
section (3.46) with the nonrelativistic formula (3.102) inregions where there are no resonances,
that is, at frequenciesωb far from wherep̃2

i,f −m2
∗ = 0 [see Eq. (3.61)].

3.6.2 Demonstration of the correct nonrelativistic limit of the relativistic
cross section

For nonrelativistic formulas to apply, we must have the ingoing and outgoing translational ve-
locities much smaller that one:

|vi,f | =

√
E2

i,f −m2

Ei,f
� 1. (3.104)

Also the peak velocityξ of the electron’s motion in the laser field must be small,

1 � ξ =
|ea|
m

. (3.105)

In addition, it is assumed that the kinetic energy of the translational motion of the electron (the
kinetic energy outside the field) is much larger than the angular frequency of the laser,

m|vi,f |2
2

� ω, (3.106)

from whichω � m obviously follows. Now look at the energy conservation relation, from the
delta function in Eq. (3.46)

q0 = Ef +
e2|a|2

4pf · kdir
−Ei −

e2|a|2ω
4pi · kdir

+ nω + ωb = 0, (3.107)

wherekdir = k/ω is a four-vector independent onω. For nonrelativisticEi, Ef this relation is
approximated by

q0
nonrel =

p2
f − p2

i

m
+

e2|a|2
4pf · kdir

− e2|a|2
4pi · kdir

+ nω + ωb = 0. (3.108)

We will now argue that for nonrelativisticEi,f ≈ m, the bremsstrahlung frequency must be
smaller than the momentum of the electron|pi,f |, that isωb � |pi,f |, just as the nonrelativistic
case without the laser field [24]. For nonrelativistic energiesEi ≈ Ef ≈ m, by the energy
conservation relation we must have|n| ≈ ωb/ω. To have nonvanishing generalized Bessel
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functions, the (absolute value of the) argumentsα andβ of the generalized Bessel functions
must satisfy|α| + 2|β| ' |n|. In the factorF s

i [see Eq. (3.28)] we have the argumentsα =
αi − α̃f andβ = βi − β̃f . Moreover,β is proportional to|a|2, and therefore small. Now

αi − α̃f =
ea · pi

k · pi
− ea · pf + ea · kb

k · pf + k · kb
. (3.109)

However, ifωb ∼ |pi,f | we have|αi − α̃f | ≈ |ea||pi,f |/(mω) which is much smaller than
|n| = |pi,f |/ω, since we have|ea|/m � 1, and the generalized Bessel functions vanish. Thus,
we must haveωb � |pi,f | to have non-vanishing non-relativistic matrix elements. It follows
that the argumentsαf − α̃f , αi − α̃i are small, and that the sum overs can be approximated by
only one terms = 0, if we also ignore terms proportional to|ea|, since from Eq. (3.105) we
have|ea| � m. Observe that even if we use the expansion (5.28), this givesterms in powers of
|a|/ω for which we have|a|

ω
� |a|

Ei,f
. We thus get for the matrix element

Sapprox
fi = 2πi

∑

n

Ze3m√
2ωbEiEf

δ(q0
nonrel)

(pf − pi)2
ūrf

(pf)

×
[
A0(n, α̃f − αi, β̃f − βi)ε̂b,λ

p̂f + k̂b +m

(pf + kb)2 −m2
γ0

+ A0(n, αf − α̃i, βf − β̃i)γ
0 p̂i − k̂b +m

(pi − kb)2 −m2
ε̂b,λ

]
uri

(pi)

=
∑

n

MBHδ(q0
nonrel)Jn

(
ea · (pf − pi)

ωm

)
,

(3.110)

where we in the last step, according to the above discussion,approximatedq = qf − qi +
nk + kb ≈ pf − pi, k · pf ≈ k · pi ≈ ωm, β̃f − βi ≈ βf − β̃i ≈ 0, α̃i,f ≈ αi,f , and used
A0(n, α, 0) = Jn(α). The factorMBH is the Bethe-Heitler matrix element [24] without the
delta function,

MBH = 2πi
Ze3me√
2ωbEiEf

1

(pf − pi)2
ūrf

(pf)

×
[
ε̂b,λ

p̂f + k̂b +m

(pf + kb)2 −m2
γ0 + γ0 p̂i − k̂b +m

(pi − kb)2 −m2
ε̂b,λ

]
uri

(pi).

(3.111)

When treating the energy conservation relation, we have to be a little careful. Rewriting the
nonrelativistic energy conservation relation (3.108) as

q0
nonrel =

p2
f − p2

i

2m
+
e2|a|2(kdir · pf − kdir · pi)

4m2
+ nω + ωb = 0, (3.112)

we see that to recover the Karapetyan-Fedorov result for theenergy conservation relation

q0
nonrel =

p2
f − p2

i

2m
+ nω + ωb = 0, (3.113)
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Figure 3.18: Illustration of the validity of the relativistic formula for the cross section of
laser-assisted bremsstrahlung. The light blue squares show the differential cross section
dσ/(dΩbdωbdΩf ) evaluated with the fully relativistic formula (3.46), and the solid red line
was calculated by the nonrelativistic expression (3.102),which makes the dipole approxima-
tion for the laser field. For comparison, we also display the field-free case [the Bethe-Heitler
cross section (3.50)], the black dashed line. The angleθf refers to the angle relative to the
direction of the initial electron (see Fig. 3.9), so thatpf = |pf |(cos θf , sin θf , 0). The other
parameters used in the calculation areξ = 6 × 10−3, ω = 1.17 eV (corresponding to a laser
intensityI = 4.4 × 1013 W/cm2), Ei = m + 10 eV, ωb = 5.5ω, θb = 179◦. Note that at
this low value ofξ, the asymptotic momentumpf in practice equals the effective momentum
qf = pf +m2ξ2k/(k · pf), sinceξ2 is very small.

we have to demand
e2|a|2
m

� |pi,f | = |vi,f |m, (3.114)

or
ξ2 � |vi,f |. (3.115)

Constructing the cross section from the matrix element (3.110), summing over photon polariza-
tions and taking the nonrelativistic limit [24] of the Bethe-Heitler cross section, we end up with
precisely the Karapetyan-Fedorov formula (3.102).

That the cross sections (3.46) and (3.102) actually coincide for parameters satisfying Eqs.
(3.104) and (3.105) have been checked numerically for the employed computer program used
for the numerical evaluation of the relativistic cross section in section 3.5. One example for the
fully differential cross section is shown in Fig. 3.18.
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Chapter 4

Laser-assisted pair creation

4.1 Introduction

The creation of an electron-positron pair by an external electromagnetic field is a striking man-
ifestation of the equivalence of matter and energy, and intrinsically very interesting. Intuitively,
the possibility to create matter from electromagnetic energy is clear from Einsteins relation

E = m, (4.1)

for an electron at rest, its energyE is equal to its rest massm. The usual way to think of pair
production is by two energetic gamma photons, where the sum of the two frequencies must
overcome the threshold of twice the electron mass,ω1 + ω2 ≥ 2m. That pair production by
only one photon, no matter how high frequency, is impossible, can be seen from the energy-
momentum conservation relation. Letp− be the four-momentum of the created electron,p+ that
of the created positron, andkγ the wave four-vector of the gamma photon. We must then have

p− + p+ = kγ, (4.2)

which is however impossible to satisfy; in the center-of-mass frame we havep− + p+ = 0,
which is not compatible with the requirementk2

γ = 0. The second standard way of producing
pairs in the laboratory is by one gamma photon and the Coulombfield of a heavy nucleus.
Theoretically, this process was treated by Bethe and Heitler in their bremsstrahlung paper [25].
Here the threshold isωγ ≥ 2m for the gamma photon, since no energy is absorbed from the
Coulomb field.

That not only energetic photon fields, but also strong, macroscopic electric fields can produce
pairs was first predicted by Sauter [162] and later considered by Schwinger [165]. The basic
prediction is that pairs are spontaneously created, but therate is exponentially damped unless
the electric field strength is of the order of the so-called critical field Ec = m2/|e|, that is, the
parameterχ = Epeak/Ec, whereEpeak is the peak electric field, must be at least of the order
of unity. For the generalization to oscillating electric fields, the nature of the pair production
process is governed by the parameterξ. For ξ � 1, the process is a multiphoton process (for
purely electric fields, the photons are virtual) with the probabilities scaling asξ2n, wheren is
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the minimum number of photons required to create one pair at rest. This is the normal case of
pair production by gamma photon absorption. In the oppositecase ofξ � 1, pair production
takes place as tunneling, where the positron from the Dirac sea tunnels through the2m-barrier
to produce one free electron and one Dirac-sea hole, or positron. We note that this is in direct
analogy with field-ionization of an atom, which is governed by the Keldysh parameter [91]

γK =
1

ξ

√
2Ip
m

, (4.3)

whereIp is the ionization potential, and in which case we have the multiphoton regime for
γK � 1 and the tunneling regime forγK � 1. We see thatγK corresponds toξ−1 in the case
of pair creation, whereIp = 2m.

The transition from the nonperturbative, tunneling regimefor pair production to high-frequency
perturbative pair production was studied by Brezin and Itzykson [37] and also by Popov [142,
143]. The strongest electromagnetic fields available in thelaboratory are not purely electric, but
laser fields with a magnetic component. However, a plane laser wave cannot alone produce any
pairs from the vacuum due to the impossibility of satisfyingenergy-momentum conservation,
just like a single photon. Like in the case with a static magnetic field [9,12], a probing particle
is needed in order to break the symmetry and obtain nonvanishing pair production rates. If the
laser wave is not a plane wave but a focused pulse [40], or a standing laser wave [5,29,54,171],
pair production is possible without a second agent.

This brings us to the subject of laser-induced pair production. Pair production in a laser field
with an additional source of momentum was first investigatedtheoretically in the context of pair
production by simultaneous absorption of one non-laser mode photon and a number of laser-
mode photons [129,147]; quite recently, this process was also observed experimentally [16,41].
Another possibility which is currently discussed in the literature is laser-induced pair creation in
the vicinity of a nucleus. Unfortunately, for a nucleus at rest, the pair production rates are very
low for presently available low-frequency high-power lasers [96, 112, 114, 176]. Recently, this
process has been reexamined, with the idea of introducing a moving nucleus [89,121–124,167].
By letting the nucleus collide head on with the laser beam at high Lorentz factorγ, in the rest
frame of the nucleus the frequency of the laser beam is blue-shifted or enhanced with a factor
of approximately2γ. In this way, the peak electric field seen by the nucleus in itsrest frame
approaches the critical fieldEc, and the rates are calculated to reach observable values. See also
the recent experiment [70], where the laser is used to accelerate the electrons, before they are
converted into positrons using lead. Very interesting is the theoretical proposal to use a powerful
laser to symmetrically accelerate the electron and positron in a positronium atom, so that they
collide at high velocity and small impact parameter, to produce a muon-antimuon pair [120].
Here however the muon-antimuon pair is not created by the field itself, but by the collision of
the electron with the positron.

In this section, we investigate the possibility to create pairs from vacuum in the presence of three
external fields: a laser field, a Coulomb field and a single photon, whose frequencyωγ is of the
order2m. The Feynman diagrams are shown in Fig. 4.1. The matrix element for this process
was first calculated by Roshchupkin [155], and also by Borisov et. al. in [31, 32, 34], however
without performing any concrete numerical evaluations. The matrix element has a crossing
symmetry (see the discussion in section A.3) with the one forlaser-assisted bremsstrahlung,
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which permits to write down the matrix element immediately.The dynamics of the process will
however be rather different.

In our case, pair production is possible in the absence of thelaser field through the Bethe-Heitler
process [25, 62, 118, 178], if we assume the angular frequency ωγ of the single non-laser mode
photon to be larger than the threshold2m. The presence of the laser then modifies the process,
so that we can speak about laser-assisted pair production. By contrast, ifωγ < 2m, the laser
field would not really assist; it would be even necessary to produce any pairs at all, and we
would call the process laser-induced rather than just laser-assisted. In particular the transition
between these two regimes is interesting, by tuning the gamma photon frequency fromωγ < 2m
to ωγ > 2m, we can study the transition from a laser-induced to a laser-assisted process.

We note the general observation [22] that for the laser field to participate in producing an ap-
preciable number of pairs, the laser electric field in the rest frame of the nucleus has to exceed
the critical field. Alternatively we can obtain a large valueof χ with respect to the photon
four-momentumkν

γ = (ωγ ,kγ),

χγ =
−e
√∣∣(Fµνkν

γ)
2
∣∣

m3
= 2

ω

m

ωγ

m
ξ, (4.4)

if the gamma photon and laser photons are counter propagating, k · kγ = 2ωωγ. In this section
we however consider only moderate gamma photon energies of order∼ m, so thatχγ ∼ ωξ/m.
We thus expect that for a subcritical field, thetotal cross section of laser-assisted pair produc-
tion is essentially unaffected by the laser field. However, the differential cross section, that
is, the dependence of the cross section on the directions andenergy of the produced particles,
can change drastically, since a strong laser is able to accelerate the produced particles after
the creation. For the same reasons, we expect the rate to be very small for a subcritical field
andωγ < 2m, where the Bethe-Heitler cross section vanishes identically. All of the asser-
tions above will be demonstrated in section 4.3 by explicit numerical evaluation. As the total
number of pairs produced even by low energy energy photonsωγ ∼ 2m, is large enough to be
experimentally measurable [51, 62], the addition of a strong laser makes it possible to experi-
mentally measure nonlinear laser effects on a pair production process, for nuclei at rest. Other
proposals [95,121] require a beam of charged ions, moving with relativistic velocities.

In the following, after deriving the laser-modified cross section for pair creation, we present
results for two different scenarios: In the first (section 4.3), we let the gamma photon counter
propagate with the laser beam. This represents the theoretically most interesting setup, and also
the most numerically demanding. A considerable simplification occurs if the gamma photon
with four-momentumkγ and the laser with wave four-vectork propagate in the same direction,
a condition that impliesk · kγ = 0. Numerical results and discussion on this configuration are
found in section 4.4.
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kγ

kγ

q

q

p̃−

q−q−

q+ q+

p̃+

Figure 4.1: The Feynman diagrams for laser-assisted pair creation. External electron and
positron lines and propagators are denoted with a wiggling line superimposed on a straight
line, to stress that the laser-lepton interaction is treated nonperturbatively. The electron is cre-
ated with effective four-momentumq−, the positron is created with effective four-momentum
q+ and the intermediate electron propagator momentum is denoted byp̃±. The absorbed non-
laser mode photon has four-momentumkγ, and the virtual Coulomb field photon, depicted with
a dashed line, has three-momentumq. Time flows from left to right.

4.2 Matrix element and cross section for laser-assisted pair
creation in a linearly polarized laser field

In this section we derive the matrix element and the expression for the cross section of the
considered process, pair production in the combined field ofa gamma photon, Coulomb field
and a laser. Here, we will treat linear polarization of the laser only, but circular polarization can
be handled in the same way as for bremsstrahlung, see subsection 3.3.5.

4.2.1 Matrix element

By the crossing symmetry of QED processes, also applicable to laser-assisted processes as
discussed in section A.3, the matrix element for pair production is precisely given by the corre-
sponding bremsstrahlung matrix element (3.26), with the replacementskb → −kγ, pi → −p+,
pf → p− anduri

(pi) → vr+
(p+). Of course, it is also possible to derive the matrix element

using the usual Feynman rules from appendix A, which constitutes an independent check of
validity. In any case, the matrix elementSpair

± for the process of pair creation in the combined
field of a gamma photon, Coulomb field and a linearly polarizedlaser is the sum of the two
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laser field

diagrams in Fig. 4.1:

Spair
± = 2πi

∑

s,n

Ze3m√
2ωγQ+Q−V 3

δ(Q+ +Q− + nω − ωγ)

q2

× ūr−(p−)

(
Ms

−

ˆ̃p− + k̂e2a2/(4k · p̃−) +m

p̃2
− −m2

∗ + iK−
F s−n

+

+ F s+n
−

ˆ̃p+ + k̂e2a2/(4k · p̃+) +m

p̃2
+ −m2

∗ + iK+
Ms

+

)
vr+

(p+),

(4.5)

where

Ms
± = A0(s, α± − α̃±,∓β± − β̃±)ε̂γ,λ

+ A1(s, α± − α̃±,∓β± − β̃±)

(
ε̂γ,λ

ek̂â

2k ·
(
−p+

p̃−

) +
eâk̂

2k ·
(

p̃+

p−

) ε̂γ,λ

)

+ A2(s, α± − α̃±,∓β± − β̃±)
eâk̂

(∓2k · p±)
ε̂γ,λ

ek̂â

2k · p̃±
,

(4.6)

F s
± = A0(s, α± − α̃∓,∓β± − β̃∓)γ0

+ A1(s, α± − α̃∓,∓β± − β̃∓)

(
γ0 ek̂â

2k ·
(
−p+

p̃+

) +
eâk̂

2k ·
(

p̃−
p−

)γ0

)

+ A2(s, α± − α̃∓,∓β± − β̃∓)
eâk̂

2k · p̃∓
γ0 ek̂â

(∓2k · p±)
,

(4.7)

and p̃+ = −q+ + sk + kγ and p̃− = q− + sk − kγ is the intermediate momentum of the
propagators,kγ = (ωγ,kγ) andεγ,λ is the wave four-vector and the polarization (labeled with
λ = 1, 2) four-vector of the absorbed non-laser mode photon. The arguments of the Bessel
functions are similar to the bremsstrahlung case,

α± = ea · p±/(k · p±), β± = e2a2/(8k · p±), (4.8)

α̃± = ea · p̃±/(k · p̃±), β̃± = e2a2/(8k · p̃±), (4.9)

The+ and− signs refer to the charge of the involved particles, that is,p+ refers to the positron
momentum andp− to the electron momentum. If needed, the denominators of thepropagators
are regularized by the termiK±, which is explained in detail in subsection 4.2.2.

4.2.2 Regularization of the propagators

For a proper regularization of the propagators [104,164] itis, as for the bremsstrahlung case (see
subsection 3.4.1), crucial to include both the imaginary mass shift in the propagator according
tom2

∗ → m2
∗ − 2imΓ(k · p̃±) and the imaginary energy shift in the positron and electron four-

momentumq± asQ± → Q± − i m
Q±

Γ(k · q±). The corrected denominators of the propagators
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look like

p̃2
− −m2

∗ → p̃2
− −m2

∗ + 2imΓ(k · p̃−) − 2i
m

Q−
(Q− + sω − ωγ)Γ(k · q−)

= p̃2
− −m2

∗ − 2imΓ(k · kγ) − 2i
m

Q−
(sω − ωγ)Γ(k · q−),

(4.10)

and

p̃2
+ −m2

∗ → p̃2
+ −m2

∗ + 2imΓ(k · p̃+) + 2i
m

Q+
(Q+ − sω − ωγ)Γ(k · q+)

= p̃2
+ −m2

∗ + 2imΓ(k · kb) − 2i
m

Q+

(sω + ωγ)Γ(k · q+),
(4.11)

where the last line in both equations holds ifΓ(x) (again, not to mix up with the mathematical
Gamma function) is linear in the argumentx. We have seen in Fig. 3.2 that this holds for small
values ofx/m2 < 10−4, but if the pairs are produced at very high energies, or if thefrequency
ω of the laser is large, the behavior ofΓ(x) must be investigated in the considered parameter
range. Equations (4.10) and (4.11) define theK± used in the expression for the matrix element
(4.5).

The above discussion makes clear how to, in principle, regularize the propagators so finite
results are obtained even if the on-shell condition is satisfied. However, as is discussed in
subsection 4.3.2, we only discuss the subcritical caseχ � 1, and therefore our results are
independent of the actual regularization method.

4.2.3 Cross section

From the matrix element we obtain by the usual methods [76] the differential cross sectiondσ,
averaged over the polarization of the gamma photon and summed over the spins of the electron
and positron,

dσ =
1

2

∑

spin, pol.

d3q+
(2π)3

d3q−
(2π)3

∣∣∣Spair
±

∣∣∣
2 1

T

=
1

2

∑

spin, pol.
n

d3q+
(2π)3

d3q−
(2π)3

|Sn|2δ(Q+ +Q− + nω − ωγ), (4.12)

where the last line defines the partial squared amplitudeSn. Numerically, the spin and po-
larization sums are performed in the same way as for the bremsstrahlung matrix element, see
subsection 3.5.2.
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4.3 Numerical results and discussion on laser-assisted pair
creation: gamma photon and laser wave counter propa-
gating

In this section, we present results of a concrete numerical evaluation of the differential cross
section. If not stated otherwise, we take the atomic numberZ = 1, but we remark that since
the amplitude is calculated in first Born approximation, thecross section scales asZ2. Close
to the thresholdωγ ≈ 2m, Coulomb corrections to the first Born approximation are expected
to make significant contributions [136], at the level of a fewpercent forZ = 1. In particular,
the differential cross section will no longer be symmetric with respect to electron-positron ex-
change, since the positron is repelled by the nucleus. However, since our aim here is to compare
the laser-modified cross section with the Bethe-Heitler cross section, and we can assume that
the magnitude of the Coulomb corrections to the laser-dressed cross section is of the same size
as for the laser-free case, we restrict ourselves to the first-order Born approximation here. The
frequency of the laser is taken to beω = 1 keV, and the amplitudea is chosen such that the
classical nonlinearity parameterξ = −ea/m is of order unity. Experimentally, this choice of
parameters can be realized in either of the two following scenarios. For a high-power laser,
operating at a photon energy of1 eV and intensity of9× 1017 W/cm2, head-on collision with a
relativistic nucleus with a Lorentz boost factorγ ≈ 500 will give ξ = 1 andω = 1 keV in the
rest frame of the nucleus. In an alternative scenario, a focused x-ray free electron laser [151]
applied to a nucleus at rest may also give access to the parameters above. Hereξ = 1 andω = 1
keV in the laboratory frame requires an intensity of9 × 1023 W/cm2 at the focus of the laser.
In this regime, the peak electric field of the laser is still much smaller than the critical field,
Epeak/Ec = −ξeω/m� 1. We also expect that the qualitative behavior of the cross sections is
independent ofω, as long asχ � 1. We consider the case where the laser counter propagates
with the gamma photon, and describe the directions of the produced electron and positron by
the anglesθ− andθ+, as depicted in Fig. 4.2.

4.3.1 Energy cutoff

In principle, since the sum overn in Eq. (4.5) extends from−∞ to +∞, the created positron
and electron can acquire arbitrarily high effective energiesQ+, Q−. This should be compared
to the field-free case, given by the Bethe-Heitler formula [25], where the cross section vanishes
identically for positron (or electron) energiesE± > ωγ −m. In practice, however, an apparent
cutoff occurs in the energy spectrum, and thereby limits theavailable energy for the produced
pair. In the following, we assume the directionsq−/|q−|, q+/|q+| of the electron and positron
given, and consider the differential cross section (4.12) as a function of the effective energyQ+

of the positron. The effective energyQ− of the electron is fixed by energy conservation for each
n. It follows from the expression (4.5) that to find the energy cutoff, we should consider the
behavior of the function

Hn =

∞∑

s=−∞

A0(s, α− − α̃, β− − β̃)A0(s− n, α+ − α̃, β+ − β̃)

s+ C
(4.13)
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Figure 4.2: Illustration of the geometrical setup of the considered problem of laser-assisted pair
creation.

as a function ofn. As follows from the discussion in section 4.3.2, we can assume thatC is
non-integer. As shown in subsection 5.3.5, the function (4.13) has the same cutoff properties as
the generalized Bessel function

A0(n, α− − α+, β− − β+), (4.14)

providedC is larger than the cutoff index of both of theA0’s in the numerator in Eq. (4.13).
As β− − β+ = [(k · q−)−1 + (k · q+)−1] e2a2/8 < 0, and high values ofQ+ are obtained by
absorbing photons, that is, for negativen, it follows thatQcutoff

+ is the largest positron energy for
which the inequality

npos. cutoff> |n|, (4.15)

is still satisfied. For the integernpos. cutoff, see Eq. (2.49). Since the quantitiesk · q− andk · q+
involve direction cosines, it becomes clear that the energycutoff is direction dependent. In
particular, this implies that the maximal energyQcutoff

+ will depend not only on the direction
of the positron, but also on the direction of the electron. Inorder to determine the direction-
dependent energy cutoff, one therefore proceeds as follows. In the first step, one fixes the
directions of the electron and positron, which definesnpos. cutoff as a function ofn andQ+. In
the second step, one variesQ+ and in this way finds the largest positron effective energyQ+

satisfying Eq. (4.15).

As a concrete example, we let the positron and electron be ejected at equal anglesθ+ = θ− ≡ θ,
and show in Fig. 4.3 the cutoff as a function ofθ for different values of the intensity parameterξ.
The frequency of the single photon isωγ =

√
6 m, which corresponds exactly to the threshold

value2m∗ for ξ = 1. In Fig. 4.4, we also show a concrete evaluation of the differential cross
section for the corresponding parameters, compared to the laser-free case. The magnitude of
the differential cross section is here significantly largerthat the case without the laser, and also
displays a complex oscillatory behavior.
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Figure 4.3: Effective energy cutoff as a function of the angle θ = θ+ = θ−, resulting from
the solution of Eq. (4.15). For comparison, we also show the effective energy that would result
if the positron were created with the largest available energy in absence of the laser,E+ =
Emax = m − ωγ, and then placed in the laser field with fixed direction ofq+ (all curves are
labeled accordingly). The difference of the latter two curves to the laser-dressed solution is
because of the correlation between the electron and positron induced by the laser. This kind of
correlation was also observed in [121].
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Figure 4.4: Here we show a concrete example of the cross section, for θ = 2.8 rad, chosen to
maximize the cutoff energyQcutoff

+ for ξ = 2. We haveξ = 0 for the red curve,ξ = 1 for the blue
curve, andξ = 2 for the green curve. The “laser-assisted” curves show a complex oscillatory
behavior, with a peak just before the cutoff. The cutoff positions predicted by Eq. (4.15) are
indicated by vertical arrows. Note that the curves forξ = 1 andξ = 0 were multiplied by a
factor50; the ordinate axis is kept on a linear scale.
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4.3.2 Resonances and competing processes

In principle, the matrix element (4.5) diverges if one of theintermediate momentãp−, p̃+ satis-
fies the on-shell condition

p̃2
− = (q− + sk − kγ)

2 = m2
∗, p̃2

+ = (kγ − q+ + sk)2 = m2
∗ (4.16)

for somes. Physically, this means that the considered second-order process splits up into two
consecutive first-order processes, laser-induced pair creation by a gamma photon followed by
Coulomb scattering of the electron or the positron. As discussed in subsection 4.2.2, the usual
way to regularize the matrix element, so that it remains finite also at the condition (4.16), is
to add a small imaginary part to the energy of the electron (positron) [21], related to the total
probability for the intermediate state to decay by Compton scattering. Finite values will results
also if the finite extent of the laser field or the frequency width of the laser or photon beam is
taken into account, like for the bremsstrahlung case. In thecurrent thesis, however, we consider
a regime of parameters where the resonances are strongly suppressed. Mathematically, this
means that the value ofs needed to satisfy the resonance condition (4.16) is larger than the
corresponding cutoff index for the generalized Bessel function, and that the contribution from
this index in the sum overs is negligible, once properly regularized. Physically speaking, we
are dealing with laser parameters such that purely laser-induced processes, that cannot occur in
the absence of the laser, have vanishingly small probability to occur. The basic requirement for
laser-induced processes like pair creation by a photon [129] (at photon frequencyωγ ≈ 2m∗ ∼
2m) or pair creation by a nucleus [176] to have substantial probability is that the peak electric
field Epeak = aω should be comparable to the critical field,Epeak/Ec ≈ 1, and, as mentioned
before, we consider only laser parametersa, ω such thatEpeak � Ec. This also means that at
the field strengths considered, there will be no competing processes, so that our process will
indeed be the dominating one.

4.3.3 Apparent singularity

For some specific values of the parameters involved, we may have that

k · p̃− = k · q− − k · kγ = 0, (4.17)

or
k · p̃+ = k · kγ − k · q+ = 0. (4.18)

Due to the numerous factors of1/(k · p̃+) and1/(k · p̃−) in the matrix element (4.5), it looks
as if the matrix element diverges. For definiteness, in the following discussion, we assume
parameters such that condition (4.18) holds, or is close to hold. Solving Eq. (4.18) explicitly,
with k · kγ = 2ωωγ, and assumingq+ = (Q+,

√
Q2

+ −m2
∗ , 0, 0) for simplicity, we obtain

Q+ = ωγ +
m2

∗

4ωγ

, (4.19)

which makes it clear that the conditions (4.17), (4.18) can actually be satisfied forωγ ∼ m∗. If
Q+ is fixed by (4.19),Q− becomes fixed by the energy conservation relationQ− = ωγ − nω −
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Q+. Another difficulty is that the arguments of the generalizedBessel functions tend to infinity,

|α± − α̃+| → ∞,
∣∣∣β± − β̃+

∣∣∣→ ∞, (4.20)

ask · p̃+ → 0, since both̃α+ andβ̃+ include a factor1/(k · p̃+). For the propagator denominator,
we have

p̃2
+ −m2

∗ = 2 [sk · (kγ − q+) − kγ · q+] , (4.21)

which becomess-independent ask · p̃+ → 0. Therefore, one might think that the sum overs in
the matrix element (4.5) can be performed using the summation theorem (5.22) (see page 105).
However, in general we have, in the limitx→ 0,

∑

s

A0(s, a1 − c/x, b1 − d/x)A0(s− n, a2 − c/x, b2 − d/x)

xs + F
6= A0(n, a1 − a2, b1 − b2)

F
,

(4.22)
for constanta1,2, b1,2, c, d, andF , even though it is tempting to assume equality. We should say
that the limitx→ 0 gives a finite result for the left hand side of Eq. (4.22).

As it turns out, the matrix element is finite, even in the limitk·p̃± → 0. We have not been able to
show this analytically, but accurate numerical evaluationof the cross section (4.12) proves that it
is true. There is also no physical argument why the cross section should be resonant atk·p̃± = 0.
In fact, the requirement that the cross section should be finite at conditions (4.17), (4.18) can
be used as a sensible numerical check of the computer code used to evaluate the cross section,
since finiteness requires a proper evaluation of thes-sum of products of generalized Bessel
functions, and is furthermore sensible to sign errors amongthe different terms constituting the
cross section.

4.3.4 Angular distribution

For the field-free case, the pairs prefer to emerge at an angleθ ∼ m/ωγ with the vectorkγ [25].
When the laser field is turned on, we expect to find more pairs inthe direction of the laser
wave vectork. This tendency is expected to increase as the intensity parameterξ grows, since
with rising intensity the Lorentz force of the laser field pushes the pairs increasingly in the
propagation direction. In Fig. 4.5, we display the differential cross section integrated overdQ+

anddQ−, for ξ = 1, 2. The peak is seen to shift from the direction of the gamma photon to the
direction of the laser wave.

4.3.5 Total cross section

The total cross section is obtained by integrating the differential cross section (4.12) over the
energiesQ+,Q− and solid anglesΩ+, Ω− of the produced positron and electron:

σtot =

∫
1

2

∑

spin, pol.
n

Q+|q+|dQ+dΩ+

(2π)3

Q−|q−|dQ−dΩ−

(2π)3
|Sn|2δ(Q+ +Q− + nω − ωγ). (4.23)

87



CHAPTER 4: Laser-assisted pair creation

0 1 2 3
0

0.5

1

1.5

2

2.5
x 10

−8

 

 

θ[rad]

d
σ
/(

d
Ω

+
d
Ω

−
)[

M
eV

−
2
]

ξ = 0

ξ = 1

ξ = 2

Figure 4.5: The differential cross section integrated overthe effective energiesQ±, for ξ = 0
(solid red line),ξ = 1 (solid blue line) and forξ = 2 (dashed green line). As in Fig. 4.3,
ωγ =

√
6 m. The pair is emitted at equal anglesθ+ = θ− = θ (see Fig. 4.2), in the plane

spanned byk anda. We note that the area under these curves are notably different, which
implies that the presence of the laser enhances the number ofpairs produced atθ+ = θ−.
The differential cross section integrated over all angles will however, as we will see later (see
Fig. 4.6), be almost unchanged as compared to the laser free case.
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Figure 4.6: The total cross section as a function of the frequencyωγ of the non-laser mode
photon, compared with the case without the laser field. The laser frequency used isω = 1 keV.
Due to the laser, there remains a finite probability of pair creation below the field-free threshold
ωγ = 2m. However, the magnitude drops exponentially, as expected.

Here, it is convenient to replace the sum over the number of exchanged photonsn by an integral,
and to evaluate this integral with the delta function so thatn equals the integer closest ton0,
with

n0 = (ωγ −Q+ −Q−)/ω. (4.24)

This is a good approximation ifω � Q±, ωγ, and ifn0 � 1, which is the case for the parameters
used. The remaining six-fold integral,

σtot =
1

2

∑

spin, pol.

∫ ∞

m∗

dQ+

∫ ∞

m∗

dQ−

∫
dΩ+

∫
dΩ−

Q+|q+|
(2π)3

Q−|q−|
(2π)3

|Sn0
|2, (4.25)

has to be performed numerically, we employ a Monte Carlo method [144]. We note that this
method has been used before to obtain total rates for the production of pairs from a colliding
laser beam and a nucleus [89,167]. In general, Monte Carlo integration is the method of choice
for integrals of high dimensionality where the accuracy demand is modest. In fact, for such
high dimensionality as 6, and with the evaluation of the integrand being numerically expensive
(mainly due to the generalized Bessel functions with large values of both arguments and index),
we have not found any other integration method than the MonteCarlo integration method that
can deliver modestly accurate numerical results within reasonable computer time. The result of
one such calculation is shown in Fig. 4.6, where we present the total cross section as a function
of the frequencyωγ of the perturbative photon. As expected, in the region wherepair production
is possible without the laser, the rates are almost indistinguishable.
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Figure 4.7: Schematic picture of the considered pair creation process. A low-frequency, high-
intensity laser beam of linear polarization and a high-frequency gamma photon, propagating in
the same direction, impinge on a stationary nucleus, depicted as a filled black circle, to produce
an electron and a positron. The angleθ± denotes the ejection angle in the plane spanned by the
propagation direction and the polarization direction of the laser. Note that the wavelengths of
the two waves are not drawn to scale, in reality we consider the case where the laser wavelength
is many orders of magnitude larger than the wavelength of thegamma photon.

4.4 Numerical results and discussion on laser-assisted pair
creation: collinear gamma photon and laser wave

In this section, we present results on the setup, where the photon beam and the laser beam
propagate in the same direction, schematically pictured in4.7. This configuration is actually
nothing else than pair creation by a Coulomb field and a plane wave, with one weak, high-
frequency component, and has been studied before: see [30, 32]. However, no numerical work
was performed, and we are the first to actually evaluate the cross section. The idea behind con-
sidering the configuration shown in Fig. 4.7 is the following: It is known from the field-free
case [25,118] that the pairs prefer to come out roughly in thesame direction as the propagation
direction of the creating photon. However, for low photon energiesωγ ∼ m, the angular distri-
bution is quite broad. If a high-power laser is added, the Lorentz force of this laser pushes the
pairs in the forward direction, and therefore focuses the produced pairs to mainly appear in the
forward direction. The total number of pairs produced, or the total cross section, is not changed
for subcritical lasers, as argued in the introduction of this chapter.

4.4.1 Simplification of the matrix element in the collinear geometry

That the laser, with wave four-vectorkµ = (ω,k), and the gamma photon, with four-momentum
kµ

γ = (ωγ,kγ) propagate in the same direction means that

kγ · k = 0. (4.26)
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This fact provides for a considerable simplification of the matrix element, under the condition
(4.26) the expression (4.5) can be written as

Sp+p− =2πi
∞∑

n=−∞

Ze3m√
2ωγE+E−

δ(Q+ +Q− − nω − ωγ)

(q− + q+ − nk − kγ)2

× ū−p−

(
ε̂γ
k̂γ − p̂− −m

2p− · kγ

Fn + Fn
p̂+ − k̂γ −m

2p+ · kγ

ε̂γ

)
u+

p+
, (4.27)

where now

Fn =A0(n, α+ − α−,−β+ − β−)γ0

+ A1(n, α+ − α−,−β+ − β−)

(
γ0e âk̂

2k · p+
+
e âk̂γ0

2k · p−

)

+ A2(n, α+ − α−,−β+ − β−)
e2 a2ωk̂

2k · p−k · p+

, (4.28)

and

α± =
e a · p±
k · p±

, β± =
e2 a2

8 k · p±
. (4.29)

Note that if we choose the propagation direction of the laserask/ω = (1, 0, 0) = kγ/ωγ,
thennk + kγ = (Q+ + Q−, 0, 0) by energy conservation, so that the Coulomb momentum
q = q− + q+ − nk − kγ is independent ofn. From the expression (4.27) we gather several
differences compared to the general matrix element (4.5). In (4.27), there is only one sum
overn, the intermediate propagator sum overs is absent. This means that the possibility of
the intermediate particle to go on-shell has vanished. In the collinear geometry there are no
resonances. The reason is simple: As already mentioned, thetotal field gamma photon + laser
wave is a plane wave, and is as such unable to produce pairs of its own. Pair production by a
plane wave together with a Coulomb field is indeed possible [112, 121, 176], but absorption of
a photon from a plane wave by a free electron is not, so that thesequence process pair creation
by Coulomb field and plane wave followed by photon absorptionis impossible. We conclude
that the split-up of a second order laser-dressed process into two first-order processes does not
take place here.

4.4.2 Angular distribution: focusing of the produced pairs

Here we present the evaluation of the angular distribution of the pairs, the differential cross
section. We note that due to symmetry reasons, the differential cross section is symmetric
under the exchange of electron and positron, and we show, in all following figures, the positron
spectra,dσ/dΩ+. The differential cross section is formed from the matrix element according
to formula (4.12), just as the case with counter propagatinggamma photon and laser wave. The
laser frequency is chosen asω = 10 eV. However, we expect that the qualitative behavior of
the cross section is independent ofω, as long asχ � 1. Again, instead of performing the
sum over photon ordersn in Eq. (4.27), it is convenient to replace the sum with an integral,
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θ0[rad] c1 c2 b [ MeV−2]
ξ = 6 0.15 130 15 0.95 × 10−4

ξ = 10 0.11 150 25 1.1 × 10−3

Table 4.1: Table showing the numerical values used in Eq. (4.30) to produce the solid lines in
Fig. 4.8.

and to utilize the delta function to integrate overn, so thatn = n0 = (Q+ + Q− − ωγ)/ω.
The remaining fourfold integral in the differential cross section is evaluated by employing a
Monte-Carlo integration routine [144]. To better guide theeye, we furthermore perform a fit of
the pointwise obtained Monte-Carlo differential cross section, which is necessarily plagued by
numerical sampling error, to a function of the form

dσfit

dΩ+
=

b

e−c1(θ+−θ0) + ec2(θ+−θ0)
, (4.30)

whereb, c1,2 andθ0 are positive constants. We found this functional form to be numerically
adequate, and this is probably the form of the true expression for the differential cross section.
At least the exponential decay for anglesθ+ larger than the peak angleθ0 has been numerically
confirmed.

In Fig. 4.8, we show the cross sectiondσ/dΩ+, which remains differential only in the solid
angleΩ+ of the created positron. Observe that here the solid angle refers to the direction
p+/|p+| of the positron outside the laser, to allow explicit comparison with the laser-free case.
The gamma photon energyωγ is ωγ = 1.25 MeV > 2m, so that pair production is possible
without the laser. However, as is clearly seen in Fig. 4.8, the angular distribution in the field-free
case [25] is broad, indistinguishable from an isotropic distribution within the parameter range
plotted in Fig. 4.8. Quite to the contrary, the laser-dressed curves show sharp peaks, with the
peak height increasing with increasing laser intensity, and the peak position given roughly by
θpeak = 1/ξ. Also observe that the laser introduces a “splitting” of theangular distribution, so
that very few positrons appear in the laser propagation direction θ+ = 0. The numerical values
of the constants used to produce the dashed and solid lines for ξ = 6 andξ = 10 are displayed
in table 4.4.2.

Actually, the peak angleθpeak = 1/ξ can be intuitively explained by the classical equations
of motion. A similar way of reasoning can be applied to ionization induced by a laser, and
is called “simple man’s theory” [18]. If we assume that the positron is created during a time
much shorter that the laser field period, at the laser phaseφ0, with initial momentump+i (with
momentum distribution according to the Bethe-Heitler cross section), the kinetic momentum
p+ evolve according to Eq. (2.11):

p
µ
+(φ) =pµ

+i + e [Aµ(φ0) −Aµ(φ)]

+
kµ

2p+i · k
(
2e[Aν(φ) − Aν(φ0)]p

ν
+i − e2[Aν(φ)Aν(φ) − Aν(φ0)Aν(φ0)]

)
,

(4.31)

depending on the initial phaseφ0 at the moment of creation, and the initial momentump+i.
Now, what is actually measured is the asymptotic momentump+ = p(φ = ∞), that is, when
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Figure 4.8: The differential cross sectiondσ/dΩ+ as a function of the angle of ejectionθ+ (see
Fig. 4.7), in the plane spanned by the propagation directionk/ω and the polarization direction
a/|a|. The laser frequency isω = 10 eV and the gamma photon energy isωγ = 1.25 MeV.
Here, the parameter valuesξ = 6 andξ = 10 correspond to laser intensitiesI = 3.2 × 1021

W/cm2 andI = 8.9 × 1021 W/cm2, respectively. The nuclear atomic number isZ = 1, and
we remark that as the cross section is evaluated in the first Born approximation, it scales asZ2.
In the graph, circles represent numerical estimates of the differential cross section obtained by
fourfold Monte-Carlo integration, and the red dashed and blue solid lines are analytical fits [see
Eq. (4.30), numerical values in table 4.4.2] to the numerical values. For comparison, the solid
black line shows the laser-free case, multiplied by a factorof 104 (the laser-free differential
cross section would otherwise not be visually distinguishable from zero). For the conversion to
other frequently used units for the cross section, one uses1 MeV−2 ≈ 4×102 barn= 4×10−22

cm2.
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the laser pulse has passed. Since it is assumed that the vector potential is adiabatically turned
off, and satisfiesAµ(∞) = 0, we have

pµ
+ =pµ

+i + eAµ(φ0)

+
kµ

2p+i · k
(
− 2eAν(φ0)p

ν
+i + e2Aν(φ0)Aν(φ0)

)
,

(4.32)

so that the angleθ+ is given by

θ+ = arctan
|py

+|
|px

+|
= arctan

∣∣py
+i + eAy(φ0)

∣∣
∣∣∣px

+i + ω
2p+i·k

(e2A2(φ0) − 2ep+i · A(φ0))
∣∣∣

≈ 2k · p+i

ω|ea cosφ0|
,

(4.33)

where we have assumedk = (ω, 0, 0), Aµ(φ) = (0,a cosφ) = (0, 0, |a| cosφ, 0) and the
last approximation is valid for small anglesθ+ � 1 and for small initial energiesE+i so that
the terme2A2 is the dominating one in the denominator of the first line of (4.33). Typically,
for ωγ ≈ 2m, according to the Bethe-Heitler distribution [25], the energy is shared between
the positron and electron so thatE+i = ωγ/2. Now, using the Bethe-Heitler distribution of
positron momenta (assuming the energy to beE+i = ωγ/2), so that positrons initially emitted
with momentumpµ

+i end up at angleθ+ after interaction with the laser field, and summing
the contributions from all laser phases−π/2 ≤ φ0 ≤ π/2, we obtain a modified momentum
distribution, as shown in Fig. 4.9.

4.4.3 Total cross section

We show in Fig. 4.10 the total cross sectionσtot, obtained in the same way as for the counter
propagating case, see Eq. (4.23). Note that the parameters are different compared to those used
to produce Fig. 4.6. Here we haveω = 10 eV andξ = 10. This is a more realistic choice
of parameters, which however makes it more demanding to makethe integration algorithm
converge. As a result, we could only do the calculation for small values ofωγ ∼ 2m close to
the threshold.

4.4.4 Experimental realization

In this subsection we elaborate on the possible experimental verication of the results found in
section 4.4, focusing of the created positrons in the collinear setup of gamma photon beam and
laser beam. A good way of obtaining photon beams of moderately high energy is by Compton
backscattering of photons from a laser (for example an XFEL [53]) on high-energy electrons.
If we look at the formula (3.9) for the emitted frequency, forn = 1 (since the laser is assumed
to be weak (ξ � 1), only one photon is absorbed, which also means thatqi ≈ pi), we retrieve
the usual Compton formula [141] for the frequencyωγ of the scattered photon in the lab frame,

ωγ =
k · pi

pi · kγ/ωγ + k · kγ/ωγ
≈ 4E2

i ω

m2
, (4.34)
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Figure 4.9: Illustration of the modification of the differential cross section with inclusion of
the laser. The dashed red curve and blue solid curve are obtained by summing over all laser
phases, assuming that the positron is created with the momentum given by the Bethe-Heitler
distribution. The laser-modified cross sections are normalized so that the number of created
positrons is the same as for the field-free case. From this graph, we see by comparing with the
quantum treatment, Fig. 4.8, that the positionθpeak ≈ 1/ξ is correctly predicted, but that the
peaks are much narrower in Fig. 4.8. This implies that a full,quantum treatment is necessary to
obtain the detailed features of the spectrum.
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Figure 4.10: The total cross section for electron-positronpair creation close to the threshold,
displayed in logarithmic scale as a function of the perturbative photon energyωγ. The solid
black line shows the field-free case, given by the Bethe-Heitler formula [25]. The cross section
is in this case identically zero below the pair production thresholdωγ/m = 2. Below threshold,
the laser-induced (rather than laser-assisted) pair creation cross section exhibits an exponential
decrease. Parameters in the calculation are the same as in Fig. 4.8: ωγ = 10 eV, ξ = 10,
Z = 1. Note that in this graph the gamma photon is propagating in the same direction as the
laser, as opposed to Fig. 4.6, where the gamma photon and laser are taken to counter propagate.
Although this makes a considerable difference in the analytic formula for the matrix element
[compare Eq. (4.27) with the more complex expression Eq. (4.5)], the behavior of the two curves
is very similar. One quantitative difference is that the decay of the laser-induced cross section
below the thresholdωγ = 2m is here even faster than the corresponding curve in Fig. 4.6,
which can be explained by the lower value ofχ: In Fig. 4.6, we haveχ = ξω/m = 2 × 10−3,
as compared toχ = 2 × 10−4 in this figure.
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whereEi � m is the energy of the incoming electron, and the last approximation assumes
ω � m, that the initial electron and the laser collide head on at a small angle,pi·k+|pi||k| � 1,
and that the photon is scattered in the same direction as the incoming electron,pi ·kγ = |pi||kγ|,
which represents the geometry where the largest photon energyωγ is achieved. From Eq. (4.34)
we gather that high energy photons can be obtained by scattering laser light at high-energy
electrons in for example a storage ring. As an example, to obtain backscattered photon energy
ωγ = 2m (pair creation threshold) atω = 10 eV, one needs electrons with energyEi ≈ 80 MeV.
Now for the experimental realization, we propose to synchronize photon pulses produced from
Compton backscattering with a laser pulse from a strong laser. According to [81, 134], pulse
duration of the gamma photon pulse is determined by the electrons in the storage ring. We
can therefore assume gamma photon pulse length 1 ps, with repetition rate 1 Hz (much higher
repetition rates can be obtained, but as will be clear below,the limitation of the repetition rate
comes form the strong laser), andNγ = 107 photons per pulse [81, 134]. For the photon
energy, we assumeωγ = 1.25 MeV, to comply with the parameter values assumed in Fig. 4.8.
We note that much higher photon energies are available, the limitation being the energy of
the electron beam [16, 81]. As the atomic target, we assume a 1mm thick foil of lead (Z =
82). Lead has average atomic massmu = 207.22 g/mole, density11.34 g/mole, so that the
number area density in the 1-mm-foil isNd = 3.3 × 1021 atoms/cm2 (Avogadro’s number
NA = 6.022 × 1023). From the numerical evaluation and theoretical arguments, we know that
the total number of pairs is determined by the gamma photons,for which ωγ = 1.25 MeV
andZ = 82 yields σtot = 1.3 × 10−4 MeV−2 = 5.4 × 10−26 cm2, in accordance with the
Bethe-Heitler cross section. The number of pairsNe+e− produced during one pulse is therefore
Ne+e− = σtotNγNd = 1.8 × 103. If now a long laser pulse of duration 1 ps (same duration
as the gamma photon pulse) is synchronized with the gamma photon pulse, it follows from the
preceding discussion and results in this section that the laser focuses the produced particles to
emerge at a typical angleθ ≈ 1/ξ. To obtain the tight focusing shown in Fig. 4.8 atξ = 10,
the pulse energy required is 1.4 J, if a laser wavelengthλ = 1054 nm and focusing of the
pulse down to one wavelength is assumed. This kind of long, strong laser pulses are available
at for example the Vulcan laser facility in the UK [173]. If, in addition, the same repetition
rate is assumed, it follows that essentially all pairs (1.8 × 103 per pulse) emerge with the angle
θ = 6◦ ± 2◦ (see Fig. 4.7). The uncertainty out of the plane spanned by the laser polarization
direction and the propagation direction is approximately±0.3◦.
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Chapter 5

An essential ingredient of laser-modified
QED processes: generalized Bessel
functions

5.1 On special functions in general

Special functions like the Bessel function have always beenimportant to theoretical physics.
What makes a special function special? Most often, a specialfunction is defined through its
differential equation. However, just by stating that one particular function solves a differen-
tial equation contributes nothing to the understanding of the solution. A function is only pro-
moted to be “special” once its properties are well understood. Several representations should
be known, asymptotic expansions in different regimes of theparameters together with analytic
properties should be there so that a feeling for the functionin question can be developed. The
definitive source of information about special functions isof course the classical reference [1].
Finally, one should not only be able to make a graph of the function in reasonable time, but also
be able to use the function as a building block in more complicated formulas, for making actual
calculations of physical processes. This last demand is notto be underestimated, since it implies
that there is an efficient numerical algorithm for evaluation available. If one is to sum or inte-
grate over complicated functions depending on the special function, fast evaluation is called for.
For many special functions this is the case, the common ones included in commercial software
such as MATLABR© or MathematicaR©.

In theoretical physics one sometimes reads the word “exact”or “analytical” for an expression
describing some physical quantity. Usually this means thatthe expression is free from inte-
gration or indefinite summations. Expressions containing special functions are however often
considered to be analytical, even when this means nothing else than replacing the integration
over one function with another symbol. To obtain real numbers out of the formulas, numeri-
cal algorithms for evaluation are necessary. A complex formula containing a large number of
special functions is useless unless definite numbers can be produced out of it.

In this chapter we present an overview of two special functions important to the theoretical
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description of laser-modified QED, the usual Bessel function and the generalized Bessel func-
tion. In the description of relativistic laser-matter interaction, the generalized Bessel function is
extremely important in the case of a linearly polarized laser. The reason is that the nonpertur-
bative, exact solution, to the basic problem “electron in a strong laser field” can be expressed
through generalized Bessel functions [see chapter 2], and with this solution as a basis we can
include the interaction with other fields in a perturbative way.

In this chapter, being more mathematical in character, the letterm does not stand for the electron
mass, but is used as an integer index, andα is used as a real variable and does not have the
meaning of the fine-structure constant.

5.2 Usual Bessel functions

First introduced by Bernoulli, and systematically studiedby Bessel, the usual Bessel func-
tion Jn(α), for integer indexn, is one of the most widely used special functions in theoretical
physics. The standard reference on Bessel functions is [174]. In the context of laser-matter
interaction, Bessel functions appear as coefficients in theFourier series expansion of the wave
function of an electron in a plane wave electromagnetic field. As we have seen in chapter 2, for
electrons dressed by a circularly polarized laser field, we get the normal Bessel functionJn(α)
directly. In the case of a laser of linear polarization, we instead have the generalized Bessel
functionA0(n, α, β), which however can be defined as a sum over ordinary Bessel functions.
The Bessel function and the generalized Bessel function arevery similar, and share several
properties. A thorough understanding of the generalized Bessel function thus necessitates a
knowledge of the properties of the usual Bessel function. Inthe following, we discuss some
properties ofJn(α), and most important, we describe a numerical algorithm, originally due to
Miller [26], for efficient calculation of large arrays of Bessel function.

5.2.1 Basic properties of the usual Bessel function

Our viewpoint of the Bessel function is that it is the coefficient in the Fourier series expansion
of the periodic functionexp(iα sin θ):

eiα sin θ =
∞∑

n=−∞

Jn(α)einθ. (5.1)

By performing “Fourier’s trick”, that is we multiply withexp(−imθ) on both sides of Eq. (5.1)
and integrate over one period1

2π

∫ π

−π
dθ, we find the integral representation

Jm(α) =
1

2π

∫ π

−π

ei(sin θ−mθ)dθ =
1

π

∫ π

0

cos(α sin θ −mθ)dθ, (5.2)

where the last equality follows from symmetry arguments. Eq. (5.2) can be taken as a definition
of Jn(α) for real values ofα and integern (which are the only cases we deal with). The equation
(5.2) gives immediately two symmetries:

Jn(α) = J−n(−α) = (−1)nJn(−α). (5.3)
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Another property that follows from the definition is

Jn(0) = δ0n, (5.4)

whereδ0n is Kronecker’s delta,δ0n = 1 if n = 0, and vanishes otherwise. The relation (5.2)
may also be used to check that the Bessel function satisfies the following recursion relation:

2nJn(α) = α [Jn+1(α) + Jn−1(α)] . (5.5)

The recursion relation (5.5) is an important tool in the numerical evaluation, described in sub-
section 5.2.3. For sums of products of Bessel functions we have

∞∑

n=−∞

Jn+m(α)Jn+m′(β) =

∞∑

n=−∞

1

4π2

∫ π

−π

ei[−n(θ+θ′)−mθ−m′θ′+α sin θ+β sin θ′]dθdθ′

=
1

2π

∫ π

−π

ei[θ(m′−m)+(α−β) sin θ]dθ

=Jm−m′(α− β),

(5.6)

where we have used the identity

1

2π

∑

n

e−inx =
∑

k

δ(2πk + x) = δ(x), (5.7)

since we have in this case|x| < 2π. Eq. (5.6) yields as a particular case

∞∑

n=−∞

[Jn(x)]2 = 1. (5.8)

Another expression for the Bessel function is through an infinite sum [174],

Jn(α) =
(α

2

) ∞∑

j=0

(−1)j
(

α
2

)2j

j!(n+ j)!
. (5.9)

The two representations (5.2) and (5.9) are the only ones we will use, there exists however many
more ways [174].

5.2.2 Saddle point approximation and cutoff properties

The integral representation (5.2) can also be used to calculate asymptotic expansions ofJn(α),
for large values ofn andα, by the saddle point method. In short, the saddle point method
works as follows: By Cauchy’s integration theorem [145], wecan deform the integration path
in Eq. (5.2) into the complex plane, without changing the value of the integral. If the path is
taken to go through the saddle points (also called stationary points) of the integrand, that is,
where the argument of the exponential has vanishing derivative, most of the contribution to the
integral will come from an area close to the saddle point. To obtain a first order approximation,
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we expand the integrand around the saddle point, and extend the integration limits to infinity, so
that the integral can be taken analytically. In general, functions expressed likeF =

∫
eif(x)dx,

with large |f(x)|, have a sizeable value if there are real stationary points, and are at least ex-
ponentially small if the stationary points are imaginary [133]. To find the asymptotics for the
Bessel functionJn(α), we first find the stationary pointθs of the exponential, which satisfies

cos θs =
n

α
. (5.10)

Based on Eq. (5.10), we thus expect that for|n/α| > 1, the Bessel functionJn(α) is exponen-
tially small. Written out, the saddle point approximation amounts to, withf(θ) = −nθ+α sin θ,

Jn(α) = Re
1

π

∫ π

0

eif(θ)dθ ≈ Re
1

π

∫

C

ef(θs)+f ′′(θs)(θ−θs)2dθ

≈ Re eif(θs)−i π
4

√
2

π|f ′′(θs)|
,

(5.11)

where the curveC is a straight line with constant imaginary part passing through the saddle
point, and we used

∫∞

0
cos t2dt =

∫∞

0
sin t2dt =

√
2π /4. We use formula (5.11) to compute

two asymptotics:
α � n. We assume positiven andα. Here the saddle point is real and tend tocos θs = 0,
or θs = π/2 in the limit n/α → 0. If we take the saddle point withsin θs = 1, we get
f(θs) = −nπ/2 andf ′′(θs) = −α, which inserted into Eq. (5.11) gives

Jn(α) ≈
√

2

πα
cos
(
α− nπ

2
− π

4

)
, α � n. (5.12)

n � α. Herecos θs = n/α � 1, which means thatθs is purely imaginary. This time we
have to take the saddle point with negative imaginary part, so thatsin θs = −in/α, andθs =
−i(ln 2n− lnα), which together with Eq. (5.11) produces

Jn(α) ≈ 1√
2πn

(eα
2n

)n

, n� α. (5.13)

Thus, we can speak of a “cutoff” atn = α, beyond which the amplitude ofJn(α) drops sharply.
This cutoff is depicted in Fig. 5.1.

5.2.3 Miller’s algorithm for numerical evaluation

As mentioned in the introduction, to be able to use the Besselfunctions in actual numerical
evaluation, a fast, stable numerical algorithm is necessary. The most widely used algorithm
is originally due to Miller [26], and has later been extendedand refined by various authors
[1, 71, 115, 144]. Another good method of numerical evaluation is direct integration through
a path of steepest descent [108]. In this work we use Miller’salgorithm, since it is suitable
for producing many Bessel functions of the same argument, but of different indices, needed to
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Figure 5.1: The graph to the left shows the Bessel functionJn(α) as a function ofn, with
α = 104, the right graph shows the absolute value|Jn(α)| on a logarithmic scale. The cutoff
atn = α is clearly visible. In both graphs, the points are connectedwith blue lines. The rapid
oscillations then causes the left plot to look “filled”.

calculate the generalized Bessel function. Miller’s algorithm is based on the recursion relation
Eq. (5.5) and Eq. (5.1), which withθ = 0 can be rewritten as

J0(α) + 2

∞∑

n=1

Jn(α) = 1, (5.14)

where we usedJ−n(α) = (−1)nJn(α). We consider the case for positiveα andn. First we note
that we cannot use the recursion relation (5.5) directly in the case of growingn, since besides
Jn(α) there is also a second functionYn(α) satisfying the same recursion relation [174]. This
function however, goes as [174]

Yn(α) ≈ −
√

2

πn

(
2n

eα

)n

(5.15)

asn � α, a factorial growth. Thus, when trying to apply the recursion relation (5.5) in the
direction of growingn, any round-off error that introduces a little bit ofYn(α) besides the
desired solutionJn(α) will soon dominate completely over the factorially smallJn(α). The
solution is now to begin the recursion at some largenstart > α, and apply Eq. (5.5) in the
direction of decreasingn. In this direction, any erroneousYn(α) will disappear exponentially
fast. In addition, Miller’s observation was that it is possible to start the recursion with arbitrary
initial values, sayJnstart(α) = 0 andJnstart+1(α) = 1, compute the arrayJ0,1,...,nstart+1(α) and then
normalize the values with the sumJ0(α) + 2

∑
n Jn(α) from Eq. (5.14). Miller’s algorithm

gives roughlyN number of significant figures of accuracy forJm(α), provided the downward
recursion relation is started at annstart satisfying at leastnstart> m+N

√
m , with nstart, m > α

[144]. Form < α, the recursion should be started atnstart> α +N
√
α to obtainN significant

figures (roughly) forJm(α).
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Miller’s recursive algorithm is a very efficient algorithm for the numerical calculation of Bessel
functions, especially if large arraysJ−N,−N+1,...,N−1,N(α) are needed. This is indeed the case
when we want to calculate generalized Bessel functions fromthe definition (5.18), see section
5.3. It should also be mentioned that Miller’s algorithm canbe coded in a superior way [71],
[86, appendix C], to circumvent the problem of overflow on thecomputer. When starting the
backward recursion from a large indexnstart at arbitrary initial conditions, subsequent values
of Jn(α) tend to grow very fast, due to the extremely rapid increase inthe regionn > α, for
decreasingn [see Eq. (5.13)].

5.3 Generalized Bessel functions

As can be understood from the name, the generalized Bessel functionA0(n, α, β) is a gener-
alization of the usual Bessel functionJn(α), and is a function of one integer indexn and two
real variablesα andβ. It was first introduced by Reiss [147] in the context of pair creation by
a photon and a laser beam (later for field-induced ionization[148, 150]), and has subsequently
been studied by many authors [46–48, 50, 129]. Although the main application area so far has
been laser-matter interaction, use of generalized Bessel functions is also made in other fields
such as crystallography [137]. The generalized Bessel function has been even further general-
ized to several indices and more than two variables [45, 49, 94]. On the numerical side, there
has been comparatively little work. Apart from the important work of Leubner [101–103], no
publications on numerical algorithms for generalized Bessel functions exist. There is so far
nothing like the Miller algorithm forA0(n, α, β). In the work leading to this thesis, we have
accomplished exactly this: a generalization of Miller’s algorithm so that it works also for the
generalized Bessel function. This algorithm is presented in subsection 5.3.3.

5.3.1 Basic properties

The generalized Bessel function share many of the properties of the usual Bessel function.
Since the generalized Bessel function depends on two variables instead of only one, things are
however more complicated. Similarly to the usual Bessel function, we view the generalized
Bessel functionA0(n, α, β) as the coefficient in the Fourier series expansion of the periodic
functionexp[iα sin θ − iβ sin(2θ)]:

ei[α sin θ−β sin(2θ)] =

∞∑

n=−∞

A0(n, α, β)einθ, (5.16)

which by virtue of Fourier’s trick yields the integral representation

A0(n, α, β) =
1

2π

∫ π

−π

e−inφ+iα sin(φ)−iβ sin(2φ)dφ

=
1

π

∫ π

0

cos [−nφ+ α sin(φ) − β sin(2φ)] dφ.

(5.17)
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If we now insert the Fourier expansion (5.1) for each of the exponentialsexp(iα sin θ) and
exp(−iβ sin 2θ), the integral overθ collapses the double sum to a single one, so that the gen-
eralized Bessel function can be expressed as an infinite sum over products of the usual Bessel
function:

A0(n, α, β) =

∞∑

m=−∞

Jn+2m(α)Jm(β). (5.18)

Either of Eqs. (5.17) or (5.18) can be taken as the definition of A0(n, α, β). The subscript0 in
A0(n, α, β) has the following meaning: We define

cosL θei[α sin θ−β sin(2θ)] =

∞∑

n=−∞

AL(n, α, β)einθ, (5.19)

with L = 0, 1, 2, . . .. From definition (5.19) follows that

AL(n, α, β) =
1

2
[AL−1(n− 1, α, β) + AL−1(n+ 1, α, β)] , (5.20)

with positive integerL. TheAL’s are needed in the applications in chapters 3 and 4. Using the
sum rule (5.6), we derive the sum rule forA0(n, α, β):

∞∑

m=−∞

A0(N +m,α1, β1)A0(M +m,α2, β2) = A0(N −M,α1 − α2, β1 − β2), (5.21)

or more generally forAL(n, α, β)

∞∑

m=−∞

Ai(m+N,α1, β1)Aj(m+M,α2, β2) = Ai+j(N −M,α1 − α2, β1 − β2), (5.22)

for integerN andM . From partial derivation of the integral representation (5.17) follows the
recursion relation

2nA0(n, α, β) =α [A0(n− 1, α, β) + A0(n+ 1, α, β)]

− 2β [A0(n− 2, α, β) + A0(n+ 2, α, β)] ,
(5.23)

which we found by physical means in section 2.2.4. Note that the relation (5.23) is more com-
plex than that forJn(α), here every index depends on the four neighboring ones. In general,
since the recurrence relation (5.23) is of order four, thereare four linearly independent solutions,
see Fig. 5.6. Of the four solutions, only the trueA0(n, α, β) is normalizable. Still, Eq. (5.23)
can be used in a meaningful way for the numerical evaluation of A0(n, α, β), as we will see in
subsection 5.3.3.

Evident from the definitions (5.17) and (5.18), the generalized Bessel functions have the fol-
lowing symmetries:

A0(n, α,−β) = (−1)nA0(−n, α, β),

A0(n,−α, β) = (−1)nA0(n, α, β),
(5.24)
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from which follows
A0(−n, α, β) = A0(n,−α,−β). (5.25)

When either of the argumentsα or β is zero, the generalized Bessel functionA0(n, α, β) sim-
plifies to the usual Bessel function:

A0(n, α, 0) = Jn(α), (5.26)

and

A0(n, 0, β) =

{
J−n

2

n even,
0 n odd.

(5.27)

We conclude this subsection with the Taylor expansion for small arguments andN ≥ 0, correct
to second order:

A0(N,α, β) =δN0 +
α

2
δN1 −

β

2
δN2 +

(α
2

)2
(

1

2
δN2 − δN0

)
+

(
β

2

)2(
1

2
δN4 − δN0

)

+
αβ

4
(δN1 − δN3) + O(α3, β3, α2β, β2α),

(5.28)

which is derived using Eqs. (5.9) and (5.18). Hereδij is Kronecker’s delta function. For negative
N we use the symmetry relation (5.25). This means also that

A1(N,α, β) =
1

2
(A0(N − 1, α, β) + A0(N + 1, α, β))

=
1

2

[
δN1 +

α

2
δN2 +

β

2
(−δN1 − δN3) +

(α
2

)2
(
−1

2
δN1 +

1

2
δN3

)

+

(
β

2

)2(
1

2
δN3 +

1

2
δN5 − δN1

)
− αβ

4
δN4

]
+ O(α3, β3, α2β, β2α),

(5.29)

for N > 0. For the caseN = 0 we have

A1(0, α, β) =
αβ

4
+ O(α3, β3). (5.30)

Finally, the case withA2 gives

A2(N,α, β) =
1

2
(A1(N − 1, α, β) + A1(N + 1, α, β))

=
1

4

[
δN2 +

α

2
(2δN1 + δN3) +

β

2
(−2δN2 − δN4) +

(α
2

)2 1

2
δN4

+

(
β

2

)2(
δN4 +

1

2
δN6

)
− αβ

4
(δN5 + δN3)

]
+ O(α3, β3, α2β, β2α),

(5.31)

N > 0, and

A2(0, α, β) =
1

2
− α2

8
− β2

4
+ O(α3, β3, α2β, β2α). (5.32)
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5.3.2 Saddle point approximation and cutoff properties

As already mentioned in section 2.2.3, understanding of thecutoff properties ofA0(n, α, β) is
important for the understanding of physical processes written in terms of generalized Bessel
functions, and has also practical significance. A rule is needed for how many terms that should
be included in sums for the matrix elements, Eq. (3.26) and Eq. (4.5). In this subsection, without
loss of generality, we restrict the discussion to positive argumentsα andβ in A0(n, α, β). This
will cover the general case, by virtue of the symmetries (5.24), and by treating both positive and
negative values ofn. If eitherα or β equals0, the generalized Bessel functionA0(n, α, β) can
be expressed as the usual Bessel function, see Eqs. (5.26) and (5.27).

For the usual Bessel functionJn(α) we have the well known cutoff at|n| > |α|, but for the
generalized Bessel function (5.18) the cutoff behavior is more complex. A naı̈ve guess for the
cutoff of A0(n, α, β) is |n| > 2|α| + |β|, since according to the cutoff rule for normal Bessel
functions we must have

−|α| < 2s+ n < |α|, −|β| < s < |β|, (5.33)

to have nonvanishingJ2s+n(α) andJs(β), so that

A0(n, α, β) ≈
smax∑

s=smin

J2s+n(α)Js(β), (5.34)

with

smin = max

(
−|β|, −|α| − n

2

)
, smax = min

(
|β|, |α| − n

2

)
. (5.35)

For |n| > 2|β| + |α| we obtainsmin > smax, and thereforeA0(n, x, y) ≈ 0. This rule correctly
gives an upper limit for the cutoff, and is correct for negativen, but for positiven the cutoff will
occur sooner, due to cancellation among the terms in the sum.As a comparison, if we apply the
above reasoning to the function

B0(n, x, y) =
∑

s

Js+n(x)Js(y), (5.36)

we obtain the cutoff|n| > |x| + |y|. However, we know from the addition theorem of Bessel
functions [Eq. (5.6)] thatB0(n, x, y) = Jn(y − x), and therefore the correct cutoff law is
|n| > |y − x|, which is smaller than (or equal to)|x| + |y|.

Saddle point treatment

As we have seen in chapter 2.2.3, the correct cutoff law for the generalized Bessel function can
be derived from the maximal and minimal classical energies of a laser-dressed electron. Here
we derive them from the position of the saddle points in the complex plane of the integrand
in Eq. (5.17). As follows from the general treatment of saddle point expansions [133], saddle
points found on the real axis give substantial contributionto the integral (5.17), imaginary
saddle points give exponentially small contributions. Thesaddle pointsθs are found from the
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requirement that the first derivative with respect toθ of the argument of the exponential in
Eq. (5.17) should vanish,θs therefore satisfies

−n + α cos θs − 2β cos(2θs) = 0, (5.37)

with solutions

cos θs =
α

8β
±
√

α2

64β2
+

1

2
− n

4β
. (5.38)

Inspection of Eq. (5.38) gives two different cases (recall that we assume positiveα andβ but
arbitraryn):

Case 1. 8β ≥ α. Here there are four regimes. Whenn < −α − 2β, both saddle points are
imaginary, andA0(n, α, β) is exponentially small. For−α − 2β < n < −2β + α, one saddle
point is imaginary, and one is on the real axis. Here the generalized Bessel function exhibits an
oscillatory behavior. In the regime−2β + α < n < 2β + α2/(16β) there are two real saddle
points. HereA0(n, α, β) oscillates, but with larger amplitude than for the previousregime
with only one real saddle point since there are two real saddle points contributing. Finally, for
n > 2β + α2/(16β) both saddle points are again imaginary, andA0(n, α, β) is exponentially
small.

Case 2. 8β ≤ α. In this case, there are three regimes. As for case 1, whenn < −α − 2β,
both saddle points are imaginary. For−2β − α < n < −2β + α there is one real saddle point
contributing, and forn > −2β + α both saddle points are imaginary.

Whenα = 8β, case 1 and case 2 coincide. The two cases are illustrated by an explicit example
in Fig. 5.2. Further numerical examples are shown in Figs. 5.3, 5.4 and 5.5, to get a feeling
for the behavior of the generalized Bessel function as a function of the indexn and of the
argumentsα andβ. We conclude that a mathematical treatment confirms the physical cutoff
law, Eq. (2.49).

Asymptotic formulas

As for the Bessel functionJn(α) in section 5.2.1, we can use the saddle point approximation to
obtain asymptotic formulas for the generalized Bessel function, corresponding to the asymptotic
limits (5.12) and (5.13) of the usual Bessel function. Theseformulas are valid far from the
turning points, that is, where the saddle point configuration changes character, and are exact in
the limit where either ofα, β, |n| → ∞. In the following formulas [102] we set

F (z) = i (−nz + α sin z − β sin(2z)) , (5.39)

and

z± = ± arccos

(
α

8β
±
√

α2

64β2
+

1

2
− n

4β

)
. (5.40)

We have the for the two different cases, using the labeling from Fig. 5.2 (the following asymp-
totic formulas were first found in [102]):
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Figure 5.2: Different saddle point contributions toA0(n, α, β). In the left graph, we have
8β > α, with four regions labeleda1–d1. We haven < −2β − α = −3 × 103 in regiona1,
−2β − α < n < −2β + α = −103 in regionb1, −2β + α < n < 2β + α2

16β
= 2062.5 in region

c1, andn > 2β + α2

16β
in regiond1. In the right graph we haven < −2β − α = −1.2 × 103 in

regiona2, −2β − α < n < −2β + α = 800 in regionb2, and−2β + α < n in regionc2. The
transition between the different regions are clearly visible, and makes it possible to speak about
a “plateau” and “cutoff” of the generalized Bessel function.

Case 1. 8β ≥ α.
Forn < −α − 2β, regiona1,

A0(n, α, β) ≈ 1

4

√
πβ
√

α2

64β2 + 1
2
− n

4β

(
exp [ReF (z−)]√
− sinh Imz−

+
exp [ReF (z+)]√
− sinh Imz+

)

n�−2β−α≈ 1√
−πn

(
βe

−n

)−n
2

e−
α2

16β cosh

(
α

2

√
−n
β

)
,

(5.41)

for −α− 2β < n < −2β + α, regionb1,

A0(n, α, β) ≈ 1

2

√
πβ
√

α2

64β2 + 1
2
− n

4β

cos
[
ImF (z−) − π

4

]
√

sin z−

−2β−α�n�−2β+α≈
√

2

πα
cos
(
α− nπ

2
− π

4

)
,

(5.42)
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Figure 5.3: Plots of the generalized Bessel functionA0(n, x, y) to illustrate the cutoff rules. In
all graphs the solid red line isnred = |x| + 2|y|, the green dashed line isngreen = |x− 2y| and
the pink dash-dotted line isnpink = (32y2 + x2)/(16y). The lower left and below middle left
are related by the symmetryA0(n,−x, y) = (−1)nA0(n, x, y), and this is also the reason why
the first plateau cutoff is not correctly predicted by the green dashed line.
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Figure 5.4: Demonstration of the complex behavior ofA0(n, α, β) as a function ofα andβ, for
a moderately large value of the indexn = 50. The left graph shows a two-dimensional graph of
the generalized Bessel functionA0(n = 50, α, β), with the value indicated by the color coding
of the adjacent color bar. Recognizable is the central area whereA0(n, α, β) is exponentially
small, according to Eqs. (5.41) and (5.44). The right graph shows the cut atα = 42, along the
dashed line in the left graph. In the right graph, the absolute value|A0(n = 50, α = 42, β)| is
displayed as a function ofβ in logarithmic scale, to display in detail the hole in the center.
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Figure 5.5: Another demonstration of the rich behavior ofA0(n, α, β) as a function ofα and
β, for small indexn = 5. The left graph pictures a two-dimensional plot ofA0(n = 5, α, β),
with the function value indicated by the color. To the right is shownA0(n = 5, α, β = 8) as a
function ofα, as obtained by cutting the left graph along the dashed line (β = 8).
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the same asymptotics as for the usual Bessel function, Eq. (5.12). For−2β + α < n < 2β +
α2/(16β), regionc1,

A0(n, α, β) ≈ 1

2

√
πβ
√

α2

64β2 + 1
2
− n

4β

(
cos
[
ImF (z−) − π

4

]
√

sin z−
+

cos
[
ImF (z+) + π

4

]
√

sin z+

)

−2β+α�n�2β+ α2

16β≈
√

2

πβ
cos

(
α√
2

− nπ

2

)
cos
(
β − π

4
− nπ

4

)
,

(5.43)

and forn > 2β + α2/(16β), regiond1,

A0(n, α, β) ≈ exp [ReF (z−)] cos [ImF (z−) + φ−]

2

√
πnβ

√
n
4β

− α2

64β2 − 1
2

[(
1 + n

4β
− 1

2

)2

− α2

16β2

] 1

8

n�2β+ α2

16β≈ 1√
πn

(
βe

n

)n
2

e
α2

16β cos

(
πn

2
− α

2

√
n

β

)
,

(5.44)

with

φ− =
1

2
arctan

(− cos(Rez−) sinh(Imz−)

sin(Rez−) cosh(Imz−)

)
. (5.45)

Note that the asymptotic formulas (5.41) and (5.44) coincide with the asymptotics (5.13) of the
usual Bessel function ifα = 0, and Eq. (5.27) is used. The asymptotics (5.43) coincide with
(5.12), withα = 0 and Eq. (5.27).

Case 2. 8β ≤ α.
Forn < −α− 2β, regiona2, and−2β − α < n < −2β + α, regionb2, the asymptotic formula
is the same as in case 1, regiona1 andb1. However, in regiona2 we may have very smallβ, for
which formula (5.41) is correct only for very large|n| > α2/(16β). To see that the limitβ → 0
leads to the asymptotics (5.13) for the normal Bessel function, we note that in regiona2,

cos z−
β→0−→ n

α
, (5.46)

which together with the first line in Eq. (5.41) leads to the asymptotics (5.13). Forn > −2β+α,
regionc2, we have the same asymptotic formula (5.44) as in case 1, regiond1. The first line in
Eq. (5.44) has the correct limit forβ → 0.

We conclude this subsection by remarking that for numericalpurposes, it is better to use the full
expressions [the first lines of Eqs. (5.41)–(5.44)], since the asymptotic expressions [the second
lines of Eqs. (5.41)–(5.44)] are valid only for large valuesof the parameters, within the specified
regions. Ifα andβ are large, the asymptotic expressions are not valid forn close to the turning
indicesnt (with turning index is meant the index separating two regions of different saddle point
configuration), even though the actual distance|nt − n| may be large,|nt − n| � 1. The full
expressions are in general good approximations, provided|nt − n| � 1.
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5.3.3 Generalized recursive Miller’s algorithm for generalized Bessel
functions

For many applications in laser-modified QED, in particular for calculation of the cross section
(4.12) for laser-assisted pair creation, a large number of generalized Bessel functionsA0(s, α, β)
of the same argumentsα, β but of different indicess, has to be numerically evaluated. The
fastest way to do this is to observe that the generalized Bessel functions satisfy the recurrence
relation [a rewritten form of Eq. (5.23)]

2βA0(s+ 1, α, β)− αA0(s, α, β) + 2(s− 1)A0(s− 1, α, β)

− αA0(s− 2, α, β) + 2βA0(s− 3, α, β) = 0,
(5.47)

a five-term (fourth order) recurrence relation, with four linearly independent solutions, of which
A0(s, α, β) constitutes only one. This should be compared with the simpler recurrence relation
for the usual Bessel functionJs(α):

−αJs+1(α) + 2sJs(α) − αJs−1(α) = 0, (5.48)

which is obtained if you setβ = 0 in equation (5.47). However, contrary to the case with
Js(α), the recurrence relation (5.47) can not be used directly fornumerical evaluation, since
it is numerically unstable in both directions ofs. We illustrate this statement by showing in
Fig. 5.6 the character of the four different solutions to therecurrence relation (5.47).

The trick is now to define a new three-term recursion relationwhich is numerically stable. The
price for reducing the five-term recurrence relation is thatnow also the coefficients have to
satisfy another recursion relation. The idea here comes from [135], where a similar technique is
used in connection with calculations on gravitational waves. We make a transformation so that
the following recursion relation holds:

2βA0(s− 1, α, β) + C1(s)A0(s, α, β) + C2(s)A0(s+ 1, α, β) = 0, (5.49)

with

B1(s) = − α− 4β2

B3(s+ 1)
,

B2(s) =2(s+ 1) − 2βB1(s+ 1)

B3(s+ 1)
,

B3(s) = − α− 2βB2(s+ 1)

B3(s+ 1)
,

(5.50)

and

C1(s) =B1(s) −
2βB3(s)

C2(s+ 1)
,

C2(s) =B2(s) −
C1(s+ 1)B3(s)

C2(s+ 1)
.

(5.51)

These recursion relations are now stable, if the recursion (5.50), (5.51) for the coefficients is
performed in the direction of decreasings, and the recursion (5.49) for the generalized Bessel
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Figure 5.6: The four linearly independent solutions to the recurrence equation (5.47), here
calledA0(s) (the true generalized Bessel functionA0(s, α, β), the red line),X(s) (light blue
line), Y (s) (blue line), andZ(s) (green line). The valuesα = β = 1000 were used for the
calculation. The dashed lines indicate the turning pointss1 = −3000, s2 = −1000, and
s3 = 2062.5. Note that the constant prefactors of the solutionsX(s), Y (s), andZ(s) are
chosen so that the different curves are easily visible on thescale used for this graph, to illustrate
the different qualitative behavior. Out of the four solutions, onlyA0(s, α, β) is normalizable
(finite sum

∑
s |A0(s, α, β)|). The graph clearly shows why the recurrence equation (5.47) can-

not be used directly for numerical evaluation. For example,in the regions1 ≤ s ≤ s2, the
sought solutionA0(s) neither dominates nor is dominated by the other solutions, we have here
|Y (s)| > |A0(s)| > |Z(s)|. This means that recursion in both directions is numerically un-
stable, since eitherY (s) or Z(s) will swamp the calculated solution. The algorithm described
in this subsection effectively filters away two solutions,X(s) andY (s), orX(s) andZ(s) de-
pending on the recurrence direction, so that only two solutions remain. With only two solutions
remaining, a variant of Miller’s algorithm (see subsection5.2.3) can be formulated, and allows
for fast evaluation of the generalized Bessel functionA0(s, α, β).
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functionsA0(s, α, β) themselves in the other direction, that is, increasings. In the other direc-
tion, we have correspondingly

2βA0(s+ 1, α, β) + C̃1(s)A0(s, α, β) + C̃2(s)A0(s− 1, α, β) = 0, (5.52)

with

B̃1(s) = − α− 4β2

B̃3(s− 1)
,

B̃2(s) =2(s− 1) − 2βB̃1(s− 1)

B̃3(s− 1)
,

B̃3(s) = − α− 2βB̃2(s− 1)

B̃3(s− 1)
,

(5.53)

and

C̃1(s) =B̃1(s) −
2βB̃3(s)

C̃2(s− 1)
,

C̃2(s) =B̃2(s) −
C̃1(s− 1)B̃3(s)

C̃2(s− 1)
,

(5.54)

where the recurrence (5.53), (5.54) for the coefficients arestable for increasings and recurrence
(5.52) for decreasings. In addition, numerical experiments show that the both the downward
[upward] recursion (5.50), (5.51) [(5.53), (5.54)] for thecoefficients and the upward [down-
ward] recursion (5.49) [(5.52)] is exponentially stable, which means thatany non-vanishing
initial condition will do, provided the recursion is started at enough large indexs0. The reason
for this remarkable stability can be traced back to the rapidgrowth of the complementary so-
lution Z(s) (or Y (s), depending on the direction of recurrence) beyond the cutoff index. See
Fig. 5.6. There are now two ways of utilizing the stable recurrence formulas for calculation of
large arrays ofA0(s, α, β), described below.

Calculation of A0(s, α, β) with the recurrence relation and the normalization condition

Together with the normalization condition

∞∑

s=−∞

A0(s, α, β) = 1, (5.55)

obtained by settingθ = 0 in Eq. (5.16), the recurrence relations described above canbe used
to compute the complete arrayA0(s0− ≤ s ≤ s0+, α, β) with s0− (s0+) smaller (bigger) than
the corresponding cutoff index [see Eq. (2.49)] by using nothing but the recurrence relations.
Remarkably, no initial conditions are needed. In practice,the algorithm proceeds as follows:
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Step 1. Fix the starting indicess0+ > spos. cutoffands0− < sneg. cutoff. Calculate the four arrays
C1,2(s0− < s < s0+) [using recurrence relations (5.50), (5.51), starting froms = s0+ with
arbitrary initial conditions and recurring towards smaller s] and C̃1,2(s0− < s < s0+) [using
recurrence relations (5.53), (5.54), starting froms = s0− with arbitrary initial conditions and
recurring towards largers].

Step 2. Calculate the two arraysK(s0− < s < s0+) [using recurrence relation (5.49), start-
ing from s = s0− with arbitrary starting values, for exampleK(s0−) = 1, K(s0− + 1) = 0,
and recurring upwards] and̃K(s0− < s < s0+) [using recurrence relation (5.52), starting from
s = s0+ with arbitrary starting values, and recurring downwards].In this step one must be
careful against computer overflow and underflow.

Step 3. The arraysK andK̃ are now approximately proportional to the trueA0(s, α, β), in
the region where they are converged:

K(sneg. cutoff≤ s ≤ s0+) ∝ A0(sneg. cutoff≤ s ≤ s0+, α, β),

K̃(s0− ≤ s ≤ spos. cutoff) ∝ A0(s0− ≤ s ≤ spos. cutoff, α, β).
(5.56)

We now normalizeK andK̃ with respect to each other ats = 0 (or any other suitable index, if
K̃(0) happens to be very small):

L(s0− < s < s0+) = K̃(s0− < s < s0+)K(0)/K̃(0). (5.57)

Then merge the two arraysK andL into one arrayM ,

M(s0− < s < s0+) =

{
L(s) if s0− ≤ s ≤ 0,
K(s) if 1 ≤ s ≤ s0+.

(5.58)

Step 4. Finally, the approximation to the true generalized Bessel function is given by normal-
izingM with the condition (5.55):

A0(s0− ≤ s ≤ s0+, α, β) ≈ M(s0− ≤ s ≤ s0+)∑s0+

s=s0−
M(s)

. (5.59)

Figure 5.7 illustrates the accuracy that is obtained by employing the algorithm described above.
For this purpose, we let̃A0(sneg. cutoff ≤ s ≤ spos. cutoff, α, β) be the values obtained by the
generalized recursive Miller’s algorithm, starting at indices

s0+ = spos. cutoff+ ∆s, s0− = sneg. cutoff− ∆s, (5.60)

(seeStep 1.above), andA0(sneg. cutoff≤ s ≤ spos. cutoff, α, β) be the true value of the generalized
Bessel function. We then define the average relative errorεrel as

εrel =

∑spos. cutoff
s=sneg. cutoff

∣∣∣ Ã0(s,α,β)−A0(s,α,β)
A0(s,α,β)

∣∣∣
spos. cutoff− sneg. cutoff

. (5.61)
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Figure 5.7: This graph displays the average relative errorεrel, defined in Eq. (5.61), of the
calculated generalized Bessel functionÃ0(s, α, β), as a function of the starting index difference
∆s, defined in Eq. (5.60). We see that up to 25 significant figures can easily be obtained. At a
certain value≈ 10−30, the obtainable accuracy is limited by the machine precision, in this case
quadruple precision arithmetic was used (roughly 32 decimals accuracy).

The reference value, the “true” valueA0(s, α, β), is calculated by the same algorithm, but with
a sufficiently large∆s so that highest obtainable precision is reached.

Calculation of A0(s, α, β) with the recurrence relation and initial values

An alternative way to utilize the stable recurrence relations requires two initial values, say
A0(0, α, β) andA0(1, α, β). These values have to be calculated in some independent way,ei-
ther by the definition (5.18) and Miller’s algorithm for the usual Bessel function as described in
5.2.3, or by a suitable asymptotic expansion, see section 5.3.2 and [102]. Below, we describe
the algorithm for positive indicess, the case for negatives is completely analogous.

Step 1. Fix the starting indexs0+ > spos. cutoff. Calculate the two arraysC1,2(1 < s < s0+)
[using recurrence relations (5.50), (5.51), starting froms = s0+ with arbitrary initial conditions
and recurring towards smallers].

Step 2. Use the recurrence relation (5.49) in the direction of growings, starting from the ini-
tial valuesA0(0, α, β), A0(1, α, β) and calculate in a stable way the whole arrayA0(0 ≤ s ≤
s0+, α, β).

117



CHAPTER 5: An essential ingredient of laser-modified QED processes:generalized Bessel
functions

This way of using the recurrence relation demands fewer recurrence runs, to the price of
having to calculate the initial conditions by some independent way. We have numerically
tested that essentially no significant figures get lost in therecursion step, so the accuracy
of this method is limited by the precision of the initial valuesA0(0, α, β) andA0(1, α, β).
We estimated numerically the minimum value ofNmin = s0 − spos. cutoff, the difference be-
tween the cutoff index and the starting index, that is required to reach the same precision for
all valuesA0(2 ≤ s ≤ s0+, α, β) as the initial valuesA0(0, α, β), A0(1, α, β), and found
Nmin ≈ Ξ (spos. cutoff)

0.3. HereΞ is a constant depending onα andβ of orderO(10). As a
numerical example, takeα = 103 = β, so thatspos. cutoff≈ 2.06× 103. ThenNmin ≈ 100, which
is one order of magnitude smaller than the cutoff indexspos. cutoff. The fast convergence is due
to the rapid falloff of the generalized Bessel function (andrapid growth of the complementary
solution) beyond the cutoff index.

5.3.4 Explanation of the stability of the generalized recursive Miller’s al-
gorithm

Why the algorithm described in subsection 5.3.3 works is explained by the theory in [132,175].
The key observation is that solving the recurrence system (5.47) forAa+2<s≤b−2, with a, b being
some integers, and with the boundary valuesAa+1, Aa+2, Ab−1, Ab assumed to be known (in the
rest of this discussion we suppress the dependence onα andβ and writeAs for A0(s, α, β) for
increased readability), is equivalent to solving the matrix equation

PY = ρ, (5.62)

where

P =




2(a+ 3) −α 2β 0 . . .
−α 2(a+ 4) −α 2β 0 . . .
2β −α 2(a+ 5) −α 2β 0 . . .
0 2β −α 2(a+ 6) −α 2β 0 . . .

0 0
. . . . . . . . . . . . . . . 0

. . . 0 2β −α 2(b− 5) −α 2β 0
. . . 0 2β −α 2(b− 4) −α 2β

. . . 0 2β −α 2(b− 3) −α
. . . 0 2β −α 2(b− 2)




,

(5.63)

Y =




Aa+3

Aa+4
...

Ab−3

Ab−2



, (5.64)
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and

ρ = −




2βAa+1 − αAa+2

2βAa+2

0
...
0

2βAb−1

2βAb − αAb−1




. (5.65)

We see that the vectorρ carries the boundary condition information. Now, one can show [132]
that the generalized Miller’s algorithm described in section 5.3.3 is equivalent to solving the
matrix equation (5.62) by factorizing the matrixP into P = LU , with

L =




L2
a+1 0 . . .

L3
a+2 L2

a+2 0 . . .
L4

a+3 L3
a+3 L2

a+3 0 . . .
0 L4

a+4 L3
a+4 L2

a+4 0 . . .

0 0
. . . . . . . . . 0 . . .

. . . 0 L4
b−5 L3

b−5 L2
b−5 0

. . . 0 L4
b−4 L3

b−4 L2
b−4




, (5.66)

and

U =




U2
a+1 U1

a+1 U0
a+1 0 . . .

0 U2
a+1 U1

a+1 U0
a+1 0 . . .

0 0
.. . . . . . . . 0 . . .

. . . 0 U2
b−7 U1

b−7 U0
b−7 0

. . . 0 U2
b−6 U1

b−6 U0
b−6

. . . 0 U2
b−5 U1

b−5

. . . 0 U2
b−4




, (5.67)

and back-substituting using the intermediate vector

ζ =




ζa+3
...

ζb−2


 , (5.68)

satisfying
Lζ = ρ, (5.69)

UY = ζ, (5.70)

so thatPY = LUY = ρ. Solving the matrix equation (5.70) is in turn equivalent tosolving
the recurrence relation

U2
sAs+2 + U1

sAs+3 + U0
sAs+4 = 0, s ≥ a + 1, (5.71)

with boundary conditions contained inζ. The recursion relation (5.71) is now of second order.
Thus, instead of solving the fourth-order recurrence relation (5.47), it is sufficient to solve the
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second-order system (5.71). It can be shown [132] that the two solutions to the second-order
recurrence relation (5.71) [corresponding to Eqs. (5.49) and (5.52)] are precisely the sought
A0(s, α, β) and another functiony(s, α, β) which falls off much faster as a function ofs com-
pared toA0(s, α, β) [for example, for forward recursionA0(s, α, β)/y(s, α, β)

s→∞−→ 0], so that
a variant of Miller’s algorithm, without initial values, can be used. Our algorithm can be said to
separate the recursion relation, so that the exponentiallygrowing solutions are factorized out,
leaving the generalized Bessel functionA0(s, α, β) as the dominant solution.

5.3.5 The functionSn

Important for the applications of the generalized Bessel functions, in particular in chapter 4, is
the functionSn, a function of 5 variables and one integer index, defined through a sum over
products of generalized Bessel functions,

Sn(C, α, β, α̃, β̃) ≡
∞∑

s=−∞

A0(s, α, β)A0(s− n, α̃, β̃)

s+ C
, (5.72)

whereC is non-integer. Convergence of the sum (5.72) is guaranteedby the fast asymptotic
falloff beyond the cutoff index of the generalized Bessel functions. It is this function that is
responsible for the intermediate propagator sum in the matrix element (4.5).

Expansion for largeC

If |C| > |α|, |β|, then by using the expansion

1

s+ C
=

1

C
− s

C2
+
s2

C3
+ . . . , (5.73)

we can obtain an expansion of the functionSn around the simpler generalized Bessel function
A0(n, δ, γ), whereδ = α− α̃ andγ = β − β̃. We have

Sn =
A0(n, δ, γ)

C
+
W2(n, δ, γ)

C2
+
W3(n, δ, γ)

C3
+
W4(n, δ, γ)

C4
+ . . . , (5.74)

where

W2(n, δ, γ) = −α
2

[A0(n− 1, δ, γ) + A0(n + 1, δ, γ)] + β [A0(n− 2, δ, γ) + A0(n+ 2, δ, γ)] ,

(5.75)
and the more involved third and fourth order corrections read

W3(n, δ, γ) =
α2

4

(
2A0(n, δ, γ) + A0(n+ 2, δ, γ) + A0(n− 2, δ, γ)

)

− βα
(
A0(n− 1, δ, γ) + A0(n + 1, δ, γ) + A0(n+ 3, δ, γ) + A0(n− 3, δ, γ)

)

+ β2
(
2A0(n, δ, γ) + A0(n+ 4, δ, γ) + A0(n− 4, δ, γ)

)
,

(5.76)
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and

W4(n, δ, γ) = − α3

8

(
3A0(n+ 1, δ, γ) + 3A0(n− 1, δ, γ) + A0(n + 3, δ, γ) + A0(n− 3, δ, γ)

)

+
3α2β

4

(
3A0(n, δ, γ) + 3A0(n+ 2, δ, γ) + 3A0(n− 2, δ, γ)

+ A0(n+ 4, δ, γ) + A0(n− 4, δ, γ)
)

− 3αβ2

2

(
3A0(n+ 1, δ, γ) + 3A0(n− 1, δ, γ) + A0(n− 3, δ, γ)

+ A0(n+ 3, δ, γ) + A0(n− 5, δ, γ) + A0(n+ 5, δ, γ)
)

+ β3
(
3A0(n− 2, δ, γ) + 3A0(n+ 2, δ, γ) + A0(n+ 6, δ, γ) + A0(n− 6, δ, γ)

)
.

(5.77)

From the expansion (5.74), it is clear that ifC is larger than both of the cutoff indices for
A0(s, α, β) andA0(s − n, α̃, β̃), the cutoff behavior of the functionSn(C, α, β, α̃, β̃) is equiv-
alent to that of the generalized Bessel functionA0(n, α − α̃, β − β̃), which is easy to analyze.
The transition fromC smaller than the cutoff index toC larger than the cutoff index is shown
in Fig. 5.8.

Relation between different indices

We also state some useful relations betweenSn and sums of products of generalized Bessel
functionsAK(n, α, β) of different indicesK. First, recall the definition

AK(s, α, β) =
1

2

(
AK−1(s− 1, α, β) + AK−1(s+ 1, α, β)

)
, (5.78)

whereK is a positive integer. We have (supressing the dependence onα, β, α̃, β̃)

∑

s

A0(s, α, β)A1(s− n, α̃, β̃)

s + C
=

1

2

[
Sn+1(C) + Sn−1(C)

]
, (5.79)

∑

s

A1(s, α, β)A0(s− n, α̃, β̃)

s+ C
=

1

2

[
Sn+1(C − 1) + Sn−1(C + 1)

]
, (5.80)

∑

s

A1(s, α, β)A1(s− n, α̃, β̃)

s+ C
=

1

4

[
Sn(C + 1) + Sn−2(C + 1)

+ Sn+2(C − 1) + Sn(C − 1)
]
,

(5.81)

∑

s

A0(s, α, β)A2(s− n, α̃, β̃)

s+ C
=

1

4

[
2Sn(C) + Sn−2(C) + Sn+2(C)

]
, (5.82)

∑

s

A2(s, α, β)A0(s− n, α̃, β̃)

s+ C
=

1

4

[
Sn(C − 1) + Sn+2(C − 1)

+ Sn−2(C + 1) + Sn(C + 1)
]
,

(5.83)
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Figure 5.8: Cut-off properties of the functionSn(B, α, β, α̃, β̃) [for definition, see Eq. (5.72)],
for different values ofB. In all graphsα = 2300, β = 1230, α̃ = 1340 andβ̃ = 1560. The
blue line shows the functionSn(B, α, β, α̃, β̃), the green line shows for comparison the function
A0(n,α−α̃,β−β̃)

B
, multiplied with a factor10−4 for clarity. Visible is the multiple plateau structure

of the functionSn(B, α, β, α̃, β̃). For values ofB & 4860 the cutoff occurs in practice at the
same value forn as forA0(n, α − α̃, β − β̃), which has the cut-off values [see equation (2.49)

on page 27]n = |α− α̃| + 2|β − β̃| = 1620 andn = |α−α̃|2+32|β−β̃|2

16(β−β̃)
≈ −835.
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∑

s

A1(s, α, β)A2(s− n, α̃, β̃)

s+ C
=

1

8

[
Sn+1(C + 1) + 2Sn−1(C + 1) + Sn−3(C + 1)

+ Sn−1(C − 1) + 2Sn+1(C − 1) + Sn+3(C − 1)
]
,

(5.84)

∑

s

A2(s, α, β)A1(s− n, α̃, β̃)

s+ C
=

1

8

[
Sn−1(C + 2) + Sn−3(C + 2) + 2Sn+1(C)

+ 2Sn−1(C) + Sn+3(C − 2) + Sn+1(C − 2)
]
,

(5.85)

and finally

∑

s

A2(s, α, β)A2(s− n, α̃, β̃)

s+ C
=

1

16

[
4Sn(C) + 2Sn−2(C) + 2Sn+2(C) + 2Sn+2(C − 2)

+ Sn(C − 2) + Sn+4(C − 2) + 2Sn−2(C + 2)

+ Sn(C + 2) + Sn−4(C + 2)
]
.

(5.86)

Also needed is

∑

s

sA0(s, α, β)A0(s− n, α̃, β̃)

s+ C
=
α

2

[
Sn−1(C + 1) + Sn+1(C − 1)

]

− β
[
Sn−2(C + 2) + Sn+2(C + 2)

]
,

(5.87)

∑

s

sA0(s, α, β)A1(s− n, α̃, β̃)

s+ C
=
α

4

[
Sn(C + 1) + Sn+2(C − 1) + Sn−2(C + 1)

+ Sn(C − 1)
]
− β

2

[
Sn−1(C + 2) + Sn+3(C − 2)

+ Sn−3(C + 2) + Sn+1(C − 2)
]
,

(5.88)

obtained using the recursion relations (5.23). Another useful symmetry is

Sn(C − n, α, β, α̃, β̃) = S−n(C, α̃, β̃, α, β). (5.89)
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Chapter 6

Conclusions and outlook

6.1 General conclusions and summary of obtained results

The aim of this thesis was to advance the understanding of second-order laser-modified QED
processes. This goal has been achieved, resulting in particular in a thorough investigation of the
following processes: laser-assisted bremsstrahlung and laser-assisted/laser-induced pair cre-
ation. Apart from theoretical results, special emphasis was put on the actual numerical evalua-
tion of the formulas involved. The main results of this thesis are the numerical values produced
from the formulas of laser-modified QED, presented in a number of plots in chapters 3 and 4.

After an introduction to the subject of QED in strong laser fields in chapter 1, in chapter 2, we
reviewed the solution of the problem of the motion of an electron in an electromagnetic plane
wave in two ways, both classically and quantum mechanically. By integrating the relativistic,
classical equations of motion and the Dirac equation, we sawthat this system allows for an
analytic solution. Moreover, we recognized the strong quantum-classical correspondence of the
classical solution and the quantum Volkov solution. In particular, the probability for a quantum
electron in a laser wave to occupy instantaneous energy levels with energies larger (or smaller)
than the classically allowed values is exponentially small. This correspondence also provided
an intuitive, physical explanation for the cutoff behaviorof the generalized Bessel functions, the
special functions that appear as coefficients in the plane wave Fourier expansion of the Volkov
wave function.

An expression for the Dirac-Volkov propagator was also presented, suitable for application to
calculation of differential cross sections for higher-order laser-dressed QED processes. In the
appendix section B.1, we demonstrated the completeness property of Volkov states.

In chapter 3 we described in detail the evaluation of the cross section for laser-assisted brems-
strahlung. While the analytic expression for the cross section was known previously, no concrete
numerical evaluation had been performed. This step is achieved in this thesis. Furthermore, we
showed how to properly regularize the Green’s function singularities by adding an imaginary
part to the laser-dressed electron’s mass and energy. Thesesingularities arise due to the pos-
sibility of the second-order bremsstrahlung process to split up into two first order processes,
laser-induced Compton scattering and laser-assisted Coulomb scattering. There are other ways
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of regularizing these singularities, but the discussion insection 3.4.2 showed that the method
employed in this thesis gives the dominant contribution in the limit of long laser pulses. Anal-
ogous to the lifetime of a discrete energy state, the lowest order imaginary correction to the
electron’s mass can be calculated as the total rate of one-photon decay of a Volkov state. Em-
ploying the mentioned way of regularizing the Green’s function singularities, we performed a
number of calculations of the laser-assisted bremsstrahlung cross section for different values of
the intensity parameterξ and directions of the emitted bremsstrahlung photon. Considering a
head-on collision of an electron and a laser beam, a large number of resonant peaks was found,
mainly when the photon is emitted in almost the same direction as the incoming electron. In
section 3.5.4 we showed that quite surprisingly, the full, laser-dressed Dirac-Volkov propagator
cannot be well approximated by the free electron propagator, even if the bremsstrahlung pho-
ton energyωb is much larger than the laser energyω. Both direct numerical calculations were
performed and an intuitive picture was found to support thisclaim.

As a second project, we have applied the formalism describedin chapter 2 to the process of
laser-modified pair creation by a gamma photon and a nuclear Coulomb field, with the results
presented in chapter 4. The formal expression for the matrixelement is related to that of laser-
assisted bremsstrahlung by a crossing symmetry, however, the characteristics and qualitative
behavior as well as the numerical evaluation of this processare rather different compared to
the laser-assisted bremsstrahlung case. Here we investigated the influence of a subcritical (with
respect to Schwinger’s critical field) laser field on the process of pair creation. That the field
is subcritical means that the laser itself cannot create anypairs, so that the total cross section
stays almost unchanged. This assertion was shown both by theoretical arguments and by ex-
plicit numerical evaluation of the laser-dressed cross section, which required sixfold numerical
integration. Differential cross sections were calculatedfor two configurations of laser field and
gamma photon: the collinear case, where the photon and the laser beam propagate in the same
direction, and the counter propagating case where the gammaphoton and the laser beam are
set up to collide head on. The latter case with counter propagating gamma photon and laser
field is the most interesting from a theoretical point of view, while the first case with collinear
gamma photon and laser may be most useful for applications. In particular, we found that in the
collinear case, both the gamma photon and the laser work together to strongly focus the created
pairs. The pairs are created by the highly energetic gamma photon and then accelerated by the
laser field to emerge outside the laser field at a characteristic angleθ ≈ 1/ξ. This setup may
thus provide a realizable way of measuring nonlinear laser effects related to electron-positron
pair production.

A necessary ingredient in our approach to laser-modified QEDby Fourier expansion of the wave
functions and propagators was the generalized Bessel function A0(n, α, β), a special function
occurring naturally in problems where the laser is linearlypolarized. In chapter 5 we gave a
thorough review of the properties of generalized Bessel functions, together with references to
literature perhaps not so widely read by physicists. We alsofound an important new result:
a stable recursive algorithm for evaluation of generalizedBessel functions. This kind of al-
gorithm, usually referred to as Miller’s algorithm, is the standard way of evaluating the usual
Bessel functionJn(α) based on the second-order recurrence relation satisfied byJn(α). How-
ever, forA0(n, α, β) such an algorithm was not previously known, due to the more complex
behavior of the fourth-order recurrence relation satisfiedby the generalized Bessel function.
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This algorithm was crucial for the evaluation of the cross section for laser-dressed pair creation
in the counter propagating configuration in section 4.3.

In conclusion, we have shown that it is possible to numerically evaluate second-order laser-
assisted QED cross sections in the relativistic domain, using the Dirac-Volkov propagator.

6.2 Outlook

In chapter 3 we described the calculation of the cross section for laser-assisted bremsstrahlung
in the resonance region. We employed the imaginary energy regularization, although other ways
of regularization are possible, for example by limiting thepulse length of the laser field. One
important future project is therefore to do the calculationin another regularization scheme, and
compare the results. One open question is how the bremsstrahlung cross section compares to the
corresponding rate of laser-induced Compton scattering, if a finite laser pulse length is assumed.
For an infinite laser field, as was assumed in this thesis, the rate for laser-induced Compton
scattering as a function of the emitted photon frequency, with fixed direction of the emitted
photon, is a series of delta function peaks and cannot be compared directly to the bremsstrahlung
cross section. However, by introducing a finite pulse length, the delta function peaks acquire a
width, and the rate can then be compared to the correspondingbremsstrahlung rate.

Regarding the pair creation process, it would be interesting to investigate the behavior of the
total cross section more in detail. For the collinear case, this should be possible, at least in
some limiting cases, since the polarization operator in a laser field is known for arbitrary laser
polarization and frequency [14], and the collinear system of one laser wave + one energetic
photon is nothing else than a plane wave with one strong, low-frequency, and one weak, high-
frequency component. The total probability for pair production can then be calculated as the
imaginary part of the polarization operator contracted with the Coulomb field photon, much like
it is done in [112]. Presumably, the correction to the Bethe-Heitler cross section, forωγ ' 2m,
is proportional toχ2 = ξ2ω2/m2, whereω is the frequency of the laser field in the rest frame of
the nucleus.

Other laser-modified QED processes may be treated with the same theoretical framework pre-
sented in this thesis, with fast numerical evaluation provided by the novel recursive evalua-
tion algorithm for the generalized Bessel functions. One interesting process is field-induced
pair production by an electron, which has not been treated ina laser field before (calculations
for the case of an external magnetic field exist, see [9], and for the crossed field configura-
tion [117, 153]). The Feynman diagram is shown in Fig. 6.1. Here the electron emits a virtual
photon that decays into a laser-dressed electron-positronpair. In this process, the virtual photon
can become real, and this Green’s function pole has to be treated correctly.

Finally, a theoretically challenging question is how to include the Coulomb-field interaction
in laser-dressed problems on a nonperturbative level, in particular in connection with electron-
positron pair production. By employing the Dirac-Volkov propagator one can calculate second-
order, and maybe third-order, corrections to the rate of pairs produced by a laser field and a
Coulomb field. However, if an all-order treatment for the Coulomb field becomes necessary
(for Z ≈ 100, say), then something beyond the perturbative approach is needed. The first
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Figure 6.1: Feynman diagram for electron-positron pair production by a laser-dressed electron.
The diagram where the two final electrons are exchanged should also be added.

step should be to find an approximate form of the electron (andpositron) wave function in the
combined system of a strong laser and a strong Coulomb field.
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Appendix A

Basics of strong-field QED

A.1 The Furry picture in the presence of a strong laser field

In this section we establish the Feynman rules for intense laser-modified QED, used for the
calculations in chapters 3 and 4. This way of treating one field nonperturbatively, and the
interaction with all the other fields perturbatively is originally due to Furry [69], who used it to
treat electrons bound in a Coulomb field. We follow a simplified way, the propagator approach,
similar to the one in [28, 66, 67]. To this end, we start with the Dirac equation, coupled to an
electromagnetic field

(
i∂̂ −m− eÂtotal

)
Ψ(x) =

(
Dfree− eÂtotal

)
Ψ(x) ≡ DtotalΨ(x) = 0, (A.1)

whereAtotal = Alaser+Ainter. is the total interaction potential, the sum of the laser vector potential
and of the rest of the interactions (perturbative photons, Coulomb fields). The goal is now to
solve Eq. (A.1) in a perturbative way, and for the moment we assume that the laser is weak as
well. We note that the exact solution to Eq. (A.1) can be written as

Ψ(x) = ψ(x) +

∫
d4x′Gfree(x, x

′)eÂtotal(x
′)Ψ(x′), (A.2)

providedGfree(x, x
′), the free Green’s function, satisfies

DfreeGfree(x, x
′) = δ(x, x′), (A.3)

and whereψ(x), satisfyingDfreeψ(x) = 0, is a function inserted to satisfy the boundary con-
ditions when the potential is turned off. The Green’s function, or propagator, of the free Dirac
equation is known [141],

Gfree(x, x
′) =

1

(2π)4

∫
d4p

p̂+m

p2 −m2 + iε
e−ip(x−x′)

=
−i

(2π)3

∫
d3p

x′0−x0

|x′0−x0|
Epγ

0 − p · γ +m

2Ep

eip·x−iEp |x′0−x0|,

(A.4)
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whereEp =
√

p2 −m2 . This free Green’s function realizes the Feynman boundary condi-
tions [28, 66, 67], which ensure that frequency components with negative frequency are prop-
agated backwards in time, while positive frequencies are propagated forward in time. The
Feynman boundary conditions make it possible to treat pair creation problems as scattering
problems, by taking the initial state atx0 = −∞ to be a negative-energy state which scatters
into a positive energy state, with the interpretation that one positron and one electron have been
created. Equation (A.2) is an implicit solution, that is, the wave functionΨ(x) is expressed in
terms of itself. However, Eq. (A.2) provides a way to obtain aperturbative solution, valid if
the interaction is weak. To see this, replaceΨ(x′) under the integral in Eq. (A.2) with the same
expression,

Ψ(x) =ψ(x) +

∫
d4x′Gfree(x, x

′)eÂtotal(x
′)ψ(x′)

+

∫
d4x′d4x′′Gfree(x, x

′)eÂtotal(x
′)Gfree(x

′, x′′)eÂtotal(x
′′)Ψ(x′′),

(A.5)

a double integral, with terms up to second order in the interactionAtotal. This procedure can
be iterated up to arbitrary orders, and it is assumed that theexpansion converges, even if a
strict proof of convergence is difficult [28]. To obtain the approximate wavefunction, we take
Ψ(x′′) = ψ(x′′) (with the free wave function satisfyingDfreeψ = 0) under the integration in
Eq. (A.5), so that

Ψ(x) ≈ψ(x) +

∫
d4x′Gfree(x, x

′)eÂtotal(x
′)ψ(x′)

+

∫
d4x′d4x′′Gfree(x, x

′)eÂtotal(x
′)Gfree(x

′, x′′)eÂtotal(x
′′)ψ(x′′),

(A.6)

a second-order approximation to the true wave function. If the interaction potential is a sum of
two different terms,

Atotal(x) = A1(x) + A2(x), (A.7)

and we want to account for first-order interaction in both potentials, the second-order term [the
last term in Eq. (A.5)] has two terms,

Ψ(x) =

∫
d4x′d4x′′Gfree(x, x

′)
[
eÂ1(x

′)Gfree(x
′, x′′)eÂ2(x

′′)

+ eÂ2(x
′)Gfree(x

′, x′′)eÂ1(x
′′)
]
Ψ(x′′).

(A.8)

To obtain a second-order transition amplitudesS, we assume an initial free wave functionψi(x)
and a finalΨf (x) and calculate the overlap integral (considering only second-order terms), using
the approximation (A.6) forΨf(x):

S =

∫
d4xΨf(x)Ψi(x)

=

∫
d4xd4x′d4x′′ψfree,f(x

′′)eÂtotal(x
′′)Gfree(x

′′, x′)eÂtotal(x
′)Gfree(x, x

′)ψi(x)

=

∫
d4x′d4x′′ψfree,f(x

′′)eÂtotal(x
′′)Gfree(x

′′, x′)eÂtotal(x
′)ψi(x

′).

(A.9)
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If we now let the interaction consist of a Coulomb potentialAC and the vector potentialAb of
an emitted photon, that is we letAtotal = AC + Ab in (A.9), we recover the matrix element for
bremsstrahlung (without a laser), leading to the Bethe-Heitler cross section [see Eqs. (3.49) and
(3.50) on page 51].

The trick that makes it possible to treat the strong laser potential nonperturbatively is now to
include the laser interaction potential in the operatorDfree, that is, we let

Dlaser = i∂̂ −m− eÂlaser (A.10)

replace the free operatorDfree in Eq. (A.1). All the steps following Eq. (A.1) now go through
unchanged, provided we identifyDfree with the laser-modified operatorDlaser, and the free wave
functionψ(x) with the Volkov states, exact solutions to

DlaserψVolkov(x) = 0, (A.11)

and the free Green’s functionGfree with the Dirac-Volkov Green’s functionGDirac-Volkov, satisfy-
ing

DlaserGDirac-Volkov(x, x
′) = δ(x− x′). (A.12)

Thus, to calculate a laser-modified QED amplitude, we draw the usual Feynman diagram in
coordinate space, but replace the external electron lines with Volkov statesψVolkov, and the
internal propagator lines with Volkov propagatorsGDirac-Volkov. The ensuing integration over the
interaction space-time coordinates gives the amplitude. The method relies on the assumption
that the laser is a plane wave,Alaser(x) = Alaser(k · x). The functionsGDirac-Volkov andψVolkov

are described in detail in chapter 2. Transition amplitudesare now calculated between different
Volkov states, with the transition caused by a perturbationfrom a non-laser mode photon or
another external field, or both. That this works relies on thefact that a Volkov state can be
uniquely labeled by its asymptotic momentump, or equivalently its effective momentumq [see
Eq. (2.33)]. The asymptotic momentum does not change insidea plane laser wave, which is
crucial for pair creation processes: Since a plane laser wave cannot create pairs, the sign of the
zeroth componentp0 does not change unless the Volkov state is perturbed.

A.2 Cutkosky’s rules and the optical theorem

The Cutkosky rules, originally derived in [43], basically relates the imaginary part of a forward
scattering amplitude with the total probability, or the same amplitude squared. This is also
called the optical theorem, and has a classical counterpart[84]. For Feynman diagrams, we
have that for the amplitude of any loop diagram, twice the imaginary part of that diagram can be
calculated by cutting through all loops in all such ways thatthe propagators can simultaneously
be put on shell, that is real particles, and summing (integrating) over all possible final states
[141]. This also works for the strong-field Feynman rules we have derived in section A.1.
Further discussion and application to various forward scattering amplitudes can be found in
[152, 153]. Recently, the optical theorem has been used to calculate the total probability of
pair creation by a laser field and a Coulomb field [112], using the known expression for the
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2 Im =
∑∫

∣∣∣∣∣

∣∣∣∣∣

2k′

k′

p pp′ p′p̃

(b)(a)

Figure A.1: Illustration of the optical theorem, providinga way to calculate the imaginary part
of the self energy of the laser-dressed electron(a) by instead cutting along the dashed line and
calculating the total probability of Compton scattering(b). In both graphs, the initial electron
has four-momentump, the final electron four-momentump′ and the intermediate electroñp. The
initial and final momenta refers to the momenta outside the laser. The emitted photon [which
is absorbed again in(a)] has four-momentumk′. The sum and integration in(b) are over all
possible final states, that is spin, direction and energy of the final electron and polarization,
direction and energy of the final photon.

forward scattering amplitude of an arbitrary field quantum,also called the photon polarization
operator [14,20].

Here we do not prove the general strong-field Cutkosky rules,but we are satisfied with proving
the identity shown in Fig. 3.6 on page 44. We display the same drawing again in Fig. A.1, but
this time with labels attached to facilitate the discussion. To prove the identity in Fig. A.1, we
start with the expression for the amplitudeM (a) for the graph(a) in Fig. A.1, with the photon
propagator given by

Gµν
photon(x, x

′) =
−i

(2π)4

∫
d4k′

gµν

k′2 + iε
e−ik′·(x−x′). (A.13)

Defining the phase

f(p) =
ep · A(φ̃)

k · p − e2A2(φ̃)

2k · p , (A.14)
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we have

M (a) = − e2
∫

d4xd4x′ψp(x)γµG
µν
photon(x, x

′)G(x, x′)γνψp′(x
′)

=
−ie2
(2π)8

m√
EE ′

∫
d4xd4x′d4p̃d4k′up

[
1 +

eÂ(φ)k̂

2k · p

]
γµ 1

k′2 + iε

[
1 +

k̂eÂ(φ)

2k · p̃

]

×
ˆ̃p+m

p̃2 −m2 + iε

[
1 +

eÂ(φ)k̂

2k · p̃

]
γµ

[
1 +

k̂eÂ(φ)k̂

2k · p

]
up′

× exp
[
i(p− k′ − p̃) · x+ i(p̃ + k′ − p′) · x′

+ i

∫ φ

dφ̃ [f(p) − f(p̃)] + i

∫ φ′

dφ̃ [f(p̃) − f(p′)]
]
.

(A.15)

If we now use the mathematical identity (the Dirac prescription) [141]
∫

dx
g(x)

x+ iε
= −iπg(0) + P

∫
dx
g(x)

x
, (A.16)

or
g(x)

x+ iε
= −iπδ(x)g(x) + P g(x)

x
, (A.17)

whereP stands for the Cauchy principal value, for the integration over dk′0, we see that the
imaginary contribution toM (a) comes from the double delta function contribution when replac-
ing the propagators according to Eq. (A.17) [the double principal valuePP does not contribute
to the imaginary value of the amplitude]. However, only two of the four poles contribute, so
that to obtain the imaginary value one should replace [141]

1

p̃2 −m2 + iε
→ −2iπδ

(
p̃2 −m2

)
Θ(p̃0),

1

k′2 + iε
→ −2iπδ(k′

2
)Θ(k′

0
), (A.18)

whereΘ(x) is the step function. In addition, for forward scattering werequirep = p′, the
electron momentum should not change, and we also assumed a spin-averaged initial electron.
This requirement together with remembering the formula forphoton polarization and electron
spin sums

∑

pol.

εµεν → −gµν ,
∑

spin

u(p)ū(p) =
p̂ +m

2m
, (A.19)

and the identities
∫

d4p̃δ(p̃2 −m2)Θ(p̃0)g(p̃) =

∫
d3p̃

g(p̃0 =
√

p̃2 +m2 )

2p̃0
,

∫
d4k′δ(k′

2
)Θ(k′

0
)h(k′) =

∫
d3k′

h(k′0 =
√

k′2 )

2k′0
,

(A.20)

for some functionsg(p̃) andh(k′), we see that making the replacement (A.18) in Eq. (A.15),
we get exactly the squared amplitude for Compton scattering, integrated and summed over final
states. This proves the identity in Fig. A.1.
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ψp ψp′

ψp′

φp

Ma(p, p
′) Mb(p, p

′)

Figure A.2: Illustration of the crossing symmetry of QED. The left diagram pictures the scat-
tering amplitudeMa(p, p

′), the amplitude for the incoming particle with wavefunctionψp and
momentump to scatter by some process (indicated by the grey box) and come out with mo-
mentump′. The right diagram, amplitudeMb(p, p

′), describes pair production of one particle
with wavefunctionψp′ momentump′ and one antiparticle with wavefunctionφp and momentum
p by the same process (the grey box). The amplitudesMa andMb are related by the crossing
symmetry (A.21).

A.3 Crossing symmetries

A crossing symmetry of a QED process means that the matrix element of some scattering pro-
cess can be transformed into the matrix element of a corresponding antiparticle creation pro-
cess [141]. There is a close connection between the crossingsymmetry and Feynman’s inter-
pretation [67] of negative energy solutions of the Dirac equation as positive energy particles
travelling backwards in time. A general pair creation amplitude likeMb(p, p

′) in Fig. A.2, can
be obtained from the corresponding scattering amplitudeMa(p, p

′) by letting p′ → p′, and
p→ −p in Ma so that we have

Mb(p, p
′) = Ma(−p, p′). (A.21)

In addition, when summing over the spin degrees of freedom, there appears an extra minus
sign [141]. In the spin-summed squared matrix element [likethe one for bremsstrahlung (3.46)
or for pair creation (4.12)] there appear sums like

∑

spin

u(p)u(p) =
p̂+m

2m
, (A.22)

whereu(p) is a positive energy spinor satisfying(p̂−m)u(p) = 0. If now we changep→ −p
in Eq. (A.22), then we get

−p̂+m

2m
= −

∑

spin

v(p)v(p), (A.23)

where nowv(p) is a negative energy spinor,(p̂ + m)v(p) = 0. We see that we get an overall
minus sign in the squared amplitude, which has to be corrected by hand. The final crossing
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symmetry formula thus reads

∑

spin

|Mb(p, p
′)|2 = − 1

4m2
Tr
[
(m+ p̂′)Ha(−p, p′)(m− p̂)Ha(−p, p′)

]
, (A.24)

withMa(p, p
′) = ū(p′)Ha(p, p

′)u(p), and whereMa andMb refer to the scattering and pair cre-
ation amplitudes in Fig. A.2. That the crossing symmetry exists also for laser-modified Feynman
diagrams follows directly from the positive energy Volkov solutionψp [see Eq. (2.27)], from
which the negative energy Volkov solution (corresponding to the antiparticle, the laser-dressed
positron) can be obtained by lettingp→ −p.
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Appendix B

Completeness and gauge invariance

B.1 Demonstration of the completeness property of the func-
tion E(x, p)

The task is to show the equality

1

(2π)4

∫
d4pE(p, x)Ē(p, x′) = δ(x− x′), (B.1)

whereE(p, x) andĒ(p, x) are defined in Eqs. (2.55) and (2.56). First, write the integral out as

1

(2π)4

∫
d4pE(p, x)Ē(p, x′)

=
1

(2π)4

∫
d4p


1 +

ek̂
(
Â(φ) − Â(φ′)

)

2k · p




× exp

(
−ip · (x− x′) − i

∫ φ

φ′

[
ep ·A(φ̃)

k · p − e2A2(φ̃)

2k · p

]
dφ̃

)
.

(B.2)

We see that ifx = x′, then equation (B.1) holds. For definiteness, we now take thecase
of linear polarization, and choose our coordinate system sothatAµ = (0, 0, ã, 0) cos(φ) and
kµ = (ω, ω, 0, 0). The integral becomes

1

(2π)4

∫
d4pE(p, x)Ē(p, x′)

=
1

(2π)4

∫
d4p


1 +

ek̂
(
Â(φ) − Â(φ′)

)

2ω(p0 − p1)




× exp (−ip0(x0 − x′0) + ip1(x1 − x′1) + ip2(x2 − x′2) + ip3(x3 − x′3))

× exp

(
i

∫ φ

φ′

[
ep2ã cos(φ̃)

ω(p0 − p1)
+

e2A2(φ̃)

2ω(p0 − p1)

]
dφ̃

)
.

(B.3)
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Here we see that thep3-integral always gives a delta function. How about the otherp0, p1 and
p2-dimensions? It is easy to see that ifx0 = x′0 andx1 = x′1, then Eq. (2.60) holds. The two
difficult cases are the following.
Case 1.x0 6= x′0, xi6=0 = x′i.(The treatment of the casex1 6= x′1, xi6=1 = x′i is done analogously)
We have

1

(2π)4

∫
d4pE(p, x)Ē(p, x′)

=
1

(2π)4

∫
d4p



1 +
ek̂
(
Â(φ) − Â(φ′)

)

2ω(p0 − p1)





× exp

(
−ip0(x0 − x′0) + i

∫ φ

φ′

[
ep2ã cos(φ̃)

ω(p0 − p1)
+

e2A2(φ̃)

2ω(p0 − p1)

]
dφ̃

)
.

(B.4)

Integration overp2 now gives

1

(2π)4

∫
d4pE(p, x)Ē(p, x′)

=
1

(2π)3

∫
dp0dp1dp3


1 +

ek̂
(
Â(φ) − Â(φ′)

)

2ω(p0 − p1)




× exp

(
−ip0(x0 − x′0) + i

∫ φ

φ′

e2A2(φ̃)

2ω(p0 − p1)
dφ̃

)
δ

(
eã
∫ φ

φ′ cos(φ̃)dφ̃

ω(p0 − p1)

)
.

(B.5)

This expression equals zero, since the argument of the deltafunction has no roots. (The delta
function satisfies

∫∞

−∞
δ( 1

x
)dx = 0.)

Case 2.x0 6= x′0, x2 6= x′2, x1 = x′1 andx3 = x′3. Again the casex1 6= x′1, x2 6= x′2, x0 = x′0
andx3 = x′3 is analogous.
This time the integral reads

1

(2π)4

∫
d4pE(p, x)Ē(p, x′)

=
1

(2π)4

∫
d4p


1 +

ek̂
(
Â(φ) − Â(φ′)

)

2ω(p0 − p1)




× exp

(
−ip0(x0 − x′0) + ip2(x2 − x′2) + i

∫ φ

φ′

[
ep2ã cos(φ̃)

ω(p0 − p1)
+

e2A2(φ̃)

2ω(p0 − p1)

]
dφ̃

)
.

(B.6)

138



B.2. Demonstration of gauge invariance

After p2-integration we get

1

(2π)4

∫
d4pE(p, x)Ē(p, x′)

=
1

(2π)3

∫
dp0dp1dp3


1 +

ek̂
(
Â(φ) − Â(φ′)

)

2ω(p0 − p1)




× exp

(
−ip0(x0 − x′0) + i

∫ φ

φ′

e2A2(φ̃)

2ω(p0 − p1)
dφ̃

)
δ

(
x2 − x′2 +

eã
∫ φ

φ′ cos(φ̃)dφ̃

ω(p0 − p1)

)
.

(B.7)

Now, the equation

x2 − x′2 +
eã
∫ φ

φ′ cos(φ̃)dφ̃

ω(p0 − p1)
= 0 (B.8)

has the root

proot
1 =

eã
∫ φ

φ′ cos(φ̃)dφ̃

ω(x2 − x′2)
+ p0, (B.9)

so that

δ

(
x2 − x′2 +

eã
∫ φ

φ′ cos(φ̃)dφ̃

ω(p0 − p1)

)
=

δ(p1 − proot
1 )∣∣∣∣

eã
R φ

φ′ cos(φ̃)dφ̃

ω(p0−p1)2

∣∣∣∣
. (B.10)

Integrating also overp1 using the delta function (note that the singularity atp1 = p0 is no
problem, since the delta function gives zero at this point) yields

1

(2π)4

∫
d4pE(p, x)Ē(p, x′)

=
1

(2π)3

∫
dp0dp3


1 +

ek̂(x2 − x′2)
(
Â(φ) − Â(φ′)

)

2eã
∫ φ

φ′ cos(φ̃)dφ̃




× exp

(
−ip0(x0 − x′0) + i

∫ φ

φ′

e2A2(φ̃)(x2 − x′2)

2eã
∫ φ

φ′ cos(φ̃)dφ̃
dφ̃

)
ω (x2 − x′2)

eã
∫ φ

φ′ cos(φ̃)dφ̃
.

(B.11)

This integral however gives zero after integrating overp0, since we assumedx0 6= x′0. In
summary, we have shown that

∫
d4pE(p, x)Ē(p, x′) is different from zero only whenx = x′,

and at that point equals(2π)4δ(x− x′).

B.2 Demonstration of gauge invariance

In this section we demonstrate that the laser-assisted bremsstrahlung matrix element (3.26) is
gauge invariant. Gauge invariance of the pair creation matrix element (4.5) can be shown in
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the same manner. We here use theE-notation of Mitter [113] (originally of Ritus [154]), see
equation (2.55) and (2.56). Following Mitter [113], we firstshow that

∫
d4xĒ(x, p1)k̂bE(x, p2)e

ikb·x

=(p̂1 −m)

∫
d4xĒ(x, p1)E(x, p2)e

ikb·x −
∫

d4xĒ(x, p1)E(x, p2)e
ikb·x(p̂2 −m).

(B.12)

This is seen by partial integration:

∫
d4xĒ(x, p1)k̂bE(x, p2)e

ikb·x =

∫
d4xĒ(x, p1)

[
−i∂̂eikb·x

]
E(x, p2)

= − i

∫
d4x∂µ

[
Ē(x, p1)γ

µeikb·xE(x, p2)
]
+ i

∫
d4x

[
∂µĒ(x, p1)

]
γµeikb·xE(x, p2)

+ i

∫
d4xĒ(x, p1)γ

µeikb·x [∂µE(x, p2)]

= − i

∫

S∞

dSµĒ(x, p1)γ
µeikb·xE(x, p2) +

∫
d4x

[
p̂1Ē(x, p1) + eĒ(x, p1)Â

]
eikb·xE(x, p2)

+

∫
d4xĒ(x, p1)e

ikb·x
[
−E(x, p2)p̂2 − eÂE(x, p1)

]

=(p̂1 −m)

∫
d4xĒ(x, p1)E(x, p2)e

ikb·x −
∫

d4xĒ(x, p1)E(x, p2)e
ikb·x(p̂2 −m),

(B.13)

where the surface integral is zero due to the rapid oscillations at infinity of the exponentials in
ĒE. Now we show that replacingεbλ with kb in the matrix element will give zero, and that the
matrix element therefore is invariant under the transformation εbλ → εbλ + Λkb, with arbitrary
constantΛ. Writing the matrix element withεbλ → kb as (omitting constant prefactors)

Mεbλ→kb
=

∫
d4x2d

4x1d
4p

[
Ψ̄p2

(x2)k̂be
ikb·x2G(x2, x1)ÂCΨp1

(x1)

+ Ψ̄p2
(x2)ÂCG(x2, x1)k̂be

ikb·x1Ψp1
(x1)

]
,

(B.14)

whereAC is the Coulomb potential, we use the rule (B.12) to show

∫
d4x2d

4pΨ̄p2
(x2)k̂be

ikb·x2G(x2, x1)ÂCΨp1
(x1)

=

∫
d4x2d

4pūr2
(p2)Ē(x2, p2)k̂be

ikb·x2E(x2, p)
1

p̂−m
Ē(x1, p)ÂCΨp1

(x1)

= −
∫

d4x2d
4pūr2

(p2)Ē(x2, p2)e
ikb·x2E(x2, p)

p̂−m

p̂−m
Ē(x1, p)ÂCΨp1

(x1)

= −
∫

d4x2d
4pΨ̄p2

(x2)e
ikb·x2E(x2, p)Ē(x1, p)ÂCΨp1

(x1),

(B.15)
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and in the same fashion
∫

d4x1d
4pΨ̄p2

(x2)ÂCG(x2, x1)k̂be
ikb·x1Ψp1

(x1)

=

∫
d4x1d

4pΨ̄p2
(x2)ÂCE(x2, p)

1

p̂−m
Ē(x1, p)k̂be

ikb·x1E(x1, p1)ur1
(p1)

=

∫
d4x1d

4pΨ̄p2
(x2)ÂCE(x2, p)Ē(x1, p)e

ikb·x1Ψp1
(x1).

(B.16)

Here we made use of the relation(p̂−m)u(p) = 0 = ū(p)(p̂−m). From the equation
∫

d4pE(x1, p)Ē(x2, p) = (2π)4δ(x1 − x2) (B.17)

we finally conclude that
Mεbλ→kb

= 0. (B.18)

Thus it becomes possible to use the sum rule for photon polarization sums

∑

λ=1,2

εµbλMµε
ν
bλMν = −MµM

µ. (B.19)

However, since this relation involves exact cancellation between equally sized terms, numer-
ically it is better to do the photon polarization sum by actual summation over two suitable
polarization vectors. Gauge invariance is also useful as a numerical check of the correctness of
the computer code used for evaluation of the different crosssections.
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Laser Channeling ofBethe-Heitler Pairs

Erik Lötstedt,∗ Ulrich D. Jentschura, and Christoph H. Keitel
Max-Planck-Institut für Kernphysik, Postfach 103980, 69029 Heidelberg, Germany

(Dated: February 1, 2008)

Electron-positron pair creation is analyzed for an arrangement involving three external fields: a high-
frequency gamma photon, the Coulomb field of a nucleus and a strong laser wave. The frequency of the in-
coming gamma photon is assumed to be larger than the threshold for pair production in the absence of a laser,
and the peak electric field of the laser is assumed to be much weaker than Schwinger’s critical field. The total
number of pairs produced is found to be essentially unchanged by the laser field, while the differential cross
section is drastically modified. We show that the laser can channel the angular distribution of electron-positron
pairs into a narrow angular region, which also facilitates experimental observation.

PACS numbers: 12.20.Ds, 25.75.Dw, 32.80.Wr

The creation of anelectron-positron pair by an external
electromagnetic field—the conversion of field energy into
matter—remains an intriguing phenomenon, and its explo-
ration continues to enhance our understanding of the founda-
tions of field theory. Usually, pair creation is accomplished by
weak, high frequency fields, gamma photons, with the stan-
dard examples being the merging of two high-energy photons
into an electron-positron pair or the conversion of a photon
into a pair in the vicinity of a nucleus (the Bethe–Heitler pro-
cess, see Ref. [1]). Strong, static macroscopic fields can
also create pairs, as first predicted by Sauter [2] and later by
Schwinger [3] for the case of a static electric field. In the sense
of QED perturbation theory, pair creation by a static field isa
nonperturbative phenomenon, and its magnitude is controlled
by a parameterχ, defined as

χ =
E

Ecrit
= − e~

m2c3
E, (1)

whereE is the peak value of the electric field,e = −|e|
andm are the electron charge and mass, respectively, and
Ecrit ≈ 1.3 × 10

16 V/cm is the so-called critical field. The
basic result, which holds for any strong static electromagnetic
field, is that the probability for pair creation is exponentially
suppressed unlessχ is at least of the order of unity. If the
field is allowed to oscillate, another parameterξ, related to
the angular frequencyω of the oscillation, becomes relevant:

ξ = − eE

mcω
. (2)

The value ofξ governs the nature of pair production. Specif-
ically, the regimeξ � 1 is called the multiphoton regime,
while for ξ � 1 the pairs are created by tunneling through
the tilted potential gap of magnitude2mc2, and one may call
ξ the Keldysh parameter of vacuum ionization. The transition
between the two regimes for an oscillating electric field was
treated by Brézin and Itzykson [4] and also by Popov [5, 6].
Nowadays, strong lasers offer the best possibility to experi-
mentally test nonlinear strong-field pair production. Modern
lasers achieveξ � 1 for infrared frequencies, but even for
the strongest lasers available we haveχ � 1. As is well
known, a plane laser wave cannot create pairs by itself, due

to energy-momentum conservation. Just like in a pure mag-
netic field [7], a second particle is necessary to provide there-
quired momentum. In a focused laser pulse [8] or a standing
wave [9–11], pair creation is possible, since the field configu-
ration is different from a plane wave. Indeed, pair creationin a
strong laser field induced by an additional high-energy gamma
photon has been studied both theoretically [12–14] and exper-
imentally [15, 16]. If the probing particle is replaced by a
nuclear field [17–21], it was shown that the pair production
rate is exponentially suppressed for nuclei at rest, and that
acceleration of the nucleus to highly relativistic velocities is
necessary to obtain observable rates.

In this Letter, we study the creation of an electron-positron
pair by three fields: a high-energy gamma photon (possibly
produced by Compton backscattering), the Coulomb field of a
nucleus and an intense, low-frequency laser field, as schemat-
ically shown in Fig. 1. Numerical estimates of the cross sec-
tion for pair production in this field configuration are absent in
the literature, to the best of our knowledge. Previous studies
of related processes [22, 23] obtained approximate analytical
formulas for weak (ξ � 1) fields or ultrarelativistic gamma

e+

e−

θ+

θ−
gamma photon

laser field

FIG. 1: Schematic picture of the considered pair creation process. A
low-frequency, high-intensity laser beam of linear polarization and
a high-frequency gamma photon, propagating in the same direction,
impinge on a stationary nucleus, depicted as a filled black circle,
to produce an electron and a positron. The angleθ± denotes the
ejection angle in the plane spanned by the propagation direction and
the polarization direction of the laser. Note that the wavelengths of
the two waves are not drawn to scale, in reality we consider the case
where the laser wavelength is many order of magnitudes larger than
the wavelength of the gamma photon.
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2

photon energies [24]. Here we find that an interesting laser-
channeling phenomenon requires the opposite limitξ > 1,
and we have accessed this region by a full numerical treat-
ment.

We assume the laser beam and gamma photon beam to
propagate in the same direction. For the laser field, we employ
a low-frequency (~ω ∼ 10 eV), high-power laser beam with
typically ξ ∼ 10, corresponding to an intensityIl = 9 × 1021

W/cm2. Since we still haveχ� 1, and we consider a nucleus
at rest, the laser field will affect the total probability of the
pair creation only marginally. This can be justified by the fol-
lowing heuristic argument: The electron-positron pair is ex-
pected to be created over a distance of the order of the Comp-
ton wavelengthλC = ~/(mc). Over this distance, the peak
electric field of the laser accomplishes an amount of work
W = ξ~ω, which is much smaller than the threshold2mc2

to create a pair, since we assume~ω � mc2. We thus expect
that the total number of pairs, or the total cross section forpair
production, is not changed even for a strong laser. However,
the differential cross section, that is the dependence on the
directions and energies of the produced pairs, is expected to
differ drastically from the laser-free case, due to the interac-
tion with the laser field after the actual creation. In particular,
we find that the laser field strongly focuses the pairs to form
a narrow beam. In this way, laser-assisted signatures of the
created pairs become experimentally observable, since we do
not suffer from the exponential smallness of the creation rate
as other proposals do.

From here on, we use natural units with~ = c = ε0 = 1.
Furthermore, we denote four-vector dot products with a dot,
so thataµb

µ = a · b = a0 b0 − a · b for two four-vectors
aµ andbµ. Contraction with the Dirac gamma matricesγµ is
written with a hat,γµbµ = b̂. Quantum electrodynamics in
the presence of a strong laser can be treated with a theoretical
framework [25] analogous to the Furry picture, that is oth-
erwise used to describe electrons bound in strong Coulomb
fields. Since the laser is strong,ξ ≥ 1, the lepton-laser in-
teraction needs to be treated nonperturbatively to all orders,
while we include the interaction with the Coulomb field and
the gamma photon in first-order perturbation theory. We con-
sider linear polarization of the laser field, described by the
vector potentialAµ(φ) = aµ cosφ, whereaµ = (0,a) is the
polarization vector, andφ = k ·x is the Lorentz invariant laser
phase, expressed through the wave vectorkµ = (ω,k). The
amplitude of the vector potential is related to the parameter ξ
asξ = −e|a|/m.

The basis states for the electron and positron are the Volkov
statesψ∓

p (x) [26], which are exact solutions of the Dirac
equation coupled to an external laser field:

(
i∂̂ −m− eÂ(φ)

)
ψ∓

p∓
(x) = 0. (3)

Here p∓ is the asymptotic momentum of the electron or
positron outside the laser, and we defineqµ

∓ = (Q∓, q∓) =
pµ
∓ + kµe2|a|2/(4k · p∓), the effective momentum of the

electron or positron inside the laser. From the Volkov so-

kγ

kγ

q

q

p̃−

q−q−

q+ q+

p̃+

FIG. 2: The Feynman diagrams for laser-assisted pair creation. Ex-
ternal electron and positron lines, as well as propagators are de-
noted by a wiggly line superimposed on a straight line, to stress that
the laser-lepton interaction is treated nonperturbatively. The elec-
tron is created with an effective four-momentumq−, and the four-
momentum of the positron isq+. The intermediate electron propa-
gator momentum is denoted bỹp±. The absorbed non-laser mode
photon has four-momentumkγ , and the virtual Coulomb field pho-
ton, depicted with a dashed line, has three-momentumq. Time flows
from left to right.

lutions, it is relatively easy [25, 27] to construct the Dirac-
Volkov propagatorG(x, x′), the Green’s function of Eq. (3).
We also need the potentialAµ

C(x) = −Zeδµ0/(4π|x|) of
the nucleus with atomic charge numberZ and the vector po-
tentialAµ

γ(x) = εµγe
−ikγ ·x/

√
2ωγ of the high-energy pho-

ton with wave vectorkµ
γ = (ωγ ,kγ) and polarization vector

εµγ = (0, εγ).
The amplitudeSp+p−

for laser-dressed creation of one elec-
tron with asymptotic momentump− and one positron with
asymptotic momentump+ can be calculated by adding the
contributions from the two Feynman diagrams in Fig. 2. We
consider a collinear arrangement of the gamma photon and the
laser beam, which in particular impliesk · kγ = 0, and pro-
vides for a considerable simplification of the matrix element.
We have

Sp+p−
= ie2

∫
d4xd4x′ψ̄−

p−
(x)
[
Âγ(x)G(x, x′)ÂC(x′)

+ ÂC(x)G(x, x′)Âγ(x′)
]
ψ+

p+
(x′)

= 2πi
∞∑

n=−∞

Ze3m√
2ωγE+E−

δ(Q+ +Q− − nω − ωγ)

(q− + q+ − nk − kγ)2
u−†

p−
γ0

×
(
ε̂γ
k̂γ − p̂− −m

2p− · kγ

Fn + Fn

p̂+ − k̂γ −m

2p+ · kγ

ε̂γ

)
u+

p+
, (4)

where

Fn =A0(n, α+ − α−,−β+ − β−)γ0

+A1(n, α+ − α−,−β+ − β−)

(
γ0e âk̂

2k · p+
+
e âk̂γ0

2k · p−

)

+A2(n, α+ − α−,−β+ − β−)
e2 a2ωk̂

2k · p−k · p+
, (5)

α± = ea·p±/(k·p±), β± = e2a2/(8k·p±), andu∓p∓
are con-

stant spinors satisfying(p̂∓ ∓m)u∓p∓
= 0. The generalized
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Bessel functionAK(n, α, β) is defined as [12, 13]

AK(n, α, β) =
1

2π

∫ π

−π

cosKϕe−inϕ+iα sin ϕ−iβ sin(2ϕ)dϕ.

(6)
The expression (4) was first obtained in Ref. [23]. We note
that the matrix element (4) is related to that of laser-assisted
bremsstrahlung [28, 29] by a crossing symmetry. Energy con-
servation is enforced by the delta functionδ(Q++Q−−nω−
ωγ), which clarifies the meaning of the integern: It signifies
the net number of photons absorbed during the process. To
obtain the total amplitude, one should sum over all photon or-
dersn. Note, however, that energy conservation is expressed
through the effective energiesQ∓, and that photon numbern
is bounded from below by the laser-dressed pair-production
threshold conditionnω ≥ 2m∗ − ωγ .

The laser-modified differential cross sectiondσ is given by
the standard formula

dσ =
1

T

∣∣Sp+p−

∣∣2 d3p−
(2π)3

d3p+

(2π)3

=
∑

n

sn δ(Q+ +Q− − nω − ωγ) d3p− d3p+, (7)

where the large observation timeT is cancelled by the relation
δ2(x) = Tδ(x)/(2π). Note that the final-state phase space is
expressed in terms of the momentap± outside the laser.

We have evaluated the differential cross section (7) for dif-
ferent values of the parameterξ. In all cases, we have av-
eraged over the polarization of the initial gamma photon and
summed over the spins of the final electron and positron. Due
to symmetry reasons, the differential cross section is sym-
metric under the exchange of electron and positron, and we
show the positron spectrum. The laser frequency is chosen as
ω = 10 eV. However, we expect that the qualitative behavior
of the cross sections is independent ofω, as long asχ� 1.

In Fig. 3, we show the cross sectiondσ/dΩ+, resulting
from fourfold Monte Carlo integration, which remains dif-
ferential only in the solid angledΩ+ = dθ+dϕ+ sinϕ+ of
the created positron. Hereϕ+ is the corresponding polar
angle. Observe that the solid angle refers to the direction
p+/|p+| of the positron outside the laser, to allow compar-
ison with the laser-free case. The gamma photon energy is
ωγ = 1.25 MeV > 2m, so that pair production is possible
without the laser. However, as is clearly seen in Fig. 3, the an-
gular distribution in the field-free case [1] is broad. Quiteto
the contrary, the laser-dressed curves show sharp peaks, with
the peak height increasing with increasing laser intensity, and
the peak position given roughly byθpeak = 1/ξ. This value
can be understood intuitively by classical arguments: If we
assume that the positron is created from the photon energy
ωγ = 1.25 MeV by the Bethe-Heitler process, with result-
ing momentumpµ

i+, then from the classical equations of mo-
tion for pµ

+ we have, outside the laser field for small angles
(θ+ � 1),

θ+(φ0) ≈
px
+

py
+

≈ 2k · pi+

ω|eA(φ0)|
. (8)
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FIG. 3: (Color online) The differential cross sectiondσ/dΩ+ as
a function of the angle of ejectionθ+ (see Fig. 1), in the plane
spanned by the propagation directionk/ω and the polarizationdirec-
tiona/|a| (polar angleϕ+ = π/2). Note thatdσ/dΩ+ is symmetric
aroundθ+ = 0, we show only positiveθ+. The laser frequency is
ω = 10 eV and the gamma photon energy isωγ = 1.25 MeV. Here,
the parameter valuesξ = 6 andξ = 10 correspond to laser intensi-
tiesIl = 3.2×1021 W/cm2 andIl = 8.9×1021 W/cm2, respectively.
The nuclear atomic number isZ = 1, and we remark that as the cross
section is evaluated in the first Born approximation, it scales asZ2.
In the graph, circles and squares represent numerical estimates of the
differential cross section obtained by fourfold Monte-Carlo integra-
tion, and the red dashed and pink solid lines are analytical fits to the
numerical values. For comparison, the solid black line shows the
laser-free case, multiplied by a factor of104 (the laser-free differ-
ential cross section would otherwise not be visually distinguishable
from zero). For the conversion to other frequently used units for the
cross section, one uses1MeV−2 ≈ 4×102 barn = 4×10−22 cm2.

Here |A(φ0)| is the amplitude of the vector potential at the
moment of creation. Taking into account the initial momen-
tum distribution given by the Bethe-Heitler formula, one finds
that the angular distribution after the laser pulse, integrated
over all phases of the laser, has a peak close toθ+(φ0 = 0),
so thatθpeak = θ+(0) ≈ 1/ξ. Note that the angleθpeak is
independent ofω. The differential cross sectiondσ/dΩ+ as
a function of the polar angleϕ+, is peaked sharply around
ϕ+ = π/2 for fixedθ+ ≈ θpeak, with a peak width of approx-
imately 0.01 rad for the caseξ = 10. The Lorentz force of
the laser field, with rising intensity, transfers an increasingly
larger amount of momentum to the positron in the propagation
direction, compared to the amount transferred in the polariza-
tion direction, which consequently leads to the described laser
channeling of the pairs into a narrow angular region.

To demonstrate the assertion that the total cross section, or
the total number of produced pairs is unchanged even by a
laser field as strong asξ = 10, we show in Fig. 4 the total cross
sectionσtot =

∫
dσ, resulting from sixfold numerical integra-

tion over the created electron and positron momenta. Due to
energy conservation, the laser-free cross section has a sharp
cutoff atωγ = 2m, below which it vanishes. When the laser
is included, absorption of a sufficient number of laser photons
to overcome the laser-modified threshold2m∗ results in a fi-
nite, but small, total cross section. Since we may speak of a
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FIG. 4: (Color online) The total cross section forelectron-positron
pair creation close to the threshold, displayed in logarithmic scale as
a function of the perturbative photon energyωγ . The solid black line
shows the field-free case [1], which vanishes below the pair produc-
tion thresholdωγ/m = 2. Below threshold, the laser-induced (rather
than laser-assisted) pair creation cross section exhibitsan exponen-
tial decrease. Parameters in the calculation are the same asin Fig. 3:
ωγ = 10 eV, ξ = 10, Z = 1.

laser-assisted pair creation process forωγ > 2m, but laser-
induced forωγ < 2m, the considered process enables us to
study the transition between laser-assisted and laser-induced
by varying the frequencyωγ . By “laser-assisted” we mean
a process that occurs without the laser, but is modified by its
presence and by “laser-induced” we mean a process where the
presence of the laser is a necessary requirement.

A few remarks on possible background processes is ap-
propriate. In principle, pairs can also be created by the
laser wave together with the Coulomb field only [17]. How-
ever, in the regime of subcritical laser fieldsχ � 1 that
we are considering here (the parameters used in fig. 4 give
χ = ξω/m = 2 × 10−4), the rate is exponentially small
∼ exp(−χ−1) [18, 20] and can safely be neglected. The
photon together with the laser wave only is unable to cre-
ate pairs in our geometry sincek · kγ = 0 [13]. As for the
experimental verification of our results, we note that Bethe-
Heitler pair creation for small photon energiesωγ & 2m
has been successfully measured [30], using germanium de-
tectors. A strong laser field however, is likely to destroy its
target, and it may be preferred to instead use a thin metal foil
when measuring the laser-dressed cross section. If an incom-
ing gamma photon flux of107 photons/bunch, in bunches of
duration 1 ps, repetition rate 1 Hz, with hard x-ray energy
ωγ = 1.25 MeV, obtainable by Compton backscattering of a
free electron laser on storage ring electrons [31, 32], together
with a lead (Z = 82) target of 1 mm thickness is assumed, the
total number of pairsNtot produced in one second can be esti-
mated asNtot ≈ 2×103, in accordance with the Bethe-Heitler
cross section. If now the gamma photon beam is synchronized
with a strong laser field withξ = 10, corresponding to pulse
energy 1.4 J, 1 ps pulse duration, wavelength 1054 nm fo-
cused to one wavelength (available at the Vulcan laser facility
[33], at repetition rate 1 Hz), all produced pairs will emerge
in the angular coneθ+ ≈ 6◦ ± 2◦, ϕ+ = 90◦ ± 0.3◦ relative
to the laser propagation direction, in the plane spanned by the
propagation direction and the polarization direction. Placing

a detector in this direction will therefore detect essentially all
of the created pairs. We conclude that the proposed scheme of
pair creation by a gamma photon together with channeling of
the pairs with a strong laser is a realistic way to observe non-
linear laser effects, accessible to current laser facilities, with-
out resorting to ultrahigh-energy photon or proton beams.

We thank A. Di Piazza for useful discussions. One of us
(U.D.J.) acknowledges support by the Deutsche Forschungs-
gemeinschaft (Heisenberg program).
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We investigate the cross section for the production ofelectron-positron pairs in the field of a laser wave and
a nucleus. Specifically, we consider pair production by the fusion of a non-laser mode photon, whose energy
exceeds the pair production threshold, with an arbitrary number of laser photons. The peak electric field of the
laser is assumed to be much smaller than the critical field. The total cross section is estimated to be almost
unchanged with respect to the Bethe–Heitler formula by the presence of the laser, whereas the differential cross
section is found to be drastically modified.

PACS numbers: 12.20.Ds, 25.75.Dw, 32.80.Wr

I. INTRODUCTION

The creation of anelectron-positron pair by an external
electromagnetic field is a striking manifestation of the equiv-
alence of matter and energy. That not only energetic photon
fields, but also strong, macroscopic electric fields can produce
pairs was first predicted by Sauter [1] and later considered by
Schwinger [2]. The basic prediction is that pairs are sponta-
neously created, but the rate is exponentially damped unless
the electric field strength exceeds the so-called critical field
Ec = m2/|e|, wherem is the electron mass,e = −|e| the
electron charge, and we use natural units such thatc = ~ = 1.
The transition from the nonperturbative, tunneling regimefor
pair production to high-frequency perturbative pair produc-
tion was studied by Brezin and Itzykson [3] and also by Popov
[4, 5]. At present, the strongest electromagnetic fields avail-
able in the laboratory are laser fields. However, a plane laser
wave cannot alone produce any pairs from the vacuum due
to the impossibility of satisfying energy-momentum conser-
vation. Just like in a static magnetic field [6, 7], a probing
particle is needed in order to obtain a nonvanishing pair pro-
duction rate. If the laser wave is not plane but a focused pulse
[8], or a standing laser wave [9–11], pair production is possi-
ble without a second agent.

Laser induced pair production with an additional source
of momentum was first investigated theoretically in the con-
text of pair production by simultaneous absorption of one
non-laser-mode photon and a number of laser-mode photons
[12, 13]; quite recently, this process was also observed exper-
imentally [14, 15]. Another possibility discussed in the litera-
ture is laser-induced pair creation in the vicinity of a nucleus.
Unfortunately, for a nucleus at rest, the pair production rates
are very low [16–20]. Recently, this process has been reexam-
ined, with the idea of introducing a moving nucleus [21–26].
By letting the nucleus collide head on with the laser beam
at high Lorentz factorγ, in the rest frame of the nucleus the
frequency of the laser beam will be blue-shifted or enhanced
with a factor of approximately2γ. In this way, the peak elec-
tric field seen by the nucleus in its rest frame approaches the
critical field, and the rates are calculated to reach observable

∗Electronic address:Erik.Loetstedt@mpi-hd.mpg.de

values.
In this paper, we investigate the possibility to create pairs

from vacuum in the presence of three external fields: a laser
field, a Coulomb field and a single photon, whose frequency
exceeds the pair production threshold. The Feynman dia-
grams are shown in Fig. 1. The matrix element for this
process was first calculated by Roshchupkin [27], and also
by Borisov et. al. in [28, 29], however without perform-
ing any concrete numerical evaluations. The matrix ele-
ment has a crossing symmetry with the one for laser-assisted
bremsstrahlung, which was studied previously in many pa-
pers, including Ref. [30], and by us recently in [31, 32].

In our case, pair production is possible in the absence of
the laser field through the Bethe-Heitler process [33], because
we assume the angular frequencyωγ of the single photon to
be larger than the threshold2m (we denote the frequency of
the single photon by a superscript rather than a subscript in
view of a rather large number of Lorentz subscripts that we
will need to introduce in the analysis later). The presence of
the laser will then modify the process, so that we can speak
about laser-assisted pair production. By contrast, ifωγ < 2m,
the laser field would not really assist; it would be even neces-
sary to produce any pairs at all, and we would call the process
laser-induced rather than just laser-assisted.

We note the general observation [34] that to produce an ap-
preciable number of pairs, the electric field in the rest frame of
the nucleus has to exceed the critical field. We thus expect that
for a subcritical field, thetotal rate of laser-assisted pair pro-
duction will be essentially unaffected by the laser field. How-
ever, thedifferential rates, that is, the dependence of the pro-
duction rate on the directions and energy of the produced par-
ticles, can change drastically. For the same reasons, we expect
the rate to be very small for a subcritical field andωγ < 2m,
where the Bethe-Heitler rate vanishes identically. All of the
assertions above will be demonstrated in the paper by explicit
numerical evaluation.

The paper is organized as follows. In Sec. II, we introduce
the theory necessary to describe the laser-assisted process, in-
cluding Volkov states and the Dirac-Volkov propagator, lead-
ing to the expression for theS-matrix elements. Next, we
present numerical results together with a detailed discussion
in Sec. III. An Appendix is dedicated to an efficient algorithm
for the numerical evaluation of generalized Bessel functions,
which occur quite naturally in the treatment of the problem.
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kγ qe

p̃e
kγ

qe

qp

q

q

p̃p

qp

FIG. 1: Feynman diagrams describing the process of laser-assisted
pair creation. Laser-dressed fermions are denoted by thicklines.
The electron effective four-momentum in the laser field isqe, and
the laser-dressed positron has an effective momentumqp. The mo-
mentum of the virtual state in the laser-dressed propagatoris p̃e,p.
The virtual Coulomb photon with spatial momentumq is drawn as
a dashed line, and the absorbed high-energy photon with momentum
kγ as a wavy line. The direction of time is from left to right.

II. THEORY

In this section, we review the theory used to describe laser-
matter interaction. The interaction of the electron and positron
with the laser field will be treated non-perturbatively, whereas
the interaction with the high-frequency photon field and the
Coulomb field is taken into account by first-order perturbation
theory.

A. Volkov wave functions and propagator

We start from the Dirac equation coupled to an external
plane electromagnetic waveAµ(φ):

(i∂̂ − eÂ(φ) −m)ψ(x) = 0, (1)

whereφ = kµxµ is the phase of the wave, andkµ is the wave
vector. Scalar products will be written with a dot asa · b =
aµb

µ = a0b
0−a ·b, and a hat denotes the contraction with the

Dirac gamma matrices:̂A = γµAµ. The solution to Eq. (1)
is the well known Volkov solution [35] and reads

ψ∓(x) =

√
m

Q

(
1 ∓ eÂ k̂

2k · p

)
u∓p exp [iS∓(x, p)] , (2)

where

S∓(x, p) = ∓p · x∓
∫ φ

φ0

(
e p ·A(φ′)

k · p ∓ e2A2(φ′)

2k · p

)
dφ′.

(3)
Here,ψ−(x) denotes the electron wave function, andψ+(x)
is the corresponding positron wave function. Note thate al-
ways denotes the charge of the electron. The spinoru∓p sat-
isfies(p̂ ∓ m)u∓p = 0. In the following, we specialize to a
monochromatic laser wave of linear polarization,

Aµ(φ) = a εµ cos(φ), (4)

whereεµ = (0, ε) is the polarization vector satisfyingε2 =
−1, k · ε = 0, anda is the amplitude of the vector potential.
The integral in Eq. (3) can then be performed analytically and
reads

S∓(x, p) = ∓ p · x∓ e2a2

4k · pφ− eap · ε
k · p sinφ

∓ e2a2

8k · p sin(2φ)

= ∓ q · x− α sinφ± β sin(2φ),

(5)

where in the last line we have defined the effective momen-
tumqµ = pµ + e2a2kµ/(4k · p), with corresponding effective
massm2

∗ = q2 = m2 + e2a2/2, effective energyQ = q0,
and the other parameters areα = e a (p · ε)/(k · p) and
β = −e2 a2/(8k · p). Later, when we write down the ma-
trix element we will use the following Fourier decomposition
of the wave function (2):

ψ∓(x) =

√
m

Q

∞∑

s=−∞

exp (∓iq · x− ik · x)

×
(
A0(s, α,±β) ± eak̂ε̂

2k · pA1(s, α,±β)

)
u∓(p),

(6)

where the generalized Bessel functionA0(s, α, β) is defined
as an infinite sum over products of ordinary Bessel functions,

A0(s, α, β) =

∞∑

n=−∞

J2n+s(α)Jn(β), (7)

and for positive integeri

Ai(s, α, β) =
1

2
(Ai−1(s− 1, α, β) +Ai−1(s+ 1, α, β)) .

(8)
The generalized Bessel function was first introduced by
Reiss [12], and was later studied by several authors [13, 36–
39]. In the Appendix, we discuss some of the properties of
A0(s, α, β) and also present an efficient algorithm for their
numerical evaluation.

To write down a second-order matrix element we also
need the Dirac-Volkov propagatorG(x, x′), which can be ex-
pressed in a number of different ways [40]. We use the repre-
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sentation [41, 42]

G(x, x′) =

∫
d4p

(2π)4

(
1 +

ek̂Â(φ)

2k · p

)
p̂+m

p2 −m2 + i0

×
(

1 +
eÂ(φ)k̂

2k · p

)
exp [iS−(x, p) − iS−(x′, p)]

=

∫
d4p

(2π)4

∞∑

s,s′=−∞

(
A0(s, α, β) +

eak̂ε̂

2k · pA1(s, α, β)

)

×
p̂− e2a2

4k·p
k̂ +m

p2 −m2
∗ + i0

e−ip·(x−x′)−ik·(sx−s′x′)

×
(
A0(s

′, α, β) +
eaε̂k̂

2k · pA1(s
′, α, β)

)
, (9)

where in the last equality have used the specific form (4) of
the vector potential, expanded the propagator into a product of
two Fourier series, and finally changed variablespµ → pµ +
e2a2kµ/(4k ·p). This transformation makes the appearance of
the effective massm∗ in the propagator denominator explicit.

B. Matrix element and cross section

In our treatment, the final states of the electron and of the
positron are described by Volkov states, and theDirac-Volkov
propagator is employed for the intermediate, virtual states,
i.e. the interaction of all fermions with the laser field is taken
into account to all orders. The effect of the Coulomb field of
the nucleus and the gamma photon are calculated using per-
turbation theory. To this end, we introduce the vector potential
AC

µ (x) of the nucleus with atomic charge numberZ = 1 (the
scaling withZ can later be restored easily) and the vector po-
tentialAγ

µ(x) of the perturbative photon

AC
µ (x) =

−e δµ0

4π|x| , Aγ
µ(x) =

1√
2ωγ

εγµ e
−ikγ ·x. (10)

Here,ωγ denotes the frequency andkγ
µ the µth component

of the momentum four-vector of the gamma photon. Note
the minus sign in the exponential inAγ

µ(x), since photon ab-
sorption is the desired process. Expressions (2), (9), and (10)
now permit us to write down the matrix elementS for the
production of one electron with effective momentumqe and
one positron with effective momentumqp, by absorption of
one photonkγ , corresponding to both Feynman diagrams in

Fig. 1:

S =

∞∑

n=−∞

Snδ(Qp +Qe + nω − ωγ)

= 2πi

∞∑

n,s=−∞

e3m√
2ωγQpQe

δ(Qp +Qe + nω − ωγ)

(qe + qp + nk − kγ)2

× ū−pe

(
F s

4334(ε̂
γ)

ˆ̃pe − k̂e2a2/(4k · p̃e) +m

p̃2
e −m2

∗

F s−n
1313(γ0)

+ F s+n
4224(γ0)

ˆ̃pp − k̂e2a2/(4k · p̃p) +m

p̃2
p −m2

∗

F s
1212(ε̂

γ)

)
u+

pp
,

(11)

where

Fm
KLMN (X) = A0(m,αK − αL, βK − βL)X

+A1(m,αK − αL, βK − βL)

(
Xeak̂ε̂

2k · pM

+
eaε̂k̂X

2k · pN

)

+A2(m,αK − αL, βK − βL)
e2âk̂Xk̂â

4k · pMk · pN

, (12)

with K,L,M,N ∈ {1, 2, 3, 4},X ∈ {ε̂γ , γ0},

αK = eaε · pK/(k · pK), βK = −e2a2/(8k · pK), (13)

p1 = −qp, p2 = p̃p = −qp +sk+kγ , p3 = p̃e = qe+sk−kγ

andp4 = qe. We recall that indexe (p) is used to label the
electron (positron) momentum vector. The expression (11)
was first obtained in [27]. The first line in Eq. (11) implicitly
defines thenth order matrix elementSn, and the argument of
the delta function in Eq. (11) expresses energy conservation
in terms of the effective energiesQp andQe. The number−n
(+n) can be interpreted as the number of photons absorbed
from (emitted into) the laser during the process. In particular,
the thresholdωγ − nω ≥ 2m∗ for pair creation is higher than
the field-free case, due to the larger effective massm∗ > m.
From the matrix element we obtain by the usual methods [43]
the differential cross sectiondσ, averaged over the polariza-
tion of the gamma photon and summed over the spins of the
electron and positron,

dσ =
1

2

∑

spin, pol.

d3qp
(2π)3

d3qe
(2π)3

|S|2 1

T

=
1

4π

∑

spin, pol.
n

d3qp
(2π)3

d3qe
(2π)3

|Sn|2δ(Qp +Qe + nω − ωγ),

(14)

where in the last line the delta function is explicitly written
out. The matrix element (11) is gauge invariant, both under
the gauge transformationεµ → εµ + C1kµ of the laser field
andεγµ → εγµ +C2k

γ
µ, whereC1,2 are constants. Gauge invari-

ance, especially for the gamma photon field, provides a sensi-
ble numerical check of the computer code used to evaluate the
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differential cross section (14). In principle, gauge invariance
also makes it possible to use the replacement

∑

polarization

εγµε
γ
ν = −gµν , (15)

for the calculation of the polarization sum. However, numer-
ically the polarization sum is more conveniently done usinga
specific representation of the polarization vectors. The sum
over spins is written like a trace over Dirac gamma matri-
ces, which is performed numerically. Quite counterintuitively,
this procedure can be computationally advantageous for traces
over Dirac gamma matrices occurring in laser-related prob-
lems, where the expressions obtained after taking the traces do
not simplify as much as in typical problems from high-energy
physics [31, 32].

Another numerical test of correctness is the behavior of the
cross section at the apparent singularity whenk · p̃e,p → 0
in theF functions in the expression on the right-hand side of
Eq. (11) (we recall thatp2 = p̃p andp3 = p̃e). The matrix
element can be shown to be finite in this limit, but the calcula-
tion constitutes a test of numerical stability as the arguments
of the generalized Bessel functions tend to infinity.

III. RESULTS AND DISCUSSION

In this section, we present results of a concrete numeri-
cal evaluation of the differential cross section (14). The fre-
quency of the laser is taken to beω = 1 keV, and the ampli-
tudea is chosen such that the classical nonlinearity parameter
ξ = −ea/m is of order unity. Experimentally, this choice
of parameters can be realized in either of the two following
scenarios. For a high-power laser, operating at a photon en-
ergy of1 eV and intensity of9 × 1017 W/cm2, head-on col-
lision with a relativistic nucleus with a Lorentz boost factor
γ ≈ 500 will give ξ = 1 andω = 1 keV in the rest frame
of the nucleus. In an alternative scenario, a focused x-ray
free electron laser [44] applied to a nucelus at rest may also
give access to the parameters above. Hereξ = 1 andω = 1
keV in the laboratory frame requires an intensity of9 × 1023

W/cm2 at the focus of the laser. In this regime, the peak elec-
tric field of the laser is still much smaller than the criticalfield,
Epeak/Ec = −ξeω/m � 1. We will consider the case where
the laser counter propagates with the gamma photon, and de-
scribe the direction of the produced electron and positron by
an angleθe,p, as depicted in Fig. 2.

A. Energy cutoff

In principle, since the sum overn in Eq. (11) extends from
−∞ to +∞, the created pair can acquire arbitrarily high ef-
fective energiesQp,Qe. This should be compared to the field-
free case, given by the Bethe-Heitler formula [33], where the
cross section vanishes identically for positron (or electron) en-
ergiesE > ωγ − m. In practice, however, an apparent cut-
off will occur in the energy spectrum, and thereby limit the

qp

kγ

qe

k

ε

θp

θe

FIG. 2: The geometrical setup of the considered process. Thephoton
with three-momentumkγ collides head on with the laser beam with
wave vectork and polarization vectorε, producing one positron with
effective three-momentumqp, making an angleθp with thekγ -axis,
and one electron with effective three-momentumqe and angleθe.
The vectorsqp andqe lie in the plane spanned byk andε.

available energy for the produced pair. In the following, we
will assume the directionsqe/|qe|, qp/|qp| of the positron and
electron given, and consider the differential cross section (14)
as a function of the effective energyQp of the positron. The
effective energyQe of the electron is fixed by energy conser-
vation for eachn. It follows from the expression (11) that to
find the energy cutoff, we should consider the behavior of the
function

Hn =
∞∑

s=−∞

A0(s, αe − α̃, βe − β̃)

s+ C

×A0(s− n, αp − α̃, βp − β̃)

(16)

as a function ofn. As follows from the discussion in
Sec. III B, we can assume thatC is non-integer. As shown
in the Appendix, the function (16) has the same cutoff prop-
erties as the generalized Bessel function

A0(n, αe − αp, βe − βp), (17)

providedC is larger than the cutoff index of the first of theA0

in the numerator in Eq. (16). Asβe − βp = −[(k · qe)−1 +
(k · qp)−1] e2a2/8 < 0, and high values ofQp are obtained
by absorbing photons, that is, for negativen, it follows that
Qcutoff

p is the largest positron energy for which the inequality

npos. cutoff> |n|, (18)

is still satisfied. The integernpos. cutoff is defined in Eq. (A.1).
Since the quantitiesk ·qe andk ·qp involve direction cosines, it
becomes clear that the energy cutoff is direction dependent. In
particular, this implies that the maximal energyQcutoff

p will de-
pend not only on the direction of the positron, but also on the
direction of the electron. In order to determine the direction-
dependent energy cutoff, one therefore proceeds as follows.
In the first step, one fixes the directions of the electron and
positron, which definesnpos. cutoff as a function ofn andQp.
In the second step, one variesQp and in this way find the
largest positron effective energyQp satisfying Eq. (18).

As a concrete example, we let the positron and electron be
ejected at equal anglesθp = θe ≡ θ, and show in Fig. 3
the cutoff as a function ofθ for different values of the in-
tensity parameterξ. The frequency of the single photon is
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FIG. 3: (Color online) Upper panel: Effective energy cutoffas a
function of the angleθ = θp = θe, resulting from the solution of
Eq. (18). For comparison, we also show the effective energy that
would result if the positron were created with the largest available
energy in absence of the laser,Ep = Emax = m − ωγ , and then
placed in the laser field with fixed direction ofqp (all curves arela-
beled accordingly). The difference of the latter two curvesto the
laser-dressed solution is because of the correlation between the elec-
tron and positron induced by the laser. This correlation wasalso
observed in [22]. In the lower panel, we show a concrete example
of the cross section, forθ = 2.8 rad, chosen to maximize the cutoff
for ξ = 2. The “laser-assisted” curves show a complex oscillatory
behavior, with a peak just before the cutoff. The cutoffs predicted by
Eq. (18) are indicated by arrows. Note that the curves forξ = 1 and
ξ = 0 were multiplied by a factor50; the ordinate axis is kept on a
linear scale.

ωγ =
√

6m, which corresponds exactly to the threshold value
2m∗ for ξ = 1. In the same figure, we also show a concrete
evaluation of the differential cross section for thecorrespond-
ing parameters, compared to the laser-free case. The magni-
tude of the differential cross section is here significantlylarger
that the case without the laser, and also displays a complicated
oscillatory behavior.

B. Resonances and competing processes

In principle, the matrix element (11) diverges if one of the
intermediate momentãpe, p̃p satisfies the on-shell condition

p̃e = (qe+sk−kγ)2 = m2
∗, p̃p = (kγ−qp+sk)2 = m2

∗

(19)
for somes. Physically, this means that the considered second-
order process splits up into two consecutive first-order pro-
cesses, laser-induced pair creation by a gamma photon fol-
lowed by Coulomb scattering of the electron or the positron.
This phenomenon has been studied before in the context of
laser-assisted electron-electron scattering [45–47] andlaser-
assisted bremsstrahlung [30–32, 48]. The usual way to regu-
larize the matrix element, so that it remains finite also at the
condition (19), is to add a small imaginary part to the energy
of the electron (positron) [49], related to the total probability
for the intermediate state to decay by Compton scattering. Fi-
nite values will results also if the finite extent of the laserfield
or the frequency width of the laser or photon beam is taken
into account. In the current paper, however, we consider a
regime of parameters where the resonances are strongly sup-
pressed. Mathematically, this means that the value ofs needed
to satisfy the resonance condition (19) is larger than the corre-
sponding cutoff index for the generalized Bessel function,and
that the contribution from this index in the sum overs is negli-
gible, once properly regularized. Physically speaking, weare
dealing with laser parameters such that purely laser-induced
processes, that cannot occur in the absence of the laser, have
vanishingly small probability to occur. The basic requirement
for laser-induced processes like pair creation by a photon [13]
(at photon frequencyωγ ≈ 2m∗) or pair creation by a nucleus
[16] to have substantial probability is that the peak electric
field Epeak = aω should be comparable to the critical field,
Epeak/Ec ≈ 1, and, as mentioned before, we consider only
laser parametersa, ω such thatEpeak� Ec. This also means
that at the field strengths considered, there will be no compet-
ing processes, so that our process will indeed be the dominat-
ing one.

C. Angular distribution

For the field-free case, the pairs prefer to emerge at an angle
θ ∼ m/ωγ with the vectorkγ [33]. When the laser field is
turned on, we expect to find more pairs in the direction of the
laser wave vectork. In Fig. 4, we display the differential
cross section integrated overdQp anddQe, for ξ = 1, 2. The
peak is seen to shift from the direction of the gamma photon
to the direction of the laser wave.

D. Total cross section

The total cross section is obtained by integrating the differ-
ential cross section (14) over the energiesQp, Qe and solid
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FIG. 4: (Color online) The differential cross section integrated over
the effective energyQp,e, for ξ = 0 (solid red line),ξ = 1 (solid blue
line) and forξ = 2 (dashed green line). As in Fig. 3,ωγ =

√
6m.

The pair is emitted at equal anglesθp = θe = θ (see Fig. 2), in the
plane spanned byk andε. We note that the area under these curves
are notably different, which implies that the presence of the laser
enhances the number of pairs produced atθp = θe. The differential
cross section integrated over all angles will however, as wewill see
later (see Fig. 5), be almost unchanged as compared to the laser free
case.

anglesΩe, Ωp of the produced positron and electron:

σtot =

∫
1

2

∑

spin, pol.
n

Qp|qp|dQpdΩp

(2π)3
Qe|qe|dQedΩe

(2π)3

× |Sn|2δ(Qp +Qe + nω − ωγ). (20)

Here, it is convenient to replace the sum over the number of
exchanged photonsn by an integral, and to evaluate thisinte-
gral with the delta function so thatn equals the integer closest
to (ωγ − Qp − Qe)/ω. This is a good approximation since
ω � Qe,p, ω

γ . The remaining six-fold integral has to be per-
formed numerically (we employ a Monte Carlo method). We
note that this method has been used before to obtain total rates
for the production of pairs from a colliding laser beam and a
nucleus [25, 26]. In general, Monte Carlo integration is the
method of choice for integrals of high dimensionality where
the accuracy demand is modest. The result of one such cal-
culation is shown in Fig. 5, where we present the total cross
section as a function of the frequencyωγ of the perturbative
photon. As expected, in the region where pair production is
possible without the laser, the rates are almost indistinguish-
able.
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FIG. 5: (Color online) The total cross section as a function of the
frequencyωγ of thenon-laser mode photon, compared with the case
without the laser field. The laser frequency used isω = 1 keV. Due
to the laser, there remains a finite probability of pair creation below
the field-free thresholdωγ = 2m. However, the magnitude drops
exponentially, as expected.

IV. CONCLUSIONS

In this paper, we have presented a calculation of the laser-
assisted Bethe-Heitler process, i.e. pair production by a high-
frequency photon in the presence of a nuclear Coulomb field
and an intense laser field. The regime of parameters consid-
ered was for a subcritical laser field, that is the peak elec-
tric field of the laser was much smaller than the critical field
Ec = m2/|e|, but with a the nonlinear parameterξ of order
unity and the gamma photon frequencyωγ > 2m. In this
regime, pair production is possible without the field, and as
the laser field strength is below the critical field, it is expected
that the total rates are almost unaffected by the laser. This
was confirmed by evaluating the six-fold integral for the total
cross section numerically (see Fig. 5). However, the differ-
ential cross section was found to be drastically altered by the
presence of the laser wave, as shown in Fig. 4. Finally, we
note that all cross sections shown here are evaluated for a nu-
clear charge numberZ = 1 and scale asZ2, since we have
taken into account the Coulomb field in first-order perturba-
tion theory.

Clear laser-assisted signatures are thus expected in the dif-
ferential cross sections, and these might provide an opportu-
nity for interesting experiments in the near future.
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APPENDIX: CUTOFF PROPERTIES AND EVALUATION OF
THE GENERALIZED BESSEL FUNCTIONS

1. Cutoff rules

Important for the understanding of physical processes ex-
pressed through generalized Bessel functions is the cutoffbe-
havior. A rule is needed for how many terms should be in-
cluded in sums like Eq. (11) to reach convergence. For the
usual Bessel functionJn(α), the cutoff rule is well known:
for n > α (positiven, α) the magnitude ofJn(α) will drop
sharply asJn(α) ∼ αn/nn+ 1

2 , and the cutoff is therefore
n ≈ α. For the generalized Bessel functionA0(n, α, β), the
correct rule reads for positiveα andβ

npos. cutoff=

{
α− 2β if 8β < α

2β + α2

16β
if 8β > α

,

nneg. cutoff= −α− 2β.

(A.1)

For negativeα, β we use the symmetries

A0(n, α,−β) = (−1)nA0(−n, α, β),

A0(n,−α, β) = (−1)nA0(n, α, β). (A.2)

Beyond the cutoff,|A0(n, α, β)| will show inverse facto-
rial decrease∼ n−n− 1

2 , similar to Jn(α). An example of
A0(n, α, β) is displayed in Fig. 6. These cutoff rules can be
derived from the asymptotic expansion by the saddle point
method [13, 36, 50] or from the maximal and minimal value
of the classically allowed energy for an electron moving in a
plane electromagnetic wave [51].

2. The functionHn

Regarding the functionHn, as appeared in Eq. (16)

Hn =

∞∑

s=−∞

A0(s, α, β)A0(s− n, γ, δ)

s+ C
, (A.3)

we can use the expansion

1

s+ C
=

1

C
− s

C2
+
s2

C3
+ . . . , (A.4)

and then perform the sum overs with the addition theorem for
generalized Bessel functions, for each term in the expansion
(A.4). ProvidedC is larger than the cutoff index of the first of
the generalized Bessel functions entering the sum in Eq. (A.3),
we can then write

Hn(α, β, γ, δ) =
A0(n, α− γ, β − δ)

C
+
W2(n, α, β, γ, δ)

C2

+
W3(n, α, β, γ, δ)

C3
+ . . . . (A.5)

−2 0 2

−0.02

0

0.02

n × 10−4

A
0
(n

,1
04

,1
04

)

nneg. cutoff nint npos. cutoff

FIG. 6: (Color online) The generalized Bessel functionA0(n, α, β)
as a function ofn, with α = β = 104. Indicated are the positive
cutoff npos. cutoff = 2β + α2/(16β) = 20625, the negative cutoff
nneg. cutoff = −2β − α = −3 × 104 as well as the index for the
transition to another “plateau”, given bynint = −2β + α = −104.

We also give the expression for the first correctionW2:

W2(n, α, β, γ, δ) = −α
2

[A0(n− 1,Γ,∆)

+A0(n+ 1,Γ,∆)]

+β[A0(n− 2,Γ,∆) +A0(n+ 2,Γ,∆)],
(A.6)

where Γ = α − γ and ∆ = β − δ. It is now clear
that Hn(α, β, γ, δ) will have the same cutoff behavior as
A0(n, α− γ, β − δ), under the stated conditions.

3. Algorithm for numerical evaluation

In order to investigate the problem in the present paper nu-
merically, a large number of generalized Bessel functions for
different indices, but of the same arguments were needed, in
particular to accurately evaluate functions likeHn discussed
above. In analogy with the usual Bessel function, generalized
Bessel functions satisfy a recursion relation, relating one in-
dex with its four neighbors:

2nA0(n, α, β) = α [A0(n− 1, α, β) +A0(n+ 1, α, β)]

− 2β [A0(n− 2, α, β) +A0(n+ 2, α, β)] . (A.7)

The recursion relation (A.7) is however numerically stable
only for certain intervals of the indexn, and cannot be used di-
rectly for a numerical evaluation. We have found that it is pos-
sible to make the recursion stable for arbitraryn, if we trans-
form the recursion relation (A.7) into a third-order relation by
letting each of the coefficients satisfy its own recursion rela-
tion. In the following, we describe the algorithm for positive
n, the treatment of negativen is completely analogous. We
also assumeα 6= 0. In the caseα = 0 the generalized Bessel
functionA0(n, α, β) can be expressed as an ordinary Bessel
function. After the transformation, the functionA0(n, α, β)
will satisfy

2βA0(n−1, α, β)+κnA0(n, α, β)+λnA0(n+1, α, β) = 0,
(A.8)
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if the coefficientsκn andλn are defined recursively like

κn = ζn − 2βξn
λn+1

,

λn = ηn − κn+1ξn
λn+1

, (A.9)

whereζn, ηn andξn are again defined recursively as

ζn = −α− 4β2

ξn+1
,

ηn = 2(n+ 1) − 2βζn+1

ξn+1
,

ξn = −α− 2βηn+1

ξn+1
. (A.10)

The above definitions provide a numerically stable algorithm
for calculatingA0(n, α, β) as follows. The recursion (A.9)
for the coefficients is started at a large indexn0 > npos. cutoff

[see Eq. (A.1)] withnon-zero but otherwise arbitrary ini-
tial conditions, in the downward direction forn. When the

coefficientsκn0
, κn0−1, . . . , κ1 and λn0

, λn0−1, . . . , λ1 are
calculated, the recursion relation (A.8), this time applied in
the direction of increasingn, together with two initial values
A0(0, α, β), A0(1, α, β) is used to calculate the complete ar-
rayA0(0 ≤ n ≤ n0, α, β). The two initial values are com-
puted efficiently either from the definition (7), or for largeval-
ues of the argumentsα, β by an asymptotic expansion [36].
The described algorithm provides a very efficient way of cal-
culating a large number of generalized Bessel function of the
same arguments, but of different order. As far as the accu-
racy is concerned, essentially no significant figures are lost
during the recursion, even for very high ordersn > npos. cutoff.
The accuracy is therefore limited by that of the initial val-
uesA0(0, α, β), A0(1, α, β). We also estimated numerically
the minimum value of the quantityN = n0 − npos. cutoff

needed to reach the precision of the initial values, and found
Nmin ≈ B(npos. cutoff)

0.3. HereB is a constant depending on
α andβ of the orderO(10).
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[25] J. Z. Kamiński, K. Krajewska, and F. Ehlotzky, Phys. Rev. A
74, 033402 (2006).

[26] P. Sieczka, K. Krajewska, J. Z. Kamiński, P. Panek, and
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Éksp. Teor. Fiz.13 (1971), 261–263, [JETP Lett.13, 185 (1971)].

[143] , Schwinger mechanism of electron-positron pair productionby the field of opti-
cal and x-ray lasers in vacuum, Pis’ma v. Zh.Éksp. Teor. Fiz.74(2001), 151–156, [JETP
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[167] P. Sieczka, K. Krajewska, J. Z. Kamiński, P. Panek, and F. Ehlotzky,Electron-positron
pair creation by powerful laser-ion impact, Phys. Rev. A73 (2006), 053409 (1–9).

[168] N. Szpak,On the problem of “spontaneous pair creation” in strong electric fields, Nucl.
Instrum. Meth. B205(2003), 30–35.
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Chirilă for first showing me the useful integration algorithm of Evans [64]. For typesetting the
thesis the LATEX template provided by Martin Haas was very helpful, thanks Martin also for the
advice on the administrative procedures of the PhD exam.

Last, but not least, my family: Miyuki, Leo and Noah, and my mother and father. Thank you!

177


