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Flavored Model Building

Abstract

In this thesis we discuss possibilities to solve the family replication problem and to understand the
observed strong hierarchy among the fermion masses and the diverse mixing pattern of quarks and
leptons. We show that non-abelian discrete symmetries which act non-trivially in generation space
can serve as profound explanation. We present three low energy models with the permutation
symmetry S4, the dihedral group D5 and the double-valued group T ′ as flavor symmetry. The
T ′ model turns out to be very predictive, since it explains tri-bimaximal mixing in the lepton
sector and, moreover, leads to two non-trivial relations in the quark sector,
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= |Vus| and√
md
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=
∣∣∣Vtd
Vts

∣∣∣. The main message of the T ′ model is the observation that the diverse pattern in
the quark and lepton mixings can be well-understood, if the flavor symmetry is not broken in an
arbitrary way, but only to residual (non-trivial) subgroups. Apart from leading to deeper insights
into the origin of the fermion mixings this idea enables us to perform systematic studies of large
classes of discrete groups. This we show in our study of dihedral symmetries Dn and D′

n. As a
result we find only five distinct (Dirac) mass matrix structures arising from a dihedral group, if
we additionally require partial unification of either left-handed or left-handed conjugate fermions
and the determinant of the mass matrix to be non-vanishing. Furthermore, we reveal the ability
of dihedral groups to predict the Cabibbo angle θC , i.e. |Vus(cd)| = cos(3π

7 ), as well as maximal
atmospheric mixing, θ23 = π

4 , and vanishing θ13 in the lepton sector.

Kurzfassung

In dieser Dissertation diskutieren wir Möglichkeiten, das Problem der Familien-Replikation zu
lösen und die beobachtete starke Hierarchie unter den Fermionmassen und das verschiedenar-
tige Mischungsmuster von Quarks and Leptonen zu verstehen. Wir zeigen, daß nicht-abelsche
diskrete Symmetrien, welche nicht-trivial im Generationenraum agieren, als tiefere Erklärung di-
enen können. Wir präsentieren drei Niederenergie-Modelle mit der Permutationssymmetrie S4, der
dihedrischen Gruppe D5 und der zwei-wertigen Gruppe T ′ als Generationensymmetrie. Das T ′

Modell erweist sich als sehr vorhersagekräftig, da es tri-bimaximale Mischung im Leptonensektor
erklärt und darüberhinaus zu zwei nicht-trivialen Beziehungen im Quarksektor führt,
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∣∣∣. Die Hauptaussage des T ′ Modells ist die Beobachtung, daß das verschiedenartige
Muster in den Quark- und Leptonmischungen wohlverstanden werden kann, falls die Generationen-
symmetrie nicht in beliebiger Weise gebrochen wird, sondern nur zu verbleibenden (nicht-trivialen)
Untergruppen. Abgesehen von tieferen Einblicken in den Ursprung von Fermionmischungen erlaubt
es uns diese Idee, systematische Studien von großen Klassen diskreter Gruppen durchzuführen.
Dies zeigen wir in unserer Studie über dihedrische Symmetrien Dn und D′

n. Als Ergebnis finden
wir nur fünf unterschiedliche (Dirac-) Massenmatrixstrukturen, die von einer dihedrischen Gruppe
stammen können, falls wir zusätzlich die partielle Vereinheitlichung von entweder links-händigen
oder links-händigen konjugierten Fermionen verlangen sowie erwarten, daß die Determinante der
Massenmatrix nicht-verschwindend ist. Desweiteren legen wir die Fähigkeit dihedrischer Grup-
pen offen, den Cabibbo Winkel θC , d.h. |Vus(cd)| = cos(3π

7 ), wie auch maximale atmosphärische
Mischung, θ23 = π

4 , und verschwindendes θ13 im Leptonensektor vorherzusagen.
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Chapter 1

Introduction

The gauge interactions of elementary particles can be well described by the Standard Model (SM)
gauge group SU(3)C ×SU(2)L×U(1)Y . Furthermore, fundamental properties of the fermions like
charge quantization can be understood in the framework of Grand Unified Theories (GUTs) such
as SU(5). Supersymmetry (SUSY), the fundamental symmetry of fermions and bosons, is the third
ingredient of many successful models. However, there is no convincing model which explains

• the existence of the three generations of fermions,

• the observed strong hierarchy among the charged fermions,

• the fact that quarks have small mixings, while two of the lepton mixing angles are large.

Moreover, if special mixing patterns as µτ symmetry [1–6],

sin2(θ23) =
1
2
, sin2(θ13) = 0 , (1.1)

or tri-bimaximal mixing (TBM) [7–10],

sin2(θ23) =
1
2
, sin2(θ12) =

1
3
, sin2(θ13) = 0 , (1.2)

are realized in the lepton sector, this requires a profound explanation. As the symmetries of the SM
turned out to be so successful in describing the gauge interactions, it is tempting to ask whether
a symmetry acting on the three generations could be the origin of the different mass and mixing
patterns of quarks and leptons. The possible size of the flavor symmetry (frequently also called
generation, family or horizontal symmetry) is depending on the choice of the gauge group, i.e. in
the SM the maximal possible symmetry is U(3)5 (without left-handed conjugate neutrinos νc and
U(3)6 with three left-handed conjugate neutrinos), while it is reduced to U(3), if the gauge group is
SO(10). However, this constraint on the size of the flavor group is rather loose, since in most of the
cases we are dealing with symmetries which can be embedded into SO(3) or SU(3). Furthermore,
various properties of this flavor symmetry have to be fixed

• it can be either abelian or non-abelian,

• either discrete or continuous,

• either local or global,

• it can either commute with the gauge group(s) or not.

1-1
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Abelian symmetries, as U(1) for example, have been shown to be able to explain the observed
fermion mass hierarchy, if the charges of the three generations are appropriately chosen. This idea
was first proposed by Froggatt and Nielsen in 1979 [11]. However, these symmetries actually cannot
give reason to the existence of three generations and cannot predict certain mixing patterns, like
TBM, since the irreducible representations of abelian groups are all one-dimensional. Therefore
the predictive power of a non-abelian symmetry is in general larger than that of an abelian group.
Choosing among a discrete or a continuous group has two main consequences: a.) in case of a spon-
taneously broken symmetry a continuous one leads to the appearance of a Goldstone boson/gauge
boson, whereas the breaking of a discrete group does not 1 and b.) discrete groups contain several
small representations which are all appropriate to describe the three fermion generations, whereas
in continuous groups, as SO(3) or SU(3), only a single non-trivial possibility exists to assign the
fermion generations. If the symmetry is taken to be local, the requirement of anomaly freedom
can pose severe constraints on the assignment of the fermions. Moreover, locality preserves the
symmetry from being broken by quantum gravity effects at the Planck scale. Concerning the issue
whether the flavor symmetry shall commute with the gauge group(s) or not, we in general assume
the simplest case, i.e. these groups commute 2. This leads to the choice of a non-abelian, discrete
flavor symmetry commuting with the gauge group(s) which might also be realized locally. Since
we do not observe an intact flavor symmetry at (very) low energies, it must be broken. Thereby,
we need to specify the scale of flavor symmetry breaking and whether it should be broken spon-
taneously or explicitly. As the explicit breaking generally leads to several additional parameters,
we confine ourselves to the discussion of spontaneously broken flavor symmetries. In order not to
introduce further scales into the theory, the flavor group is broken at the electroweak scale together
with the SM gauge group. For this purpose, we have to assume the existence of several copies of
the SM Higgs doublet which transform non-trivially under the flavor group. It is well-known that
such multi-Higgs doublet models are severely constrained by direct searches for Higgs bosons and
even more by indirect bounds from flavor changing neutral currents (FCNCs) and lepton flavor
violating processes (LFVs). However, even such semi-realistic models already give insights into
certain fundamental features of a discrete flavor symmetry. In Chapter 3, we present two models
which are constructed in this manner. In the first model the permutation group S4 is employed
as flavor symmetry, while the flavor structure of the second model is determined by the dihedral
symmetry D5. The fermion assignment under the flavor group is (almost) uniquely determined
by additional requirements. In the case of S4 we demand that the model can be simultaneously
embedded into an SO(10) GUT and into a continuous flavor symmetry, SO(3)f or SU(3)f . The
group S4 can explain the existence of exactly three generations due to its representation structure.
In particular, the embedding into a continuous flavor group leads to the existence of several Higgs
doublets in this model. Therefore, we pursue a more minimalist approach in the discussion of the
D5 model. The result is a low energy model with four Higgs doublets, which can still be embedded
into the Pati-Salam gauge group SU(4)C×SU(2)L×SU(2)R, but the embedding into a continuous
flavor symmetry is not straightforward. The number of Higgs fields is this time bounded from
below by the requirements that the Higgs potential has to be free from accidental symmetries and
all fermion masses and their mixings ought to be fitted at tree level. In contrast to the first model,
only two of the three generations of fermions can be unified into irreducible D5 representations.
These models have in common that they are able to accommodate the experimental data, but can-
not make any predictions. The reason for this is twofold: on the one hand there still exist several

1The possible problem of domain walls arising from a spontaneously broken discrete group [12] could be solved,
for example, by (low scale) inflation.

2There exist only very few models in the literature in which the gauge and the flavor group(s) do not commute,
for example [13].
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possible couplings in the Yukawa sector, albeit the flavor symmetry constrains the matrix struc-
tures, and on the other hand the vacuum expectation values (VEVs) of the Higgs fields (appearing
in the mass matrices) can in general only be adjusted, but not predicted due to the complicated
form of the Higgs potentials. Therefore, we continue in Chapter 4 with a model in which the fla-
vor and the electroweak symmetry breaking scale are disentangled. The flavor group which is the
double-valued tetrahedral group T ′ is broken spontaneously by gauge singlets (flavons) at a scale of
(1011...1013) GeV. The gauge group of the model is still the SM and supersymmetry is introduced
as an additional ingredient. Therefore, the framework of this model is the minimal supersymmetric
Standard Model (MSSM). In contrast to the two models presented in Chapter 3, the T ′ model leads
to several predictions, namely TBM in the lepton sector and two relations among |Vus|, |Vtd/Vts|
and md/ms,

√
md
ms

= |Vus| and
√

md
ms

=
∣∣∣Vtd
Vts

∣∣∣, in the quark sector. According to the group theory

of T ′ and the prediction of TBM this model is intimately connected to approaches [14, 15] [16–21]
describing the lepton sector with the help of the alternating group A4. Since the Higgs fields do not
transform under the flavor symmetry T ′, the Yukawa couplings are in general non-renormalizable
operators suppressed by the cutoff scale Λ of the theory. As the leading order result is not com-
pletely satisfactory in the quark sector, the main challenge in this model is to generate the Cabibbo
angle θC = λ ≈ 0.22 and appropriate masses for the quarks of the first family via next-to-leading
order effects only. These have to be kept at a level of λ2 for leptons in order not to spoil TBM. Apart
from its predictive power the model allows for a deeper understanding of the diverse mixing pattern
in the quark and the lepton sector, since large mixing angles in the lepton sector are interpreted
as the mismatch of two different T ′ subgroups, Z3 and Z4, preserved in the charged lepton and the
neutrino sector, while quark mixings turn out to be small, since the preserved subgroups in the up
and down quark sector are the same. The fact that T ′ is not broken in an arbitrary way allows the
definite prediction of TBM. The preservation of a residual group of T ′ can be naturally maintained
in the flavon potential due to the usage of flavored gauge singlets and due to the SUSY framework.
The actual realization of the model requires three additional symmetries: a Z3 symmetry in order
to separate the sectors in which T ′ is broken to different subgroups, a U(1)FN in order to fully
maintain the mass hierarchy among the fermions and a U(1)R symmetry which is necessary for
the construction of the flavon potential. As the fermion assignment under T ′ is rather diverse, the
model cannot be embedded into a GUT or a continuous flavor symmetry without adding new fields
to complete the representations. In the third part of the work we further exploit the idea that
a flavor symmetry is not broken in an arbitrary way, but such that one of its subgroups remains
conserved, in order to predict a certain pattern in the fermion mixing. We show that a systematic
study of a large class of discrete non-abelian symmetries becomes possible with this requirement.
As class of groups we choose the dihedral symmetries Dn and D′

n. We arrive at only five distinct
(Dirac) mass matrix structures, if either left-handed or left-handed conjugate fermions ought to
unify partially and the determinant of the mass matrix has to be non-vanishing. As a result of this
general study, we find a new way to predict the element |Vus| or |Vcd|, or equivalently the Cabibbo
angle θC , if different directions of subgroups remain preserved in the up and down quark sector. In
case that the flavor symmetry is D7 |Vus| or |Vcd| can be fixed to cos(3π

7 ) ≈ 0.2225 which is only 2 %
below its best fit value. Thereby, the Cabibbo Kobayashi Maskawa (CKM) matrix element is only
determined by fundamental group theoretical quantities, namely the index n of the dihedral group
Dn, the index j of the representation 2j under which the quarks transform and indices mu and md

which specify the direction of the preserved subgroup. Moreover, we find two neat examples in the
literature in which maximal atmospheric mixing and vanishing θ13 in the lepton sector result from
the preservation of different subgroups of the flavor group, D4 and D3, respectively. We analyze
these in detail and elucidate their group theoretical background.
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The work presented in this thesis has been mainly published in [22], [23], [24], [25] and [26].

The thesis is structured as follows: In Chapter 2 we briefly review the experimental results for the
fermion masses and their mixing parameters and present some prominent approaches to explain
the observed data. Chapter 3 contains the study of the two low energy models in which the
flavor symmetry is spontaneously broken at the electroweak scale. Thereby, we introduce the
group theory of each flavor symmetry, present the fermion masses and studies to accommodate the
experimental data. In both cases we put much emphasis on a careful study of the Higgs potentials.
Furthermore, our conventions of fermion masses and mixings, used throughout this work, can be
found in Chapter 3. Chapter 4 is dedicated to the T ′ model in which the flavor symmetry is broken
at high energies by gauge singlets. We perform a detailed analysis of the leading as well as next-
to-leading order results in order to show that the model accommodates all data. Thereby, it leads
to several predictions. We elucidate the idea of the preservation of different subgroups of the flavor
symmetry in different sectors of the theory and how this leads to predictions for the fermion mixing
pattern. The scalar potential is of particular interest also in this model, since only in case that the
VEV configurations naturally conserve the different subgroups of the flavor group the model can
be viable. In Chapter 5 we adopt the idea of preserving certain subgroups of the flavor group in the
fermion mass matrices in order to study the series of dihedral symmetries Dn and D′

n. We discuss
three examples leading to a prediction of the Cabibbo angle θC and θ23 = π

4 and θ13 = 0 in the
lepton sector, respectively. Finally, we conclude in Chapter 6 and give a short outlook. Appendix
A contains the basic knowledge about group theory of discrete symmetries necessary to follow this
work, Appendix B is dedicated to the Kronecker products and Clebsch Gordan coefficients of the
various discrete groups (S4, D5, T ′, Dn and D′

n and D7) used as flavor symmetries. Lastly, the
explicit form of the next-to-leading order terms arising in the T ′ model can be found in Appendix
C.



Chapter 2

Experimental and Theoretical Status

In this chapter we briefly review the information about the fermion masses and the mixing param-
eters, gained in numerous experiments. Furthermore, we mention prominent attempts to explain
these observations.

2.1 Experimental Results

In a long series of experiments three generations of elementary particles have been discovered. Each
generation consists of two quarks and anti-quarks which are colored, i.e. charged under SU(3)C ,
one charged lepton and anti-lepton and a neutrino (which could be its own anti-particle). They
can be classified according to their transformation properties under the SM gauge group into up
quarks u, c and t, down quarks d, s and b, charged leptons, e, µ and τ , and neutrinos νe, νµ and ντ
1. Experiments showed that the charged fermion masses are strongly hierarchical, i.e. the mass of
the first generation is much smaller than the one of the second generation and the third generation
is the heaviest one. The masses of the fermions are conveniently given at a common scale µ, which
is here taken to be the mass MZ of the Z boson. The quark masses are given by [27] 2

mu(MZ) = (1.7± 0.4) MeV , mc(MZ) = (0.62± 0.03) GeV , mt(MZ) = (171± 3) GeV ,

md(MZ) = (3.0± 0.6) MeV , ms(MZ) = (54± 8) MeV , mb(MZ) = (2.87± 0.03) GeV . (2.1)

The charged lepton masses are very precisely known and their running masses extrapolated to the
mass scale µ = MZ read [28]

me(MZ) = (0.48684727± 0.00000014) MeV , mµ(MZ) = (102.75138± 0.00033) MeV ,

mτ (MZ) = 1.74669+0.00030
−0.00027 GeV . (2.2)

In the neutrino sector only two mass squared differences have been measured in oscillation experi-
ments 3. The solar mass squared difference is measured to be

∆ m2
21 = (7.6+0.5

−0.3) × 10−5 eV2 , (2.3)

1These are the eigenstates of the weak interaction, while the mass eigenstates are denoted by ν1, ν2 and ν3.
2Note that the masses of the lighter quarks have rather large errors. Their ratios can be determined more precisely

by using chiral perturbation theory.
3The LSND experiment [29] indicated the existence of a third independent mass squared difference which could

only be explained by the assumption of additional (sterile) neutrinos. However, the data recently published by the
MiniBooNE collaboration [30] do not confirm the LSND result.

2-1
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and the absolute value of the atmospheric mass squared difference is found to be

|∆ m2
31| = (2.4+0.3

−0.3) × 10−3 eV2 (2.4)

at 2σ level [31]. Since ∆ m2
31 ≶ 0, the neutrinos can have two mass orderings, i.e. they can be

normally ordered, m1 < m2 < m3, (NH) or their ordering can be inverted (IH), m3 < m1 < m2.
Furthermore, they can be quasi degenerate (QD), i.e. the measured mass squared differences can
be (much) smaller than the absolute mass scale m0. Several sources provide information about m0:
β-decay experiments which measure the endpoint of the tritium decay [32,33]

mβ =

(
3∑
i=1

|U e iMNS |2m2
i

)1/2

≤ 2.2 eV , (2.5)

cosmology which sets a bound on the sum of the neutrino masses [34]

3∑
i=1

mi . 1 eV , (2.6)

as well as the search for neutrinoless double-beta decay (0νββ) [35–38] 4

|mee| = |
3∑
i=1

(
U e iMNS

)2
mi| ≤ 0.9 eV . (2.7)

In addition, a signal |mee| 6= 0 would show that neutrinos are Majorana particles, unlike the other
fermions.
Quarks as well as leptons are known to have non-vanishing mixing. In the quark sector, the mixing
is parameterized by the CKM matrix whose entries are well determined [40]

|VCKM | =

 0.97383+0.00024
−0.00023 0.2272+0.0010

−0.0010 (3.96+0.09
−0.09) × 10−3

0.2271+0.0010
−0.0010 0.97296+0.00024

−0.00024 (42.21+0.10
−0.80) × 10−3

(8.14+0.32
−0.64) × 10−3 (41.61+0.12

−0.78) × 10−3 0.999100+0.000034
−0.000004

 (2.8)

together with the Jarlskog invariant [41] which measures the CP violation,

JCP = (3.08+0.16
−0.18) × 10−5 . (2.9)

The standard parameterization of VCKM is given in terms of the three mixing angles θij and the
CP phase δ [40]

VCKM =

 c12c13 s12c13 s13 e−iδ

−s12c23 − c12s23s13 eiδ c12c23 − s12s23s13 eiδ s23c13
s12s23 − c12c23s13 eiδ −c12s23 − s12c23s13 eiδ c23c13

 (2.10)

with sij = sin(θij) and cij = cos(θij). The angles are restricted to lie in the first quadrant and δ
can take any value between 0 and 2π. JCP is related to the mixing angles θij and the CP phase δ
through

JCP =
1
8

sin(2 θ12) sin(2 θ23) sin(2 θ13) cos(θ13) sin(δ) . (2.11)

4The claim [39] of |mee| 6= 0 is controversial.
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Values of sin(θij) and δ are then

s12 = 0.2243 , s23 = 0.0413 , s13 = 0.0037 , δ = 1.05 radian . (2.12)

They are taken from the Particle Data Booklet which appeared in 2004 [42] and cannot be found in
the newest version of 2006 [40]. However, we display these values, since it is useful for a comparison
to the lepton sector in which it is more convenient to present the sines of the mixing angles. The
elements of the CKM matrix are usually denoted by

VCKM =

 Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 . (2.13)

The lepton mixing is encoded in the Maki Nakagawa Sakata (MNS) mixing matrix UMNS . Its
parameterization is analogous to the one of the CKM matrix, i.e. it contains three mixing angles
θij and one Dirac CP phase δ. Additionally, two phases, denoted by φ1 and φ2 and associated with
the possible Majorana nature of the neutrinos, can be present. Instead of displaying the elements of
UMNS it is more convenient in the lepton sector to show the experimental results of the sines of the
mixing angles θij . These are measured in (anti-)neutrino oscillations by various experiments which
use either natural sources of neutrinos (e.g. the Sun) or artificial neutrino sources (e.g. nuclear
power plants). Not all three mixing angles have been measured and their experimental errors are at
present still much larger than those of the quark mixings. There exist several global analyses [31,43]
using different techniques to extract the sines of the mixing angles from the various data of the very
diverse experiments. Here the results of the analysis performed by Maltoni et al. [31] are quoted

sin2(θ12) = 0.32+0.05
−0.04 , sin2(θ23) = 0.50+0.13

−0.12 and sin2(θ13) = 0.007+0.026
−0.007 (at 2σ level) . (2.14)

These values can be found in the 2007-update of [31]. As one can see, according to the latest
global fits the best fit value of sin2(θ13) now deviates from zero 5, while the best fit for sin2(θ23)
is still maximal mixing, i.e. θ23 = π

4 . In particular, these two values are of theoretical interest,
since vanishing mixing as well as maximal mixing do not seem to be accidental results of a tuning
of parameters of the theory, but require a more fundamental explanation. According to their
observation in (anti-)neutrino experiments θ12 is also called solar, θ23 atmospheric and θ13 reactor
mixing angle. Up to now, the Dirac CP phase δ as well as the Majorana phases φ1 and φ2 have not
been determined in experiments. Although it is not convenient in neutrino physics, we also display
the allowed ranges of the entries of the MNS matrix for comparison with the quark sector. Since
the authors of the global analysis [31] do not give UMNS in this form, we show another (rather old)
result [44] for illustration purposes

|UMNS | =

 0.79− 0.88 0.47− 0.61 < 0.20
0.19− 0.52 0.42− 0.73 0.58− 0.82
0.20− 0.53 0.44− 0.74 0.56− 0.81

 (2.15)

at 3σ level. Similar to the elements of VCKM , the UMNS elements are also denoted by

UMNS =

 Ue1 Ue2 Ue3
Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

 . (2.16)

5However, it is still compatible with sin2(θ13) = 0. At the 2σ level sin2(θ13) is bounded from above by 0.033.
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For further definitions of the mixing matrices VCKM and UMNS and further conventions see Section
3.1.
Finally, we would like to mention the experimental results of searches for a fourth generation of
fermions. The number of light neutrinos is fixed to be Nν = 2.994 ± 0.012 by the Z boson decay
width [40] 6. Additionally, this decay width enforces a lower limit on new SM-like fermions of
m > 45 GeV. Further lower bounds on the mass of heavy charged leptons are m > 100.8 GeV
for the decay into Wν and m > 102.6 GeV for stable leptons. For stable neutral heavy leptons
the bounds read m > 45 GeV for Dirac particles and m > 39.5 GeV for Majorana fermions. In
case that these particles are not stable the bounds are about a factor of two larger. For quarks,
an analogous bound on quasi-stable b′s reads m > 190 GeV. All values are taken from [40]. For
further reading we refer to [45].

2.2 Theoretical Approaches

In the following, we review some ideas to describe the observed fermion mass and mixing patterns.
A very simple ansatz is to require that certain elements in the fermion mass matrices vanish.
These texture zeros are in general not motivated by any further principle, but only by the desire
to make the model predictive. The cases of five and six texture zeros [46] and different four
zero structures [47, 48] in the up and down quark mass matrix have been extensively studied.
Several of them are able to accommodate the fermion mass hierarchy (most of the time with
additional assumptions) and some of them can correlate the quark masses with elements of the
CKM matrix [49–54] leading to relations, like∣∣∣∣VtdVts

∣∣∣∣ =√md

ms
and

∣∣∣∣VubVcb

∣∣∣∣ =√mu

mc
. (2.17)

In particular, it is often assumed that the (11) element in the mass matrices vanishes. Since these
ansätze turned out to be quite successful in the quark sector, texture zeros have also been used
to derive predictions in the lepton sector. Thereby, in most of the studies it is presumed that the
mass matrix of the charged leptons is diagonal. As shown in [55–57], the maximum number of
independent texture zeros is two in case that neutrinos are Majorana particles. For Dirac neutrinos
more texture zeros are allowed [58] due to the fact that a Dirac mass matrix does not have to be
symmetric in contrast to a mass matrix for Majorana fermions. However, such studies suffer from
the problem that these zeros are in general not protected against corrections. This is especially
relevant, if the vanishing of certain elements of the mass matrix is imposed at a scale much higher
than the electroweak scale. In case of neutrinos with a quasi degenerate mass spectrum or with an
inverted hierarchy renormalization group running effects can drastically change the predictions of
a mass matrix with texture zeros, as discussed in [59].
In order to go a step further, one has to search for a profound reason for a certain structure of
the fermion mass matrices. As explained in the Introduction, it is reasonable to presume that
a new symmetry is responsible for the fermion masses and mixings. In the simplest case it is
a U(1) group. If the charges of the left-handed and left-handed conjugate fermions are chosen
in an appropriate way, such a symmetry can indeed produce the observed hierarchy among the
fermions and also the order of magnitudes of the mixing angles. This idea has been proposed first
by Froggatt and Nielsen [11]. However, this approach has two disadvantages: a.) since only the
left-handed up and down quarks and the left-handed charged leptons and neutrinos are unified into
a doublet under SU(2)L in the SM, we have various possibilities to assign different charges to the

6Similar bounds can be derived from cosmology.
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different kinds of fermions as well as to the three generations, and b.) concerning the mixing angles
it is not possible to arrive at a definite prediction, i.e. a certain value of a non-vanishing mixing
angle. The prospects to achieve this are fairly better with a non-abelian symmetry. Due to the
fact that the mass of the fermions belonging to the third generation is much larger than the masses
of the two other generations, the symmetry U(2) under which the three generations transform as
2 + 1 has been employed as flavor symmetry [60]. Thereby, U(2) is broken in two steps in order
to maintain the hierarchy of the fermion masses. However, in order to understand the existence of
exactly three generations only two continuous symmetries are appropriate, namely SO(3) or SU(3).
Both of them have been studied in detail in [61] and [62]. The models are successful in describing
the fermion mass spectrum and the diverse mixing pattern of quarks and leptons. However, they
are rather complicated with regard to the number of additional heavy degrees of freedom and
auxiliary symmetries needed to suppress unwanted operators. Furthermore, it turned out that it
is non-trivial to combine them with a GUT like SU(5) or SO(10). For a profound understanding
of precise values of the mixing angles discrete non-abelian flavor symmetries seem to offer the best
prospects, in particular, if they are not broken in an arbitrary way. In this thesis we will present
four examples which all allow for the prediction of a special mixing structure: in Chapter 4 we
will discuss a model with the flavor symmetry T ′ which predicts TBM, and in Chapter 5 dihedral
groups are employed in order to derive the Cabibbo angle θC or µτ symmetry in the lepton sector.
In the discussion of these models it will turn out that the discrete non-abelian symmetry alone is
not sufficient to fully understand the fermion mass hierarchy in the majority of the cases. For this
purpose, the Froggatt-Nielsen mechanism has to be invoked, see Chapter 4.
There are also other approaches which can explain some properties of the fermion mass spectrum
and the mixing patterns without invoking an additional horizontal symmetry. For example, it is
well-known that in GUTs some features of the fermion masses can be maintained by a proper choice
of the Higgs representations. The explanation [63] of

mτ = mb , mµ = 3ms and me =
1
3
md (2.18)

with the help of a Higgs field transforming as 45 in SU(5) is maybe the most prominent example.
Note that Eq.(2.18) holds at the GUT scale of 1016 GeV, but not at low energies. In another
recently studied model [64] the fermion mass hierarchy and the size of the mixing angles is also
not attributed to a horizontal symmetry, but rather to the fact that additional heavy degrees of
freedom are present in the model and that the Pati-Salam gauge group SU(4)C×SU(2)L×SU(2)R
is broken in a particular way. Although this works well for the second and third generation of
fermions, the model cannot explain the features of the first generation. Similar to the models with
a U(1) group as flavor symmetry, also in this approach a definite prediction for a certain mixing
angle cannot be derived.
Finally, extra-dimensional models can be counted as rather exotic idea to shed light on the fermion
mass pattern. They generate the mass hierarchy by the appropriate localization of the three
generations in the extra dimension(s), see for instance [65].
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Chapter 3

Flavored SM

In this chapter we present two models in which the SM is extended by a discrete flavor symmetry.
In the first one the permutation group of four distinct objects, named S4, is used in order to unify
the three generations of fermions into one irreducible representation of the flavor group, whereas in
the second model the flavor symmetry is taken to be the dihedral group D5 which only has one- and
two-dimensional irreducible representations. Therefore, the three generations are assigned to 1+2
under the flavor group in this model. Both assignment structures have appealing features. The
unification into one irreducible representation solves the so-called “family replication problem”,
i.e. it answers the question why we observe exactly three generations of fermions. On the other
hand we also have several hints that the assignment 1 + 2 might be even more favorable than a
complete unification of the generations. The facts that the masses of the charged fermions of the
first generation are so much lighter than the masses of the two other ones and the observation
of nearly maximal atmospheric mixing, i.e. θ23 ≈ π

4 , point towards a combination of the second
and third generation into a doublet, while the first one transforms as a singlet. However, also
the assignment 2 + 1 is reasonable, since only the Cabibbo angle θC = θq12 is sizable in the quark
sector and the hierarchy among the fermion masses is also in accordance with a scenario in which
the masses of the fermions of the third generation originate from a different mechanism. In both
models we use additional guidelines to fix the transformation properties of the fermions under the
flavor group (almost) uniquely. We work out the phenomenology of both models by studying the
resulting mass matrices, analytically and also numerically. In order not to introduce new scales
into the theory the flavor symmetry is broken spontaneously at the electroweak scale together with
the gauge group of the SM. For this purpose, the models contain several copies of the SM Higgs
SU(2)L doublet field (with hypercharge Y = −1) which transform non-trivially under S4 and D5,
respectively. In case of the S4 model we deal with six Higgs doublets, while the D5 model contains
four Higgs doublets. In both cases the Higgs potential is quite complicated and needs a careful
study to show that the advocated VEV structures, necessary to fit the fermion masses, can be
achieved. The two models shown here are published in [22] and [23].
This chapter is organized as follows: Section 3.1 contains our conventions for the fermion mass
terms in the SM; Section 3.2 is dedicated to the S4 model and Section 3.3 treats the D5 model in
detail. In Section 3.2 and Section 3.3, we start by presenting the mathematical structure of the
employed flavor symmetry, then give an outline of the model, discuss the fermion mass matrices
and the Higgs potential and finally comment on special aspects and problems of the particular
model. In the last section, Section 3.4, we point out which lessons can be learnt from the study of
these two models for model building with discrete flavor symmetries.

3-1
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3.1 Conventions

We assume that the reader is familiar with the structure of the SM and therefore only display our
specific conventions of Yukawa couplings, fermion masses and mixings. We work with left-handed
and left-handed conjugate fields, since this is also common in the context of GUTs. The three
generations of fermions transform in the following way

Qi =
(
ui
di

)
L

∼ (3,2,+
1
3
) , Li =

(
νi
ei

)
L

∼ (1,2,−1)

uc ∼ (3,1,−4
3
) , cc ∼ (3,1,−4

3
) , tc ∼ (3,1,−4

3
)

dc ∼ (3,1,+
2
3
) , sc ∼ (3,1,+

2
3
) , bc ∼ (3,1,+

2
3
)

ec ∼ (1,1,+2) , µc ∼ (1,1,+2) , τ c ∼ (1,1,+2)[
νce ∼ (1,1, 0) , νcµ ∼ (1,1, 0) , νcτ ∼ (1,1, 0)

]
under (SU(3)C , SU(2)L, U(1)Y ). The index i denotes the ith generation. As usual, the electric
charge Q is Q = T3 + Y

2 with T3 being the weak isospin and Y the hypercharge. The left-handed
conjugate neutrinos are put in brackets, since, strictly speaking, they do not belong to the SM.
A Yukawa interaction, e.g. for the charged leptons, is then of the form

λi eL
T
i εΦe

c , (3.1)

and similarly for the down quarks

λi sQ
T
i εΦs

c . (3.2)

For up quarks and neutrinos, however, Φ has to be replaced by its conjugate Φ̃ = εΦ?, e.g.

λi tQ
T
i Φ?tc and λi µL

T
i Φ?νcµ . (3.3)

Thereby, the Higgs field Φ = (φ0, φ−)T transforms under the SM gauge group as (1,2,−1) and ε is
the anti-symmetric two-by-two matrix in SU(2)L space. When the neutral component of the Higgs
field acquires a VEV, 〈Φ〉 6= 0, these terms generate masses for the fermions. The VEV of the Higgs
field is determined by the electroweak scale, i.e. 〈Φ〉 ≈ 174 GeV. In the case of multi-Higgs doublet

models this equation has to be replaced by
n∑
i=1
|〈Φi〉|2 ≈ (174 GeV)2 where Φi denote the n Higgs

doublets. As their VEVs can be complex, the absolute value of 〈Φi〉 appears in the formula. Note
that also here only the neutral component of each Higgs field is assumed to get a non-vanishing
VEV. However, this is in case of more than one Higgs doublet in general an assumption which is put
in by hand. The resulting mass matrices are in general complex three-by-three matrices given in the
basis in which the left-handed fields are on the left-hand side and the left-handed conjugate ones
are on the right-hand side. The matrices are denoted by Mu,d,e(l),ν in the following. All these terms
generate Dirac masses, since they connect left-handed and left-handed conjugate fields. Neutrinos
could also be Majorana particles and therefore can acquire a non-vanishing mass by interactions
connecting either two left-handed or two left-handed conjugate fields. For left-handed fields this
interaction needs a Higgs triplet field Ξ transforming as (1,3,+2) under the SM

λijL
T
i ΞLj , (3.4)
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where Ξ has the explicit form

Ξ =

(
ξ0 − ξ+√

2

− ξ+√
2

ξ++

)
. (3.5)

If (the neutral component of) Ξ acquires a non-vanishing VEV, it generates masses for the light
neutrinos. Unlike the VEVs of the Higgs doublets, the VEV of Ξ is strongly constrained by the ρ
parameter, i.e. it cannot exceed a value of a few GeV. Thereby, it explains the smallness of the
neutrino masses (at least partly). The resulting mass matrix is denoted by MLL. The left-handed
conjugate neutrinos can get a direct mass term, e.g. meµν

c
e ν

c
µ, since they do not transform under

the SM gauge group. Their mass can be very heavy, i.e. around GUT scale, as it is not protected
by any symmetry. Their mass matrix will be denoted by MRR in the following. Since a Majorana
mass term connects the same fields with each other, MLL and MRR have to be symmetric. We will
always omit a possible factor of 1

2 appearing in the Majorana mass terms in the following. Majorana
neutrinos can acquire their mass in three different ways: a.) if the model contains Higgs triplets,
but no left-handed conjugate neutrinos, MLL is the light neutrino mass matrix; b.) if the model
contains left-handed conjugate neutrinos, but no Higgs triplets, integrating out the heavy left-
handed conjugate neutrinos gives a Majorana mass for the light neutrinos which is approximately
given by

Mν = (−)MνM
−1
RRM

T
ν . (3.6)

This is usually called the type-1 seesaw mechanism [66–70]. It nicely explains the smallness of the
neutrino masses compared to the other fermion masses; c.) if also Higgs triplets are present in the
model, one calls this type-2 seesaw [71, 72] and the terms from the two contributions are simply
added

Mν = MLL −MνM
−1
RRM

T
ν . (3.7)

If no left-handed conjugate neutrinos νc and no Higgs triplets exist in the model, the neutrinos can
still get mass from the non-renormalizable operator connecting two left-handed lepton doublets and
two Higgs doublets of the form (Li Φ̃) (Lj Φ̃). This operator then arises through the mediation of
unspecified fields present in the high energy completion of the low energy theory and is suppressed
by the mass scale of these fields (or by the cutoff scale of theory).
The mixing matrices of quarks and leptons, i.e. the CKM matrix VCKM and the MNS matrix
UMNS , originate from the mismatch of the mass bases of the up quarks (neutrinos) and down quarks
(charged leptons). The general complex three-by-three matrices Mu and Md can be diagonalized
by a bi-unitary transformation

U †
uMuVu = diag (mu,mc,mt) and U †

dMdVd = diag (md,ms,mb) (3.8)

with the unitary matrices Uu,d and Vu,d acting on the left-handed and the left-handed conjugate
fields, respectively. Obviously, mu, mc, etc. denotes the mass of the up quark, charm quark, etc..
Uu,d can be calculated from the hermitean matrices Mu,dM†

u,d, i.e.

U †
uMuM†

uUu = diag (m2
u,m

2
c ,m

2
t ) and U †

dMdM†
dUd = diag (m2

d,m
2
s,m

2
b) . (3.9)

The CKM matrix is then given as

VCKM = UTu U
?
d , (3.10)
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since it is defined as the matrix which diagonalizes MdM†
d in the basis in which the up quark

mass matrix is already diagonal. VCKM can also be defined by the weak current interaction
ū′γµW

µ+d′, if one changes from interaction u′,d′ to mass eigenstates u, d, then ūγµWµ+UTu U
?
d d ≡

ūγµW
µ+VCKM d. The CKM matrix has three free angles θij and one phase δ. θij can be chosen to

lie in the first quadrant and δ can take any value between 0 and 2π. The standard parameterization
of VCKM has already been shown in the previous chapter, see Eq.(2.10). Also the experimental
results for these quantities can be found there. Analogously, to the quarks the charged lepton mass
matrix is diagonalized by a bi-unitary transformation

U †
lMlVl = diag (me,mµ,mτ ) . (3.11)

Again, only the transformation acting on the left-handed fields, namely Ul, is relevant. In case
that the neutrinos are also Dirac fermions their mass matrix Mν is diagonalized in completely
the same way as for the other fermions via the unitary transformations Uν and Vν . However, if
they are Majorana fermions additional phases can arise. A general symmetric matrix Mν can be
diagonalized by a unitary matrix Uν

U †
νMν U

?
ν = diag (m1,m2,m3) (3.12)

and therefore also U †
νMνM

†
νUν = diag (m2

1,m
2
2,m

2
3). Technically, Uν is calculated through the last

equation and then applied to Mν in order to fix the additional phases such that not only m2
i , but

also mi are positive definite. Two of these three additional phases are physical and called Majorana
phases. The UMNS matrix is then given as

UMNS = UTl U
?
ν . (3.13)

It is defined as the matrix which connects the flavor and mass eigenstates of the neutrinos in the
basis in which the charged leptons are diagonal, i.e.

ναL =
3∑
i=1

Uα iMNS νi L for α = e, µ, τ and i = 1, 2, 3 . (3.14)

UMNS can be parameterized in the same way as the CKM matrix, if the neutrinos are Dirac
particles, while in case of Majorana neutrinos one has to multiply the standard parameterization
from the right-hand side with a diagonal matrix containing the Majorana phases, i.e.

UMNS = V · diag (ei φ1 , ei φ2 , 1) , (3.15)

where V is in the standard form containing the mixing angles θij and the Dirac phase δ and φ1,2

are the Majorana phases. φ1,2 lie in the interval [0, π).
In numerical analyses the mixing matrices are in general not in the standard form of Eq.(2.10).
The mixing angles θij and the CP phase δ, however, can be extracted [73] by

sin(θ13) = |U13| , tan(θ12) =
|U12|
|U11|

, tan(θ23) =
|U23|
|U33|

(3.16)

δ = − arg

 U?
11 U13 U31 U?

33
cos(θ12) cos2(θ13) cos(θ23) sin(θ13)

+ cos(θ12) cos(θ23) sin(θ13)

sin(θ12) sin(θ23)

 (3.17)

for any unitary matrix U . If present, the Majorana phases are given by

φ1 = − arg(ei δe U?11) and φ2 = − arg(ei δe U?12) with δe = arg(ei δ U13) . (3.18)
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The measure of CP violation JCP , which is given in Eq.(2.11) in terms of the mixing angles θij and
the CP phase δ, can be calculated using four elements of U

JCP = Im(U11 U
?
12 U

?
21 U22) = Im(U11 U

?
13 U

?
31 U33) = Im(U22 U

?
23 U

?
32 U33) . (3.19)

3.2 S4 Model

The model presented in this section is a low energy model in which the SM is extended by the
flavor symmetry S4

1. As mentioned, S4 is only broken spontaneously at the electroweak scale.
This enforces us to consider a multi-Higgs doublet model. We need six Higgs doublets in total in this
model. S4 is broken completely in one step by the VEVs of the Higgs doublets which are necessary
to fit the fermion masses and mixings. Although we realize this model at low energies, we choose
the transformation properties of the fermions such that it can be embedded into SO(10), i.e. we
assume that all fermions transform according to the same representation under S4. Furthermore
we are guided by a second idea, namely the embedding of the discrete flavor symmetry into a
continuous one at very high energies. This idea is based on two considerations: a.) one might think
about a kind of “super-GUT” which unifies the gauge and the flavor group into one simple group
2 and b.) the proper treatment of anomalies seems to require the embedding into a continuous
group 3. S4 is a subgroup of SO(3) and SU(3) and we discuss both possibilities. According to the
classification of the subgroups of SU(3) [80–84] S4 is isomorphic to the group ∆(24) which belongs
to the series of groups ∆(6n2) with n = 2. The scale at which this continuous group breaks down to
its discrete relic is expected to be above the scale of Grand Unification, i.e. > 1016 GeV. Therefore,
the low energy model will first be embedded into SO(10) and then into SO(3)f or SU(3)f . As will
be shown below, the embedding of S4 into SO(3)f leads to the same constraints on the fermion
assignments as its embedding into SU(3)f . Both single out a unique assignment. Accordingly, also
the transformation properties of the Higgs fields are constrained. We then discuss the fermion mass
matrices arising from this setup and sketch the numerical procedure to fit the data. The potential
of the Higgs fields is also calculated and studied in the CP conserving case. The VEV structures
which need to be realized for a successful fit of the data are motivated by the potential. Finally,
we summarize and comment on the main features and problems of this model.

3.2.1 Introduction to S4

The group S4 is the permutation group of four distinct objects and is also isomorphic to the
octahedral symmetry O. It has five irreducible representations: two of them are one-dimensional,
denoted as 11 and 12, one is two-dimensional, denoted as 2, and two are three-dimensional, 31
and 32. The one-dimensional representation 11 is the identity/trivial representation which is
also called symmetric in the context of permutation groups. Similarly, the representation 12 is
sometimes called anti-symmetric or alternating. All representations are real and the two three-
dimensional ones are faithful. The order of the group is 24. It is therefore the smallest group
(together with the group T ′ which will be discussed in Chapter 4) which possesses one-, two- and
three-dimensional representations. The characters of the representations can be found in Table 3.1.
The group is uniquely determined by its generators A and B and their relations [86]

1For other models using S4 as flavor symmetry see [74–76].
2However, studies in the 1980s [77,78] showed that such a “super-GUT” has to be quite large and therefore leads

in general to the appearance of additional chiral generations which accompany the three generations of the SM in
order to complete the “super-GUT” multiplets.

3There is a recent paper by T. Araki in which he claims that anomalies of discrete groups can be calculated with
the Fujikawa method independent of the embedding into a continuous group [79].



3-6 CHAPTER 3. FLAVORED SM

classes
C1 C2 C3 C4 C5

G 1 A2 A B2 B A
◦Ci 1 3 6 8 6
◦h Ci 1 2 2 3 4 c(µ) partitions faithful
11 1 1 1 1 1 1 [4 ]
12 1 1 -1 1 -1 1

[
14
]

2 2 2 0 -1 0 1
[
22
]

31 3 -1 1 0 -1 1 [3 1]
√

32 3 -1 -1 0 1 1
[
2 12

] √

cycles (14) (22) (12 2) (1 3) (4)

Table 3.1: Character table of the group S4. Since this group is a permutation group we
also display the cycle structure of the classes and the partitions for each representation. The
notation of the cycle structure (1αi 2α2 ...) corresponds to α1 one-cycles (i), α2 two-cycles
(ij), ... with the constraint

P
i

αi i = 4. The partitions are correlated to the Young diagrams.

Further information on cycles and partitions can be found [85]. The rest of the notation and
the mathematics is explained in Appendix A.

A4 = 1 , B3 = 1 and A B2 A = B , A B A = B A2 B . (3.20)

One possible realization of generators for the irreducible representations is [86]

... for 2 : A =
(
−1 0
0 1

)
and B = −1

2

(
1

√
3

−
√

3 1

)
, (3.21)

... for 31 : A =

 −1 0 0
0 0 −1
0 1 0

 and B =

 0 0 1
1 0 0
0 1 0

 , (3.22)

... for 32 : A =

 1 0 0
0 0 1
0 −1 0

 and B =

 0 0 1
1 0 0
0 1 0

 . (3.23)

For the one-dimensional representations 11 and 12 the generators can be found in the character
table, see Table 3.1.
The Kronecker products and Clebsch Gordan coefficients, calculated with this set of generators,
are given in Appendix B.1.

3.2.2 Outline of the Model

Since we can choose among one-, two- and three-dimensional representations of S4, when we want
assign the three generations of fermions, we already have some freedom. However, this freedom is
drastically reduced, if we take into account the constraint that the model has to be embeddable
into SO(10) and SO(3)f or SU(3)f at the same time. Taking this as guideline two possible as-
signments for the three generations of fermions remain: either all of them transform as the trivial
representation 11 or they form the irreducible three-dimensional representation 32. Note that the
two three-dimensional representations 31 and 32 are not equivalent concerning this point, since
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D(l) of the ro-
tation group

Resolution of D(l) into
representations of S4

l = 0 11

l = 1 32

l = 2 2 + 31

l = 3 12 + 31 + 32

l = 4 11 + 2 + 31 + 32

SU(3) representations
Dynkin Dimension
label

Resolution into S4

representations

(00) 1 11

(10) 3 32

(20) 6 11 + 2 + 31

(11) 8 2 + 31 + 32

(30) 10 12 + 31 + 2 32

Table 3.2: Breaking sequences SU(3) → S4 and SO(3) → S4 for the smallest

representations. D(l) is the (2 l+ 1)-dimensional representation of the rotation group
SO(3).

only 32 can be identified with the fundamental representation of SO(3) and SU(3), respectively,
whereas 31 is contained in the five-dimensional representation of SO(3) (together with the two-
dimensional representation of S4) and in the six-dimensional one of SU(3) (together with 11 and
2). Note also that the identification of 12 + 2 of S4 with 3 of SO(3) or SU(3) is possible, but
rather leads to the breaking sequence SU(3) → S3 and SO(3) → S3, respectively, since 12 +2 is
not a faithful representation of S4, but only of S3. The embedding schemes of S4 into SO(3) and
SU(3) are shown in Table 3.2.
The unique possibility is therefore to assign the three generations of fermions to the three-dimensional
representation 32 of S4. Assigning of all them to the trivial representation would lead back to the
SM (conventional SO(10)), since then the flavor symmetry does not have any impact on the mass
matrices and mixing structures.
In the next step we have to choose the S4 representations under which the Higgs fields should
transform. According to Appendix B.1 the Kronecker product 32×32 contains the representations
11, 2, 31 and 32. As one can deduce from the Clebsch Gordan coefficients (see Appendix B.1),
only the Higgs field φ0 transforming as trivial representation under S4 gives a contribution to the
mass matrices which has a non-vanishing trace 4 . Unfortunately, this contribution alone leads to
a degenerate mass spectrum and therefore additional fields are needed. Moreover, as it transforms
trivially, φ0 cannot break the flavor symmetry. Also, in order to introduce non-vanishing fermion

4The requirement that the trace of the mass matrix is non-vanishing is not absolutely necessary. One can think,
for example, of the following mass matrix

Mu =

0@ 0 mu 0
0 0 mc

mt 0 0

1A . (3.24)

Tr(Mu) vanishes, but Tr(MuM†
u) does not and the quark masses can be explained by this mass matrix. However,

the important feature of this matrix is the fact that it is highly non-symmetric, i.e. it basically consists of one large
entry in its (31) element. In the discussion of the mass matrices stemming from S4-invariant Yukawa couplings,
however, it becomes clear that a symmetric structure is favorable and therefore they have to have a non-vanishing
trace in order to fit the charged fermion masses.
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mixing, further Higgs fields have to contribute. For this purpose, we have to include at least
three Higgs fields ξi which form a triplet under S4. If they transform as 31, the resulting mass
matrix is symmetric, while Higgs fields transforming as 32 alone lead to an anti-symmetric mass
matrix. Since the second possibility (φ0 ∼ 11 and ξi ∼ 32) leads to mass matrices with no
definite symmetry, we discard it. The embedding of S4 into SO(3)f or SU(3)f enforces us then to
add two further Higgs fields φ1,2 forming a doublet under S4, since 11 + 31 cannot be identified
with a complete representation of SO(3)f or SU(3)f . If we do so, the model contains six Higgs
fields φ0 ∼ 11, φ1,2 ∼ 2 and ξi ∼ 31 in total which correspond to 1 + 5 in SO(3)f and 6 in
SU(3)f , respectively. These break S4 completely at the electroweak scale. The mass matrices
are symmetric, which is welcome, since also the mass matrices originating from SO(10) models
with Higgs fields transforming as 10 and 126 under SO(10) are symmetric (see below). Finally,
the left-handed conjugate neutrinos acquire only a direct mass and are therefore degenerate. We
exclude the existence of additional gauge singlets which can lead to a non-trivial structure of the
Majorana mass matrix for the left-handed conjugate neutrinos, since this leads to a breaking of
S4 at the seesaw scale. Furthermore, we also discard the possibility that the left-handed neutrinos
acquire a Majorana mass by the coupling to a Higgs triplet. The following table summarizes the
fields present in our model

Field Q uc dc L ec νc φ0 φ1,2 ξ1,2,3
S4 32 32 32 32 32 32 11 2 31

Table 3.3: The particle content and its symmetry properties under S4. The Higgs
fields φ0, φ1,2 and ξ1,2,3 are copies of the SM Higgs field, i.e. transform as (1,2,−1)
under the SM gauge group SU(3)C × SU(2)L × U(1)Y .

3.2.3 Fermion Masses and Mixings

According to the S4 transformation properties of the fields shown in Table 3.3 the Yukawa couplings
are of the form

LY = αu
0 (Q1 u

c +Q2 c
c +Q3 t

c) φ̃0 + αu
1 (
√

3 (Q2 c
c −Q3 t

c) φ̃1 + (−2Q1 u
c +Q2 c

c +Q3 t
c) φ̃2)

+ αu
2 ((Q2 t

c +Q3 c
c)ξ̃1 + (Q1 t

c +Q3 u
c) ξ̃2 + (Q1 c

c +Q2 u
c) ξ̃3)

+ αd
0 (Q1 d

c +Q2 s
c +Q3 b

c)φ0 + αd
1 (
√

3 (Q2 s
c −Q3 b

c)φ1 + (−2Q1 d
c +Q2 s

c +Q3 b
c)φ2)

+ αd
2 ((Q2 b

c +Q3 s
c)ξ1 + (Q1 b

c +Q3 d
c) ξ2 + (Q1 s

c +Q2 d
c) ξ3)

+ αe
0 (L1 e

c + L2 µ
c + L3 τ

c)φ0 + αe
1 (
√

3 (L2 µ
c − L3 τ

c)φ1 + (−2L1 e
c + L2 µ

c + L3 τ
c)φ2)

+ αe
2 ((L2 τ

c + L3 µ
c)ξ1 + (L1 τ

c + L3 e
c) ξ2 + (L1 µ

c + L2 e
c) ξ3)

+ αν
0 (L1 ν

c
e + L2 ν

c
µ + L3 ν

c
τ ) φ̃0 + αν

1 (
√

3 (L2 ν
c
µ − L3 ν

c
τ ) φ̃1 + (−2L1 ν

c
e + L2 ν

c
µ + L3 ν

c
τ ) φ̃2)

+ αν
2 ((L2 ν

c
τ + L3 ν

c
µ)ξ̃1 + (L1 ν

c
τ + L3 ν

c
e) ξ̃2 + (L1 ν

c
µ + L2 ν

c
e) ξ̃3) + h.c. (3.25)

They lead to the following mass matrices for i = u, d, e, ν

Mi =

 αi0 φ0 − 2αi1 φ2 αi2 ξ3 αi2 ξ2
αi2 ξ3 αi0 φ0 + αi1 (

√
3φ1 + φ2) αi2 ξ1

αi2 ξ2 αi2 ξ1 αi0 φ0 + αi1 (−
√

3φ1 + φ2)

 (3.26)

with the Higgs fields being replaced by their VEVs for the down quarks and the charged leptons
and by the complex conjugate of their VEVs for the up quarks and the neutrinos. The sum of the
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VEVs has to be equal the electroweak scale. Note that the fields φ0,1,2 only appear in the diagonal
entries. As mentioned, the contribution coming from the Higgs field φ0 is proportional to the unit
matrix, since φ0 transforms trivially under S4. The fields φ1 and φ2 on the other hand couple such
that their contribution to the mass matrices is traceless. Finally, the fields ξi which form a triplet
under S4 induce flavor-changing interactions, i.e. their contributions are encoded in the off-diagonal
elements of the mass matrix Mi. Note that the mass matrix Mi would be of the same form, if the
fermion generations transformed as 31 instead of 32. In general, all parameters in Eq.(3.26) can
be complex. By comparing the number of parameters with the number of observables, i.e. fermion
masses and mixings, we have to fit, one realizes that the numbers are equal in the case of CP
conservation. We then deal with twelve Yukawa couplings, five VEVs and the mass scale MR of the
left-handed conjugate neutrinos which will be introduced below. The sixth VEV cannot be counted
as a free parameter, since we need to satisfy the constraint that the sum of the squares of the VEVs
adds up to the square of the electroweak scale. The observables are the six quark masses, the three
charged lepton masses, the masses of the three light neutrinos and the three mixing angles θij in
the quark as well as in the lepton sector. Not all of the observables have already been measured
in experiments: In the neutrino sector only the two mass squared differences are known, but not
the absolute mass scale of the light neutrinos, and the leptonic mixing angle θ13 is only bounded
from above. In the case of CP violation, the model contains more parameters than observables and
therefore we cannot expect to make predictions, unless we do not impose further constraints on the
parameters, which, for example, could arise from a certain vacuum alignment which sets some of
the VEVs to zero or some of them equal. Note that it does not matter whether the CP violation
is spontaneous or explicit, since in both cases the number of additional parameters is larger than
the number of CP phases (one Dirac phase in the quark sector, one in the lepton sector and in
case of Majorana neutrinos two further Majorana phases). Furthermore, the left-handed conjugate
neutrinos νc acquire a direct mass term

Lνc = MR

(
νce ν

c
e + νcµ ν

c
µ + νcτ ν

c
τ

)
+ h.c. (3.27)

Therefore the mass matrix of the left-handed conjugate neutrinos is proportional to the unit matrix,
i.e. all left-handed conjugate neutrinos are degenerate. This favors the resonant leptogenesis
scenario [87–89] in which the left-handed conjugate neutrinos have to have approximately the same
mass. The mass matrix of the light neutrinos originating from the type-1 seesaw is of the form

Mν = (−)
1
MR

MνMT
ν = (−)

1
MR

(Mν)2 , (3.28)

where the last step is possible, since the Dirac mass matrices of the fermions are symmetric by
construction. Since the form of MRR is trivial, it cannot serve as the origin of the large lepton
mixings.
In the following, we sketch the idea of the fit procedure. We choose two rank one matrices M1 and
M2 as starting point for the Dirac mass matrices. Thereby, the large mass of the third generation
can already be explained. The mass matrices which fit all data arise through perturbations. Since
the Majorana mass matrix of the left-handed conjugate neutrinos is proportional to the unit matrix,
we have to expect that the Dirac neutrino mass matrix strongly differs from the two rank one
matrices with which we start our numerical procedure. Otherwise, we cannot produce large mixings
in the lepton sector.
M1 is the democratic mass matrix whose entries are all equal, whereas M2 only consists of a non-
vanishing 2-3 block. Both matrices have been widely used in the literature, see for instance [90]
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and [91], respectively.

M1 =

 1 1 1
1 1 1
1 1 1

 and M2 =

 0 0 0
0 1 1
0 1 1

 (3.29)

In the following, we describe in which limit the matrices M1 and M2 arise from the general mass
matrices shown in Eq.(3.26). In both cases, we need to advocate a certain VEV structure together
with a fine-tuning of some Yukawa couplings. The matrix structure M1 originates from the CP
conserving minimum in which the VEVs of the fields ξi are equal, the VEVs of φ1,2 vanish and
〈φ0〉 6= 0. We have to assume that the two VEVs 〈ξi〉 and 〈φ0〉 are equal. In addition, we also
have to require that the Yukawa couplings αi0 and αi2 are equal. These two equalities cannot,
unfortunately, motivated any further in the context of this model. However, one can explain
αi0,2 � αi1 for i = u, d, e and αν1 � αν0,2 by an auxiliary Z2 symmetry. The last inequality is
confirmed by the numerical result of the fit. For the second mass matrix structure M2, only the
VEVs of φ0, φ2 and ξ1 should be non-vanishing and additionally have almost the same value.
Furthermore, also here the Yukawa couplings should have a relation, namely αi0 : αi1 : αi2 ≈ 2 : 1 : 3
for i = u, d, e (, ν), in order to reproduce the dominant 2-3 block.
For the actual numerical values of the parameters and the detailed discussion of the results we refer
to [22]. Let us just mention that these two examples can reproduce almost all data successfully.
They lead to quark mixings which are in general a bit smaller than the experimental best fit values.
However, this might be cured by radiative corrections. Furthermore, the amount of CP violation
in the quark sector cannot be correctly reproduced in one of the cases. For leptons we can fit the
central values within the error bars for the masses (mass differences) and the known mixing angles
θ12 and θ23. Thereby, the neutrinos are taken to be normally ordered. The expectation that the
Dirac mass matrix of the neutrinos has to have a structure which is completely different from the
one of the charged fermion mass matrix is confirmed, since in both examples the coupling to the
Higgs fields φ1,2 is large such that Mν has large entries on the diagonal.

3.2.4 Treatment of the Higgs Potential

In this section, we construct the S4-invariant multi-Higgs doublet potential of the fields φ0, φ1,2

and ξ1,2,3 and argue that the VEV structure postulated in Section 3.2.3 can, indeed, be achieved by
this potential. We concentrate on the case of CP conservation, although in the fits all parameters
in the fermion mass matrices are taken to be complex. The mass terms of the Higgs fields turn out
to have a simple form due to the flavor symmetry. However, there are numerous quartic couplings.
The potential V reads
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V = − µ2
1 (φ†0φ0)− µ2

2

2∑
j=1

φ†jφj − µ2
3

3∑
i=1

ξ†i ξi (3.30)

+ λ0 (φ†0φ0)2 + λ1 (φ†1φ1 + φ†2φ2)2 + λ2 (φ†1φ2 − φ†2φ1)2

+ λ3

[
(φ†1φ2 + φ†2φ1)2 + (φ†1φ1 − φ†2φ2)2

]
+ σ1 (φ†0φ0)(φ

†
1φ1 + φ†2φ2) +

{
σ2

[
(φ†0φ1)2 + (φ†0φ2)2

]
+ h.c.

}
+ σ̃2

[
|φ†0φ1|2 + |φ†0φ2|2

]
+
{
σ3

[
(φ†0φ1)(φ

†
1φ2 + φ†2φ1) + (φ†0φ2)(φ

†
1φ1 − φ†2φ2)

]
+ h.c.

}
+ λξ

1

(
3∑

i=1

ξ†i ξi

)2

+ λξ
2

[
3 (ξ†2ξ2 − ξ†3ξ3)

2 + (−2 ξ†1ξ1 + ξ†2ξ2 + ξ†3ξ3)
2
]

+ λξ
3

[
(ξ†2ξ3 + ξ†3ξ2)

2 + (ξ†1ξ3 + ξ†3ξ1)
2 + (ξ†1ξ2 + ξ†2ξ1)

2
]

+ λξ
4

[
(ξ†2ξ3 − ξ†3ξ2)

2 + (ξ†1ξ3 − ξ†3ξ1)
2 + (ξ†1ξ2 − ξ†2ξ1)

2
]

+ τ1 (φ†0φ0)

(
3∑

i=1

ξ†i ξi

)
+ τ2

 2∑
j=1

φ†jφj

( 3∑
i=1

ξ†i ξi

)

+ τ3

[√
3 (φ†1φ2 + φ†2φ1)(ξ

†
2ξ2 − ξ†3ξ3) + (φ†1φ1 − φ†2φ2)(−2 ξ†1ξ1 + ξ†2ξ2 + ξ†3ξ3)

]
+

{
κ1

[
4 (φ†2ξ1)

2 + (
√

3φ†1ξ2 + φ†2ξ2)
2 + (

√
3φ†1ξ3 − φ†2ξ3)

2
]

+ h.c.
}

+ κ̃1

[
4 |φ†2ξ1|2 + |

√
3φ†1ξ2 + φ†2ξ2|2 + |

√
3φ†1ξ3 − φ†2ξ3|2

]
+

{
κ2

[
4 (φ†1ξ1)

2 + (
√

3φ†2ξ2 − φ†1ξ2)
2 + (

√
3φ†2ξ3 + φ†1ξ3)

2
]

+ h.c.
}

+ κ̃2

[
4 |φ†1ξ1|2 + |

√
3φ†2ξ2 − φ†1ξ2|2 + |

√
3φ†2ξ3 + φ†1ξ3|2

]
+

{
κ3

[
2 (φ†2ξ1)(ξ

†
2ξ3 + ξ†3ξ2)− (

√
3φ†1ξ2 + φ†2ξ2)(ξ

†
1ξ3 + ξ†3ξ1) + (

√
3φ†1ξ3 − φ†2ξ3)(ξ

†
1ξ2 + ξ†2ξ1)

]
+ h.c.}

+
{
κ4

[
2 (φ†1ξ1)(ξ

†
3ξ2 − ξ†2ξ3) + (

√
3φ†2ξ2 − φ†1ξ2)(ξ

†
1ξ3 − ξ†3ξ1)− (

√
3φ†2ξ3 + φ†1ξ3)(ξ

†
2ξ1 − ξ†1ξ2)

]
+ h.c.}

+
{
κ5

[
(φ†0ξ1)

2 + (φ†0ξ2)
2 + (φ†0ξ3)

2
]

+ h.c.
}

+ κ̃5

[
|φ†0ξ1|2 + |φ†0ξ2|2 + |φ†0ξ3|2

]
+

{
κ6

[
(φ†0ξ1)(ξ

†
2ξ3 + ξ†3ξ2) + (φ†0ξ2)(ξ

†
1ξ3 + ξ†3ξ1) + (φ†0ξ3)(ξ

†
1ξ2 + ξ†2ξ1)

]
+ h.c.

}
+

{
ω1

[√
3 (φ†0φ1)(ξ

†
2ξ2 − ξ†3ξ3) + (φ†0φ2)(−2 ξ†1ξ1 + ξ†2ξ2 + ξ†3ξ3)

]
+ h.c.

}
+

{
ω2

[
2(φ†0ξ1)(φ

†
2ξ1)− (φ†0ξ2)(

√
3φ†1ξ2 + φ†2ξ2) + (φ†0ξ3)(

√
3φ†1ξ3 − φ†2ξ3)

]
+ h.c.

}
+

{
ω3

[
2(ξ†1φ0)(φ

†
2ξ1)− (ξ†2φ0)(

√
3φ†1ξ2 + φ†2ξ2) + (ξ†3φ0)(

√
3φ†1ξ3 − φ†2ξ3)

]
+ h.c.

}
The parameters in curly brackets are in general complex, while the rest is real. The Higgs potential
has 30 parameters in total. 27 of them are quartic couplings out of which 11 are complex. It is
interesting to notice that the potential is invariant under the following transformation

φ1 → −φ1 and ξ2 ↔ ξ3 (3.31)

and the fields φ0, φ2 and ξ1 remain unchanged. Note that the VEV structures used to arrive at
the matrix structures M1 and M2 also respect this symmetry. If all VEVs are real, they can be
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parameterized as

〈φ0〉 = v0 , 〈φ1〉 = u cos(α) , 〈φ2〉 = u sin(α) , (3.32)
〈ξ1〉 = v cos(β) , 〈ξ2〉 = v sin(β) cos(γ) , 〈ξ3〉 = v sin(β) sin(γ) .

The potential Vmin at the minimum takes the form

Vmin = −µ2
1 v

2
0 − µ2

2 u
2 − µ2

3 v
2 + λ0 v

4
0 + (λ1 + λ3) u4 (3.33)

+
(
λξ

1 + 4λξ
3 sin2(β)

)
v4 + λξ

2

[(
2− 3 sin2(β)

)2
+ 3 sin4(β) cos2(2 γ)

]
v4

− λξ
3

(
3 + cos2(2 γ)

)
sin4(β) v4 + (σ1 + 2 Re(σ2) + σ̃2) v2

0 u
2 + 2 Re(σ3) sin(3α) v0 u3

+ (τ1 + 2 Re(κ5) + κ̃5) v2
0 v

2 + (4 Re(κ1 + κ2) + 2 (κ̃1 + κ̃2) + τ2) u2 v2

+ (2Re(κ1 − κ2) + κ̃1 − κ̃2 + τ3)
[
− cos(2α)

(
2− 3 sin2(β)

)
+

√
3 sin(2α) sin2(β) cos(2 γ)

]
u2 v2

+ 3Re(κ6) sin(β) sin(2β) sin(2 γ) v0 v3

+ 2Re(ω2 + ω3 − ω1)
[
sin(α)

(
2− 3 sin2(β)

)
−
√

3 cos(α) sin2(β) cos(2γ)
]
u v0 v

2

The minimization conditions are the derivatives of Vmin with respect to the angles α, β and γ and
the parameters v, v0, u.

∂Vmin
∂α

= 2u
[
v2v0

(
cos(α)

(
2− 3 sin2(β)

)
+
√

3 sin(α) sin2(β) cos(2 γ)
)
y1 (3.34a)

+ u v2
(
sin(2α)

(
2− 3 sin2(β)

)
+
√

3 cos(2α) sin2(β) cos(2 γ)
)
y2

+ 3 v0 u2 cos(3α) Re(σ3)
]

∂Vmin
∂β

= v2
[
−2
√

3u v0
(√

3 sin(α) + cos(α) cos(2 γ)
)

sin(2β) y1 (3.34b)

+
√

3u2
(√

3 cos(2α) + sin(2α) cos(2 γ)
)

sin(2β) y2

+ 2 v2
(
sin(4β) + sin2(β) sin(2β) sin2(2 γ)

)
y3

+
3
2
v v0 (3 sin(3β)− sin(β)) sin(2 γ) Re(κ6)

]
∂Vmin
∂γ

= 2 v2 sin2(β)
[
2
√

3u v0 cos(α) sin(2 γ) y1 (3.34c)

−
√

3u2 sin(2α) sin(2 γ) y2

+ v2 sin2(β) sin(4 γ) y3

+ 6 v v0 cos(β) cos(2 γ) Re(κ6)]

∂Vmin
∂v

= 2 v
(
−µ2

3 + 2 (λξ1 + 4λξ2) v
2
)

+ 2 v v2
0 (2 Re(κ5) + κ̃5 + τ1) (3.35a)

+ 2 v u2 (4 Re(κ1 + κ2) + 2 (κ̃1 + κ̃2) + τ2) + 9 v0 v2 Re(κ6) sin(β) sin(2β) sin(2 γ)

+ 4u v0 v
[
sin(α)

(
2− 3 sin2(β)

)
−
√

3 cos(α) sin2(β) cos(2 γ)
]
y1

+ 2u2 v
[
− cos(2α) (2− 3 sin2(β)) +

√
3 sin(2α) sin2(β) cos(2 γ)

]
y2

+ 4 v3
[
4 sin2(β)− (3 + cos2(2 γ)) sin4(β)

]
y3
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∂Vmin
∂v0

= 2 v0
(
−µ2

1 + 2λ0 v
2
0

)
+ 2 v0 u2 (σ1 + 2 Re(σ2) + σ̃2) + 2u3 Re(σ3) sin(3α) (3.35b)

+ 2 v0 v2 (2 Re(κ5) + κ̃5 + τ1) + 3 v3 Re(κ6) sin(β) sin(2β) sin(2 γ)

+ 2u v2
[
sin(α) (2− 3 sin2(β))−

√
3 cos(α) sin2(β) cos(2 γ)

]
y1

∂Vmin
∂u

= 2u
(
−µ2

2 + 2 (λ1 + λ3)u2
)

+ 2u v2
0 (σ1 + 2 Re(σ2) + σ̃2) + 6 v0 u2 Re(σ3) sin(3α)

+ 2 (4Re(κ1 + κ2) + 2 (κ̃1 + κ̃2) + τ2)u v2

+ 2 v0 v2
[
sin(α) (2− 3 sin2(β))−

√
3 cos(α) sin2(β) cos(2 γ)

]
y1

+ 2u v2
[
− cos(2α) (2− 3 sin2(β)) +

√
3 sin(2α) sin2(β) cos(2 γ)

]
y2 (3.35c)

with yi being defined as

y1 = Re(ω2 + ω3 − ω1) (3.36a)
y2 = 2Re(κ1 − κ2) + κ̃1 − κ̃2 + τ3 (3.36b)

y3 = λξ3 − 3λξ2 (3.36c)

All derivatives have to vanish. However, since we do not want to rely on some restrictions on the
parameters of the Higgs potential which might cause the appearance of accidental symmetries 5

we enforce each term in the equations ∂Vmin
∂α = 0, ∂Vmin

∂β = 0 and ∂Vmin
∂γ = 0 to vanish separately.

The remaining conditions ∂Vmin
∂v = 0, ∂Vmin

∂v0
= 0 and ∂Vmin

∂u = 0 are used to determine the VEVs as
functions of the parameters of the potential.
The VEV configuration 〈φ0〉 = v0, 〈φ1,2〉 = 0 and 〈ξi〉 = v√

3
is used to reproduce the democratic

mass matrix M1. Thereby, the angles β and γ are taken to be β = arccos( 1√
3
) and γ = π

4 , while α

is no longer a variable, since u vanishes. As one can see, with this choice each term in ∂Vmin
∂α = 0,

∂Vmin
∂β = 0 and ∂Vmin

∂γ = 0 vanishes separately, as demanded above. Furthermore, we arrive at the
following equations for v0 and v

v (2
√

3 v v0 Re(κ6) +
2
3

(3λξ
1 + 4λξ

3) v
2 − µ2

3 + (2 Re(κ5) + κ̃5 + τ1) v2
0) = 0 (3.37)

2√
3

Re(κ6) v3 + 2λ0 v
3
0 − v0 µ

2
1 + v2 v0 (2 Re(κ5) + κ̃5 + τ1) = 0 (3.38)

As mentioned, the equality of 〈φ0〉 and 〈ξi〉 is an additional assumption which is not a direct
consequence of these minimization conditions. However, if all quartic couplings have approximately
the same value and also the mass parameters are equal, the VEVs are nearly the same.
For the second advocated VEV structure, 〈φ0〉 = v0, 〈φ2〉 = u, 〈ξ1〉 = v and a vanishing VEV for
the rest of the fields, the angles α and β read α = π

2 and β = 0, while the angle γ is irrelevant. Also
this configuration leads to a vanishing coefficient for each of the terms in ∂Vmin

∂α = 0, ∂Vmin
∂β = 0 and

∂Vmin
∂γ = 0. The equations which determine the VEVs v0, v and u are

5This is one of the major concerns in the next model.
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v (2 v2 (λξ
1 + 4λξ

2)− µ2
3 + v2

0 (2 Re(κ5) + κ̃5 + τ1) + u2 (4 (2 Re(κ1) + κ̃1) + τ2 + 2 τ3)
+4u v0 Re(ω2 + ω3 − ω1)) = 0 (3.39)

2u3 (λ1 + λ3)− 3u2 v0 Re(σ3)− µ2
2 u+ v2

0 u (σ1 + 2 Re(σ2) + σ̃2)
+u v2 (4 (2 Re(κ1) + κ̃1) + τ2 + 2 τ3) + 2 v2 v0 Re(ω2 + ω3 − ω1) = 0 (3.40)

2 v3
0 λ0 − µ2

1 v0 + v0 u
2 (σ1 + 2 Re(σ2) + σ̃2)− u3 Re(σ3) + v2 v0 (2 Re(κ5) + κ̃5 + τ1)

+2 v2 uRe(ω2 + ω3 − ω1) = 0 (3.41)

Also here, the equality of the VEVs, as required by the numerical fit, is not a generic result of the
Higgs potential and its minimization conditions.
As studied in [22] the requirement that the parameters of the Higgs potential, Re(σ3) and Re(κ6),
and the combinations yi, which appear in the derivatives above, should not vanish, is reasonable,
since, if yi, Re(κ6) and Re(σ3) are zero, both minima break accidental symmetries such that one
finds additional Goldstone bosons in the Higgs mass spectrum. The general formulae of the Higgs
masses at the two minima are also given in [22]. One can check that the minima are degenerate, if
the mass parameters µi are taken to be equal.
The actual VEV structures used in the fit are expected to arise as perturbations from the ones
discussed here, if the parameters of the potential are smoothly varied. Two crucial issues have not
been studied here, namely a.) the question whether the minima are global or only local and b.) the
stability of the potential as a whole. Both issues are essential in a realistic theory, but we believe
that due to the number of free parameters in this potential this can be maintained in at least one
point of the parameter space.

3.2.5 Embedding of the Model into SO(10) × SO(3)f or SO(10) × SU(3)f

In this section we show how one can promote this model to a complete GUT model. Concerning
the Yukawa couplings, their number is reduced, since in SO(10) all fermions are unified into a 16,
i.e. all Yukawa couplings αu,d,e,νi have to be replaced by one coupling αi. However, a Higgs doublet
in the low energy model can originate from 10 and 126 in the complete SO(10) model and thereby
new couplings are allowed, i.e. the Yukawa couplings αu,d,e,νi are replaced by two couplings αi,10
and α

i,126 in case that there exists one 10 and one 126 for every Higgs doublet. The Higgs doublets
cannot be identified with a 120, since the SO(10) structure demands the mass matrix to be anti-
symmetric, whereas it should be symmetric according to the flavor symmetry. Therefore, such a
contribution will vanish in general. The left-handed conjugate neutrinos acquire direct mass terms
in the low energy model. In order to reproduce this in an SO(10) GUT a 126 has to exist which
transforms trivially under S4. For the Dirac mass matrices the Higgs doublets contained in 10 and
126 have to transform non-trivially under S4. Furthermore, none of the Higgs triplet components
of the 126 should acquire a non-vanishing VEV, since the low energy model does not contain
Higgs triplets which also would contribute to the light neutrino mass matrix. A minimal choice of
Higgs fields contributing to fermion masses in a complete SO(10) model are six 10s transforming
as 11, 2 and 31 under S4 and one 126 being invariant under S4. However, since the Higgs fields
transforming as 10 under SO(10) cannot differentiate among down quarks and charged leptons,
the fields 126 also have to contribute to the Dirac mass matrices of the charged fermions. With
only one 126 which is invariant under S4 we might not be able to explain the different spectrum of
down quarks and charged leptons and therefore all Higgs doublets ought to be promoted to a 10
and a 126 in SO(10). Thereby, the number of VEVs of Higgs doublets is increased compared to
the low energy model. In order not to break S4 at a high energy scale only the Higgs field 126 ∼ 11



3.2. S4 MODEL 3-15

should get a GUT scale VEV. In addition to the Higgs fields needed for the mass matrices further
Higgs fields, like 210 have to exist in order to employ the breaking of SO(10) down to the SM.
These should be neutral under S4 in order not to break it at high energies. This excessive number
of Higgs fields usually causes several severe problems: first of all, such a large number of fields
leads to a blow-up of the gauge coupling at a scale which is only slightly above the GUT scale;
secondly, as we used in our low energy model six Higgs fields which originate in an SO(10) model
from several Higgs fields transforming as 10 and 126, this leads to the so-called doublet-doublet
splitting problem, i.e. the fact that only certain combinations of the Higgs doublets of 10 and 126
shall appear at low energies; thirdly, similar to the doublet-doublet splitting problem there exists
the doublet-triplet splitting problem, i.e. the separation of the SU(2)L doublet component of the
GUT Higgs field from the colored triplet component; fourthly, the Higgs potential which now has
to have SO(10) invariance might not be of a simpler form than the one discussed above. Therefore
also here the issue of the vacuum alignment has to be carefully studied.
Similar to the changes occurring, if the model is embedded into SO(10), also the embedding of S4

into SO(3)f or SU(3)f will reduce the number of Yukawa couplings, since, for example, the Higgs
fields transforming as 2 and 31 are unified into a single representation in SO(3)f or SU(3)f . In this
case the Yukawa couplings αi1 and αi2 have to be equal. There is one caveat concerning the Majorana
masses of the left-handed conjugate neutrinos. If S4 is embedded into SO(3)f , the direct mass term
is still allowed, since also in SO(3)f the product of two fundamental representations contains a group
invariant. However, if S4 is embedded into SU(3)f , the real three-dimensional representation 32
under which all the fermions transform is identified with the fundamental representation 3 of
SU(3)f which is complex. Therefore the product 3 × 3 no longer contains an invariant and the
left-handed conjugate neutrinos cannot acquire a direct mass in this way. In order to solve this
problem one has to introduce gauge singlets transforming as 6 under SU(3)f and one has to
require that they possess an S4-invariant VEV, i.e. only the combination of fields transforming as
trivial representation under S4 should have a non-vanishing VEV. In this way the low energy model
presented here can be reproduced from a high energy model with an SU(3)f flavor symmetry. From
this discussion one might conclude that an embedding of S4 into SO(3)f is preferred. However,
combining the embedding of S4 into SU(3)f and of the SM into SO(10) changes the situation
again, since then also the SO(10) structure does not allow a direct mass term for the left-handed
conjugate neutrinos and this has to be generated by, for example, a renormalizable coupling to
Higgs fields transforming as 126.
If the model is appropriately extended to a real SO(10)× SO(3)f or SO(10)× SU(3)f model, we
still have to consider the breaking of the continuous flavor symmetry down to S4 in order to arrive
at SO(10)× S4 at the GUT scale. For this purpose, we need to add scalar singlets under SO(10)
which transform according to SO(3)f (SU(3)f ) representations containing a trivial representation
of S4. The smallest representations of SO(3) (SU(3)) which can do the job are 9 of SO(3) and 6
of SU(3), as can be inferred from Table 3.2.

3.2.6 Summary and Conclusions

The low energy model presented here can explain the existence of the three generations of fermions
and leads to mass matrices which are phenomenologically viable apart from small deviations in the
quark sector. This is one of the rare models which has the feature to be embeddable into an SO(10)
GUT and simultaneously into the continuous flavor symmetry SO(3)f or SU(3)f . Although its
Higgs sector is too complicated to be solved in general, we studied it in certain limits in order to
show that the VEV structures, advocated in the fits of the fermion masses and mixings, discussed
in [22], can be produced. However, it is not possible to identify these with preferred minima of
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the potential. Unfortunately, the model cannot make any predictions due to the large number of
parameters in the Yukawa as well as the Higgs sector. Moreover, in our numerical analysis we
had to assume some further restrictions on the Yukawa couplings which can be maintained by an
additional symmetry in only one of the two cases. The embedding of this model into a larger
framework, as shown in Section 3.2.5, might solve this problem (at least partly). The difference
between the quark and lepton mixings has to stem from the different structure of the Dirac mass
matrices of charged and neutral fermions, since MRR is proportional to the unit matrix in this
model.
Concerning the Higgs sector we do not only have to face the problem that its potential cannot be
treated in a general way and therefore the study of VEV configurations is only possible in certain
limits, but also the presence of more than one light Higgs doublet causes several flavor changing
neutral current processes which are severely constrained by experiments. Generally, the masses of
the Higgs particles turn out to be very low 6 in case of a natural choice of parameters, i.e. for mass
parameters around the electroweak scale and quartic couplings in the perturbative range. This
problem tends to persist, if the model shall be embedded into a GUT and/or into a continuous
flavor symmetry. We will comment on this issue further in Section 3.4.
In summary, this model can lead to viable fermion masses and mixings, but it might only serve as
a first step towards more realistic models with the flavor symmetry S4.

3.3 D5 Model

In this section, we discuss another low energy model with a discrete flavor symmetry. The gauge
group is again the one of the SM and the dihedral group D5 serves as flavor symmetry. It is broken
only spontaneously at the electroweak scale by VEVs of Higgs doublets. D5 is the smallest group
which possesses two irreducible inequivalent two-dimensional representations which are called 21
and 22 in the following. The purpose of this study is to explore the opportunities for model build-
ing resulting from the presence of these two inequivalent representations. Thereby, the aim is to
arrive at the minimal phenomenological viable model which makes use of this feature of D5. In
particular, we require the number of Higgs fields to be as small as possible. The model is phe-
nomenological viable, if all fermion masses and mixings can be accommodated without additional
contributions from, for example, higher-dimensional operators. Again, we carefully investigate the
Higgs potential. This time the major concern is an acceptable Higgs mass spectrum, i.e. one which
does not contain uneaten Goldstone bosons arising from the spontaneous breaking of accidental
symmetries of the potential. As will be shown, this poses a rather strong constraint on our model,
since the minimal setup of fields whose potential is free from accidental symmetries consists of four
Higgs doublets which have to transform as the two inequivalent two-dimensional representations of
D5. Additionally, we do not want to completely give up the idea of GUTs, i.e. the model ought to
be embeddable at least into the Pati-Salam group SU(4)C × SU(2)L × SU(2)R. In order to fully
exploit the non-abelian structure of D5 we demand that all left-handed and left-handed conjugate
fermions transform as 1+2. The one- and two-dimensional representations used for left-handed and
left-handed conjugate fields, however, do not need to be equivalent. Taking into account these con-
ditions leads to the model presented below in which the left-handed fermions transform as 11 +22
and left-handed conjugate ones as 11 + 21. The resulting mass matrices are studied in a similar
fashion as done above. This time, however, we also considered the case of Dirac neutrinos in the

6Some of them are even below the LEP bound [92].
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numerical examples shown in [23] 7. All fits are done for neutrinos with normal mass ordering.
Much emphasis is put on the analysis of the Higgs sector, especially the group theoretical reasons
for the appearance of accidental symmetries are elucidated. A numerical treatment of the Higgs
mass spectrum can be found in [23]. Finally, we summarize and comment on several aspects of the
model.

3.3.1 Introduction to D5

We briefly introduce the group D5, although we will discuss the series of single- and double-
valued dihedral groups Dn and D′

n in general below in Chapter 5. Its irreducible representations
are 11 (trivial representation), 12, 21 and 22. All of them are real and both two-dimensional
representations are faithful. The order of D5 is 10. The generators A and B fulfill the relations [86]

A5 = 1 , B2 = 1 , A B A = B . (3.42)

A and B can be chosen as [86]

... for 21 : A =

(
e

2 π i
5 0
0 e−

2 π i
5

)
, B =

(
0 1
1 0

)
, (3.43)

... for 22 : A =

(
e

4 π i
5 0
0 e−

4 π i
5

)
, B =

(
0 1
1 0

)
. (3.44)

For the one-dimensional representations the generators A and B can be found in the character
table, see Table 3.4. Note that we decided to use complex generators for the two-dimensional
representations, although they are real. Therefore, we can find a similarity transformation U which
connects the representation matrices and their complex conjugates

U =
(

0 1
1 0

)
with U UT = UT U = 1 , (3.45)

so that A? = UT AU and B? = UT BU = B. For
(
a1

a2

)
∼ 2i then

(
a?2
a?1

)
transforms as 2i.

For completeness, we also show a possible choice of real generators [86]

... for 21 : Ar =
(

cos (2π
5 ) − sin (2π

5 )
sin (2π

5 ) cos (2π
5 )

)
, Br =

(
1 0
0 −1

)
, (3.46)

... for 22 : Ar =
(

cos (4π
5 ) − sin (4π

5 )
sin (4π

5 ) cos (4π
5 )

)
, Br =

(
1 0
0 −1

)
. (3.47)

They are linked to the complex ones via the similarity transformation V

V =
1√
2

(
1 i
1 −i

)
, (3.48)

i.e. the generator sets {A,B} and {Ar,Br} fulfill

Ar = V † AV and Br = V † BV . (3.49)

Note that V is unitary, i.e. V † V = V V † = 1.
In the following, we stick to the complex generators for 2i. Further details of the group theory can
be found in Appendix B.2.

7This raises the typical problem that the masses of the neutrinos have to be strongly suppressed compared to the
ones of the charged fermions, i.e. their Yukawa couplings have to be extremely small.
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classes
C1 C2 C3 C4

G 1 B A A2

◦Ci 1 5 2 2
◦h Ci 1 2 5 5 c(µ) faithful
11 1 1 1 1 1
12 1 -1 1 1 1
21 2 0 α β 1

√

22 2 0 β α 1
√

Table 3.4: Character table of the groupD5. α and β are given as α = 1
2

`
−1 +

√
5

´
= 2 cos( 2π

5
)

and β = 1
2

`
−1−

√
5

´
= 2 cos( 4π

5
) and therefore α + β = −1. For further explanations see

Appendix A.

3.3.2 Outline of the Model

As mentioned, our main motivation here is to study the changes in the opportunities to build viable
low energy models, if the flavor symmetry contains more than one irreducible two-dimensional
representation. For this purpose, it is sufficient to stick to the smallest symmetry which offers this
possibility. This is the introduced group D5. The three non-abelian symmetries having a smaller
order than D5 are D3 (∼= S3) , D4 and D′

2 (sometimes called Q). All of them only possess one
two-dimensional representation and two (or four) one-dimensional ones. They have been studied
quite extensively in the literature, for instance [93–95]. In contrast to this the group D5 has been
rarely used as flavor symmetry [96].
Our requirement that all particles have to transform as 1 + 2 and not only, for example, the left-
handed leptons reduces the number of possible assignments and also the number of uncorrelated
elements in the fermion mass matrices. Further constraints arise from the fact that the model
should be embeddable into the Pati-Salam gauge group 8. We find two possible assignments which
fulfill these conditions 9

Q1 ∼ 11 ,
(
Q2

Q3

)
∼ 2i , uc , dc ∼ 11 and

(
cc

tc

)
,

(
sc

bc

)
∼ 2i , (3.50)

L1 ∼ 11 ,
(
L2

L3

)
∼ 2i , ec , νce ∼ 11 and

(
µc

τ c

)
,

(
νcµ
νcτ

)
∼ 2i (3.51)

with i = 1, 2 and

Q1 ∼ 11 ,
(
Q2

Q3

)
∼ 22 , uc , dc ∼ 11 and

(
cc

tc

)
,

(
sc

bc

)
∼ 21 , (3.52)

L1 ∼ 11 ,
(
L2

L3

)
∼ 22 , ec , νce ∼ 11 and

(
µc

τ c

)
,

(
νcµ
νcτ

)
∼ 21 . (3.53)

8An embedding of the model into SU(5) might also be interesting, but is not considered in the following.
9These assignments do not necessarily imply that the first generation of fermions is assigned to 1 and the other

ones form a doublet under D5, since we are free to permute them. Since left-handed fields form doublets under
SU(2)L up and down quarks as well as charged leptons and neutrinos are permuted in the same way, so that the
permutation matrix drops out in the calculation of VCKM and UMNS , see [23] for details. As they are also not
relevant in the computation of the masses, we use the shown assignments without loss of generality.
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In the first case, Higgs fields transforming as any D5 representation can couple directly to the
fermions, whereas in the second one a Higgs field assigned to 12 under D5 does not contribute to
the fermion masses. Note that in each of the assignments we could replace the one-dimensional
representation 11 by 12 and would get analogous results.
As all Higgs fields transform as SU(2)L doublets, they have to pass strong constraints from ex-
periments -from direct searches at LEP as well as from FCNCs. Therefore, it is advantageous to
keep the number of Higgs fields as small as possible. However, this has to be reconciled with the
requirement to fit the fermion masses and mixings at tree-level and to keep the Higgs sector free
from accidental symmetries. This is necessary in order to ensure that the VEVs of the Higgs fields
can be chosen arbitrarily so that the fermion masses and mixings can be accommodated without
breaking such a symmetry. One way to circumvent this is the introduction of soft breaking terms
of mass dimension two into the Higgs potential which break the accidental, but also the flavor sym-
metry itself explicitly. We will disregard this possibility 10, since it only leads to further parameters
in the model which are not constrained by symmetries apart from the SM gauge group. As will be
shown below (see Section 3.3.4), the minimal potential includes four Higgs fields transforming as
the two inequivalent doublets under D5. A computation of the mass matrices for the two different
assignments reveals that the couplings to these Higgs fields give either rise to a matrix structure
with three zeros or one with one texture zero. The three texture zeros appear, if left-handed and
left-handed conjugate fields are assigned to the same D5 representations. According to the Cleb-
sch Gordan coefficients presented in Appendix B.2 the (11), (23) and (32) element of each matrix
vanish. A study [48] performed for hermitean quark mass matrices showed that this form cannot
accommodate the quark masses and mixings. In general, our mass matrices do not need to be
hermitean, however, we take this result as a strong indication that the mass matrix structure with
three texture zeros is disfavored. For the second assignment we only encounter one texture zero in
the (11) element of the mass matrix, while all other elements are non-vanishing, since the Kronecker
product of 21 and 22 is decomposed into 21 and 22 (see Appendix B.2). Mass matrices with a
texture zero in the (11) element have been studied frequently in the literature, see for instance [98],
and have proven to be useful to fit the fermion masses and mixings.
As in the S4 model the mass matrix of the left-handed conjugate neutrinos, if allowed, only stems
from direct mass terms. Therefore it has a very simple form and two of the left-handed conjugate
neutrinos are degenerate. Note that the form of the mass matrix is the same for both assignments
discussed above. For the sake of minimality, we again dismiss the possible existence of gauge sin-
glets as well as Higgs triplets. The assignment of the fields of the minimal model is summarized in
Table 3.5.

Field Q1 Q2,3 uc (cc, tc) dc (sc, bc) L1 L2,3 ec (µc, τ c) νce (νcµ, ν
c
τ ) χ1,2 ψ1,2

D5 11 22 11 21 11 21 11 22 11 21 11 21 21 22

Table 3.5: The particle content and its symmetry properties under D5. The Higgs fields χ1,2 and ψ1,2 are copies
of the SM Higgs field, i.e. transform as (1,2,−1) under the SM gauge group SU(3)C × SU(2)L × U(1)Y .

3.3.3 Fermion Masses and Mixings

Choosing the D5 transformation properties of the fermions and the four Higgs fields χ1,2 and ψ1,2

according to Table 3.5, we arrive at Yukawa couplings of the form

10However, in many models soft breaking terms are introduced into the potential, see for example [94,97].
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LY = αu
0 (Q2 t

c χ̃1 +Q3 c
c χ̃2) + αu

1 (Q3 t
c ψ̃1 +Q2 c

c ψ̃2) + αu
2 (Q1 c

c χ̃1 +Q1 t
c χ̃2) (3.54)

+ αu
3 (Q2 u

c ψ̃1 +Q3 u
c ψ̃2)

+ αd
0 (Q2 b

c χ2 +Q3 s
c χ1) + αd

1 (Q3 b
c ψ2 +Q2 s

c ψ1) + αd
2 (Q1 s

c χ2 +Q1 b
c χ1)

+ αd
3 (Q2 d

c ψ2 +Q3 d
c ψ1)

+ αl
0 (L2 τ

c χ2 + L3 µ
c χ1) + αl

1 (L3 τ
c ψ2 + L2 µ

c ψ1) + αl
2 (L1 µ

c χ2 + L1 τ
c χ1)

+ αl
3 (L2 e

c ψ2 + L3 e
c ψ1)

+ αν
0 (L2 ν

c
τ χ̃1 + L3 ν

c
µ χ̃2) + αν

1 (L3 ν
c
τ ψ̃1 + L2 ν

c
µ ψ̃2) + αν

2 (L1 ν
c
µ χ̃1 + L1 ν

c
τ χ̃2)

+ αν
3 (L2 ν

c
e ψ̃1 + L3 ν

c
e ψ̃2) + h.c.

The resulting Dirac mass matrices are

Mu,ν =

 0 αu,ν
2 〈χ1〉? αu,ν

2 〈χ2〉?
αu,ν

3 〈ψ1〉? αu,ν
1 〈ψ2〉? αu,ν

0 〈χ1〉?
αu,ν

3 〈ψ2〉? αu,ν
0 〈χ2〉? αu,ν

1 〈ψ1〉?

 ,Md,l =

 0 αd,l
2 〈χ2〉 αd,l

2 〈χ1〉
αd,l

3 〈ψ2〉 αd,l
1 〈ψ1〉 αd,l

0 〈χ2〉
αd,l

3 〈ψ1〉 αd,l
0 〈χ1〉 αd,l

1 〈ψ2〉

 , (3.55)

where 〈ψi〉 and 〈χi〉 denote the VEVs of the fields ψi and χi. The VEVs and Yukawa couplings
αu,d,l,νi are in general complex. The (11) element of the mass matrices is zero, since there is no
Higgs field transforming trivially under D5. Similar to the S4 model, there are more parameters
in our model than observables to fit. One can think of ways to reduce the number of parameters
by either invoking correlations among the independent Yukawa couplings αu,d,l,νi or by assuming a
certain VEV configuration with several VEVs being zero. However, the possibility to constrain the
otherwise uncorrelated couplings will be discarded. If we have a closer look at the second possibil-
ity, we see that for two or more VEVs equal to zero, either some fermions remain massless or there
is no CP violation. Both results would have to be corrected by higher-dimensional operators, ra-
diative corrections, etc. and therefore will not be discussed in further detail. Furthermore, a study
of the potential reveals that setting two VEVs to zero enforces in some cases constraints on the
parameters in the potential which increase its symmetry. The weaker constraint that either only
one VEV vanishes or two VEVs are equal may lead to viable fits, but will also not be used, since
it actually does not reduce the number of parameters much, since the sixteen Yukawa couplings
provide the majority of the free parameters. A third possibility to reduce the number of parameters
in the fermion sector is the assumption of spontaneous CP violation. As the numerical study in [23]
showed, successful fits can be found under this constraint. However, in the Higgs potential we need
to assume that CP is explicitly broken.
If we consider the neutrinos to be Majorana particles, we can add a direct mass term for the
left-handed conjugate neutrinos, as done in the S4 model. It is of the form

Lνc = M1 ν
c
e ν

c
e +M2

(
νcµ ν

c
τ + νcτ ν

c
µ

)
+ h.c. (3.56)

so that two of the three left-handed conjugate neutrinos are degenerate, if no flavored gauge singlets
are present in the model. Again, this mass degeneracy could allow the resonant leptogenesis mech-
anism [87–89] to work. The light neutrino mass matrix arises, as usual, from the type-1 seesaw.
As starting point for our numerical study, however, we consider a matrix which is simpler than the
one with only one texture zero. In the course of the fit this matrix is perturbed and we find a set of
Yukawa couplings and VEVs which allows to fit all data to the experimental best fit values. This
approach is therefore very similar to the one used in the numerical search within the S4 model. We
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choose the matrix

M =

 0 0 0
0 a b
0 b a

 (3.57)

as starting point. It allows masses for the second and third generation. We identify a − b with
the mass of the third and a + b with the one of the second generation. Therefore a and b have
to have almost the same absolute value, but an opposite sign. The vanishing of the mass of the
first generation is a valid approximation. Concerning the mixing angles, notice that the matrix
M leads to large mixing. However, the small quark mixings can be reproduced, since the large
mixings in the up and down quark sector cancel. The matrix M arises from the general matrices
Eq.(3.55) in the limit of vanishing Yukawa couplings αi2,3 and VEVs which are pairwise equal, i.e.
〈χ1〉 = 〈χ2〉 and 〈ψ1〉 = 〈ψ2〉. However, in order to maintain the smallness of the second generation
we have to ensure that |a| ≈ |b| which implies that the two uncorrelated Yukawa couplings αi0 and
αi1 have nearly the same absolute value and all VEVs have to be equal. In the framework of the
D5 model we cannot find a further explanation for the equality of the Yukawa couplings and have
to accept this as a certain fine-tuning 11. Concerning the equality of all VEVs, this is allowed
by the minimization conditions of the potential. In order to explain the hierarchy between the
Yukawa couplings αi2,3 involving the first generation and αi0,1 an additional U(1) symmetry can be
employed. The fermions of the second and third generation have a vanishing U(1) charge, while it
is non-vanishing for the first generation. Note that the second and third generation have to have
the same charge under the additional U(1), since otherwise this U(1) would not commute with the
flavor group D5. The results of such fits are presented in [23]. The neutrinos are taken to be either
Dirac particles or Majorana fermions. In both cases, they are normally ordered. Furthermore, one
can infer from the given numbers of Yukawa couplings and VEVs that the resulting mass matrices
for the charged fermions which fit all data are quite close to the initial matrix given in Eq.(3.57).

3.3.4 Treatment of the Higgs Potential

Potential of the Presented Model

We discuss the D5-invariant potential of the four Higgs fields χ1,2 and ψ1,2 which form the two two-
dimensional representations of D5, 21 and 22. As usual, the mass terms have a simple structure
due to the flavor symmetry, and the number of quartic couplings is limited, but still several of them
exist. The complete potential is of the form

11Nevertheless, one could also take up the position that this is not the only possible solution which fits all data
and that one might find other configurations of parameters, Yukawa couplings and VEVs, which are more natural in
that sense.
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V4(χi, ψi) = −µ2
1
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i ψi

)2

(3.58)

+ λ2

(
χ†1 χ1 − χ†2 χ2

)2

+ λ3 |χ†1 χ2|2 + λ̃2

(
ψ†

1 ψ1 − ψ†
2 ψ2

)2

+ λ̃3 |ψ†
1 ψ2|2

+ σ1

(
2∑

i=1

χ†i χi

)  2∑
j=1

ψ†
j ψj

+ σ2

(
χ†1 χ1 − χ†2 χ2

) (
ψ†

1 ψ1 − ψ†
2 ψ2

)
+

{
τ1

(
χ†1 ψ1

) (
χ†2 ψ2

)
+ h.c.

}
+
{
τ2

(
χ†1 ψ2

) (
χ†2 ψ1

)
+ h.c.

}
+

{
κ1

[(
χ†1 χ2

) (
χ†1 ψ2

)
+
(
χ†2 χ1

) (
χ†2 ψ1

)]
+ h.c.

}
+

{
κ2

[(
ψ†

1 ψ2

) (
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[
|χ†1 ψ1|2 + |χ†2 ψ2|2

]
+ κ4

[
|χ†1 ψ2|2 + |χ†2 ψ1|2

]
where the couplings τ1,2 and κ1,2 are in general complex. We checked that this potential does
not have any accidental (global) symmetries. Assuming that the fields χ1,2, ψ1,2 transform in the
following way

χ1 → χ1 ei α , χ2 → χ2 ei β , ψ1 → ψ1 ei γ , ψ2 → ψ2 ei δ , (3.59)

we can derive conditions for the phases α, β, γ and δ

α+ β − γ − δ = 0 , (3.60a)
2α− β − δ = 0 and 2β − α− γ = 0 , (3.60b)
2 δ − β − γ = 0 and 2 γ − α− δ = 0 . (3.60c)

The first condition is imposed by the couplings τ1 and τ2 so that both of them leave an U(1)3

symmetry invariant. The first set of two conditions is derived from the κ1 term and the second set
from the κ2 term. Therefore, each of them leaves one U(1)2 unbroken. The rest of the couplings
leaves the complete U(1)4 symmetry invariant. This shows that at least two couplings are needed
to break all accidental symmetries. Furthermore, one sees that each of the two sets derived from
κ1 and κ2, respectively, implies the condition imposed by the couplings τ1 and τ2 so that, for
example, the combination of the terms τ1 and κ1 does not break all accidental symmetries. Only
the combination of the two terms κ1 and κ2 can break U(1)4 down to U(1)Y . This has to be
emphasized, since it occurs quite frequently that the minimization conditions for certain VEV
structures can only be fulfilled, if some of the parameters of the potential are set to zero. For
instance, if one of the conditions read κ1 = 0, we would have to dismiss this VEV configuration,
since it enforces an accidental symmetry to appear in the potential which is likely to be broken
by these VEVs. It is interesting to ask for the origin of the two couplings, κ1 and κ2, which are
necessary to arrive at a potential only invariant under the SM gauge group. They have in common
that they combine three fields belonging to one D5 doublet with one field belonging to the other D5

doublet, namely (χ†1 χ2) (χ†1 ψ2) in the κ1 term and (ψ†1 ψ2) (χ†2 ψ2) in the κ2 term. This is possible,
since the Kronecker products of the two-dimensional representations read, 21×21 = 11+12+22,
22 × 22 = 11 + 12 + 21, and 21 × 22 = 21 + 22.
In the following, an additional symmetry is imposed on the Higgs potential in order to maintain
the equality of all VEVs. As we took a matrix as given in Eq.(3.57) with |a| ≈ |b| as starting point
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for our fit procedure, we had to invoke that the VEVs of the four Higgs doublets are almost equal.
Even without studying the minimization conditions deduced from V4 in detail, we can conclude
that this is not a natural result, since, for example, the mass parameters µ1 and µ2 as well as λi and
λ̃i can have completely different values so that the fields χ1,2 and ψ1,2 can have completely different
couplings. Therefore, we search for an additional (simple) symmetry, denoted by T , which allows
us to further correlate the parameters µ1,2 and also the quartic couplings. The simplest one, we
found, is a combination of an exchange symmetry among the fields χi and ψi and the components
of one of the D5 doublets, for example,

χi ↔ ψi and χ1 ↔ χ2 . (3.61)

The first part of the symmetry is necessary to enforce the equality of the two mass parameters and
the quartic couplings λi and λ̃i, while the second one prevents the couplings κ1 and κ2 from being
set to zero. Two aspects are noteworthy: a.) we can interchange the actions of Eq.(3.61) and b.)
we can achieve the same result, if we replace the exchange of the components χ1 and χ2 by the
exchange of ψ1 and ψ2. The constraints on all couplings are

µ1 = µ2 , λi = λ̃i , σ2 = 0 , τ1 = τ?2 , κ1 = κ?2 , κ3 = κ4 . (3.62)

The fact that σ2 is required to vanish does not cause the appearance of accidental symmetries, as σ2

leaves U(1)4 invariant. Assuming real VEVs for the fields χ1,2 and ψ1,2, these can be parameterized
as

〈χ1〉 =
v√
2

cos(α) , 〈χ2〉 =
v√
2

sin(α) , 〈ψ1〉 =
u√
2

cos(β) and 〈ψ2〉 =
u√
2

sin(β) . (3.63)

The potential, invariant under the additional symmetry T , then reads at the minimum

V4 T min = −1
2
µ2

1 (u2 + v2) +
1
32

(u4 + v4) (8λ1 + 4λ2 + λ3) +
1
4
u2 v2 (σ1 + κ3) (3.64)

+
1
32

(v4 cos(4α) + u4 cos(4β)) (4λ2 − λ3) +
1
4
u v

[
u2 cos(α− β) sin(2β)

+ v2 sin(2α) sin(α+ β)
]

Re(κ1) +
1
4
u2 v2 sin(2α) sin(2β) Re(τ1)

We can derive the minimization conditions
∂V4 T min

∂α
= −1

8
v4 sin(4α) y +

1

2
u2 v2 cos(2α) sin(2β)Re(τ1) (3.65a)

+
1

4
u v

ˆ
v2 (cos(2α) sin(α+ β) + sin(3α+ β))− u2 sin(α− β) sin(2β)

˜
Re(κ1)

∂V4 T min

∂β
= −1

8
u4 sin(4β) y +

1

2
u2 v2 sin(2α) cos(2β)Re(τ1) (3.65b)

+
1

4
u v

ˆ
u2 (cos(α− β) cos(2β) + cos(α− 3β)) + v2 sin(2α) cos(α+ β)

˜
Re(κ1)

where y = 4λ2 − λ3. The two minimization conditions for α and β are fulfilled for α = π
4 and

β = π
4 . Each of the terms in Eq.(3.65a) and Eq.(3.65b) then vanishes separately, especially there

is no constraint on Re(τ1), Re(κ1) or the combination y. This is important, since demanding these
parameters to vanish could lead to accidental symmetries. V4T min at α = π

4 and β = π
4 is given by

V4 T min

(
α =

π

4
, β =

π

4

)
= −1

2
µ2

1 (u2 + v2) +
1
16

(u4 + v4) (4λ1 + λ3) (3.66)

+
1
4
u2 v2 (σ1 + κ3 + Re(τ1)) +

1
4
u v (u2 + v2) Re(κ1)
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Since this expression is symmetric in u and v, the solution u = v is at least favored by this.

Unfortunately, the potential V4T does not allow the VEV configurations used in the numerical
examples. Abandoning the symmetry T solves this problem. However, the hope that one might
be able to construct a model in which CP is broken only spontaneously is not fulfilled, since for
the numerical values of the VEVs (which do not show any symmetry) the minimization conditions
can be solved in this case, only if the parameters of V4 are constrained in a way that accidental
symmetries appear in the Higgs sector. Therefore, we have to study the general D5-invariant
potential with complex parameters which indeed allows to find a minimum with the appropriate
VEV configuration. However, the phenomenological problem of too low Higgs masses exists, if all
parameters of the potential are chosen to be of natural order. For further details we refer to [23].
Finally, in order to judge whether the minima, found in the numerical analysis, are global or only
local, we calculated the potential along the directions of the eigenvectors of the Higgs mass matrices.
It turned out that none of the other minima, found in this search, is deeper than the one in which
the VEV configuration, invoked by the fermion fits, is realized. Additionally, we performed a scan
of the potential in order to check whether it is stable for large values of the Higgs fields. We did
not find any indication that the potential is unstable. Since all these results have been achieved
by numerical studies rather than by analytical arguments, they do not have to be correct for the
points in field space which have not been included in the numerics.

Three and Other Four Higgs Potentials

For comparison, we show the three and the other four Higgs potentials which are invariant under
D5. The Higgs fields are required to have the following transformation properties: a.) at least two
fields should form a doublet under D5 and b.) we exclude the case in which two Higgs fields have
exactly the same transformation properties under the flavor symmetry. These two requirements
are connected to the choice of the fermion transformation properties under D5 which are assumed
to be 1 + 2 for left-handed and left-handed conjugate fields. The inclusion of a doublet is then
necessary in order to allow non-vanishing couplings between the generation which transforms as
1 and the two other fermion generations forming a doublet. It is therefore responsible for the
non-zero mixing between 1 and 2. It is sufficient to include (at maximum) one field with a certain
transformation property, since the existence of more than one Higgs field transforming according
to the representation µ under the flavor group does not lead to new mass matrix structures for
the fermions compared to the case in which only one Higgs field ∼ µ is present. Apart from the
possibility studied before two further configurations fulfill these requirements: a potential with
either three Higgs fields transforming as 1 + 2 under D5 (where it is irrelevant as which one- and
two-dimensional representation they exactly transform) or with four Higgs fields which transform as
11+12+2i (i = 1, 2 possible). As we will show in a moment both potentials contain an accidental
U(1) symmetry which is necessarily broken by VEVs which lead to realistic fermion masses.

The three Higgs potential of the fields φ, ψ1 and ψ2, with φ ∼ 1i and
(
ψ1

ψ2

)
∼ 2j, reads

V3(φ, ψi) = −µ2
1 φ

† φ− µ2
2

2∑
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ψ†
i ψi + λs

(
φ† φ

)2
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(3.67)

+ λ2

(
ψ†

1 ψ1 − ψ†
2 ψ2

)2

+ λ3 |ψ†
1 ψ2|2

+ σ1

(
φ† φ

) ( 2∑
i=1

ψ†
i ψi

)
+
{
σ2

(
φ† ψ1

) (
φ† ψ2

)
+ h.c.

}
+ σ3

2∑
i=1

|φ† ψi|2
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where only σ2 is complex. It can be made real by appropriate redefinition of the field φ, for
example. In order to reveal the existence of the accidental U(1) symmetry, let the Higgs fields φ
and ψi transform as

φ → φ ei α , ψ1 → ψ1 ei β , ψ2 → ψ2 ei γ . (3.68)

The only non-trivial condition for the phases α, β and γ arises from σ2

2α− β − γ = 0 , (3.69)

i.e. α = 1
2 (β + γ). Hence, we find two independent U(1) symmetries, U(1)β and U(1)γ . The

fields φ, ψ1 and ψ2 have the following charges: Q(φ;β) = 1
2 , Q(ψ1, β) = +1 and Q(ψ2;β) = 0

under U(1)β, while Q(φ; γ) = 1
2 , Q(ψ2; γ) = +1 and Q(ψ1; γ) = 0 under U(1)γ . In order to recover

U(1)Y , we recall that all Higgs fields have hypercharge Y = −1, i.e. U(1)Y is equivalent to the
negative of the sum of Q(·;β) and Q(·; γ). We can choose the difference of the charges Q(·;β) and
Q(·; γ) as orthogonal combination and call this symmetry U(1)X . The Higgs fields have charges
Q(φ;X) = 0, Q(ψ1;X) = +1 and Q(ψ2;X) = −1 under U(1)X . As one can see, a non-vanishing
VEV for any of the two components of the D5 doublet ψi breaks this symmetry spontaneously and
therefore will lead to the appearance of a Goldstone boson which is not eaten by a gauge boson.
Taking another definition of U(1)X does not change the situation. For example, U(1)X can also be
defined so that ψ1 is neutral, the charge of φ is −1 and ψ2 carries the charge −2 12. Again, only
one Higgs field is uncharged under the additional U(1) symmetry. However, with only one non-
vanishing VEV we cannot fit the fermion masses and mixings at tree level. As already mentioned,
we do not discuss the case in which this accidental symmetry is broken explicitly by additional
terms in the potential which break the flavor symmetry D5 at the same time. In [23] we compared
this potential to other three Higgs potentials with fields transforming as 1 + 2 under other small
dihedral symmetries such as D3 and D4. We analyzed the differences among these symmetries and
found the mathematical reason for the appearance of an accidental U(1) symmetry. It is the fact
that D5 does not allow a coupling between three Higgs fields being part of the D5 doublet and
the Higgs field which transforms as 1 under D5, i.e. (φ† ψi) (ψ†j ψk) is not part of a D5-invariant.
One can show this with the help of the Kronecker products displayed in Appendix B.2: It holds
1×2 = 2 and at the same time 2×2 = 1+1′+2′ with 2 and 2′ being inequivalent two-dimensional
representations. This fact indicates (together with the observation that the four Higgs potential of
the two doublets χ1,2 and ψ1,2 is only free of accidental symmetries due to the two couplings κ1 and
κ2, containing (χ†1 χ2) (χ†1 ψ2) and (ψ†1 ψ2) (χ†2 ψ2)) that couplings involving three fields stemming
from the same D5-multiplet are necessary for breaking all accidental symmetries. This study shows
that a thorough investigation of the Higgs potential is mandatory in all cases, since overlooking
accidental symmetries causes severe phenomenological problems.
The alternative four Higgs potential is maintained by augmenting the discussed three Higgs po-
tential by a Higgs field χ. This field is assigned to the one-dimensional representation, which is
inequivalent to the one under which the field φ transforms. We arrive at

12Note that there is a misprint in the first version of the published paper [23].
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Without loss of generality one can assume that φ ∼ 11 and χ ∼ 12. For definiteness, we assume
that ψi ∼ 21. The complex parameters are σs 2, σ3, σ4, σ6, σ8 and σ9. According to the method
above we find the following constraints on the phases of the Higgs fields φ, χ and ψ1,2

α− β = 0 , (3.71a)
2α− γ − δ = 0 , (3.71b)
2β − γ − δ = 0 , (3.71c)
α+ β − γ − δ = 0 , (3.71d)

with

φ → φ ei α , χ → χ ei β , ψ1 → ψ1 ei γ , ψ2 → ψ2 ei δ . (3.72)

The first condition stems from the couplings σs 2, σ3 and σ9, whereas the second and third condition
originate from σ4 and σ6, respectively. Finally, the σ8 term gives rise to the last condition. All other
coupling terms do not lead to constraints on the phases α, β, γ and δ and therefore leave a U(1)4

symmetry invariant. Out of the conditions Eq.(3.71) only two are independent. They are solved, for
example, for β = α and δ = 2α− γ which shows that there are two independent U(1) symmetries,
U(1)α and U(1)γ , present in the potential. The fields φ, χ and ψ1,2 carry the following charges:
Q(φ;α) = +1, Q(χ;α) = +1, Q(ψ1;α) = 0 and Q(ψ2;α) = +2 under U(1)α and Q(φ; γ) = 0,
Q(χ; γ) = 0, Q(ψ1; γ) = +1 and Q(ψ2; γ) = −1 under U(1)γ . In order to recover the usual U(1)Y
and an additional U(1)X symmetry one can redefine the charges by taking − [Q(·;α) +Q(·; γ)] and
(Q(·;α)−Q(·; γ)). Then all fields have charge −1 under U(1)−[α+γ] and under U(1)X ≡ U(1)[α−γ]:
Q(φ;X) = +1, Q(χ;X) = +1, Q(ψ1;X) = −1 and Q(ψ2;X) = +3. As one can see, all Higgs fields
are charged under the additional U(1)X and therefore any non-trivial VEV configuration breaks
this additional symmetry leading to a massless Goldstone boson in the Higgs spectrum. Also in
this case, the definition of the additional symmetry U(1)X is not unique, since it can, for example,
be defined as U(1)γ . Then only two of the four Higgs fields, namely ψ1 and ψ2, are charged under
the additional symmetry. However, this also does not allow the Higgs fields to have an arbitrary
VEV configuration as needed for viable fermion masses and mixings.
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3.3.5 Summary and Conclusions

In this section, we presented a second low energy model in which the flavor symmetry is broken at
the electroweak scale. Thereby, the dihedral group D5 plays the role of the flavor symmetry. As
D5 only contains one- and two-dimensional representations, the fermions are assigned to 1 + 2 in
a way that the model can be embedded into the Pati-Salam group. The viability of the model has
been shown with a numerical fit, whose results can be found in [23]. Thereby, neutrinos can be
either Dirac or Majorana particles. In both cases the (light) neutrinos are normally ordered. For
Majorana neutrinos, two of the left-handed conjugate neutrinos are degenerate. We concentrated
on building the most economical model which fits all data. Especially, we tried to construct the
model with the least number of new (Higgs) fields. As discussed in detail, the crucial issue is the
Higgs potential, since the simplest D5-invariant potentials contain accidental symmetries. These
are necessarily broken by VEV structures advocated by successful fits of the fermion masses and
mixings. Investigating three potentials invariant under D5 we were able to figure out the origin of
these accidental symmetries 13. Similar to the S4 model, it turned out that the VEV configuration
advocated by the fermion fits can be adjusted, but not predicted in this model. Moreover, a nu-
merical analysis of the potential showed that the typical Higgs masses are rather low, i.e. some of
them are even below the LEP bound. As this also arose as a problem in the S4 model, this seems
to be a generic feature of these low energy models. As mentioned in Section 3.2.6, FCNC processes
mediated by these additional Higgs fields pose even stronger limits on the Higgs masses than the
direct searches. In the specific example given here, FCNCs are expected to be suppressed at least
for the first two generations due to the small values of the Yukawa couplings 14.
In the S4 model one important selection criterion for the fermion assignment was the possibility to
embed the discrete group into a continuous one, like SO(3) and SU(3). One can ask whether this
could be applied also here in the D5 model. Similar to S4, D5 is a subgroup of SO(3) and SU(3).
As one can read off from Table 3.6, our chosen assignment does not allow such an embedding, since
we cannot identify the three generations transforming as 11 + 2i with the fundamental represen-
tation of SO(3) or SU(3). Such an identification would require that 11 has to be replaced by the
non-trivial one-dimensional representation 12. However, even then we could either identify the
three left-handed or the three left-handed conjugate fermion generations with 3 of SO(3) (SU(3)),
since they transform under inequivalent two-dimensional representations of D5. The other one then
has to be placed into a larger representation of the continuous group. This, however, demands the
existence of additional fields to complete this representation. An embedding therefore prefers the
assignment in which left-handed and left-handed conjugate fields transform in the same way, i.e.
as 12 + 2i (i = 1, 2). As argued above, such a choice would enforce a larger number of Higgs fields
in order to arrive at viable results for the fermion and the Higgs sector and therefore has not been
studied here.
In summary, also this model might not serve as a fully realistic theory, but it is worth to be inves-
tigated, since it shows apart from some new assignment structures and interesting mass matrices
for fermions that the Higgs sector which is the most complicated part of the model needs a careful
study. Especially, this has been overlooked in several other low energy models with discrete flavor
symmetries, see for example [99].

13We also studied potentials invariant under D3, D4 and D6 in the paper [23].
14For the actual numerical values we refer to [23]. But one can already infer from the fact that the mass matrices

of the charged fermions are close to the matrix given in Eq.(3.57) that the Yukawa couplings involving the first
generation are small.
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D(l) of the ro-
tation group

Resolution of D(l) into
representations of D5

l = 0 11

l = 1 12 + 21

l = 2 11 + 21 + 22

l = 3 12 + 21 + 222

l = 4 11 + 221 + 222

SU(3) representations
Dynkin Dimension
Label

Resolution into D5

representations

(00) 1 11

(10) 3 12 + 21

(20) 6 211 + 21 + 22

(11) 8 11+12+221+22

(30) 10 212 + 221 + 222

Table 3.6: Breaking sequences SU(3) → D5 and SO(3) → D5 for the smallest

representations. D(l) is the (2 l+1)-dimensional representation of the rotation group.
Note that there exists another possibility to embed D5 which arises from this one, if
the two-dimensional representations 21 and 22 are interchanged throughout in the
tables.

3.4 Comments on the Two Models

Summarizing the lessons that can be learnt from these two low energy models one can say the
following: Both of them are successful in describing the observed mass and mixing patterns of
the fermions. However, the main problem is caused by the fact that, although in both models
the fermion assignment is determined (almost) uniquely by using additional guidelines such as
the embedding into SO(10) × SO(3)f (SO(10) × SU(3)f ) or the requirement to include the least
number of new fields, the number of parameters, Yukawa couplings and VEVs, is very large, such
that none of the two models can make testable predictions 15 16. There are two ways to reduce the
number of parameters: either one constrains the Yukawa couplings by additional symmetries or one
expects a certain vacuum alignment to be realized which, for example, equates the VEVs. The first
possibility is not applicable in all models, especially, if the couplings shall fulfill certain non-trivial
relations. Furthermore, it generally increases the complexity to the model. Invoking a certain VEV
structure on the other hand is very appealing, if it is a direct consequence of the minimization of the
potential. However, due to the complicated structure of the multi-Higgs doublet potentials this is
in general not the case. A fairly better chance to successfully maintain a vacuum alignment arises,
if the Higgs doublets are replaced by gauge singlets. Additionally, supersymmeterizing the theory
allows to construct potentials which lead to the correct alignment via the vanishing of F -terms. A
prominent example for this mechanism will be discussed in detail in Chapter 4. In this model the
alignment is crucial, in particular for the prediction of TBM in the lepton sector. Furthermore, the
replacement of Higgs doublets by gauge singlets elegantly solves the problems of too light scalars
which would mediate FCNC processes. In some cases these might be suppressed by very small
Yukawa couplings. However, not only the severe bounds on FCNCs are hardly fulfilled in models

15We do not expect that the prediction of degenerate left-handed conjugate neutrinos will be testable.
16Of course, one can find models in the literature, for example [93], which can make testable predictions in the

framework of a low energy theory with the flavor symmetry being (spontaneously) broken at the electroweak scale
by flavored Higgs doublets.
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with several Higgs doublets, but also the limits coming from the non-observation of a Higgs particle
challenge them, since for Higgs mass parameters around the electroweak scale and quartic couplings
in the perturbative range the lowest Higgs mass is around 50 GeV. Apart from this, multi-Higgs
doublet potentials which are invariant under discrete symmetries tend to suffer from accidental
symmetries. These lead to additional Goldstone bosons in the Higgs spectrum, if the VEVs are
chosen freely in order to fit the fermion masses and mixings. One example has been discussed
in detail in the D5 model. The frequently used argument that according to the number of Higgs
fields one can expect the couplings in the potential to be non-invariant under additional symmetries
is proven to be wrong in this case. Also the general assumption that in a complicated potential
arbitrary VEV structures can be adjusted by an appropriate set of parameters does not hold.
In addition, models with gauge singlets offer better possibilities to combine a conventional GUT,
like SO(10) with a flavor symmetry. As shown explicitly in the S4 model, if the SO(10) Higgs
fields are required to transform non-trivially under the flavor group, this causes the existence of
several large representations, 10 and 126, in the model. These, however, lead to severe problems
in general and therefore such models can hardly be realistic. With gauge singlets on the other hand
the number of Higgs fields which transform under SO(10) will be the same as in the conventional
GUT scenarios, for example one 10 and one 126 17 and therefore problems, enumerated in Section
3.2.5, do not arise.
All this seems to favor the replacement of the Higgs doublets by flavored gauge singlets. Thereby,
the flavor group is broken independently from the electroweak symmetry, presumably at a much
higher energy scale. The particle spectrum at low energies only contains the SM particles. The
Yukawa structure of such a model differs from the ones shown above, since the terms consist of
two fermions, the usual Higgs doublet and a suitable number of gauge singlets needed to form
invariants under the flavor symmetry. In general, these terms are therefore non-renormalizable and
are appropriately suppressed by the cutoff scale of the theory. In a high energy completion they
arise from new, heavy degrees of freedom (vector-like fermions as well as scalar fields). These are
integrated out in order to arrive at the effective low energy theory. This is exactly how the model
presented in the next chapter is implemented.

17Recent studies [100, 101] which tried to fit all fermion masses and mixings in models with only one 10 and one
126 indicate that this scenario might be disfavored and has to be extended by, for example, additional Higgs fields
transforming as 120 under SO(10) [102]. Other models [103–105] with Higgs fields in smaller SO(10) representations
might solve this problem in a better way. However, they are in general non-renormalizable.
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Chapter 4

Flavored MSSM

In this chapter we discuss a flavored extension of the MSSM. The flavor symmetry is the double-
valued tetrahedral group T ′ 1. In contrast to the two low energy models presented in the preceding
chapter, the flavor symmetry breaking scale is not the electroweak scale, but rather a high energy
scale close to the GUT scale. For this reason, additional gauge singlets, called flavons, transforming
only under T ′, are introduced, while the MSSM Higgs doublets, hu and hd, are singlets under T ′.
Due to this the model can, for example, still predict gauge coupling unification. The solution of
the vacuum alignment problem (up to a small number of degeneracies) is attributed to the facts,
that the model is supersymmetric and that the flavor symmetry is broken at high energies by gauge
singlets. We can obtain several predictions in this model

• TBM in the lepton sector, i.e.

sin2(θTBM12 ) =
1
3
, sin2(θTBM23 ) =

1
2
, sin2(θTBM13 ) = 0 , (4.1)

which matches the experimental best fit values within ∼ 1σ.

• two non-trivial relations among |Vus|, |Vtd/Vts| and md/ms√
md

ms
= |Vus|+O(λ2) and

√
md

ms
=
∣∣∣∣VtdVts

∣∣∣∣+O(λ2) (due to |Vub| ∼ O(λ4) ) . (4.2)

These relations are well-known and usually result from the assumption of certain texture
zeros in the quark mass matrices [49–54].

This model serves as an extension of the successful A4 models [14,15] [16–21], since A4 is isomorphic
to the tetrahedral group T whose double group T ′ is. Hence the T ′ model can produce TBM in the
same manner as the A4 models and, furthermore, is able to describe the quark sector correctly due
to the existence of additional representations, not present in A4. In order to show the viability of
the model, not only the leading order is considered, but also the next-to-leading order terms are
calculated in each sector. They arise through two flavon insertions and correct the masses matrices
and the vacuum alignment. These effects have an important impact in this model, since they are
necessary to give masses to the first generation of quarks and produce non-vanishing mixing angles
θC ≡ θq12 and θq13. However, at the same time they could spoil the successful prediction of the TBM
in the lepton sector. In order to prevent this, the corrections should be kept small, at a level of

1Several synonyms for T ′ can be found in the literature, e.g. the binary tetrahedral group [106], (d)T [107],
SL2(F3) [108], Type 24/13 [109].

4-1
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λ2 ≈ 0.04. In the subsequent sections we will show that this requirement can indeed be fulfilled.
Apart from its successful predictions, this model allows for a deeper understanding of the diverse
mixing pattern of quarks and leptons. The charged fermion and neutrino sector couple to distinct
flavons at the leading order level. The set of fields coupling to the charged fermions breaks T ′

down to a Z3 subgroup, while the set coupling to neutrinos breaks it to a Z4 group 2. Hence, the
small quark mixings arise through the breaking of the flavor symmetry down to the same subgroup,
whereas large lepton mixing angles result from the mismatch of the different subgroups, Z3 and
Z4, in the charged lepton and neutrino sector. To be precise, the definite prediction of the very
specific pattern of TBM and not only of large mixings, is intimately connected to the preservation
of (different) T ′ subgroups in the charged lepton and neutrino sector. The fact that the vacuum
alignment problem can be solved in this model, is also correlated to the aspect that the flavor
symmetry is not broken in an arbitrary way, since VEV configurations corresponding to preserved
subgroups seem to be favored by the minimization conditions in a certain class of potentials.
The actual implementation of the model enforces the existence of additional symmetries: a.) a Z3

symmetry is necessary in order to separate the charged fermion and neutrino sector -at least- at
leading order, b.) an additional U(1) symmetry is used to explain the fermion mass hierarchy, and
c.) the construction of the flavon potential is realized with the help of another U(1) symmetry,
denoted as U(1)R, which extends the well-known R parity.
This chapter is structured as follows: In Section 4.1 the new features which arise from supersym-
meterizing the SM are reviewed; Section 4.2 contains the group theory of T ′ and Section 4.3 is
dedicated to the outline of the model. Thereby, the structure of the preserved subgroups is ex-
plained. The fermion mass matrices at leading and next-to-leading order are given in Section 4.4.
The flavon potential and the question of the vacuum alignment are discussed in detail in Section
4.5. Finally, some comments on the model including a short outlook can be found in Section 4.6.

4.1 Basic Ingredients for Model Building in the MSSM

In this section we collect the facts about the MSSM and SUSY model building which are necessary
to understand the construction of the T ′ model. Therefore, this section does not provide a review
of SUSY nor of the MSSM. For this purpose, we refer to, for example, [110].
In SUSY model building the notion of superfields and the superpotential w are of particular im-
portance. In the MSSM all SM fields are promoted to superfields which contain the SM particles,
i.e. fermions, gauge bosons and the Higgs field, and their superpartners, i.e. sfermions, gauginos
and Higgsinos. In the literature, they are conveniently denoted with the same symbol as the SM
fields which then carries a hat, e.g. Q̂ stands for a superfield which consists of an SU(2)L quark
doublet and its superpartners. The superpotential w is renormalizable, gauge invariant and has
mass dimension three, if one replaces the superfields by their scalar components, e.g. a term in the
superpotential can be quadratic in the fields with a coupling of mass dimension one or it can be
trilinear in the fields and the corresponding coupling is dimensionless. A special feature of w is the
fact that it is holomorphic, i.e. only the fields themselves, but not their complex conjugates are
allowed to appear in w. In the following, we only display the superpotentials w. Thereby, we omit
the hats over the superfields in general.
The Yukawa couplings are contained in w and are of the same form as in the SM with the slight
difference that due to holomorphy of w two Higgs fields hu and hd have to exist in the MSSM.
Thereby, hu gives masses to the up quarks, if it acquires a VEV, while hd is responsible for down
quark and charged lepton masses. If left-handed conjugate neutrinos exist, a VEV of hu also gives

2In the A4 model, the flavons coupling to neutrinos at leading order break A4 down to a Z2 group, see below.
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rise to Dirac masses for neutrinos. The VEVs of hu and hd are denoted by vu and vd. Their sum
equals the electroweak scale v, i.e. v2

u + v2
d = v2. Usually, vu and vd are parameterized in terms of

v and tan(β) = vu
vd

, i.e. vu = v sin(β) and vd = v cos(β). Small values of tan(β) then correspond
to O(vu) ≈ O(vd), while large values of tan(β) indicate that vd � vu. Generally, tan(β) has to be
larger than one and smaller than 50 or 60. Compared to the SM, hd plays the role of the SM Higgs
doublet, i.e. transforms as (1,2,−1) under SU(3)C×SU(2)L×U(1)Y , whereas hu, which is identi-
fied with the conjugate of the usual SM Higgs doublet, transforms as (1,2,+1). A second reason for
the existence of these two fields, hu and hd, is the fact that the theory would be anomalous, if only
one of the fields was present. This is different from the SM, since in a supersymmetric theory the
Higgs scalars are accompanied by Higgsinos, i.e. spin-1

2 particles, which induce anomalies similar
to the SM fermions. The appearance of the mass matrices deduced from the superpotential w is
exactly the same as in the SM, i.e. all formulae shown in Section 3.1 can also be applied here.
According to gauge invariance under SU(3)C×SU(2)L×U(1)Y additional terms are allowed in the
MSSM superpotential w, which are not present in the SM Lagrangian. These terms, for example,
can mediate proton decay and are therefore severely constrained. They can be eliminated by a
simple additional symmetry, called R parity, under which all SM particles have charge +1, while
all superparticles have charge −1. Equivalently, one can define matter parity under which all quark
and lepton supermultiplets have charge −1 and Higgs supermultiplets as well as gauge bosons and
gauginos have charge +1. In the model below this symmetry is extended to a continuous one, called
U(1)R symmetry.
Potentials of scalar fields originate from two sources in a supersymmetric theory, F -terms and D-
terms. The F -terms are derivatives of the superpotential w with respect to a (super-)field, while
D-terms are only present, if the fields transform non-trivially under a gauge group (factor), like the
Higgs fields hu and hd. In the T ′ model we only have to consider gauge singlets, i.e. fields which
transform trivially under the SM gauge group, and hence all D-terms vanish. Note that SUSY is
unbroken, if all F - and D-terms vanish independently. However, in nature SUSY cannot be un-
broken, since otherwise fermions and sfermions would have the same mass. Without constructing
a complete theory which explains the spontaneous breaking of SUSY, we can parameterize this by
the soft SUSY breaking terms. These include soft masses as well as trilinear couplings, so-called
A-terms. Note that these soft terms do not need to be holomorphic in the fields. In the MSSM
more than a hundred independent parameters are present in these terms. An important feature of
these terms is the fact that they do not lead to quadratic divergences and therefore still allow the
hierarchy problem to be solved.
As a last feature, we would like to mention that the invariance of the superpotential w under a
U(1) symmetry does not necessarily mean that the total U(1) charge of each term has to vanish,
but rather that all terms in w have to acquire the same U(1) charge, if the symmetry is applied to

w, i.e. w
U(1)−→ ei αw with arbitrary α. This holds, since the superpotential itself actually does not

appear in the Lagrangian, but only, for example, in the form of an F -term |∂w∂φ |
2.

4.2 Group Theory of T ′

T ′ is the double-valued group of the tetrahedral symmetry T which is isomorphic to A4, the group
of the even permutations of four objects. The group order of T ′ is therefore twice the one of A4,
i.e. it is 24. T ′ contains apart from the representations present in A4, i.e. the three inequivalent
one-dimensional representations, called 1, 1′ and 1′′, and the three-dimensional one, 3, further three
two-dimensional representations, 2, 2′ and 2′′. Out of these seven representations two are real (1
and 3), one is pseudo-real (2) and the other four ones are complex (conjugated to each other), 1′ to
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classes
C1 C2 C3 C4 C5 C6 C7

G 1 R S STR T 2 T (ST )2R
◦Ci 1 1 6 4 4 4 4
◦h Ci 1 2 4 6 3 3 6 c(µ) faithful
1 1 1 1 1 1 1 1 1
1′ 1 1 1 ω ω2 ω ω2 0
1′′ 1 1 1 ω2 ω ω2 ω 0
2 2 -2 0 1 -1 -1 1 -1

√

2′ 2 -2 0 ω −ω2 −ω ω2 0
√

2′′ 2 -2 0 ω2 −ω −ω2 ω 0
√

3 3 3 -1 0 0 0 0 1

Table 4.1: Character table of the group T ′ taken from [111, 112]. ω is the third

root of unity, i.e. ω = e
2 π i

3 = − 1
2

+ i
√

3
2

and 1 + ω + ω2 = 0 holds. For further
explanations consult Appendix A.

1′′ and 2′ to 2′′. Clearly, only the two-dimensional representations are faithful. As usual, 1 is the
trivial representation of the group. The pseudo-reality of 2 mirrors the fact that T ′ is a subgroup
of the (continuous) group SU(2) whose fundamental representation 2 is also pseudo-real. Since 1,
1′, 1′′ and 3 also exist in A4 they are called single-valued representations, while the additional two-
dimensional ones are called double-valued. It is important to notice that A4 (T) is not a subgroup
of T ′, although they are closely related. The character table is shown in Table 4.1. One can choose
the following generators S and T for the irreducible representations [111,112]

... for 2 : S = − 1√
3

(
i

√
2 e

π i
12

−
√

2 e−
π i
12 −i

)
, T = ω

(
ω 0
0 1

)
, (4.3)

... for 2′ : S = − 1√
3

(
i

√
2 e

π i
12

−
√

2 e−
π i
12 −i

)
, T = ω2

(
ω 0
0 1

)
, (4.4)

... for 2′′ : S = − 1√
3

(
i

√
2 e

π i
12

−
√

2 e−
π i
12 −i

)
, T =

(
ω 0
0 1

)
, (4.5)

... for 3 : S =
1
3

 −1 2ω 2ω2

2ω2 −1 2ω
2ω 2ω2 −1

 , T =

 1 0 0
0 ω 0
0 0 ω2

 . (4.6)

As usual the generators S and T of the one-dimensional representations can be found in the char-
acter table. S and T fulfill the relations

S2 = R, T 3 = 1, (S T )3 = 1, R
2 = 1, (4.7)

with R = 1 for the one-dimensional and the three-dimensional representations (i.e. the representa-
tions which T ′ shares with A4) and R = −1 for the two-dimensional ones 2, 2′ and 2′′. As R = ±1,
it commutes with all elements of the group.
Since the generators of all representations are chosen to be complex, there exist similarity transfor-
mations U which connect them with their complex conjugates, i.e. UT S U = S? and UT T U = T ?.
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For the two-dimensional representation 2 U reads

U =
(

0 1
−1 0

)
with UT U = U UT = 1 , (4.8)

and for the three-dimensional representation we find

U =

 1 0 0
0 0 1
0 1 0

 with UT U = U UT = 1 . (4.9)

The representations 2′ and 2′′ are complex conjugated to each other. However, this is not true for
their representation matrices, i.e. also here we have to apply a similarity transformation V which
transforms S? and T ? of 2′ into S and T of 2′′. It is given by

V =
(

0 1
−1 0

)
with V T V = V V T = 1 , (4.10)

then V T S?2′ V = S2′′ and V T T ?2′ V = T2′′ .
Since the model which will be discussed in the following is an extension of the A4 model presented
in [15], we elucidate the links between the chosen generators here and in [15]. Thereby, one has
to notice that the generator T in [15] actually equals T 2 here, T 2 = ω2 for 1′ equals T = ω2 for
1′ in [15], similarly for 1′′ and also for the diagonal generator T of 3. Apart from this we need to
employ the similarity transformation W

W =

 1 0 0
0 ω2 0
0 0 ω

 (4.11)

so that

W † SW =
1
3

 −1 2 2
2 −1 2
2 2 −1

 and W † T 2W =

 1 0 0
0 ω2 0
0 0 ω

 , (4.12)

which are the generators S and T presented in [15]. However, all this does not affect the Clebsch
Gordan coefficients. They are shown in Appendix B.3 together with the Kronecker products.

4.3 Outline of the Model

In this section we give an overview over the model. First, we discuss the assignments of leptons and
quarks under T ′. In order to arrive at the same result for the lepton sector as the A4 model we have
to assign the left-handed lepton doublets to the three-dimensional representation of T ′, whereas
the left-handed conjugate leptons ec, µc and τ c transform as the three inequivalent one-dimensional
representations. As explained in Section 4.2, these representations can also be found in the group
A4, since T ′ is its double-covering. Similar to the A4 model, we need an additional Z3 symmetry
which enables us to separate the charged lepton and the neutrino sector in the following discussion.
The charged lepton masses arise as always from the Yukawa couplings connecting l and ec (µc,
τ c), while the neutrinos are assumed to get masses from the dimension five operator (l hu) (l hu)
which is suppressed by the cutoff scale Λ. Due to the separating Z3 symmetry there can exist
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two sets of flavon fields, {ϕT } and
{
ϕS , ξ, ξ̃

}
, which only couple to charged leptons and neutrinos

(at leading order), respectively. According to the choice of the generators S and T the charged
lepton mass matrix is diagonal, if the VEV structure of ϕT is proportional to (1, 0, 0). As will be
shown below this configuration preserves the Z3 symmetry generated by T . However, T ′ cannot
explain the hierarchy among the charged leptons and therefore an additional U(1)FN symmetry is
advocated under which the first and second generation of left-handed conjugate charged leptons, ec

and µc, transform non-trivially. To implement the Froggatt-Nielsen mechanism [11] we then have
to assume the existence of a further gauge singlet θ which only carries a non-vanishing U(1)FN
charge which can be chosen as −1 without loss of generality 3. The mass matrix of the neutrinos
leads to TBM (independent of the exact value of the eigenvalues), if 〈ϕS〉 = vS (1, 1, 1) holds and
at least one of the trivially transforming flavons ξ and ξ̃ has a non-vanishing VEV 4. T ′ is thereby
broken down to a Z4 symmetry which will become clear in a moment. The lepton mixings are then
tri-bimaximal. In the quark sector a similar assignment of left-handed and left-handed conjugate
fields as used for the charged leptons cannot produce a Cabibbo angle of order λ ≈ 0.22. This has
been discussed at length for the A4 model in [15] and the same result holds for the equivalent T ′

model, as T ′ and A4 share the one- and three-dimensional representations. Moreover, this solution
suffers from the fact that all quark masses including the top quark mass are only produced by
non-renormalizable terms, if we do not assume that there exist copies of the MSSM Higgs doublets
hu and hd which also transform non-trivially under the flavor symmetry. Therefore, we choose
different representations for the quarks, i.e. we assign the first two generations of the quarks to a
two-dimensional representation of T ′ and the third one transforms trivially. By choosing the Z3

charges of the quarks properly they can couple to the flavon fields ϕT which already give masses
to the charged leptons. Since the quarks transform in a different way under T ′ than the charged
leptons, their mass matrices have a different form. Furthermore, we need to introduce flavons η
and ξ′′ transforming as doublet and non-trivial singlet under T ′, respectively. They have the same
Z3 charge as the fields ϕT and therefore couple at leading order to charged fermions only. However,
due to T ′ invariance of the Yukawa couplings they only contribute to the quark masses and not
to the charged lepton mass matrix. With 〈η〉 = (v1, 0) and 〈ξ′′〉 = 0 also these fields preserve
the Z3 subgroup generated by T which is left unbroken by 〈ϕT 〉 ∝ (1, 0, 0). The resulting quark
mass matrices only have a non-vanishing 2-3 subblock. The (33) entry dominates in the up as well
as the down quark mass matrix, since it arises from a renormalizable coupling for the up quarks
and from a coupling involving only the FN field θ, but no flavon in case of the down quarks 5.
Obviously, this does not describe all quark masses and mixings correctly. Therefore, the inclusion
of subleading terms is mandatory. In general, these terms have two main effects: a.) new operators
containing two flavons arise which, for example, couple ϕT also to the neutrino sector such that the
separation of the charged fermion and neutrino sector is not rigid anymore and b.) subleading terms
in the flavon potential will correct the VEV alignment, for example, 〈ϕS〉 = vS (1, 1, 1) is replaced

3If U(1)FN is not broken explicitly in the theory, its spontaneous breaking will cause the existence of a massless
Goldstone boson.

4Otherwise, the mass matrix of the light neutrinos has one vanishing and two degenerate eigenvalues and therefore
does not allow a unique determination of the eigenvectors (up to phases), see below Eq.(4.27) and Eq.(4.29) for a = 0.

5Note that this is slightly different in the model presented in [24]. The reason for this is the fact that the left-
handed conjugate down quarks do not transform under U(1)FN in [24]. However, this raises the problem that the
mass of the bottom quark, which is generated at the renormalizable level, cannot be of the same order as the mass
of the τ lepton which acquires an additional suppression factor λ2, since it stems from a non-renormalizable Yukawa
coupling involving one flavon. The problem is solved in a very simple way, if all left-handed conjugate down quarks
carry charge +1 under U(1)FN . Then all Yukawa couplings leading to masses for down quarks are non-renormalizable,
i.e. need an insertion of the FN field θ, and are also suppressed by at least λ2. This only corrects the absolute mass
scale of the down quarks, while all other results of the original model presented in [24] still hold.
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by 〈ϕS〉 = (vS + δvS 1, vS + δvS 2, vS + δvS 3). The hierarchy among the quark masses is mainly due
to two facts: a.) the masses for the first generation of quarks are not generated at the leading order
level, i.e. they are suppressed compared to the others and b.) the left-handed conjugate quarks
are also charged under the U(1)FN symmetry, which already introduces the hierarchy among the
charged leptons. The main challenge in this model then arises from the fact that we have to
generate the Cabibbo angle (and the masses mu and md) via subleading effects only, while keeping
these corrections at a level which does not spoil the nice result of the TBM in the lepton sector.
This can be successfully implemented, as will be shown in Section 4.4. There is one caveat to
mention, the solution is possible and well motivated, however, contains a certain (small) tuning of
two parameters which will be discussed in Section 4.4.2. All the information given here about the
transformation properties of fermions and flavons under the symmetries of the model, T ′, Z3 and
U(1)FN , are collected in Table 4.2.

Field l ec µc τ c Q1,2 (uc, cc) (dc, sc) Q3 tc bc hu,d ϕT ϕS ξ, ξ̃ η ξ′′ θ

T ′ 3 1 1′′ 1′ 2′′ 2′′ 2′′ 1 1 1 1 3 3 1 2′ 1′′ 1
Z3 ω ω2 ω2 ω2 ω ω2 ω2 ω ω2 ω2 1 1 ω ω 1 1 1

U(1)FN 0 2 1 0 0 1 1 0 0 1 0 0 0 0 0 0 −1

Table 4.2: The transformation rules of the fields under the symmetries associated to the groups
T ′, Z3 and U(1)FN . Note that only the scalar fields hu and hd transform non-trivially under the
SM gauge group, whereas the flavon fields ϕT , ϕS , ξ, ξ̃, η and ξ′′ are gauge singlets. The FN field

θ is only charged under U(1)FN . Again, ω equals e
2 π i

3 = − 1
2

+ i
√

3
2

.
In contrast to the model presented in [24] all left-handed conjugate down quarks have a non-
vanishing U(1)FN charge.

The fermion masses in this model originate from the superpotential w which consists of three parts

w = wl + wq + wd . (4.13)

Thereby, wl and wq contain the Yukawa couplings of leptons and quarks, respectively, while the
couplings involving only flavons are collected in wd.
In the following we want to explain in more detail why the presented VEV structures of the flavons
preserve a Z3 or a Z4 subgroup. This can be done with the help of the matrix forms of the generators
S and T shown in Section 4.2. For the set of flavons {ϕT , η, ξ′′} coupling only to charged fermions
at leading order, we advocated the structure

〈ϕT 〉 = (vT , 0, 0) , 〈η〉 = (v1, 0) , 〈ξ′′〉 = 0 . (4.14)

Inspecting the generators S and T of the representations 3, 2′ and 1′′, one sees that these VEV
structures are eigenvectors of the generator T belonging the eigenvalue one, i.e.

... for 1′′ : T · 0 = ω2 · 0 = 1 · 0 , (4.15)

... for 2′ : T ·
(

1
0

)
=
(

1 0
0 ω2

)
·
(

1
0

)
= 1 ·

(
1
0

)
, (4.16)

... for 3 : T ·

 1
0
0

 =

 1 0 0
0 ω 0
0 0 ω2

 ·

 1
0
0

 = 1 ·

 1
0
0

 . (4.17)
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T generates a Z3 group, as T 3 = 1 holds. The fact that the VEV structures, shown in Eq.(4.14),
are proportional to the eigenvector belonging to the eigenvalue one of the generator T implies that
these structures only allow non-vanishing VEVs for components which transform trivially (as 1)
-and not as ω or ω2- under the Z3 subgroup of T ′. As in general fields which are invariant under a
symmetry cannot break this symmetry, ϕT , η and ξ′′ acquiring VEVs of the form Eq.(4.14) leave
the subgroup Z3 unbroken. Similarly, we can investigate the second VEV structure

〈ϕS〉 = (vS , vS , vS) , 〈ξ〉 = u , 〈ξ̃〉 = 0 . (4.18)

Here the generator of the relevant Z4 subgroup can be written as

T S T 2 =
1
3

 −1 2 2
2 −1 2
2 2 −1

 (4.19)

for the three-dimensional representation. Obviously, the vector with equal entries is an eigenvector
to the eigenvalue one and the VEV structure of ϕS is proportional to this. For the two flavons
ξ and ξ̃ which transform trivially under T ′ a non-vanishing VEV is always allowed 6, since the
trivial representation of a group is also always a trivial representation in any of its subgroups.
〈ξ̃〉 = 0 is therefore not induced by the requirement of preserving a certain subgroup of T ′, but is
attributed to the details of the flavon potential, as will be explained below in Section 4.5. Note
that for the two-dimensional representations T S T 2 does not possess an eigenvalue +1, i.e. these
representations do not contain a component transforming trivially under the residual Z4 group.
The fact that T S T 2 generates a Z4 subgroup can be seen by using the generator relations Eq.(4.7)

(T S T 2)2 = T S T 3 S T 2 T 3=1= T S2T 2 S2=R= T RT 2
T3=1 ,
[T,R]=0

= R = ±1 =⇒ (T S T 2)4 = 1 . (4.20)

Since R = +1 for the one- and three-dimensional representations, T S T 2 generates in this case only
a Z2 group which corresponds to the preserved Z2 group in the A4 models.

4.4 Results for Fermion Masses and Mixings

In this section we write down the invariant Yukawa couplings and mass matrices for the fermions,
study the fermion masses and their mixings and investigate the terms appearing at subleading
order.

4.4.1 Leading Order Results

At leading order, the Yukawa couplings arising from the two parts wl and wq of the superpotential
can be written in shortform as 7

wl =
ye
Λ3

(ϕT l) ec θ2 hd +
yµ
Λ2

(ϕT l)′ µc θ hd +
yτ
Λ

(ϕT l)′′ τ c hd (4.21)

+
1
Λ2

(xa ξ + x̃a ξ̃) (l l)hu hu +
xb
Λ2

(ϕS l l)hu hu + h.o.

6The same holds in this case for flavons transforming as non-trivial one-dimensional representations. We comment
on this in Section 4.6.

7Note that we present the couplings in the basis LLc and not Lc L as done in [24]. Note further that we display
the FN field explicitly in the terms. Hence all Yukawa couplings are of order one in our notation and do not include
the additional suppression factors stemming from the Froggatt-Nielsen mechanism. This is different in the published
work [24].
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for the leptons and for the quarks we find

wq = yt (Q3 t
c) hu +

yb
Λ

(Q3 b
c) θ hd (4.22)

+
y1

Λ2
(ϕT DqD

c
u) θ hu +

y5

Λ2
(ϕT DqD

c
d) θ hd

+
y2

Λ2
ξ′′ (DqD

c
u)

′ θ hu +
y6

Λ2
ξ′′ (DqD

c
d)
′ θ hd

+
1
Λ

[
y3 (η Dq) tc +

y4

Λ
Q3 (Dc

u η) θ
]
hu +

1
Λ2

[y7 (η Dq) bc + y8Q3 (Dc
d η)] θ hd + h.o.

where Dq is given by (Q1, Q2)t, Dc
u by (uc, cc)t and Dc

d by (dc, sc)t. The term +h.o. in wl and wq
indicates the higher-order contributions.
The explicit form of the couplings is

wl =
ye
Λ3

(ϕT 1 l1 + ϕT 2 l3 + ϕT 3 l2) ec θ2 hd (4.23)

+
yµ
Λ2

(ϕT 3 l3 + ϕT 1 l2 + ϕT 2 l1)µc θ hd

+
yτ
Λ

(ϕT 2 l2 + ϕT 1 l3 + ϕT 3 l1) τ c hd

+
1
Λ2

(xa ξ + x̃a ξ̃) (l1 l1 + l2 l3 + l3 l2)hu hu

+
1
3
xb
Λ2

[ϕS 1 (2 l1 l1 − l2 l3 − l3 l2) + ϕS 2 (2 l2 l2 − l1 l3 − l3 l1)

+ ϕS 3 (2 l3 l3 − l1 l2 − l2 l1)]hu hu + h.o.

and

wq = yt (Q3 t
c) hu +

yb
Λ

(Q3 b
c) θ hd (4.24)

+
y1

Λ2
(ϕT 1Q2 c

c + i ϕT 2Q1 u
c +

(
1− i

2

)
ϕT 3 (Q1 c

c +Q2 u
c)) θ hu

+
y5

Λ2
(ϕT 1Q2 s

c + i ϕT 2Q1 d
c +

(
1− i

2

)
ϕT 3 (Q1 s

c +Q2 d
c)) θ hd

+
y2

Λ2
ξ′′ (Q1 c

c −Q2 u
c) θ hu +

y6

Λ2
ξ′′ (Q1 s

c −Q2 d
c) θ hd

+
1
Λ

[
y3 (η1Q2 − η2Q1) tc +

y4

Λ
Q3 (cc η1 − uc η2) θ

]
hu

+
1
Λ2

[y7 (η1Q2 − η2Q1) bc + y8Q3 (sc η1 − dc η2)] θ hd + h.o.

Inserting the VEVs

〈ϕS〉 = (vS , vS , vS) , 〈ξ〉 = u , 〈ξ̃〉 = 0 , (4.25a)
〈ϕT 〉 = (vT , 0, 0) , 〈η〉 = (v1, 0) , 〈ξ′′〉 = 0 , (4.25b)

which preserve the subgroups Z4 and Z3 according to Section 4.3 and

〈hu〉 = vu and 〈hd〉 = vd , (4.26)
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the mass matrices have the following appearance 8

Ml =


ye

〈θ〉2
Λ2 0 0

0 yµ
〈θ〉
Λ 0

0 0 yτ

 vT
Λ
vd , Mν =


a+ 2

3 b −1
3 b −1

3 b

−1
3 b

2
3 b a− 1

3 b

−1
3 b a− 1

3 b
2
3 b

 v2
u

Λ
, (4.27)

Mu =


0 0 0

0 y1
vT
Λ

〈θ〉
Λ y3

v1
Λ

0 y4
v1
Λ

〈θ〉
Λ yt

 vu , Md =


0 0 0

0 y5
vT
Λ y7

v1
Λ

0 y8
v1
Λ yb

 〈θ〉
Λ
vd . (4.28)

We introduced the abbreviation a = xa
u
Λ and b = xb

vS
Λ into the neutrino mass matrix Mν . Mν

is diagonalized by

Uν =


2√
6

1√
3

0
− 1√

6
1√
3
− 1√

2

− 1√
6

1√
3

1√
2

 so that U †
νMν U

?
ν =

v2
u

Λ

 a+ b 0 0
0 a 0
0 0 −a+ b

 . (4.29)

Since the charged lepton mass matrix is diagonal, Uν equals UMNS and therefore lepton mixings
are tri-bimaximal. However, in order to ensure that this result is not completely destroyed by
subleading corrections, we have to calculate them and show that they do not exceed the order λ2.
A study of the mass spectrum and |mee| can be found in [113]. Its results also hold, if A4 is replaced
by T ′, since the lepton sector coincides in both models. The ratios u

Λ and vS
Λ turn out to be of

the order λ2. The cutoff scale Λ of the theory is expected to be around (1013...1015) GeV. It is
therefore between the seesaw and the GUT scale. The VEVs of the flavon fields are then of the
order (1011...1013) GeV, i.e. T ′ is broken far above the electroweak scale.
The hierarchy among the charged leptons

me =
∣∣∣∣ye 〈θ〉2Λ2

vT
Λ
vd

∣∣∣∣ , mµ =
∣∣∣∣yµ 〈θ〉Λ vT

Λ
vd

∣∣∣∣ and mτ =
∣∣∣yτ vTΛ vd

∣∣∣ (4.30)

can be maintained by the Froggatt-Nielsen mechanism. It is sufficient to assume that 〈θ〉
Λ is of order

λ2 for reproducing the correct hierarchy, i.e. me : mµ : mτ ≈ λ4 : λ2 : 1. For the absolute mass
scale, we arrive at mτ of the order of a GeV, if vd ∼ O(100 GeV) and vT

Λ ∼ λ2. Since vd is large,
tan(β) is small in this model.
In the quark sector the masses of the second and third generation are reproduced

mc ≈
∣∣∣∣y1

vT
Λ
〈θ〉
Λ
vu

∣∣∣∣ , mt ≈ |yt vu| , (4.31)

ms ≈
∣∣∣∣y5

vT
Λ
〈θ〉
Λ
vd

∣∣∣∣ , mb ≈
∣∣∣∣yb 〈θ〉Λ vd

∣∣∣∣ (4.32)

as well as the CKM element

Vcb ≈
(
y7

yb
− y3

yt

)
v1
Λ
. (4.33)

8We display the mass matrices in the basis in which the left-handed fields are on the left-hand side and the left-
handed conjugate ones are on the right-hand side. This is different from [24] and therefore our mass matrices are the
transposes of the ones shown in [24].
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All quantities involving the first generation, i.e. the masses of the up and down quark as well as
the CKM elements Vud, Vus, Vub, etc., vanish at this order. They have to be generated by next-to-
leading order contributions to the mass matrices. mt can be naturally large for vu ≈ O(100 GeV),
while mb is suppressed compared to mt by the Froggatt-Nielsen mechanism so that it is of the
same order as mτ . Since we already chose vT

Λ ≈ λ2, ms is in the range of the muon mass and
ms : mb ≈ λ2 : 1. The mass of the charm quark is mc ≈ λ4 vu and therefore mc : mt ≈ λ4 : 1 holds.
Finally, Vcb is around λ2 for v1

Λ ∼ λ2 which fits the experimental results quite well.

4.4.2 Next-to-Leading Order Results

In this section we show how the next-to-leading order modifies the results of the leading order.
As already mentioned, there are two different sources of corrections: a.) additional operators aris-
ing from the insertion of two flavon fields instead of only one and b.) corrections to the vacuum
alignment, induced by four flavon terms in wd, which lead to shifts in the VEVs and thereby also
contribute to the fermion masses.
In the following, we display all operators with two flavons correcting the up and down quark mass
matrices

∆wq =
1
Λ2

(ϕT ϕT )Q3 t
c hu +

1
Λ2

(Dq η ϕT ) tc hu (4.34)

+
1
Λ3

Q3 (η ϕT Dc
u) θ hu +

1
Λ3

(ϕT ϕT )′′ (DqD
c
u)

′ θ hu +
1
Λ3

(ϕT ϕT )S (DqD
c
u)3 θ hu

+
1
Λ3

ξ′′ ϕT (DqD
c
u)3 θ hu +

1
Λ3

(η η)3 (DqD
c
u)3 θ hu

+
1
Λ3

(ϕT ϕT )Q3 b
c θ hd +

1
Λ3

(Dq η ϕT ) bc θ hd

+
1
Λ3

Q3 (η ϕT Dc
d) θ hd +

1
Λ3

(ϕT ϕT )′′ (DqD
c
d)
′ θ hd +

1
Λ3

(ϕT ϕT )S (DqD
c
d)3 θ hd

+
1
Λ3

ξ′′ ϕT (DqD
c
d)3 θ hd +

1
Λ3

(η η)3 (DqD
c
d)3 θ hd

Here we omit order one coefficients. The explicit form of the terms can be found in Appendix C.
Analogously, the lepton sector is subject to corrections from additional operators

∆wl =
1
Λ4

(
(ϕT ϕT )S + ξ′′ ϕT + (η η)3

)
(l ec) θ2 hd +

1
Λ3

(
(ϕT ϕT )S + ξ′′ ϕT + (η η)3

)
(l µc) θ hd

+
1
Λ2

(
(ϕT ϕT )S + ξ′′ ϕT + (η η)3

)
(l τ c)hd (4.35)

+
1
Λ3

(ϕT ϕS) (l l)h2
u +

1
Λ3

(ϕT ϕS)′ (l l)′′ h2
u +

1
Λ3

(ϕT ϕS)′′ (l l)′ h2
u

+
1
Λ3

(ϕT ϕS)S (l l)S h2
u +

1
Λ3

(ϕT ϕS)A (l l)S h2
u

+
1
Λ3

(ξ [ξ̃]ϕT ) (l l)S h2
u +

1
Λ3

(ξ′′ ϕS) (l l)S h2
u +

1
Λ3

ξ [ξ̃] ξ′′ (l l)′ h2
u

Again, we left out all order one coefficients. The explicit form of the corrections is shown in
Appendix C. Note that the notation ξ[ξ̃] indicates that either the field ξ or the field ξ̃ is involved
in the coupling. Secondly, note that not all the terms displayed in the equations have to be
linearly independent. However, this fact is not relevant for our purposes. The contributions to the
fermion mass matrices arise, if the scalar fields are replaced by their VEVs, as given in Eq.(4.25)
and Eq.(4.26). Therefore, all terms containing the fields ξ̃ and ξ′′ vanish. As one can see, all
corrections to the charged fermion masses can be absorbed into the leading order structure by
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redefining the Yukawa couplings ye,µ,τ , y1,3,4, y5,7,8, yt and yb, i.e. the results given in Eq.(4.27) and
Eq.(4.28) are not affected. Only the mass matrix Mν of the light neutrinos gets corrections which
change the leading order result. For example, the term 1

Λ3 (ϕT ϕS)′ (l l)′′ h2
u leads to a contribution

1
Λ3 vT vS (l2 l2+l1 l3+l3 l1) v2

u which cannot be reconciled with the TBM structure of Mν . Therefore,
we expect that the actual lepton mixing angles deviate from the ones predicted at leading order.
The second source of corrections to the mass matrices originates from shifts of the VEVs due to
four flavon operators in wd. The shifts of the VEVs are parameterized in general by

〈ϕS〉 = (vS + δvS 1, vS + δvS 2, vS + δvS 3) , 〈ϕT 〉 = (vT + δvT 1, δvT 2, δvT 3) , (4.36)
〈η〉 = (v1 + δv1, δv2) , 〈ξ〉 = u , 〈ξ̃〉 = δũ , 〈ξ′′〉 = δu′′ .

As will be shown below, the order of the shifts is generically λ4 Λ in case that the VEVs themselves
are of order λ2 Λ. Note that the VEV of ξ is not shifted, since it remains undetermined at leading
order, see below. Note further that we expect all shifts to be independent. To find the corrections
to the mass matrices, we have to insert the shifted VEVs into the leading order terms, Eq.(4.21)
and Eq.(4.22). We arrive at

δMl =


ye δvT 1

〈θ〉2
Λ2 yµ δvT 2

〈θ〉
Λ yτ δvT 3

ye δvT 3
〈θ〉2
Λ2 yµ δvT 1

〈θ〉
Λ yτ δvT 2

ye δvT 2
〈θ〉2
Λ2 yµ δvT 3

〈θ〉
Λ yτ δvT 1

 vd
Λ

(4.37)

δMν =


x̃a

δũ
Λ + 2

3 b
δvS 1
vS

−1
3 b

δvS 3
vS

−1
3 b

δvS 2
vS

−1
3 b

δvS 3
vS

2
3 b

δvS 2
vS

x̃a
δũ
Λ − 1

3 b
δvS 1
vS

−1
3 b

δvS 2
vS

x̃a
δũ
Λ − 1

3 b
δvS 1
vS

2
3 b

δvS 3
vS

 v2
u

Λ
, (4.38)

δMu =


i y1

δvT 2
Λ

〈θ〉
Λ (1−i

2 y1
δvT 3

Λ + y2
δu′′

Λ ) 〈θ〉
Λ −y3

δv2
Λ

(1−i
2 y1

δvT 3
Λ − y2

δu′′

Λ ) 〈θ〉
Λ y1

δvT 1
Λ

〈θ〉
Λ y3

δv1
Λ

−y4
δv2
Λ

〈θ〉
Λ y4

δ v1
Λ

〈θ〉
Λ 0

 vu , (4.39)

δMd =


i y5

δvT 2
Λ

1−i
2 y5

δvT 3
Λ + y6

δu′′

Λ −y7
δv2
Λ

1−i
2 y5

δvT 3
Λ − y6

δu′′

Λ y5
δvT 1

Λ y7
δv1
Λ

−y8
δv2
Λ y8

δ v1
Λ 0

 〈θ〉
Λ
vd . (4.40)

As one can see, the dominating effects for the charged fermions have to originate from the shifts of
the VEVs, since only these contributions change the structure of the mass matrices.
We can now analyze the impact of the next-to-leading order corrections on the fermion masses
and mixings. Regarding the lepton sector we observe that the discussion is exactly the same as
performed in [15]. This has two main reasons: a.) the structure of the VEV shifts 9 is clearly
the same as in the A4 model and therefore leads to the same corrections and b.) the two flavon

9To be correct, in [15] δvT 2 and δvT 3 turn out to be the same, while they are independent in our model here.
However, this does not really matter for the discussion of the corrections to TBM.



4.4. RESULTS FOR FERMION MASSES AND MIXINGS 4-13

insertions either coincide with the ones of the A4 model (e.g. 1
Λ3 (ϕT ϕS)′ (l l)′′ h2

u), are unimportant,
since they can be absorbed into the leading order (e.g. 1

Λ4 (η η)3 (l ec) θ2 hd) or vanish, since the
VEV of the flavon field vanishes (e.g. 1

Λ4 ξ
′′ ϕT (l ec) θ2 hd and 1

Λ3 ξ [ξ̃] ξ′′ (l l)′ h2
u). Therefore, we can

refer to [15] for the analysis of the lepton sector. Its result shows that all deviations of the lepton
mixing angles from TBM can be kept small, i.e. at the order λ2 in case that all flavon VEVs are
of the order λ2 Λ and their shifts are of the order . λ4 Λ.
The quark sector needs a more careful study. If we simply plug in the generic order of the VEVs
and their shifts, we arrive at the following mass matrix structures

Mu ∼ O




λ6 λ6 λ4

λ6 λ4 λ2

λ6 λ4 1

 vu

 , Md ∼ O




λ4 λ4 λ4

λ4 λ2 λ2

λ4 λ2 1

 λ2 vd

 . (4.41)

As one can see, this raises the problem that the up quark mass turns out to be too large. Especially
the (11) element is too large and should rather be of the order λ8 and not λ6. For this purpose, we
have to demand that the shift of the second field contained in the triplet ϕT , i.e. δvT 2, is not of
the order λ4 Λ, but λ6 Λ 10. However, then the mass of the down quark is expected to be too small.
We can cure this problem by assuming that the coupling y6 is slightly larger than its natural value,
i.e. y6 ∼ 1

λ . In this way the orders of the mass matrix elements turn out to be

Mu ∼ O




λ8 λ6 λ4

λ6 λ4 λ2

λ6 λ4 1

 vu

 , Md ∼ O




λ6 λ3 λ4

λ3 λ2 λ2

λ4 λ2 1

 λ2 vd

 . (4.42)

We have to make one comment: Since the (11) element of the up and down quark mass matrix has
to be tuned to λ8 vu and λ8 vd, respectively, we now also have to take into account the contributions
from three flavon insertions which are generically at least of order λ6, since they contain three powers
of the ratio flavon VEV over cutoff scale. They are, similar to the other operators, appropriately
suppressed by λ2 stemming from the Froggatt-Nielsen mechanism. Therefore, their contributions
to all elements are negligible apart from the (11) element, where they appear at the same order as
the first non-vanishing term coming from the shifts in the VEVs. Diagonalizing the mass matrices
Mu and Md which contain all leading and next-to-leading order contributions we arrive at the
following expressions for quark masses and mixings

mu ≈

∣∣∣∣∣y1 vu
〈θ〉
Λ

{
i
δvT 2

Λ
−

[(
1− i

2

)2 δv2
T 3

vT Λ
− y2

2

y2
1

δu′′2

vT Λ

]}
+ ...

∣∣∣∣∣ , (4.43)

md ≈

∣∣∣∣∣vd 〈θ〉Λ y2
6

y5

δu′′2

vT Λ

∣∣∣∣∣ , mc ≈
∣∣∣∣y1 vu

〈θ〉
Λ

vT
Λ

∣∣∣∣ , ms ≈
∣∣∣∣y5 vd

〈θ〉
Λ

vT
Λ

∣∣∣∣ , (4.44)

mt ≈ |yt vu| , mb ≈
∣∣∣∣yb vd 〈θ〉Λ

∣∣∣∣ , (4.45)

10We will show below that this assumption can be made without spoiling the order of the other shifts.
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Vud ≈ Vcs ≈ 1 , Vtb ≈ 1 , (4.46)

V ∗
us ≈ −Vcd ≈ −

y6

y5

δu′′

vT
−
[(

1− i

2

)
δvT 3

vT
− y2

y1

δu′′

vT

]
, (4.47)

V ∗
ub ≈ −

(
y7

yb
− y3

yt

) {
δv2
Λ

+
v1
vT

[(
1− i

2

)
δvT 3

Λ
− y2

y1

δu′′

Λ

]}
, (4.48)

V ∗
cb ≈ −Vts ≈

(
y7

yb
− y3

yt

)
v1
Λ
, (4.49)

Vtd ≈ −
y6

y5

(
y7

yb
− y3

yt

)
v1 δu

′′

vT Λ
+
(
y7

yb
− y3

yt

)
δv2
Λ

. (4.50)

All quark masses are then of the correct order, i.e.

mu ∼ O(λ8 vu) , mc ∼ O(λ4 vu) , mt ∼ O(vu) , (4.51)
md ∼ O(λ6 vd) , ms ∼ O(λ4 vd) , mb ∼ O(λ2 vd) . (4.52)

The diagonal elements of VCKM equal one at leading order. Vus and Vcd are of order λ, since
y6 ∼ 1

λ , while Vcb and Vts are of order λ2. Finally, the elements Vtd and Vub are of order λ3 and λ4,
respectively. Therefore, Vub is rather small, but still this is allowed. Since the Yukawa couplings
and VEVs as well as their shifts can be complex, JCP can also be accommodated in this model.
In summary, the phenomenology of the quark sector can well be described in this model. Thereby,
the quantities involving the first generation are only generated by subleading effects. Apart from
two fine-tunings, i.e. δvT 2 ∼ λ6 Λ instead of λ4 Λ and y6 ∼ 1

λ , all other parameters can be of
their natural order. Additionally, one can show that the following two equations are fulfilled up to
corrections of order λ2√

md

ms
= |Vus|+O(λ2) , (4.53)√

md

ms
=
∣∣∣∣VtdVts

∣∣∣∣+O(λ2) . (4.54)

Thereby, the second relation can be deduced from the first one by using the unitarity of the CKM
matrix, i.e. Vud V

?
td + Vus V

?
ts + Vub V

?
tb = 0, while keeping in mind that Vub ∼ λ4 (and Vud ≈ 1,

Vtb ≈ 1) in our model.

4.5 Treatment of the Flavon Potential

In this section we analyze the problem of the vacuum alignment in detail, since all results of the
model crucially depend on the fact whether we can achieve the advocated VEV structures in a
natural way, i.e. without any further assumptions on the potential and tunings of its parameters.
As already experienced in the models presented in Chapter 3, in the framework of the SM and
with flavored SU(2)L Higgs doublets this task turns out to be hardly solvable. Therefore, the T ′

model is implemented in the MSSM and furthermore the breaking of the electroweak and the flavor
symmetry are disentangled, i.e. the flavor symmetry is now broken by gauge singlets only. Two
important aspects then allow us to solve the technical problem of the VEV alignment: a.) the
potential of fields transforming as gauge singlets is much simpler than the corresponding one in
which Higgs doublets are used and b.) since we now break the flavor symmetry at a high energy
scale and not at the electroweak scale, we can minimize and analyze the gauge singlet potential in
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the SUSY limit, i.e. F - and D-terms have to vanish. As the fields are gauge singlets, they do not
possess D-terms, so we only have to consider their F -terms.
The actual construction of the flavon potential responsible for the VEV alignment is however
more complicated. It turns out that according to the studies presented in [14, 15] the simplest
implementation needs two further ingredients

• the introduction of so-called driving fields, denoted with an upper index 0, which are gauge
singlets transforming non-trivially under the flavor symmetry and the additional Z3 symmetry.
Their F -terms are the determining equations for the VEVs of the flavons ϕS , ϕT , ξ, ξ̃, η and
ξ′′. The driving fields themselves, however, do not acquire a VEV. All driving fields are
collected in Table 4.3.

Field ϕ0
T ϕ0

S ξ0 η0 ξ′ 0

T ′ 3 3 1 2′′ 1′

Z3 1 ω ω 1 1

Table 4.3: The transformation rules of the driving fields under the symmetries T ′

and Z3.

• an additional U(1) symmetry, called U(1)R, which is an extension of the well-known R parity.
All fermions have U(1)R charge +1, the scalar fields which have a non-vanishing VEV are not
charged under U(1)R, whereas the driving fields have charge +2. All terms in wl and wq then
have a U(1)R charge of +2. Demanding this also for the terms contained in wd enforces them
to be linear in the driving fields. Additionally, U(1)R does not allow a direct coupling between
SM fermions and driving fields. The U(1)R charges of all types of fields are summarized in
Table 4.4.

Fermions Scalars with VEV6= 0 Scalars without VEV
Field l, ec, µc, τ c, Flavons, Higgs doublets, FN field Driving fields

Q1,2,3, uc, cc, tc, dc, sc, bc hu, hd, ϕT , ϕS , ξ, ξ̃, η, ξ′′, θ ϕ0
T , ϕ0

S , ξ0, η0, ξ′ 0

U(1)R +1 0 +2

Table 4.4: U(1)R charges of the fields of the model.

4.5.1 Leading Order Results

The renormalizable part of the superpotential wd containing flavon and driving fields is of the form

wd = M (ϕ0
T ϕT ) + g (ϕ0

T ϕT ϕT ) + g7 ξ
′ ′ (ϕ0

T ϕT )′ + g8 (ϕ0
T η η) (4.55)

+ g1 (ϕ0
S ϕS ϕS) + g2 ξ̃ (ϕ0

S ϕS)
+ g3 ξ

0 (ϕS ϕS) + g4 ξ
0 ξ2 + g5 ξ

0 ξ ξ̃ + g6 ξ
0 ξ̃2

+ Mη (η η0) + g9 (ϕT η η0)
+ Mξ ξ

′ ′ ξ′ 0 + g10 ξ
′ 0 (ϕT ϕT )′ ′ + h.o.
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As one can see, the T ′ and Z3 assignment of the driving fields allows the existence of three mass
terms with masses M , Mη and Mξ, while the couplings g(i) are dimensionless. The ordering of the
terms in Eq.(4.55) is such that the terms in the first line involve the driving fields ϕ0

T , the ones in
the second line only the fields ϕ0

S , etc.. The notation of the couplings is according to the one chosen
in the A4 model [15] whose extension this T ′ model is. As usual +h.o. indicates the existence of
higher-dimensional operators which will be discussed below. Since the fields ξ and ξ̃ transform in
exactly the same way under T ′ and Z3, we can redefine them such that only ξ̃ couples to ϕ0

S ϕS
(see coupling g2). As we will see below, the inclusion of the two fields ξ and ξ̃ is necessary, because
the field coupled to ϕ0

S ϕS has to have a vanishing VEV [14, 15, 18]. Note that neither the field θ
nor the MSSM Higgs fields hu and hd appear in the superpotential wd, since all flavon and driving
fields are uncharged under U(1)FN and transform non-trivially under T ′ or Z3. The explicit form
of the T ′ contractions is given by

wd = M (ϕ0
T 1 ϕT 1 + ϕ0

T 2 ϕT 3 + ϕ0
T 3 ϕT 2) (4.56)

+
2
3
g (ϕ0

T 1 (ϕ2
T 1 − ϕT 2 ϕT 3) + ϕ0

T 2 (ϕ2
T 2 − ϕT 1 ϕT 3) + ϕ0

T 3 (ϕ2
T 3 − ϕT 1 ϕT 2))

+ g7 ξ
′ ′ (ϕ0

T 1 ϕT 2 + ϕ0
T 2 ϕT 1 + ϕ0

T 3 ϕT 3)
+ g8 (i ϕ0

T 1 η
2
1 + (1− i)ϕ0

T 2 η1 η2 + ϕ0
T 3 η

2
2)

+
2
3
g1 (ϕ0

S 1 (ϕ2
S 1 − ϕS 2 ϕS 3) + ϕ0

S 2 (ϕ2
S 2 − ϕS 1 ϕS 3) + ϕ0

S 3 (ϕ2
S 3 − ϕS 1 ϕS 2))

+ g2 ξ̃ (ϕ0
S 1 ϕS 1 + ϕ0

S 2 ϕS 3 + ϕ0
S 3 ϕS 2)

+ g3 ξ
0 (ϕ2

S 1 + 2ϕS 2 ϕS 3)
+ g4 ξ

0 ξ2 + g5 ξ
0 ξ ξ̃ + g6 ξ

0 ξ̃2

+ Mη (η1 η
0
2 − η2 η

0
1)

+ g9 (η0
1 ((1− i) η1 ϕT 3 − η2 ϕT 1)− η0

2 ((1 + i) η2 ϕT 2 + η1 ϕT 1))
+ Mξ ξ

′ ′ ξ′ 0

+ g10 ξ
′ 0 (ϕ2

T 2 + 2ϕT 1 ϕT 3)

Calculating the F -terms for the driving fields leads to two sets of equations

∂ w

∂ ϕ0
S 1

= g2 ξ̃ ϕS1 +
2 g1
3

(ϕS2
1 − ϕS2 ϕS3) = 0 (4.57a)

∂ w

∂ ϕ0
S 2

= g2 ξ̃ ϕS3 +
2 g1
3

(ϕS2
2 − ϕS1 ϕS3) = 0 (4.57b)

∂ w

∂ ϕ0
S 3

= g2 ξ̃ ϕS2 +
2 g1
3

(ϕS2
3 − ϕS1 ϕS2) = 0 (4.57c)

∂ w

∂ ξ0
= g4 ξ

2 + g5 ξ ξ̃ + g6 ξ̃
2 + g3 (ϕS2

1 + 2ϕS2 ϕS3) = 0 (4.57d)
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and

∂ w

∂ ϕ0
T 1

= M ϕT 1 +
2 g
3

(ϕ2
T 1 − ϕT 2 ϕT 3) + g7 ξ

′ ′ ϕT 2 + i g8 η
2
1 = 0 (4.58a)

∂ w

∂ ϕ0
T 2

= M ϕT 3 +
2 g
3

(ϕ2
T 2 − ϕT 1 ϕT 3) + g7 ξ

′ ′ ϕT 1 + (1− i) g8 η1 η2 = 0 (4.58b)

∂ w

∂ ϕ0
T 3

= M ϕT 2 +
2 g
3

(ϕ2
T 3 − ϕT 1 ϕT 2) + g7 ξ

′ ′ ϕT 3 + g8 η
2
2 = 0 (4.58c)

∂ w

∂ η0
1

= −Mη η2 + g9 ((1− i) η1 ϕT 3 − η2 ϕT 1) = 0 (4.58d)

∂ w

∂ η0
2

= Mη η1 − g9 ((1 + i) η2 ϕT 2 + η1 ϕT 1) = 0 (4.58e)

∂ w

∂ ξ′ 0
= Mξ ξ

′ ′ + g10 (ϕ2
T 2 + 2ϕT 1 ϕT 3) = 0 (4.58f)

Since the superpotential wd is only linear in the driving fields, these do not appear in their F -
terms. The first set of equations Eq.(4.57) only contains the fields ϕS i, ξ and ξ̃. The minimization
conditions can be solved analytically and allow only a finite set of distinct solutions. In order to
select the correct alignment, i.e. the one in which a Z4 subgroup of T ′ is preserved, we have to
demand that the VEV of ξ̃ vanishes. The equivalent configurations are then 11

〈ϕS 1〉 = 〈ϕS 2〉 = 〈ϕS 3〉 = vS , 〈ξ〉 = u and v2
S = − g4

3 g3
u2 (4.59a)

〈ϕS 1〉 = ω vS , 〈ϕS 2〉 = ω2 vS , 〈ϕS 3〉 = vS , 〈ξ〉 = u and v2
S = − g4

3 g3
ω u2 (4.59b)

〈ϕS 1〉 = ω2 vS , 〈ϕS 2〉 = ω vS , 〈ϕS 3〉 = vS , 〈ξ〉 = u and v2
S = − g4

3 g3
ω2 u2 (4.59c)

Thereby, 〈ξ〉 = u remains undetermined. They break to different directions of Z4 groups. Without
loss of generality, we can confine ourselves to the first configuration which has been used in the
study of the fermion mass matrices [15]. If 〈ξ̃〉 6= 0 was allowed, for example, also the solution

〈ϕS 1〉 = −3 g2
2 g1

〈ξ̃〉 , 〈ϕS 2〉 = 〈ϕS 3〉 = 0 (4.60)

with 〈ξ〉 6= 0, being calculable with the help of Eq.(4.57d), would arise from Eq.(4.57). This VEV
configuration does not preserve a Z4, but rather a Z6 subgroup generated by the elements T and R,
for example. The neutrino mass matrix derived with this configuration, however, does not lead to
Eq.(4.27). A way to achieve 〈ξ̃〉 = 0 is to demand that the soft SUSY breaking mass m2

ξ̃
is larger

than zero. As a last feature of Eq.(4.57), we have to mention that these lead to flat directions in
the supersymmetric limit. They can be removed by including soft SUSY breaking terms into the
potential and possibly also by the next-to-leading order corrections to the flavon superpotential.
The second set of equations Eq.(4.58) determines the VEV configuration of the flavons, which are
responsible for the charged fermion masses at leading order. Again, these equations can be solved
analytically and have only a finite number of solutions. Apart from the trivial case, in which all
VEVs vanish, the VEV configurations can be divided into three classes, i.e. the first class preserves
a Z4 subgroup, the second one leaves a Z6 group invariant, while the third contains all configurations

11We omit the trivial solution, in which all VEVs vanish.
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in which the residual group is a Z3. Examples for the three classes are

〈ξ′′〉 = −M
g7

, 〈η〉 = (0, 0) , 〈ϕT 〉 = (vT , vT , vT ) with v2
T =

MMξ

3 g7 g10
(4.61a)

〈ξ′′〉 = 0 , 〈η〉 = (0, 0) , 〈ϕT 〉 = (vT , 0, 0) with vT = −3M
2 g

(4.61b)

〈ξ′′〉 = 0 , 〈η〉 = ±(v1, 0) , 〈ϕT 〉 = (vT , 0, 0) (4.61c)

with v1 =
1

g9
√

3 g8

√
i (2M2

η g + 3MMη g9) and vT =
Mη

g9

Note the characteristic features of the three different classes: VEV configurations belonging to the
first class do not allow a VEV for the flavons η1,2 which transform as doublet under T ′, while con-
figurations belonging to the second class additionally require that the VEV of ξ′′ vanishes. Finally,
the third class allows a non-vanishing VEV for the flavon η, but no VEV for the field ξ′′. All these
vacua are degenerate in our model in the limit of unbroken SUSY. However, by choosing the signs
of the soft masses of the flavons properly we can single out the third class of solutions, i.e. we have
to demand that m2

ξ′′ > 0 and m2
η < 0.

Before we discuss the next-to-leading order corrections to the superpotential wd, we also show the
F -terms of the flavons, since they determine the VEVs of the driving fields

∂ wd

∂ ϕT 1
= M ϕ0

T 1 +
2 g
3

(2ϕ0
T 1 ϕT 1 − ϕ0

T 2 ϕT 3 − ϕ0
T 3 ϕT 2) + g7 ϕ

0
T 2 ξ

′′ (4.62a)

− g9 (η0
1 η2 + η0

2 η1) + 2 g10 ξ′
0
ϕT 3 = 0

∂ wd

∂ ϕT 2
= M ϕ0

T 3 +
2 g
3

(2ϕ0
T 2 ϕT 2 − ϕ0

T 1 ϕT 3 − ϕ0
T 3 ϕT 1) + g7 ϕ

0
T 1 ξ

′′ (4.62b)

− (1 + i) g9 η0
2 η2 + 2 g10 ξ′

0
ϕT 2 = 0

∂ wd

∂ ϕT 3
= M ϕ0

T 2 +
2 g
3

(2ϕ0
T 3 ϕT 3 − ϕ0

T 1 ϕT 2 − ϕ0
T 2 ϕT 1) + g7 ϕ

0
T 3 ξ

′′ (4.62c)

+ (1− i) g9 η0
1 η1 + 2 g10 ξ′

0
ϕT 1 = 0

∂ wd

∂ η1
= Mη η

0
2 + g8 (2 i ϕ0

T 1 η1 + (1− i)ϕ0
T 2 η2) + g9 ((1− i) η0

1 ϕT 3 − η0
2 ϕT 1) = 0 (4.63a)

∂ wd

∂ η2
= −Mη η

0
1 + g8 ((1− i)ϕ0

T 2 η1 + 2ϕ0
T 3 η2)− g9 (η0

1 ϕT 1 + (1 + i) η0
2 ϕT 2) = 0 (4.63b)

∂ wd

∂ ξ′′
= Mξ ξ

′0 + g7 (ϕ0
T 2 ϕT 1 + ϕ0

T 1 ϕT 2 + ϕ0
T 3 ϕT 3) = 0 (4.63c)

∂ wd

∂ ϕS 1
=

2 g1
3

(2ϕ0
S 1 ϕS 1 − ϕ0

S 2 ϕS 3 − ϕ0
S 3 ϕS 2) + g2 ϕ

0
S 1 ξ̃ + 2 g3 ξ0 ϕS 1 = 0 (4.64a)

∂ wd

∂ ϕS 2
=

2 g1
3

(2ϕ0
S 2 ϕS 2 − ϕ0

S 1 ϕS 3 − ϕ0
S 3 ϕS 1) + g2 ϕ

0
S 3 ξ̃ + 2 g3 ξ0 ϕS 3 = 0 (4.64b)

∂ wd

∂ ϕS 3
=

2 g1
3

(2ϕ0
S 3 ϕS 3 − ϕ0

S 1 ϕS 2 − ϕ0
S 2 ϕS 1) + g2 ϕ

0
S 2 ξ̃ + 2 g3 ξ0 ϕS 2 = 0 (4.64c)
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∂ wd

∂ ξ
= 2 g4 ξ0 ξ + g5 ξ

0 ξ̃ = 0 (4.65a)

∂ wd

∂ ξ̃
= g2 (ϕ0

S 1 ϕS 1 + ϕ0
S 3 ϕS 2 + ϕ0

S 2 ϕS 3) + g5 ξ
0 ξ + 2 g6 ξ0 ξ̃ = 0 (4.65b)

Other parts of the F -terms involving squarks and sleptons do not contribute to the minimization
of the potential, since their VEVs have to vanish in order to preserve SU(3)C and U(1)em. As one
can see, every term contains one driving field so that all equations are fulfilled, if all VEVs of these
fields vanish and no additional constraints are imposed on the VEVs of the flavons ϕS , ξ, ξ̃, ϕT , η
and ξ′′.

4.5.2 Next-to-Leading Order Results

The next-to-leading order corrections to wd consist of all terms which are invariant under all
symmetries of the model and made up of one driving field and three flavons. These terms are all
non-renormalizable and suppressed by the cutoff scale Λ. They perturb the vacuum alignment of
the flavons, i.e.

〈ϕS〉 = (vS , vS , vS) , 〈ϕT 〉 = (vT , 0, 0) , 〈η〉 = (v1, 0) , 〈ξ〉 = u , 〈ξ̃〉 = 0 , 〈ξ′′〉 = 0 , (4.66)

are shifted into

〈ϕS〉 = (vS + δvS 1, vS + δvS 2, vS + δvS 3) , 〈ϕT 〉 = (vT + δvT 1, δvT 2, δvT 3) , (4.67)
〈η〉 = (v1 + δv1, δv2) , 〈ξ〉 = u , 〈ξ̃〉 = δũ , 〈ξ′′〉 = δu′′ .

Thereby, the corrections δvT i, δvS i, δvi, δũ and δu′′ are independent from each other. Note that
there might also be a correction to the VEV u, but we do not have to indicate this explicitly by
adding a term δu, since u is undetermined at leading order. As we have seen above, the symmetry
Z3 is able to separate the two sets of flavons {ϕT , η , ξ′′} and

{
ϕS , ξ , ξ̃

}
at the leading order.

However, a complete separation at next-to-leading order is not possible. Therefore, we expect
several terms mixing the fields {ϕT , η , ξ′′} and

{
ϕS , ξ , ξ̃

}
. We find that there are 43 independent

terms in total contributing at this order

∆wd 1 =
1
Λ

(
13∑
i=3

ti I
T
i +

12∑
i=1

si I
S
i +

3∑
i=1

xi I
X
i

)
(4.68a)

∆wd 2 =
1
Λ

(
18∑
i=14

ti I
T
i +

15∑
i=13

si I
S
i + x4 I

X
4 +

4∑
i=1

ni I
N
i +

4∑
i=1

yi I
Y
i

)
(4.68b)

Their explicit form can be found in Appendix C. The contributions are split up into two classes,
∆wd 1 and ∆wd 2. ∆wd 1 only contains corrections which are already present in the original A4

model [15], whereas ∆wd 2 consists of all terms which include at least one driving or flavon field
which is only present in the T ′ model. In this way a comparison of the results here and those
found in case of the A4 model [15] is more transparent. Before presenting the results, we change
the notation of the parameters of wd a bit,

g3 ≡ 3 g̃2
3 , g4 ≡ −g̃2

4 and g8 ≡ i g̃2
8 , (4.69)

such that the VEVs read

vS =
g̃4

3 g̃3
u , vT =

Mη

g9
and v1 =

1√
3 g̃8 g9

√
2 gM2

η + 3 g9MMη (4.70)
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where we have chosen the “+” sign for the VEV v1. In order to calculate the corrections to the
VEVs we work along the lines of [15], i.e. we only take into account terms which are at most linear
in the shifts of the VEVs and no terms of the order O( δVEV

Λ ), where Λ is the cutoff scale. If we plug
in the VEVs vT and v1, the linearized equations for the shifts of the VEVs take the form

g̃4 u
3

3 g̃3 Λ

(
t11 +

g̃2
4

3 g̃2
3

(t6 + t7 + t8)
)

+
t3
Λ
v3

T + (1− i)
t16
Λ
v2
1 vT − 2 vT

(
2 g vT

3
+M

)
δv1
v1

(4.71a)

+
(
M +

4 g vT

3

)
δvT 1 = 0

g̃4 u
3

3 g̃3 Λ

(
t11 +

g̃2
4

3 g̃2
3

(t6 + t7 + t8)
)

+
(
M − 2 g vT

3

)
δvT 2 = 0 (4.71b)

g̃4 u
3

3 g̃3 Λ

(
t11 +

g̃2
4

3 g̃2
3

(t6 + t7 + t8)
)

+ g7 vT δu
′ ′ + (1 + i) vT

(
2 g vT

3
+M

)
δv2
v1

(4.71c)

+
(
M − 2 g vT

3

)
δvT 3 = 0(

9 g̃3 s10
g̃4

+
3 g̃4 s3
g̃3

+ 2 s6

)
vT u

Λ
+ 3 g2 δũ+ 2 g1 (2 δvS 1 − δvS 2 − δvS 3) = 0 (4.71d)(

3 g̃4 s4
g̃3

− s6 −
3
2
s8

)
vT u

Λ
+ 3 g2δũ+ 2 g1 (2 δvS 2 − δvS 1 − δvS 3) = 0 (4.71e)(

3 g̃4 s5
g̃3

− s6 +
3
2
s8

)
vT u

Λ
+ 3 g2 δũ+ 2 g1 (2 δvS 3 − δvS 1 − δvS 2) = 0 (4.71f)

x2 vT u

3 g̃3 Λ
+
g5
g̃4
δũ+ 2 g̃3 (δvS 1 + δvS 2 + δvS 3) = 0 (4.71g)

vT δv2 −
1
2
(1− i) v1 δvT 3 = 0 (4.71h)

− 1
2 Λ

(1 + i)n4 v
2
1 +

n1

Λ
v2

T + g9 δvT 1 = 0 (4.71i)

g̃2
4 y3 u

3

3 g̃2
3 Λ

+Mξ δu
′ ′ + 2 g10 vT δvT 3 = 0 (4.71j)

As one can see, Eq.(4.71d),Eq.(4.71e), Eq.(4.71f) and Eq.(4.71g) do not receive a contribution from
the terms of ∆wd 2, i.e. the shifts δvS i and δu are the same as in the A4 model. Eq.(4.71a),
Eq.(4.71b) and Eq.(4.71c) are also correlated to the analogous equations in the A4 model. In
order to see this, one has to set the couplings appearing in ∆wd 2 to zero and take into account
that vT = −3M

2 g in the A4 model so that −2 vT (2
3 g vT + M) δv1v1 vanishes and expressions like

(M + 4 g vT
3 ) δvT 1 are reduced to −M δvT 1. Taking this into account Eq.(4.71a), Eq.(4.71b) and

Eq.(4.71c) fully coincide with the equations found in [15]. The last three equations are not present
in case of A4 and they simply vanish, if the couplings and the VEVs of the fields only present in
case of T ′ and not A4 are set to zero. The generic order of all shifts is the square of a VEV of
a flavon field over the cutoff scale Λ which is λ4 Λ, if the ratio VEV over Λ is around λ2. Hence,
the relative size of a shift compared to a non-vanishing VEV is λ2. Thereby, it is assumed that all
masses, M , Mξ and Mη, are of the order of the VEVs. This is reasonable, since they are (at least
partly) correlated to the VEVs, as one can read off Eq.(4.70). However, the analysis of the quark
masses showed that we need to fine-tune the shift of the VEV of ϕT 2, i.e. δvT 2, so that it is of
order λ6 Λ instead of order λ4 Λ, while all other shifts of the VEVs shall still be of the generic order
λ4 Λ. First of all, notice that the fine-tuning of δvT 2, is just a mild version of the extreme case that
the four couplings t6,7,8,11 vanish. Then Eq.(4.71b) leads to δvT 2 = 0 12. Eq.(4.71i) shows that

12The case, in which the bracket in front of δvT 2 vanishes, is highly tuned, since then several uncorrelated param-
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δvT 1 is of the order n1O
(
v2T
Λ

)
+ n4O

(
v21
Λ

)
and without any accidental cancellations δvT 1 will be

of order v2T
Λ ∼ λ4 Λ. Plugging Eq.(4.71i) into Eq.(4.71a) one arrives at terms of the order

t3O
(
v3
T

Λ

)
+ t16O

(
v2
1 vT
Λ

)
+O (vT ) δv1 +O

(
v3
T

Λ

)
+O

(
v2
1 vT
Λ

)
= 0 (4.72)

so that δv1 is naturally of the orderO
(
v2T
Λ

)
. From Eq.(4.71h) we can read off that δv2 is proportional

to δvT 3. Furthermore, Eq.(4.71j) tells us that δu′′ is of the order y3O
(

u3

Mξ Λ

)
+ O

(
vT
Mξ

)
δvT 3 so

that its natural order is O
(
v2T
Λ

)
in case that the order of δvT 3 is O

(
v2T
Λ

)
which we will show in a

moment. Plugging Eq.(4.71h) and Eq.(4.71j) into Eq.(4.71c) we can determine the natural size of
the VEV δvT 3 by

y3O
(
u3 vT
Mξ Λ

)
+O (M) δvT 3 +O

(
v2
T

Mξ

)
δvT 3 = 0 (4.73)

to be δvT 3 ∼ O
(
v2T
Λ

)
, if none of the couplings is fine-tuned such that some of the terms cancel.

Additionally, Eq.(4.71d), Eq.(4.71e), Eq.(4.71f) and Eq.(4.71g) are not influenced by the fine-tuning
of δvT 2, since they neither contain δvT 2 nor the parameters t6,7,8,11.

4.6 Conclusions and Comments

In this chapter we augmented the MSSM by the flavor symmetry T ′ . This model has several salient
features

• It predicts TBM in the lepton sector

sin2(θTBM12 ) =
1
3
, sin2(θTBM23 ) =

1
2
, sin2(θTBM13 ) = 0 . (4.74)

• It also predicts two non-trivial relations among |Vus|, |Vtd/Vts| and md/ms√
md

ms
= |Vus|+O(λ2) and

√
md

ms
=
∣∣∣∣VtdVts

∣∣∣∣+O(λ2) (due to |Vub| ∼ O(λ4) ) . (4.75)

• It connects the large lepton and small quark mixings with the breaking of the flavor symmetry,
i.e. lepton mixings turn out to be large, since the subgroups which are preserved in the
neutrino and charged lepton sector are different, while the flavor symmetry T ′ is broken to
the same subgroup in the up and down quark sector. The necessary separation of the neutral
and charged fermion sector can be maintained by a Z3 symmetry.

• The problem of the vacuum alignment is (almost) solved (up to a small number of degen-
eracies) by a suitable construction of the flavon potential. This includes the introduction of
additional gauge singlet fields as well as of an additional U(1) symmetry, called U(1)R.

• Compared to the two models presented in Chapter 3 it does not suffer from the problem that
additional Higgs doublets can cause large FCNCs, since the flavor symmetry is only broken
by gauge singlets.

eters of wd have to conspire.
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We worked out the fermion masses and mixings at leading as well as next-to-leading order and
showed that TBM -as a result of the leading order- is only slightly corrected by next-to-leading
order effects, while features not maintained by the leading order, i.e. the masses of the quarks
of the first generation and the Cabibbo angle, can be generated at next-to-leading order. Up to
a minor fine-tuning of two parameters this model is free from any special parameter choices and
can naturally accommodate all data. Thereby, the hierarchy among the fermion masses is not
completely reproduced by the discrete non-abelian flavor symmetry, but rather by the Froggatt-
Nielsen mechanism which involves an additional U(1) group, denoted by U(1)FN . One may argue
that these additional symmetries make the model complicated, however one has to keep in mind
that they are not simply chosen in order to suppress a certain coupling compared to another, but
act in a well-defined way, i.e. T ′ leads to the mixing structure, Z3 achieves the separation of the
neutral and charged fermion sector, U(1)FN allows all fermion mass hierarchies to be realized, and
U(1)R is employed for the vacuum alignment.
Since this model is successful in describing quarks and leptons, one may search for further possible
signatures. These include the study of LFVs as well as FCNCs which do not arise in this model
via the mediation of additional Higgs fields, but through the superpartners of the SM fermions. It
is very interesting to investigate how powerful the flavor symmetry is in suppressing these effects
which turn out to be very large in generic MSSM models and which are far above the experimental
bounds, if no special assumptions, such as mSUGRA initial conditions, are made. Since the gauge
singlet potential contains flat directions in the supersymmetric limit, one can also pose the question
whether one combination of the gauge singlets could play the role of an inflaton. To find additional
signatures is also relevant in order to differentiate among the existing models which all share the
feature that they can (more or less) explain or accommodate the fermion masses and their mixings.

However, the model is not perfect. In the following, we mention some of the unsolved issues. The
model predicts TBM due to the fact that different subgroups in the neutrino and the charged
lepton sector are preserved. But, we additionally need to choose the transformation properties of
the gauge singlets properly [15, 24], which couple to neutrinos at leading order. To be precise, we
have to exclude the existence of gauge singlets transforming as non-trivial singlets under T ′. If
the model also contained gauge singlets χ′ and χ′′ transforming as (1′, ω, 0) and (1′′, ω, 0) under
(T ′, Z3, U(1)FN ), there would exist two further contributions to the light neutrino mass matrix
originating from the terms z′

Λ2 χ
′ (l2 l2 + l1 l3 + l3 l1)hu hu and z′′

Λ2 χ
′′ (l3 l3 + l1 l2 + l2 l1)hu hu so that

M̃ν would read

M̃ν =


a+ 2

3 b −1
3 b+ z′′ 〈χ

′′〉
Λ −1

3 b+ z′ 〈χ
′〉

Λ

−1
3 b+ z′′ 〈χ

′′〉
Λ

2
3 b+ z′ 〈χ

′〉
Λ a− 1

3 b

−1
3 b+ z′ 〈χ

′〉
Λ a− 1

3 b
2
3 b+ z′′ 〈χ

′′〉
Λ

 v2
u

Λ
. (4.76)

M̃ν does not lead to TBM in general, but also this matrix preserves the Z4 group generated by
T S T 2, since T S T 2 = 1 for the representations 1′ and 1′′. Therefore, the requirement to preserve
this Z4 group is not sufficient to explain TBM. Since the lepton sector of the T ′ model is an
exact copy of the one of the A4 model, also the A4 model suffers from this disadvantage. As our
model is an effective theory, we might not be able to reduce the theoretical uncertainties in the
predictions, shown above, without constructing a high energy completion of the model in which all
non-renormalizable couplings arise at a renormalizable level. U(1)R forbids a µ term in this model
and couplings of hu and hd to the driving fields do not lead to an effective µ term, since the VEVs
of these fields vanish. However, electroweak symmetry breaking may be induced radiatively. Since
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the fermions transform in different ways under T ′, the model can neither be embedded into a GUT,
like SU(5) or SO(10), nor can the flavor symmetry T ′ be embedded into a continuous group, like
SU(2)f or SU(3)f without additional fields which complete the multiplets. Especially, the lepton
assignment necessary to arrive at TBM can hardly be reconciled with the embedding into SU(2)f
or SU(3)f . This is quite different compared to the two models presented in Chapter 3 in which the
embedding into a GUT has been one of the selection criteria for the fermion assignments.

From the viewpoint of flavor model building the T ′ model (and the A4 model [15,20]) teach(es) us
two important lessons

• the actual prediction of a certain mixing angle is intimately related to the preservation of
certain subgroups of a flavor symmetry,

• the vacuum alignment plays a crucial role for the preservation of the subgroups and can be
implemented, as shown here, with several flavored gauge singlets and a U(1)R symmetry.

The first aspect triggers three important questions which are tackled in the next chapter

• Are the group T ′ and its single-valued group A4 the only symmetries which allow for such an
interpretation of the fermion mixings ?

• Can we systematically study discrete non-abelian groups as flavor symmetries, if we adopt
the concept of preserved subgroups ?

• Can we also predict other mixing angles, e.g. the Cabibbo angle θC in the quark sector ?
Can we explain that in the lepton sector θ23 is maximal and θ13 = 0 without constraining
θ12 ? 13

13This is exactly the result of µτ symmetric neutrino mass matrices in the basis in which the charged leptons are
diagonal.
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Chapter 5

Studies of Dihedral Flavor
Symmetries

In this chapter we systematically study the fermion mass matrix structures which arise from a class
of discrete groups with the requirement that the flavor symmetry is not broken in an arbitrary
way, but (different) subgroups have to be preserved in all cases 1. This requirement is inspired
by the success of the T ′ model which has been presented in the preceding chapter. The class of
discrete groups, which we are going to investigate, are the dihedral groups Dn and their double-
valued counterparts D′

n. These groups exist for all n ∈ N and therefore constitute an infinite
series. They share several properties, e.g. they only contain one- and two-dimensional irreducible
representations. Dn is the symmetry group of a regular planar n-gon and well-known in solid
state as well as molecular physics. In order to perform such a study we first need to discuss the
group theory of Dn and D′

n groups including general formulae for Kronecker products and Clebsch
Gordan coefficients as well as the investigation of subgroup structures. In a second step the Dirac
mass matrix structures can be calculated and classified according to five basic forms. Similarly, this
can be done for the case of Majorana fermions. In the following, we introduce the mathematics of
dihedral groups in Section 5.1 and then present in Section 5.2 the general study of the mass matrix
structures. Thereby, we will not repeat the detailed discussion laid out in the recently published
paper [25], but will rather give a summary of the results found there and elucidate the methods
which have been employed. Complementarily to [25], we will investigate three examples in detail
in Section 5.3 and Section 5.4 which have been mentioned very briefly in [25]. The first one is the
explanation of the Cabibbo angle θC with the dihedral group D7, which has also been published
only recently [26] 2. In the second and third example we analyze existing models [94,116] which use
the flavor symmetry D4 and D3, respectively, to predict maximal atmospheric mixing and vanishing
θ13 in the lepton sector. Finally, we summarize and give a short outlook in Section 5.5.

5.1 Group Theory of Dihedral Symmetries

5.1.1 Group Theory of Dn

In the series of dihedral groups Dn all groups with n equal or larger three are non-abelian. The
abelian groups D1 and D2 are isomorphic to the groups Z2 and the Klein group Z2 × Z2, respec-

1The preservation of a certain subgroup is equivalent to demanding that the mass matrix stays invariant, if a
certain transformation is applied. This has also been discussed in [114].

2The author of [115] made a similar comment on the possible origin of the Cabibbo angle.

5-1
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tively. The smallest non-abelian Dn group is at the same time the smallest non-abelian group
among all groups. The order of Dn is 2n. It only contains real one- and two-dimensional repre-
sentations. For n even, four representations are one-dimensional, 1i with i = 1, .., 4, and n

2 − 1 are
two-dimensional, 2j with j = 1, ..., n2 −1. For n odd, each group Dn possesses two one-dimensional,
11 and 12, and n−1

2 two-dimensional representations 2j with j = 1, ..., n−1
2 . For arbitrary n, the

group Dn can be described by two generators, A and B, and their relations

An = 1 , B2 = 1 , A B A = B . (5.1)

A convenient choice [86] of the generators A and B for the two-dimensional representations 2j is

A =

(
e(

2πi
n ) j 0
0 e−( 2πi

n ) j

)
, B =

(
0 1
1 0

)
(5.2)

with j = 1, . . . , n2 − 1 for n even and j = 1, . . . , n−1
2 for n odd. The generators A and B for the one-

dimensional representations can be found in the character tables, which are displayed in a general
form in Appendix B.4.1. Since we choose complex generators for real representations, the complex
conjugates of A and B are linked to A and B by a similarity transformation U

U =
(

0 1
1 0

)
. (5.3)

As a consequence, for all
(
a1

a2

)
∼ 2j the combination

(
a?2
a?1

)
transforms as 2j.

In Section 3.3.1 and Section 5.3.1 the group theory of the dihedral symmetries D5 and D7 is
explicitly shown. All statements given there are only special cases of the statements made here for
dihedral groups Dn with arbitrary index n.
Kronecker products and Clebsch Gordan coefficients can be found in Appendix B.4.2 and Appendix
B.4.3.

5.1.2 Group Theory of D′
n

D′
n are the double-valued counterparts ofDn. Apart fromD′

1 which is isomorphic to the cyclic group
Z4, all other groups of the series D′

n are non-abelian. The group D′
2 is also called quaternion group

and therefore abbreviated by Q. According to this, the other groups D′
n are sometimes denoted by

Q2n. Since they are double-valued, the order of D′
n is 4n. Similar to the single-valued groups Dn,

they only contain one- and two-dimensional irreducible representations. For all n, D′
n has four one-

and n − 1 two-dimensional representations. For n even, the one-dimensional representations and
the representations 2j with j even are real, whereas 2j with j odd are pseudo-real. In case of n odd,
the one-dimensional representations 11 and 12 are real and 13 and 14 are complex (conjugated).
Similar to n even, the two-dimensional representations with an even index are real and the ones,
whose index is odd, are pseudo-real. Therefore, adding the pseudo-real and complex representations
to the groups Dn leads to the groups D′

n. Accordingly, the real representations of D′
n are sometimes

called even or single-valued, whereas the pseudo-real and complex representations are denoted as
odd or double-valued. Note in this context that only a pseudo-real two-dimensional representation
can be faithful in the group D′

n
3. The generators A and B of D′

n fulfill relations being very similar
to the ones for the generators of Dn

An = R , B2 = R ,R2 = 1 , A B A = B , (5.4)
3In case of the abelian group D′

1 the two complex representations, 13 and 14, are faithful, whereas the real ones,
11 and 12, are not.
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with R being 1 in case of an even representation and −1 for an odd one. For the two-dimensional
representations A and B can be chosen as

A =

(
e(

πi
n ) j 0
0 e−(πi

n ) j

)
, B =

(
0 1
1 0

)
for j even (5.5)

and

A =

(
e(

πi
n ) j 0
0 e−(πi

n ) j

)
, B =

(
0 i
i 0

)
for j odd . (5.6)

As usual, the generators for the one-dimensional representations are displayed in the character
tables which can be found in Appendix B.4.1. Note that the generator B has an additional factor
i for odd representations compared to even ones. For the two-dimensional representations which
are either real or pseudo-real, but not complex, we can again find a similarity transformation U ,
connecting A?, B? with A, B. For a representation 2j with j even, it is the same as in the case of
the groups Dn, i.e.

U =
(

0 1
1 0

)
for j even , (5.7)

while we have to use

U =
(

0 −1
1 0

)
for j odd . (5.8)

Hence, for
(
a1

a2

)
∼ 2j the combination

(
a?2
a?1

)
transforms as 2j, if j is even, and

(
−a?2
a?1

)
∼ 2j,

if j is odd.
Kronecker products and Clebsch Gordan coefficients can be found in Appendix B.4.2 and Appendix
B.4.4.

5.2 General Results

We present the general results of the systematic study of Dirac mass matrix structures which can
arise from a dihedral flavor symmetry, if one of its subgroups remains preserved by the VEVs of
the scalar fields. We impose the following constraints in our study

1. At least two of the left-handed or left-handed conjugate fermions have to form an irreducible
two-dimensional representation of the dihedral group. Only these assignments are able to
reveal the non-abelian nature of the group. Cases in which all fermions are assigned to one-
dimensional representations can always be reproduced with an abelian symmetry, like Z2.
Essentially, two different assignment structures have to be taken into account

a.) The left-handed fermions transform as 1i + 2j and the left-handed conjugate fermions
as 1l +2k, where the one- and two-dimensional representations can be inequivalent, i.e.
i 6= l and j 6= k is allowed. We call this assignment the two doublet structure.

b.) The left-handed fermions transform in the same way as in a.), i.e. L ∼ 1k + 2j, but the
left-handed conjugate fields do not unify under the flavor symmetry and are assigned to
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three one-dimensional representations which may or may not be equivalent, 1i1+1i2+1i3
4. In the following this is called the three singlet structure.

The analogous assignment in which the left-handed fields do not unify, but the left-handed
conjugate ones are assigned to the representation structure 1+2 is implicitly included in this
study, since the exchange of the transformation properties of left-handed and left-handed con-
jugate fields leads to a transposition of the resulting mass matrix. This transposition, however,
does not change the group theoretical part of the analysis, but can have phenomenological
implications on the fermion mixing matrices. Similarly, permutations of the three generations
do not change anything in the group theoretical part of the discussion.

2. The determinant of the mass matrix has to be non-vanishing. This is required, since the
number of distinct matrix structures is efficiently reduced by this constraint so that a complete
study becomes possible. Furthermore, this assumption is accordance with phenomenology, as
we know that the masses of all charged fermions are non-vanishing. In case of neutrinos this
is no longer true, because the data still allow one of the (light) neutrinos to be massless.

3. All Higgs fields which are allowed to have a non-vanishing VEV, since this VEV (structure)
preserves the subgroup, are included into the model. In this way the mass matrix structures
are only determined by the assignments of the fermions and the group theory of the dihedral
symmetries, but not by the arbitrary choice of scalar fields 5. However, Higgs fields can be
easily eliminated from the model by setting their VEVs to zero. For the calculation of the
forms of the mass matrices it is sufficient to encounter one Higgs field which transforms under
a certain representation of the dihedral group, i.e. we do not consider the case in which two
Higgs fields have exactly the same transformation properties under the flavor group 6.

4. The framework in which the mass matrices are calculated is the SM. Thereby, we assume that
all Higgs fields in the model are copies of the SM Higgs doublet, i.e. transform as (1,2,−1)
under SU(3)C × SU(2)L × U(1)Y . For this reason, the mass matrix structures shown in the
following arise for down quarks and charged leptons which couple to the Higgs field itself.
Since the mass matrices for the up quark and Dirac neutrinos arise from a coupling to the
conjugated Higgs field, we have to take into account slight changes due to the fact that, for
example, the representation matrices of 2j of Dn and D′

n are chosen to be complex.

We find only five distinct Dirac mass matrix structures 7 8

M1 =

 A 0 0
0 B 0
0 0 C

 , M2 =

 A 0 0
0 0 B
0 C 0

 , (5.9)

4Note that we choose the assignment as given in the second work on dihedral symmetries [26]. In the assignment
presented in [25] the left-handed fields transform as one-dimensional representations and the left-handed conjugate
fermions are partially unified. As argued above, this does not change the results.

5In case of the T ′ model presented in Chapter 4 this choice is crucial in order to arrive at the TBM.
6However, in a complete model this might be necessary, see, for example, Chapter 4. In this case the flavon

potential enforces the existence of two fields with exactly the same transformation properties under T ′ and Z3.
7As explained in detail in [25] there exist cases which lead to mass matrices with an arbitrary structure. However,

a careful analysis shows that in all these cases the flavor symmetry can be reduced to a smaller group which is actually
fully broken and therefore, strictly speaking, these matrices do not result from the preservation of a subgroup.

8Other mass matrices which do not result from the preservation of a subgroup might also have a certain structure
with several elements being correlated, see, for example, Chapter 3. However, these correlations are then due to the
fact that the discrete group used as flavor symmetry is non-abelian.
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M3 =

 A 0 0
0 B C
0 D E

 , (5.10)

M4 =

 0 A B
C D E

−C e−i φ j D e−i φ j E e−i φ j

 and M5 =

 A C C e−i φ k

B D E

B e−i φ j E e−i φ (j−k) D e−i φ (j+k)


(5.11)

where A,B,C,D,E are complex numbers which are products of Yukawa couplings and VEVs,
φ = 2π

n m (n: index of the dihedral group, m: index of the breaking direction) and j, k are the
indices of the representations 2j and 2k.
The changes which have to be encountered for up quarks and Dirac neutrinos lead to slightly
different forms of the matrix structures

M4 =

 0 A B
C ei φ j D ei φ j E ei φ j

−C D E

 and M5 =

 A C ei φ k C

B ei φ j D ei φ (j+k) E ei φ (j−k)

B E D

 . (5.12)

M1, M2 and M3, i.e. the diagonal, the semi-diagonal and the block matrix structure, arise quite
frequently and can be found for different preserved subgroups. Thereby, the entries A, B, ... of the
mass matrices can be correlated depending on the fermion assignment and the subgroup to which
the dihedral symmetry is broken. For example, in the semi-diagonal matrix B and C have to be
equal in several cases. In contrast to this, the structures M4 and M5 can only be found, if the
preserved subgroup is of the form Z2 =< B Am >, where m is encoded in φ. More precisely, M4

stems from the three singlet structure, while M5 is a result of the two doublet structure.
The results for Majorana mass matrix structures are very similar apart from four differences

a.) Since Majorana mass terms correlate either left-handed or left-handed conjugate fields, only
mass matrix structures, which correspond to forms, resulting from the two doublet structure
with equivalent one- and two-dimensional representations, are allowed.

b.) We have to take into account the case in which all fermions involved in the mass terms
transform as one-dimensional representations under the dihedral group. We can, for example,
imagine the case in which we assign the left-handed and left-handed conjugate neutrinos to the
three singlet structure so that a Majorana mass term for the left-handed conjugate neutrinos
actually stems from an assignment in which all fields transform as singlets. These additional
mass matrix structures can be either diagonal, can have block structure, can be completely
arbitrary, i.e. all mass matrix entries are non-vanishing and not correlated, or can be semi-
diagonal, if the dihedral group is D′

n with n odd. As one can see, all four types of structures
are not new in the sense that they already arose in the discussion of the Dirac mass matrix
structures.

c.) Since Majorana mass terms correlate the same fields with each other, these terms have to be
symmetric. This leads to the fact that in some cases contributions from Higgs fields, which
are allowed a VEV according to the preservation of the subgroup, vanish, since they are
anti-symmetric in flavor space.

d.) Obviously, the Higgs fields involved in Majorana mass terms for left-handed and left-handed
conjugate neutrinos cannot transform as a copy of the SM Higgs doublet. As explained in
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Section 3.1, they must be either Higgs triplets or gauge singlets. In the case of the left-handed
conjugate neutrinos a direct mass term is allowed, if it is also invariant under the dihedral
symmetry.

As discussed in detail in [25], there is no difference between the groups Dn and their double-valued
counterparts D′

n
9 concerning the mass matrix structures which can be produced, if we demand a

subgroup of the dihedral group to be preserved.

In the following we elucidate the methods to arrive at these five distinct mass matrix structures.

• In a first step the general structure of the subgroups of Dn and D′
n has to be determined.

This is done with the help of the generators A and B given in Section 5.1. As can be shown,
all elements of a dihedral group can be written in the form Ax or B Ay. We can then find
eigenvalues and eigenvectors of all elements of the group. Thereby, only the case in which
the element has an eigenvalue one is interesting. A subgroup consists of all elements which
have an eigenvalue one for a certain eigenvector. Concerning the one-dimensional represen-
tations we only have to collect the elements whose character is one. These automatically
form a subgroup. In case of a two-dimensional representation we actually have to find the
representation matrices for all elements and calculate the eigenvalues and eigenvectors of the
two-by-two matrices. In general, only two possible forms of eigenvectors arise

v ∝

(
e−

4 π i j m
g

1

)
and v =

(
x1

x2

)
with x1, x2 arbitrary . (5.13)

g denotes the order of the dihedral group (g = 2n for Dn and g = 4n for D′
n), j is the

representation index of 2j and m indicates that the first eigenvector belongs to the element
B Am with m being an integer. It is responsible for the special structure of the mass matrix
forms M4 and M5. The second eigenvector is a vector with arbitrary entries, i.e. it can only
belong to the unit matrix. This eigenvector only arises in the case of a so-called unfaithful
representation in which apart from the identity element E also non-trivial elements of the
group are represented by the unit matrix. These elements always form a group. By combining
at most two representations we can find all possible subgroups of Dn and D′

n. These turn
out to be either dihedral groups themselves or cyclic groups. The smallest subgroup is in
general a Z2 group. The structure of all subgroups is given in terms of the generators A
and B of the original group. Note that only the two subgroup structures Z2 =< B Am >

and Dj =< A
n
j ,B Am > for Dn and Z4 =< B Am > and D′

j
2

=< A
2 n
j ,B Am > for D′

n are

compatible with the first eigenvector structure.

• The next step is to find the decomposition of all representations of the dihedral groups into
irreducible representations of all their subgroups. Thereby, one has to note that the two-
dimensional representations of the original group break up into one-dimensional ones of the
subgroups in several cases. A complete list can be found in [25].

• The physical interpretation of these results is then: All Higgs fields transforming according
to a representation which contains a trivial representation of a certain subgroup can preserve
this subgroup, if their VEV is of the form that only the combination of components which

9The only slight difference found in case of Majorana mass matrix structures is not relevant, since the new
structure, which is allowed, if the flavor group is a D′

n group and not a Dn group, can arise with another fermion
assignment also from a Dn group and therefore is not a unique result of a D′

n group.
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transforms trivially under the subgroup gets a non-vanishing VEV. As one can show, this
is equivalent to enforce the structure of the VEV to be proportional to the eigenvector of
the eigenvalue one of the generators of the subgroups. For Higgs fields transforming as an
one-dimensional representation this corresponds to the fact that they are allowed to have a
non-vanishing VEV, if the characters belonging to the generators of the subgroup are one. If
the Higgs fields form on the other hand an irreducible doublet under the dihedral group, it is
important whether the VEVs of the Higgs field ψ1, being the upper, and the field ψ2, being
the lower component of the doublet, fulfill a relation or not: a.) If they are independent,

this configuration corresponds to an arbitrary eigenvector; b.) If < ψ1 >=< ψ2 > e−
4 π i j m

g

(j: representation index, g: group order of the dihedral group, m: index of the preserved
direction) holds, the structure is related to the first eigenvector of Eq.(5.13). A complete list
of the subgroups of dihedral symmetries can be found in [25] together with an enumeration
of the representations which are allowed to have a non-vanishing VEV in order to preserve a
certain subgroup.

• The final step is then the calculation of all mass matrices with the two possible assignment
structures of the fermions and for the different possible VEV structures of the Higgs fields
which preserve the different subgroups.

All these steps have been performed in [25] with the result shown above. Since we do not want to
repeat the details of these calculations, we instead concentrate on three interesting applications of
these results: in the first one we derive an expression for the Cabibbo angle θC with the help of
the flavor symmetry D7, while the two other ones are models found in the literature which predict
θ23 = π

4 and θ13 = 0 in the lepton sector. Thereby, we will explain the group theoretical background
in detail and perform several of the above mentioned steps explicitly.

In order to show that the Cabibbo angle can be deduced from a dihedral group, the two matrices
M4 and M5 deserve a further investigation. Therefore, we calculate MiM

†
i , i = 4, 5, which can be

written in the general form a b ei β b ei (β+φ j)

b e−i β c d ei φ j

b e−i (β+φ j) d e−i φ j c

 (5.14)

where a, b, c, d and β are real functions of A, B, C, D and E. β lies in the interval [0, 2π).
Since we work in the basis in which the left-handed fields are on the left-hand side and the left-
handed conjugate fields on the right-hand side (see Section 3.1), the unitary matrix diagonalizing
MiM

†
i acts on the left-handed fields. The three eigenvalues are given as (c − d), 1

2 (a + c + d −√
(a− c− d)2 + 8 b2) and 1

2 (a + c + d +
√

(a− c− d)2 + 8 b2). Assuming this ordering of the
eigenvalues the mixing matrix U which fulfills U †MiM

†
i U = diag is of the form

U =

 0 cos(θ) ei β sin(θ) ei β

− 1√
2
ei φ j − sin(θ)√

2

cos(θ)√
2

1√
2

− sin(θ)√
2

e−i φ j cos(θ)√
2

e−i φ j

 . (5.15)

The angle θ is determined to be

tan(2 θ) =
2
√

2 b
c+ d− a

(5.16)
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and therefore lies in the interval [0, π2 ). Note that at least for charged fermions the ordering of the
two eigenvalues unequal to (c−d) is fixed, since the one with the positive sign in front of the square
root is necessarily larger than the one with the negative sign.
Assuming that up quark and down quark, or equivalently (Dirac) neutrino and charged lepton, mass
matrices are of the form M4,5, the CKM matrix, or equivalently the MNS matrix, is given as a
product of two matrices which equal the matrix U up to permutations of the columns depending on
the ordering of the eigenvalues. According to Section 3.1 the relation between VCKM and Uu and Ud
is VCKM = UTu U

?
d and, similarly, for UMNS and the unitary matrices Uν , Ul it is UMNS = UTl U

?
ν .

Therefore, the general form is Vmix = W T
1 W ?

2 with Wi ≡ U(φi(mi), θi, βi). Multiplying the two
variants of U , W1 and W2, generates one element in the matrix Vmix which only depends on the
difference of the two group theoretical phases φ1 and φ2 and the index j of the representation 2j
under which two of the three left-handed fields transform. Its absolute value is

1
2

∣∣∣1 + ei (φ1−φ2) j
∣∣∣ = ∣∣∣∣cos((φ1 − φ2)

j
2
)
∣∣∣∣ = ∣∣∣cos(

π

n
(m1 −m2) j)

∣∣∣ . (5.17)

The origin of the element is the product of the two eigenvectors corresponding to the eigenvalue
(c−d) in the up and down quark sector (neutrino and charged lepton sector). Therefore the ordering
of the eigenvalues, i.e. their association with the masses of the fermions, determines the position
of this element in the mixing matrix. Note that Eq.(5.17) already shows that non-trivial mixing
forces m1 6= m2, i.e. non-trivial mixing angles only arise, if the flavor symmetry is broken to two
different (directions of) subgroups. The size of the mixing angle is then determined by the fact how
large this mismatch actually is. In particular, it is interesting to notice that this formula allows for
the prediction of non-trivial values of the mixing angles, i.e. not only rather special values as 0 or
π
4 , but also the Cabibbo angle can be explained, see Eq.(5.20) and Eq.(5.21). The other elements
involve the two angles θ1 and θ2 as well as the difference α of the phases β1 and β2. The mixing
matrix Vmix, for example, is given as

Vmix =
1
2

 (ei φ1 j − ei φ2 j) s2 1 + ei (φ1−φ2) j −(ei φ1 j − ei φ2 j) c2
(1 + e−i (φ1−φ2) j) s1 s2 + 2 ei α c1 c2 −(e−i φ1 j − e−i φ2 j) s1 −(1 + e−i (φ1−φ2) j) s1 c2 + 2 ei α c1 s2
−(1 + e−i (φ1−φ2) j) c1 s2 + 2 ei α s1 c2 (e−i φ1 j − e−i φ2 j) c1 (1 + e−i (φ1−φ2) j) c1 c2 + 2 ei α s1 s2


(5.18)

for (c− d) being identified with the first generation of up quarks (charged leptons) and the second
generation of down quarks ((Dirac) neutrinos) 10. Thereby, sin(θi) and cos(θi) are abbreviated by
si and ci, respectively. The Jarlskog invariant JCP reads

JCP (j, φ1, φ2; θ1, θ2, α) =
1
8

sin((φ1−φ2) j) sin(
1
2

(φ1−φ2) j) sin(2 θ1) sin(2 θ2) sin(
1
2

(φ1−φ2) j+α) . (5.19)

It can be calculated according to Eq.(3.19). For the other possible identifications of the eigenvalues
(c− d) the resulting mixing matrix has a similar form up to permutations of rows and/or columns.
JCP equals the expression found in Eq.(5.19) up to a possible sign arising from the permutations
of rows and columns.
Now we are prepared to derive the Cabibbo angle θC from D7.

10The ordering of the two eigenvalues involving the square root is assumed to be the one, as described above.
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5.3 D7 can explain θC

After presenting the general mass matrix structures which can be achieved with a dihedral flavor
symmetry which is broken to non-trivial subgroups, we apply these results in order to predict the
CKM element |Vus| or |Vcd| and, thereby, the Cabibbo angle θC . We show that it only depends
on group theoretical quantities, namely the index n of the dihedral group Dn, the representation
index j of 2j under which two of the three left-handed quark doublets transform and the indices
mu and md denoting the preserved subgroups Z2 =< B Amu > and Z2 =< B Amd >. The general
formula is according to Eq.(5.17)

|Vus (cd)| =
∣∣∣∣cos

(
π (mu −md) j

n

)∣∣∣∣ (5.20)

For example, for n = 7, j = 1, mu = 3 and md = 0, we arrive at

|Vus (cd)| =
∣∣∣∣cos

(
π (3− 0) 1

7

)∣∣∣∣ = ∣∣∣∣cos
(

3π
7

)∣∣∣∣ ≈ 0.2225 (5.21)

which is only 2% below the experimental best fit value of 0.2272(1)+0.0010
−0.0010 (see Section 2.1). Since we

break to two different subgroups of Dn in the up and the down quark sector, Dn is completely bro-
ken in the whole Lagrangian -as it should be, since we do not observe an unbroken flavor symmetry
at low energies. Due to the fact that none of the subgroups is preserved in the whole Lagrangian we
expect corrections from higher-dimensional operators which mix the two different sectors, similar
to the mixing of the Z3 and Z4 group conserving parts in the T ′ model, discussed in Chapter 4.
Using the results of the T ′ model as a rough estimate of the generic size of such corrections, namely
λ2, we see that the value of |Vus (cd)| then can be in full accordance with the experimental result.
The separation of the two sectors has to be maintained by an additional Zn(aux) symmetry, like in
the T ′ model. As will be shown below, in case of D7 a Z2

(aux) symmetry is sufficient.
As argued above the exact position of the element, which is explained by group theoretical quan-
tities, is not fixed a priori, but only by the ordering of the eigenvalues.
In the following, we show a low energy model which implements this idea with the flavor symmetry
D7 ×Z2

(aux) 11. As done in the models presented in Chapter 3 we break the flavor symmetry
(and the auxiliary symmetry) only spontaneously at the electroweak scale. Therefore, all scalars
appearing the model below are copies of the SM Higgs doublet.
We introduce the basics of the group theory of D7, discuss the structure of the preserved Z2 sub-
groups and present two realizations of fermion assignments which both can lead to |Vus (cd)| =
cos(3π

7 ). Thereby, we quote the numerical results given in [26]. For the discussion of the Higgs
sector we also refer to [26]. This Higgs potential has features very similar to the ones discussed
in the S4 model and the D5 model in Chapter 3. In particular, it shares the unpleasant feature
that its simplest realization suffers from an accidental symmetry. Furthermore, also here the VEV
structures can only be adjusted, but not predicted, and also the Higgs mass spectrum contains
rather light particles.

5.3.1 Introduction to D7

Since the group theory of a general dihedral group Dn has already been presented at length, we
only briefly describe the specific features of the group D7. Its group order is 14 and it has five

11D7 has already been used as flavor symmetry in [117] in order to produce certain mass matrix textures in the
quark sector.
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classes
C1 C2 C3 C4 C5

G 1 A A2 A3 B
◦Ci 1 2 2 2 7
◦hCi 1 7 7 7 2 c(µ) faithful
11 1 1 1 1 1 1
12 1 1 1 1 -1 1
21 2 2 cos(ϕ) 2 cos(2ϕ) 2 cos(3ϕ) 0 1

√

22 2 2 cos(2ϕ) 2 cos(4ϕ) 2 cos(6ϕ) 0 1
√

23 2 2 cos(3ϕ) 2 cos(6ϕ) 2 cos(9ϕ) 0 1
√

Table 5.1: Character table of the group D7. ϕ is 2π
7

. For further explanations see
Appendix A.

irreducible representations: 11 (trivial), 12, 21, 22 and 23. All two-dimensional representations
are faithful in this group. The generators A and B and their relations can be deduced from the
general formulae given in Section 5.1.1

... for 21 : A =

(
e

2 π i
7 0
0 e−

2 π i
7

)
, B =

(
0 1
1 0

)
, (5.22)

... for 22 : A =

(
e

4 π i
7 0
0 e−

4 π i
7

)
, B =

(
0 1
1 0

)
, (5.23)

... for 23 : A =

(
e

6 π i
7 0
0 e−

6 π i
7

)
, B =

(
0 1
1 0

)
, (5.24)

which fulfill

A7 = 1 , B2 = 1 , A B A = B . (5.25)

As usual the generators of 11 and 12 can be found in the character table displayed in Table 5.1.
Again, this is only a special case of the general character table for a dihedral group Dn with an odd
index n, as found in Appendix B.4.1. Needless to say that the choice of complex representation
matrices for the real representations 2j causes the existence of a similarity transformation U which
links A?, B? and A, B. It is of the form as shown in Eq.(5.3).
Kronecker products and Clebsch Gordan coefficients of the group D7 can be found in Appendix
B.5.

5.3.2 Study of Subgroups of D7

In the cases below we always intend to preserve a Z2 subgroup generated by B Am (m = 0, 1, ..., 6).
Thereby, A and B are the generators of the original D7 group. For this purpose, we have to have a
closer look at the decomposition of the D7 representations under the Z2 subgroup. In order not to
break Z2 only representations/combinations of components which transform trivially under it are
allowed to have non-vanishing VEV. We use the notation 11 for the trivial representation of Z2

whose generator is +1 and 12 for the non-trivial representation which acquires a sign when the Z2
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D7 representation Z2 representation VEV allowed
11 11

√

12 12 −(
a1

a2

)
∼ 21 e

2 π i
7

m a1 + a2 ∼ 11, e
2 π i
7

m a1 − a2 ∼ 12 ∝

(
e−

2 π i
7

m

1

)
, i.e. 〈a1〉 = e−

2 π i
7

m 〈a2〉(
a1

a2

)
∼ 22 e

4 π i
7

m a1 + a2 ∼ 11, e
4 π i
7

m a1 − a2 ∼ 12 ∝

(
e−

4 π i
7

m

1

)
, i.e. 〈a1〉 = e−

4 π i
7

m 〈a2〉(
a1

a2

)
∼ 23 e

6 π i
7

m a1 + a2 ∼ 11, e
6 π i
7

m a1 − a2 ∼ 12 ∝

(
e−

6 π i
7

m

1

)
, i.e. 〈a1〉 = e−

6 π i
7

m 〈a2〉

Table 5.2: Breaking of D7 down to Z2 which is generated by BAm (m = 0, 1, ..., 6).
The third column indicates whether a VEV for a scalar transforming under this
particular D7 representation is allowed and which form it has to have in case that the
representation is two-dimensional.

transformation is applied, i.e. its generator is −1 12.
Obviously, the trivial representation of D7 is identified with the trivial representation 11 of any
of its subgroups. The D7 representation 12 transforms non-trivially under the residual Z2 group
and hence is identified with the non-trivial representation of Z2, as B Am = −1 for all m. The
irreducible two-dimensional representations 2j split up into the one-dimensional representations
of the abelian group Z2, i.e. one combination of the components of 2j transforms as 11 and the
other one as 12 under Z2. The actual combinations are found by looking at the matrix form of the
generator B Am of Z2

B Am =

(
0 e−

2 π i
7

jm

e
2 π i
7

jm 0

)
for 2j . (5.26)

The eigenvalues are +1 and −1, where +1 stands for the trivial representation, while −1 is the
generator of 12 of Z2. The eigenvectors are

v+1 ∝

(
e−

2 π i
7

jm

1

)
and v−1 ∝

(
e−

2 π i
7

jm

−1

)
. (5.27)

Therefore the combination of components a1,2 of a two-dimensional representation 2j which trans-
forms trivially under the Z2 group is

e
2 π i
7

jm a1 + a2 ∼ 11 , (5.28)

while

e
2 π i
7

jm a1 − a2 ∼ 12 . (5.29)

These results are collected in Table 5.2.

12Note that this notation slightly deviates from the one used for Zn representations in the general analysis of
dihedral symmetries and their preserved subgroups [25].



5-12 CHAPTER 5. STUDIES OF DIHEDRAL FLAVOR SYMMETRIES

5.3.3 D7 Model - Realization I

In this section, we show one possible assignment of fermions and scalars which allows to predict
|Vus| = cos(3π

7 ). Only two of the left-handed quark doublets are unified into a two-dimensional
representation of D7, which we choose for simplicity to be 21. The remaining generation of left-
handed quark doublets, which will be the first generation in our case, transforms trivially under
D7. The second and third generation of the left-handed conjugate quarks also transform trivially,
whereas the first one has to transform as the non-trivial singlet of D7. According to the Kronecker
products shown in Appendix B.5 only Higgs fields ∼ 11, ∼ 12 or 21 can form invariant Yukawa
couplings. However, since we want to preserve a Z2 subgroup generated by B Am we cannot choose
the VEVs of the Higgs fields in an arbitrary way, i.e. the VEVs of Higgs fields ∼ 12 have to vanish
and the ones of fields H1,2 forming a 21 under D7 have to be correlated, 〈H1〉 = e−

2 π i
7

m 〈H2〉,
where m is the index of the direction of the preserved Z2 group. To arrive at a non-trivial value of
|Vus (cd)| m has to be distinct in the up and down quark sector. As indicated above, we can choose
mu = 3 and md = 0 in case that j = 1 (as it is here). mu 6= md requires that different Higgs fields
couple to up and down quarks. In the SM we can easily maintain this by an additional Z2

(aux)

symmetry under which the left-handed conjugate down quarks acquire a sign. Higgs fields which
do not transform under this symmetry then automatically only couple to up quarks, while Higgs
fields, which do transform, only couple to down quarks. As the Higgs fields, which couple to up
quarks, shall preserve the generator B A3, their VEVs have to have the form

〈Hu
s 〉 > 0 , 〈Hu

1 〉 = e−
6 π i
7 〈Hu

2 〉 , (5.30)

for Higgs fields

Hu
s ∼ 11 and

(
Hu

1

Hu
2

)
∼ 21 . (5.31)

For the fields

Hd
s ∼ 11 and

(
Hd

1

Hd
2

)
∼ 21 (5.32)

responsible for the masses of the down quarks, the VEV configuration has to read

〈Hd
s 〉 > 0 , 〈Hd

1 〉 = 〈Hd
2 〉 , (5.33)

in order to conserve the Z2 subgroup generated by B (md = 0). In Table 5.3 the fields of the model
and their transformation properties under D7 and Z2

(aux) are summarized. In the following, we

Field Q1 Q2,3 uc cc tc dc sc bc Hu
s Hu

1,2 Hd
s Hd

1,2

D7 11 21 12 11 11 12 11 11 11 21 11 21
Z2

(aux) + + + + + − − − + + − −

Table 5.3: The particle content and its symmetry properties under D7× Z2
(aux) for

Realization I. Since we present a realization of the prediction of |Vus (cd)| in a low

energy model, the Higgs fields Hu,d
s and Hu,d

1,2 are copies of the SM Higgs field, i.e.
transform as (1,2,−1) under the SM gauge group SU(3)C × SU(2)L × U(1)Y .
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parameterize the VEVs 〈Hu,d
2 〉 by vu,d > 0

〈Hu
2 〉 = vu e

3 π i
7 and 〈Hd

2 〉 = vd . (5.34)

In this way the VEVs of the upper and lower component of a D7 doublet have an opposite phase and
apart from this the VEVs can be real. This parameterization considerably simplifies the analysis
of the Higgs potential, see [26]. The Yukawa couplings are of the form

LY = yu
1 Q1 c

c H̃u
s + yu

2 Q1 t
c H̃u

s + yu
3 (Q2 u

c H̃u
1 −Q3 u

c H̃u
2 ) (5.35)

+ yu
4 (Q2 c

c H̃u
1 +Q3 c

c H̃u
2 ) + yu

5 (Q2 t
c H̃u

1 +Q3 t
c H̃u

2 )
+ yd

1 Q1 s
cHd

s + yd
2 Q1 b

cHd
s + yd

3 (Q2 d
cHd

2 −Q3 d
cHd

1 )
+ yd

4 (Q2 s
cHd

2 +Q3 s
cHd

1 ) + yd
5 (Q2 b

cHd
2 +Q3 b

cHd
1 ) + h.c.

Then the form of the mass matrices is

Mu =

 0 yu
1 〈Hu

s 〉 yu
2 〈Hu

s 〉
yu
3 vu e

3 π i
7 yu

4 vu e
3 π i

7 yu
5 vu e

3 π i
7

−yu
3 vu e−

3 π i
7 yu

4 vu e−
3 π i

7 yu
5 vu e−

3 π i
7

 and Md =

 0 yd
1 〈Hd

s 〉 yd
2 〈Hd

s 〉
yd
3 vd yd

4 vd yd
5 vd

−yd
3 vd yd

4 vd yd
5 vd


(5.36)

The masses of the up quarks are

2 |yu
3 |2 v2

u , (5.37)
1
2

(|yu
1 |2 + |yu

2 |2) 〈Hu
s 〉2 + (|yu

4 |2 + |yu
5 |2) v2

u (5.38)

± 1
2

√
[(|yu

1 |2 + |yu
2 |2) 〈Hu

s 〉2 − 2 (|yu
4 |2 + |yu

5 |2) v2
u]2 + 8 〈Hu

s 〉2 v2
u |yu

1 (yu
4 )? + yu

2 (yu
5 )?|2

and the down quark masses read

2 |yd
3 |2 v2

d , (5.39)
1
2

(|yd
1 |2 + |yd

2 |2) 〈Hd
s 〉2 + (|yd

4 |2 + |yd
5 |2) v2

d (5.40)

± 1
2

√
[(|yd

1 |2 + |yd
2 |2) 〈Hd

s 〉2 − 2 (|yd
4 |2 + |yd

5 |2) v2
d]2 + 8 〈Hd

s 〉2 v2
d |yd

1 (yd
4)? + yd

2 (yd
5)?|2

In order to arrive at |Vus| = cos(3π
7 ) we have to identify the up quark mass mu with

√
2 |yu3 | vu and

the strange quark mass ms with
√

2 |yd3 | vd. According to above, the lighter one of the remaining
two generations, mc and md, respectively, is identified with the eigenvalue in which a minus sign
appears in front of the square root. The CKM matrix is then of the form

|VCKM | =

 cos( π
14 ) sd cos( 3 π

7 ) cos( π
14 ) cd

1
2 |2 ei α cd cu + (1 + e−

6 π i
7 ) sd su| cos( π

14 ) su
1
2 |2 ei α cu sd − (1 + e−

6 π i
7 ) cd su|

1
2 |2 ei α cd su − (1 + e−

6 π i
7 ) cu sd| cos( π

14 ) cu 1
2 |2 ei α sd su + (1 + e−

6 π i
7 ) cd cu|

 (5.41)

with sd,u = sin(θd,u), cd,u = cos(θd,u) and the phase α = βu−βd. The Jarlskog invariant JCP reads

JCP =
1
8

sin
(

3π
7

)
sin
(

6π
7

)
sin(2 θd) sin(2 θu) sin

(
3π
7

+ α

)
. (5.42)
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As indicated by the indices, θu and βu are associated with the mixing matrix Uu which diagonalizes
MuM†

u, while θd and βd stem from Ud. They are rather non-trivial functions of the entries of the
mass matrices. In [26] a numerical example is given which is able to fit all quark masses and mixing
parameters quite well with the element |Vus| being fixed to cos(3π

7 ). All quark masses can be fitted
to the central values, while the CKM matrix is of the form

|VCKM | =

 0.97492 0.2225 3.95 × 10−3

0.2224 0.97404 42.23 × 10−3

8.11 × 10−3 41.64 × 10−3 0.9991

 (5.43)

with JCP = 3.09 × 10−5. In order to match the above results we display the explicit form of Ad,u,
Bd,u, ... for the considered case

Au = yu
1 〈Hu

s 〉 , Bu = yu
2 〈Hu

s 〉 , Cu = yu
3 vu e−

3 π i
7 , Du = yu

4 vu e−
3 π i

7 , Eu = yu
5 vu e−

3 π i
7 , (5.44)

Ad = yd
1 〈Hd

s 〉 , Bd = yd
2 〈Hd

s 〉 , Cd = yd
3 vd , Dd = yd

4 vd , Ed = yd
5 vd . (5.45)

The group theoretical phases φu,d are φu = 6π
7 , since the Z2 subgroup is generated by B A3 in the

up quark sector, and φd = 0, as Z2 =< B > is the residual group in the down quark sector. The
representation index j equals one, because the left-handed quark doublets of the second and third
generation transform as 21 under D7.

5.3.4 D7 Model - Realization II

The other possible fermion assignment which leads to the prediction of one element of VCKM has the
advantage that two generations of left-handed as well as left-handed conjugate quarks are unified
into a doublet under D7. We choose these two generations to be the second and third one and
choose the doublet to be 21 in both cases. In Eq.(5.20) the representation index is again j = 1. The
first generation is chosen to transform trivially under D7. According to the Kronecker products
shown in Appendix B.5 Higgs fields transforming as 11, 12, 21 and 22 can couple to the quarks to
form D7 invariants. However, in order to preserve the Z2 subgroups, also here we cannot choose the
VEVs arbitrarily: fields ∼ 12 should not get a non-vanishing VEV and the VEVs of Higgs fields,
which form a doublet under D7, have to have the same absolute value and have to be correlated
by a phase. As in realization I, we will choose mu = 3 and md = 0 in order to arrive at cos(3π

7 ) for
|Vus (cd)|. At this point we also introduce the same additional Z2

(aux) symmetry as in realization I.
According to Table 5.2 the VEV structures have to be of the form

〈Hu
s 〉 > 0 , 〈Hu

1 〉 = e−
6 π i
7 〈Hu

2 〉 , 〈hu1〉 = e−
12 π i

7 〈hu2〉 (5.46)

for Higgs fields

Hu
s ∼ 11 ,

(
Hu

1

Hu
2

)
∼ 21 and

(
hu1
hu2

)
∼ 22 (5.47)

coupling to up quarks only and for a similar set of Higgs fields

Hd
s ∼ 11 ,

(
Hd

1

Hd
2

)
∼ 21 and

(
hd1
hd2

)
∼ 22 (5.48)

responsible for the masses of the down quarks, the VEV configuration shall read

〈Hd
s 〉 > 0 , 〈Hd

1 〉 = 〈Hd
2 〉 , 〈hd1〉 = 〈hd2〉 . (5.49)
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In Table 5.4 the fields of the model and their transformation properties under D7 and Z2
(aux) are

summarized. In the following, we will parameterize the VEVs 〈Hu,d
2 〉 and 〈hu,d2 〉 by vu,d > 0 and

Field Q1 Q2,3 uc (cc, tc) dc (sc, bc) Hu
s Hu

1,2 hu1,2 Hd
s Hd

1,2 hd1,2
D7 11 21 11 21 11 21 11 21 22 11 21 22

Z2
(aux) + + + + − − + + + − − −

Table 5.4: The particle content and its symmetry properties under D7× Z2
(aux) for

Realization II. Since we present a realization of the prediction of |Vus (cd)| in a low

energy model, the Higgs fields Hu,d
s , Hu,d

1,2 and hu,d
1,2 are copies of the SM Higgs field,

i.e. transform as (1,2,−1) under the SM gauge group SU(3)C × SU(2)L × U(1)Y .

wu,d > 0

〈Hu
2 〉 = vu e

3 π i
7 , 〈Hd

2 〉 = vd , 〈hu2〉 = wu e
6 π i
7 and 〈hd2〉 = wd . (5.50)

Also here we adopted the parameterization, which leads to opposite phases for the VEVs of upper
and lower components of D7 doublets. Apart from this the VEVs are real. The mass matrices for
up and down quarks read

Mu =

 yu
1 〈Hu

s 〉? yu
2 〈Hu

1 〉? yu
2 〈Hu

2 〉?
yu
3 〈Hu

1 〉? yu
5 〈hu

1 〉? yu
4 〈Hu

s 〉?
yu
3 〈Hu

2 〉? yu
4 〈Hu

s 〉? yu
5 〈hu

2 〉?

 and Md =

 yd
1 〈Hd

s 〉 yd
2 〈Hd

2 〉 yd
2 〈Hd

1 〉
yd
3 〈Hd

2 〉 yd
5 〈hd

2〉 yd
4 〈Hd

s 〉
yd
3 〈Hd

1 〉 yd
4 〈Hd

s 〉 yd
5 〈hd

1〉

 (5.51)

and with VEVs according to Eq.(5.46), Eq.(5.49) and Eq.(5.50) the form is

Mu =

 yu
1 〈Hu

s 〉 yu
2 vu e

3 π i
7 yu

2 vu e−
3 π i

7

yu
3 vu e

3 π i
7 yu

5 wu e
6 π i

7 yu
4 〈Hu

s 〉
yu
3 vu e−

3 π i
7 yu

4 〈Hu
s 〉 yu

5 wu e−
6 π i

7

 and Md =

 yd
1 〈Hd

s 〉 yd
2 vd yd

2 vd

yd
3 vd yd

5 wd yd
4 〈Hd

s 〉
yd
3 vd yd

4 〈Hd
s 〉 yd

5 wd

 .

(5.52)

The eigenvalues of the up and down quark mass matrices are given by

|yu
4 〈Hu

s 〉 − yu
5 wu|2 , (5.53)

(|yu
2 |2 + |yu

3 |2) v2
u +

1
2

(|yu
1 |2 〈Hu

s 〉2 + |yu
4 〈Hu

s 〉+ yu
5 wu|2) (5.54)

± 1
2

√
[2 (|yu

3 |2 − |yu
2 |2) v2

u − |yu
1 |2 〈Hu

s 〉2 + |yu
4 〈Hu

s 〉+ yu
5 wu|2]2 + 8 v2

u |yu
1 (yu

3 )? 〈Hu
s 〉+ yu

2 ((yu
4 )? 〈Hu

s 〉+ (yu
5 )? wu)|2

and for Md

|yd
4 〈Hd

s 〉 − yd
5 wd|2 , (5.55)

(|yd
2 |2 + |yd

3 |2) v2
d +

1
2

(|yd
1 |2 〈Hd

s 〉2 + |yd
4 〈Hd

s 〉+ yd
5 wd|2) (5.56)

± 1
2

√
[2 (|yd

3 |2 − |yd
2 |2) v2

d − |yd
1 |2 〈Hd

s 〉2 + |yd
4 〈Hd

s 〉+ yd
5 wd|2]2 + 8 v2

d |yd
1 (yd

3)? 〈Hd
s 〉+ yd

2 ((yd
4)? 〈Hd

s 〉+ (yd
5)? wd)|2 .

The position of the group theoretically determined element in the mixing matrix is given by the
fact whether |yu4 〈Hu

s 〉 − yu5 wu| is assigned to mu, mc or mt and |yd4 〈Hd
s 〉 − yd5 wd| to md, ms or
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mb. In the numerical example shown in [26] it turned out that |Vcd| equals cos(3π
7 ) which reveals

that mc is associated with |yu4 〈Hu
s 〉 − yu5 wu| and md with |yd4 〈Hd

s 〉 − yd5 wd|. The other elements of
VCKM have the following form

|VCKM | =

 cos( π
14 ) su

1
2 |2 ei α cd cu + (1 + e−

6 π i
7 ) sd su| 1

2 |2 ei α cu sd − (1 + e−
6 π i

7 ) cd su|
cos( 3 π

7 ) cos( π
14 ) sd cos( π

14 ) cd
cos( π

14 ) cu 1
2 |2 ei α cd su − (1 + e−

6 π i
7 ) cu sd| 1

2 |2 ei α sd su + (1 + e−
6 π i

7 ) cd cu|

 (5.57)

and

JCP =
1
8

sin
(

3π
7

)
sin
(

6π
7

)
sin(2 θd) sin(2 θu) sin

(
3π
7

+ α

)
. (5.58)

Here we used the same abbreviations as above in Eq.(5.41). Note that the formula for JCP coincides
with the one given above, see Eq.(5.42). In the numerical example presented in [26] the CKM matrix
is of the form

|VCKM | =

 0.97489 0.2226 3.95 × 10−3

0.2225 0.97401 42.23 × 10−3

8.11 × 10−3 41.64 × 10−3 0.9991

 (5.59)

and the value of JCP is 3.09 × 10−5. The explicit form of Ad,u, Bd,u, ... reads

Au = yu
1 〈Hu

s 〉 , Bu = yu
3 vu e−

3 π i
7 , Cu = yu

2 vu e−
3 π i

7 , Du = yu
5 wu e−

6 π i
7 , Eu = yu

4 〈Hu
s 〉 , (5.60)

Ad = yd
1 〈Hd

s 〉 , Bd = yd
3 vd , Cd = yd

2 vd , Dd = yd
5 wd , Ed = yd

4 〈Hd
s 〉 (5.61)

together with φu = 6π
7 and φd = 0 which correspond to Z2 =< B A3 > and Z2 =< B > as preserved

subgroups for up and down quarks, respectively. Since all generations transform as 11 +21 in this
setup, the representation indices j and k are both equal to one.

5.3.5 Summary and Comments

As a first application of the general results found in [25], we have presented a way to predict the
Cabibbo angle θC in terms of group theoretical quantities only. Thereby, we discussed the group
theoretical background of the model in detail and showed how the different Z2 subgroups of D7 can
be preserved. As already mentioned in Section 5.2, two different mass matrix structures, called M4

and M5 above, allow one element of the mixing matrix to be determined only by fundamental group
theoretical quantities. We constructed two realizations, one in which the quark mass matrices are
of the form of M4 and one in which the mass matrices have the same structure as M5. In the
numerical examples, shown in [26], it turns out that in the first realization the element |Vus| is
determined by group theory only, while in the second one it is |Vcd| which is fixed to cos(3π

7 ). A
discussion of the Higgs potential for the first realization can be found in [26]. Since this is again
a multi-Higgs doublet potential, it suffers from the same problems as the potentials studied in the
S4 and D5 model. Especially, the fact that also here the VEVs can only be adjusted, but by no
means predicted is unpleasant, since in this D7 model the fact that |Vus (cd)| are determined by
group theory crucially depends on the VEV configuration.
Concerning the fermion assignment shown in Section 5.3.3 and Section 5.3.4, one should notice
that it is not the only possible one for the quarks which leads to a prediction of the CKM element
|Vus (cd)| to be cos(3π

7 ). There exist several other possibilities, for example, the representation index
of the doublet under which the left-handed quarks transform can be chosen as j = 3 and the Z2
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group to which D7 is then broken in the up quark sector should be replaced by Z2 =< B A >,
i.e. mu = 1. Furthermore, the flavor group does not necessarily have to be D7. Taking D14 works
as well with the according changes of the representation index j and the indices of the preserved
subgroups, mu and md.
In the work published [26] we also presented ways to generate only the Cabibbo angle θC , while the
other two mixing angles θq13 and θq23 vanish. Again, D7 and D14 can be chosen as flavor symmetry.
The subgroups which are preserved in each sector can then not only be of the form Z2 =< B Am >,
but also D2 =< A7,B Am >, if we assume D14 as flavor group. Apart from studies concerned with
the quark sector we also performed a numerical analysis of the MNS matrix in [26] in order to
show that the lepton mixing can be explained with the help of a dihedral group which is broken to
different (directions of) subgroups. As the elements of UMNS are much less constrained than the
ones of VCKM , we find multiple solutions which allow good fits of the lepton mixing parameters.
As we used the embedding into GUTs (and continuous flavor symmetries) as a guideline for the
construction of the models analyzed in Chapter 3, it is legitimate to ask whether one could also
embed the low energy models with the flavor symmetry D7 into a larger framework. As we need
to introduce an additional symmetry Z(aux)

2 to separate the up and down quark sector, it is clear
that we cannot combine this setup with an SO(10) GUT. However, it is still possible to embed the
second realization into SU(5), since the left-handed and left-handed conjugate up quarks transform
in the same way under D7 × Z

(aux)
2 . For the embedding into a continuous group, like SO(3), we

expect that this is possible in general, since, for example, we could identify 12 + 21 with the
fundamental representation 3 of SO(3).
Concerning the problem of the Higgs potential, realizations, in which the Higgs doublets are replaced
by gauge singlets, as done in the T ′ model in Chapter 4, can again offer better opportunities to
control the vacuum alignment. However, we probably have to tackle another problem, if we try to
achieve the proper vacuum alignment, namely the fact that in this model the flavor group D7 is not
broken to two different subgroup structures, but rather to two different directions of subgroups. In
the up as well as the down quark sector we preserve a Z2 group which is generated by B Am. The
only difference lies in the fact that mu is not equal to md. This has to be contrasted with the T ′

(A4) models in which the symmetry is broken to a Z3 group in the charged fermion (lepton) and to
a Z4 (Z2) group in the neutrino sector. In the realization of the vacuum alignment presented in the
preceding chapter it turned out that vacua preserving subgroups with the same subgroup structure
are degenerate. This shows that it might not be straightforward to extend the construction of
the vacuum alignment used in Chapter 4 to the case here in which the preserved subgroups have
the same group structure, but are generated by different group elements of the original group.
On the other hand, the D7 model has an advantage over the T ′ model, since we do not choose
the representations under which the Higgs/flavon fields transform which couple directly to the
fermions. Therefore, the structure of the mass matrices and the form of the mixing matrix (up
to permutations which correspond to the ordering of the eigenvalues in the up and down quark
sector) are completely determined by the group theory of the flavor symmetry and the choice of
the fermion assignment.

5.4 Preserved Subgroups Explain θ23 = π
4 and θ13 = 0 for Leptons

The discussion of the T ′ model in Chapter 4 and the fact that we can predict the Cabibbo angle θC
with the help of the dihedral flavor symmetry D7 already showed that the study of models in which
the flavor symmetry (independent of its nature) is not broken in an arbitrary way, but only down
to (different) subgroups might be the key feature in order to make clear predictions, especially,
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classes
C1 C2 C3 C4 C5

G 1 (g h)2 g h g h
◦Ci 1 1 2 2 2
◦hCi 1 2 2 2 4 c(µ) faithful
1++ 1 1 1 1 1 1
1+− 1 1 1 -1 -1 1
1−+ 1 1 -1 1 -1 1
1−− 1 1 -1 -1 1 1
2 2 -2 0 0 0 1

√

Table 5.5: Character table of the group D4. The notation of the representations is
according to [94]. This table can be also found in [95]. For further explanations see
Appendix A.

for the fermion mixing angles. In the literature there exist two further neat examples which also
use a dihedral group as flavor symmetry and which can predict maximal atmospheric mixing and
vanishing θ13. In the first model [94] the flavor symmetry is D4 and in the second one [116] it is
D3 (which is isomorphic to S3). It is very interesting to see that these two groups which belong to
the smallest non-abelian discrete symmetries turn out to be so useful in this context, although they
only have a very limited number of representations and their structure is very simple. In both cases
the flavor symmetry has to be accompanied by an additional Z2

(aux) symmetry which allows the
separation of the different sectors which preserve different subgroups of the flavor symmetry. We
discuss both models in detail and show which are the preserved subgroups in the different sectors
of the theory.

5.4.1 D4 × Z
(aux)
2 Model

In the following, we explain the structure of the D4 model in detail and explicitly show how the
preservation of subgroups leads to the prediction of θ23 = π

4 and θ13 = 0 in the lepton sector.
Since the authors of [94] work in another group basis than we do here we first have to introduce
their basis of the representation matrices and notations for the representations. The representations
are denoted by 1++, 1+−, 1−+, 1−− and 2. The generators are called g and h and given by

g = +1 , h = +1 ... for 1++ (5.62)
g = +1 , h = −1 ... for 1+− (5.63)
g = −1 , h = +1 ... for 1−+ (5.64)
g = −1 , h = −1 ... for 1−− (5.65)

g =
(

1 0
0 −1

)
, h =

(
0 1
1 0

)
... for 2 . (5.66)

They fulfill the relations

g2 = 1 , h2 = 1 , (g h)4 = 1 . (5.67)

From the generators g and h the character table of the group can be deduced, see Table 5.5. The



5.4. PRESERVED SUBGROUPS EXPLAIN θ23 = π
4 AND θ13 = 0 FOR LEPTONS 5-19

Kronecker products of the representations read

1++ × µ = µ ∀ µ (5.68a)
1+− × 1+− = 1++ , 1+− × 1−+ = 1−− , 1+− × 1−− = 1−+ , (5.68b)
1−+ × 1−+ = 1++ , 1−+ × 1−− = 1+− , 1−− × 1−− = 1++ (5.68c)
1+− × 2 = 2 , 1−+ × 2 = 2 , 1−− × 2 = 2 , (5.68d)
2× 2 = 1++ + 1+− + 1−+ + 1−− (5.68e)

The non-trivial Clebsch Gordan coefficients read(
Aa1

Aa2

)
∼ 2 ,

(
B a1

−B a2

)
∼ 2 ,

(
C a2

C a1

)
∼ 2 ,

(
Da2

−Da1

)
∼ 2 , (5.69)

a1 a
′
1 + a2 a

′
2 ∼ 1++ , a1 a

′
1 − a2 a

′
2 ∼ 1+− , a1 a

′
2 + a2 a

′
1 ∼ 1−+ , a1 a

′
2 − a2 a

′
1 ∼ 1−− ,

(5.70)

for

A ∼ 1++ , B ∼ 1+− , C ∼ 1−+ , D ∼ 1−− and
(
a1

a2

)
,

(
a′1
a′2

)
∼ 2 . (5.71)

The authors assign the left-handed and right-handed 13 fermions to the D4 representations 1+++2,
i.e. the first generation transforms trivially and the second and third one are unified into a doublet.
They include three copies of the SM Higgs doublet into their model which transform as singlets
under D4, φ1,2 ∼ 1++ and φ3 ∼ 1+−. The Higgs doublet φ1 contributes to the Dirac mass matrix of
the neutrinos and the electron mass, while φ2,3 determine the masses mµ and mτ . This separation
is possible due to the additional Z(aux)

2 under which the particles transform according to Table
5.6. Additionally, they introduce two gauge singlets χ1,2 which form a doublet under D4 which
only couples to the right-handed neutrinos. With this knowledge we can reproduce the Yukawa

Field De (Dµ, Dτ ) eR (µR, τR) νeR (νµR, ντ R) φ1 φ2 φ3 χ1,2

D4 1++ 2 1++ 2 1++ 2 1++ 1++ 1+− 2
Z2

(aux) + + − + − − − + + +

Table 5.6: The particle content and its symmetry properties under D4× Z2
(aux). We

adopted the notation of [94], where the left-handed lepton doublets are Dα = (να, α)t

for α = e, µ, τ , the right-handed charged leptons are eR, µR, τR and three right-
handed neutrinos exist, νe R, νµ R, ντ R. The three scalar fields φi are copies of the
SM Higgs doublet and the fields χ1,2 are gauge singlets, which only contribute to the
Majorana mass matrix of the right-handed neutrinos.

13Unlike we, the authors work with left-handed and right-handed instead of left-handed and left-handed conjugate
fields. The appearance of the Dirac and Majorana mass terms therefore slightly changes. However, the physical
results stay the same. Since we assume that the reader is familiar with the SM, we do not discuss the mass terms in
the basis of left- and right-handed fields at length, as done in Section 3.1 for those in the basis of left-handed and
left-handed conjugate fields.
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couplings and coupling terms of the right-handed neutrinos shown in [94]. They read 14

LY = y1De νeR φ̃1 + y2 (Dµ νµR +Dτ ντ R) φ̃1 (5.72)
+ y3De eR φ1 + y4 (Dµ µR +Dτ τR)φ2 + y5 (Dµ µR −Dτ τR)φ3 + h.c.

LνR = M νeR νeR +M ′ (νµR νµR + ντ R ντ R) (5.73)
+ yχ (νeR νµR χ1 + νeR ντ R χ2) + yχ (νµR νeR χ1 + ντ R νeR χ2) + h.c.

and lead to the following mass matrices 15

Mν =
v?1√
2

diag (y1, y2, y2) , (5.74)

Ml =
1√
2

diag (y3 v1, y4 v2 + y5 v3, y4 v2 − y5 v3) , (5.75)

MRR =

 M yχW cos(γ) yχW sin(γ)
yχW cos(γ) M ′ 0
yχW sin(γ) 0 M ′

 (5.76)

with the VEVs of the scalars

〈φi〉 =
vi√
2

(i = 1, 2, 3) , 〈χ1〉 = W cos(γ) and 〈χ2〉 = W sin(γ) (W > 0). (5.77)

For γ = π
4 the VEVs of the gauge singlets are equal, 〈χ1〉 = 〈χ2〉 = W√

2
, and the Majorana mass

matrix for the right-handed neutrinos is µτ symmetric

MRR =

 M Mχ Mχ

Mχ M ′ 0
Mχ 0 M ′

 with Mχ =
yχW√

2
. (5.78)

Since the Dirac mass matrix of the neutrinos is also µτ symmetric, the light neutrino mass matrix
derived from the type-1 seesaw shares this property. Therefore, this model predicts θ23 = π

4 and
θ13 = 0 for leptons, while θ12 is not constrained. Due to the choice of the group basis Ml and Mν

are diagonal and the lepton mixings solely originate from the right-handed Majorana mass matrix
MRR. The authors of [94] show that the assumption γ = π

4 can be derived from the minimization
of the scalar potential for W ∼ |M |, |M ′| � v, where v ≈ vi is the electroweak scale.
In the following, we analyze the mathematical structure of D4 and show that Ml, Mν and MRR

conserve different subgroups of D4. We find that Ml conserves a D2 subgroup, Mν does not break
D4 at all and MRR preserves a Z2 subgroup.
We start with the simplest observation, namelyMν does not break D4: This is easy to see, since the
Higgs field giving a Dirac mass to the neutrinos transforms as 1++ under D4 which is the invariant
under D4 and therefore cannot induce any breaking of the symmetry. Now we turn the charged
lepton mass matrix: We show that the Higgs fields coupling to the charged leptons preserve the
D2

∼= Z2 × Z2 group generated by g and (g h)2. From the generator relations it is clear that g and

14Note the additional overall sign which the authors of [94] include into the Dirac mass terms and the additional
factor of 1

2
they induce into the mass terms/couplings of the right-handed neutrinos.

15The mass matrices are given in the basis which is used in the terms in the Lagrangian. They therefore differ from
the ones shown in [94] which are rather given in the basis R̄ L for the Dirac mass terms and R̄ R̄ for the right-handed
neutrinos. This mainly induces a complex conjugation of the parameters of the model. Due to this choice of basis
the type-1 seesaw formula also deviates from the one which is used in the majority of the publications. However, the
physical results are the same independent of the choice of basis.
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(g h)2 both generate a Z2 group. Furthermore it is obvious that they do not coincide. Additionally,
one has to show that g and (g h)2 commute

g (g h)2 = g g h g h
g2=1
= h g h g g = (h g)2 g

(?)
= (g h)2 g ⇒ g , (g h)2 commute . (5.79)

with (?) being

(g h)2 (g h)2 = 1 (5.80)
⇔ (g h)2 = (g h)−2 = (h−1 g−1)2

⇔ (g h)2 = (h g)2 , since g = g−1 and h = h−1 .

Therefore g and (g h)2 generate a group Z2 × Z2 which is isomorphic to D2. We now have to check
how the D4 representations transform under the D2 subgroup. From the generators given above,
we see that g and (g h)2 have the following form for the representations

g = +1 , (g h)2 = +1 ... for 1++ (5.81)
g = +1 , (g h)2 = +1 ... for 1+− (5.82)
g = −1 , (g h)2 = +1 ... for 1−+ (5.83)
g = −1 , (g h)2 = +1 ... for 1−− (5.84)

g =
(

1 0
0 −1

)
, (g h)2 =

(
−1 0
0 −1

)
... for 2 . (5.85)

Only the two one-dimensional representations 1++ and 1+− preserve the D2 subgroup, since only
in their case both generators of D2, g and (g h)2 equal +1, i.e. 1++ and 1+− do not transform,
when g and (g h)2 are applied. For the two-dimensional representation we see that the generator
(g h)2 does not have an eigenvalue +1 and so none of the combinations of the upper and lower
components of a D4 doublet transforms as invariant under the D2 subgroup. Since D2 is abelian,
2 of D4 splits up into two one-dimensional representations which can be easily read off from the
two generators g and (g h)2, since these are simultaneously diagonal. They indicate that the upper
component transforms as +1 under g and −1 under (g h)2, while the lower one transforms as −1
under both generators g and (g h)2. In the model of [94] the charged leptons acquire masses through
the coupling to the Higgs fields φ1,2 ∼ 1++ and φ3 ∼ 1+− under D4. As shown before, if only these
fields get a VEV they preserve a D2 subgroup. Finally, we show that the right-handed Majorana
mass sector conserves a Z2 group which is generated by h alone. According to the generators above
the one-dimensional representations 1++ and 1−+ transform as +1 under h and therefore preserve
this generator. For the two-dimensional representation we have to calculate the eigenvalues and
eigenvectors of h in order to find the combination of upper and lower components of the doublet
which preserves h. The eigenvalues are +1 and −1 and the corresponding eigenvectors are

v+1 ∝
(

1
1

)
and v−1 ∝

(
1
−1

)
. (5.86)

Therefore

a1 + a2 (5.87)

transforms trivially under the remaining Z2 group, while

a1 − a2 (5.88)
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gets a sign, if a1,2 are the upper and lower component of a doublet 2. The VEV structure which
does not break the Z2 group is therefore 〈a1〉 = 〈a2〉. Looking at the mass matrix structure for the
right-handed neutrinos we recognize that the two gauge singlets χ1,2 ∼ 2 exactly preserve this Z2

subgroup, since the VEVs of χ1 and χ2 are equal. The direct mass terms do not break the flavor
symmetry anyway. Therefore MRR conserves the Z2 group. One can then ask two questions

a.) Does the model significantly change, if we include an additional gauge singlet ψ which trans-
forms as 1−+ and which is also allowed to have a non-vanishing VEV, since it does not
transform under the generator h ?

b.) Since we do not include a scalar field for all representations which transform trivially under
the Z2 subgroup, found in the right-handed Majorana neutrino sector, do we maybe preserve
a larger group ?

Concerning a.) we simply calculate the additional term which is allowed, if a gauge singlet ψ ∼ 1−+

with charge +1 under Z(aux)
2 exists

L′νR
= yψ (νµR ντ R + ντ R νµR)ψ . (5.89)

The mass matrix M̃RR reads

M̃RR =

 M Mχ Mχ

Mχ M ′ yψ 〈ψ〉
Mχ yψ 〈ψ〉 M ′

 (5.90)

and therefore is still µτ symmetric and leads again to a mass matrix for the light neutrinos which
is also µτ symmetric and hence predicts θ23 = π

4 and θ13 = 0 for leptons. However, the texture
zero in MRR leads to additional predictions not correlated to the mixing angles. For example, the
authors of [94] showed that the neutrino mass spectrum is normally ordered in their model due to
(MRR)23 = 0.
Concerning b.) the easiest way to answer this question is to calculate the eight distinct representation
matrices of the representation 2 and check how many of these possess an eigenvalue +1 with

eigenvector
(

1
1

)
. The eight matrices read

(
1 0
0 1

)
,

(
1 0
0 −1

)
,

(
0 1
1 0

)
,

(
−1 0
0 −1

)
, (5.91)(

−1 0
0 1

)
,

(
0 −1
−1 0

)
,

(
0 −1
1 0

)
,

(
0 1
−1 0

)
.

Only the first and the third matrix have
(

1
1

)
as eigenvector for the eigenvalue +1. The first

matrix is the identity and the third one is the generator h. Therefore the maximally preserved
subgroup is the Z2 group generated by h.

5.4.2 D3 × Z
(aux)
2 Model

In this section we analyze the D3 × Z
(aux)
2 model in the same fashion as the D4 × Z

(aux)
2 model.

We explain that maximal atmospheric mixing and vanishing θ13 stem from the preservation of a
Z3 subgroup in the charged lepton sector, a Z2 subgroup in the right-handed Majorana neutrino
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sector and an unbroken D3 group in the Dirac neutrino mass matrix. The results of the model are
very similar to the ones of the D4 model. However, we think that it is useful to also discuss this
model in detail in order to shed light on the group theoretical reasons for the prediction of maximal
atmospheric mixing and vanishing θ13.
We start with the mathematics of D3. Since the authors of [116] work in the same group basis as
we do, the generators A and B are special cases of the general ones shown in Section 5.1.1. They
read

A = +1 , B = +1 ... for 11 (5.92)
A = +1 , B = −1 ... for 12 (5.93)

A =

(
e

2 π i
3 0
0 e−

2 π i
3

)
, B =

(
0 1
1 0

)
... for 2 . (5.94)

and fulfill

A3 = 1 , B2 = 1 , A B A = B (5.95)

which is a special case of Eq.(5.1). The character table is given in Table A.1. The Kronecker
products read

11 × µ = µ ∀ µ , 12 × 12 = 11 , 12 × 2 = 2 , (5.96a)
[2× 2] = 11 + 2 , {2× 2} = 12 , (5.96b)

and for the Clebsch Gordan coefficients we find(
Aa1

Aa2

)
∼ 2 ,

(
B a1

−B a2

)
∼ 2 , (5.97)

a1 a
′
2 + a2 a

′
1 ∼ 11 , a1 a

′
2 − a2 a

′
1 ∼ 12 ,

(
a2 a

′
2

a1 a
′
1

)
∼ 2

with

A ∼ 11 , B ∼ 12 ,
(
a1

a2

)
,

(
a′1
a′2

)
∼ 2 . (5.98)

The fact that the authors work with left- and right-handed fields requires to know that for(
a1

a2

)
∼ 2 it is

(
a?2
a?1

)
which transforms as 2.

The assignment of the fields is very similar to the one in the D4 model, i.e. the second and third
generation are unified into a doublet of the flavor symmetry and the first one transforms trivially.
Again, there exist three copies of the SM Higgs doublet, called φi (i = 1, 2, 3), which transform
as 11 and 12. φ1 gives mass to the electron and generates the Dirac mass term of the neutrinos,
while φ2,3 are responsible for µ and τ mass. The right-handed Majorana mass matrix stems from
direct D3-invariant mass terms and from the coupling to a complex gauge singlet χ which forms
a doublet under D3 together with its complex conjugate. The additional Z(aux)

2 which constrains
the couplings of the fields φi is the same as above. All this is collected in Table 5.7. Given the
particle content of the model we can write down the Yukawa couplings and the mass terms for the
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Field De (Dµ, Dτ ) eR (µR, τR) νeR (νµR, ντ R) φ1 φ2 φ3 (χ, χ?)
D3 11 2 11 2 11 2 11 11 12 2

Z2
(aux) + + − + − − − + + +

Table 5.7: The particle content and its symmetry properties under D3× Z2
(aux).

The notation is the same as in Table 5.6. The three scalar fields φi are copies of the
SM Higgs doublet and the field χ is a complex gauge singlet, which only contributes
to the Majorana mass matrix of the right-handed neutrinos.

right-handed neutrinos 16

LY = y1De νeR φ̃1 + y2 (Dµ νµR +Dτ ντ R) φ̃1 (5.99)
+ y3De eR φ1 + y4 (Dµ µR +Dτ τR)φ2 + y5 (Dµ µR −Dτ τR)φ3 + h.c.

LνR = M νeR νeR +M ′ (νµR ντ R + ντ R νµR) (5.100)
+ yχ (νeR νµR χ? + νeR ντ R χ) + yχ (νµR νeR χ? + ντ R νeR χ)
+ zχ (νµR νµR χ+ ντ R ντ R χ

?) + h.c.

These lead to the following mass matrices 17

Mν = v?1 diag (y1, y2, y2) , (5.101)
Ml = diag (y3 v1, y4 v2 + y5 v3, y4 v2 − y5 v3) , (5.102)

MRR =

 M yχ |W | e−i α yχ |W | ei α
yχ |W | e−i α zχ |W | ei α M ′

yχ |W | ei α M ′ zχ |W | e−i α

 (5.103)

with the VEVs of the scalars

〈φi〉 = vi (i = 1, 2, 3) , 〈χ〉 = |W | ei α and 〈χ?〉 = |W | e−i α . (5.104)

Note that the resulting mass matrices are similar to the ones derived with the help of the flavor
symmetry D4 × Z

(aux)
2 . Especially, the basis is again chosen in such a way that Ml and Mν are

diagonal and the lepton mixing solely stems from the Majorana mass matrix of the right-handed
neutrinos. As shown by the authors of [116] MRR can be written as

MRR =

 M yχ |W | yχ |W |
yχ |W | zχ |W | e3 i α M ′

yχ |W | M ′ zχ |W | e−3 i α

 (5.105)

if the fermion fields are rephased. This form of MRR clearly shows that µτ symmetry is maintained,
if e3 i α = ±1. This leads to the allowed values of α = 0,±π

3 ,±
2π
3 ,±π and therefore requires the

VEV configuration of the D3 doublet, consisting of χ and χ?, to be proportional to(
〈χ〉
〈χ?〉

)
=
(

|W | ei α
|W | e−i α

)
= |W | e−i α

(
e2 i α

1

)
∝
(

1
1

)
︸ ︷︷ ︸
α=0,±π

,

(
e

2 π i
3

1

)
︸ ︷︷ ︸
α=π

3
,− 2 π

3

,

(
e−

2 π i
3

1

)
︸ ︷︷ ︸
α=−π

3
, 2 π

3

. (5.106)

16For reasons for the differences in the appearance of the Yukawa terms and Majorana masses see footnote above.
17For explanation of differences in mass matrices see footnote above.



5.4. PRESERVED SUBGROUPS EXPLAIN θ23 = π
4 AND θ13 = 0 FOR LEPTONS 5-25

As the authors showed in [116] the potential of the scalar fields actually enforces such configurations.
Therefore µτ symmetry in the neutrino mass matrix and consequently θ23 = π

4 and θ13 = 0 are
predictions of this model. Compared to the model above, note that all elements in MRR are non-
vanishing and hence its form is the general one which is µτ symmetric. Due to this no further
predictions, for example on the neutrino mass spectrum, can be made.
After presenting this model we analyze the group theory behind it. Therefore we enumerate the
elements of the group D3 and explicitly show under which conditions which subgroup remains
unbroken. The six distinct elements of D3 can be expressed as E, A, A2, B, B A and B A2. For the
representations 11, 12 and 2 they read

... for 11 E = +1 , A = +1 , A2 = +1 , B = +1 , B A = +1 , B A2 = +1 (5.107)

... for 12 E = +1 , A = +1 , A2 = +1 , B = −1 , B A = −1 , B A2 = −1 (5.108)

... for 2 E =
(

1 0
0 1

)
, A =

(
e

2 π i
3 0
0 e−

2 π i
3

)
, A2 =

(
e−

2 π i
3 0

0 e
2 π i
3

)
,(5.109)

B =
(

0 1
1 0

)
, B A =

(
0 e−

2 π i
3

e
2 π i
3 0

)
, B A2 =

(
0 e

2 π i
3

e−
2 π i
3 0

)
.

According to the generator relations, shown in Eq.(5.95), one finds that there exist four distinct
subgroups: three Z2 groups and one Z3 group. The three Z2 groups are generated by B, B A
and B A2, respectively. The fact that (B A)2 = 1 and (B A2)2 = 1 is a direct consequence of
the generator relations. The Z3 group contains the elements E, A and A2. In the following we
discuss how these subgroups can be preserved. We start with the Z3 group and see that both one-
dimensional representations transform as the trivial representation of Z3, while the two-dimensional
one splits up into the two complex conjugated non-trivial singlets of Z3. Therefore, demanding that
this group is preserved allows non-vanishing VEVs for scalars transforming as 11 or 12, but not as
2. A common feature, when preserving a Z2 subgroup, is the fact that fields in D3 representations
12 are not allowed to have a VEV, since 12 transforms as non-trivial singlet under all three possible
Z2 groups. Apart from the trivial representation 11, always a certain combination of the upper
and lower components of the D3 doublet transforms trivially under the Z2 subgroup. For the Z2

generated by B the combination reads

a1 + a2 , (5.110)

while a1 − a2 transforms non-trivially under the Z2 subgroup. Therefore, 〈a1〉 = 〈a2〉 leaves this
group invariant for ai being the upper and lower component of a D3 doublet. For Z2 =< B A >
the combination is

e
2 π i
3 a1 + a2 (5.111)

and e
2 π i
3 a1 − a2 picks up a sign. The VEV configuration which does not break this subgroup is

then 〈a1〉 = e−
2 π i
3 〈a2〉. And similarly, for the third Z2 group, generated by B A2, the invariant

combination is

e−
2 π i
3 a1 + a2 , (5.112)

whereas e−
2 π i
3 a1 − a2 acquires a sign under the Z2 subgroup. Hence, 〈a1〉 = e

2 π i
3 〈a2〉 is the VEV

correlation which keeps this Z2 subgroup intact for a1,2 being the components of a doublet. These
results should be compared to the discussion of the D7 model in which the subgroups Z2 generated
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by B Am (m = 0, ..., 6) played an essential role for the prediction of the CKM element |Vus (cd)|.
Applying the group theoretical insights to the D3 model, we arrive at the conclusions: the Dirac
neutrino mass matrix which solely stems from the VEV of the Higgs field φ1 preserves the whole D3

group, since φ1 does not transform under D3. The charged leptons are coupled to the three Higgs
doublets φ1,2,3 which all transform according to one-dimensional representations of D3. Therefore
the charged lepton sector leaves the Z3 subgroup invariant. And finally, the right-handed neutrinos
get direct mass terms which are D3-invariant and masses from the VEV of the complex gauge
singlet χ whose form is fixed in a way that Eq.(5.106) holds. Hence, the VEV coincides with the
Z2 group preserving VEVs, i.e. the residual group in the right-handed Majorana neutrino sector is
a Z2 symmetry. Obviously, all three sectors together break D3 completely - as it should be. Due
to the different possible VEVs for 〈χ〉 all Z2 directions of the group D3 are explored and not only
one, as in the D4 × Z

(aux)
2 model.

5.4.3 Comments on the D4 × Z
(aux)
2 and D3 × Z

(aux)
2 Model

As discussed in much detail, the prediction of θ23 = π
4 and θ13 = 0 is in both models [94] and [116]

intimately related to the fact that the flavor symmetry (D4 or D3) is not broken in an arbitrary
way, but always to a residual subgroup. The structure of the two models is very similar, i.e. the
group basis is in both cases chosen in a way that the charged lepton mass matrix Ml and the Dirac
mass matrix of the neutrinos Mν are diagonal. Only the right-handed Majorana mass matrix has
a non-trivial structure. This is achieved by including flavored gauge singlets into the model which
transform as a doublet under the flavor group. In order to arrive at a µτ symmetric mass matrix
for the light neutrinos, these fields cannot acquire an arbitrary VEV, but only certain subgroup
preserving structures are allowed. These can be maintained via the potential in both models, as
shown by the authors of [94,116]. The mass matrix of the charged leptons results from the coupling
to three Higgs fields φi which transform like the SM Higgs doublet. They lead to a diagonal matrix
whose entries are determined by three independent Yukawa couplings and VEVs 〈φi〉. Out of these
three fields only one should contribute to the Dirac mass matrix of the neutrinos. For this purpose,
an additional Z(aux)

2 symmetry is introduced in both models. Since the Higgs doublet, coupling to
the neutrinos, is invariant under the flavor group, the Dirac neutrino sector does not break this
symmetry. The matrix Mν is also µτ symmetric, if left- and right-handed neutrinos transform as
1 + 2 under the dihedral flavor symmetry.
As the mass matrix of the charged leptons is diagonal, no FCNCs are induced by the additional
Higgs doublets at tree level. Otherwise, these would strongly constrain the model. However, as
mentioned in [94,118], these effects are generated at loop level.
In both models scalar fields exist which acquire VEVs at very different scales, i.e. the Higgs doublets
φi have to have a VEV around the electroweak scale v ≈ 174 GeV, while the VEVs of the gauge
singlets are expected to be of the order of the seesaw scale 1013 GeV. This leads to a problem,
since the potential contains quartic couplings,

(
φ†i φi

) (
χ2

1 + χ2
2

)
and

(
φ†i φi

)
(χχ?), respectively,

connecting these fields. In order to make the models viable these terms have to have extremely
small coefficients. As the authors mention is [94], the introduction of SUSY can solve this problem.
Finally, we would like to point out that possible extensions to the quark sector as well as the
implementation of the models in a GUT framework could be very interesting, since these models
have the rare feature that they naturally lead to maximal atmospheric mixing and θ13 = 0 in the
lepton sector.
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5.5 Summary and Outlook

In the first part of this chapter we studied the general mass matrix structures induced by a dihe-
dral flavor symmetry [25]. Thereby, we revealed that the number of distinct structures which we
encounter in case that a dihedral flavor symmetry is broken spontaneously to one of its subgroups,
is very limited, if we additionally require that the determinant of the mass matrix is non-vanishing
and either left-handed or left-handed conjugate fermions have to be partially unified. The five
distinct structures have been presented in Eq.(5.9), Eq.(5.10) and Eq.(5.11) (Eq.(5.12)). As an
application of these results, we presented a way to predict one element of the quark mixing matrix
in terms of group theoretical quantities only. For example, it turned out that |Vus (cd)|, i.e. the
Cabibbo angle θC , can be explained with the help of the group D7, if we preserve different Z2 sub-
groups in the up and down quark sector [26]. Furthermore, we showed that in two models [94,116],
which can successfully explain θ23 = π

4 and θ13 = 0 for leptons, these predictions are based on the
fact that the flavor symmetries D4 and D3 are only broken to non-trivial subgroups in the different
sectors (lepton, Dirac neutrino and Majorana neutrino sector). In a next step, it might be worth
studying how these results can be combined to construct a model with a dihedral symmetry which
can predict the main features of the quark and lepton mixings simultaneously. A solution which
additionally allows an embedding into a GUT (and maybe also into a continuous flavor symmetry)
would be even more appealing.
For all results and models which have been presented in this chapter we assumed the framework
of the SM. It is hence interesting to ask whether these results are also applicable to other frame-
works, such as supersymmetric theories and GUTs. As already discussed in Section 4.1 the Yukawa
couplings in the MSSM are of the same form as the ones in the SM apart from the fact that in
the MSSM two Higgs fields hu and hd produce Dirac masses for the fermions. For this reason, all
mass matrices will be of the form as shown in Eq.(5.9), Eq.(5.10) and Eq.(5.11) and additional
changes arising from the fact that up quarks and neutrinos only couple to the conjugated Higgs
field are obsolete. In general, changes occurring due to the embedding into a GUT can only restrict
the freedom to assign the different fermions to different representations of the flavor symmetry.
For example, the embedding into SU(5) requires that all fermions, which are unified into a 10 of
SU(5), transform in the same way under the flavor group. Similarly, all fermions, which are unified
into 5, have to have the same transformation properties. The Dirac mass matrices in SU(5) stem
from the coupling 1010 and 510 for up quarks and down quarks and charged leptons, respectively.
This implies that the form of the up quark mass matrix is restricted to one originating from the
two doublet structure in which one- and two-dimensional representations are equivalent, while the
mass matrices of the other charged fermions can be of a form resulting either from the two doublet
or from the three singlet structure. Moreover, it is reasonable to ask whether we could replace the
Higgs doublets which transform under the flavor symmetry by gauge singlets and thereby disen-
tangle the electroweak and flavor symmetry breaking, as successfully implemented in the T ′ model
discussed in Chapter 4. Actually, we can do so, since we only have to replace the flavored Higgs
fields by one Higgs field, which is neutral under the flavor group, and a suitable combination of
gauge singlets, which allows us to form an invariant coupling under the flavor group. Hence, the
mass matrix structures are expected to be the same. However, one has to keep in mind that in case
of flavored Higgs doublets all couplings are renormalizable, while this is in general not the case, if
flavored gauge singlets are involved (see, for example, Yukawa couplings in Chapter 4). Thereby,
a hierarchy among the couplings is introduced. This leads to the conclusion that in certain cases
the implementation with flavored Higgs doublets is favorable, while in others the structure arising
from couplings to flavored gauge singlets can be advantageous.
Finally, one might ask the question, why we chose to study the dihedral groups and not another
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series of groups, like the permutation groups, Sn and An, or the series of SU(3) subgroups [80–84],
∆(3n2) and ∆(6n2). The permutation groups, however, are not suitable for such a systematic
study, since only small groups, S2, S3, S4 and A3, A4, A5, possess non-trivial representations with
dimensions lower or equal three. The groups ∆(3n2) and ∆(6n2) on the other hand are more
interesting, since they contain several three-dimensional representations, so that they can explain
the existence of three generations. However, since the groups ∆(3n2) and ∆(6n2) are less known in
particle physics, we decided to discuss the dihedral groups instead. Nevertheless, it is interesting to
notice that some groups belonging to the series of ∆(3n2) and ∆(6n2) are known. For example, A4,
the group which is able to predict TBM in the lepton sector, is actually isomorphic to ∆(3n2) for
n = 2. As mentioned in Section 3.2 also the group S4 is isomorphic to a ∆ group, namely ∆(6n2)
with n = 2. Therefore, we expect that the groups ∆(3n2) and ∆(6n2) have the ability to also
lead to very interesting mixing patterns, if we demand that certain subgroups remain preserved. In
addition, the mixing patterns will in general be different from the ones found in case of a dihedral
flavor symmetry, since ∆(3n2) and ∆(6n2) have completely different group structures compared
to the Dn and D′

n groups.



Chapter 6

Conclusions and Outlook

Models in particle theory turned out to be very successful in describing the gauge interactions of the
three generations of fermions and basic properties like charge quantization. However, none of them
is able to explain the existence of exactly three generations, the hierarchical fermion masses or the
diverse mixings of quarks and leptons. As we argued in the Introduction, invoking an additional
symmetry, which now acts on the three fermion generations, can shed light on these open questions.
In the context of the presented thesis this symmetry is always discrete and non-abelian.
We showed several examples of models with discrete non-abelian flavor groups. The two simplest
models, discussed in Chapter 3, augment the SM by the permutation group S4 and by the dihedral
symmetry D5, respectively. These are only spontaneously broken at the electroweak scale. The
fermion assignment can be uniquely determined, if additional requirements such as the embedding
into GUTs and/or continuous flavor groups are imposed. However, due to the large number of
Yukawa couplings and the complicated structure of the Higgs sector, both models can only fit the
fermion masses and the mixing patterns successfully, but are not predictive. Since such models have
to contain several flavored Higgs doublets, additional phenomenological problems arise, like large
FCNCs and LFVs mediated by the further Higgs particles which are generically rather light. More-
over, several of these potentials possess accidental (continuous) symmetries, albeit their complicated
structure. In order to improve this situation and find a predictive model, we studied another class
of models in which the electroweak and the flavor symmetry breaking scale are disentangled. As
a consequence these models only contain the Higgs fields, which are usually present to break the
gauge group and to give masses to the fermions. Additional gauge singlets are then responsible
for the flavor symmetry breaking. The actual realization, we presented here, is an extension of
the MSSM. The role of the flavor group is thereby played by the double-valued tetrahedral group
T ′. The model has the salient features to explain TBM in the lepton sector as well as to predict
relations among |Vus|, |Vtd/Vts| and md/ms. Moreover, it allows a deeper understanding of the
diverse mixing pattern observed in the quark and lepton sector: The up and down quark sector
preserve the same Z3 group of T ′ and therefore lead to small mixing angles. In contrast to this,
the subgroups conserved in the neutrino and charged lepton sector do not coincide, i.e. the neu-
trino mass matrix originates from couplings to fields whose VEVs break T ′ down to Z4, whereas
the charged leptons preserve the same subgroup as the quarks. The actual prediction of TBM is
thereby intimately correlated to the fact that T ′ is not allowed to be broken in an arbitrary way.
An additional Z3 symmetry is used for the separation of the different T ′ breaking sectors. A careful
study of the flavon potential is mandatory in order to show that the advocated VEV structures
can be realized. This is indeed the case thanks to two basic ingredients of the model, namely
the flavor symmetry breaking via gauge singlets and the supersymmetric framework. Additionally,

6-1



6-2 CHAPTER 6. CONCLUSIONS AND OUTLOOK

further fields and an extra U(1) symmetry have to be introduced to arrive at the actual poten-
tial. The fact that the model does not contain additional Higgs doublets also solves the problem
with the FCNCs and LFVs, which would otherwise be mediated. Since it turned out that not all
properties of the quarks can be explained with the leading order results, the next-to-leading order
has been studied carefully. The main challenge is to accommodate the size of the Cabibbo angle
θC = λ ≈ 0.22 and at the same time not to spoil the TBM in the lepton sector. Fortunately,
this can be maintained (almost) without any further assumptions on the parameters of the model.
The appealing interpretation of the different mixing pattern of quarks and leptons in terms of the
distinct breaking of the flavor symmetry in these sectors is a main message of this model. In order
to show that T ′ is not the only symmetry with which this idea can be implemented, we studied
the mass matrix structures originating from a large class of discrete symmetries in the third part
of the work. As class of symmetries we chose the dihedral groups Dn and their double-valued
counterparts D′

n. This systematic study revealed that only five (Dirac) mass matrix structures
can arise, if the dihedral symmetry is only broken in a non-trivial way. As additional constraints
we required that the determinant of the resulting mass matrices should be non-vanishing and at
least two generations of left-handed or left-handed conjugate fermions have to be unified into an
irreducible representation. Apart from this, the mass matrix structures have the unique feature
that they are only determined by the choice of the fermion representations and the structure of the
dihedral group, but not by the choice of the transformation properties of the scalar (Higgs/flavon)
fields. Subsequently, we presented three examples of models with dihedral flavor symmetries which
make clear predictions for the fermion mixings due to the preservation of non-trivial subgroups.
In the first example the mismatch of different directions of residual Z2 groups in the up and down
quark sector gives rise to the Cabibbo angle θC , i.e. leads to the prediction of the CKM element
|Vus| or |Vcd| to be cos(3π

7 ) ≈ 0.2225, independent of the choice of arbitrarily tunable parameters,
like Yukawa couplings. The second and third example show that maximal atmospheric mixing and
vanishing θ13 can originate from the dihedral groups D4 and D3 in case that they are not broken in
an arbitrary way in the charged lepton, Dirac neutrino and Majorana neutrino sector. Since these
results crucially depend on the VEV configuration, a careful study of the Higgs/flavon potential
is obligatory. A first realization of the first model employed flavored Higgs doublets and therefore
only could adjust, but not predict the advocated VEV structures. In contrast to this, it can be
shown that in the second and third model the subgroup preserving VEVs are natural solutions of
the scalar potentials without additional assumptions.
The prospects for the study of flavor symmetries are therefore the following:

• construction of flavored GUT models,

• search for further imprints of the flavor symmetry,

• systematic study of further classes of discrete groups.

Concerning the first item there are several reasons to pursue this aim: a.) GUTs themselves have
many salient features such as the possibility to explain charge quantization, b.) the existing models
which can successfully describe the flavor sector can hardly be embedded into a GUT, since the
fermion assignment under the flavor symmetry is not compatible with the GUT representations
(see, for example, the T ′ model in Chapter 4) and c.) some of the generic problems in GUTs such
as how to reconcile the strong hierarchy in the up quark sector with the very mild hierarchy among
the (light) neutrinos, might be elegantly solved with a flavor symmetry.
By finding a convincing model which describes the fermion masses and their mixings a first goal is
reached. Nevertheless, a flavor symmetry always leads to additional experimental signatures which
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have not been considered in most of the models discussed in the literature. Further useful informa-
tion about the flavor structure can be extracted from constraints on K0 − K̄0, B0

d,s − B̄0
d,s mixing,

rare K and B decays and the non-observation of LFV processes, like µ→ eγ, τ → µγ, µ→ 3e and
µ− e conversion in nuclei. In the framework of low energy models, in which the flavor symmetry is
broken spontaneously at the electroweak scale, these further signatures arise through the existence
of several SU(2)L Higgs doublets and strongly constrain the models. Therefore, most of the models
constructed in this way are only semi-realistic 1. In supersymmetric models additional imprints
emerge. These result from the fact that the flavor symmetry in general constrains all terms in a
theory and therefore also the soft SUSY breaking terms, i.e. soft masses of the superpartners and
the so-called A-terms. It is well-known that in generic MSSM models the rates of FCNC and LFV
processes turn out to be much larger than the experimental values/bounds, as long as no special
assumptions on the origin of the soft SUSY parameters are made, like mSUGRA initial conditions.
Flavor symmetries could have an important impact on these effects 2. Furthermore, these effects
-once they are observed- allow us to differentiate among the numerous models found in the lit-
erature which all have the ability to explain/accommodate the fermion masses and mixings. In
particular, the process µ→ eγ is an ideal candidate for this purpose, as the MEG experiment [120]
is supposed to deliver its first results in the end of 2008.
Apart from the imprints directly correlated to the flavor sector other possible signatures are worth
to be explored. For example, in the T ′ model presented in Chapter 4 the flavon potential contains
flat directions in the supersymmetric limit. These could offer interesting connections to cosmology,
since a combination of the flavon fields might be a viable candidate for an inflaton.
In contrast to Lie groups which describe the gauge interactions and which are well-classified, up to
now no complete survey of discrete groups as flavor symmetries exists. However, as we have shown
by our systematic study of the infinite series of Dn and D′

n groups, this might become possible, if
we adopt the concept of the breaking to conserved subgroups instead of allowing a flavor symmetry
to be broken in an arbitrary way. Furthermore, as demonstrated by four examples, this seems to
be the key to a deeper understanding of the mixing patterns of quarks and leptons and to a precise
prediction of the mixing parameters. Therefore, it is very interesting to investigate which mathe-
matical group structure can lead to which mixings. Apart from the Dn and D′

n groups the series
∆(3n2) and ∆(6n2) for n ∈ N offer very interesting opportunities. These have several properties in
common regarding the possible dimension of their representations and at least one of them, namely
∆(12) which is isomorphic to A4, already turned out to be able to successfully explain TBM in
the lepton sector. By studying them we expect to find new mixing patterns, not found in case of
a dihedral group, since their group structure is completely different.
Finally, we could think of other topics related to flavor symmetries which are worth to be in-
vestigated such as anomalies of discrete groups or their origin in a complete high energy theory.
Thereby, string theory might also offer a possibility. In this case the discrete group does not need
to be embedded into a continuous one, but it is an outcome of the string theory construction 3.

1In the very improbable case that several distinct Higgs particles will be observed at the Large Hadron Collider
(LHC) these models could again be very interesting.

2Studies of the effects in models with an SU(3) flavor symmetry can be found in [119].
3For example, it has been shown in [121] that D4 and the group ∆(54) can be present in a certain class of models.



4 CHAPTER 6. CONCLUSIONS AND OUTLOOK



Appendix A

General Remarks on Discrete Groups

In this Appendix we collect the basic knowledge about discrete groups. For further reading we
reference [85]. The general definition of a group is: A group G is a set of elements R,S,T etc.
for which a law of composition, i. e. ”multiplication”, is given so that the product of any two
elements RS is well defined and fulfills the following conditions:

(1) If R ,S ∈ G, then RS ∈ G

(2) The multiplication is associative, i. e. (RS)T = R(ST )

(3) There exists a unique element E so that for every R ∈ G: RE = ER = R. E is called the
identity.

(4) For every element R ∈ G exists a unique element S so that RS = SR = E. S is called the
inverse and usually denoted by S = R−1.

Regardless of the law of composition, every element of the group commutes with itself. Clearly, the
inverse of R−1 is R itself. If all elements of the group G commute, this group is called abelian.
Otherwise it is non-abelian. Two groups G and G′ are isomorphic (G ∼= G′), if there exists a one-
to-one correspondence between the elements of G and G′ which preserves the law of composition and
the image of G in G′ is G′. These groups then have the same structure. A group is finite/discrete,
if the number of distinct elements of the group is finite. The order ◦G of G is the number of
distinct elements in this group. H is called a subgroup of G, if H ⊂ G and H forms a group under
the same law of composition, as G does. The improper subgroups of G are {E} and G itself.
Otherwise the subgroup is called proper. The order of H has to fulfill : ◦H | ◦G (Lagrange’s
theorem). The index of a subgroup H of G is

◦G
◦H . Clearly, G cannot be isomorphic to any of its

proper subgroups. The order ◦h of the element R of G is the smallest integer h for which
Rh = E holds. The elements of a group G are divided into (conjugate) classes Ci which consist
of all elements R,S of G which are related by T ∈ G so that R = T−1 S T . Note that elements
of the same class Ci have the same order ◦hCi . Per definitionem, C1 contains the identity of the
group which forms a class on its own. The order ◦Ci of a class Ci is the number of distinct
elements in this class. All classes of G are disjoint and therefore

∑
Ci

◦Ci = ◦G . Furthermore it

holds that ◦Ci | ◦G . Trivially, the order of the class C1 is always one. A subset of the elements of
G from which all other elements of G can be formed by multiplication is a set of generators of G.
Note that it is not uniquely determined and also the number of generators can vary. In particular,
if the whole group is generated by only one generator, the group must be abelian. If at least two
of the generators do not commute, the group is non-abelian. The generators have to fulfill certain

A-1
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generator relations which determine the group structure. A representation µ of a group G is
in our case a set of a Nµ-dimensional squared matrices over R or C, µ =

{
D(µ)(R)

}
, which fulfill

D(E) = 1 (A.1a)

D(R−1) = D(R)−1 (A.1b)

D(RS) = D(R)D(S) especially D(R)2 = D(R2) (A.1c)

For Nµ = 1 these are real or complex numbers. The law of composition is the ordinary (matrix)
multiplication. Representations are denoted according to their dimension Nµ, e.g. 1i, 2i, etc..
The attached index i can be omitted, if there exists only one (irreducible) representation of this
dimension in the group under discussion. Sometimes this index is replaced by an appropriate
number of primes ′. For any finite group G the representation matrices can always be chosen to
be unitary, i. e. D†(R)D(R) = D(R)D†(R) = 1 ∀ R ∈ G. Therefore, the representations of
finite groups are said to be unitary. A representation µ of G is irreducible, if it cannot be
decomposed into other (smaller) representations of G. Two representations µ =

{
D(µ)(R)

}
and

ν =
{
D(ν)(R)

}
are equivalent, if there exists a similarity transformation C such that D(µ)(R) =

CD(ν)(R)C−1 ∀ R ∈ G. Then, they have the same structure. For a faithful representation
the number of distinct representation matrices equals the order of the group. The products of a
faithful representation with itself contain all other representations of the group. If a group is finite,
all representations µ are also finite, i.e. have a finite dimension Nµ. Their dimensions Nµ are related
to the order of the group by

∑
µ
N2
µ = ◦G and Nµ| ◦G . The number of classes equals the number

of irreducible representations of the group. If Nµ > 1 for one µ, the group is non-abelian. The
smallest non-abelian group is the permutation group of three distinct objects which is isomorphic
to the dihedral group of order three. It is called Type 6/2 in a mathematical classification [109]. It
has six distinct elements. An overview over many discrete groups is given in [85]. The character
table of a group contains all traces of the representation matrices of all representations µ. Since
the trace of a matrix is invariant under similarity transformations, all elements of one class Ci
have the same character χi. For one-dimensional representations the characters coincide with the
(one-dimensional) representation matrices. Since the representation matrices have to be invertible,
all characters have to be unequal zero for one-dimensional representations. All characters of the
trivial representation, 11 or 1, of the group are equal to one. The character χ(µ)

1 belonging to C1,
i.e. the class which contains the identity element, equals the dimension Nµ of the representation
µ. A representation with real characters is real, if its representation matrices can be brought into
a real form. If the representation has real characters only, but its representation matrices cannot
be brought into real form, it is called pseudo-real. If the representation has complex characters,
it is called complex. Then also its representation matrices are complex. In all groups the number
of complex representations is even, since each complex representation µ has its complex conjugate
µ̄. The representation matrices of µ̄ are the complex conjugated ones of µ (up to a similarity
transformation). The c(µ) number of a representation µ indicates whether it is real (c(µ) = 1),
pseudo-real (c(µ) = −1) or complex (c(µ) = 0). Pseudo-real representations are usually found in
double(-valued) groups which are generically subgroups of SU(2). For illustration, the character
table of the smallest non-abelian group is given in Table A.1. The Kronecker products µ× ν of
all representations µ and ν of the group can be calculated with the help of the character table. They
can be uniquely decomposed into the irreducible representations of the group. For the product of
µ with itself we define the symmetric, [µ× µ], and anti-symmetric part, {µ× µ}, of the product.
It always holds that µ × ν = ν × µ and 11 × µ = µ. In order to find the explicit form of the
covariants (in a Kronecker product) which have a well-defined transformation behavior under the
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classes
C1 C2 C3

G 1 B A
◦Ci 1 3 2
◦h Ci 1 2 3 c(µ) faithful
11 1 1 1 1
12 1 -1 1 1
2 2 0 -1 1

√

Table A.1: Character table of S3
∼= D3

∼= Type 6/2. ◦Ci denotes
the order of the class and ◦hCi the order of the elements in Ci. G is
a representative of the class, given in terms of the generators A and B
which fulfill the relations A3 = 1, B2 = 1 and ABA = B. c

(µ) = 1
indicates that all representations of this group are real. Furthermore,
one can read off the table that only the two-dimensional representation
is faithful.

group, one has to calculate the Clebsch Gordan coefficients from a certain set of representation
matrices. Therefore, their actual appearance is basis-dependent, in contrast to, for example, the
results of the Kronecker products which are computed from the characters of the representations.
However, if everything is done consistently, the physical results have to be the same in all bases.
All formulae, i.e. for the calculation of the Kronecker products, the Clebsch Gordan coefficients,
the c(µ) numbers and so forth, can be found in [85]. Furthermore, the methods to calculate the
embedding schemes of discrete groups into the continuous groups SO(3), SU(2) and SU(3) are
explained in [85]. Some material concerning the correlation tables, i.e. the breaking sequences of
discrete groups down to their subgroups, can also be found there.
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Appendix B

Details of the Presented Groups

In this Appendix we present the Kronecker products and Clebsch Gordan coefficients of the groups
we used in the models shown in this work.
For notations and conventions as well as the references concerning the calculations see Appendix
A.

B.1 Group Theory of S4 Model

The Kronecker products can be calculated from the above given character table, see Table 3.1.

1i × 1j = 1(i+j) mod 2 +1 ∀ i and j (B.1a)

2× 1i = 2 ∀ i (B.1b)
3i × 1j = 3(i+j) mod 2 +1 ∀ i and j (B.1c)

3i × 2 = 31 + 32 ∀ i (B.1d)
31 × 32 = 12 + 2 + 31 + 32 (B.1e)
[2× 2] = 11 + 2 , {2× 2} = 12 (B.1f)[
3i × 3i

]
= 11 + 2 + 31 ,

{
3i × 3i

}
= 32 ∀ i (B.1g)

The Clebsch Gordan coefficients can be calculated with the given representation matrices, see
Section 3.2.1, for

B ∼ 12 ,
(
a1

a2

)
,

(
a′1
a′2

)
∼ 2 ,

 b1
b2
b3

 ,

 b′1
b′2
b′3

 ∼ 31 ,

 c1
c2
c3

 ,

 c′1
c′2
c′3

 ∼ 32 .

They are trivial for the one-dimensional representations as well as for the products 11 × µ of any
representation µ with the total singlet 11. The ones for the products 12 × µ are almost trivial:(

−B a2

B a1

)
∼ 2 ,

 B b1
B b2
B b3

 ∼ 32 ,

 B c1
B c2
B c3

 ∼ 31 .

The Clebsch Gordan coefficients for µ× µ have the form:
... for 2: a1a

′
1 + a2a

′
2 ∼ 11,

−a1a
′
2 + a2a

′
1 ∼ 12,(

a1a
′
2 + a2a

′
1

a1a
′
1 − a2a

′
2

)
∼ 2

B-1
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... for 31:
3∑
j=1

bjb
′
j ∼ 11,(

1√
2
(b2b′2 − b3b

′
3)

1√
6
(−2b1b′1 + b2b

′
2 + b3b

′
3)

)
∼ 2, b2b

′
3 + b3b

′
2

b1b
′
3 + b3b

′
1

b1b
′
2 + b2b

′
1

 ∼ 31 , b3b
′
2 − b2b

′
3

b1b
′
3 − b3b

′
1

b2b
′
1 − b1b

′
2

 ∼ 32

... for 32:
3∑
j=1

cjc
′
j ∼ 11,(

1√
2
(c2c′2 − c3c

′
3)

1√
6
(−2c1c′1 + c2c

′
2 + c3c

′
3)

)
∼ 2, c2c

′
3 + c3c

′
2

c1c
′
3 + c3c

′
1

c1c
′
2 + c2c

′
1

 ∼ 31, c3c
′
2 − c2c

′
3

c1c
′
3 − c3c

′
1

c2c
′
1 − c1c

′
2

 ∼ 32.

Note here that the parts belonging to the symmetric part of the product µ × µ are symmetric
under the exchange of unprimed and primed whereas the ones belonging to the anti-symmetric
part change sign, i.e. are anti-symmetric. Note also that for our choice of generators the Clebsch
Gordan coefficients for 31 × 31 and 32 × 32 turn out to be the same.
For the couplings 2× 3i and 31 × 32 we get:

... for 2× 31:

 a2b1
−1

2(
√

3a1b2 + a2b2)
1
2(
√

3a1b3 − a2b3)

 ∼ 31, a1b1
1
2(
√

3a2b2 − a1b2)
−1

2(
√

3a2b3 + a1b3)

 ∼ 32

... for 2× 32:

 a1c1
1
2(
√

3a2c2 − a1c2)
−1

2(
√

3a2c3 + a1c3)

 ∼ 31, a2c1
−1

2(
√

3a1c2 + a2c2)
1
2(
√

3a1c3 − a2c3)

 ∼ 32
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... for 31 × 32:
3∑
j=1

bjcj ∼ 12,(
1√
6
(2b1c1 − b2c2 − b3c3)

1√
2
(b2c2 − b3c3)

)
∼ 2, b3c2 − b2c3

b1c3 − b3c1
b2c1 − b1c2

 ∼ 31, b2c3 + b3c2
b1c3 + b3c1
b1c2 + b2c1

 ∼ 32.

Since we choose all the representation matrices to be real, the displayed Clebsch Gordan coefficients
are the same even if the representations are conjugated.
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B.2 Group Theory of D5 Model

The Kronecker products µ× ν among the representations 11, 12, 21 and 22 read:

1i × 1j = 1(i+j) mod 2 +1 for {i, j} ∈ {1, 2} (B.2a)

1i × 2j = 2j for {i, j} ∈ {1, 2} (B.2b)

[21 × 21] = 11 + 22 , {21 × 21} = 12 (B.2c)
[22 × 22] = 11 + 21 , {22 × 22} = 12 (B.2d)
21 × 22 = 21 + 22 (B.2e)

They are only special cases of the general formulae shown in Appendix B.4. Similarly, also the
following Clebsch Gordan coefficients are only special cases. However, for the reader, unfamiliar
with the group structure of the dihedral groups Dn with arbitrary index n, they are explicitly listed
here, for

B ∼ 12 ,
(
a1

a2

)
,

(
a′1
a′2

)
∼ 21 ,

(
b1
b2

)
,

(
b′1
b′2

)
∼ 22 .

As usual, the Clebsch Gordan coefficients for 1i × 1j and 11 × µ are trivial, whereas a non-trivial
sign appears in 12 × 2i:(

B a1

−B a2

)
∼ 21 and

(
B b1
−B b2

)
∼ 22 .

The Clebsch Gordan coefficients for 2i × 2j are:
... for 21 × 21: a1 a

′
2 + a2 a

′
1 ∼ 11,

a1 a
′
2 − a2 a

′
1 ∼ 12,(

a1 a
′
1

a2 a
′
2

)
∼ 22

... for 22 × 22: b1 b
′
2 + b2 b

′
1 ∼ 11,

b1 b
′
2 − b2 b

′
1 ∼ 12,(

b2 b
′
2

b1 b
′
1

)
∼ 21

... for 21 × 22:
(
a2 b1
a1 b2

)
∼ 21,(

a2 b2
a1 b1

)
∼ 22.

Note here that due to the usage of complex matrices for the real representations 21,2 the Clebsch
Gordan coefficients for 2?i differ from the shown ones. As explained in Section 3.3.1 they are
connected via the similarity transformation U , e.g. the trivial representation contained in the
product 2?1 × 21 is

a?1 a
′
1 + a?2 a

′
2 ∼ 11 for

(
a1

a2

)
,

(
a′1
a′2

)
∼ 21 .
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B.3 Group Theory of T ′ Model

The Kronecker products are the following ones for the representations 1, 1′, 1′′, 2, 2′, 2′′ and 3:

1× µ = µ ∀ µ (B.3a)
1′ × 1′ = 1′′ , 1′′ × 1′′ = 1′ , 1′ × 1′′ = 1 (B.3b)
1′ × 2 = 2′ , 1′ × 2′ = 2′′ , 1′ × 2′′ = 2 (B.3c)
1′′ × 2 = 2′′ , 1′′ × 2′ = 2 , 1′′ × 2′′ = 2′ (B.3d)
1× 3 = 3 , 1′ × 3 = 3 , 1′′ × 3 = 3 (B.3e)
[2× 2] = 3 , {2× 2} = 1 (B.3f)[
2′ × 2′

]
= 3 ,

{
2′ × 2′

}
= 1′′ (B.3g)[

2′′ × 2′′
]

= 3 ,
{
2′′ × 2′′

}
= 1′ (B.3h)

2× 2′ = 1′ + 3 , 2× 2′′ = 1′′ + 3 , 2′ × 2′′ = 1 + 3 (B.3i)
2× 3 = 2 + 2′ + 2′′ , 2′ × 3 = 2 + 2′ + 2′′ , 2′′ × 3 = 2 + 2′ + 2′′ (B.3j)
[3× 3] = 1 + 1′ + 1′′ + 3 , {3× 3} = 3 (B.3k)

In general the products of two single-valued or two double-valued representations decompose into
single-valued representations, whereas the products of one single- and one double-valued represen-
tation split up into irreducible double-valued representations.
In the following we display the Clebsch Gordan coefficients for

A ∼ 1 , A′ ∼ 1′ , A′′ ∼ 1′′ ,
(
a1

a2

)
,

(
a′1
a′2

)
∼ 2 ,

(
b1
b2

)
,

(
b′1
b′2

)
∼ 2′ ,

(
c1
c2

)
,

(
c′1
c′2

)
∼ 2′′ , d1

d2

d3

 ,

 d′1
d′2
d′3

 ∼ 3 .

The Clebsch Gordan coefficients for the products of the form 1(′′) × 1(′′) and 1(′′) × 2(′′) are trivial.
1(′′) × 3 are the first non-trivial products, since the entries of the three-dimensional representation
are permuted: Ad1

Ad2

Ad3

 ∼ 3 ,

 A′ d3

A′ d1

A′ d2

 ∼ 3 ,

 A′′ d2

A′′ d3

A′′ d1

 ∼ 3 .

The Clebsch Gordan coefficients for µ× µ have the form:
... for 2: a1 a

′
2 − a2 a

′
1 ∼ 1, 1−i

2 (a1 a
′
2 + a2 a

′
1)

i a1 a
′
1

a2 a
′
2

 ∼ 3

... for 2′: b1 b
′
2 − b2 b

′
1 ∼ 1′′, i b1 b

′
1

b2 b
′
2

1−i
2 (b1 b′2 + b2 b

′
1)

 ∼ 3

... for 2′′: c1 c
′
2 − c2 c

′
1 ∼ 1′, c2 c

′
2

1−i
2 (c1 c′2 + c2 c

′
1)

i c1 c
′
1

 ∼ 3
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... for 3: d1 d
′
1 + d2 d

′
3 + d3 d

′
2 ∼ 1,

d3 d
′
3 + d1 d

′
2 + d2 d

′
1 ∼ 1′,

d2 d
′
2 + d1 d

′
3 + d3 d

′
1 ∼ 1′′,

1
3

 2 d1 d
′
1 − d2 d

′
3 − d3 d

′
2

2 d3 d
′
3 − d1 d

′
2 − d2 d

′
1

2 d2 d
′
2 − d1 d

′
3 − d3 d

′
1

 ∼ 3,

1
2

 d2 d
′
3 − d3 d

′
2

d1 d
′
2 − d2 d

′
1

d3 d
′
1 − d1 d

′
3

 ∼ 3.

and for the mixed products we find:
... for 2× 2′: a1 b2 − a2 b1 ∼ 1′, a2 b2

1−i
2 (a1 b2 + a2 b1)

i a1 b1

 ∼ 3

... for 2× 2′′: a1 c2 − a2 c1 ∼ 1′′, i a1 c1
a2 c2

1−i
2 (a1 c2 + a2 c1)

 ∼ 3

... for 2′ × 2′′: b1 c2 − b2 c1 ∼ 1, 1−i
2 (b1 c2 + b2 c1)

i b1 c1
b2 c2

 ∼ 3

... for 2× 3:
(

(1 + i) a2 d2 + a1 d1

(1− i) a1 d3 − a2 d1

)
∼ 2,(

(1 + i) a2 d3 + a1 d2

(1− i) a1 d1 − a2 d2

)
∼ 2′,(

(1 + i) a2 d1 + a1 d3

(1− i) a1 d2 − a2 d3

)
∼ 2′′

... for 2′ × 3:
(

(1 + i) b2 d1 + b1 d3

(1− i) b1 d2 − a2 d3

)
∼ 2,(

(1 + i) b2 d2 + b1 d1

(1− i) b1 d3 − b2 d1

)
∼ 2′,(

(1 + i) b2 d3 + b1 d2

(1− i) b1 d1 − b2 d2

)
∼ 2′′

... for 2′′ × 3:
(

(1 + i) c2 d3 + c1 d2

(1− i) c1 d1 − c2 d2

)
∼ 2,(

(1 + i) c2 d1 + c1 d3

(1− i) c1 d2 − c2 d3

)
∼ 2′,(

(1 + i) c2 d2 + c1 d1

(1− i) c1 d3 − c2 d1

)
∼ 2′′

All these results coincide with the ones shown in [111,112].
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B.4 Group Theory of Dn and D′
n Groups

In this section we present the character tables of the dihedral groups Dn and D′
n, general formulae

for the Kronecker products as well as for the Clebsch Gordan coefficients.

B.4.1 Character Tables

Dn, classes
n odd C1 C2 C3 ... Cm+1 Cm+2

G 1 A A2 ... Am B
◦Ci 1 2 2 ... 2 n
◦hCi 1 n n ... n 2

11 1 1 1 ... 1 1
12 1 1 1 ... 1 -1
21 2 2 cos(ϕ) 2 cos(2ϕ) ... 2 cos(mϕ) 0
22 2 2 cos(2ϕ) 2 cos(4ϕ) ... 2 cos(2mϕ) 0
...

...
...

...
...

...
...

2m 2 2 cos(mϕ) 2 cos(2mϕ) ... 2 cos(m2 ϕ) 0

Table B.1: Character table of the group Dn with n odd. m denotes n−1
2

and ϕ is 2π
n

.

Dn, classes
n even C1 C2 C3 ... Cm Cm+1 Cm+2 Cm+3

G 1 A A2 ... Am−1 Am B AB
◦Ci 1 2 2 ... 2 1 n

2
n
2

◦hCi 1 n n
2

... n [n
2
] 2 2 2

11 1 1 1 ... 1 1 1 1
12 1 1 1 ... 1 1 -1 -1
13 1 -1 1 ... (−1)m−1 (−1)m 1 -1
14 1 -1 1 ... (−1)m−1 (−1)m -1 1
21 2 2 cos(ϕ) 2 cos(2ϕ) ... 2 cos((m− 1)ϕ) 2 cos(mϕ) 0 0
22 2 2 cos(2ϕ) 2 cos(4ϕ) ... 2 cos(2 (m− 1)ϕ) 2 cos(2mϕ) 0 0
...

...
...

...
...

...
...

...
...

2m− 1 2 2 cos((m− 1)ϕ) 2 cos(2 (m− 1)ϕ) ... 2 cos((m− 1)2 ϕ) 2 cos((m− 1)mϕ) 0 0

Table B.2: Character table of the group Dn with n even. m denotes n
2

and ϕ is 2π
n

. Note
that ◦hCi depends on m for Am−1, i.e. it is n for m being even (n is then divisible by four)
and it is n

2
for m being odd (n is then divisible by two, but not by four).
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D′
n, classes

n odd C1 C2 C3 ... Cn Cn+1 Cn+2 Cn+3

G 1 A A2 ... An−1 An B AB
◦Ci 1 2 2 ... 2 1 n n
◦hCi 1 2n n ... n 2 4 4

11 1 1 1 ... 1 1 1 1
12 1 1 1 ... 1 1 -1 -1
13 1 -1 1 ... 1 -1 −i i
14 1 -1 1 ... 1 -1 i −i
21 2 2 cos(ϕ) 2 cos(2ϕ) ... 2 cos((n− 1)ϕ) -2 0 0
22 2 2 cos(2ϕ) 2 cos(4ϕ) ... 2 cos(2 (n− 1)ϕ) 2 0 0
...

...
...

...
...

...
...

...
...

2n− 1 2 2 cos((n− 1)ϕ) 2 cos(2 (n− 1)ϕ) ... 2 cos((n− 1)2 ϕ) 2 0 0

Table B.3: Character table of the group D′
n with n odd. ϕ is π

n
.

D′
n, classes

n even C1 C2 C3 ... Cn Cn+1 Cn+2 Cn+3

G 1 A A2 ... An−1 An B AB
◦Ci 1 2 2 ... 2 1 n n
◦hCi 1 2n n ... 2n 2 4 4

11 1 1 1 ... 1 1 1 1
12 1 1 1 ... 1 1 -1 -1
13 1 -1 1 ... −1 1 1 -1
14 1 -1 1 ... −1 1 -1 1
21 2 2 cos(ϕ) 2 cos(2ϕ) ... 2 cos((n− 1)ϕ) -2 0 0
22 2 2 cos(2ϕ) 2 cos(4ϕ) ... 2 cos(2 (n− 1)ϕ) 2 0 0
...

...
...

...
...

...
...

...
...

2n− 1 2 2 cos((n− 1)ϕ) 2 cos(2 (n− 1)ϕ) ... 2 cos((n− 1)2 ϕ) -2 0 0

Table B.4: Character table of the group D′
n with n even. ϕ is π

n
.

B.4.2 Kronecker Products of Dn and D′
n

The products of the one-dimensional representations of Dn are:

× 11 12 13 14
11 11 12 13 14
12 12 11 14 13
13 13 14 11 12
14 14 13 12 11

where the representations 13,4 only exists in groups Dn with an even index n. The products 1i×2j
transform as:

11,2 × 2j = 2j

and for n even there are also:

13,4 × 2j = 2k with k =
n

2
− j
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If 4 is a divisor of n, the products of the representation 2j with j = n
4 with any one-dimensional

representation of the group also transform as 2j.

The products 2i × 2i are of the form 11 + 12 + 2j with j = min(2 i, n − 2 i). In case that the

group Dn has an index n which is divisible by four one also finds the structure 2i × 2i =
4∑

j=1
1j for

i = n
4 . This shows that there is at most one representation in each group Dn with this property.

The mixed products 2i × 2j can have two structures: a.) 2i × 2j = 2k + 2l with k = |i − j| and
l = min(i + j, n− (i + j)) and b.) 2i × 2j = 13 + 14 + 2k with k = |i− j| for i + j = n

2 .

For D′
n with n even the one-dimensional representations have the same product structure as for

Dn while for n being odd they are:

× 11 12 13 14
11 11 12 13 14
12 12 11 14 13
13 13 14 12 11
14 14 13 11 12

due to the fact that the two one-dimensional representations 13 and 14 are complex conjugated to
each other.
The rest of the formulae for the different product structures are the same as in the case of D2n,
i.e. in each formula above which is given for Dn one has to replace n by 2n.

The Kronecker products can also be found in [122].

B.4.3 Clebsch Gordan Coefficients of Dn

Here we display the Clebsch Gordan coefficients for the Kronecker products 1i × 1j, 1i × 2j and
2i × 2j. Since we discuss the groups Dn independent from their index n, we present the Clebsch
Gordan coefficients in a slightly more general notation than above. This will be explained with two
examples in the following.
For 1i × 1j = 1k the Clebsch Gordan coefficient is trivially one. For 1i × 2j the Clebsch Gordan
coefficients are:
for i = 1( (

1 0
)(

0 1
) ) ∼ 2j

for i = 2( (
1 0

)(
0 −1

) ) ∼ 2j

I.e. for A ∼ 11 and
(
a1

a2

)
∼ 2j

(
Aa1

Aa2

)
transforms as 2j and for B ∼ 12 it is

(
B a1

−B a2

)
which transforms as 2j.
If the index n of Dn is even, the group has two further one-dimensional representations 13,4 whose
products with 2j are of the form:

for i = 3( (
0 1

)(
1 0

) ) ∼ 2k

for i = 4( (
0 1

)(
−1 0

) ) ∼ 2k with k =
n

2
− j
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k = j holds in the case that k = j = n
4 , i.e. four has to be a divisor of n.

For the products 2i × 2i the covariant combinations are:(
0 1
1 0

)
∼ 11 ,

(
0 1
−1 0

)
∼ 12

and 
(

1 0
0 0

)
(

0 0
0 1

)
 ∼ 2j for j = 2 i or


(

0 0
0 1

)
(

1 0
0 0

)
 ∼ 2j for j = n− 2 i

Then, for example, the invariant reads a′1 a2 +a′2 a1 ∼ 11 for a(′)
1 and a(′)

2 being the upper and lower
component of the two-dimensional representation 2i.
If the index n of Dn is even and i = n

4 (4 has to be a divisor of n), there is a second possibility:

2i × 2i =
4∑

j=1
1j. The Clebsch Gordan coefficients are

(
0 1
1 0

)
∼ 11 ,

(
0 1
−1 0

)
∼ 12 ,

(
1 0
0 1

)
∼ 13 ,

(
1 0
0 −1

)
∼ 14 .

For the products 2i × 2j with i 6= j there are the two structures 2i × 2j = 2k + 2l with k = |i− j|
and l = min(i + j, n− (i + j)) or 2i × 2j = 13 + 14 + 2k with k = |i− j|, if i + j = n

2 (obviously n
has to be even). The Clebsch Gordan coefficients for 2i × 2j = 2k + 2l are:

(
0 1
0 0

)
(

0 0
1 0

)
 ∼ 2k for k = i− j or


(

0 0
1 0

)
(

0 1
0 0

)
 ∼ 2k for k = j− i

and 
(

1 0
0 0

)
(

0 0
0 1

)
 ∼ 2l for l = i + j or


(

0 0
0 1

)
(

1 0
0 0

)
 ∼ 2l for l = n− (i + j)

For the structure 2i × 2j = 13 + 14 + 2k with i + j = n
2 the Clebsch Gordan coefficients are(

1 0
0 1

)
∼ 13 ,

(
1 0
0 −1

)
∼ 14

and 
(

0 1
0 0

)
(

0 0
1 0

)
 ∼ 2k for k = i− j or


(

0 0
1 0

)
(

0 1
0 0

)
 ∼ 2k for k = j− i
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B.4.4 Clebsch Gordan Coefficients of D′
n

For n even the Clebsch Gordan coefficients for the products 1i × 2j = 2k are the same as in the
case of D2n, i.e. for i = 3, 4 the condition for k is j + k = n instead of n

2 .
If n is odd, the same holds for j odd whereas for j even the Clebsch Gordan coefficients of the
products 13 × 2j and 14 × 2j have to be interchanged.
The Clebsch Gordan coefficients for the products 2i × 2i are the same as for D2n, if i is even.
Similarly, the ones of 2i × 2j with i 6= j are the same, if i, j are both even or one is even and one
is odd, if n is even. For n being odd the only difference is that in the case that the product is of
the form 2i × 2j = 13 + 14 + 2k the Clebsch Gordan coefficients for the covariant combination
transforming as 13 and 14 are interchanged.
Concerning the structure of the products 2i × 2i = 11 + 12 + 2j with j = min(2 i, 2n − 2 i) for i
odd, one finds the following:(

0 1
−1 0

)
∼ 11

(
0 1
1 0

)
∼ 12

and 
(

1 0
0 0

)
(

0 0
0 −1

)
 ∼ 2j for j = 2 i or


(

0 0
0 1

)
(
−1 0
0 0

)
 ∼ 2j for j = 2n− 2 i

If i = n
2 (n even), then one has 2i × 2i =

4∑
j=1

1j. The Clebsch Gordan coefficients are

(
0 1
−1 0

)
∼ 11 ,

(
0 1
1 0

)
∼ 12 ,

(
1 0
0 −1

)
∼ 13 ,

(
1 0
0 1

)
∼ 14 .

2i × 2j for i, j being odd is either 2k + 2l with k = |i − j| and l = min(i + j, 2n − (i + j)) or
13 + 14 + 2k with k = |i− j|, if i + j = n. The Clebsch Gordan coefficients in the first case are:

(
0 1
0 0

)
(

0 0
−1 0

)
 ∼ 2k for k = i− j or


(

0 0
1 0

)
(

0 −1
0 0

)
 ∼ 2k for k = j− i

and 
(

1 0
0 0

)
(

0 0
0 −1

)
 ∼ 2l for l = i + j or


(

0 0
0 1

)
(
−1 0
0 0

)
 ∼ 2l for l = 2n− (i + j)

In the second one the Clebsch Gordan coefficients are:(
1 0
0 −1

)
∼ 13 ,

(
1 0
0 1

)
∼ 14

and 
(

0 1
0 0

)
(

0 0
−1 0

)
 ∼ 2k for k = i− j or


(

0 0
1 0

)
(

0 −1
0 0

)
 ∼ 2k for k = j− i .
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B.5 Group Theory of D7 Model

Although we presented the whole group theory of a dihedral group Dn with arbitrary index n in
Appendix B.4, we show for the reader, who is unfamiliar with the group theory of discrete groups,
the Kronecker products as well as the Clebsch Gordan coefficients explicitly.
The Kronecker products are

11 × µ = µ , 12 × 12 = 11 (B.4a)
12 × 2i = 2i ∀ i (B.4b)
[21 × 21] = 11 + 22 , {21 × 21} = 12 (B.4c)
[22 × 22] = 11 + 23 , {22 × 22} = 12 (B.4d)
[23 × 23] = 11 + 21 , {23 × 23} = 12 (B.4e)
21 × 22 = 21 + 23 , 21 × 23 = 22 + 23 , 22 × 23 = 21 + 22 . (B.4f)

The Clebsch Gordan coefficients are shown for

B ∼ 12 ,
(
a1

a2

)
,

(
a′1
a′2

)
∼ 21 ,

(
b1
b2

)
,

(
b′1
b′2

)
∼ 22 ,

(
c1
c2

)
,

(
c′1
c′2

)
∼ 23 .

They are trivial for 11 × µ and 12 × 12. For 12 × 2i a non-trivial sign appears(
B a1

−B a2

)
∼ 21 ,

(
B b1
−B b2

)
∼ 22 ,

(
B c1
−B c2

)
∼ 23 .

The Clebsch Gordan coefficients for µ× µ have the form:
... for 21: a1 a

′
2 + a2 a

′
1 ∼ 11

a1 a
′
2 − a2 a

′
1 ∼ 12(

a1 a
′
1

a2 a
′
2

)
∼ 22

... for 22: b1 b
′
2 + b2 b

′
1 ∼ 11

b1 b
′
2 − b2 b

′
1 ∼ 12(

b2 b
′
2

b1 b
′
1

)
∼ 23

... for 23: c1 c
′
2 + c2 c

′
1 ∼ 11

c1 c
′
2 − c2 c

′
1 ∼ 12(

c2 c
′
2

c1 c
′
1

)
∼ 21

For the rest of the products 2i × 2j we get:

... for 21 × 22:
(
a2 b1
a1 b2

)
∼ 21,(

a1 b1
a2 b2

)
∼ 23

... for 21 × 23:
(
a2 c1
a1 c2

)
∼ 22,(

a2 c2
a1 c1

)
∼ 23
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... for 22 × 23:
(
b2 c1
b1 c2

)
∼ 21,(

b2 c2
b1 c1

)
∼ 22.
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Appendix C

Next-to-Leading Order Terms in the
T ′ Model

In this Appendix we present the explicit form of the next-to-leading order terms contributing to
the fermion masses and the flavon potential. For the quarks the terms read

(ϕT ϕT )Q3 t
c = (ϕ2

T 1 + 2ϕT 2 ϕT 3)Q3 t
c (C.1a)

(Dq η ϕT ) tc = ((1− i) η1 ϕT 3 − η2 ϕT 1)Q1 t
c − ((1 + i) η2 ϕT 2 + η1 ϕT 1)Q2 t

c (C.1b)
Q3 (η ϕT D

c
u) = ((1− i) η1 ϕT 3 − η2 ϕT 1)Q3 u

c − ((1 + i) η2 ϕT 2 + η1 ϕT 1)Q3 c
c (C.1c)

(ϕT ϕT )′′ (Dq D
c
u)′ = (ϕ2

T 2 + 2ϕT 1 ϕT 3) (Q1 c
c −Q2 u

c) (C.1d)

(ϕT ϕT )S (Dq D
c
u)3 = (ϕ2

T 1 − ϕT 2 ϕT 3)Q2 c
c +

(
1− i

2

)
(ϕ2

T 2 − ϕT 1 ϕT 3) (Q1 c
c +Q2 u

c) (C.1e)

+ i (ϕ2
T 3 − ϕT 1 ϕT 2)Q1 u

c

ξ′′ ϕT (Dq D
c
u)3 = ξ′′ (ϕT 2Q2 c

c +
(

1− i

2

)
ϕT 1 (Q1 c

c +Q2 u
c) + i ϕT 3Q1 u

c) (C.1f)

(η η)3 (Dq D
c
u)3 = η2

1 Q2 c
c − η1 η2 (Q1 c

c +Q2 u
c) + η2

2 Q1 u
c (C.1g)

(ϕT ϕT )Q3 b
c = (ϕ2

T 1 + 2ϕT 2 ϕT 3)Q3 b
c (C.1h)

(Dq η ϕT ) bc = ((1− i) η1 ϕT 3 − η2 ϕT 1)Q1 b
c − ((1 + i) η2 ϕT 2 + η1 ϕT 1)Q2 b

c (C.1i)
Q3 (η ϕT D

c
d) = ((1− i) η1 ϕT 3 − η2 ϕT 1)Q3 d

c − ((1 + i) η2 ϕT 2 + η1 ϕT 1)Q3 s
c (C.1j)

(ϕT ϕT )′′ (Dq D
c
d)

′ = (ϕ2
T 2 + 2ϕT 1 ϕT 3) (Q1 s

c −Q2 d
c) (C.1k)

(ϕT ϕT )S (Dq D
c
d)3 = (ϕ2

T 1 − ϕT 2 ϕT 3)Q2 s
c +

(
1− i

2

)
(ϕ2

T 2 − ϕT 1 ϕT 3) (Q1 s
c +Q2 d

c) (C.1l)

+ i (ϕ2
T 3 − ϕT 1 ϕT 2)Q1 d

c

ξ′′ ϕT (Dq D
c
d)3 = ξ′′ (ϕT 2Q2 s

c +
(

1− i

2

)
ϕT 1 (Q1 s

c +Q2 d
c) + i ϕT 3Q1 d

c) (C.1m)

(η η)3 (Dq D
c
d)3 = η2

1 Q2 s
c − η1 η2 (Q1 s

c +Q2 d
c) + η2

2 Q1 d
c (C.1n)

C-1
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For the leptons the explicit structure is given by

(ϕT ϕT )S (l ec) = ((ϕ2
T 1 − ϕT 2 ϕT 3) l1 + (ϕ2

T 2 − ϕT 1 ϕT 3) l2 + (ϕ2
T 3 − ϕT 1 ϕT 2) l3) ec (C.2a)

ξ′′ ϕT (l ec) = ξ′′ (ϕT 2 l1 + ϕT 1 l2 + ϕT 3 l3) ec (C.2b)

(η η)3(l ec) = (i η2
1 l1 + (1− i) η1 η2 l2 + η2

2 l3) e
c (C.2c)

(ϕT ϕT )S (l µc) = ((ϕ2
T 1 − ϕT 2 ϕT 3) l2 + (ϕ2

T 2 − ϕT 1 ϕT 3) l3 + (ϕ2
T 3 − ϕT 1 ϕT 2) l1)µc (C.2d)

ξ′′ ϕT (l µc) = ξ′′ (ϕT 2 l2 + ϕT 1 l3 + ϕT 3 l1)µc (C.2e)

(η η)3 (l µc) = (i η2
1 l2 + (1− i) η1 η2 l3 + η2

2 l1)µ
c (C.2f)

(ϕT ϕT )S (l τ c) = ((ϕ2
T 1 − ϕT 2 ϕT 3) l3 + (ϕ2

T 2 − ϕT 1 ϕT 3) l1 + (ϕ2
T 3 − ϕT 1 ϕT 2) l2) τ c (C.2g)

ξ′′ ϕT (l τ c) = ξ′′ (ϕT 2 l3 + ϕT 1 l1 + ϕT 3 l2) τ c (C.2h)

(η η)3 (l τ c) = (i η2
1 l3 + (1− i) η1 η2 l1 + η2

2 l2) τ
c (C.2i)

(ϕT ϕS) (l l) = (ϕT 1 ϕS 1 + ϕT 2 ϕS 3 + ϕT 3 ϕS 2) (l1 l1 + l2 l3 + l3 l2) (C.2j)
(ϕT ϕS)′ (l l)′′ = (ϕT 3 ϕS 3 + ϕT 1 ϕS 2 + ϕT 2 ϕS 1) (l2 l2 + l1 l3 + l3 l1) (C.2k)
(ϕT ϕS)′′ (l l)′ = (ϕT 2 ϕS 2 + ϕT 1 ϕS 3 + ϕT 3 ϕS 1) (l3 l3 + l1 l2 + l2 l1) (C.2l)
(ϕT ϕS)S (l l)S = (2ϕT 1 ϕS 1 − ϕT 2 ϕS 3 − ϕT 3 ϕS 2) (2 l1 l1 − l2 l3 − l3 l2) (C.2m)

+ (2ϕT 2 ϕS 2 − ϕT 1 ϕS 3 − ϕT 3 ϕS 1) (2 l3 l3 − l1 l2 − l2 l1)
+ (2ϕT 3 ϕS 3 − ϕT 1 ϕS 2 − ϕT 2 ϕS 1) (2 l2 l2 − l1 l3 − l3 l1)

(ϕT ϕS)A (l l)S = (ϕT 2 ϕS 3 − ϕT 3 ϕS 2) (2 l1 l1 − l2 l3 − l3 l2) (C.2n)
+ (ϕT 3 ϕS 1 − ϕT 1 ϕS 3) (2 l3 l3 − l1 l2 − l2 l1)
+ (ϕT 1 ϕS 2 − ϕT 2 ϕS 1) (2 l2 l2 − l1 l3 − l3 l1)

(ξ [ξ̃]ϕT ) (l l)S = ξ [ξ̃] (ϕT 1 (2 l1 l1 − l2 l3 − l3 l2) + ϕT 3 (2 l3 l3 − l1 l2 − l2 l1) (C.2o)

+ ϕT 2 (2 l2 l2 − l1 l3 − l3 l1))
(ξ′′ ϕS) (l l)S = ξ′′ (ϕS 2 (2 l1 l1 − l2 l3 − l3 l2) + ϕS 1 (2 l3 l3 − l1 l2 − l2 l1) (C.2p)

+ ϕS 3 (2 l2 l2 − l1 l3 − l3 l1))

ξ [ξ̃] ξ′′ (l l)′ = ξ [ξ̃] ξ′′ (l3 l3 + l1 l2 + l2 l1) (C.2q)

As in the main part of the text, we use the notation ξ [ξ̃] in order to indicate that either the field
ξ or ξ̃ is involved in the coupling.
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For the flavon potential the explicit form of the terms contained in ∆wd 1 and ∆wd 2 reads

IT
3 = (ϕ0

T ϕT ) (ϕT ϕT ) = (ϕ0
T 1 ϕT 1 + ϕ0

T 2 ϕT 3 + ϕ0
T 3 ϕT 2) (ϕ2

T 1 + 2ϕT 2 ϕT 3) (C.3a)

IT
4 = (ϕ0

T ϕT )′ (ϕT ϕT )′′ = (ϕ0
T 3 ϕT 3 + ϕ0

T 1 ϕT 2 + ϕ0
T 2 ϕT 1) (ϕ2

T 2 + 2ϕT 1 ϕT 3) (C.3b)

IT
5 = (ϕ0

T ϕT )′′ (ϕT ϕT )′ = (ϕ0
T 2 ϕT 2 + ϕ0

T 1 ϕT 3 + ϕ0
T 3 ϕT 1) (ϕ2

T 3 + 2ϕT 1 ϕT 2) (C.3c)

IT
6 = (ϕ0

T ϕS) (ϕS ϕS) = (ϕ0
T 1 ϕS 1 + ϕ0

T 2 ϕS 3 + ϕ0
T 3 ϕS 2) (ϕ2

S 1 + 2ϕS 2 ϕS 3) (C.3d)

IT
7 = (ϕ0

T ϕS)′ (ϕS ϕS)′′ = (ϕ0
T 3 ϕS 3 + ϕ0

T 1 ϕS 2 + ϕ0
T 2 ϕS 1) (ϕ2

S 2 + 2ϕS 1 ϕS 3) (C.3e)

IT
8 = (ϕ0

T ϕS)′′ (ϕS ϕS)′ = (ϕ0
T 2 ϕS 2 + ϕ0

T 1 ϕS 3 + ϕ0
T 3 ϕS 1) (ϕ2

S 3 + 2ϕS 1 ϕS 2) (C.3f)

IT
9 = (ϕ0

T (ϕS ϕS)S) ξ (C.3g)

=
2

3
(ϕ0

T 1 (ϕ2
S 1 − ϕS 2 ϕS 3) + ϕ0

T 2 (ϕ2
S 2 − ϕS 1 ϕS 3) + ϕ0

T 3 (ϕ2
S 3 − ϕS 1 ϕS 2)) ξ

IT
10 = (ϕ0

T (ϕS ϕS)S) ξ̃ (C.3h)

=
2

3
(ϕ0

T 1 (ϕ2
S 1 − ϕS 2 ϕS 3) + ϕ0

T 2 (ϕ2
S 2 − ϕS 1 ϕS 3) + ϕ0

T 3 (ϕ2
S 3 − ϕS 1 ϕS 2)) ξ̃

IT
11 = (ϕ0

T ϕS) ξ2 = (ϕ0
T 1 ϕS 1 + ϕ0

T 2 ϕS 3 + ϕ0
T 3 ϕS 2) ξ

2 (C.3i)

IT
12 = (ϕ0

T ϕS) ξ ξ̃ = (ϕ0
T 1 ϕS 1 + ϕ0

T 2 ϕS 3 + ϕ0
T 3 ϕS 2) ξ ξ̃ (C.3j)

IT
13 = (ϕ0

T ϕS) ξ̃2 = (ϕ0
T 1 ϕS 1 + ϕ0

T 2 ϕS 3 + ϕ0
T 3 ϕS 2) ξ̃

2 (C.3k)

IS
1 = (ϕ0

S ϕT )S (ϕS ϕS)S (C.3l)

=
2

9
((2ϕ0

S 1 ϕT 1 − ϕ0
S 2 ϕT 3 − ϕ0

S 3 ϕT 2) (ϕ2
S 1 − ϕS 2 ϕS 3)

+ (2ϕ0
S 3 ϕT 3 − ϕ0

S 1 ϕT 2 − ϕ0
S 2 ϕT 1) (ϕ2

S 2 − ϕS 1 ϕS 3)

+ (2ϕ0
S 2 ϕT 2 − ϕ0

S 1 ϕT 3 − ϕ0
S 3 ϕT 1) (ϕ2

S 3 − ϕS 1 ϕS 2))

IS
2 = (ϕ0

S ϕT )A (ϕS ϕS)S (C.3m)

=
1

3
((ϕ0

S 2 ϕT 3 − ϕ0
S 3 ϕT 2) (ϕ2

S 1 − ϕS 2 ϕS 3)

+ (ϕ0
S 1 ϕT 2 − ϕ0

S 2 ϕT 1) (ϕ2
S 2 − ϕS 1 ϕS 3)

+ (ϕ0
S 3 ϕT 1 − ϕ0

S 1 ϕT 3) (ϕ2
S 3 − ϕS 1 ϕS 2))

IS
3 = (ϕ0

S ϕT ) (ϕS ϕS) = (ϕ0
S 1 ϕT 1 + ϕ0

S 2 ϕT 3 + ϕ0
S 3 ϕT 2) (ϕ2

S 1 + 2ϕS 2 ϕS 3) (C.3n)

IS
4 = (ϕ0

S ϕT )′ (ϕS ϕS)′′ = (ϕ0
S 3 ϕT 3 + ϕ0

S 1 ϕT 2 + ϕ0
S 2 ϕT 1) (ϕ2

S 2 + 2ϕS 1 ϕS 3) (C.3o)

IS
5 = (ϕ0

S ϕT )′′ (ϕS ϕS)′ = (ϕ0
S 2 ϕT 2 + ϕ0

S 1 ϕT 3 + ϕ0
S 3 ϕT 1) (ϕ2

S 3 + 2ϕS 1 ϕS 2) (C.3p)

IS
6 = (ϕ0

S (ϕT ϕS)S) ξ (C.3q)

=
1

3
(ϕ0

S 1 (2ϕT 1 ϕS 1 − ϕT 2 ϕS 3 − ϕT 3 ϕS 2) + ϕ0
S 2 (2ϕT 2 ϕS 2 − ϕT 1 ϕS 3 − ϕT 3 ϕS 1)

+ ϕ0
S 3 (2ϕT 3 ϕS 3 − ϕT 1 ϕS 2 − ϕT 2 ϕS 1)) ξ

IS
7 = (ϕ0

S (ϕT ϕS)S) ξ̃ (C.3r)

=
1

3
(ϕ0

S 1 (2ϕT 1 ϕS 1 − ϕT 2 ϕS 3 − ϕT 3 ϕS 2) + ϕ0
S 2 (2ϕT 2 ϕS 2 − ϕT 1 ϕS 3 − ϕT 3 ϕS 1)

+ ϕ0
S 3 (2ϕT 3 ϕS 3 − ϕT 1 ϕS 2 − ϕT 2 ϕS 1)) ξ̃

IS
8 = (ϕ0

S (ϕT ϕS)A) ξ (C.3s)

=
1

2
(ϕ0

S 1 (ϕT 2 ϕS 3 − ϕT 3 ϕS 2) + ϕ0
S 2 (ϕT 3 ϕS 1 − ϕT 1 ϕS 3) + ϕ0

S 3 (ϕT 1 ϕS 2 − ϕT 2 ϕS 1)) ξ

IS
9 = (ϕ0

S (ϕT ϕS)A) ξ̃ (C.3t)

=
1

2
(ϕ0

S 1 (ϕT 2 ϕS 3 − ϕT 3 ϕS 2) + ϕ0
S 2 (ϕT 3 ϕS 1 − ϕT 1 ϕS 3) + ϕ0

S 3 (ϕT 1 ϕS 2 − ϕT 2 ϕS 1)) ξ̃

IS
10 = (ϕ0

S ϕT ) ξ2 = (ϕ0
S 1 ϕT 1 + ϕ0

S 2 ϕT 3 + ϕ0
S 3 ϕT 2) ξ

2 (C.3u)

IS
11 = (ϕ0

S ϕT ) ξξ̃ = (ϕ0
S 1 ϕT 1 + ϕ0

S 2 ϕT 3 + ϕ0
S 3 ϕT 2) ξ ξ̃ (C.3v)

IS
12 = (ϕ0

S ϕT ) ξ̃2 = (ϕ0
S 1 ϕT 1 + ϕ0

S 2 ϕT 3 + ϕ0
S 3 ϕT 2) ξ̃

2 (C.3w)

IX
1 = ξ0 (ϕT (ϕS ϕS)S) (C.3x)

=
2

3
ξ0 (ϕT 1 (ϕ2

S 1 − ϕS 2 ϕS 3) + ϕT 2 (ϕ2
S 2 − ϕS 1 ϕS 3) + ϕT 3 (ϕ2

S 3 − ϕS 1 ϕS 2))

IX
2 = ξ0 (ϕT ϕS) ξ = ξ0 (ϕT 1 ϕS 1 + ϕT 2 ϕS 3 + ϕT 3 ϕS 2) ξ (C.3y)

IX
3 = ξ0 (ϕT ϕS) ξ̃ = ξ0 (ϕT 1 ϕS 1 + ϕT 2 ϕS 3 + ϕT 3 ϕS 2) ξ̃ (C.3z)
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Thereby we arrive to the same result as [15] concerning the number of invariants and structure of
invariants contained in ∆wd 1. The additional terms present in ∆wd 2 are of the form

IT
14 = (ϕ0

T ϕT )′ ′ ξ′ ′ ξ′ ′ = (ϕ0
T 2 ϕT 2 + ϕ0

T 1 ϕT 3 + ϕ0
T 3 ϕT 1) ξ′ ′ ξ′ ′ (C.4a)

IT
15 = (ϕT η) (ϕ0

T η) (C.4b)

= ((1 + i)ϕT 1 η2 + ϕT 3 η1) ((1− i)ϕ0
T 2 η1 − ϕ0

T 3 η2)

− ((1− i)ϕT 2 η1 − ϕT 3 η2) ((1 + i)ϕ0
T 1 η2 + ϕ0

T 3 η1)

IT
16 = (ϕT η)′ (ϕ0

T η)
′ ′ (C.4c)

= ((1 + i)ϕT 2 η2 + ϕT 1 η1) ((1− i)ϕ0
T 1 η1 − ϕ0

T 2 η2)

− ((1− i)ϕT 3 η1 − ϕT 1 η2) ((1 + i)ϕ0
T 3 η2 + ϕ0

T 2 η1)

IT
17 = (η ξ′ ′) (ϕ0

T η) = ξ′ ′ (η1 ((1− i)ϕ0
T 2 η1 − ϕ0

T 3 η2)− η2 ((1 + i)ϕ0
T 1 η2 + ϕ0

T 3 η1)) (C.4d)

IT
18 = (ϕT ϕT )S (ϕ0

T ξ
′ ′) (C.4e)

=
2
3

((ϕ2
T 1 − ϕT 2 ϕT 3)ϕ0

T 2 + (ϕ2
T 3 − ϕT 1 ϕT 2)ϕ0

T 1 + (ϕ2
T 2 − ϕT 1 ϕT 3)ϕ0

T 3) ξ
′ ′

IS
13 = (ϕ0

S ϕS)′ ξ ξ′ ′ = (ϕ0
S 3 ϕS 3 + ϕ0

S 1 ϕS 2 + ϕ0
S 2 ϕS 1) ξ ξ′ ′ (C.4f)

IS
14 = (ϕ0

S ϕS)′ ξ̃ ξ′ ′ = (ϕ0
S 3 ϕS 3 + ϕ0

S 1 ϕS 2 + ϕ0
S 2 ϕS 1) ξ̃ ξ′ ′ (C.4g)

IS
15 = (ϕS ξ

′ ′) (ϕ0
S ϕS)S (C.4h)

=
1
3
ξ′ ′ (ϕS 2 (2ϕ0

S 1 ϕS 1 − ϕ0
S 2 ϕS 3 − ϕ0

S 3 ϕS 2) + ϕS 3 (2ϕ0
S 2 ϕS 2 − ϕ0

S 1 ϕS 3 − ϕ0
S 3 ϕS 1)

+ ϕS 1 (2ϕ0
S 3 ϕS 3 − ϕ0

S 1 ϕS 2 − ϕ0
S 2 ϕS 1))

IX
4 = (ϕS ϕS)′ ξ0 ξ′ ′ = (ϕ2

S 3 + 2ϕS 1 ϕS 2) ξ0 ξ′ ′ (C.4i)

and furthermore the structures involving the driving fields η0
1,2 and ξ′ 0 read

IN
1 = (ϕT ϕT ) (η0 η) = (ϕ2

T 1 + 2ϕT 2 ϕT 3) (η0
1 η2 − η0

2 η1) (C.5a)

IN
2 = (ϕT η) (η0 ϕT ) (C.5b)

= ((1 + i)ϕT 1 η2 + ϕT 3 η1) ((1− i) η0
1 ϕT 1 − η0

2 ϕT 2)

− ((1− i)ϕT 2 η1 − ϕT 3 η2) ((1 + i) η0
2 ϕT 3 + η0

1 ϕT 2)

IN
3 = (η ξ′ ′) (η0 ϕT ) = ξ′ ′ (η1 ((1− i) η0

1 ϕT 1 − η0
2 ϕT 2)− η2 ((1 + i) η0

2 ϕT 3 + η0
1 ϕT 2)) (C.5c)

IN
4 = (η η)3 (η0 η)3 =

1
2

(1 + i) η2
1 (η0

1 η2 + η0
2 η1) + η3

2 η
0
2 + (1 + i) η2

1 η2 η
0
1 (C.5d)

IY
1 = (ϕT ϕT ) ξ′ 0 ξ′ ′ = (ϕ2

T 1 + 2ϕT 2 ϕT 3) ξ′ 0 ξ′ ′ (C.5e)

IY
2 = (ϕT η)′ (ξ′ 0 η)′ ′ = ((1 + i)ϕT 2 η2 + ϕT 1 η1) ξ′ 0 η2 − ((1− i)ϕT 3 η1 − ϕT 1 η2) ξ′ 0 η1 (C.5f)

IY
3 = (ϕS ϕS)′ ′ ξ′ 0 ξ = (ϕ2

S 2 + 2ϕS 1 ϕS 3) ξ′ 0 ξ (C.5g)

IY
4 = (ϕS ϕS)′ ′ ξ′ 0 ξ̃ = (ϕ2

S 2 + 2ϕS 1 ϕS 3) ξ′ 0 ξ̃ (C.5h)



List of Tables

3.1 Character table of the group S4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-6
3.2 Breaking sequences SU(3) → S4 and SO(3) → S4 . . . . . . . . . . . . . . . . . . 3-7
3.3 Particle content and its symmetry properties under S4 . . . . . . . . . . . . . . . . . 3-8
3.4 Character table of the group D5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-18
3.5 Particle content and its symmetry properties under D5 . . . . . . . . . . . . . . . . . 3-19
3.6 Breaking sequences SU(3) → D5 and SO(3) → D5 . . . . . . . . . . . . . . . . . . 3-28

4.1 Character table of the group T ′ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4
4.2 Properties of fields under T ′, Z3 and U(1)FN . . . . . . . . . . . . . . . . . . . . . . 4-7
4.3 Properties of driving fields under T ′ and Z3 . . . . . . . . . . . . . . . . . . . . . . . 4-15
4.4 U(1)R charges of the fields of the model . . . . . . . . . . . . . . . . . . . . . . . . . 4-15

5.1 Character table of the group D7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-10
5.2 Breaking of D7 down to Z2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-11
5.3 Particle content and its symmetry properties under D7 × Z2

(aux) - Realization I . . 5-12
5.4 Particle content and its symmetry properties under D7 × Z2

(aux) - Realization II . . 5-15
5.5 Character table of the group D4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-18
5.6 Particle content and its symmetry properties under D4 × Z2

(aux) . . . . . . . . . . . 5-19
5.7 Particle content and its symmetry properties under D3 × Z2

(aux) . . . . . . . . . . . 5-24

A.1 Character table of S3
∼= D3

∼= Type 6/2 . . . . . . . . . . . . . . . . . . . . . . . . . A-3

B.1 Character table of the group Dn with n odd . . . . . . . . . . . . . . . . . . . . . . . B-7
B.2 Character table of the group Dn with n even . . . . . . . . . . . . . . . . . . . . . . B-7
B.3 Character table of the group D′

n with n odd . . . . . . . . . . . . . . . . . . . . . . . B-8
B.4 Character table of the group D′

n with n even . . . . . . . . . . . . . . . . . . . . . . B-8

C-5



C-6 LIST OF TABLES



Bibliography

[1] T. Fukuyama and H. Nishiura, Mass Matrix of Majorana Neutrinos, (1997), hep-ph/9702253.

[2] R. N. Mohapatra and S. Nussinov, Bimaximal Neutrino Mixing and Neutrino Mass Matrix,
Phys. Rev. D60 (1999), 013002, hep-ph/9809415.

[3] E. Ma and M. Raidal, Neutrino Mass, µ Anomalous Magnetic Moment, and Lepton Flavor
Nonconservation, Phys. Rev. Lett. 87 (2001), 011802, hep-ph/0102255.

[4] C. S. Lam, A 2-3 Symmetry in Neutrino Oscillations, Phys. Lett. B507 (2001), 214–218,
hep-ph/0104116.

[5] P. F. Harrison and W. G. Scott, µ− τ Reflection Symmetry in Lepton Mixing and Neutrino
Oscillations, Phys. Lett. B547 (2002), 219–228, hep-ph/0210197.

[6] T. Kitabayashi and M. Yasue, S2L Permutation Symmetry for Left-Handed µ and τ Families
and Neutrino Oscillations in an SU(3)L × U(1)N Gauge Model, Phys. Rev. D67 (2003),
015006, hep-ph/0209294.

[7] P. F. Harrison, D. H. Perkins, and W. G. Scott, Tri-Bimaximal Mixing and the Neutrino
Oscillation Data, Phys. Lett. B530 (2002), 167, hep-ph/0202074.

[8] P. F. Harrison and W. G. Scott, Symmetries and Generalizations of Tri-Bimaximal Neutrino
Mixing, Phys. Lett. B535 (2002), 163–169, hep-ph/0203209.

[9] Z.-z. Xing, Nearly Tri-Bimaximal Neutrino Mixing and CP Violation, Phys. Lett. B533
(2002), 85–93, hep-ph/0204049.

[10] P. F. Harrison and W. G. Scott, Permutation Symmetry, Tri-Bimaximal Neutrino Mixing
and the S3 Group Characters, Phys. Lett. B557 (2003), 76, hep-ph/0302025.

[11] C. D. Froggatt and H. B. Nielsen, Hierarchy of Quark Masses, Cabibbo Angles and CP Vio-
lation, Nucl. Phys. B147 (1979), 277.

[12] Y. B. Zeldovich, I. Y. Kobzarev, and L. B. Okun, Cosmological Consequences of the Sponta-
neous Breakdown of a Discrete Symmetry, Zh. Eksp. Teor. Fiz. 67 (1974), 3–11.

[13] F. Caravaglios and S. Morisi, Gauge Boson Families in Grand Unified Theories of Fermion
Masses: E4

6 o S4, Int. J. Mod. Phys. A22 (2007), 2469–2492, hep-ph/0611078.

[14] G. Altarelli and F. Feruglio, Tri-Bimaximal Neutrino Mixing from Discrete Symmetry in
Extra Dimensions, Nucl. Phys. B720 (2005), 64–88, hep-ph/0504165.

C-7



C-8 BIBLIOGRAPHY

[15] G. Altarelli and F. Feruglio, Tri-Bimaximal Neutrino Mixing, A4 and the Modular Symmetry,
Nucl. Phys. B741 (2006), 215–235, hep-ph/0512103.

[16] E. Ma, A4 Origin of the Neutrino Mass Matrix, Phys. Rev. D70 (2004), 031901,
hep-ph/0404199.

[17] K. S. Babu and X.-G. He, Model of Geometric Neutrino Mixing, (2005), hep-ph/0507217.

[18] I. de Medeiros Varzielas, S. F. King, and G. G. Ross, Tri-Bimaximal Neutrino Mixing from
Discrete Subgroups of SU(3) and SO(3) Family Symmetry, Phys. Lett. B644 (2007), 153–157,
hep-ph/0512313.

[19] E. Ma, Tri-Bimaximal Neutrino Mixing from a Supersymmetric Model with A4 Family Sym-
metry, Phys. Rev. D73 (2006), 057304, hep-ph/0511133.

[20] X.-G. He, Y.-Y. Keum, and R. R. Volkas, A4 Flavor Symmetry Breaking Scheme for Under-
standing Quark and Neutrino Mixing Angles, JHEP 04 (2006), 039, hep-ph/0601001.

[21] F. Bazzocchi, S. Kaneko, and S. Morisi, A SUSY A4 Model for Fermion Masses and Mixings,
(2007), arXiv:0707.3032 [hep-ph].

[22] C. Hagedorn, M. Lindner, and R. N. Mohapatra, S4 Flavor Symmetry and Fermion Masses:
Towards a Grand Unified Theory of Flavor, JHEP 06 (2006), 042, hep-ph/0602244.

[23] C. Hagedorn, M. Lindner, and F. Plentinger, The Discrete Flavor Symmetry D5, Phys. Rev.
D74 (2006), 025007, hep-ph/0604265.

[24] F. Feruglio, C. Hagedorn, Y. Lin, and L. Merlo, Tri-Bimaximal Neutrino Mixing and
Quark Masses from a Discrete Flavor Symmetry, Nucl. Phys. B775 (2007), 120–142,
hep-ph/0702194.

[25] A. Blum, C. Hagedorn, and M. Lindner, Fermion Masses and Mixings from Dihedral Flavor
Symmetries with Preserved Subgroups, (2007), arXiv:0709.3450 [hep-ph].

[26] A. Blum, C. Hagedorn, and A. Hohenegger, θC from the Dihedral Flavor Symmetries D7 and
D14, (2007), arXiv:0710.5061 [hep-ph].

[27] M. Jamin, Quark Masses, Granada, 2006.

[28] H. Fusaoka and Y. Koide, Updated Estimate of Running Quark Masses, Phys. Rev. D57
(1998), 3986–4001, hep-ph/9712201.

[29] LSND, A. Aguilar et al., Evidence for Neutrino Oscillations from the Observation of ν̄e
Appearance in a ν̄µ Beam, Phys. Rev. D64 (2001), 112007, hep-ex/0104049.

[30] The MiniBooNE, A. A. Aguilar-Arevalo et al., A Search for Electron Neutrino Appearance
at the ∆m2 ∼ 1eV2 Scale, Phys. Rev. Lett. 98 (2007), 231801, arXiv:0704.1500 [hep-ex].

[31] M. Maltoni, T. Schwetz, M. A. Tortola, and J. W. F. Valle, Status of Global Fits to Neutrino
Oscillations, New Jour. Phys. 6 (2004), 122, hep-ph/0405172v6.

[32] C. Kraus et al., Final Results from Phase II of the Mainz Neutrino Mass Search in Tritium
Beta Decay, Eur. Phys. J. C40 (2005), 447–468, hep-ex/0412056.



BIBLIOGRAPHY C-9

[33] V. M. Lobashev, The Search for the Neutrino Mass by Direct Method in the Tritium Beta-
Decay and Perspectives of Study it in the Project KATRIN, Nucl. Phys. A719 (2003), 153–
160.

[34] S. Hannestad, Primordial Neutrinos, Ann. Rev. Nucl. Part. Sci. 56 (2006), 137–161,
hep-ph/0602058.

[35] H. V. Klapdor-Kleingrothaus et al., Latest Results from the Heidelberg-Moscow Double-Beta-
Decay Experiment, Eur. Phys. J. A12 (2001), 147–154, hep-ph/0103062.

[36] IGEX, C. E. Aalseth et al., The IGEX Ge-76 Neutrinoless Double-Beta Decay Exper-
iment: Prospects for Next Generation Experiments, Phys. Rev. D65 (2002), 092007,
hep-ex/0202026.

[37] C. Arnaboldi et al., A New Limit on the Neutrinoless Beta Beta Decay of Te-130, Phys. Rev.
Lett. 95 (2005), 142501, hep-ex/0501034.

[38] NEMO, R. Arnold et al., First Results of the Search of Neutrinoless Double Beta Decay with
the NEMO 3 Detector, Phys. Rev. Lett. 95 (2005), 182302, hep-ex/0507083.

[39] H. V. Klapdor-Kleingrothaus, A. Dietz, H. L. Harney, and I. V. Krivosheina, Evidence for
Neutrinoless Double Beta Decay, Mod. Phys. Lett. A16 (2001), 2409–2420, hep-ph/0201231.

[40] Particle Data Group, W. M. Yao et al., Review of Particle Physics, J. Phys. G33 (2006),
1–1232.

[41] C. Jarlskog, Commutator of the Quark Mass Matrices in the Standard Electroweak Model and
a Measure of Maximal CP Violation, Phys. Rev. Lett. 55 (1985), 1039.

[42] Particle Data Group, S. Eidelman et al., Review of Particle Physics, Phys. Lett. B592 (2004),
1.

[43] G. L. Fogli et al., Observables Sensitive to Absolute Neutrino Masses: A Reappraisal after
WMAP-3y and First MINOS Results, Phys. Rev. D75 (2007), 053001, hep-ph/0608060.

[44] M. C. Gonzalez-Garcia, Global Analysis of Neutrino Data, Phys. Scripta T121 (2005), 72–77,
hep-ph/0410030.

[45] P. H. Frampton, P. Q. Hung, and M. Sher, Quarks and Leptons Beyond the Third Generation,
Phys. Rept. 330 (2000), 263, hep-ph/9903387.

[46] P. Ramond, R. G. Roberts, and G. G. Ross, Stitching the Yukawa Quilt, Nucl. Phys. B406
(1993), 19–42, hep-ph/9303320.

[47] Z.-z. Xing and H. Zhang, Complete Parameter Space of Quark Mass Matrices with Four
Texture Zeros, J. Phys. G30 (2004), 129–136, hep-ph/0309112.

[48] Y.-F. Zhou, Textures and Hierarchies in Quark Mass Matrices with Four Texture-Zeros,
(2003), hep-ph/0309076.

[49] R. Gatto, G. Sartori, and M. Tonin, Weak Selfmasses, Cabibbo Angle, and Broken SU(2)×
SU(2), Phys. Lett. B28 (1968), 128–130.

[50] R. J. Oakes, SU(2)×SU(2) Breaking and the Cabibbo Angle, Phys. Lett. B29 (1969), 683–685.



C-10 BIBLIOGRAPHY

[51] H. Fritzsch, Quark Masses and Flavor Mixing, Nucl. Phys. B155 (1979), 189.

[52] L. J. Hall and A. Rasin, On the Generality of Certain Predictions for Quark Mixing, Phys.
Lett. B315 (1993), 164–169, hep-ph/9303303.

[53] R. Barbieri, L. J. Hall, and A. Romanino, Precise Tests of a Quark Mass Texture, Nucl. Phys.
B551 (1999), 93–101, hep-ph/9812384.

[54] R. G. Roberts, A. Romanino, G. G. Ross, and L. Velasco-Sevilla, Precision Test of a Fermion
Mass Texture, Nucl. Phys. B615 (2001), 358–384, hep-ph/0104088.

[55] P. H. Frampton, S. L. Glashow, and D. Marfatia, Zeroes of the Neutrino Mass Matrix, Phys.
Lett. B536 (2002), 79–82, hep-ph/0201008.

[56] B. R. Desai, D. P. Roy, and A. R. Vaucher, Three-Neutrino Mass Matrices with Two Texture
Zeros, Mod. Phys. Lett. A18 (2003), 1355–1366, hep-ph/0209035.

[57] W.-l. Guo and Z.-z. Xing, Implications of the KamLAND Measurement on the Lepton
Flavor Mixing Matrix and the Neutrino Mass Matrix, Phys. Rev. D67 (2003), 053002,
hep-ph/0212142.

[58] C. Hagedorn and W. Rodejohann, Minimal Mass Matrices for Dirac Neutrinos, JHEP 07
(2005), 034, hep-ph/0503143.

[59] C. Hagedorn, J. Kersten, and M. Lindner, Stability of Texture Zeros under Radiative Correc-
tions in See-Saw Models, Phys. Lett. B597 (2004), 63–72, hep-ph/0406103.

[60] R. Barbieri, L. J. Hall, S. Raby, and A. Romanino, Unified Theories with U(2) Flavor Sym-
metry, Nucl. Phys. B493 (1997), 3–26, hep-ph/9610449.

[61] S. F. King, Predicting Neutrino Parameters from SO(3) Family Symmetry and Quark-Lepton
Unification, JHEP 08 (2005), 105, hep-ph/0506297.

[62] S. F. King and G. G. Ross, Fermion Masses and Mixing Angles from SU(3) Family Symmetry,
Phys. Lett. B520 (2001), 243–253, hep-ph/0108112.

[63] H. Georgi and C. Jarlskog, A New Lepton-Quark Mass Relation in a Unified Theory, Phys.
Lett. B86 (1979), 297–300.

[64] L. Ferretti, S. F. King, and A. Romanino, Flavor from Accidental Symmetries, JHEP 11
(2006), 078, hep-ph/0609047.

[65] D. E. Kaplan and T. M. P. Tait, New Tools for Fermion Masses from Extra Dimensions,
JHEP 11 (2001), 051, hep-ph/0110126.

[66] P. Minkowski, µ→ eγ at a Rate of One Out of 1-Billion µ Decays?, Phys. Lett. B67 (1977),
421.

[67] M. Gell-Mann, P. Ramond, and R. Slansky, Complex Spinors and Unified Theories, Print-
80-0576 (CERN).

[68] T. Yanagida, Horizontal Gauge Symmetry and Masses of Neutrinos, In Proceedings of the
Workshop on the Baryon Number of the Universe and Unified Theories, Tsukuba, Japan,
13-14 Feb 1979.



BIBLIOGRAPHY C-11

[69] S. L. Glashow, The Future of Elementary Particle Physics, NATO Adv. Study Inst. Ser. B
Phys. 59 (1979), 687.

[70] R. N. Mohapatra and G. Senjanovic, Neutrino Mass and Spontaneous Parity Nonconserva-
tion, Phys. Rev. Lett. 44 (1980), 912.

[71] G. Lazarides, Q. Shafi, and C. Wetterich, Proton Lifetime and Fermion Masses in an SO(10)
Model, Nucl. Phys. B181 (1981), 287.

[72] R. N. Mohapatra and G. Senjanovic, Neutrino Masses and Mixings in Gauge Models with
Spontaneous Parity Violation, Phys. Rev. D23 (1981), 165.

[73] S. Antusch, J. Kersten, M. Lindner, M. Ratz, and M. A.
Schmidt, Mixing Parameter Tools 1.0 - Documentation, found at url:
http://users.physik.tu-muenchen.de/rge/MPT/index.html.

[74] T. Brown, S. Pakvasa, H. Sugawara, and Y. Yamanaka, Neutrino Masses, Mixing and Oscil-
lations in S4 Model of Permutation Symmetry, Phys. Rev. D30 (1984), 255.

[75] D.-G. Lee and R. N. Mohapatra, An SO(10)×S4 Scenario for Naturally Degenerate Neutrinos,
Phys. Lett. B329 (1994), 463–468, hep-ph/9403201.

[76] E. Ma, Neutrino Mass Matrix from S4 Symmetry, Phys. Lett. B632 (2006), 352–356,
hep-ph/0508231.

[77] K. Enqvist and J. Maalampi, Family Unification within SO(15), Nucl. Phys. B191 (1981),
189.

[78] D. Chang and R. N. Mohapatra, SO(18) Unification of Fermion Generations, Phys. Lett.
B158 (1985), 323.

[79] T. Araki, Anomalies of Discrete Symmetries and Gauge Coupling Unification, Prog. Theor.
Phys. 117 (2007), 1119–1138, hep-ph/0612306.

[80] W. Fairbairn, T. Fulton, and W. Klink, Finite and Disconnected Subgroups of SU(3) and
Their Application to the Elementary Particle Spectrum, Jour. Math. Phys. 5 (1964), 1038.

[81] W. M. Fairbairn, Some Comments on Finite Subgroups of SU(3), J. Math. Phys. 23 (1982),
1747–1748.

[82] T. Muto, D-Branes on Three-Dimensional Non-Abelian Orbifolds, JHEP 02 (1999), 008,
hep-th/9811258.

[83] A. Hanany and Y.-H. He, Non-Abelian Finite Gauge Theories, JHEP 02 (1999), 013,
hep-th/9811183.

[84] C. Luhn, S. Nasri, and P. Ramond, The Flavor Group ∆(3n2), J. Math. Phys. 48 (2007),
073501, hep-th/0701188.

[85] C. Hagedorn, Mass Terms in the Standard Model and Discrete Non-Abelian Flavor Symme-
tries, Diploma Thesis, TU Munchen, December 2004.

[86] J. Lomont, Applications of Finite Groups, Acad. Press (1959) 346 p.



C-12 BIBLIOGRAPHY

[87] A. Pilaftsis, CP Violation and Baryogenesis due to Heavy Majorana Neutrinos, Phys. Rev.
D56 (1997), 5431–5451, hep-ph/9707235.

[88] A. Pilaftsis and T. E. J. Underwood, Resonant Leptogenesis, Nucl. Phys. B692 (2004), 303–
345, hep-ph/0309342.

[89] T. Hambye, J. March-Russell, and S. M. West, TeV Scale Resonant Leptogenesis from Su-
persymmetry Breaking, JHEP 07 (2004), 070, hep-ph/0403183.

[90] H. Fritzsch and Z.-z. Xing, Mass and Flavor Mixing Schemes of Quarks and Leptons, Prog.
Part. Nucl. Phys. 45 (2000), 1–81, hep-ph/9912358.

[91] G. Altarelli and F. Feruglio, Theoretical Models of Neutrino Masses and Mixings, Springer
Tracts Mod. Phys. 190 (2003), 169–207, hep-ph/0206077.

[92] ALEPH, J. Alcaraz et al., A Combination of Preliminary Electroweak Measurements and
Constraints on the Standard Model, (2006), hep-ex/0612034.

[93] J. Kubo, A. Mondragon, M. Mondragon, and E. Rodriguez-Jauregui, The Flavor Symmetry,
Prog. Theor. Phys. 109 (2003), 795–807, hep-ph/0302196.

[94] W. Grimus and L. Lavoura, A Discrete Symmetry Group for Maximal Atmospheric Neutrino
Mixing, Phys. Lett. B572 (2003), 189–195, hep-ph/0305046.

[95] M. Frigerio, S. Kaneko, E. Ma, and M. Tanimoto, Quaternion Family Symmetry of Quarks
and Leptons, Phys. Rev. D71 (2005), 011901, hep-ph/0409187.

[96] E. Ma, Polygonal Derivation of the Neutrino Mass Matrix, Fizika B14 (2005), 35–40,
hep-ph/0409288.

[97] J. Kubo, H. Okada, and F. Sakamaki, Higgs Potential in Minimal S3 Invariant Extension of
the Standard Model, Phys. Rev. D70 (2004), 036007, hep-ph/0402089.

[98] Y. Koide, H. Nishiura, K. Matsuda, T. Kikuchi, and T. Fukuyama, Universal Texture of
Quark and Lepton Mass Matrices and a Discrete Symmetry Z3, Phys. Rev. D66 (2002),
093006, hep-ph/0209333.

[99] S. Pakvasa and H. Sugawara, Discrete Symmetry and Cabibbo Angle, Phys. Lett. B73 (1978),
61.

[100] S. Bertolini, T. Schwetz, and M. Malinsky, Fermion Masses and Mixings in SO(10)
Models and the Neutrino Challenge to SUSY GUTs, Phys. Rev. D73 (2006), 115012,
hep-ph/0605006.

[101] C. S. Aulakh, MSGUTs from Germ to Bloom: Towards Falsifiability and Beyond, (2005),
hep-ph/0506291.

[102] C. S. Aulakh and S. K. Garg, The New Minimal Supersymmetric GUT, (2006),
hep-ph/0612021.

[103] K. S. Babu, J. C. Pati, and F. Wilczek, Fermion Masses, Neutrino Oscillations, and Proton
Decay in the Light of SuperKamiokande, Nucl. Phys. B566 (2000), 33–91, hep-ph/9812538.



BIBLIOGRAPHY C-13

[104] C. H. Albright and S. M. Barr, Explicit SO(10) Supersymmetric Grand Unified Model for the
Higgs and Yukawa Sectors, Phys. Rev. Lett. 85 (2000), 244–247, hep-ph/0002155.

[105] C. H. Albright and S. M. Barr, Construction of a Minimal Higgs SO(10) SUSY GUT Model,
Phys. Rev. D62 (2000), 093008, hep-ph/0003251.

[106] W. Lerche, D. Lust, and N. P. Warner, Duality Symmetries in N = 2 Landau-Ginzburg
Models, Phys. Lett. B231 (1989), 417.

[107] M.-C. Chen and K. T. Mahanthappa, CKM and Tri-Bimaximal MNS Matrices in a SU(5)×(d)

T Model, Phys. Lett. B652 (2007), 34–39, arXiv:0705.0714 [hep-ph].

[108] P. D. Carr and P. H. Frampton, Group Theoretic Bases for Tri-Bimaximal Mixing, (2007),
hep-ph/0701034.

[109] A. D. Thomas and G. V. Wood, Group Tables, Shiva Publishing Limited.

[110] S. P. Martin, A Supersymmetry Primer, (1997), hep-ph/9709356.

[111] A. Aranda, C. D. Carone, and R. F. Lebed, U(2) Flavor Physics without U(2) Symmetry,
Phys. Lett. B474 (2000), 170–176, hep-ph/9910392.

[112] A. Aranda, C. D. Carone, and R. F. Lebed, Maximal Neutrino Mixing from a Minimal Flavor
Symmetry, Phys. Rev. D62 (2000), 016009, hep-ph/0002044.

[113] G. Altarelli, F. Feruglio, and Y. Lin, Tri-Bimaximal Neutrino Mixing from Orbifolding, Nucl.
Phys. B775 (2007), 31–44, hep-ph/0610165.

[114] C. S. Lam, Mass Independent Textures and Symmetry, Phys. Rev. D74 (2006), 113004,
hep-ph/0611017.

[115] C. S. Lam, Symmetry of Lepton Mixing, Phys. Lett. B656 (2007), 193–198, arXiv:0708.3665
[hep-ph].

[116] W. Grimus and L. Lavoura, S3 × Z2 Model for Neutrino Mass Matrices, JHEP 08 (2005),
013, hep-ph/0504153.

[117] S.-L. Chen and E. Ma, Discrete Symmetry and CP Phase of the Quark Mixing Matrix, Phys.
Lett. B620 (2005), 151–155, hep-ph/0505064.

[118] W. Grimus and L. Lavoura, Soft Lepton-Flavor Violation in a Multi-Higgs-Doublet Seesaw
Model, Phys. Rev. D66 (2002), 014016, hep-ph/0204070.

[119] S. Antusch, S. F. King, and M. Malinsky, Solving the SUSY Flavor and CP Problems with
SU(3) Family Symmetry, (2007), arXiv:0708.1282 [hep-ph].

[120] MEG, S. Ritt, Status of the MEG Experiment µ→ eγ, Nucl. Phys. Proc. Suppl. 162 (2006),
279–282.

[121] T. Kobayashi, H. P. Nilles, F. Ploger, S. Raby, and M. Ratz, Stringy Origin of Non-Abelian
Discrete Flavor Symmetries, Nucl. Phys. B768 (2007), 135–156, hep-ph/0611020.

[122] P. H. Frampton and T. W. Kephart, Simple Non-Abelian Finite Flavor Groups and Fermion
Masses, Int. J. Mod. Phys. A10 (1995), 4689–4704, hep-ph/9409330.


