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Negative Brechung in atomaren Zwei-Komponenten-Systemen: In der vor-
liegenden Arbeit soll die Realisierungsmöglichkeit negativer Brechung bei optischen
Wellenlängen und geringer Absorption in Gasen, die aus zwei verschiedenen Atom-
sorten bestehen, untersucht werden. Im Vergleich zu einkomponentigen Systemen
erhoffen wir uns davon, dass durch die weniger strengen Voraussetzungen, die erfüllt
werden müssen, mögliche Atome für eine experimentelle Realisierung leichter gefun-
den werden können. In Zwei-Komponenten-Systemen trägt je eine Atomsorte die
elektrische bzw. die magnetische Antwort bei. Um einen negativen Brechungsindex
zu erhalten, müssen beide Antworten groß sein. Daher optimieren wir die magne-
tische Suszeptibilität, die typischerweise deutlich kleiner als die elektrische Suszep-
tibilität ist, in verschiedenen Systemen. Weiterhin untersuchen wir einen Mecha-
nismus, der die magnetische Antwort um einen Faktor α−1, der inversen Feinstruk-
turkonstante, verstärkt und in sogenannten Closed-Loop-Systemen auftritt. Closed-
Loop-Konfigurationen sind dadurch gekennzeichnet, dass die koppelnden Probe- und
Kontrollfelder im Levelschema eine geschlossene Schleife bilden. Wir stellen fest,
dass die Verstärkung auftritt, da die elektrische Komponente des Probefeldes in den
magnetischen Probeübergang streut. Unter Verwendung der bisherigen Ergebnisse
berechnen wir dann den Brechungsindex für verschiedene Kombinationen realis-
tischer Levelschemata und gehen auf auftretende Instabilitäten des Probefeldes ein.
Wir erhalten für zwei verschiedene Systeme einen Brechungsindex von n = −6.4
bzw. n = −3.7 bei verschwindender Absorption.

Negative Refraction in Atomic Two-Component Media: In the present thesis
we study the feasibility of negative refraction at optical wavelengths and low absorp-
tion in gases consisting of two species of atoms. Compared to a single-component
system, we expect it to be easier to find candidates for an experimental realization
due to less stringent conditions that must be met. The two involved species con-
tribute the electric and the magnetic response, respectively. To obtain a negative
refractive index, both responses must be large. Therefore, we optimize the magnetic
susceptibility, which typically is considerably smaller than the electric susceptibility,
in different systems. Moreover, we investigate a mechanism in so-called closed-loop
systems that enhances the magnetic response by a factor of α−1, the inverse fine
structure constant. Closed-loop configurations are characterized by the fact that
the coupling control and probe fields build up a closed interaction loop in the level
scheme. We find that the enhancement occurs, as the electric probe field component
scatters into the magnetic probe transition. Using the previous results, we calcu-
late the refractive index for several combinations of two realistic level schemes and
address the occurring instabilities of the probe field. We obtain a refractive index
of n = −6.4 and n = −3.7, respectively, at vanishing absorption for two different
systems.



During this diploma thesis, a paper was submitted to Physical Review A. It can be
found under

B. Jungnitsch and J. Evers, “Magnetic response enhancement via electrically
induced magnetic moments”, arXiv:0804.3552
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Chapter 1

Introduction

Refraction of light is one of the physical phenomena that we encounter as part of
our everyday life. From glasses to microscopes, from mirages to rainbows, refraction
can be found everywhere. Due to its accessible nature, refraction was investigated
and explained scientifically in the course of the development of one of the very first
branches of physics: geometrical optics.

As one of the most fundamental phenomena of this field, refraction can be described
by the index of refraction of the involved materials. These indices — or, more
precisely, their real parts — are given by the ratio of the speed of light in vacuum and
in the respective material. The law of diffraction which is based on these quantities is
commonly attributed to Willebrord Snellius. After some preparatory work by others,
he derived the well-known relation sin(θ1)/sin(θ2) = n2/n1 between the ratio of the
angle of incidence θ1 and the angle of refraction θ2 and the indices of refraction n1

and n2 of the two involved media at whose borderline the refraction occurs. The work
of Snellius is embedded in a vivid time of discovery in geometrical optics and has
to be seen in the context of works by Johannes Kepler, René Descartes, Christiaan
Huygens, Isaac Newton, Galileo Galilei and Johann Wolfgang von Goethe. In later
centuries, geometrical optics gave birth to important branches of physics, such as
electrodynamics and astronomy.

In the latter, geometrical optics played a particularly important role in the devel-
opment of lenses. Whereas glasses have refractive indices in the range of n = 1...2,
natural materials in general have indices mainly between n = 1 and n = 4. However,
in 1968 scientists realized that a negative index of refraction — or, more precisely,
a negative real part of the index of refraction — does not violate any physical laws
and therefore is possible, in principle, giving rise to many astonishing and counter-
intuitive effects. At this time, Victor Veselago wrote his paper ”The Electrodynamics
of Substances with Simultaneously Negative Values of μ and ε” [1] and opened the
road to an exciting new phenomenon: negative refraction.
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1 - Introduction

Due to the lack of natural media that refract negatively, the topic was first neglected
some time, until the development of modern photonics and quantum optics lead to
the insight that negative refraction is feasible in reality. A first climax was the
realization of negatively refracting metamaterials [2, 3] — building on a proposal
by Pendry [4] — and negative refraction in photonic crystals [5]. Nowadays, meta-
materials are a common tool to demonstrate negative refraction [6, 7, 8, 9]. These
artificially built materials consist of tiny LCR circuits that are smaller than the wave-
length of the used light, which means that the light sees a homogeneous medium.
The LCR circuits can be designed appropriately in order to achieve suitable elec-
tric and magnetic responses. Photonic crystals, in contrast, contain structures that
have dimensions of the same order as the wavelength of the light. Their permittivity
and/or permeability change periodically in space, thus manipulating the speed of
light through diffraction.

Also, theoretical and experimental works suggested a variety of applications for the
new phenomenon: The perfect lens proposed by Pendry [10] allows for an, in princi-
ple, arbitrarily large resolution. It can be build of a slab with an index of refraction
of n = −1 which cancels the decay of evanescent waves, thus overcoming the physi-
cal mechanism that is responsible for the diffraction limit of half the wavelength of
the used light. Works by Pendry, Schurig and Smith [11] and Leonhard [12] about
the realization of an electromagnetic cloak were followed by an experimental demon-
stration taking use of negative refraction [13] in which a cylinder was made nearly
invisible at a microwave frequency. Negatively refracting materials would help to
build antennas shorter than a quarter of the emitted wavelength and electromag-
netic wave guides that work at dimensions smaller than the transmitted wavelength.
Negative refraction can reduce reflections on surfaces and help to store information
optically and at a high density.

What stands behind these interesting applications are the counter-intuitive, surpris-
ing properties of negative refraction: As Veselago [1] argues with the help of the
two vectorial Maxwell equations, in materials with a negative permittivity ε and a

negative permeability μ (for real ε and μ), the wave vector �k = nω
c

�S

|�S| of the incident

light and �E and �H form a left-handed system. Here, �E and �H are the electric and
magnetic field, ω their frequency, c the vacuum speed of light and n the index of
refraction. However, the Poynting vector �S = �E× �H of the incident beam and �E and
�H form a right-handed system due to the definition of �S. Therefore, interestingly,
the energy flow — described by �S — and the phase motion — as given by �k — point

in opposite directions. Due to �k = nω
c

�S

|�S| , we have to assign a negative value to the

index of refraction n.

The fact that �k, �E and �H form a left-handed system in negatively refracting materi-
als, whereas in positively refracting media, �k, �E and �H build a right-handed system,
motivated the name “left-handed materials” in case of a negative refractive index.
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Up to date, negative refraction has been realized at both microwave [2, 3, 9] and op-
tical frequencies [14]. However, the production process of metamaterials that work
at optical frequencies is a complex technological challenge, due to the required sub-
wavelength feature size of the metamaterials. Also, the losses in such metamaterials
are given by the imaginary part of the index of refraction. Since metamaterials
are typically passive systems and work close to an electromagnetic resonance, the
imaginary part is positive and of the same size as the real part. Thus, the occur-
ring absorption is substantial. However, large losses are a disadvantage when it
comes to measuring negative refraction in an experiment and also for the mentioned
applications, such as the perfect lens by Pendry.

Therefore, in the recent past, one has also turned to atomic gases for the realiza-
tion of negative refraction [15, 16, 17, 18]. These are naturally three-dimensional
media, in contrast to metamaterials which are often produced in two-dimensional
layers. Atomic gases commonly have several electric dipole transitions at optical
wavelengths. Also, magnetic dipole transitions at optical frequencies can be found.
Moreover, one can use lasers to produce control fields in the atomic gas that can
be used to tailor the shape of the response and thus the ratio of real and imaginary
part of the refractive index.

However, the relative permeability μr and the relative permittivity εr are given by

εr = χ̃e + 1 , (1.1a)

μr = χ̃m + 1 , (1.1b)

in terms of the magnetic and the electric susceptibility χ̃m and χ̃e in Fourier space.
The susceptibilities, in turn, quantify the magnetic and electric response. Normally,
they are of the relative order of magnitude of χ̃m/χ̃e ≈ α2 ≈ 1

1372 . Therefore the
magnetic response is suppressed.

Permeability and permittivity contribute to the index of refraction according to [19]

n2 = εrμr . (1.2)

Since Veselago deduced a negative index of refraction for μr < 0 and εr < 0 and due
to Eqs. (1.1), it is desirable to have both a negative magnetic and electric suscepti-
bility of a large absolute value. This means that we need a large magnetic response.
Also, until now, we have only focused on the real part of the, in fact, complex
susceptibilities, permittivities and permeabilities. However, as already mentioned,
the material should also be as little absorbing as possible. This implies a small
imaginary part of the refractive index.

Furthermore, to prepare the road for an experimental realization of negative refrac-
tion in atomic gases, one has to find possible candidate atoms. In previous works, the
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1 - Introduction

metastable noble gases Neon, Krypton, Xenon [18] and rare-earths like Dysprosium
[17] have been proposed. However, the difficulty in finding suitable candidates is
the fact that these candidate atoms must have an electric and a magnetic transition
at approximately the same frequency: The resonances should not be further apart
from each other than roughly the natural linewidth to provide non-zero responses.

In this thesis, we therefore examine a method which possibly allows us to meet this
restrictive requirement much easier. We take two different species of atoms A and B,
one of which couples to the magnetic component of the incident probe field, the other
one of which couples to the electric component. Therefore, the electrically coupling
species yields the electric response, while the magnetically coupling component is
responsible for the magnetic response.

Moreover, if we consider media that consist of two components, we can optimize their
respective responses independently to achieve negative refraction with low losses.
Furthermore, there is also the hope that if the magnetic probe field component only
couples to one species, say species A, we can use control fields that interact with
atoms of species A in a special way to obtain a larger magnetic response. These
control fields are applied to the medium to prepare it and to manipulate its responses
in a suitable way. We can apply them in such a way that the control fields build
up an interaction loop in the level scheme of medium A together with the magnetic
probe field component. This creates a so-called closed-loop scheme. The interaction
loop does not contain the electric probe field component, but only control fields.
This is in contrast to other schemes in single-component media [18, 17]. As control
fields are much stronger than probe fields, one possibly obtains a larger magnetic
response in such a closed-loop scheme that only couples to the magnetic probe field
component.

1.1 Structure and results of this thesis

For these reasons, we examine the feasibility of negative refraction in atomic two-
component media. To do so, this work is divided into the following parts:

In Sec. 2, we study how one can tailor the magnetic response in three-level schemes
with the help of incoherent pumping and coherent control fields, in order to optimize
the response such that it can be used for negative refraction at low absorption.
However, it is possible to optimize permittivity and permeability towards different
values which are all candidates for negative refraction. We will choose the way that
already Veselago opted for [1] and optimize towards a small imaginary part and a
strongly negative real part of both the permittivity and the permeability. This has
been done, e.g., by Fleischhauer et al. in [20] for the electric response, but not yet
for the magnetic response.
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1.1 - Structure and results of this thesis

We begin with the theoretical preparation in Sec. 2.1. Thereafter, we consider
concrete systems: As an introductory example, we start with the simplest system,
the two-level system. However, due to its simplicity, it has two advantages when it
comes to negative refraction: First, it might be easier to find two-level systems in
reality to use them for an experimental realization of negative refraction in atomic
two-component media. Secondly, it will turn out that, for a certain parameter range,
media formed by three-level systems are instable and a physical interpretation of the
index of refraction in Fourier space is not valid. Two-level systems do not exhibit
these instabilities for any set of parameters. These instabilities are closely related
to the topic of branch points and will be discussed in Sec. 4.1.4.

Then, as main part of Sec. 2, we will discuss the magnetic responses of three-level
systems in different configurations. Namely, these are the so-called upper microwave
scheme, the lower microwave scheme, both of which show a ladder configuration of
the applied fields, and the lambda system, which is typically used for electromag-
netically induced transparency (EIT). We present optimized susceptibilities of all
these systems.

In Sec. 3, we will then turn to another aspect of the magnetic response. Since
the magnetic response usually is considerably smaller than the electric response,
as mentioned by a factor of α−2, we investigate a scheme suggested by Oktel and
Müstecaplıoǧlu to enhance the magnetic response. They observed an enhancement
of the magnetic response by a factor of α−1 at a single frequency in a similar way as,
in subsequent work [17, 18], others did at all frequencies. A deeper understanding
of the mechanism responsible for this enhancement is desirable to take advantage of
it. Therefore, we compare two systems, one of which includes a closed interaction
loop of coupling and probe fields. This closed-loop system shows the enhancement,
while the other, similar system without a closed loop does not. In this way, we can
identify the mechanism leading to the enhancement [21]. We find that a scattering
process of the electric probe field component into the magnetic probe field component
accounts for an enhancement of a factor of α−1. This opens the possibility for further
enhancement beyond a factor of α−1.

Finally, we use the closed-loop system of Sec. 3 in a slightly different configuration
and optimize its response in Sec. 3.6, analogously to Sec. 2.3.

In Sec. 4, we combine our previous results to investigate several combinations of two
systems with respect to the occurrence of negative refraction. To this end, we briefly
have to address the issue of how to combine the magnetic and electric response of
two different components into the index of refraction (Sec. 4.1.1). Also, Eq. (1.2)
has the two solutions

n = ±√
εrμr . (1.3)
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1 - Introduction

Consequently, if we want to calculate the index of refraction, we have to pick the
relevant solution of these two and thus the right sign. In Sec. 4.1.2, we give two
algorithms to solve this problem. However, applying these algorithms, we encounter
continuity problems that will turn out to be related to the occurrence of so-called
branch points of the refractive index that meet particular conditions. These branch
points are closely connected to the question of stability of the two media and will
be investigated in Sec. 4.1.4.

Finally, we calculate the index of refraction for several combinations of configurations
in Sec. 4.2 using the optimized susceptibilities of Secs. 2 and 3.6. In a combination of
a pair of two-level systems, we obtain negative refraction. For a particular difference
between magnetic and electric transition frequency, we reach values of FOM ≈ 8.
Here, FOM denotes the figure of merit which is defined as FOM = |Re(n)/Im(n)|.
For that, the particle densities for each of the two species must be Ne = Nm =
1021 m−3.

Compared to this, previous works that use media consisting of one single species of
atoms needed densities of approximately N ≈ 1022...1023 m−3 [17, 18].

For a combination of upper microwave (magnetic species) and two-level system (elec-
tric species), we obtain instabilities for the optimized parameters of Sec. 2.3.1.
However, for other parameters, namely for a nitrogen-like upper microwave system,
we find two frequencies of vanishing absorption at negative refraction, with refrac-
tive indices of n = −3.7 and n = −2.0. For that, the particle density for the
magnetic species must be Nm = 1023 m−3 and the density for the electric species
Ne = 1021 m−3.

Finally, we consider a combination of a magnetically coupling closed-loop system of
Sec. 3.6 and an electrically coupling two-level system. We find a set of parameters
of a stable system for which we obtain zero absorption at two different frequencies
of negative refraction and thus, the FOM diverges. While the imaginary part is
zero due to the vanishing absorption, the index of refraction reaches n = −6.4 and
n = −2.5. For this, the particle densities have to be Ne = 1.5 · 1020 m−3 and
Nm = 1023 m−3 for the two different atomic components. This system seems to be
more suitable for an experiment than the upper microwave system due to a real part
of a stronger negative value at the point of zero absorption.

In Sec. 5, we summarize our results and give an outlook on future tasks in the
field of negative refraction in atomic media. In doing so, we also suggest possible
candidates for an experimental realization.

1.2 Notation remarks

In the following, we will use the following rules for the notation:

6



1.2 - Notation remarks

� For indices that cover different ranges of values, different letters will be used.

� Summation indices that refer to different levels will be named with Roman
letters. Summation indices that refer to different transitions will be denoted
by Greek letters. E.g., �ij refers to the density matrix element which belongs to

the transition between levels |i〉 → |j〉, whereas
3∑

α=1

sums over three transitions.

� Also, all formulas will be given in SI units. Therefore, the vacuum permeability
[permittivity] μ0 [ε0] is not unity. Thus, we have to distinguish between relative
permeability [permittivity] μr [εr] and absolute permeability [permittivity] μ
[ε], which can be obtained by multiplying the relative quantities with the
vacuum permeability [permittivity] μ0 [ε0]. However, for simplicity, we will
call εr and μr permittivity and permeability in the following, leaving out the
term “relative”.

7



1 - Introduction
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Chapter 2

Tailoring the magnetic response

To achieve negative refraction in a two-component medium, we proceed as follows.
The medium that consists of two species of atoms is prepared by electromagnetic
control fields, i.e. by possibly strong lasers that we shine onto the gas. Then, we
probe the properties of the medium, in particular the refractive index, by another,
weak probe laser. One species of atoms will couple to the magnetic component of
this probe field, the other one to the electric component. Thus, the magnetically
coupling species will cause a magnetic response and the electrically coupling species
an electric response. These responses are described by magnetic and electric sus-
ceptibility, respectively, or the (relative) permittivity εr and permeability μr which
are connected to the susceptibilities by Eqs. (1.1) (see also [19]).

It is possible to have a single species of atoms that couples to both the magnetic
and the electric component. This can also lead to negative refraction as proposed
by Pendry [22]. In such a case so-called chirality terms occur that describe the
electric response to the magnetic field and vice versa. However, this has been done
in [17, 18] and we aim for the mentioned approach of two components coupling
to electric and magnetic field separately. Note that, although we use these two
components separately, they are still part of the same laser field and connected
with each other by the Maxwell equations. We are interested in the responses, and
therefore the susceptibilities, at the probe field frequency.

We will achieve negative refraction at low losses through tailoring the magnetic and
electric responses of our two-component medium such that we obtain a strongly
negative real part of the index of refraction and a small imaginary part at the
same frequency, since a small imaginary part of the index of refraction implies low
absorption. However, since the square of the index of refraction is given by Eq.
(1.2), there exist the two solutions of Eq. (1.3) for the index of refraction itself
which we denote by

9



2 - Tailoring the magnetic response

a) b) c)

ReReRe

ImImIm

n−
n−

n−
n+

n+

n+

εr

εr
εr

μr
μr

μr

n2

n2

n2

Figure 2.1: Three sets of exemplary values of permittivity μr and permeability εr to
achieve negative refraction with low losses. Here, n− = −√

μrεr and n+ = +
√
μrεr

are the two possible solutions of Eq. (1.2). In the following, we will consider the
case depicted in c).

n− = −√
εrμr , (2.1a)

n+ =
√
εrμr , (2.1b)

Here, one of the two signs yields the retarded solution of the index of refraction,
the other one the advanced solution. Since only the retarded solution is causal and
therefore physical, we have to pick the right sign in order to obtain the physical
solution of the index of refraction. Still, it is not a priori obvious which sign has
to be chosen. This issue will be addressed in Sec. 4.1.2. For now, we visualize the
permittivity εr, the permeability μr, the square of the index of refraction and the
two solutions for the index of refraction n− and n+ in the complex plane at a single
frequency (see Fig. 2.1).

Solutions for the refractive index that lie close to the real axes have a small imaginary
part. Also, if one solution, say n−, lies close to the real axis, the other one — n+ —
also does and one of the two has a negative real part. Therefore, as one can see by
Eq. (2.1), in principle permittivities εr = |εr|eiφε, φε ∈ (−π, π] and permeabilities
μr = |μr|eiφμ, φμ ∈ (−π, π] whose polar angles φε and φμ add up to −2π, 0, 2π are
interesting. In particular, this is the case if |φε| ≈ π and |φμ| ≈ π, which means that
the imaginary parts of permittivity and permeability are small and the real parts
are negative (see Fig. 2.1 c) ). This is also the situation that Veselago examined
in [1]. Considering a real permittivity and a real permeability, he deduced that the
index of refraction has to be assigned a negative value if the permittivity and the
permeability are negative.

Motivated by this, in the following we use coherent control fields and incoherent
pumping to prepare the medium in such a way that the response to the incident
magnetic probe field component — the permeability — has a small imaginary part
and a negative real part. According to Eqs. (1.1), this also implies a negative real
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2.1 - Theoretical preparation

|1〉

|2〉

|3〉

1

2

3

Figure 2.2: The above image illustrates the labelling we are going to use for the
investigation of several three-level systems with respect to their suitability for the
magnetic contribution in a negatively refracting two-component system.

part and a small imaginary part of the magnetic susceptibility. The permittivity
should be optimized in the same way. Since this has already been done in [17, 18],
we focus on the magnetic part here. Later on, these optimized susceptibilities will
help us to achieve negative refraction with low losses.

2.1 Theoretical preparation

2.1.1 The general model

In this chapter, we will consider systems that consist of three energy levels labelled
|1〉, |2〉 and |3〉 with increasing energy (see Fig. 2.2). The three transitions are also
labelled from 1 to 3, in the order also shown in Fig. 2.2. This being the general
structure of our system, we investigate different configurations of three-level systems
in the following subsections. Therefore, we will apply several electromagnetic fields:
one probe field, one or two coherent control fields and sometimes also fields that
pump incoherently.

Of course, we also include incoherent decays on the transitions, the rate of which
depends on their multipolarity and their character as magnetic or electric transi-
tions. As already mentioned, we also apply incoherent pumping in one direction on
some transitions. This can be seen as inverted incoherent decay and can be realized
in an experiment in two ways: Incoherent pumping in one direction, namely to a
higher energy level |e〉, can be achieved by coherent pumping — with a laser — to
an auxiliary energy level |a〉 at even higher energy than |e〉 which then decays inco-
herently to level |e〉. On the other hand, if one destroys the coherence of laser light
by putting a hazy glass plate between laser and medium, one can realize incoherent

11



2 - Tailoring the magnetic response

pumping in both directions.

Also, coherent pumping between a ground state |g〉 and an excited state |e〉 causes
Rabi oscillations. This means that the populations are shifted from one state to the
other and back. Incoherent decay, however, damps these oscillations and creates a
steady state in the long-time limit in which the populations do not change anymore.
The steady state is also the situation for which we will solve our equations of motion
later on.

Further parameters are the detunings of the coherent control fields with respect to
the transitions they couple to.

2.1.2 The magnetic response

Let us now come to the magnetic susceptibility χm or, more precisely, its Fourier
transform χ̃m. This is the quantity that we want to calculate, since it gives the
magnetic response to the magnetic field. It is connected to the permeability μr
via Eq.(1.1b) and the sign of its imaginary part provides information about the
absorptive behavior of the associated system.

As a sidenote, let us mention that the absorptive behavior is originally given by
the imaginary part of the index of refraction and not the magnetic susceptibility.
Still, an expansion of the index of refraction n in the imaginary part of the magnetic
susceptibility χ̃m shows that, for small imaginary parts of the susceptibility, the sign
of Im(n) is given by the sign of Im(χ̃m). Here, χ̃m denotes the magnetic susceptibility
in Fourier space, while the electric susceptibility is assumed to be equal to one.

To start, we define the linear magnetic susceptibility by

�M(�r, t) =

∞∫
−∞

χm(τ) �H(�r, t− τ) dτ

=

∞∫
−∞

1

μ0
χm(τ) �B(�r, t− τ) dτ (2.2)

as the linear response coefficient that connects the incident magnetic field �H and
the magnetization �M caused by the magnetic field. Both the magnetization and
the magnetic field are considered at position �r and time t. We used the relation
�B = μ0

�H here, since both �B and �H are external fields. Note that χm(t) ≡ 0 for
t < 0 due to causality in Eq. (2.2), since magnetic fields at a certain point in time
cannot influence the magnetization at an earlier point in time.

12



2.1 - Theoretical preparation

There are several things to note when using Eq. (2.2): First, we only take into
account the linear response to the magnetic field. Terms of higher order in the
magnetic probe field component than the linear one can be neglected, as the incident
probe field is typically weak.

Also, the magnetization in Eq. (2.2) is only given as response to the magnetic field.
However, the electric field can also contribute to the magnetic response [17, 18]
which gives rise to so-called chirality terms in Eq. (2.2). Nevertheless, in the systems
we examine in this chapter, we do not need the chirality term, since we focus on
systems that couple only to the magnetic probe field component and not to the
electric part. By contrast, in Sec. 3, we will consider systems that couple to both
probe field components. In these systems, chirality terms will play an important
role and finally lead to an enhancement of the magnetic response.

In general, the magnetic susceptibility is a tensor. However, we work in a homoge-
neous, isotropic medium. Also, the electric probe field component which in principle
could introduce another axis and therefore a chiral character does not couple to the
medium considered here. For this reason, the susceptibilities reduce to scalars.

In particular, we write our total magnetic field as

�B(�r, t) = �Bp(�r)e
iφe−iωpt +

o∑
λ=1

�Bλ(�r)e
iψλe−iωc,λt + c.c. , (2.3)

where the subindex p refers to the probe field, while λ and c,λ (λ ∈ {1, ...0}) refer to
the different control fields. Here, o is the number of applied control fields. However,
we will only use two control fields at most in a later section, namely in Sec. 4.2.3.

Further, �Bp(�r) = Bp�bpei�kp�r, where Bp is the electric field amplitude, �bp the unit

polarization vector of the electric component of the probe field, �kp is the probe
field’s wave vector, ωp its frequency and φ its absolute phase.

Analogously, �Bλ(�r) = Bλ�bλei�kλ�r, where Bλ (λ ∈ {1, ...o}) is the amplitude of the

respective control field and �bλ its unit polarization vector. �kλ is the wave vector of
the control field labelled λ, ωc,λ its frequency and ψλ its total phase.

As a side note, let us mention that the unit polarization vector of the magnetic
probe field component is related to the unit polarization vector �ep of the electric

probe field component by �bp = �κ× �ep where �κ is the unit vector in the direction of

the wave vector, �κ = �kp/kp. This relation can easily be seen by one of the Maxwell
equations in Fourier space, namely

�B =
�k

ω
× �E (2.4)

13



2 - Tailoring the magnetic response

and the fact that in SI system

| �E| = c| �B| . (2.5)

For definitiveness, we will from now on consider a σ+-polarized electric probe field
that propagates in positive z-direction. This means that �κ = �z and the unit po-
larization vector of the electric field becomes �ep = 1√

2
(�x+ i�y). �x, �y and �z are the

orthonormal basis vectors of our Cartesian coordinate system. Therefore, we obtain
a simple relation between the unit vectors of the two probe field components:

�bp = �z × (�x+ i�y)/
√

2 =

⎛
⎝ 0

0
1

⎞
⎠ × 1√

2

⎛
⎝ 1

i
0

⎞
⎠ = − i√

2

⎛
⎝ 1

i
0

⎞
⎠ = −i�ep (2.6)

Let us now proceed with the derivation of an expression for the magnetic suscepti-
bility. Plugging Eq. (2.3) into Eq. (2.2), we can write

�M(�r, t) =
1

μ0

χ̃m(ωp) �Bp(�r)e
i(φ−ωpt) +

1

μ0

χ̃m(ωc) �Bc(�r)e
i(ψ−ωct) + c.c. . (2.7)

Here, χ̃m is the Fourier transform of χm, i.e.

χ̃m(ω) =

∞∫
−∞

χm(τ)eiωτdτ (2.8)

Besides the classical definition as linear response to the magnetic field, the magneti-
zation can also be calculated in a quantum mechanical way: It is given by �M = N�m,
where N is the particle density and �m the mean magnetic moment per atom [23].
We can express the mean magnetic moment as �m = Tr(��μ), where Tr(A) denotes
the trace of matrix A, � is the density matrix operator of the examined system and
�μ is the magnetic dipole operator. Explicitly, we have

�M = N Tr(��μ)

= N
∑
i→j

(�ij�μji + c.c.) (2.9)

The involved sum includes all transitions i → j (i, j ∈ {1, 2, 3}) of the system that
are dipole allowed. It only sums over each pair (i,j) once - which is why the complex
conjugated part appears. Moreover, �ij = 〈i|�|j〉 and �μij = 〈i|�μ|j〉 are the matrix
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2.1 - Theoretical preparation

elements of the density matrix and the magnetic dipole moment in the atomic energy
eigenstate basis |i〉 (i ∈ {1, 2, 3}).
Of course, the sum does not contain diagonal elements and no electric dipole tran-
sitions, since �μij vanishes for i = j and for electric dipole transitions.

Now, we equal Eqs. (2.9) and (2.7) and obtain

1

μ0
χ̃m(ωp) �Bp(�r)e

i(φ−ωpt) +
1

μ0
χ̃m(ωc) �Bc(�r)e

i(ψ−ωct) + c.c. =

N
∑
i→j

(�ij�μji + c.c.) (2.10)

We are interested in the response at the probe field frequency and therefore in
χ̃m(ωp). To obtain it, we need to know which part of the right hand side of Eq. (2.10)
oscillates in phase with e−iωpt to do a comparison of coefficients. This can be easily
found out by transforming the density matrix elements �ij into an appropriate frame
in which the Hamiltonian and therefore the transformed density matrix elements �̃ij
are time-independent. In the systems we consider in this section, such a Hamiltonian
can always be found — in contrast to Sec. 3. Moreover, the transformed, time-
independent coherence �̃i0j0 of the probe transition |j0〉 → |i0〉, i0 > j0, is the only
matrix element which transforms according to (cp. Eqs. (2.25))

�̃i0j0 = eiωpt�i0j0 . (2.11)

If we now write Eq. (2.10) in terms of the transformed coherences so that the time
dependence becomes explicit and then take the coefficients of e−iωpt, we obtain

1

μ0

χ̃m(ωp) �Bp(�r)e
iφ = N�̃i0j0�μj0i0 . (2.12)

In order to solve this equation for χ̃m(ωp), we expand �̃i0j0 in the following way:

�̃i0j0 = �̃
(0)
i0j0

+ �̃
(1)
i0j0

Ωi0j0 (2.13)

where we defined the Rabi frequency of the probe transition

Ωi0j0 = eiφ �Bp(�r) �μi0j0/� , (2.14)

which gives us the coupling strength of the magnetic probe field to the magnetic
probe transition. When we derive equations of motion for the density matrix ele-
ments in Sec. 2.1.3 to obtain �̃i0j0, it will become clear that �̃i0j0 depends on Ωi0j0
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2 - Tailoring the magnetic response

and can therefore be expanded in it. Also, when solving the equations of motion,
one sees that �̃

(0)
i0j0

vanishes and therefore

�̃i0j0 = �̃
(1)
i0j0

Ωi0j0 . (2.15)

As already mentioned, we only consider the responses up to linear order in the probe
field. Therefore, we neglected terms of second or higher order in Ωi0j0 in Eqs. (2.13)
and (2.15).

We now multiply Eq. (2.12) with �b∗p from the left. Using Eqs. (2.15) and (2.14), we
thus obtain

1

μ0
χ̃m(ωp)�b

∗
p
�Bp(�r)e

iφ = N�̃
(1)
i0j0

eiφ/�
(
�Bp(�r) �μi0j0

)(
�b∗p�μj0i0

)
(2.16)

Using the definition of �Bp(�r) and the fact that �b∗p�bp = 1, we rewrite this equation.

1

μ0

χ̃m(ωp)Bpei
�kp�reiφ = N�̃

(1)
i0j0

Bpei
�kp�reiφ/�

(
�bp �μi0j0

)(
�b∗p�μj0i0

)
(2.17)

Solving for the magnetic susceptibility yields

χ̃m(ωp) =
Nμ0

�
|μi0j0|2�̃

(1)
i0j0

(2.18)

where μi0j0 = �bp �μi0j0.

2.1.3 The equations of motion

According to Eq. (2.18), we need the coherence �̃i0j0 of the probe transition |j0〉 →
|i0〉 in a system oscillating in phase with the probe field — or, more precisely and
more general, the very part of the sum in Eq. (2.10) that oscillates in phase with
the probe field — in order to obtain the magnetic susceptibility. In other words, we
need the density matrix elements.

Therefore, we have to solve the equations of motion for the density matrix �, i.e.
the master equation, given here in Lindblad form [24]:

∂�

∂t
= − i

�
[H, �] −

3∑
α=1

γα
2

([
�S+

α , S
−
α

]
+

[
S+
α , S

−
α �

])

−
3∑

α=1

rα
2

([
�S−

α , S
+
α

]
+

[
S−
α , S

+
α �

])
. (2.19)
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2.1 - Theoretical preparation

We used the rotating wave and Born-Markov approximations and included inco-
herent pump rates rα here. Also, quantum inference induced by incoherent cross
coupling between the atomic transitions does not have to be included here, since the
transitions of our system are not resonant with respect to each other. The number
of photons in the vacuum field modes at the involved transition frequencies is set to
zero. The latter is reasonable, since for optical transitions in the atom, the vacuum
field can be described by T = 0.

Here, the α denote different transitions, i.e. the sums range over all transitions in
the atom. Therefore, α ∈ {1, 2, 3} in a three-level system. γα is the incoherent decay
rate on the transition labelled by α, rα denotes an incoherent pump rate on the same
transition. The S+

α are the transition operators of transition α and S−
α = (S+

α )
†
. E.g.

if α = 1 denotes the transition |1〉 → |3〉 — as is the case in our schemes according
to Fig. 2.2 — then S+

1 = |3〉〈1| and S−
1 = |1〉〈3|.

Finally, the Hamiltonian H which determines the unitary part of Eq. (2.19) is given
by

H = H0 +HI , (2.20)

where, in rotating wave and dipole approximation,

H0 =

3∑
i=1

�ωi , (2.21a)

HI = −� (Ω21e
−iωpt |2〉〈1|︸ ︷︷ ︸

S+
3

+ Ω32e
−iωct |3〉〈2|︸ ︷︷ ︸

S+
2

+H.c.) . (2.21b)

For a better readability, we gave up total generality here and wrote down the Hamil-
tonian of a special system, namely the upper microwave system in Sec. 2.3.1 as seen
in Fig. 2.3. Therefore, the probe transition now is |1〉 → |2〉, i.e. i0 = 2 and j0 = 1.
Also, we only have one control field which couples to transition |2〉 → |3〉 and whose
frequency we simply denoted by ωc.

When considering another system, one only has to change the indices for the probe
transition and the transition to which the control field couples. A second control
field would only require the introduction of another term in the sum of Eq. (2.21b)
analogously to the first control field term.

The ωi, i ∈ {1, 2, 3}, are the eigenfrequencies of the atomic states, while the Rabi fre-
quencies that determine the coupling strength of the involved fields to the respective
transitions are defined as
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|1〉

|2〉

|3〉

γ1

γ2

γ3

r1

r2

r3

Ω32

Ω21

Figure 2.3: The upper microwave scheme includes a control field Ω32 (red, two
arrowheads) coupling to transition |2〉 → |3〉, a probe field Ω21 (black, two arrow-
heads) coupling to the magnetic probe transition |1〉 → |2〉, incoherent decay rates
γα, α ∈ {1, 2, 3} (wiggly green arrows) and incoherent pump rates rα, α ∈ {1, 2, 3}
(straight, dashed green arrows) on each transition.

Ω21 = eiφ �Bp(�r) �μ21/� , (2.22a)

Ω32 = eiψ �Bc(�r) �μ32/� . (2.22b)

Here, we assumed transition |2〉 → |3〉 to be a magnetic dipole transition with
magnetic dipole moment �μ32. Therefore, the magnetic component of the control
field couples to it.

If transition |2〉 → |3〉 was an electric dipole transition, one would have to replace
�Bc by the corresponding part �Ec of the electric component of the control field and
�μ32 by an electric dipole moment, usually denoted by �d32.

In order to dispose of the time-dependence of the Hamiltonian in Eqs. (2.21) is, we
transform the Hamiltonian according to

V = e
i
�
(H0+X)t(HI −X)e−

i
�
(H0+X)t , (2.23)

where X =
3∑
i=1

xi|i〉〈i|. If one chooses x1 = Δ3 = ω2 − ω1 − ωp, x2 = 0 and

x3 = −Δ2 = ω2 − ω3 + ωc, the Hamiltonian becomes time-independent. Here Δ3

and Δ2 are the detunings of the fields that are applied to transitions 3 and 2,
respectively.

Accordingly, in the upper microwave system, the transformed density matrix ele-
ments �̃ij are given as
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2.1 - Theoretical preparation

�̃ij = ei(ωi−ωj+xi−xj)t�ij . (2.24)

In particular,

�̃21 = eiωpt�21 , (2.25a)

�̃32 = eiωct�32 , (2.25b)

�̃31 = ei(ωp+ωc)t�31 , (2.25c)

where the �̃ij are now time-independent. One can see that the coherence of the probe
transition �21 is the only one oscillating at the probe field frequency and therefore
the only one that has to be taken into account when calculating the response.

The transformed density matrix obeys

∂�̃

∂t
= − i

�
[V, �̃] −

3∑
α=1

γα
2

([
�̃S+

α , S
−
α

]
+

[
S+
α , S

−
α �̃

])

−
3∑

α=1

rα
2

([
�̃S−

α , S
+
α

]
+

[
S−
α , S

+
α �̃

])
(2.26)

or, explicitly,

∂

∂t
�̃11 = − (r1 + r3)�̃11 + γ3�̃22 + γ1�̃33 + iΩ12�̃21

− iΩ21�̃12 , (2.27a)

∂

∂t
�̃21 = −

[
1

2
(r1 + r2 + r3 + γ3) + iΔ3

]
�̃21 + iΩ23�̃31

+ iΩ21 (�̃11 − �̃22) , (2.27b)

∂

∂t
�̃22 = − (γ3 + r2) �̃22 + γ2�̃33 + r3�̃11 − iΩ12�̃21

+ iΩ21�̃12 − iΩ32�̃23 + iΩ23�̃32 , (2.27c)

∂

∂t
�̃31 = −

[
1

2
(r1 + r3 + γ1 + γ2) + i (Δ2 + Δ3)

]
�̃31

+ iΩ32�̃21 − iΩ21�̃32 , (2.27d)

∂

∂t
�̃32 = −

[
1

2
(r2 + γ1 + γ2 + γ3) + iΔ2

]
�̃32

− iΩ12�̃31 − iΩ32 (�̃33 − �̃22) , (2.27e)

�̃33 = 1 − �̃11 − �̃22 . (2.27f)
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2 - Tailoring the magnetic response

If one then plugs Eq. (2.27f) into the other Eqs. (2.27), one obtains a system of
equations of the form

∂

∂t
R̃ = MR̃ + Σ , (2.28)

where we defined

R̃ = (�̃11, �̃12, �̃13, �̃21, �̃22, �̃23, �̃31, �̃32)
T . (2.29)

M is a matrix and Σ a vector that can be determined by the equations of motion.

We solve Eq. (2.28) for R̃ in the long time limit and therefore assume that the
density matrix elements become constant after some time. Indeed, this is the case
after Rabi oscillations have been damped away. This damping takes place on a
timescale that corresponds to the reciprocals of the involved incoherent decay rates.
Therefore, we set ∂

∂t
R̃ = 0 and solve Eq. (2.28) as

R̃ = −M−1Σ . (2.30)

Note that in this solution we neglect terms that are of higher than first order in the
probe field Rabi frequency which is small due to the weak probe field. The fourth
component of Eq. (2.30) now yields the solution for the coherence �̃21 = �̃i0j0 of the
probe transition. With Eq. (2.18), one can then calculate the magnetic susceptibility
which determines the permeability according to Eq. (1.1b) and consequently also
the index of refraction.

2.2 Two-level system

Although we considered three-level systems in the previous derivation, we would
like to briefly include the two level system here. Of course, the two level system has
been investigated thoroughly (e.g., see [23]) and its derivation much simpler than
the previous one. One can also obtain its equations of motion by simply setting
Ω32 = Ω23 = 0 and r1 = r2 = 0 in the presented upper microwave system. The
simplicity of two-level systems should make it easier to realize them in experiment
compared to more complicated multi-level systems. Also, two level systems will turn
out to have another advantage: They do not exhibit any branch points for arbitrary
parameters. What this means will be examined in detail in Sec. 4.1.4. For now,
let us simply state that this implies that there are no absolute instabilities in the
medium for any choice of parameters. These are points in space at which the electric
field grows infinitely large.
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m

Figure 2.4: The above figure shows the typical structure of the magnetic suscepti-
bility of a two-level system. The real part is plotted as a red line, the imaginary
part as a blue dashed line.

The probe transition’s coherence is given by

�̃21 = Ω21

2i
(
�̃

(0)
11 − �̃

(0)
22

)
r + γ + 2iΔ

(2.31)

in terms of the populations in zeroth order of the probe field Rabi frequency

�̃
(0)
11 =

γ

r + γ
, (2.32)

�̃
(0)
22 =

r

r + γ
. (2.33)

Here, |2〉 is the excited state, |1〉 the ground state, r the incoherent pump rate
|1〉 → |2〉, γ the decay rate and Ω21 the probe field Rabi frequency.

2.3 Three-level systems

With Eq. (2.18) and the given method to derive the equations of motion and to solve
these for the coherence of the probe transition, we will now calculate the magnetic
susceptibility and thus the magnetic response of several three level systems. Since
our final goal is to use them for lossless negative refraction, we will put special
emphasis on parameters that allow for small or vanishing imaginary part of the
magnetic susceptibility.

In the following, we will express all parameters as multiples of the decay rate of the
probe transition. E.g. for a probe transition labelled 3, the detuning of the probe
transition Δ3 will be expressed as Δ3 = δγ3. As one can see at Eq. (2.18), we also
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2 - Tailoring the magnetic response

need |μi0j0 |, the magnetic dipole moment of the probe transition |j0〉 → |i0〉. We
assume one-photon radiative decay. Therefore, we can use the relation [26]

|μi0j0| =

√
γα

3π�c3

e2μ0 (ωi0 − ωj0)
3 , (2.34)

where ωi0 and ωj0 are the eigenfrequencies of states |ωi0〉 and |ωj0〉 and γα, α ∈
{1, 2, 3}, is the decay rate on the probe transition |j0〉 → |i0〉. E.g., this could refer
to the decay rate γ3 of the probe transition |1〉 → |2〉 which is labelled 3. � is the
Planck constant, e the elementary charge and μ0 the vacuum permeability.

For all schemes, we will split the section in three parts: In the first and the second,
we will use typical parameters. Since we have three transitions in total, while the
probe transition is always magnetic, the other transitions can either both be electric
dipole transitions too (part 1) or magnetic dipole transitions (part 2). Any other
combination of transitions would violate the parity rules for magnetic transitions
which occur between states of the same parity and for electric transitions which
occur between states of different parity. As an example, the third part introduces a
real system, namely nitrogen, and shows how one has to modify the ideal parameters
to achieve similar results in the real system. As mentioned in Sec. 5.2, there are also
other possible real systems, such as oxygen, magnesium, carbon and phosphorus.

We will give all results for a particle density of N = 1 m−3, since the magnetic
susceptibility scales linearly with the particle density. Moreover, the frequency of
the probe transition will assumed to be optical: We choose it in such a way that
the corresponding wavelength is λ = 2π c

ωi0
−ωj0

= 600 nm. Only in the case of a

nitrogen-like system, we will choose λ = 520.1705 nm.

2.3.1 Upper microwave scheme

First, we solve the equations of motion (2.27) explicitly for the upper microwave
scheme shown in Fig. 2.3, which includes one control field with Rabi frequency Ω32

coupling to the transition |2〉 → |3〉 and one probe field with Rabi frequency Ω21

coupling to the magnetic probe transition |1〉 → |2〉. To first order in the probe field
Rabi frequency Ω21, we obtain

�̃21 = −Ω21

2i
[
4
(
�̃

(0)
33 − �̃

(0)
22

)
|Ω23|2 +

(
�̃

(0)
22 − �̃

(0)
11

)
(r2 + γ123 + 2iΔ2)B0

]
(r2 + γ123 + 2iΔ2) [4|Ω23|2 + (r123 + γ3 + 2iΔ3)B0]

, (2.35)

where
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B0 = r13 + γ12 + 2iΔ2 + 2iΔ3 . (2.36)

Moreover,

�̃
(0)
11 =

4|Ω23|2γ13 (r2 + γ123) + (r2γ1 + γ12γ3)B1

B3 +B2B1
, (2.37)

�̃
(0)
22 =

4|Ω23|2r13 (r2 + γ123) + (r1γ2 + γ12r3)B1

B3 +B2B1
, (2.38)

�̃
(0)
33 =

4|Ω23|2r13 (r2 + γ123) + (r1γ3 + r2r13)B1

B3 +B2B1

, (2.39)

are the populations of the three levels in zeroth order of the probe field. Here,
quantities that are indexed with multiple digits are defined to be the sum of the
corresponding single-indexed quantities, e.g. γ123 = γ1 + γ2 + γ3 or r23 = r2 + r3.
Also, we defined

B1 = r2
2 + γ2

1 + γ2
2 + γ2

3 + 2γ2γ3 + 2γ1γ23 + 2r2γ123 + 4Δ2
2 , (2.40)

B2 = r2 (r3 + γ1) + γ12 (r3 + γ3) + r1 (r2 + γ23) , (2.41)

B3 = 4|Ω32|2 (2r13 + γ13) (r2 + γ123) . (2.42)

Electric transitions

We now assume transitions |1〉 → |3〉 and |2〉 → |3〉 which are labelled 1 and 2 to
be electric dipole transitions. We express the decay rates in units of the decay rate
γ3 = γ of the probe transition. Typical decay rates for electric dipole transitions
are then given by γ1 = α−2γ and γ2 = α−2γ.

The factor of α−2 can be seen as follows. The absolute value of the electric dipole
moment dij of a radiative electric dipole transition |j〉 → |i〉 labelled α is given by

d = |dij| =

√
γα

3πε0�c3

e2 (ωi − ωj)
3 , (2.43)

where the quantities have the same meaning as in the analogous Eq. (2.34). Also,
in an atom, the absolute values of a typical magnetic transition dipole moment μ
and a typical electric dipole moment d are given by

μ ∼ μB ∼ ea0αc , (2.44a)

d ∼ ea0 , (2.44b)
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2 - Tailoring the magnetic response

parametrically, where μB is the Bohr magneton, e the elementary charge, a0 the
Bohr radius and c the vacuum speed of light (in SI units). With this parametric
estimation and Eqs. (2.34) and (2.43), the factor α−2 that relates electric and
magnetic dipole decay rates, is obtained.

In Fig. 2.5 c) - g), we show magnetic susceptibilities of the given system that have
a negative real part and a vanishing imaginary part at a particular frequency. This
was the goal of our optimization. The diagrams are to be understood as follows: As
red line, we always plotted the real part of the magnetic susceptibility, as dashed,
blue line, we plotted the imaginary part. To tailor our response, we started from
Fig. 2.5 a) with the default parameters |Ω32| = γ, r1 = r2 = r3 = 0, Δ2 = 0 and the
decay rates given above.

From the default parameters in Fig. 2.5 a), we always change a single parameter in
each step, denoted by the arrows. These are |Ω32| = 5α−2γ in b), which gives us a
Rabi splitting in the response on the frequency scale of the electric decay rates, and
r3 = α−2γ in c), which introduces gain, i.e. negative values for the imaginary part,
in a certain frequency range. Now, we can adapt the shape of the susceptibility to
our wishes by changing the control field detuning Δ2. E.g. in e), for Δ2 = α−2γ,
we have a root of the imaginary part which lies very close to the minimum of the
real part. However, the imaginary part is quite steep and only close to zero in a
very small range (close to zero with respect to the real part). In contrast, in f),
for Δ2 = −3α−2γ, we have a wider range of frequencies with small imaginary part
around Δ3 = 0, but the root of the imaginary part is further away from the minimum
of the real part. The real part minimum, however, coincides with an imaginary part
of approximately the same size. This changes for the choice of Δ2 = −α−2γ in g),
where the minimum of the real part and a root of the imaginary part nearly coincide.

Also, another possibility is to set r1 = 2α−2γ, r2 = 7α−2γ to go from Fig. 2.5 b)
to d) which also has a root of the imaginary part and, at the same frequency, a
negative real part.

Magnetic transitions

In a similar way, one can obtain suitable susceptibilities if |1〉 → |3〉 and |2〉 → |3〉
are magnetic dipole transitions. However, one has to adapt the values of the control
field Rabi frequency, the incoherent pump rate and the control field detuning to the
scale of magnetic dipole transitions. E.g., the control field Rabi frequency is now
chosen to be |Ω32| = 5γ without a factor α−1. One then obtains Fig. 2.6 a) - d)
with different parameter sets. These results are very similar to the previous case
of electric transitions and correspond to Fig. 2.5 c), e) - g). Also, Fig. 2.6 e) has
been obtained analogously to Fig. 2.5 d) and has similar parameters, only scaled by
approximately a factor of α−2.
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Figure 2.5: The above figures show the different steps to tailor the magnetic suscep-
tibility in such a way that the imaginary part is small and the real part is negative.
Figure a) shows the real (red, line) and the imaginary (blue, dashed) part of the
susceptibility for the parameter set from which we start: γ1 = α−2γ, γ2 = α−2γ,
γ3 = γ, i.e. the transitions labelled 1 and 2 are electric dipole transitions, further
|Ω32| = γ, r1 = r2 = r3 = 0 and Δ2 = 0. Starting from a), we change only a single
parameter in each step, which are: b) |Ω32| = 5α−2γ, c) r3 = α−2γ. In Figs. e), f)
and g), the parameters of c) have been used, but for non-zero values for the control
field detuning Δ2, respectively: e) Δ2 = α−2γ, f) Δ2 = −3α−2γ, g) Δ2 = −α−2γ.
Also, from b) we can set r1 = 2α−2γ, r2 = 7α−2γ to achieve d).
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Figure 2.6: We plotted the magnetic susceptibility for the upper microwave scheme
for different control field detunings Δ2 and assumed the two non-probe transitions to
be magnetic dipole transitions. The parameters common to plots a) - d) are γ1 = γ,
γ2 = γ, γ3 = γ, |Ω32| = 5γ, r3 = 2γ and r1 = r2 = 0. The respective values for the
control field detuning are a) Δ2 = 0, b) Δ2 = −3γ, c) Δ2 = −γ and d) Δ2 = γ. In
e), we chose γ1 = γ, γ2 = γ, γ3 = γ, |Ω32| = 5γ, Δ2 = 0, r1 = 2γ, r2 = γ and r3 = 0.

Nitrogen

Let us now consider a real three-level system. The following states of atomic nitro-
gen, which are the three lowest-lying ones energy-wise, built up a three-level system
[27]:
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|1〉 = 2s22p3 4S◦
3/2 , (2.45)

|2〉 = 2s22p3 2D◦
5/2 , (2.46)

|3〉 = 2s22p3 2D◦
3/2 . (2.47)

The absolute decay rates are

γ1 = 1.90 · 10−5s−1︸ ︷︷ ︸
M1

+ 3.60 · 10−6s−1︸ ︷︷ ︸
E2

, (2.48a)

γ2 = 1.07 · 10−8s−1︸ ︷︷ ︸
M1

+ 3.20 · 10−21s−1︸ ︷︷ ︸
E2

, (2.48b)

γ3 = 2.45 · 10−7s−1︸ ︷︷ ︸
M1

+ 5.52 · 10−6s−1︸ ︷︷ ︸
E2

. (2.48c)

and the vacuum Ritz wavelength (calculated from the difference of the inverse wave
numbers of the |2〉 and |1〉) of the probe transition is

λ = 520.1705 nm . (2.49)

In Fig. 2.7, we plotted the magnetic susceptibility for different parameters. First,
we use the following values for nitrogen γ1 = 3.92γ, γ2 = 1.86 · 10−3γ, γ3 = γ for
the decay rates and λ = 520.17 nm for the probe transitions wavelength in all plots.
The other parameters are given by: a) |Ω32| = 10γ, Δ2 = 0, r3 = 5γ, r1 = r2 = 0,
b) |Ω32| = 10γ, Δ2 = −5γ, r3 = 5γ, r1 = r2 = 0, c) |Ω32| = 10γ, Δ2 = −γ, r3 = 5γ,
r1 = r2 = 0, d) |Ω32| = 10γ, Δ2 = γ, r3 = 5γ, r1 = r2 = 0 and e) |Ω32| = 10γ,
Δ2 = 10γ, r1 = 6γ, r2 = r3 = 0.

Note that we used the mentioned decay rates, i.e. the sums of Eq. (2.48), and
plugged them into the probe transition coherence �̃21. However, to calculate the
magnetic moment of the probe transition according to Eq. (2.34), we inserted only
the M1 part of γ3 given in Eq. (2.48) for γα, since the E2 part is not connected to
the magnetic moment. Taking the sums of the decay rates as given in Eq. (2.48)
for the coherence includes a possible error source: The two decay rates, M1 and E2,
do not necessarily simply add up due to interference between the two contributions.
However, this interference is difficult to quantify. Therefore, we use the straightfor-
ward sums, which will still give us the right order of magnitude, since the M1- and
the E2-values differ by approximately an order of magnitude.

Note that the distinction between the part of the decay rate that contributes to the
magnetic moment (M1) and the total decay rate is not necessary when |2〉 → |3〉
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Figure 2.7: Here, we show the magnetic susceptibility of nitrogen in upper microwave
configuration. We used the nitrogen parameters [27] γ1 = 3.92γ, γ2 = 1.86 · 10−3γ,
γ3 = γ and λ = 520.1705 nm for the probe transitions wavelength in all plots. The
other parameters are: a) |Ω32| = 10γ, Δ2 = 0, r3 = 5γ, r1 = r2 = 0, b) |Ω32| = 10γ,
Δ2 = −5γ, r3 = 5γ, r1 = r2 = 0, c) |Ω32| = 10γ, Δ2 = −γ, r3 = 5γ, r1 = r2 = 0, d)
|Ω32| = 10γ, Δ2 = γ, r3 = 5γ, r1 = r2 = 0 and e) |Ω32| = 10γ, Δ2 = 10γ, r1 = 6γ,
r2 = r3 = 0.

is the probe transition, which is the case in the lower microwave and the lambda
scheme. There, the E2 part of γ2 is negligible compared to the M1 part, since it is
13 orders of magnitude smaller.

The plots a) - d) in Fig. 2.7 correspond to the plots with the same label in Fig. 2.6
and to c), e) - g) in Fig. 2.5. Due to the different decay rates, one simply has to
adjust the other parameters, i.e. the incoherent pump rates, the control field Rabi
frequency and the control field detuning to achieve similar shapes in the nitrogen
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2.3 - Three-level systems

system. The plot e) in Fig. 2.7 is similar to Fig. 2.6 e) and to Fig. 2.5 d) but for
the non-zero detuning Δ2 and the vanishing pump rate r2.

Summary

In Figs. 2.5, 2.6 and 2.7 we achieved similar shapes for the magnetic susceptibility
for analogous parameters. Each time, we arrived at optimized susceptibilities by
increasing the control field Rabi frequency until two peaks appear in the imaginary
part of the magnetic susceptibility due to Rabi splitting. The scale on which this
happens is given by the incoherent decay rate on the transition of the control field.
Then, one can change between absorptive and amplifying behavior by increasing r3.

Another way to optimize the susceptibility was to turn on r1 (together with the
control field) — and possibly r2 — instead of r3. This has been done in Figs. 2.5
d), 2.6 e) and 2.7 e).

When increasing r1, one introduces more and more gain on the probe transition.
For particular system parameters, there is a value of r1 for which the susceptibility
vanishes for all frequencies. This is the case for γ1 = γ2 = γ3 = γ, r2 = r3 = 0 and
r1 = 2γ2 = 2γ3. In this case, the population pumped by r1 to |3〉 immediately decays
to the ground level through the two decay channels - i.e. directly or via level |2〉 -
at the same rate as it is pumped to level |3〉. Therefore, all populations in zeroth
order of the probe field are equal and according to Eq. (2.35) the coherence �̃21 and
thus the magnetic susceptibility vanishes for all frequencies. However, switching on
r2 causes the magnetic susceptibility to be non-zero again (see fig. 2.6 e) ).

For any other case, the magnetic susceptibility has a suitable shape for values of r1
and r3, respectively, that lie between values that yield a negative imaginary part at
all frequencies and values that yield a positive imaginary part at all frequencies. In
other words, we exploit the fact that the absorptive behavior of the system changes
with r1 and r3. At these particular values for r1 and r3, respectively, we have a
negative imaginary part at some frequencies, and at other frequencies we have a
positive imaginary part. Therefore, the imaginary part has a root. From this shape,
one can achieve suitable susceptibilities by introducing an asymmetry through a
change of the control field detuning Δ2.

For simplicity, in the following we will refer to shapes as in Fig. 2.5 c) as M-shapes
due to the form of the imaginary part. Consequently, Fig. 2.6 e) can be said to have
a W-shape.

29



2 - Tailoring the magnetic response

2.3.2 Lower microwave scheme

Again, we begin with solving the equations of motion explicitly for the lower mi-
crowave scheme shown in Fig. 2.8. Neglecting second and higher order terms in the
probe field Rabi frequency Ω32, we obtain for the coherence of the probe transition

�̃32 = −Ω32

2i
[
4
(
�̃

(0)
22 − �̃

(0)
11

)
|Ω12|2 +

(
�̃

(0)
33 − �̃

(0)
22

)
(γ3 + r123 + 2iΔ3)C0

]
(r123 + γ3 + 2iΔ3) [4|Ω12|2 + (γ123 + r2 + 2iΔ2)C0]

, (2.50)

where

C0 = r13 + γ12 + 2iΔ2 + 2iΔ3 . (2.51)

Also,

�̃
(0)
11 =

4|Ω12|2γ12 (γ3 + r123) + (r2γ1 + γ12γ3)C1

C3 + C2C1

, (2.52)

�̃
(0)
22 =

4|Ω12|2γ12 (γ3 + r123) + (r1γ2 + γ12r3)C1

C3 + C2C1

, (2.53)

�̃
(0)
33 =

4|Ω12|2r12 (γ3 + r123) + [r2r3 + r1 (r2 + γ3)]C1

C3 + C2C1
, (2.54)

are the populations of the three levels in zeroth order of the probe field. Again,
we have chosen to abbreviate sums of quantities that differ only by the index, e.g.
γ123 = γ1 + γ2 + γ3 or r23 = r2 + r3. Moreover, we defined

C1 = γ2
3 + r2

1 + r2
2 + r2

3 + 2γ3r123 + 2r3r12 + 2r1r2 + 4Δ2
3 , (2.55)

C2 = r2 (r3 + γ1) + γ12 (r3 + γ3) + r1 (r2 + γ23) , (2.56)

C3 = 4|Ω12|2 (2γ12 + r12) (γ3 + r123) . (2.57)

Electric transitions

In the lower microwave scheme, it is possible to obtain shapes of the susceptibility
that are very similar to the ones in the upper microwave system of the previous
chapter. Only the meanings of transitions |1〉 → |2〉, labelled 3, and |2〉 → |3〉,
labelled 2, have been switched: The transition labelled 2 now is the probe transition,
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Ω32

Ω21

Figure 2.8: The lower microwave scheme includes a control field Ω21 (red, two ar-
rowheads) coupling to transition |1〉 → |2〉, a probe field Ω32 (black, two arrow-
heads) coupling to the magnetic probe transition |2〉 → |3〉, incoherent decay rates
γα, α ∈ {1, 2, 3} (wiggly green arrows) and incoherent pump rates rα, α ∈ {1, 2, 3}
(straight, dashed green arrows) on each transition.

while transition 3 couples to the control field. Therefore, it is possible to obtain M-
shapes as in the upper microwave system by choosing an appropriate value for r2 —
instead of r3 in the upper microwave system. Also, as before, one can also obtain
good results by setting r1 to an appropriate, non-zero value.

For γ1 = γ3 = α−2γ, γ2 = γ, i.e. only electric transitions, Δ3 = 0 and |Ω21| = 5α−2γ
and appropriate values for r1 and r2, we obtain the probe transition coherences
shown in Fig. 2.9.
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Figure 2.9: We plotted the relevant coherences for two sets of parameters in the
lower microwave system: In both cases, we have γ1 = γ3 = α−2γ, γ2 = γ, Δ3 = 0
and |Ω21| = 5α−2γ. In a), the pump rates are r1 = r3 = 0 and r2 = α−2γ, in b)
r2 = r3 = 0 and r1 = 2α−2γ.

31
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Magnetic transitions

Also for γ1 = γ3 = γ2 = γ, we obtain suitable M-shapes in a similar way as before, i.e.
by setting r1 and r2 to the right value. However, since for r1 = 2γ our susceptibility
vanishes for the same reasons as explained in Sec. 2.3.1, one then has to set r3 = γ
again to achieve the desired susceptibility.

The resulting shapes of the probe transition coherence are shown in Fig. 2.10. We
chose |Ω21| = 5γ and suitable values for the incoherent pump rates (see caption).
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Figure 2.10: We plotted the relevant coherences for two sets of parameters in the
lower microwave system: In both cases, we have γ1 = γ2 = γ3 = γ, Δ3 = 0 and
|Ω21| = 5γ. In a), the pump rates are r2 = 0, r1 = 2γ and r3 = γ, in b) r1 = r3 = 0
and r2 = 2γ.

Nitrogen

Again, we examine the corresponding results in the real three-level system nitrogen.
Here, it is less adequate to call it a “lower microwave system”, since the microwave
transition is |2〉 → |3〉. However, the control and the probe field can be applied in
the same way as in the previous lower microwave systems and therefore we will stick
to the term “lower microwave system”.

Although we use the same decay rates as in the upper microwave configuration for
nitrogen, we now normalize all parameters to the decay rate of the probe transition
|2〉 → |3〉, i.e. γ2 = γ. Therefore, we have γ1 = 2.11 ·103γ and γ3 = 5.39 ·102γ. Since
the probe field now couples to transition |2〉 → |3〉, the probe transition wavelength
is λ = 1147.71�m [27]. In the plots of Fig. 2.11, we used Δ3 = 0 and |Ω21| = 5·103γ.
In a), the incoherent pump rates were set to r1 = 2 · 103γ and r2 = r3 = 0. In b),
we chose r2 = 2 · 103γ and r1 = r3 = 0.
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Figure 2.11: We show two suitable susceptibilities for nitrogen in lower microwave
configuration. The parameters are γ2 = γ, γ1 = 2.11 · 103γ, γ3 = 5.39 · 102γ,
λ = 1147.71 �m, Δ3 = 0, |Ω21| = 5 · 103γ and r1 = 2 · 103γ, r2 = r3 = 0 in a) and
r2 = 2 · 103γ, r1 = r3 = 0 in b).

2.3.3 Lambda system

Let us now consider the lambda system shown in Fig. 2.12. For the coherence of
the probe transition, we find

�̃32 = −Ω32

2i
[
−4

(
�̃

(0)
33 − �̃

(0)
11

)
|Ω13|2 +

(
�̃

(0)
33 − �̃

(0)
22

)
(γ12 + r13 − 2iΔ1)D0

]
(r13 + γ12 − 2iΔ1) [4|Ω13|2 + (γ123 + r2 + 2iΔ2)D0]

,

(2.58)

where

D0 = r123 + γ3 − 2iΔ1 + 2iΔ2 . (2.59)

Moreover,

�̃
(0)
11 =

4|Ω13|2 (γ3 + r2) (γ12 + r13) + (r2γ1 + γ12γ3)D1

D3 +D2D1

, (2.60)

�̃
(0)
22 =

4|Ω13|2 (γ2 + r3) (γ12 + r13) + (r1γ2 + γ12r3)D1

D3 +D2D1

, (2.61)

�̃
(0)
33 =

4|Ω13|2 (γ3 + r2) (γ12 + r13) + [r2r3 + r1 (r2 + γ3)]D1

D3 +D2D1
, (2.62)

are the populations of the three levels in zeroth order of the probe field. Here,
quantities that are indexed with multiple digits are defined to be the sum of the
corresponding single-indexed quantities, e.g. γ123 = γ1 + γ2 + γ3 or r23 = r2 + r3.
Also, we defined
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Figure 2.12: The lambda scheme includes a control field Ω31 (red, two arrowheads)
coupling to transition |1〉 → |3〉, a probe field Ω32 (black, two arrowheads) coupling
to the magnetic probe transition |2〉 → |3〉, incoherent decay rates γα, α ∈ {1, 2, 3}
(wiggly green arrows) and incoherent pump rates rα, α ∈ {1, 2, 3} (straight, dashed
green arrows) on each transition.

D1 = γ2
1 + γ2

2 + r2
1 + r2

3 + 2γ1γ2 + 2γ12r13 + 2r1r3 + 4Δ2
1 , (2.63)

D2 = r2 (r3 + γ1) + γ12 (r3 + γ3) + r1 (r2 + γ23) , (2.64)

D3 = 4|Ω13|2 (γ12 + r13) (2r2 + r3 + 2γ3 + γ2) . (2.65)

Electric transitions

First, we assume transitions |1〉 → |3〉 and |1〉 → |2〉 to be electric dipole transitions,
i.e. γ1 = α−2γ and γ3 = α−2γ. As before, the probe transition |2〉 → |3〉 is magnetic
and therefore γ2 = γ.

Fig. 2.13 a) shows the magnetic susceptibility for Δ1 = 0, r1 = r2 = r3 = 0 and
|Ω31| = 5α−2γ. One can see that the system is amplifying, since, on one hand, the
control field shifts population to level |3〉 and, on the other hand, the population
on |2〉 quickly decays to the ground level due to r3 = 0. This causes a population
inversion between the two levels of the probe transition and therefore amplification.

Switching on the pump rates r1 and r2, respectively, washes out the Rabi splitting
due to the control field, but does not introduce gain, as can be seen in Figs. 2.13 c)
and d). However, turning on the pump rate r3 decreases the population inversion
between |2〉 and |3〉 and therefore leads to more and more absorption on the probe
transition. For a certain value, r3 = α−2γ, we obtain the desired W-shape of the
imaginary part of the magnetic susceptibility.
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Figure 2.13: We choose the parameters γ1 = α−2γ, γ3 = α−2γ, γ2 = γ, Δ1 = 0,
r1 = r2 = r3 = 0 and |Ω31| = 5α−2γ for a lambda-type system. For vanishing
incoherent pump rates, we obtain the magnetic susceptibility in a). A sign change
of the imaginary part of the susceptibility can be accomplished by increasing r3 and
for r3 = α−2γ, we have b). c) and d) show the susceptibility for cases in which
another incoherent pump rate is non-zero, namely r2 = α−2γ and r1 = 10α−2γ,
respectively.

Magnetic transitions

If we assume only magnetic transitions, i.e. γ1 = γ2 = γ3 = γ, we obtain the plots
of Fig. 2.13. All subplots are drawn with the parameters |Ω31| = 5γ and Δ1 = 0.
a) shows r1 = r2 = r3 = 0, whereas in the other subplots we chose one pump rate
to be non-zero, in particular r3 = γ/2 in b), r2 = 5γ in c) and r1 = 3γ in d).

For the parameters chosen in a), i.e. for equal decay rates and zero pump rates, we
obtain a negative imaginary part for small probe field detunings. Increasing r3 yields
absorption (see b)), since |2〉 has a higher population then. Increasing r2 yields a
higher population on |3〉 and therefore amplification. In cases a) and d), we obtain
M- and W-shapes, respectively.
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Figure 2.14: In the shown plots for the magnetic susceptibility for the lambda
system, we assumed γ1 = γ2 = γ3 = γ, |Ω31| = 5γ and Δ1 = 0. In a), we have
r1 = r2 = r3 = 0, whereas the other subplots show the cases of one non-zero pump
rate, namely r3 = γ/2 in a), r2 = 5γ in b) and r1 = 3γ in c).

Nitrogen

To examine nitrogen in lambda configuration, we have to use exactly the same
parameters as for the lower microwave configuration. They are γ2 = γ, γ1 = 2.11 ·
103γ, γ3 = 5.39 · 102γ and λ = 1147.71 �m. Setting Δ3 = 0, |Ω13| = 5 · 103γ,
r3 = 5 · 102γ and r1 = r2 = 0 yields the magnetic susceptibility plotted in Fig. 2.15.
A choice of another (or no) incoherent pump rate being non-zero instead does not
yield similar shapes, since r3 is the only pump rate that can introduce gain. Also,
for all pump rates being zero the system is amplifying.

2.4 Conclusion

In all examined systems, it was possible to achieve a shape for the magnetic sus-
ceptibility for which, at a certain frequency, the imaginary part vanished and the
real part became negative. This form is one candidate for negative refraction. Also,
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Figure 2.15: We show the magnetic susceptibilities for nitrogen in lambda configu-
ration for the following parameters: γ2 = γ, γ1 = 2.11 · 103γ, γ3 = 5.39 · 102γ and
λ = 1147.71 �m, moreover Δ3 = 0, |Ω13| = 5 · 103γ, r3 = 5 · 102γ and r1 = r2 = 0.

the shape of the magnetic susceptibility looked similar in the various systems. It
was created by a Rabi splitting and the use of an incoherent pump rate that could
change the absorptive behavior of the system.

In all considered systems, we obtained by far the largest absolute value of the mag-
netic suceptibility for the nitrogen-like lower microwave and the nitrogen-like lambda
system. However, this is due to the fact that, in these systems, the probe transition
had a wavelength in the microwave range instead of an optical wavelength. There-
fore, the square of the magnetic dipole moment μi0j0 in Eq. (2.18) was larger by a
factor of approximately 1010 (see Eq. (2.34). Since we are interested in negative
refraction at optical frequencies, these two systems will not be considered further.

Apart from these, the absolute value of the susceptibility is the largest for the
systems with only magnetic transitions. The lambda system, the upper and the
lower microwave system showed magnetic susceptibilities of roughly the same mag-
nitude (|χ̃m| ≈ 10−22...10−23) for these types of transitions. The nitrogen-like upper
microwave system yielded absolute values of |χ̃m| ≈ 10−24. A calculation of the
susceptibility of the nitrogen-like lower microwave and the nitrogen-like lambda sys-
tem for an optical probe transition frequency instead of the microwave frequency
results in values |χ̃m| ≈ 10−25. This is nearly the same order of magnitude as the
upper microwave system with nitrogen parameters. Finally, the three considered
systems with electric transitions besides the probe transition show susceptibilities
with |χ̃m| ≈ 10−26...10−27.

In Sec. 3.6 we will see that these orders of magnitude are also valid for the so-called
closed-loop system considered there, except for the nitrogen-like system for which
we obtain |χ̃m| ≈ 10−22...10−23 there.

Since the actual shape of the susceptibilities in the different system was very similar
and the magnitude of the susceptibilities differed mainly between the different types
of transitions and not the different types of field configurations, this seems to imply
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that the values of the decay rates play a more important role for the size of the sus-
ceptibility than the actual configuration of probe and control fields. In our systems,
the more similar the decay rates are, the larger the susceptibilities become. E.g., in
the case of equal decay rates — γ1 = γ2 = γ3, we obtain the biggest susceptibility.
This can possibly be explained by the fact that, in our systems, we have a magnetic
probe transition, i.e. a probe transition with a small decay rate. If the other transi-
tions now have a much larger decay rate, the population will mostly decay through
these other transitions and the response on the probe transition will be smaller.

For these reasons, a system with only magnetic dipole transitions yields the best
results in our calculations. Also, the nitrogen-like system is a real, existing system
and also has a reasonably big magnetic susceptibility. Therefore, in Sec. 4.2.2,
we will consider an upper microwave system with only magnetic transitions and
an upper microwave system with nitrogen parameters for the magnetically coupling
species.

In Sec. 4.2.3, this examination will be completed by the nitrogen-like closed-loop
system of Sec. 3.6 which also yields — as we will see — comparably high absolute
values for the magnetic susceptibility.
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Chapter 3

Enhancement of the magnetic
response

3.1 Introduction

Until now, focused on optimizing the magnetic susceptibility and thus the perme-
ability towards the values depicted in Fig. 2.1 c), i.e. a small imaginary part and a
negative real part. Here, “small” has to be seen with respect to the absolute value
of the real part. However, not only the ratio between imaginary and real part of
the magnetic response is of importance, but it is also crucial that we obtain both a
magnetic and an electric response of considerable size at the probe field frequency.
This is hampered by the fact that usually the coupling of the magnetic component
of a probe laser field to a magnetic dipole transition is strongly suppressed when
compared to the coupling of the electric probe field component to an electric dipole
transition. A simple order-of-magnitude estimate shows that the suppression factor
is proportional to two powers of the finestructure constant, α2 ∼ 137−2.

Therefore, it is desirable to enhance the magnetic response. In the literature, a
number of schemes that allow to achieve a high positive index of refraction with
small absorption have been proposed. They are based on a suitable modification of
the electric response of the medium (see, e.g., [20]). The enhancement, however, is
typically too small such that a direct transfer of these ideas to magnetic transitions
is not straightforward. Thus, the schemes suggested so far for negative refraction
rely on a different mechanism that is related to an enhancement via chirality [22,
15, 17, 18]. The medium is such that the magnetic response is not only determined
by the magnetic probe field component, but by both the electric and the magnetic
component and analogously for the electric response. A first interpretation for the
case of atomic systems has been given in [15], in which a magnetic dipole moment
induced by electric fields was derived, but the coupling of the magnetic probe field
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component to the atomic system was not considered. Also, it focuses on a certain
resonance case for the applied fields and the employed level structure. Thus, the
system considered there only allows for enhancement at a single frequency, while
an enhancement at a range of probe field frequencies was reported in subsequent
work [17, 18]. Thus better insight is desirable, not least since it might lead to
further enhancement of the magnetic response which would significantly simplify
the theoretical and experimental study of negative refraction in atomic gases.

Motivated by this, here we study in detail the enhancement mechanism that is at
the heart of current schemes to achieve negative refraction in atomic gases. For this,
we revisit the three-level system studied in [15], where one transition is driven by
a coherent control field and the other two transitions couple to the magnetic and
electric component of a probe field (see Fig. 3.1). In contrast to previous studies, we
apply a time-dependent analysis of the medium response that enables us to directly
identify the various physical processes contributing to the medium response. These
results are compared to a reference system that is obtained by replacing the coherent
driving field by an incoherent pumping field. We find that the enhancement of the
magnetic response occurs, since the used level scheme is a so-called closed-loop
medium. In such systems, the laser fields applied are such that they form a closed
interaction loop. We identify a scattering of the coupling field and of the electric
probe field into the magnetic probe field component as the mechanism responsible
for the enhancement of the response and provide conditions for this process to take
place. It is found that the so-called multiphoton resonance condition must be fulfilled
for the enhancement to be present. In the studied three-level system, the condition
is satisfied only at a single probe field frequency. But in larger level schemes, the
laser fields can be applied in such a way that the enhancement works at arbitrary
frequencies of the probe field.

This section is organized as follows: In Sec. 3.2, we present our model systems
and derive the equations of motion as well as expressions for the medium response
coefficients. In Sec. 3.3, we solve the equations of motion, both in the time-dependent
case for the closed-loop configuration, for the time-independent case at multiphoton
resonance and in the incoherently pumped reference system. Using these results,
in Sec. 3.4 we compare the different systems, identify the enhancement mechanism
and finally quantify it. Sec. 3.5 discusses and summarizes these results. Then, in
Sec. 3.6, we investigate a system that can be obtained from the considered closed-
loop system by replacing the electric probe field component by an electric control
field. We optimize this system towards a small imaginary part and a negative real
part of the index of refraction at a certain frequency to use it as one part of a
negatively refracting system in Sec. 4.
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3.2 Theoretical considerations

3.2.1 Model

We start by writing down the applied electromagnetic fields that we show in Fig. 3.1.
In contrast to the derivation of Sec. 2.1, we now also have to take into account the
electric probe field component, as it also couples to our systems. Since we treat
both systems semi-classically, we have

�E(�r, t) = �Ep(�r)e
iφe−iωpt + �Ec(�r)e

iψe−iωct

+ c.c. , (3.1a)

�B(�r, t) = �Bp(�r)e
iφe−iωpt + �Bc(�r)e

iψe−iωct

+ c.c. , (3.1b)

where the subindex p [c] refers to the probe [control] field.

We use the same notation as in Sec. 2.1 here, namely �Ep(�r) = Ep�epei�kp�r, where Ep is
the electric field amplitude, �ep the unit polarization vector of the electric component

of the probe field, �kp is the probe field’s wave vector, ωp its frequency and φ its

absolute phase. Analogously, we have defined �Ec(�r) = Ec�ecei�kc�r. Here, we chose
the same notation as for the electric probe field component, but with an index c
and a total phase ψ. The magnetic probe field component is defined analogously as
�Bp(�r) = Bp�bpei�kp�r. Note that the magnetic probe field component unit polarization

vector and its electric counterpart are connected via �bp = �κ×�ep due to the Maxwell

equations with unit propagation direction vector �κ = �kp/kp.

In rotating-wave and dipole approximation, we arrive at the Hamiltonian

H =H0 +HI , (3.2a)

H0 =
3∑
j=1

�ωj|j〉〈j| , (3.2b)

HI = − �
(
Ω21e

−iωpt|2〉〈1| + Ω32e
−iωpt|3〉〈2|

+ Ω31e
−iωct|3〉〈1|+ H.c.

)
. (3.2c)

Note that in the rotating wave approximation, the magnetic control field component
can be neglected, because it does not couple near-resonantly to a magnetic transition.
In Eqs. (3.2), the energy of state |i〉 is �ωi (i ∈ {1, 2, 3}) and, analogously to Sec.
2.1, the Rabi frequencies are defined as
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Figure 3.1: a) The three-level system driven by coherent fields in loop configuration.
The probe field components are denoted by black solid double arrows, the coupling
field by red solid double arrows. Spontaneous emission is indicated by the wiggly
green arrows. The transition |1〉 → |2〉 couples to the magnetic component, while
transition |2〉 → |3〉 couples to the electric component of the same probe field. b)
Reference system obtained by replacing the coherent control field by an incoherent,
bi-directional pumping, indicated by the green dashed double arrow.

Ω21 = eiφ �Bp(�r) �μ21/� , (3.3a)

Ω32 = eiφ �Ep(�r) �d32/� , (3.3b)

Ω31 = eiψ �Ec(�r) �d31/� . (3.3c)

The electric dipole moments are defined as �d32 = 〈3|�d|2〉 and �d31 = 〈3|�d|1〉. Analo-

gously, the magnetic dipole moment is �μ21 = 〈2|�μ|1〉, with �μ12 = �μ∗
21. Here, �d and �μ

are the electric and magnetic dipole operator, respectively, and �dij = �d∗ji, �μij = �μ∗
ji,

and Ωij = Ω∗
ji.

3.2.2 Equations of motion

In this section, we derive the equations of motion for a general system that contains
both systems of interest shown in Fig. 3.1 as special cases. To this end, we consider
a three-level system that — on transition |1〉 → |2〉 — combines coherent pumping
by a control field and bi-directional incoherent pumping. Since this system is a
closed-loop system, in general there is no stationary state in the long-time limit and
the Hamiltonian necessarily has an intrinsic explicit time dependence [28, 29, 30,
31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41]. Therefore, we cannot transform into a
time-independent system as in Sec. 2.1.3, but still simplify the time dependence.
To this end, we apply the transformation
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V = e
i
�
(H0+X)t(HI −X)e−

i
�
(H0+X)t , (3.4)

where X = Δ1|1〉〈1|+Δ2|2〉〈2|. Here, we chose the notations Δ1 = ω3−ω1−ωc and
Δ2 = ω3−ω2−ωp for the detunings of the electric control and probe field component
to the respective transitions they couple to. Consequently, the coherences transform
according to

�21 = e−i(ωc−ωp)t�̃21 , (3.5a)

�32 = e−iωpt�̃32 , (3.5b)

�31 = e−iωct�̃31 . (3.5c)

By applying this transformation, we arrive at the following equations of motions, if
we include spontaneous decay in the Born-Markov approximation:

∂

∂t
�̃11 = − r1�̃11 + γ3�̃22 + (γ1 + r1) �̃33 + ie−iΔtΩ12�̃21

− ieiΔtΩ21�̃12 + iΩ13�̃31 − iΩ31�̃13 , (3.6a)

∂

∂t
�̃12 = −

[
i (Δ − Δ3) +

1

2
(r1 + γ3)

]
�̃12 − iΩ32�̃13

− ie−iΔtΩ12 (�̃11 − �̃22) + iΩ13�̃32 , (3.6b)

∂

∂t
�̃13 = −

[
i (Δ − Δ2 − Δ3) +

1

2
(2r1 + γ1 + γ2)

]
�̃13

− iΩ13 (�̃11 − �̃33) − iΩ23�̃12 + ie−iΔtΩ12�̃23 , (3.6c)

∂

∂t
�̃22 = − γ3�̃22 + γ2�̃33 − ie−iΔtΩ12�̃21

+ ieiΔtΩ21�̃12 − iΩ32�̃23 + iΩ23�̃32 , (3.6d)

∂

∂t
�̃23 = −

[
−iΔ2 +

1

2
(r1 + γ1 + γ2 + γ3)

]
�̃23

− iΩ13�̃21 + ieiΔtΩ21�̃13 + iΩ23 (�̃33 − �̃22) , (3.6e)

�̃33 =1 − �̃11 − �̃22 . (3.6f)

Here, �̃ij (i, j ∈ {1, 2, 3}) is the density matrix in the interaction picture obtained
by transformation of �ij according to Eq. (3.4). One can see that this transforma-
tion simplifies the explicit time dependence on the right hand side of the equations
of motion to factors of e±iΔt in front of the weak magnetic probe field Rabi fre-
quency Ω21 or Ω12, respectively. γα, α ∈ {1, 2, 3} are spontaneous emission rates on
the different transitions. Also, we introduced the detuning on the magnetic probe
transition Δ3 = ω2 − ω1 − ωp, as well as the so-called multiphoton detuning

Δ = Δ2 + Δ3 − Δ1 , (3.7)
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which for the current system evaluates to

Δ = ωc − 2ωp . (3.8)

By setting the incoherent pumping rate r1 = 0 in Eqs. (3.6), we arrive at the
equations of motion for the system in Fig. 3.1 a). To obtain the equations of motion
for the incoherently pumped system shown in Fig. 3.1 b), one has to set Ω31 =
Ω13 = 0 and Δ = 0. The latter causes the right-hand side of Eqs. (3.6) to become
time-independent.

3.2.3 Electric and magnetic responses

Since our aim is to study the magnetic and electric responses, we require an ex-
pression for them in terms of the density matrix elements governed by Eqs. (3.6).
We will find such a relation in this subsection, analogously to Sec. 2.1.2. However,
this time we need to take into account the electric field, since it also couples to our
system. In doing so, it is important to note that electric fields cannot only induce
electric polarization, but also magnetization [22, 17]. Similarly, magnetic fields can
induce both magnetization and polarization.

For definitiveness, in the following we specialize to a circularly polarized (σ+) probe
field and probe field propagation in z direction, since one then obtains for the probe
field polarization vectors �bp = −i�ep, i.e., they are parallel. Therefore, the tensorial

structure of the response coefficients in the macroscopic polarization �P and magne-
tization �M simplifies considerably,

�P (�r, t) =
1

c

∫ ∞

−∞
ξEH(τ) �H(�r, t− τ) dτ

+ ε0

∫ ∞

−∞
χe(τ) �E(�r, t− τ) dτ , (3.9a)

�M(�r, t) =
1

cμ0

∫ ∞

−∞
ξHE(τ) �E(�r, t− τ) dτ

+

∫ ∞

−∞
χm(τ) �H(�r, t− τ) dτ , (3.9b)

and the electric and magnetic susceptibility χe and χm and the chirality coefficients
ξHE and ξEH become scalars. While the susceptibilities determine the electric [mag-
netic] response to the electric [magnetic] probe field component, the chiralities or
cross-terms determine the magnetic response to the electric probe field component
and vice versa. Here, c is the vacuum speed of light, and μ0 and ε0 are the vac-
uum permeability and permittivity. Note that, with the notation of Eqs. (3.9), the
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refractive index in Fourier space is given as [17]

n(ω) =

√
εr(ω)μr(ω) − 1

4

[
ξ̃EH(ω) + ξ̃HE(ω)

]2

+
i

2

[
ξ̃EH(ω) − ξ̃HE(ω)

]
, (3.10)

where

εr(ω) = χ̃e(ω) + 1 , (3.11a)

μr(ω) = χ̃m(ω) + 1 , (3.11b)

are the relative permittivity εr(ω) and the relative permeability μr(ω) in Fourier
space. As in Sec. 2, we do not write a tilde on top of μr and εr for a better
readibility. Also, ξ̃EH(ω), ξ̃HE(ω), χ̃m(ω) and χ̃e(ω) are the Fourier transformed
response coefficients of the corresponding time domain quantities in Eqs. (3.9).
They satisfy χ̃e(ω)∗ = χ̃e(−ω) and similar for the other susceptibilities and the
chiralities. For vanishing chirality coefficients, Eq. (3.10) reduces to the well-known
relation between the refractive index and the permittivity and permeability for non-
chiral media (see Eq. (1.2)).

Let us now continue to find an expression of the response coefficients in terms of the
density matrix elements. Plugging Eqs. (3.1) into Eqs. (3.9), we arrive at

�P =
ξ̃EH(ωp)

cμ0

�Bp(�r)e
i(φ−ωpt) +

ξ̃EH(ωc)

cμ0

�Bc(�r)e
i(ψ−ωct)

+ ε0χ̃e(ωp) �Ep(�r)e
i(φ−ωpt) + ε0 χ̃e(ωc) �Ec(�r)e

i(ψ−ωct) + c.c. , (3.12a)

�M =
ξ̃HE(ωp)

μ0c
�Ep(�r)e

i(φ−ωpt) +
ξ̃HE(ωc)

μ0c
�Ec(�r)e

i(ψ−ωct)

+
1

μ0
χ̃m(ωp) �Bp(�r)e

i(φ−ωpt) +
1

μ0
χ̃m(ωc) �Bc(�r)e

i(ψ−ωct) + c.c. . (3.12b)

Here, we have used �B = μ0
�H, which holds since �B is an external field. Note that the

Rabi frequencies in the equations of motion contain local fields, whereas Eqs. (3.9)
contain external fields [18]. However, local field effects are not considered here and
therefore we do not distinguish between external and local fields, as is valid for
moderate particle densities.

The polarization and magnetization are also given by (cp. Eq. (2.9))

�P = N�p (3.13a)

�M = N �m (3.13b)
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where N is the particle density and �p and �m are the mean polarization and mag-
netization per atom [23]. We can express the mean polarization as �p = Tr(��d) and
the mean magnetization as �m = Tr(��μ). These traces can be written in terms of
the transformed density matrix elements �̃ij (i, j ∈ {1, 2, 3}) which are given as
solutions of the equations of motion (3.6).

We are only interested in the response at the probe field frequency. However, in the
closed-loop system, there is an implicit time dependence of the �̃ij (i, j ∈ {1, 2, 3}),
since the transformed Hamiltonian V is still time-dependent. This can also be seen
by the time-dependent right-hand side of Eqs. (3.6). Therefore, the transformed
coherences of the probe transitions �̃21 and �̃32 also have contributions that are not
in phase with the probe field. These contributions will be investigated in detail in
Sec. 3.3.1. We now introduce the notation

�̂21 = eiωpt�21 , (3.14a)

�̂32 = eiωpt�32 , (3.14b)

such that the quantities �̂21 and �̂32 oscillate at the frequency ωp of the probe field
- apart, of course from the implicit time-dependence they still contain. With Eqs.
(3.14) and (3.5), we have

�̂21 = eiωpt�21 = e−i(ωc−2ωp)t�̃21 , (3.15a)

�̂32 = eiωpt�32 = �̃32 . (3.15b)

One can see that at multiphoton resonance Δ = 0 ⇔ ωc = ωp/2 (see Eq. (3.8)), the
coherences �̂21 and �̃21 and, respectively, �̂32 and �̃32 coincide. We will investigate
the multiphoton resonance case further in Sec. 3.3.1.

In the incoherently pumped system of Fig. 3.1 b), the Hamiltonian is time-independent,
and therefore the �̃ij (i, j ∈ {1, 2, 3}) do not have an implicit time dependence. In
order to be consistent with the notation of Eq. (3.14), we write

�̂21 = �̃21 , (3.16a)

�̂32 = �̃32 . (3.16b)

Thus, also in the incoherently pumped system, �̂21 and �̂32 denote the coherences
oscillating in phase with the probe field, since �̃21 and �̃32 oscillate in phase with the
probe field according to Eqs. (3.5) with Δ = 0. We now proceed with the evaluation
of the response coefficients. Keeping only terms oscillating in phase with the probe
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field, we arrive at

χ̃e =
N

ε0�
d2

32 �̂
(0,1)
32 , (3.17a)

χ̃m =
Nμ0

�
μ2

21 �̂
(1,0)
21 , (3.17b)

ξ̃HE = −i Ncμ0

�
d32 μ21 e

iΦ�̂
(0,1)
21 , (3.17c)

ξ̃EH = i
Ncμ0

�
d32 μ21 e

−iΦ�̂(1,0)
32 , (3.17d)

where the �̂
(1,0)
ij and �̂

(0,1)
ij are expansion coefficients in a Taylor series of �̂ij (i, j ∈

{1, 2, 3}) in terms of Ω32 and Ω21:

�̂32 = �̂
(0,0)
32 + �̂

(0,1)
32 Ω32 + �̂

(1,0)
32 Ω21

+O(Ω2
21,Ω

2
32,Ω21Ω32) , (3.18a)

�̂21 = �̂
(0,0)
21 + �̂

(0,1)
21 Ω32 + �̂

(1,0)
21 Ω21

+O(Ω2
21,Ω

2
32,Ω21Ω32) . (3.18b)

In Eqs. (3.18), we call �̂
(0,1)
32 Ω32 and �̂

(1,0)
21 Ω21 the “direct terms”, since they correspond

to the susceptibilities, while �̂
(1,0)
32 Ω21 and �̂

(0,1)
21 Ω32 are denoted “cross terms” as they

give rise to the chiralities. Also, in Eqs. (3.17), we have introduced the relative phase,

Φ = φ32 − φ21 , (3.19)

between the scalar dipole moments which we write as

�d32�ep = d32 e
iφ32 , (3.20a)

�μ21
�bp = μ21 e

iφ21 . (3.20b)

Eqs. (3.17) are the desired relation between the density matrix elements and the coef-
ficients that determine the magnetic response. These can now be used in Eqs. (3.12)
in order to determine the contribution of the various processes to the polarization
and magnetization. Keeping only the terms relevant to the probe field response in
phase with the probe field frequency, we find

�P =
N

�
�ep e

i(�kp�r−ωpt+φ)
(
d32μ21 Bp e−iΦ �̂(1,0)

32

+ d2
32 Ep �̂

(0,1)
32

)
+ c.c. , (3.21a)

�M =
N

�

�bp e
i(�kp�r−ωpt+φ)

(
d32μ21 Ep eiΦ �̂(0,1)

21

+ μ2
21 Bp �̂

(1,0)
21

)
+ c.c. . (3.21b)
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3 - Enhancement of the magnetic response

3.3 Analytical results

We next solve the time-dependent equations of motion (3.6) for both of our systems.
First, we consider the closed-loop system for arbitrary multiphoton detuning Δ and
derive an expression for the coherences to first order in the magnetic and electric
probe field Rabi frequencies Ω21 and Ω32. Then, we consider the special cases Δ �= 0
and Δ = 0. Finally, we solve the incoherently pumped system.

3.3.1 Closed-loop system

The equations of motion for the closed-loop system are obtained from Eqs. (3.6), if
we set r1 = 0. We define the vector R̃ containing all density matrix elements,

R̃ = (�̃11, �̃12, �̃13, �̃21, �̃22, �̃23, �̃31, �̃32)
T . (3.22)

The equations of motion (3.6) can be rewritten in terms of R̃ as

∂

∂t
R̃ = MR̃ + Σ . (3.23)

Here, we have eliminated �̃33 via the trace condition Tr(�̃) = 1, which is the reason
for the appearance of the constant term Σ in Eq. (3.23). We proceed by splitting
both M and R̃ up into terms with different time-dependencies as follows:

M = M0 +M1Ω21e
iΔt +M−1Ω12e

−iΔt , (3.24)

Σ = Σ0 + Σ1Ω21e
iΔt + Σ−1Ω12e

−iΔt , (3.25)

where Mk and Σk , k ∈ {−1, 0, 1}, are time-independent.

According to Floquet’s theorem [25], the solution of R̃ has only contributions os-
cillating with frequencies that are integer multiples of Δ. Since terms oscillating
at higher frequencies are suppressed by powers of the magnetic probe field Rabi
frequency |Ω21|, we expand R̃ to first order in this Rabi frequency, and work with
the ansatz

R̃ = R̃0 + R̃1Ω21e
iΔt + R̃−1Ω12e

−iΔt +O(|Ω12|2) . (3.26)

From Eqs. (3.23-3.26), a comparison of coefficients yields

R̃0 = −M−1
0 Σ0 , (3.27a)

R̃1 = −(M0 − iΔ)−1(M1R̃0 + Σ1) , (3.27b)

R̃−1 = −(M0 + iΔ)−1(M−1R̃0 + Σ−1) . (3.27c)

Since the density matrix element �̂21 oscillating in phase with the probe field and
�̃21 are related as

�̂21 = e−i(ωc−2ωp)t�̃21

= e−i(ωc−2ωp)t [R̃0]4 + [R̃1]4Ω21

+ e−2i(ωc−2ωp)t [R̃−1]4Ω12 , (3.28)
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3.3 - Analytical results

one can determine [R̃1]4 as the part of �̂21 oscillating in phase with the probe field,
where the index 4 denotes the fourth component of R̃1. Likewise, the relevant part
of �̂32 can be identified with [R̃0]8.

Note that R̃0, R̃−1 and R̃1 are independent of Ω21, but do depend on the electric
probe field Rabi frequency Ω32, which we did not take into account so far. Since
we are only interested in the linear magnetic and electric response, we still have to
expand the appropriate components of R̃ in Ω32. We obtain

�̂21 =[R̃1]4 Ω21 + [R̃0]4 e
−i(ωc−2ωp)t

+O(Ω2
21,Ω

2
32,Ω21Ω32) , (3.29a)

�̂32 =[R̃−1]8 e
−i(ωc−2ωp)tΩ12 + [R̃0]8

+O(Ω2
21,Ω

2
32,Ω21Ω32) , (3.29b)

where [R̃0]4 ∝ Ω23 and [R̃0]8 ∝ Ω32, and higher orders of Ω32 have been neglected.
With Eqs. (3.27) and (3.29), an explicit evaluation yields

�̂21 =
2

B

{
8Δ3

1γ3 + 4iΔ2
1γ3 (2iΔ3 + γs) + Δ3 [8|Ω31|2 (γ2 − γ3) − 2Γ]

4|Ω31|2 + (2Δ3 − iγ3) (2Δ1 − 2Δ3 + iγs)

+
2Δ1 [−4|Ω31|2 (γ2 − 2γ3) + Γ] − i [(4|Ω31|2γ2 − Γ) γs − 4|Ω31|2γ2

3 ]

4|Ω31|2 + (2Δ3 − iγ3) (2Δ1 − 2Δ3 + iγs)

}
Ω21

−
{

4

B

4|Ω31|2 (γ2 − γ3) − [2Δ1 + i(γ1 + γ2)] γ3 (2Δ2 + iγs)

4|Ω31|2 + [2i (Δ1 − Δ2) + γ3] (−2iΔ2 + γs)

}
e−iΔt Ω31Ω23 ,

(3.30a)

�̂32 =

{
4

B

4|Ω31|2 (γ3 − γ2) + [2Δ1 + i (γ1 + γ2)] γ3 (2Δ1 − 2Δ3 − iγs)

4|Ω31|2 + (2Δ3 + iγ3) (2Δ1 − 2Δ3 − iγs)

}
e−iΔt Ω31Ω12

−
{
|Ω31|2

8

B

[2 (−Δ1 + Δ2) γ2 + iγ3 (2iΔ2 + γ1 + γ3)]

4|Ω31|2 + (−2iΔ1 + 2iΔ2 + γ3) (2iΔ2 + γs)

}
Ω32 , (3.30b)

where

B = 4Δ2
1γ3 + Γ + 4|Ω31|2 (γ2 + 2γ3) ,

γs = γ1 + γ2 + γ3 ,

Γ = (γ1 + γ2)
2 γ3 .

Note that in the fractions of Eq. (3.30), the multiphoton detuning Δ has been
replaced using Eq. (3.7). However, Δ still appears in the exponent where it has
simply been used as an abbreviation according to Eq. (3.8). Also, the contributions
without the explicit time dependence in the exponential factor are the direct terms,
while the other parts are cross terms.
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Non-zero multiphoton detuning (Δ �= 0)

In the case of non-zero multiphoton detuning, Δ �= 0 ⇔ 2ωp �= ωc, only the direct
terms in Eqs. (3.30) oscillate in phase with the probe field. Therefore, only these
terms contribute to the coherences and thus to the magnetic and electric response.
Then, the cross terms in Eqs. (3.18) vanish and so do the chirality coefficients accord-
ing to Eqs. (3.17), ξ̃EH = ξ̃HE = 0. This means that the polarization [magnetization]
is entirely determined by the electric [magnetic] probe field component. It will turn
out in Sec. 3.3.2 that this case is comparable to the incoherently pumped system,
in which there are no cross terms either.

Multiphoton resonance (Δ = 0)

We now focus on the case of multiphoton resonance, i.e. Δ = 0 or ωp = ωc/2.
Hence, Eqs. (3.6) become time-independent and we can now solve the linear system
Eq. (3.23) for a time-independent steady-state solution of R̃ using ∂

∂t
R̃ = 0. Now,

all terms in Eq. (3.26) contribute, apart from terms that contain Ω32 in higher than
first order. From Eqs. (3.15) we also find that the simplified relations between the
two considered reference frames Eqs. (3.16) hold as in the case of incoherent driving.

We again neglect terms of higher order in the probe field Rabi frequency and arrive
at

�̂21 = − 2i

C+D

{
8iΔ3

2γ3 + 4Δ2
2 (4iΔ3 − γs) γ3 −

(
4Δ2

3γ3 + Γ
)
γs

+ 4|Ω31|2
[
γ2 (γ1 + γ2) + (2iΔ3 + γ2) γ3 − γ2

3

]
+2iΔ2

[
−4|Ω31|2 (γ2 − 2γ3) + Γ + 4γ3Δ3 (Δ3 + iγs)

]}
Ω21

− 4Ω31

C+D

{
4|Ω31|2 (γ2 − γ3) − [2 (Δ2 + Δ3) + i (γ1 + γ2)] γ3 (2Δ2 + iγs)

}
Ω23 ,

(3.32a)

�̂32 = − 4Ω31

C−D

{
4|Ω31|2 (γ2 − γ3) − [2 (Δ2 + Δ3) + i (γ1 + γ2)] γ3 (2Δ2 − iγs)

}
Ω12

− 8i

C−D
|Ω31|2 [2iΔ3γ2 + γ3 (2iΔ2 + γ1 + γ3)] Ω32 , (3.32b)

where

C± = 4|Ω31|2 + (±2iΔ3 + γ3) (∓2iΔ2 + γs) ,

D = 4 (Δ2 + Δ3)
2 γ3 + Γ + 4|Ω31|2 (γ2 + 2γ3) ,

Γ = (γ1 + γ2)
2 γ3 ,

γs = γ1 + γ2 + γ3 .
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3.4 - Comparison of the two systems

The control field detuning Δ1 has been eliminated using the relation Δ1 = Δ2 + Δ3

which follows from Eq. (3.7) in the case of Δ = 0.

We see that both the direct terms and the cross terms contribute to the coherences
and thus to the magnetic and electric response in this case. Therefore, the chirality
coefficients are non-zero in the resonance case Δ = 0, see Eqs. (3.17).

3.3.2 Incoherently pumped system

We now consider the electric and magnetic response in the incoherently pumped
system shown in Fig. 3.1(b). It will serve us as a reference in a comparison to the
results of the closed-loop system in order to determine the exact origin of the various
contributions to the medium response.

In this system, the transformed Hamiltonian is time-independent. Hence, we can
solve for the steady-state solution just as in the case of multiphoton resonance
in Sec. 3.3.1. The equations of motion follow from Eqs. (3.6) with Δ = 0 and
Ω31 = Ω13 = 0. Instead of the coherent coupling field, they include an incoherent,
bi-directional pump rate r1 on transition |1〉 → |3〉.
Using Eqs. (3.16), up to first order in the probe field we find for the coherences in
a reference frame oscillating in phase with the probe field:

�̂21 =
2i[r1(γ3 − γ2) + (γ1 + γ2)γ3]

(2iΔ3 + r1 + γ3)[(γ1 + γ2)γ3 + r1(γ2 + 2γ3)]
Ω21

+ O(Ω2
21,Ω

2
32,Ω21Ω32) , (3.34a)

�̂32 =
2ir1(γ2 − γ3)

(2iΔ2 + γs + r1)[(γ1 + γ2)γ3 + r1(γ2 + 2γ3)]
Ω32

+ O(Ω2
21,Ω

2
32,Ω21Ω32) . (3.34b)

In this case, the electric [magnetic] probe transition coherence is determined by the
electric [magnetic] probe field component, and no cross-terms appear.

3.4 Comparison of the two systems

We will now proceed with a comparison of the two systems. To this end, we will
discuss the expansion coefficients �̂

(a,b)
32 and �̂

(a,b)
21 , (a, b ∈ {0, 1}) in Eqs. (3.18), since

they determine the magnetic and electric response according to Eqs. (3.21).

It will turn out that the direct terms are similar in many regards in both systems.
These terms describe the establishment of polarization [magnetization] due to the
electric [magnetic] probe field component. But crucial differences are found for
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3 - Enhancement of the magnetic response

the cross terms, which only appear in the closed-loop system for zero multiphoton
detuning. These terms characterize the polarization [magnetization] due to the
magnetic [electric] probe field component.

3.4.1 The direct terms

From Secs. 3.3.1, 3.3.1 and 3.3.2 it is clear that direct terms appear both in the
closed-loop system and in the system with incoherent pumping. In Fig. 3.2, the cor-
responding expansion coefficients for the two cases are compared. Since transitions
|1〉 → |3〉 and |2〉 → |3〉 are electrically dipole-allowed, whereas transition |1〉 → |2〉
is magnetically dipole-allowed, we choose the decay rates as γ1 = γ, γ2 = γ, γ3 = α2γ.
For the incoherent case, the pump rate is set to r1 = γ, whereas in the closed-loop
configuration, the coherent pump field is set to Δ1 = 0,Ω31 = γ. All expansion
coefficients are plotted against the respective probe field detunings Δ2 or Δ3.

We find that in many respects, the direct terms of both systems behave similarly.
Apart from the AC Stark splitting in the closed-loop system, the general structure
is comparable and in particular the magnitude of the coefficients is of similar order
in both systems.

The similarities become more apparent when considering the dependence of the
direct terms on the coherent pump rate Ω31 and the incoherent pump rate r1, as
shown in Fig. 3.3. For this figure, the direct terms of the loop system are evaluated
at a particular detuning Δ2 or Δ3, respectively, at which the absolute value of
the imaginary part becomes maximal. At the same point, the real part vanishes.
For the incoherently pumped system, the corresponding maxima always occur at
Δ3 = 0 or Δ2 = 0, respectively. This approach allows to compare the two systems
independently of the AC Stark splitting appearing in the closed loop system only.
Due to the growing splitting with increasing |Ω31|, a comparison at a fixed detuning
would not be meaningful. It can be seen from Fig. 3.3 that both systems show a
qualitatively similar dependence on the pumping strength. The shown imaginary
part of the coherences characterizes the absorptive behavior of our systems: positive
values stand for absorption and negative values for amplification of the magnetic or
electric probe field component.

Interestingly, in both systems it is possible to choose the respective pump rate in
such a way that �̂21 vanishes at all frequencies. This is the case at the roots of the
dashed lines in Fig. 3.3. It turns out that at these points, the populations of states
|1〉 and |2〉 are the same such that the magnetic probe field component can traverse
the medium without attenuation and without experiencing diffraction.

For the interpretation of Fig. 3.3, we calculate the coherences in terms of the (zeroth
order) populations for arbitrary detuning. In the case of incoherent pumping, we
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Figure 3.2: Real (red solid curve) and imaginary part (blue dashed curve) of the
direct terms in the magnetic and electric susceptibility, respectively. The top row
shows �̂

(1,0)
21 , the bottom row �̂

(0,1)
32 . (a) Closed-loop system and (b) incoherently

pumped system as shown in Fig. 3.1.

obtain

�̂21 = 2 Ω21
�̂

(0)
11 − �̂

(0)
22

2Δ3 − i(r1 + γ3)
, (3.35a)

�̂32 = 2 Ω32
�̂

(0)
22 − �̂

(0)
33

2Δ2 − i(r1 + γ1 + γ2 + γ3)
. (3.35b)

The zeroth order populations are

�̂
(0)
11 =

(r1 + γ1 + γ2)γ3

C
, (3.36a)

�̂
(0)
22 =

r1γ2

C
, (3.36b)

�̂
(0)
33 =

r1γ3

C
, (3.36c)

where C = r1γ2 + 2r1γ3 + γ1γ3 + γ2γ3.

Note that in our system, γ3 � γ2 due to the different multipolarity of the transitions.
Therefore, for small pump rates r1, from Eqs. (3.36) one finds �̂

(0)
11 > �̂

(0)
22 > �̂

(0)
33 . As

a result, both probe transitions are absorptive — although for �̂21 only in a very
small range of r1 as compared to γ.
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Figure 3.3: Dependence of the expansion coefficients �̂
(0,1)
32 in the closed loop (black

solid line) and in the incoherently pumped system (green long dashed line) as well

as �̂
(1,0)
21 for the closed-loop (blue dash-dotted) and the incoherently pumped system

(red dashed) on the strength of the control field and the incoherent pump rate,
respectively. Shown are only the imaginary parts at the maximum of the absolute
value of the coefficients. For the incoherent configuration, the maximum of �̂

(1,0)
21 is

always at Δ3 = 0, and the maximum of �̂
(0,1)
32 is at Δ2 = 0. The coefficients are

scaled by γ to obtain a unitless quantity and �̂
(1,0)
21 is scaled by a factor of 10−4. In

this figure, negative values indicate amplification, positive values absorption.

For large r1, Eqs. (3.36) show that �̂
(0)
11 < �̂

(0)
22 and �̂

(0)
33 < �̂

(0)
22 . In fact, �̂

(0)
11 ≈ �̂

(0)
33

for r1 � γ. Hence, the magnetic probe transition becomes amplifying, whereas the
electric transition maintains its absorptive character. As expected, from Eqs. (3.35),
it follows directly that a population inversion causes amplification.

As a side note, we would like to mention the fact that Eqs. (3.35) imply vanishing �̂32

for γ2 = γ3. This is due to the fact that from Eqs. (3.36), one then finds �̂
(0)
22 = �̂

(0)
33 .

However, this case is not of relevance for the current analysis, since γ3 � γ2.

Let us now examine the behavior of the closed-loop system with regard to a change
of |Ω31|. In this case, the coherences are given by

�̂21 = 2 Ω21
K1(�̂

(0)
22 − �̂

(0)
11 ) + 4|Ω31|2(�̂(0)

33 − �̂
(0)
11 )

(4|Ω31|2 +K2)K3

, (3.37a)

�̂32 = 2 Ω32
K4(�̂

(0)
33 − �̂

(0)
22 ) + 4|Ω31|2(�̂(0)

33 − �̂
(0)
11 )

(4|Ω31|2 +K5)K3
, (3.37b)

while the populations obey

�̂
(0)
11 =

γ3(K6 + 4|Ω31|2)
K7 + 4γ2|Ω31|2 + 8γ3|Ω31|2

, (3.38a)

�̂
(0)
22 =

4γ2|Ω31|2
K7 + 4γ2|Ω31|2 + 8γ3|Ω31|2

, (3.38b)

�̂
(0)
33 =

4γ3|Ω31|2
K7 + 4γ2|Ω31|2 + 8γ3|Ω31|2

(3.38c)

54



3.4 - Comparison of the two systems

where the Kl, (l ∈ {1, . . . 7}) are coefficients independent of Ω31.

Again, the coherence �̂ij is determined by the difference of the populations of �̂
(0)
ii

and �̂
(0)
jj , [(i, j) ∈ {(2, 1), (3, 2)]. For small |Ω31|, the term proportional to �̂

(0)
33 − �̂

(0)
11

can be neglected. For large |Ω31|, this term outweighs the others at first sight.
However, for |Ω31| → ∞ and arbitrary, but fixed detunings, one finds

�̂
(0)
11 → 1

γ2
γ3

+ 2
, (3.39a)

�̂
(0)
22 → 1

2γ3
γ2

+ 1
, (3.39b)

�̂
(0)
33 → 1

γ2
γ3

+ 2
. (3.39c)

Therefore, �̂
(0)
11 − �̂

(0)
33 → 0 such that also in this case, �̂ij is determined by �̂

(0)
ii − �̂

(0)
jj .

Eqs. (3.39) also imply that for a strong control field, both probe transitions show
opposite absorptive behavior (see Fig. 3.3): absorption in case of the upper probe
transition, and amplification for the lower one. The reason is that due to the small
decay rate γ3, most population is trapped in state |2〉, such that the relevant popu-
lation differences in Eqs. (3.37) have opposite sign. For small |Ω31|, Eqs. (3.38) yield

�̂
(0)
11 > �̂

(0)
22 > �̂

(0)
33 , which explains the absorptive properties in Fig. 3.3. However, the

first inequality is not obvious and can only be deduced by an exact knowledge of
K6.

Before we come to the discussion of the cross terms, we would like to note that, of
course, there are also differences between the direct terms of the two systems. We
already discussed the AC Stark shift that occurs only in the loop system. But the
closed-loop system also offers more degrees of freedom than the incoherently pumped
system, most importantly Δ1. The role of the control field detuning Δ1 is shown in
Fig. 3.4. In this figure, we plot the expansion coefficients of the direct terms in the
coherence over the probe field detunings Δ2 and Δ3 for Δ1 = 2γ. The detuning Δ1

essentially determines the position of one of the maxima of the imaginary part of the
response function. Increasing Δ1 moves the peak to higher frequencies, while de-
creasing it moves it to lower frequencies. For example, in Fig. 3.4, the corresponding
maxima can be seen close to Δ2 = 2γ.

3.4.2 The cross terms

Let us now come to the most important difference between the two systems: The
coherences of the closed-loop system have cross terms, while the coherences of the
incoherently pumped system do not. However, as found in Sec. 3.3.1, the cross terms
only contribute to the magnetic and electric response for Δ = 0, i.e. for ωp = ωc/2.
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Figure 3.4: Real (red solid line) and imaginary part (blue dashed curve) of the

expansion coefficients a) �̂
(1,0)
21 and b) �̂

(0,1)
32 in Eqs. (3.18). The curves are drawn for

Δ1 = 2γ in the closed-loop system. The coefficients are scaled by γ. The parameters
are as in Fig. 3.2(a), except for the non-vanishing detuning of the control field.
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Figure 3.5: Interpretation of the different scattering processes that contribute to �̃21

in the case of Δ = 0. a) R̃0 contributes to the cross term in �̃21, and thus to the
chirality ξ̃HE . b) R̃1 contributes to the direct term, i.e. to the magnetic susceptibil-
ity. c) R̃−1 is of higher order in either one of the probe field Rabi frequencies and
therefore negligible in our calculation.

The following comparison serves as basis for the conclusion which will be drawn in
the discussion section regarding the enhancement of the magnetic response.

The mathematical origin of the cross terms can be identified from the derivation of
the coherences in Section 3.3.1. The relevant response of the system to the probe field
is given by the contributions of the respective probe transition coherences oscillating
in phase with the incident probe field. According to this criterion, for Δ �= 0, only
one of the terms in Eq. (3.26) contributes to each probe field coherence. In contrast,
for Δ = 0, all terms in Eq. (3.26) contribute to this response. The additional terms
lead to the cross terms discussed here. In principle, also other terms contribute in
this case, but they are of higher order in the probe field Rabi frequencies and can
therefore be neglected in linear response theory.

How can we interpret the different contributions R̃k (k ∈ {−1, 0, 1}) to Eq. (3.26)
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Figure 3.6: Interpretation of the different scattering processes that contribute to �̃32

in the case of Δ = 0. a) R̃0 contributes to the direct term in �̃32, and thus to the
electric susceptibility. b) R̃1 is of higher order in either one of the probe field Rabi
frequencies and can therefore be neglected. c) R̃−1 contributes to one of the cross
terms, i.e., to one of the chirality coefficients.

physically? An explicit calculation reveals their dependence on the probe and control
field Rabi frequencies. The control field Rabi frequencies appear for two different
reasons. First, the populations depend on the control field Rabi frequencies. But
second, the Rabi frequencies also indicate the physical process described by the
respective terms. The obtained combinations of the different Rabi frequencies lead to
an interpretation of R̃k as depicted in Figs. 3.5 and 3.6. For example, R̃0 contributing
to �̃21 is shown in Fig. 3.5(a). This term arises from the scattering of the control
field off of transition |1〉 → |3〉 and the probe field off of transition |3〉 → |2〉 into
the probe transition |2〉 → |1〉, which contributes to the magnetic response.

We now turn to a numerical study of the cross terms. In Fig. 3.7, we plot �̂
(0,1)
21 ,

multiplied by a factor of γ to achieve unitless quantities. �̂
(1,0)
32 is not shown, as

it is virtually identical for the chosen parameters. It is important to note that
in Fig. 3.7, the cross terms are plotted over the variable σ which is defined as
σ = 1

2
(Δ3 − Δ2) = ω2 − 1

2
(ω3 + ω1). This new variable can be interpreted as the

energy shift of state |2〉 with respect to the average energy of |1〉 and |3〉. Hence, in
a plot against σ, effectively state |2〉 is moved. In this way, the probe field frequency
remains fixed such that the multiphoton resonance condition Δ = 0 ⇔ ωp = ωc/2 is
fulfilled for all values of σ. For σ = 0, |2〉 lies in the very middle of |1〉 and |3〉.
It turns out that apart from the phases of the dipole moments, the chiralities in
Eqs. (3.17) depend on the phase ψ − 2φ + �K�r arising from the closed interaction

loop, where �K = (�kc − 2�kp) is the so-called wave vector mismatch. For the plot in
Fig. 3.7, we set all involved phases to zero. This does not affect our final conclusion
regarding the enhancement of the magnetic response, since it will only be based
on the magnitude of the cross terms. If in an experiment the difference between
the absolute field phases ψ − 2φ is not fixed, then the chiralities average to zero.
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Figure 3.7: Real (red solid line) and imaginary part (blue dashed) of the expansion

coefficient �̂
(0,1)
21 in the closed-loop system [see Eqs. (3.18)]. �̂

(1,0)
32 is not shown, since

it is virtually identical to the shown results. The coefficients correspond to cross
terms and determine ξ̃HE and ξ̃EH, respectively. The plotted coefficients are phase-
dependent; in this figure all phases are set to zero. The variable σ = (Δ3 −Δ2)/2 =
ω2 − (ω3 + ω1)/2 denotes the shift of the eigenfrequency of |2〉 with respect to the
average frequency of |1〉 and |3〉. Then, for all values of σ, the multiphoton resonance
condition Δ = 0 is fulfilled for a fixed probe field frequency ωp.

While absolute phase control is very difficult to achieve, relative phase control has
been accomplished experimentally [33]. In related systems, the phase dependence
of the cross terms can be made independent of the probe field phase, as will be
discussed in Sec. 3.5. The observed phase dependence is a characteristic of closed
loop systems, and has been observed in related systems as well [41, 18]. The phase
can be calculated by following the interaction loop, and counting phases of fields
that de-excite the atom and phases of fields that excite the atom throughout this
loop path with opposite sign.

Due to the dependence of the chiralities on �K�r, a further condition for the enhance-
ment arises, namely, that the so-called wave vector mismatch should vanish, i.e.
�K = 0. This condition on the relative propagation directions of the different fields
for the enhancement to take place can be fulfilled, for example, for co-propagating
fields [41].

3.4.3 Enhancement of the magnetic response

We are now in the position to evaluate the magnitude of the magnetic response.
For this, we examine the different contributions in Eq. (3.21b). In particular, we
compare the two contributions to the magnetization, which except for the common
prefactor are given by

M1 = d32μ21 Ep eiΦ �̂(0,1)
21 , (3.40a)

M2 = μ2
21 Bp �̂

(1,0)
21 . (3.40b)
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3.5 - Discussion

Here, M1 refers to the cross term contribution that only contributes at Δ = 0 and
M2 denotes the direct term.

First, Figs. 3.2 and 3.7 show that in the closed loop system,

|�̂(1,0)
21 | ≈ |�̂(0,1)

21 | . (3.41)

Thus, the magnitude of the two expansion coefficients is comparable. The size of
the involved transition dipole moments can be estimated according to Eqs. (2.44)
and therefore

μ21/d32 ∼ αc , (3.42)

where μB is the Bohr magneton, e the elementary charge, a0 the Bohr radius, α the
fine-structure constant and c the vacuum speed of light. Finally,

Bp =
1

c
Ep . (3.43)

With Eqs. (3.42) and (3.43), we thus arrive at

|M1| ≈ α−1|M2| . (3.44)

This means that at multiphoton resonance, the magnetic response of the closed-loop
system is enhanced by a factor of α−1 due to the scattering of the electric probe
field component into the magnetic probe transition (described by R̃0 in Fig. 3.5). A
similar argument shows that the direct terms of the incoherently pumped and the
closed loop system are comparable in magnitude, such that the closed-loop system
in multiphoton resonance also allows an enhancement of the magnetic response by
α−1 as compared to the incoherently pumped system.

3.5 Discussion

We have seen that the direct response, which describes the polarization [magnetiza-
tion] created by the electric [magnetic] probe field component, is of the same order of
magnitude in all three cases considered in Sec. 3.3. Only at multiphoton resonance,
the response of the closed-loop system in addition contains a term corresponding to
the scattering of the electric probe field component into the magnetic probe field
transition. In this section, we could show that this scattering effectively enhances
the magnetic response by one inverse power of the fine structure constant α−1, and
thus clearly identify the mechanism leading to the enhanced magnetic response.

Of course, the reverse process of scattering the magnetic field into the electric
probe field mode can also occur. However, Eqs. (3.21) show that this does not
lead to an enhancement of the electric response, since, mathematically speaking,
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Figure 3.8: Example level scheme for magnetic response enhancement independent
of the probe field frequency. Ω1 and Ω2 (in red) are coherent coupling fields with fre-
quencies ω1 and ω2, respectively. E and B are the electric and magnetic component
of the probe field with frequency ωp (black). Here, the closed loop path contains
an absorption and an emission of a probe field photon such that the multiphoton
detuning Δ = ω1 − ω2 can be satisfied for arbitrary probe field frequencies.

|d2
32
�Ep| ∼ α−1|d32 μ32

�Bp|. Physically speaking, the coupling of the magnetic probe
field component to a magnetic transition is smaller than the coupling of the electric
probe field component to an electric transition by a factor of α.

The multiphoton resonance condition restricts the magnetic enhancement in the sys-
tem discussed here to a single probe field frequency. Extended closed-loop systems
can be constructed in such a way that a complete loop contains an excitation on the
electric probe transition and a de-excitation on the magnetic probe transition, or
vice versa [17, 18]. A simple example for this is shown in Fig. 3.8. In such a system,
the multiphoton resonance condition does not depend on the frequency of the probe
field, such that it can be fulfilled for arbitrary probe field frequencies by suitably
choosing the coupling field frequencies. The physical interpretation identified in our
analysis directly carries over to these extended systems.

While the parametric enhancement by α−1 is universal, other closed-loop systems
could in principle lead to a modification of the relative magnitude of the different
expansion coefficients in Eq. (3.41). If this ratio can be altered favorably, then the
enhancement can be even higher. It remains to be seen, however, whether there is
a physical mechanism that enables one to change this ratio to a great extent.
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3.6 Non-chiral closed-loop system

Having discussed the closed-loop system that couples to both the magnetic and the
electric probe field component thoroughly, we now turn to a similar system, namely
to a closed-loop system in which the probe field on transition |2〉 → |3〉 has been
replaced by a control field. This means that, now, only the magnetic component of
the probe field couples to our system. One advantage of this system over the systems
considered in Sec. 2 is the bigger number of adjustable system parameters each of
which can be changed to achieve a suitable shape for the magnetic susceptibility.
Also, the investigation of this system is motivated by the hope that replacing a weak
control field in a closed-loop configuration by a strong control field gives rise to a
higher response on the magnetic probe transition |1〉 → |2〉.
This replacement changes the derivation of our results only slightly: We do not
obtain an electric response, since the electric probe field does not couple to the
system anymore. Therefore, the electric susceptibility χ̃e and the chirality coefficient
ξ̃HE of Eq. (3.12) vanish. If the electric probe field does not couple, transition
|2〉 → |3〉 must either be of a frequency far away from the probe field frequency or
a magnetic transition. In both cases, the magnetic probe field component cannot
induce an electric response at the probe field frequency. Therefore, also the chirality
coefficient ξ̃EH of Eq. (3.12) vanishes.

Besides that, the applied transformation according to Eq. (3.4) remains the same,
i.e. X = Δ1|1〉〈1|+Δ2|2〉〈2| in Eq. (3.4). However, note that now, Δ1 = ω3−ω1−ωc
and Δ2 = ω3 − ω2 − ωc,2, where ωc,2 is the frequency of the control field coupling
to transition |2〉 → |3〉. With this notation, the equations of motion (3.6) do not
change. However, note that the step from Eq. (3.28) to (3.29) in which we neglected
the parts of �̂21 that are of higher than first order in Ω32 is not performed anymore,
since Ω32 now belongs to a strong control field. Therefore, the term in �̂21 containing
R̃−1 cannot be neglected now. Also, R̃0 (see Fig. 3.5 a)) and R̃+1 (see Fig. 3.5 b))
change, since we take into account all orders of Ω32. Still, keep in mind that the
terms R̃0 and R̃−1 only contribute in case of multiphoton resonance, as they only
oscillate at the probe field frequency in this case. Now, the multiphoton detuning
which is still given by Eq. (3.7) evaluates to

Δ = ωc − ωc,2 − ωp , (3.45)

and therefore the case of multiphoton resonance is given by

ωp = ωc − ωc,2 . (3.46)

As laid out in Sec. 3.3.1, �̃21 has the form given in Eq. (3.28), in which, again, one
probe field frequency is replaced by the frequency ωc,2 of the second control field.
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Therefore,

�̂21 = e−i(ωc−ωp−ωc,2)t�̃21

= e−i(ωc−ωp−ωc,2)t [R̃0]4 + [R̃1]4Ω21 + e−2i(ωc−ωc,2−ωp)t [R̃−1]4Ω12

= e−i(ωc−ωp−ωc,2)t [R̃0]4 + Ω21

(
[R̃1]4 + e2iφΩ−2i(ωc−ωc,2−ωp)t [R̃−1]4

)
.

(3.47)

Here, φΩ denotes the phase of the Rabi frequency Ω12 and thus

φΩ = −φ− �kp�r − φ21 . (3.48)

As before, the quantities in this equation are determined by Eqs. (3.1) and (3.20).

Eq. (3.47) shows that [R̃1]4 determines the coherence of the magnetic probe transi-
tion and therefore the magnetic susceptibility (see Eq. (3.17)) if there is no multi-
photon resonance. For ωp = ωc − ωc,2, the case of multiphoton resonance, [R̃0]4 and
[R̃−1]4 both contribute to the magnetic response. However, [R̃0]4 does not include
any probe field Rabi frequencies anymore. Thus, the contribution of this term is
only caused by the control fields used to prepare the medium and not by the probe
field. Therefore, we detect a response also when we switch off the probe field which
is caused by the control fields.

Although [R̃−1]4 yields a response to the probe field at multiphoton resonance, a
response to the control field superimposes both this contribution and the contri-
bution of [R̃1]4 which we have at all frequencies. For an experimental realization
or possible applications, this is supposedly unfavorable, since the response to the
incident probe signal would be disturbed. Therefore, we concentrate on the case
that the multiphoton condition of Eq. (3.46) is not fulfilled (Δ �= 0). This is easy to
realize, since one can simply choose the control field frequencies in such a way that
the probe field frequency only fulfills the multiphoton condition at a frequency very
different from the near-resonant frequencies we consider.

Numerical results

For Δ �= 0, only [R̃1]4 contributes and we obtain the susceptibilities of Fig. 3.9.
Again, we choose a particle density of N = 1 m−3. In a), we assumed electric
control field transitions and therefore chose the parameters γ1 = α−2γ, γ2 = α−2γ,
γ3 = γ and λ = 600 nm. Moreover, r1 = r2 = r3 = 0, Δ1 = 0, Δ2 = −24α−2γ,
|Ω31| = 37α−2γ and |Ω32| = 18α−2γ. b) shows the case of magnetic control field
transitions, i.e. of a system with γ1 = γ2 = γ3 = γ and λ = 600 nm. Also,
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Figure 3.9: The magnetic susceptibility in the given closed-loop system has a rich
structure for the chosen parameters. We plotted the susceptibility for a particle
density of N = 1m−3 and in a) for a system with two electric control field transitions,
in b) with two magnetic control field transitions and in c) for a nitrogen system.
The values for the detunings and the control field Rabi frequencies were adapted to
the different decay rates in a), b) and c).

r1 = r2 = r3 = 0, Δ1 = 0, Δ2 = −24γ, |Ω31| = 37γ and |Ω32| = 18γ. Finally,
the susceptibility of the nitrogen-like system of Fig. 3.9 c) was calculated with the
parameters γ1 = 3.92γ, γ2 = 1.86 · 10−3γ, γ3 = γ and λ = 520.1705nm. Similarly as
before, r1 = r2 = r3 = 0, Δ1 = 0, Δ2 = −24γ, |Ω31| = 37γ and |Ω32| = 18γ.

Fig. 3.9 shows a rich structure. Also, there are a few interesting points. These
are, for the nitrogen parameters, Δ3 ≈ −13γ, Δ3 ≈ 24γ and Δ3 ≈ 71γ. At these
detunings, we obtain a negative real part and a vanishing imaginary part. However,
at Δ3 ≈ 24γ, the shape of the susceptibility is not as optimal as at the other points.
The real part only reaches values of Re(χ̃m) ≈ −9 · 10−23. Such a comparably small
absolute value of the real part demands a high particle density, since what we aim
for is a large permeability which is connected to the magnetic susceptibility by Eq.
(1.1b). Also, the range of frequencies over which the real part is negative and the
imaginary part is small is comparably narrow.

However, let us have a closer look at Δ3 ≈ −13γ and Δ3 ≈ 71γ. At these detunings,
the real part of the magnetic susceptibility is negative. At the same point, the
imaginary part vanishes and has a small gradient, such that the absorption stays
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small in a range of few γ around the considered points. Also, these points appear
for all three different sets of system parameters in Fig. 3.9 a), b) and c). These
points are good candidates for negative refraction.

Also, as in Sec. 2, the system with only magnetic transitions yields the highest
absolute values for the magnetic susceptibility, while the size of the magnetic sus-
ceptibility in the nitrogen-like system is only slightly smaller. In Sec. 2, the differ-
ence between the susceptibilities of these two systems was much bigger. Thus, in
Sec. 4, we will consider the closed-loop system with nitrogen parameters, since it
describes a real, existing atomic species, yields a high response and therefore is a
good candidate for negative refraction and a possible experimental realization.
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Chapter 4

The index of refraction in atomic
two-component media

4.1 Theoretical preparation

So far, we have considered the electric and, in particular, the magnetic response
of a two-component medium. We know how to calculate the electric and magnetic
susceptibilities χ̃e and χ̃m of each species of atoms, respectively, at the probe field
frequency (see Secs. 2.1.2 and 3.2.3). Also, permittivity εr and permeability μr are
given by

εr = χ̃e + 1 , (4.1a)

μr = χ̃m + 1 . (4.1b)

In a homogeneous, i.e. one-component medium, we can combine permittivity and
permeability to the index of refraction by Eq. (1.2), which we recall here, since this
equation is the core of the following section:

n2 = εrμr . (4.2)

This equation can be found in any standard book of electrodynamics, e.g. [19]. The
equation leads to two solutions for the index of refraction, namely

n = ±√
εrμr , (4.3)

of which only one is causal and the other one belongs to a superluminal signal
velocity. In the following, we will call one solution n−, namely n− = −√

εrμr, while
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4 - The index of refraction in atomic two-component media

the other solution will be denoted by n+ =
√
εrμr. To choose the right solution

here will be the topic of Sec. 4.1.2. Before we do that, we have to take a closer
look at Eq. (4.2), the equation that combines electric and magnetic response. This
equation holds in the case of a single-component medium yielding both a magnetic
and an electric response. In contrast, we deal with two components of a medium
that each yield a magnetic and an electric response respectively. How do we have to
combine the susceptibilities of both components to a total susceptibility in this case
? In other words, does Eq.(4.2), with εr being the permittivity of one component
and μr the permeability of the other component, still hold for such a setup ?

4.1.1 Combining two atomic media

Let us consider a medium consisting of two components, species A and species B.
Both components are charge free and nonconducting. According to Eqs. (3.9), the
electric polarization in the two-component medium is given by

�P (�r, t) =
1

c

∫ ∞

−∞
ξEH(τ) �H(�r, t− τ) dτ + ε0

∫ ∞

−∞
χe(τ) �E(�r, t− τ) dτ . (4.4)

On the other hand, microscopically, the polarization can be obtained by Eq. (3.13),

�P = N�p , (4.5)

where N is the particle density and �p is the mean polarization per atom [23]. In the
same way one can calculate the polarization of a two component medium, since Eq.
(4.5) can be written in an explicit way as

�P =
1

V

a+b∑
i=1

�pi , (4.6)

where a and b are the numbers of atoms of species A and B, respectively. V is
the volume our two-component medium occupies and �pi is the mean electric dipole
moment of the atom labelled i. It can be calculated as the expectation value of the
electric dipole operator �di of atom i as

�pi = Tr(��di) . (4.7)

Since the atoms are identical within their own species, the mean electric dipole
moment of each atom of species A is the same. We can therefore call it �pA and deal
analogously with species B. Therefore,
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�P =
1

V

a+b∑
i=1

�pi =
a

V
�pA︸ ︷︷ ︸
�PA

+
b

V
�pB︸ ︷︷ ︸
�PB

(4.8)

The electric susceptibilities of species A and B, χe,A and χe,B are defined in the same

way as the total electric susceptibility χe, but with the polarizations �PA and �PB of
the two species respectively instead of the total polarization �P . Thus, we finally
obtain

1

c

∫ ∞

−∞
ξEH,A(τ) �H(�r, t− τ) dτ + ε0

∫ ∞

−∞
χe,A(τ) �E(�r, t− τ) dτ

+
1

c

∫ ∞

−∞
ξEH,B(τ) �H(�r, t− τ) dτ + ε0

∫ ∞

−∞
χe,B(τ) �E(�r, t− τ) dτ

= �PA + �PB = �P

=
1

c

∫ ∞

−∞
ξEH(τ) �H(�r, t− τ) dτ + ε0

∫ ∞

−∞
χe(τ) �E(�r, t− τ) dτ . (4.9)

This implies

χe = χe,A + χe,B . (4.10)

This additivity also holds for the Fourier transformed quantities χ̃e, χ̃e,A and χ̃e,B,
since we can write Eq. (4.9) in terms of Fourier transformed quantities as in Eq.
(3.12). Analogously, this additivity can be derived for the magnetic susceptibility
χ̃m.

Since εr = 1 + χ̃e and μr = 1 + χ̃m, we finally have

n2 = εrμr = (1 + χ̃e) · (1 + χ̃m) (4.11)

where both susceptibilities can be obtained by adding the susceptibilities of compo-
nent A and B (see Eq. (4.10)). In a gas in which species A only yields an electric,
species B a magnetic response, we simply have e.g. χe = χe,A and χm = χm,B, since
χe,B = χm,A = 0. This is the case in our configuration.

Note that in Eq. (4.11), the susceptibilities depend on different detunings, e.g.
χe = χe(Δe) and χm = χm(Δm). Here, Δe is the detuning of the electric probe field
component with respect to the probe transition in the electrically coupling medium.
Analogously, Δm is the detuning of the magnetic probe field component with respect
to the magnetic probe transition of the other species of atoms. To plot the index
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of refraction over the probe field frequency (or a detuning including the probe field
frequency), we have to use

Δe = Δm + ωie − ωje − (ωim − ωjm) . (4.12)

Here, ωie − ωje is the transition frequency of the probe transition of the electrically
coupling atoms, ωim − ωjm is the transition frequency of the probe transition of the
magnetically coupling atoms. If we use this relation in Eq. (4.11), the index of
refraction only depends on Δe, the probe field detuning of one of the two species.

4.1.2 Finding the right solution for the refractive index

Now, we know how to calculate the index of refraction. However, we still have to
determine the physical solution of Eq. (4.3). There are several criteria for negative
refraction in the literature [42]. However, these criteria can only be employed in
special cases that are given by the signs of μr and εr and some of them only work
for passive media. In contrast, we introduce two algorithms that are based on basic
physical properties of the index of refraction: continuity.

Continuity with respect to system parameters

Systems that do not contain any incoherent pump rates or coherent fields, so-called
passive systems, naturally have to be absorbing, since the population will necessarily
decay to the lowest state with time. Then, however, the system must be absorbing,
since there is no population inversion. Let us recall that the imaginary part of the
index of refraction determines the absorptive behavior of the medium: A negative
imaginary part implies gain, a positive imaginary part stands for absorption. There-
fore, passive systems must have a refractive index with a positive imaginary part.
Since the two solutions of Eq. (4.3) have imaginary parts with opposite signs, one
can unambiguously find the physical solution for a passive system.

We now take advantage of this knowledge: Increasing all coherent and incoherent
pump rates from zero to certain final values steadily turns our system from a passive
to an active system. In the following, let us combine these parameters that determine
the “passivity” of our two-component system, i.e. the incoherent and coherent pump
rates, to the vector �x. Then, for �x = �0, the system is passive. The index of refraction
not only depends on the frequency, i.e. the probe field detuning Δα, but also on
these parameters: n = n(Δα, �x). Now, a slight change of �x from �x0 to �x0 +d�x should
also only change n slightly. More precisely, |n(Δα, �x0)−n(Δα, �x0 +d�x)| can become
arbitrarily small for arbitrarily small ‖d�x‖. This holds for each Δα ∈ R and physical
values of �x0: the refractive index is continuous with respect to �x [18].
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Now, we pick an arbitrary, but fixed detuning Δα. For each detuning, we proceed
as follows: We select the physical solution at �x = �0 (passive system), which can be
determined by the fact that the imaginary part has to be positive. Then, we change
�x from �x = �0 continuously to the parameter values �xf for which we want to obtain
the physical solution. While changing �x, n(Δα, �x) changes continuously. At �xf , we
then take the solution to which the physical solution at �x = �0 evolved. In such a
way, the physical solution for the index of refraction can be found for any value of
the detuning Δα and arbitrary parameter sets �xf , unless there is no physical solution
due to instabilities (see Sec. 4.1.4).

The principle of the approach is illustrated in Fig. 4.1. The solution n− = −√
εrμr

is plotted in red, solution n+ =
√
εrμr in green. At �x = �0, as the two solutions,

we obtain the green and red circle. However, n− — the red circle — is the physical
solution, since it has a positive imaginary part. We then change �x continuously,
which causes the corresponding solutions for the index of refraction to move along
the plotted green and red line. When we arrive at �xf , the physical solution is still
given by n−. This point is marked by a red square.

In the discussed figure, we chose a system built up of a two-component system
coupling electrically and an upper microwave system for the species that couples
magnetically to the probe field. A deeper discussion of this system will follow in
Sec. 4.2.2. For now, we will use it to demonstrate the used methods and the
occurring problems.

Continuity with respect to the detuning

A second algorithm that we can apply to find the physical solution for the index of
refraction and its dependence on the detuning at a fixed, arbitrary parameter set
�xf is based on the fact that the index of refraction is a continuous function with
respect to frequency and detuning, respectively.

The principle of this algorithm is depicted in Fig. 4.2. To start, we calculate all
roots of Re(n−). We could also take n+, as n+ = −n− both have the same roots.
Let us call them δ1, δ2, ... δf , where f is the total number of roots. We label them in
such a way that δ1 < δ2 < ... < δf . Now, we know that for the physical solution of
the index of refraction we have the boundary condition n(Δα, �x) → 1 for |Δα| → ∞.
Thus, for detunings Δα < δ1, we pick the very solution out of n+ and n− that has
a positive real part.

Then, we proceed to determine the physical solution in the detuning range δ1 <
Δα < δ2. There, we simply select the solution out of n+ and n− that has a negative
real part. In this way, we proceed until we have reached δf . Therefore, the physical
solution has a negative imaginary part in areas δk < Δα < δk+1, where k is an
integer, but odd number.
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Figure 4.1: The physical solution for the index of refraction in a passive system (�x =
�0) can be identified based on the principle we depict here. Since the imaginary part
of the index of refraction has to be positive in such a case, the physical solution in our
case is n−(�0). The solution that we obtain by changing �x from �0 to �xf continuously
is n−(�xf ). As an example, we chose the configuration of Sec. 4.2.2, an electrically
coupling two-level system and a magnetically coupling upper microwave system.
The plotted indices of refraction have been obtained for a probe field detuning of
the magnetic component of Δα = −9γ.
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Figure 4.2: A second possibility to determine the physical solution of the index of
refraction (black) out of the two solutions n− = −√

μrεr (dashed, red) and n+ =√
μrεr (continuous, red) is based on continuity in detuning direction. We show only

real parts. The curves are fictional and only serve illustration purposes.
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Let us explain the idea of this algorithm: Suppose that we choose the other solution,
say we choose the solution with positive real part in the range δ1 < Δα < δ2. Then,
the imaginary part would not be continuous at δ1 — as long as it does not happen
to be also zero at δ1. However, if both imaginary part and real part of the index
of refraction are zero at one detuning, we speak of a so-called branch point of the
complex root function. These branch points cause instabilities of the medium (see
Sec. 4.1.3 and 4.1.4). Therefore, we will restrict ourselves to parameter sets for
which these branch points do not appear. Thus, these points cannot make the
algorithm fail.

However, it is possible that the algorithm fails at roots of the real part of n with
multiplicities higher than one. Such a point is shown in Fig. 4.2 at δ3. If we
assume that δ3 is a root with multiplicity two, the algorithm still works, since this
root will be counted twice and therefore we choose the same sign at Δα > δ3 as
at δ2 < Δα < δ3. However, if the multiplicity is an odd number, the solution with
the wrong sign will be picked. To avoid these possible problems, one could take the
continuity of the imaginary part at the roots of the real part into account. However,
we test all — in view of negative refraction — interesting results that we obtain by
the described algorithm by hand. To do so, we verify that the boundary condition
n(Δα, �x) → 1 for |Δα| → ∞ and the continuity of real and imaginary part are
fulfilled. At no point, we found that our algorithm failed. Also, it is considerably
faster than the one described in the previous paragraph, since we do not have to go
through different values for �x for every single detuning Δα. Therefore, to produce
our results, we will use the algorithm described in this section.

4.1.3 Effects of branch points on the algorithms

We can now apply one of the to described algorithms - preferably the second one
described in Sec. 4.1.2, as it is faster - to determine the index of refraction. The
value of the index of refraction at Δα = −9γ for �x = �xf in Fig. 4.1 seems to be
exactly what we are looking for. It has a vanishing imaginary part and a negative
real part. However, we encounter some difficulties there and also for other parameter
sets. For these critical parameter sets, our two algorithms produce different and in
both cases obviously non-physical outputs shown in the following section. These
problems are related to so-called branch points of the index of refraction which
imply physical instabilities of the medium, as will be discussed in Sec. 4.1.4. It is
therefore not our algorithms that fail, but there rather is no physical solution for
the index of refraction in Fourier space [43, 44]. Before we come to the discussion of
the mentioned branch points, let us first describe the occurring problems for both
algorithms.
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Figure 4.3: The solution for the index of refraction (real part: continuous red line,
imaginary part: dashed blue line) at �x = �xf obtained by the first algorithm of Sec.
4.1.2 shows a discontinuity at some detuning δ0. The squares mark the detunings
δ< and δ> for which we plotted the dependence of the index of refraction on �x in
4.5.

Continuity with respect to system parameters

The first algorithm described in Sec. 4.1.2 uses the continuity in �x-direction. How-
ever, strictly following the described algorithm for �x = �xf in our exemplary system
leads to the plot shown in Fig. 4.3. The figure shows the imaginary part of the
refractive index as a dashed, blue line, the real part as a solid, red line. This plot
shows a discontinuity at Δα = δ0. In principle, to fix the discontinuity, one could
switch the sign of the index of refraction for Δα > δ0, thereby choosing the respective
other solution of n− and n+. However, since we obtained the plot through continuity
arguments in �x-direction, the plot fulfills the boundary condition n(Δα, �x) → 1 for
Δα → ∞. If we now switch signs for Δ > δ0, this boundary condition is no longer
fulfilled. Therefore, we cannot fix the algorithm in this way.

Since we do not have a discontinuity at �x = �0, but one at �x = �xf , there has to be a
value �xc, that �x takes on when we change it from �0 to �xf , at which the discontinuity
appears for the first time. Fig. 4.4 shows plots of the obtained solutions for two
values �x0 and �x0 + d�x. Both lie close to the point �xc at which the discontinuity
appears and ‖�x0‖ < ‖�xc‖ < ‖�x0 + d�x‖. At �x0, the plot is still continuous, at
�x0 + d�x, it is not.

For clearness, we illustrate in Fig. 4.5 the development of the discontinuity in the
complex plane that we already used in Fig. 4.1. If we plot the physical solution for
the index of refraction at �x = �0 as a circle in the complex plane, we can draw a
line that illustrates how it changes when changing �x. As mentioned, this line ends
in the physical solution at �xf , marked by a square in Fig. 4.5. We can do this at
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Figure 4.4: If we plot the solution for the index of refraction obtained by the first
algorithm of Sec. 4.1.2 at the two specially chosen values �0 (in a)) and �x + d�x (in
b)) of �x, we can see how the at δ0 discontinuity is created. As usual, real parts are
plotted with a continuous red line, imaginary parts with a dashed blue line.

two different detunings δ< (green) and δ> (black) that obey δ< < δ0 < δ>, where δ0
is the point of discontinuity in Fig. 4.3. The squares also mark the corresponding
points in Fig. 4.3. One can see that, while the physical solutions at �x = �0 of both
detunings (circles) do not differ much in real and imaginary part, the solutions for
�xf (squares) have totally opposite real and imaginary parts.

In short, the claim of continuity in �x-direction leads to discontinuities in detun-
ing/frequency direction.

Continuity with respect to the frequency

Can we perhaps use the other algorithm, i.e. the second one described in Sec. 4.1.2
to obtain a physically correct solution without discontinuities for �x = �xf ? As it
turns out, we cannot, since for �x = �xf the real part of (n− has only one root which is
shown in Fig. 4.6. Therefore, if we assume that the real part of the physical solution
changes its sign at the root, we cannot fulfill the boundary condition n(Δα, �x) → 1
for |Δα| → ∞ (see Fig. 4.6). If we assume that the real part does not change its
sign, the corresponding imaginary part is discontinuous. This problem occurs for
any odd number of roots of Re(n−).

If we do not fulfill the boundary condition for Δα → ∞, we also violate continuity
in �x-direction for high positive detunings, since the physical solution at �x = �0 fulfills
the boundary condition. Therefore, we can say that here, the claim of continuity in
detuning or frequency direction leads to a discontinuity in �x-direction.

Let us now come to an explanation of the discontinuity in Fig. 4.3 and the non-
fulfillment of the boundary conditions in Fig. 4.6 which can be interpreted as a
discontinuity in �x-direction as mentioned.
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Figure 4.5: We show a plot of the physical solution at a fixed detuning as obtained by
the first algorithm of Sec. 4.1.2 and how it changes when we change �x, analogously
to Fig. 4.1. However, in this figure, the two lines correspond to the physical solutions
- or, at least, what the algorithm returns us - at different detunings δ< (green line)
and δ> (black line) that obey δ< < δ0 < δ>. The circles mark the start points
(�x = �0), the squares mark the end points (�x = �xf ).
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Figure 4.6: The second algorithm of Sec. 4.1.2 results in a solution for the index
of refraction as plotted here (real part: continuous red line, imaginary part: dashed
blue line). However, if one continues this plot to detunings approaching +∞, one
can see that the boundary condition n(Δα, �x) → 1 is not fulfilled there.
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4.1.4 Branch points

As Johannes Skaar points out in [43] that so-called branch points, in our case the
branch points of the complex root function, can cause problems when one wants to
determine the refractive index. First, we will demonstrate how the branch points
create our problem shown in Figs. 4.4 and 4.6. Then, we will describe two ways to
solve the issue, one of which we will use to obtain results for negative refraction.

Let us first clarify what a branch point is. In [45], a branch point is defined as “
an isolated singular point b of an analytic function f(z) of one complex variable z
such that the analytic continuation of an arbitrary function element of f(z) along a
closed path which encircles b yields new elements of f(z)”. Let us explain this in our
own words: In our case, where f(z) =

√
z, z = n2 ∈ C, is the complex square root,

the only branch point is z = 0. We can characterize it by following fact: We draw
a circle c(t) = r · ei(t+t0) of arbitrary small radius r around our branch point z = 0.
Here, t0 is arbitrary. Therefore, the starting point c(0) is also arbitrary. We now
begin at this starting point, where f has the value f(c(t = 0)) =

√
reit0/2. Now, let us

change t from 0 to 2π to close our circle, causing f(c(t)) to change continuously when
changing t. For t = 2π, we are at the starting point again, i.e. c(t = 0) = c(t = 2π).
However, for t→ 2π, f(c(t)) approaches the value f(c(t)) → −

√
r eit0/2 and not the

value it had at the starting point f(c(t = 0)) =
√
r eit0/2. This is the very character

of a branch point. A closed curve around it leads from one functional value to a
different one, although end and starting point are the same (see also Fig. 4.7, where
the branch point is marked by a black circle).

As shown, the point z = n2 = 0 has this property with respect to the complex
root function. However, we need the complex root in order to calculate the index
of refraction (see Eq. (4.3)). In order to speak about branch points, we now go
from real detunings Δα to complex detunings. In a further step, let us switch from
detunings to probe field frequencies. Both are connected via

Δα = ωi0 − ωj0 − ωp , (4.13)

where ωi0 and ωj0 denote the eigenenergies of the upper state |i0〉 and the lower
state |j0〉 of the probe transition, respectively. Therefore, by “complex plane”, we
refer to the plane built up by the real and the imaginary parts of ωp.

In passive systems (�x = �0), n(ωp) only has branch points in the lower half of the
complex plane which is implied by causality and the Kramers-Kronig relations [43].
However, in active systems, there can be branch points zi with Im(zi) > 0. This
is also the case for our exemplary combination of a two-level scheme and an upper
microwave scheme at �x = �xf we used in Figs 4.1, 4.3, 4.4, 4.5 and 4.6. Therefore,
there has to be a value �x1 of �x with 0 < ‖�x1‖ < ‖�xf‖ at which a branch point z1 lies
on the real frequency axis and therefore Im(z1) = 0. As it turns out, this is exactly
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Figure 4.7: For illustration purposes, we show the real part of an exemplary index
of refraction n. We chose the branch cut that is due to the root function to be
parallel to the imaginary axis to illustrate the encountered problem. Note that the
red line is reflected at the axis of ordinates with respect to Fig. 4.4, since we show
the frequency plane. In Fig. 4.4, we showed the detuning axis, which is related to
the real frequency by a factor of minus one (and some additive constant) according
to Eq. (4.13). The refractive index is given at the parameters �x0 in a) and at �x0 +d�x
in b). The black circles mark the branch point.

the case for the value of �x = �xc for which the discontinuity appears - somewhere
between �x0 and �x0 + d�x in Fig. 4.4. Thus, it is not our algorithms that fail. In fact,
there is no physical, continuous solution for the index of refraction.

One obtains a good notion of how the branch points cause the outputs of Figs. 4.3
and 4.6 by the function shown in Fig. 4.7. The figure shows the real part of an
exemplary index of refraction in the complex frequency plane. In a), at �x = �x0,
the branch point — marked by a black circle — has a negative imaginary part.
The red line shows the refractive index along the real axis, which is what we see
in Fig. 4.4 a). When we change �x from �x0 to �x0 + d�x, the branch point moves
in the direction of the positive imaginary axis, such that in Fig. 4.7 b), it has a
positive imaginary part. Every point of the red line has changed continuously when
changing �x. However, the visible cut (the so-called branch cut) that starts in the
branch point has introduced a discontinuity — or, if one chooses another sign of the
index of refraction when crossing the cut, a violation of the boundary condititions.

We have now found why branch points prevent our algorithms from succeeding.
However, the physical interpretation of a branch point lying in the upper half of the
frequency plane is not yet clear. As pointed out in [44], singularities and odd-order
zeros of n2 with positive imaginary part which, in fact, are branch points of

√
n2

imply absolute instabilities of the medium. An absolute instability is a point in space
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at which the electromagnetic fields grow infinitely large due to gain. Naturally, this
can only occur in active media, since passive media never exhibit gain. Also, since
we only examine our system in linear order of the probe field, saturation effects
cannot occur.

This motivates a way proposed in [43] to deal with the critical branch points theo-
retically. For active systems, we can have

∥∥∥ �E(�r, t)
∥∥∥ → ∞ for t→ ∞ , (4.14)

�E(�r, t) being the electric probe field component. Therefore, the Fourier transform

Ẽ(�r, ω) =

∞∫
−∞

�E(�r, τ)eiωτdτ (4.15)

of �E(�r, t) is not finite. For a better readability, we left out the vector arrow for
the Fourier transformed electric field here. Since the Fourier transform diverges, we
cannot use it in the derivation of the electric (and also the magnetic) susceptibil-
ity anymore. Usually, the Fourier transform comes into play when we rewrite the
polarization

�P (�r, t) ∝
∫ ∞

−∞
χe(τ) �E(�r, t− τ) dτ (4.16)

as

�P (�r, t) ∝
∫ ∞

−∞
χ̃e(ω) Ẽ(�r, ω)e−iωt dω (4.17)

in terms of the Fourier transformed electric susceptibility χ̃e and the Fourier trans-
formed electric field Ẽ(�r, ω). In our derivation in Sec. 3, one can find this step from
Eq. (3.9) to Eq. (3.12) for the particular case of a monochromatic probe field.

The fact that the Fourier transform diverges due to the diverging electric field in time
domain motivates the transition to Laplace transforms instead of Fourier transforms.
The Laplace transformed electric field Ê(�r, ω) is defined as

Ê(�r, ω) =

∞∫
0

�E(�r, τ)eiωτdτ , (4.18)

where ω ∈ C. Note that we left out the vector arrow of the Laplace transformed
electric field for the sake of a better readability. Now, a negative imaginary part of
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ω damps the diverging electric field for t → ∞, if Im(ω) is large enough. In other
words, there is a σ ∈ R such that for every Im(ω) < σ Ê(�r, ω) is finite.

Note that if the Fourier transform does not diverge, σ can be chosen to be zero. Then,
along the real axis, i.e. for Im(ω) = 0, Fourier and Laplace transform coincide. One
only has to assume that the electric field at point �r vanishes for t < 0 (compare Eqs.
(4.18) and (4.18)). This assumption is easy to fulfill, as the time axis can be defined
in such a way that the electric field has not reached point �r at times t < 0.

Therefore, Fourier and Laplace transform are closely connected. An explicit evalu-
ation shows that as a consequence Eq. (4.17) does not change its form when going
from Laplace to Fourier transforms. Only the tildes change into hats in Eq. (4.17)
and thus we have to work with Laplace transformed susceptibilities now. Therefore,
we can calculate the index of refraction as usual according to Eqs. (4.1) and (4.3).

According to Skaar, it has several consequences that Eq. (4.3) now is to be un-
derstood in Laplace and not in Fourier space anymore. To transform the index of
refraction in this equation back to time space, one has to apply the inverse Laplace
transform, which is defined as

n(t) =
1

2π

iσ+∞∫
iσ−∞

e−iωtn̂(ω)dω . (4.19)

Note that n̂ in this equation is the index of refraction appearing in Eq. (4.3) and
not n(t), since - as mentioned - Eq. (4.3) holds in Fourier and Laplace space,
respectively. Also, the notation we used in Eq. (4.19) denotes an integration over a
path that is given by a line parallel to the real ω-axis at a distance σ in the upper
half of the complex plane (see path C1 in Fig. 4.8). σ has to be chosen in such a
way that there is no branch point or singularity ω0 with Im(ω0) > σ. Graphically
speaking, the integration path in Eq. (4.19) has to be chosen such that all branch
points or singularities lie “below” it. Again, one can see that for no branch points
in the upper half, σ can be chosen to be zero. Then, the integration path coincides
with the real axis and our Laplace transform has reduced to a Fourier transform.

However, this is only the case if there are no branch points and singularities in
the upper half of the complex plane. Still, also in the case of a branch point (or
singularity) ω0 in the upper half plane, one can shift the integration path C1 partially
to the real axis as shown in Fig. 4.8. According to the residue theorem, we can
move the original integration path C1 as depicted by the arrows. However, since the
function is not analytical in the branch point ω0, we cannot use the residue theorem
to move the integration path across the branch point without changing the value of
the integral. Therefore, we obtain the new integration path C2.

In this context, it becomes clear why there are problems if one restricts oneself to
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Figure 4.8: Due to the residue theorem, the original integration path can be moved
from C1 to C2, such that parts of it coincide with the real axis. However, we cannot
move the integration path across the branch point ω0, since the function n(ω) that
is integrated is not analytical in ω0.

the real axis and thus to Fourier transforms. The path integral in Eq. (4.19) along
C2 can be decomposed into three parts: one part from ω = −∞ along the real axis
to ω = Re(ω0) − ε (labelled I1), a second part leading from there around ω0 back
to the real axis (I2) and a third part along the real axis from ω = Re(ω0) + ε to
ω = ∞ (I3). With the above explanation of the chosen integration path, we write
Eq. (4.19) as

n(t) =
1

2π
(

Re(ω0)−ε∫
−∞

e−iωtn̂(ω)dω

︸ ︷︷ ︸
I1

+

∫
∩

e−iωtn̂(ω)dω

︸ ︷︷ ︸
I2

+

∞∫
Re(ω0)+ε

e−iωtn̂(ω)dω

︸ ︷︷ ︸
I3

) . (4.20)

For ε → 0 it is now evident that part I2 is not accounted for when working with
Fourier transforms. Therefore, we obtain discontinuities of n(ω) on the real axis.
These are the discontinuities we encountered when using the algorithm based on
continuity in �x-direction.

Although with Laplace transforms we now have an appropriate tool to handle the
cases of instabilities, i.e. branch points or singularities with positive imaginary part,
mathematically, the physical interpretation is still difficult. If there are instabilities,
the electromagnetic fields in time-domain are only valid until the linear response
model is valid. This means that if the fields reach the threshold for gain saturation,
the linear model fails. It is important to note that then, there is no physical inter-
pretation for the index of refraction in the (Laplace-)transformed domain anymore.

For these reasons, we will avoid the cases of branch points in the upper half of the
complex frequency plane and therefore we will restrict ourselves to the domain of
parameters for which our medium is stable. Thus, we can still work with the Fourier
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transform and the index of refraction has a physical meaning.

Since the only branch point of the complex root is zero, i.e. 0+ i ·0, Eq. (4.2) shows
that the branch points of n can be divided into branch points caused by a vanishing
permittivity εr and into branch points caused by the permeability μr being zero. It
is very helpful to note that if one of the two systems of our two-component medium
is a two-level system, the permeability/permittivity of this system does not contain
any branch points with positive imaginary part in frequency space. This can be seen
at the coherence in a two-level system, which is given by

�̃21 = Ω21

2i
(
�̃

(0)
11 − �̃

(0)
22

)
r + γ + 2iΔ

(4.21)

in terms of the populations in zeroth order of the probe field Rabi frequency

�̃
(0)
11 =

γ

r + γ
, (4.22)

�̃
(0)
22 =

r

r + γ
. (4.23)

Here, |2〉 is the excited state, |1〉 the ground state, r the incoherent pump rate
|1〉 → |2〉, γ the decay rate and Ω21 the probe field Rabi frequency. Note that the
imaginary part of the magnetic susceptibility is the same as the imaginary part of the
permeability (see Eq. (4.1)). Therefore, let us consider the magnetic susceptibility.
According to Eq. (2.18), it is proportional to the coherence of Eq. (4.21) with
a frequency-independent proportionality factor. The same holds for the electric
susceptibility.

An explicit calculation shows that the imaginary parts of the only root ωr and the
only singularity ωs of μr are given by

Im(ωr) = Im(ωs) =
1

2
(γ + r) (4.24)

and therefore never negative, since γ, r > 0. The same holds for the permittivity εr
of a two-level system with an electric dipole transition.

4.2 Results

Finally, we are in the position to calculate the index of refraction for different com-
binations of two species of atoms. For that, we can use the magnetically coupling
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systems we examined in Secs. 2 and 3.6 and their optimized susceptibilities. In that
section, we optimized the susceptibilities towards small imaginary part and negative
real part.

For the electrically coupling species, we use a two-level system. The magnetically
coupling system will be a two-level system as well, first. In this combination of two
two-level systems, negative refraction can occur, as we will see, but only for a par-
ticular frequency difference between the frequencies of the magnetic and the electric
probe transition. After that, we take an upper microwave system as magnetically
coupling component. There, we find negative refraction at zero absorption, although
the system turns out to be instable for the optimized parameters of Sec. 2. Lastly,
we consider a closed-loop system with a magnetic probe transition. This will also
emerge as suitable system for negative refraction, since it shows zero absorption at
a negative real part of the refractive index.

We did not mention yet that, in principle, one should also take into account the
difference between local and external fields. On the one hand, the electromagnetic
fields in Eq. (3.9) are external fields. On the other hand, the fields in the Hamil-
tonian, see, e.g., Eq. (2.21b), which are the fields that the atoms “feel” in the end,
are local fields. Up to now, we considered them to be the same. The local fields
that interact with the atoms are a superposition of the externally applied fields (Eq.
(2.3) or Eq. (3.1), respectively) and internal fields. The internal fields, in turn, are
created by polarization/magnetization effects of the other atoms. Altogether, the

external electric field �E in Eq. (3.9) for which the linear response is calculated can

be connected to the local field �Eloc that appears in the Hamiltonian of Eq. (2.21b)
by the Lorentz-Lorenz relation [46]

�Eloc = �E︸︷︷︸
external

+ (
1

3
+ s)

1

ε0

�P︸ ︷︷ ︸
internal

(4.25)

and analogously in the magnetic case. Here, the internal contribution contains two
terms. These are due to the Lorentz-Lorenz model in which one includes all neigh-
boring particles in a sphere around the considered atom, while particles outside the
sphere are taken account of in a macroscopic treatment. The s/ε0

�P -term describes
the near field of the neighboring particles within the sphere. Here, s is a constant
that has to be chosen in dependence of the structure and symmetry of the given
medium. For cubic symmetry and in the case of an isotropic medium, this con-
stant vanishes and therefore the field of the neighboring atoms cancels. The other
term �P/(3ε0) takes into account the field caused by the polarization of the particles
outside the sphere.

Eq. (4.25) be employed to correct for local fields in - at least - two ways: We can
apply a so-called local-field correction (LFC) in which Eq. (3.9) is written in terms
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of local fields and then the local fields are replaced with the help of Eq. (4.25). Also,
we can already replace the local fields in the Hamiltonian which leads to non-linear
Bloch equations (NOBE). For an application of these methods and a more detailed
description, see [18].

These corrections become important in dense gases which can be defined as gases
that contain more than one particle in a cubic wavelength, i.e.

Nλ3 � 1 . (4.26)

In our case, the wavelength is optical and either λ = 520.1705 nm or λ = 600 nm.
The latter wavelength implies a particle density of N � 5 · 1018 m−3 at which the
gas has to be considered as being dense.

We do not go into detail further, since we do not apply any local field corrections
here. This has several reasons: First, we focused on the general principle of a two-
component medium and the implications for negative refraction. Second, as found in
[18], LFCs are not sufficient, but the use of NOBE prevents an easy interpretation.

4.2.1 A pair of two-level systems

The simplest combination of two level schemes is to take a two-level system for
both species. Since the two-level system is not a complex system and does not
contain many parameters, it should be easier to find a suitable two-level system
for an experimental realization than a system with a larger number of levels. Also,
as explained in Sec. 4.1.4, two-level systems do not exhibit any branch points and
instabilities, respectively. Moreover, the typical Lorentzian susceptibility of a two-
level system shown in Fig. 2.4 also has frequency ranges for which the real part of
the index of refraction is negative.

Here, we chose the following parameters: γe = α−2γ and γm = γ are the decay rates
of the electric and the magnetic probe transition, respectively. We also need the
wavelengths of both probe transitions λe and λm to calculate the magnetic and the
electric dipole moment according to Eqs. (2.43) and (2.34). Since the detunings of
the electric and magnetic probe field component with respect to the corresponding
transitions are related via Eq. (4.12), the wavelengths of both transitions are coupled
via

λm = 2πc
λe

Δm − Δe + 2πc/λe
. (4.27)

Up to now, we expressed Δm and Δe in units of γ. Therefore, in principle, we
also have to express λe and λm in terms of γ. Since we want to choose optical
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Figure 4.9: (Pair of two-level systems) In a), we show the real (red, continuous)
and the imaginary part (blue, dashed) of the index of refraction for a composite
system of two species of atoms that can both be described by a two-level system.
In b), we plotted the corresponding figure of merit which we defined as FOM =
|Re(n)/Im(n)|.

wavelengths, we now have to fix γ to a typical value. However, 2πc/λe ≈ 3 · 1015 s−1

for λe = 600 nm. Also, Δm − Δe is typically on the order of the natural linewidth
of the electric transition (MHz). Therefore, it can be neglected and λe ≈ λm can be
assumed when calculating the magnetic and the electric transition dipole moment.
We chose λe = λm = 600 nm. Of course, a much bigger Δm − Δe could be possible
in an experimental realization, since two atomic species with transition frequencies
that lie closer might be unavailable. Then, of course, one has to use the full Eq.
(4.27) and plug in the experimental parameters.

Moreover, the particle densities of the two components are chosen as Ne = Nm =
1021 m−3. To optimize the results with respect to their figure of merit FOM =
|Re(n)/Im(n)|, we set re = x1γ, rm = x2γ and Δm−Δe = x3γ. We then vary x1, x2

and x3 within the limits 0 < x1 < 50 α−2, 0 < x2 < 50 and −20 α−2 < x3 < 20 α−2

with increment dx1 = α−2, dx2 = 1 and dx3 = α−2. To find good figures of merit,
we searched the ranges of the index of refraction with negative real part in steps of
1 in detuning direction.

We obtained the best figures of merit at points of negative real part for x1 = x2 = 0
and x3 = 8α−2. The index of refraction for these parameters is shown in Fig. 4.9.
Note that x1 = x2 = 0 implies a passive system. At Δm ≈ −8.21γ, we obtain
FOM ≈ 8.17 and n = −1.02 + i · 0.12. In experiment, the highest figures of merit
nowadays are FOM ≈ 3 [47]. Therefore, our results are comparably good.

Here, negative refraction occurs in a range −19.8γ < Δm < 3.4γ, while the figure
of merit is larger than one in a range −16.3γ < Δm < −0.1γ. In this range, the
imaginary part of the refractive index is quite constant. Therefore, all frequency
components of a pulse with a bandwidth in frequency space smaller than roughly
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Figure 4.10: (Pair of two-level systems) We plot the maximum figure of merit in the
negatively refracting frequency range over the shift between the two probe transitions
x3/α

−2 = (Δm − Δe)/(γα
−2).

16γ travelling through the medium would experience the same absorption. Also, the
index of refraction reaches a real part of -1 at Δm = −8.4γ. Therefore, the perfect
lens proposed by Pendry could be realized in our case.

A drawback of the presented scheme is the fact that one has to find two species
of atoms in which the magnetic and the electric probe transition have a particular
distance in frequency space, namely Δm−Δe = 8α−2γ. To find out, how restrictive
this condition is, we change Δm − Δe and search for the maximal FOM for each
value of Δm −Δe. Since we are only interested in negative refraction, we search for
this maximum only at detunings for which the real part of the refractive index is
negative. Thus, we obtain Fig. 4.10 which shows the maximal FOM in dependence of
parameter x3/α

−2 = (Δm−Δe)/(α
−2γ). Our calculations showed that the negative

refraction vanishes for approximately x3 > 19.7α−2 or x3 < −3.3α−2.

One can see that for a range of approximately 0 < (Δm − Δe)/γ < 16α−2, the
maximum FOM is one or larger. Even for Δm − Δe = 0, one obtains negative
refraction, however with at most FOM ≈ 0.9. Therefore, one does not strictly
need to realize our optimized parameters. Indeed, it is possible to deviate from the
optimal difference of magnetic and electric probe transition frequency by 16 times
the natural linewidth of a typical electric transition.

4.2.2 Upper microwave system, two-level system

In Sec. 2.3.1, we examined the upper microwave system thoroughly and optimized
its magnetic susceptibility towards a negative real and a small imaginary part for a
particular detuning. Thus, let us now consider a configuration in which an upper
microwave system couples to the magnetic probe field component and a two-level
system couples to the electric probe field component. First, we assume the upper
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Figure 4.11: First, we take a magnetically coupling upper microwave system and
an electrically coupling two-level system. The notation of the parameters we use is
illustrated in the figure above.

microwave system to consist of three magnetic transitions as in Sec. 2.3.1. In the
next subsection, we will consider the nitrogen parameters.

We label all quantities referring to the electric probe transition in the two-level
system with a subindex e. In the upper microwave system, we adopt the notation
of Sec. 2.3.1. However, the magnetic probe transition will be labelled with the
subindex m. For illustration purposes, we show this notation in Fig. 4.11.

Magnetic transitions

In the case of three magnetic dipole transitions, we use the typical parameters of
Sec. 2.3.1 — γ1 = γ, γ2 = γ, γm = γ — and for the two-level system γe = α−2γ.
Also, we assumed probe transition wavelengths of λe = λm = 600 nm and particle
densities of Ne = 1021m−3, Nm = 1023m−3. If we set re = r1 = r2 = 0, Δ2 = 0,
rm = x1γ and |Ω32| = x2γ, we reproduce the parameters of Fig. 2.6 a) for a choice
of x1 = 2, x2 = 5.

These are also the parameters we used for demonstrating the problems of the branch
points in Figs. 4.1, 4.3, 4.4, 4.5 and 4.6. Fig. 4.1 seems to be promising, since the
physical solution for the index of refraction at �x = �xf = (x1, x2) = (2, 5) and a
probe field detuning of Δm ≈ −9γ has a vanishing imaginary part and a negative
real part. However, we already pointed out that, for these parameters, one obtains
branch points in the upper half of the complex frequency plane.

The parameter area for which we obtain critical branch points (see Sec. 4.1.4) is
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Figure 4.12: (Upper microwave system with only magnetic transitions, two-level
system) For our two-component system that we used to demonstrate the problems
of the branch points in Sec. 4.1.3, one can clearly see that �xa (which is �xf of Sec.
4.1.3) lies in the area of branch points with positive imaginary part. Optimizing the
figure of merit yields best results in an area of negative refraction at �xb = (0, 100).
At most, we reach FOM ≈ 1.1 there.

illustrated in Fig. 4.12 which has to be understood in the following way: Each point
�x = (x1, x2) of the plane corresponds to a different set of system parameters. In
fact, as given before, the first coordinate x1 is proportional to the strength of the
incoherent pump rate on the magnetic probe transition, the second coordinate x2 is
proportional to the strength of the coherent control field. Therefore, (x1, x2) = (0, 0)
implies a passive system. Every point (x1, x2) that corresponds to a set of parame-
ters which causes branch points with positive imaginary parts and thus instabilities
is colored red. Since we tested for branch points with an increment of 1 in every
coordinate direction, the figure has a resolution of 1 along each axis. Also, a sin-
gularity at ωs with Im(ωs) > 0 would pose the same problems as a branch point
in the upper half plane. However, we did not encounter any singularities with the
mentioned property for any value of �x in the plane of Fig. 4.12. Therefore, there is
no “red area” for the singularities.

Let us return to the parameters (x1, x2) = (2, 5) which we marked with a black cross
and labelled �xb in Fig. 4.12. One can see what we already pointed out in Sec. 4.1.3,
in which we used these parameters to illustrate the branch points: �xb lies within
the red area and the system is instable. Therefore, we cannot use the optimized
susceptibility of Fig. 2.6 a).

Since we cannot use the optimized magnetic susceptibility, there is also no point
in using systems with optimized electric susceptibilities, such as the ones in [20],
instead of the two-level system. This does not move the critical branch points from
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the upper half to the lower half of the frequency plane, as the branch points are
caused by μr here and therefore by the magnetic upper microwave system. In fact,
a two-level system seems to be a better choice, as it does not introduce further
critical branch points and thus instabilities.

However, we can still vary x1 and x2 between 0 and 100, respectively, with a re-
spective increment of 1 to find the best figure of merit at negative refraction. In
this way, we find a figure of merit of FOM ≈ 1.1 at most. This is the case at
(x1, x2) = (0, 100) = �xb at a detuning of Δα ≈ −1578γ.

We also find that negative refraction with FOM > 1 can only be realized for pa-
rameter sets with x1 = 0 in this scheme. For x1 = 0 and 0 < x2 < 100, we obtain
figures of merit slightly bigger than 1 which grow when x2 → 100. As we will see
in the following subsection, this behavior can also be found when we choose other
system parameters.

Nitrogen

Parameter set 1 - For the parameters γm = γ, γ1 = 3.92γ, γ2 = 1.86 · 10−3γ
and λm = 520.1705 nm in the upper microwave configuration of the magnetically
coupling system, we obtain a nitrogen-like system [27] as in Sec. 2.3.1. For the
two-level system coupling to the electric probe field component, we still have re = 0,
γe = α−2γ and, this time, Ne = 1021 m−3. Also, in the upper microwave system, we
set Nm = 1023m−3, r2 = r1 = 0, rm = x1γ, Δ2 = 0 and |Ω32| = x2γ. This is identical
to the choice of pump rates and coherent field strengths in the last subsection and
reproduces the optimized susceptibility in Fig. 2.7 a) for (x1, x2) = (5, 10).

We plot a figure of the same kind as in the last section whose axes are, again, given
by x1 and x2 (Fig. 4.13). The values of �x = (x1, x2), for which there are branch
points in the upper half of the frequency plane and thus instabilities, are colored red
— once more with a resolution of 1 in each direction. Again, we do not encounter
any singularities in the upper half of the frequency plane.

The parameters (x1, x2) = (5, 10) that reproduce our optimized susceptibility —
labelled �xc — unfortunately lie in this colored, instable area (see Fig. 4.13).

As in the last subsection, we therefore look for the best FOM at detunings for which
negative refraction occurs in dependence of (x1, x2). We also search in the same
range (0 < x1, x2 < 0) and with the same increment (dx1 = 1, dx2 = 1) as before.
Again, we find the best results for (x1, x2) = (0, 100) which we labelled �xd in Fig.
4.13. There, for a detuning of Δm ≈ −1000γ, we find values of FOM ≈ 1.05.

Also, we found that negative refraction with FOM > 1 occurs in this system for
arbitrary values of x2 — within the range 0 < x2 < 100 we considered — but only
small values of x1, more precisely x1 < 3. This is a similar behavior to the one we
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Figure 4.13: (Upper microwave system with nitrogen parameters, two-level system)
The plane of values for (the two-dimensional) �x shows areas in which we obtain
branch points (red). The optimized magnetic susceptibilities of Fig. 2.7 a) through
d) lie in this area (black cross labelled with �xc). In blue/green, we mark parame-
ter points at which negative refraction with a FOM > 1 is possible. The shade of
green/blue at point (x1, x2) gives the maximum FOM in an area of negative refrac-
tion that one encounters when calculating the FOM at different detunings in steps
of dΔm = γ. Which shade of blue/green corresponds to which FOM is given by the
scale to the right of the figure.

found in the last subsection. To illustrate the parameter ranges at which one finds
negative refraction with FOM > 1, we did not only color the forbidden points red
in Fig. 4.13. Here, we also colored points (x1, x2) without critical branch points in
shades going from green to blue according to the scale next to the figure. This color
gives the maximum FOM (at negative refraction) that one can find at any detuning
for the parameters given by (x1, x2). We do not consider figures of merit smaller
than 1. This illustrates the parameter range in which to find negative refraction.
As mentioned, it is striking that this area is given by small values of x1.

Let us therefore have a closer look at the refractive index in detuning space for
the parameters �xc = (0, 100) (see Fig. 4.14) . Between Δm ≈ −1079γ and Δm ≈
−100γ, the system refracts negatively and the imaginary part has about the same
absolute value as the real part which results in FOM ≈ 1. In the complex plane,
we have branch points at the detunings δ0/γ ≈ −1079 + 0.5i and δ1/γ ≈ 9 + 2i
(not shown here). Note that none of the branch points lies in the upper half of the
complex frequency plane, since frequency and detuning are connected via a minus
sign according to Eq. (4.13).

88



4.2 - Results

−2000 −1000 0 1000 2000

−5

0

5

10

Δm/γ

n
Figure 4.14: (Upper microwave system with nitrogen parameters, two-level system)
The plane of values for (the two-dimensional) We show real (red, continuous) and
imaginary (blue, dashed) part of the refractive index at x1 = 0, x2 = 100. At
Δm ≈ −1079γ and Δm ≈ 9γ, the real part becomes zero.

At the roots of the real part of the index of refraction, namely at Δm ≈ −1079γ
and Δm ≈ 9γ, the refractive index does not seem to be smooth. However, if one
zooms in onto these points, one can see that the refractive index is differentiable. The
similarity of the refractive index at these points and in Fig. 4.4 a) and the proximity
of the branch points to these seemingly non-smooth points on the real detuning axis
allows for the following conclusion: The shape of the index of refraction at these
points is caused by the close branch points. Moving the branch points closer to the
real axis would cause a steeper slope of the real part and, when the branch point
crosses the real axis, a discontinuity.

This motivates the conjecture that it is easier to find negative refraction close to
parameters which yield branch points with positive imaginary part (in the frequency
plane) and therefore instabilities. This assumption can be justified heuristically by
the following fact: The real part of the complex root function and its analytical
continuation has a sign change in the proximity of the branch point. If one chooses
the branch cut as in Fig. 4.7, this sign change occurs at the branch cut. Since the
index of refraction is also calculated via a complex root function, this means that we
are quite likely to encounter negative refraction there. The following results support
this rule of thumb.

Parameter set 2 - Having found a similar behavior of the upper microwave system
with only magnetic transitions and the nitrogen-like system, we now investigate
the nitrogen-like configuration for the parameters of the optimized susceptibility in
Fig. 2.7 e). These are r1 = x1γ, r2 = rm = 0, Δ2 = x2γ, |Ω32| = x2γ. With these
parameters, we obtain the optimized susceptibility of Fig. 2.7 e) for x1 = 6, x2 = 10.
Also, we choose particle densities of Ne = 1021 m−3 and Nm = 1023 m−3.

However, for x1 = 6, x2 = 10, we obtain branch points of the index of refraction in
the upper half of the complex frequency plane. This can be seen by Fig. 4.15 in
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Figure 4.15: (Upper microwave system with nitrogen parameters, two-level system)
The plane of values for (the two-dimensional) �x shows areas in which we obtain
branch points (red). Unfortunately, the optimized magnetic susceptibility of Fig.
2.7 e) lies in it (black cross labelled with �xe). The best value we obtain for another
parameter set is plotted in Fig. 4.16 and labelled �xg = (x1, x2) = (5, 5).

which we marked �xe = (6, 10) by a black cross. Singularities do not appear in the
upper half of the frequency plane.

Still, we can vary x1 and x2 in the white area of Fig. 4.15 to find a suitable figure
of merit and negative refraction. The search for good results in the range of 0 <
x1, x2 < 100 with an increment of dx1 = dx2 = 1, avoiding the area of critical
branch points, yields FOM ≈ 3.5 for x1 = x2 = 5. In Fig. 4.15, this point has been
labelled �xg. Strikingly, �xg lies close to the instable, red area. If we assume that a
small change in x1 and x2 changes the position of the branch points in the frequency
plane only slightly, one can conclude that for �x = �xg, there is a branch point close to
the real frequency/detuning axis in the complex plane. This is what we formulated
as a rule of thumb before.

The refractive index for these parameters can be seen in Fig. 4.16 a), while b)
shows the figure of merit. A figure of merit of 3.5 is good when compared to current
experiments in metamaterials [47]. Note that the figure of merit reaches the value
at a narrow peak, a fact that favors pulses with a small frequency bandwidth.

The position of �xg in Fig. 4.15 and the fact that a close branch point in the frequency
plane seems to yield good results motivates the following method to increase the
FOM. Since our algorithm worked with an increment of dx1 = dx2 = 1, it is possible
that we obtain higher FOMs when we change, e.g., x1 to approach the red parameter
area of critical branch points in steps smaller than one. Let us denote by ξ1 the
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Figure 4.16: (Upper microwave system with nitrogen parameters, two-level system)
a) The plot shows the real (red, continuous) and the imaginary (blue, dashed)
part of the index of refraction at x1 = x2 = 5 in the combined system of upper
microwave and two-level system. b) The figure of merit (FOM), defined as FOM =
|Re(n)/Im(n)|, reaches approximately a value of 4.
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Figure 4.17: (Upper microwave system with nitrogen parameters, two-level system)
We approach the parameter area of instabilities by changing x1 — while x2 = 5 —
and calculate the highest FOM that we obtain at negative refraction (see axis of
ordinates).
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Figure 4.18: (Upper microwave system with nitrogen parameters, two-level system)
a) We plotted the real (red, continuous) and the imaginary (blue, dashed) part of
the index of refraction at x2 = 5, x1 = 0.9985 ξ1. b) The FOM diverges due to the
vanishing absorption at two points. Note the logarithmic scale of the FOM-axis.

smallest value for which the parameters �x = (x1, x2) = (ξ1, 5) cause a branch point
in the upper half of the frequency plane. Graphically speaking, this is the x1-
coordinate at which we cross the border to the red area in Fig. 4.15 when increasing
x1 from (5, 5) (and it has an approximate value of ξ1 ≈ 5.074).

When we change x1 from 5 to ξ1 and calculate the highest FOM that occurs in
a detuning range of negative refraction, we obtain Fig. 4.17. For approximately
x1/ξ1 = 0.9985, the imaginary part of the refractive index becomes zero at Δm ≈
−10.5γ and Δm ≈ −11.5γ, while the real part reaches n = −3.7 and n = −2.0 as
one can see in Fig. 4.18 a). Then, the FOM diverges (see Fig. 4.18 b)). This means
vanishing absorption at negative refraction. The branch point that crosses the real
detuning/frequency-axis for ξ1 lies directly below Δm ≈ −10.5γ in the complex
frequency plane.

Since the FOM-axis in Fig. 4.18 b) is logarithmic, the FOM increases quickly with
x1. If we prepare the presented system in an experiment with the given parameters
and then increase x1, i.e. the incoherent pump rate r1, from x1 = 5, the absorption
at Δm ≈ −10.5γ and Δm ≈ −11.5γ decreases. Therefore, we are able to realize
negative refraction at low losses. In an experiment, one would have to fix x1 and
therefore r1 with a high precision, since x1 > ξ1 would cause the medium to be
instable. This makes an experimental realization more difficult.

One can see in Fig. 4.18 a) that at the point of vanishing absorption, the real part
is also close to zero. The next system that we present behaves similar as the one
we considered in this section. However, at zero absorption, the real part of the
refractive index will not be as close to zero as the one in Fig. 4.18 a) and therefore
the parameter range in which instabilities occur is not as close.
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4.2.3 Closed-loop system, two-level system

Finally, let us consider a two-component system made up of a magnetically coupling
species of atoms in a closed-loop configuration and an electrically coupling species
with a two-level energy level scheme. As can be seen by Fig. 3.9, the magnetic
susceptibility of the closed-loop scheme shows a rich structure.

Again, we label all quantities referring to the electric probe transition in the two-
level system with a subindex e. In the closed-loop system, we adopt the notation of
Sec. 3 (see Fig. 3.1 a) ). As before, the magnetic probe transition will be labelled
with the subindex m.

We consider a nitrogen-like closed-loop system. Therefore, we have the parameters
γm = γ, γ1 = 3.92γ, γ2 = 1.86 · 10−3γ, r1 = r2 = rm = 0, λm = 520.1705 nm,
Δ1 = 0, |Ω31| = x1γ, Nm = 1023m−3, Δ2 = −24γ, |Ω32| = x2γ and γe = α−2γ,
λe = 520.1705 nm, Ne = 1.5 · 1020m−3 for the electrically coupling system.
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Figure 4.19: (Closed-loop system with nitrogen parameters, two-level system) The
index of refraction (see a) ) of a closed-loop system coupling electrically and a two-
level system coupling magnetically has a vanishing imaginary part (blue, dashed)
at Δm ≈ 115γ and Δm ≈ 118γ for the parameters given in the text. At these
points, we also have a negative real part (red, continuous). Therefore, the FOM in
b) diverges at two points. Note the logarithmic scale of the FOM-axis in b).

The optimized susceptibility of Sec. 3.6 — see Fig. 3.9 c) for the nitrogen parameters
— corresponds to (x1, x2) = (37, 18) which we call �xh in Fig. 4.20. In the same way
as we have done it for the system in the last subsections, this figure shows the
forbidden parameter areas in red. It can be seen that the parameter set �xh causes
critical branch points as it lies in such an area.

The shades of green/blue in Fig. 4.20 again give the maximum FOM at the cor-
responding parameter values for (x1, x2). The best FOM is obtained at �x = �xk =
(x1, x2) = (62, 75). However, there, the FOM is not only FOM ≈ 70000, but at
a certain detuning, it even diverges. Note that this is not unphysical, since it is
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Figure 4.20: (Closed-loop system with nitrogen parameters, two-level system) x1 and
x2 are connected to system parameters according to |Ω31| = x1γ, |Ω32| = x2γ in the
closed-loop system combined with a two-level system. For system parameters in the
red area, the system has branch points in the upper half of the frequency plane and
is instable.

simply caused by zero absorption at this detuning, i.e. a vanishing imaginary part
of the refractive index which is the denominator of the FOM. The divergence is not
reflected by the blue/green color scale of Fig. 4.20, since the maximum FOM that
is indicated by green/red colors in this figure has been obtained by calculating the
FOM for different detunings is steps of dΔm = 1. With this stepwidth, one misses
the point of divergence and only obtains FOM ≈ 70000 in its proximity. However,
for illustration purposes, this stepwidth is sufficient. The fact that, again, the best
results are obtained for parameters close to parameters that cause instabilities might
deliver a rule of thumb at which parameters one has to look for high FOMs in other
systems.

A look at the index of refraction in detuning space, as shown in Fig. 4.19 a), reveals
that there are even two points of zero imaginary part. Fig. 4.19 b) shows the
corresponding FOM. We also find that the real parts of the refractive index are
n = −6.4 and n = −2.5 at the points of vanishing absorption. They are stronglier
negative than the ones in Fig. 4.18 a). Therefore, the closed-loop system seems to
be a better candidate than the upper microwave system. However, in the closed-loop
system, we need two control fields. Therefore, the more suitable shape of the real
part is at the expense of a more complicated experimental setup.

Shapes of the refractive index similar to the one in Fig. 4.19 a) can also be found
for other parameters, namely the ones colored in darker blue in Fig. 4.20. Thus,
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the combination of a magnetically coupling closed-loop system and an electrically
coupling two-level system provides many possibilities for negative refraction at zero
absorption.
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Chapter 5

Conclusion

5.1 Summary

In this thesis, we found negative refraction with vanishing absorption in two-component
media. The use of two-component media was motivated by the fact that suitable
real atoms might be easier to find than for single-component approaches and that,
in one of the two species, one can apply control fields such that they form a closed
interaction loop with the probe transition. To achieve negative refraction, we first
optimized the magnetic susceptibility of several different systems towards zero imag-
inary and negative real part, as motivated by Veselago [1] (Sec. 2) . For all presented
systems, we succeeded in finding parameters that produce a negative real and zero
imaginary part of the magnetic susceptibility. To this end, we used a strong control
field to introduce a Rabi splitting in the susceptibility and incoherent pump rates
to change the absorptive behavior of our system. In Sec. 4, we found that the
optimized systems for the magnetic component exhibit branch points with positive
imaginary part in the frequency plane and thus instabilities. Therefore, we opti-
mized the combined systems to achieve the aforementioned results for the index of
refraction.

To investigate a possible mechanism for an enhancement of the magnetic response by
a factor of α−1, we compared a closed-loop and a similar, but incoherently pumped
system (Sec. 3). We found an enhancement in the first system and could clearly
attribute it to the electric probe field component scattering into the magnetic probe
transition. This result opens the road for a further enhancement of the response
by increasing the involved expansion coefficient of the coherence. Also, the large
number of parameters in the closed loop system motivated an optimization of a
slightly changed version of this system and led to its use in the last section.

In the last section (Sec. 4), we tested several two-component configurations for
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negative refraction at low absorption. We found that a negative real part of the index
of refraction occurs in such rather simple systems as media made up of two different
species that can each be described by a two-level scheme. For particle densities
of Ne = Nm = 1021 m−3 for the two respective components, we achieve FOM =
|Re(n)/Im(n)| ≈ 8 for a particular value for the frequency shift between electric and
magnetic probe transition. However, we are not confined to this particular value and
reach reasonable figures of merit also for frequency shifts that are several spectral
linewidths (of an electric dipole transition) larger or smaller.

Moreover, we obtained vanishing absorption and, at the same frequency, a negative
real part of the refractive index in two different systems. The first system was a
combination of a magnetically coupling nitrogen-like upper-microwave system and
a two-level system. The second of these systems was given by a combination of a
nitrogen-like closed-loop system for the magnetic response and, again, a two-level
system for the electric response. To realize negative refraction, one needs, in the first
system, particle densities of Ne = 1021 m−3 and Nm = 1023 m−3 for the electrically
coupling species and the magnetically coupling species, respectively. We find n =
−3.7 and n = −2.0 at two frequencies of vanishing absorption. In the second system,
the closed-loop system, we require Ne = 1.5 · 1020 m−3 and Nm = 1023 m−3 and find
n = −6.4 and n = −2.5. The density of the magnetically coupling species are
comparable to other proposals (N ≈ 1023 m−3 in [18], N ≈ 5 · 1022 m−3, but with
a finite FOM, in [17]). For the electrically coupling species, the density is rather
small. In the combination of closed-loop and two-level system, we obtain a real part
of the refractive index of a higher absolute value at the point of zero absorption than
in the upper microwave system. First, this implies a stronger effect that one can
measure. Second, the parameter range at which instabilities occur is not as close
(see Sec. 4.2.2) and therefore the experimental parameters do not have to be fixed
with such a high precision. Therefore, the closed-loop system seems to be slightly
more suitable for an experiment.

Strikingly, the best results for the figure of merit were produced by parameters close
to parameters that cause the system to be instable (see Figs. 4.13, 4.15 and 4.20).

5.2 Outlook

Having summarized the results of this thesis, there are still many questions that need
to be addressed in order to realize negative refraction in atomic two-component —
and also single-component — media and to gain a deeper understanding of the
mechanisms involved.

We chose to optimize the magnetic susceptibility towards negative real and vanishing
imaginary part, motivated by the findings of Veselago [1]. However, there are also
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other ways in which the susceptibilities can be optimized (see Fig. 2.1) as it has
been done in [18]. In our case, the optimized magnetic susceptibilities caused branch
points in the upper half of the complex plane and thus instabilities. Therefore, we
had to search for other parameters to achieve negative refraction with low losses.
For susceptibilities optimized towards other values, this might not be the case.

Then, there is also the possibility to take better use of the mechanism of enhance-
ment we investigated in Sec. 3. On one hand, a medium in a closed-loop configura-
tion of strong control fields and only one probe field transition presumably induces a
strong response on the probe transition. However, we have seen that the investigated
scattering process only contributes to the response at the probe field frequency for
the case of multiphoton resonance, i.e. for one single frequency. On the other hand,
systems with two probe transitions as in Fig. 3.8 that render the enhancement pro-
cess independent from the probe field frequency contain one more weak probe field
in the interaction loop. This latter scheme has already been considered in [17, 18].
Still, it might be possible to find a configuration that combines the advantages of
both possibilities: a strong response on the probe transition caused by a control field
loop and frequency-independence of this mechanism. In any case, there still remain
many new configurations — especially chiral systems — to be investigated.

Also, since the results for the index of refraction in the forbidden parameter area,
in which the system is instable, seemed so promising, one can look for ways to deal
with these instabilities. In theory, this can be done by Laplace transforms. Of
course, physically instable systems are not suitable for an experimental realization.
However, there might be ways to prevent the electromagnetic field from growing
infinitely large such as saturation effects of higher than first order in the probe field
that we did not consider. A further examination of these instabilities is desirable.

Finally, to realize schemes as the ones presented experimentally, one first needs
suitable candidates. Also for the two-component system, it turned out that these
are not easy to find, since many conditions have to be fulfilled: We need a magnetic
and an electric dipole probe transition at approximately the same frequency — in two
different species of atoms, respectively — a level scheme with optical transitions and
not too many other levels to which the population in the used levels could decay to.
For example, a level |0〉 below the levels of the upper microwave scheme in Fig. 2.3
would cause population of the levels |1〉, |2〉 and |3〉 to decay to it. Thus, our scheme
would lose population. One could use repump lasers that pump the population to
level |3〉 again. However, this would complicate the experimental setup and is only
feasible for not too many levels of the kind of |0〉.
The most suitable element for the magnetically coupling upper microwave or closed-
loop system we found is nitrogen, in which the first and the second excited state can
decay to the ground state via optical transitions. For the electrically coupling two-
level system, one can also take a two-level system with a slightly different transition
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frequency and add a third level. Between the third and one of the two other levels
a strong control field can then couple. This creates a Rabi splitting, i.e. an AC
Stark shift, to change the transition frequency to coincide with the frequency of the
magnetic probe transition.

Other suitable elements with a rather simple level structure, optical transitions and
not too many other levels to which the population can decay are:

� Oxygen, with a ground state triplet to which the next-highest state can decay
via M1- or E2-transitions. These transitions have wavelengths of 630.2 nm,
636.6 nm and 639.4 nm, the latter being only an E2-transition.

� Scandium, which could possibly be the electrically coupling counterpart to
oxygen. It has electric dipole transitions from the 3d4s(3D)4p 4F◦- and
3d4s(3D)4p 4D◦-quadruplet to the upper state of the ground state dublet at
wavelengths such as 630.6 nm and 636.2 nm .

� Magnesium, again for the magnetically coupling component, since it has op-
tical M1-transitions from the third-lowest multiplet to the second-lowest mul-
tiplet. More precisely, these are transitions from the 3s3p 1P◦-singulet, to the
3s3p 3P◦-triplet states of 757.3 nm, 758.5 nm and 760.8 nm. Below this level,
there is only the ground state to which the mentioned triplet and singulet
states can decay electrically. Therefore, repumping should be employed.

� Carbon which is slightly beyond the edge of the visible spectrum would be a
candidate with its M1-transitions from the 2s22p2 1D-singulet to the ground
state triplet, ranging from 980.8 nm to 958.0 nm.

� Also already slightly in the infrared, phosphorus has two M1-transitions from
the 3s23p3 2D◦-doublet states to the ground state at 878.8 nm and 880.0 nm.

The wavelengths were given in air according to [27].

Another point is the incorporation of local field corrections as described in Sec.
4.2 which should be taken into account for Nλ3 � 1, i.e. N � 5 · 1018 m−3 for
λ = 600 nm. Since this criterion is not hard, we might well be in the regime in
which corrections are necessary. This is also implied by preliminary calculations of
local-field corrected susceptibilities in which we only correct the field in the results
(and not already in the Hamiltonian).

Besides negative refraction, materials with a permeability significantly different from
unity, in particular gases, are an interesting field of research. This is especially due
to the fact that usually, the magnetic response is small and thus the permeability
approximately one.
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Although or particularly since some effort is still needed to realize negative refraction
in an atomic (two-component) gas for the first time, interesting new insights in this
field are to be expected. Thereby, it is not only the counter-intuitive, new properties
of negatively refracting materials, but also the wide range of possible applications
that fuel the research in this direction.
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seine Gruppe und die Möglichkeit, unter exzellenten Bedingungen am Max-
Planck-Institut für Kernphysik arbeiten zu können, sowie für die Möglichkeit
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