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This thesis reports on experiments with dilute gases consisting of distinguishable
fermions whose interaction can be tuned over a wide range. These experiments
cover the creation of a molecular Bose-Einstein Condensate (mBEC) as well as
the first experiments on a three component degenerate Fermi mixture.
To create a mBEC we start with a magneto-optical trap (MOT) of 2×108 fermionic

6 Li atoms. At a temperature of 410µK a mixture of the two lowest hyperfine
states of 6Li is transferred into an optical dipole trap and evaporatively cooled.
These fermions are bound to bosonic molecules as soon as their temperature
drops below their binding energy. Further cooling leads to condensation of these
molecules into a mBEC of about 100000 particles at a temperature of approxi-
mately 30 nK.
Further experiments make use of the wide tunability of the interaction between

the three lowest hyperfine states of 6 Li by means of Feshbach resonances. Em-
ploying RF transitions between these states allows for creating a mixture of three
distinguishable fermions. This was achieved for the first time in our experiment.
The produced sample contains 50000 atoms in each state at a temperature of
215 nK, which corresponds to a T/TF = 0.37. The process of creation and first
experiments on such a sample are described here as well.

Diese Arbeit beschreibt Experimente an einem verdünnten Gas aus unterscheid-
baren Fermionen, deren Wechselwirkung über einen weiten Bereich variiert wer-
den kann. Diese Experimente reichen von der Erzeugung eines molekulare Bose-
Einstein Kondensates (mBEC) bis hin zu den weltweit ersten Experimenten mit
einer entarteten Mischung aus drei unterscheidbaren Fermionen.
Der Ausgangspunkt zur Erzeugung eine mBECs ist eine magneto-optische Falle

(MOT) mit 2× 108 fermionischen 6Li Atomen. Bei einer Temperatur von 410µK
wird eine Mischung aus den beiden tiefsten Hyperfeinzuständen in eine optische
Dipolfalle geladen und dort evaporativ gekühlt. Aus den Fermionen bilden sich
bosonische Moleküle, sobald ihre kinetische Energie unter ihre Bindungsenergie
fällt. Weiteres Kühlen führt zur Kondensation dieser Moleküle in ein mBEC aus
circa 100000 Teilchen mit einer Temperatur von ungefähr 30 nK.
Weiter Experimente nutzen die weite Durchstimmbarkeit der Wechselwirkung

zwischen den drei niedrigsten Hyperfeinzuständen des 6Li. Unter Verwendung
RF-induzierter Spinflips kann eine Mischung aus drei unterscheidbaren Fermio-
nen erzeugt werden, was erstmal in unserem Experiment gelang. Unsere Mis-
chung enthält 50000 Atome jeden Spinzustandes mit einer Temperatur von 215 nK,
was einem T/TF = 0, 37 entspricht. Der Erzeugungsprozeß und erste Experi-
mente an solch einer Mischung werden ebenfalls beschrieben.
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Chapter 1

Introduction

1.1 Overview

Ultracold quantum gases are an ideal model system for a vast variety of matter
systems from almost all physical subjects. Though they are not realized in nature,
their investigation contributed fundamentally to our understanding of matter. For
quantum physics - from single particle to statistical - this seems obvious. Intro-
ducing optical lattices, the behavior of the particles is determined by the periodic
structure of the lattice, comparable to the situation of electrons in a crystal. Here
the quantum gases serve as a model for solid state physics. Latest research claims
that fermionic mixtures can even be a model system for a quark-gluon plasma and
help understanding baryon formation. This gives the link to nuclear physics.
One of the important properties of the gas making theoretical describtion so sim-

ple is that the interactions in such gases can be restricted to contact interactions.
This can be done because the effective range of the interaction is much smaller
than the average interparticle distance. The important experimental feature is that
many properties can be tuned nearly arbitrarily. The strength of the interactions
can be varied by so-called Feshbach resonances. The strength of the external po-
tential can be varied by changing the beam power of the beam forming the trap.
Additionally the shape of the external potential can be varied by modulating the
deflection of this beam with acuosto-optic modulators. The quantum nature is re-
vealed because the temperature in suche gases reaches nK range. Here the phase
space densities increases to the order of one and the gas becomes highly degener-
ate. All this provides excellent preconditions for examining quantum physics.
The first optical trapping of neutral atoms in a magneto-optical trap (MOT) in

1986 [1] opened the door to the experimental realization of these model systems.
Though the gas in a MOT is as dilute as the gases in our sourroundings, the tem-
perature in the µK range allows for the access of phase space densities more than
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107 times higher than in a thermal gas at room temperature. With those traps de-
generacy cannot be reached, but they are the first step towards experiments with
far larger phase space densities.
The first highly degenerate quantum gas was created with the achievment of

Bose-Einstein condensation (BEC) in 1995 by E.A. Cornell, C.A. Wieman [2]
and W. Ketterle [3], who were awarded the Nobel prize for their work in 2001.
The extension of the wavefunction over a macroscopic number of particles allows
for the investigation of statistical quantum physics and reveal insight from a new
perspective to the quantum nature of matter.
A further great step in the process of gaining control over particle behavior was

the application of Feshbach resonances known from nuclear physics in atom-
optical experiments [4]. They allow researchers a nearly arbitrary control over the
interaction between atoms by simply applying a magnetic field. Close to the reso-
nance at high positive scattering length stable molecules can be formed [5]. These
molecules can be condensated into a molecular BEC, which was first achieved by
the groups of D. Jin [6], R. Grimm [7] and W. Ketterle [8] in 2003. On the other
side of the resonance the scattering length is negative and the attractive meanfield
interaction allows for the creation of weakly bound Cooper pairs in momentum
space. The formation of such pairs of electrons in presence of small attractive
interaction was successfully applied to explain superconductivity in metals by J.
Bardeen, L. N. Cooper and J. R. Schrieffer in 1957 [9]. Hence it is called BCS
regime. The crossover between the two sides is reversible and adiabatic and there-
fore isentropic. On top of the resonance the scattering length becomes infinite.
The behavior of the particles at this point is no longer determined by the proper-
ties of the specific fermions or the scattering length, but simply by the momentum
of the particles. This regime is called unitarity. Making use of this crossover a
highly degenerate Fermi gas can be created. This can be done by first producing
a BEC from molecules consisting of two fermions and afterwards increasing the
magnetic field until the molecules are transformed into Cooper pairs [10] [11].
This provides a BCS regime with control over many relevant parameters, which
hopefully will help to gain a better understanding of their physics, e.g. the physics
of superconductors.

1.2 Experimental goals
Our experimental work aims at the creation of a finite degenerate Fermi gas. The
idea is to create a molecular BEC on the side of the resonance where scattering
lengths are positive and load it into a micro trap. Afterwards the magnetic field is
ramped over the resonance, creating a highly degenerate Fermi gas. An aspheric
lens and a EM-CCD camera will be used to perform high resolution imaging of

2



Andor EMCCD
camera

Beam for absorption imaging

micro trap beamDichroic mirror

(MOT Beam)

Beam for fluorescence
Beam for fluorescence

(MOT Beam)

aspheric lens

focused to
 ~4µm diameter

Figure 1.1: Setup for the micro trap and the high resolution imaging. Currently
under construction.

the sample with single particle resolution.
The same asphere will be used to form the micro trap with a far red detuned

laser beam focused to a diameter of a few µm (see figure 1.1). The large level
spacing in such a tight trap will allow for very precise control over the number
of atoms in the trap. If everything works well, we will be able to create, control
and image a degenerate Fermi gas consisting of a few 10 particles. For the first
time this will allow for testing many body theories, which describe the regime
between single particle and statistical physics. The possibility to tune the shape
of the potential via two crossed AOMs and the interaction between the particles
by means of Feshbach resonances offers the possibility to examine a wide field of
interesting physics in such an experimental system. It gives hope to gain better
understanding about few fermion systems like electrons in the shell of atoms or
nuclei in their cores. For example, it might be possible to examine shell formation
and get a better understanding of this still not fully understood phenomenon.
Shortly after the production of our first molecular BEC we started experimenting

with RF spectroscopy. RF fields enable the transfer of atoms between the three
lowest hyperfine states of 6Li. Inspired by enriching discussions with C. Greene
we tried to create a three component Fermi mixture. This has never been done be-
fore experimentally, though all experimental techniques are standard today in an
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atom optical laboratory. The theoretical discussion, however, has been very vivid
over the past few years. Especially the stability of such a gas and the form of the
ground state are discussed controversially. It is hoped that such a system has sim-
ilarities with a quark gluon plasma, because the three color charges could behave
analog to the three different spin states used in the experiment. Findings from
such an experiment can possibly enhance the understanding of baryon formation
or contribute to the explanation of the so-called color superconductivity [12]. Our
first results support the assumption that intriguing physics can be observed in this
system.

1.3 Content
This thesis starts with an overview over the standard techniques used to cool and
trap neutral atoms. This part is followed by a comprehension of the physics of
Feshbach resonances and the basic properties of bosonic and fermionic gases.
The third chapter describes the setup of our experiment, focusing on the setup and
the performance of the dipole trap. It is followed by two chapters reporting the
key results of our experiments obtained during the last few months. The results
are split up in a chapter dealing with the creation of a molecular BEC, which was
achieved in February this year and a chapter dealing with the first results concern-
ing a three component Fermi mixture. The thesis closes with a short conclusion
and an outlook over the next steps planned in the experiment.
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Chapter 2

Degenerate quantum gases

2.1 Trapping and cooling of neutral atoms

2.1.1 Scattering forces
On the way towards an ultracold gas, the main requirements are efficient cooling
and trapping of atoms. In the last few decades, a remarkable toolbox for these
purposes has been established. In experiments with neutral atoms the initial trap-
ping and cooling from room temperature makes use of the radiation pressure of
near-resonant laser beams. A laser beam with a slight detuning against the atomic
transition exhibits a force on an atom moving against the propagation direction of
the beam. To calculate this force, we use a simplified semi-classical picture: The
atom can only be in two states, a ground state and an excited state. The light field
is treatend as a classical electro-magnetic field:
The atoms in the ground state absorb photons from the beam. Assuming a low

power laser field with respect to the saturation intensity, the photons are emitted
spontaneously, which means that there is no preferred direction for the emission.
Summing up over many of these processes only the incoming photons transmit
a momentum of ~k to the atom in the direction of the beam. To calculate the
scattering force the scattering rate of photons has to be determined. This rate
depends on the intensity of the light s0 = I

Is
in terms of the saturation intensity

Is and the detuning of the laser towards the atomic transition δ = ω0 − ωL and is
found to be

γP =
s0Γ/2

1 + s0 + [2 (δ + ωD) /Γ]2
(2.1)

where Γ is the natural line width of the atoms. When moving relative to the
laser source, the atoms see the laser frequency with a Doppler shift of ωD = ~k~v.
Neglecting stimulated emission, the force induced by all scattered photons results
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~FC = ~~kγP . This force is fundamental for all atom manipulation with a near
resonant laser field.
Making use of these forces a dissipative potential can be created, in which atoms

are trapped and cooled down to the order of a few hundred µK. For further
cooling the heating induced by the resonant photons has to be avoided and the
dissipative potential has to be replaced by a conservative one. For this purpose
either magnetic traps or optical dipole traps are used. The magnetic traps employ
the magnetic moment of the atoms to trap them in a magnetic field. The optical
dipole traps induce a dipole moment on the atoms and then trap them in an ex-
tremum of the electro-magnetic field. However, these traps only trap the atoms in
position. Cooling is obtained via evaporation of the hottest atoms and subsequent
thermalization. Since we are employing all of these methods (except for magnetic
trapping, which is only used for alignment purposes), a short explanation of these
tools will be given in the following. Most of these subjects are described in de-
tail in the last two diploma theses of our group ([13],[14]), so this section is kept
rather short and only summarizes the main features.

2.1.2 Slowing with radiation pressure
The experiment is supplied with 6Li atoms from an oven at a temperature of 350◦C
to provide a sufficient vapor pressure and therefore adequate particle flux. Their
velocities follow a thermal Maxwell-Boltzmann distribution with its peak value
at v̂ =

√
2kBT/mLi ≈ 1300 m/s where kB is Boltzmann’s constant and mLi

the mass of a 6Li atom. Since the magneto-optical trap (MOT) can only capture
particles with a velocity up to 50 m/s the atoms have to be precooled in a so-
called Zeeman slower. A Zeeman slower is a laser beam counter-propagating the
direction of the atomic beam. A varying magnetic field around the beam ensures
that the atoms stay in resonance with the laser beam. When they slow down, the
changing Doppler detuning is compensated by the changing magnetic field due to
the Zeeman effect. In our setup this enhances the maximal initial particle velocity
for capturing to a value of 800 m/s, which is about 13.7 % of the total particle
flux.

2.1.3 Trapping in position space
The magnetic field at the end of the Zeeman slower is produced by the coils of
the MOT. A MOT employs a magnetic quadrupole field and the Zeeman effect to
obtain a position dependence of the radiation forces and create a dissipative po-
tential for the atoms. The resonant photons come from two counter-propagating
beams in all three directions of space. The light force depends strongly on the
detuning of the laser towards the atomic transition. The used laser beams are not
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Figure 2.1: Energy scaling with magnetic field of the different sublevels and laser
configuration for a MOT

in resonance with the atoms at zero field. Hence in the center of the trap no force
is exhibited on the atoms. When the atoms try to leave the trap, their energy levels
are shifted and come into resonance with the laser the moment they reach a suf-
ficient magnetic field. Therefore they are slowed down and pushed back towards
the center of the trap. It is important that the polarization of the counterpropagat-
ing light matches the transition that comes into resonance with the beam. When
the polarization is fixed for one transition, transitions to other states are forbidden
because of angular momentum conservation. Only for a configuration as given in
figure 2.1 the correct transitions for cooling can be driven.
The limit of this cooling mechanism is given by the heating of the randomly

emitted photons. To derive a quantity for the lowest reachable temperature, the
quadratic statistical dispersion has to be regarded, for the mean momentum itself
vanishes. Taking the time derivative of this quantity results the heating rate

(∆p2)N = p2 − p2 = N~2k2 − 0 ⇒ d

dt
(∆p2)N = ~2k2dN

dt
= D .

For dN/dt the photon scattering rate γP given in equation 2.1 can be inserted. The
constant D is therefore fully determined.
The force the laser beams exert on the atoms is simply the sum over the two

counter-propagating laser beams considering the different sign of their velocities

7



with respect to the movement of the atom. For low temperatures, that is small ki-
netic energies, the expression can be expanded in a power series in v. Combining
all prefactors from the scattering force to α, this yields the following differential
equation for p2:

F = −αmv ⇒ d

dt
p = −αp ⇒ d

dt
p2 = 2p

d

dt
p = −2αp2 .

Now the two forces can be compared. A connection with the temperature can be
introduced by using the equivalence of thermal energy Eth = 3/2kBT and kinetic
energy Ekin = p2/(2m):

p2 = 3mkBT =
1

2α

d

dt
(p2) =

D

2α
.

Inserting the definitions of D and α yields a term for the lowest reachable temper-
ature:

kBT = −~Γ

2

1 + (2δ/Γ)2

4δ/Γ
. (2.2)

This term reaches a minimum at δ = −Γ/2, which is called the Doppler limit.
Inserting the natural line width of 6Li results a Doppler limit of ≈ 140µK for
our MOT. Cooling below the Doppler limit can be obtained using polarization
gradient or Raman cooling. For our setup this would mostly lead to a factor of
1/10 in temperature and the effort in the setup is large compared to the gain in
temperature. That is why it is not used in the experiment. For further explanations
on cooling with resonant light, the reader may be referred to [15] or one of the
other standard textbooks dealing with this subject.

2.1.4 Dipole traps

Figure 2.2: Potential of a crossed dipole trap with the properties given in the text.
The sketch shows a cut trough the y-z plane at x = 0.

To cool far below the Doppler limit the atoms have to be trapped without reso-
nantly scattering photons. To do so, the atomic cloud is loaded from the MOT into
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a dipole trap consisting of a far red detuned laser beam with a Gaussian shape. The
dipole potential for a neutral atom with complex polarizability α in a laser beam
with intensity I is given as

Udip = −1

2

〈
~p ~E
〉

= − 1

2ε0c
<(α) I(~r) (2.3)

(cp. [16]). The atom in the laser field can be described with a classical harmonic
oscillator model. In this a model the oscillator has the eigenfrequency of the
atomic transition ω0, is driven by the external field with frequency ω and damped
by classic dipole radiation with the rate Γω. Solving the equation of motion results
the complex polarizability of the atom:

α = 6πε0c
3 Γ/ω2

0

ω2
0 − ω2 − i (ω3/ω2

0) Γ
(2.4)

with the on-resonance damping rate Γ = (ω0/ω)2 Γω. Combining equation 2.3
and equation 2.4 yields the dipole potential:

Udip (~r) = −3πc2

2ω3
0

(
Γ

ω0 − ω
+

Γ

ω0 + ω

)
I (~r) . (2.5)

For the scattering rate equation 2.4 leads to

Γsc =
Pabs
~ω

=
1

~ε0c
=(α) I(~r) =

3πc2

2~ω3
0

(
ω

ω0

)3(
Γ

ω0 − ω
+

Γ

ω0 + ω

)2

I (~r) (2.6)

where we used that the total power absorbed can be calculated as Pabs =< ~̇p ~E >=
ω
ε0c
=(α) I(~r).

Taking into account the actual situation in the setup a few numbers relevant for
the experiment can be derived: The potential formed by two crossed Gaussian
beams can be calculated from the intensity distribution of a Gaussian beam as
given in [17]

I(r, z) =
2P

πW 2(z)
exp

(
−
[

2r2

W 2(z)

])
. (2.7)

Here W (z) denotes the waist of the beam at position z which can be calculated to
be

W (z) = W0

[
1 +

(
zλ

πW 2
0

)2
]1/2

. (2.8)
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W0 denotes the minimal waist of the beam and λ the wavelength of the trapping
laser beam. In our experiment these values are given as W0 = 50µm and λ =
1070 nm. The total potential can then be estimated by summing over two beams
rotated by +α/2 and −α/2. α is the crossing angle of the two beams, which in
our case is measured to be 14◦. Assuming z as the propagation direction of the
beam we can write r2 = x2 + y2 and rotate the beams in the y-z plane. Combined
with equation 2.5 the potential can directly be calculated, when inserting ΓLi and
the angular frequencies of the atomic transition ω0 = 2πc/λLi and of the dipole
laser ω = 2πc/1070 nm. For a laser power of P = 200 W this leads to a peak
potential depth in terms of temperature of Ûdip/kB = 4.2mK. That means that
the efficiency of the transfer process from the MOT to the dipole trap is only
limited by the density of the gas in the MOT and the spatial overlap of both traps
and not by the depth of the dipole trap.
The potential of a Gaussian beam can be approximated harmonically in its cen-

ter. In most experimental situations the potential depth is an order of magnitude
larger than the average thermal energy of the particles, so approximating the trap
harmonically is valid in most cases. Since theoretical treatment becomes much
more simple when assuming a harmonic trap, this approximation is widely used.
In this case, the trap can be characterized by giving the eigenfrequencies of the
harmonic oscillator in the symmetry directions. To calculate these trap frequen-
cies the term for the trapping potential can be expanded into a power series. With
the coefficient for the second order term U2 and the expression for the energy car-
ried by a particle in a harmonic oscillator Eho = 1/2mω2r2 the trap frequencies
in the particular direction can be written as f =

√
2U2/mLi/(2π). Here mLi is

the mass of a 6Li atom. As an example, the trap frequencies at a beam power of
35 mW are given: The trap depth at this beam power is Ûdip/kB = 1µK and the
sample in our trap is an almost pure BEC. The trap frequencies are faxial = 30 Hz
for the z direction and frad = 243 Hz in the y direction. The aspect ratio turns out
to be frad/faxial = 8.16. Figure 2.2 gives a plot of the potential in the z-y plane
at x = 0.

2.1.5 Evaporative cooling

In a dipole trap the atoms are only caught in position space. Cooling is obtained
by evaporation of the hottest atoms. The particles having a thermal energy larger
than the trap depth leave the trap. Via scattering with other atoms the sample
rethermalizes at a lower temperature. In momentum space this can be imagined as
cutting off the tail of the Boltzmann distribution and restoring it with the remain-
ing particles under consideration of energy conservation.
The critical value for condensation is the phase space density. In a harmonic
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trap it is given as ρ = N(~ω/kBT )3, with ω = (ωxωyωz)
1/3 being the mean trap

frequency. In a thermal cloud at room temperature the phase space density is in
the order of 10−11 and has to reach unity for condensation. The experimentalist
decreases ω with the beam power. Hence efficient evaporation is achieved by
trapping a large number of particles at low temperatures. This section shall give
a theoretical description of the evaporation process and provide a basis for the
evaluation of its efficiency.
In a trap with a given depthU and a mean temperature T there are exp (−U/kBT )

atoms able to leave the trap. The exponent U/kBT ≡ η is called truncation pa-
rameter and roughly describes the progress of evaporation at a certain trap depth.
At a fixed trap depth, a larger η corresponds to a colder sample, but at the same
time this means that further evaporation will take more time. In experiments the
evaporation is usually compensated by heating processes when η reaches the order
of 10.
Following [18] we assume that a particle leaving the trap takes its potential en-

ergy U and a certain part αkBT of the thermal energy with it. Here α denotes
a parameter depending on η and varying between 0 and 1. The exact form de-
pends on the shape of the trap and turns out to be α = (η − 5)/(η − 4) for a
harmonic potential if kT � U . The average potential energy is half the total en-
ergy E = E/2, hence lowering the potential depth leads to an additional energy
loss of the system. Summing up over all terms yields

Ė = Ṅ (U + αkT ) +
U̇

U

E

2
. (2.9)

Taking into account that the time derivative of the thermal kinetic energy is given
by Ė = 3NkBṪ + 3ṄkBT , it is possible to calculate a connection between the
change of the potential depth and the particle number:

N(t)

N0

=

(
U(t)

U0

) 3
2(η+α−3)

. (2.10)

As mentioned, the phase space density of the cloud is the critical value for con-
densation. Considering that the mean oscillator frequency f ∝

√
U and T ∝ U

the scaling of the phase space density with the trap depth and the atom number
can be calulated:

ρ(t)

ρ0

=

(
U(t)

U0

)− 3(η+α−4)
2(η+α−3)

=

(
N(t)

N0

)−(η+α−4)

. (2.11)

The only parameter that can be influenced in the experiment is η. For a small
η heating and loss processes in the trap, e.g. of the laser, have to be reduced.
But since high values of η are accompanied by slow evaporation a compromise
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between efficient and fast evaporation within the boundary conditions given by
the trap has to be found. The estimations made above will allow to quantitatively
evaluate the quality of the trap and the evaporation process.

2.2 Feshbach resonances of 6Li
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Figure 2.3: Hyperfine splitting of the two lowest energy states of 6Li in depen-
dence of the magnetic field.

2.2.1 Scattering
Scattering between two particles in quantum physics can be described by the so-
called partial wave expansion. The scattered wave function is expanded into par-
tial waves according to their angular momentum. With increasing energy involved
in the scattering process, higher order partial waves participate. The whole scat-
tering process can then be described by the accumulation of phase shifts δl in the
partial waves, which reduces the contribution of the l-th partial wave to the total
cross section σtot to

σl =
4π

k2
(2l + 1) sin2 δl (2.12)

for non-identical particles. Since δl ∝ k2l+1, for low temperatures (k → 0) only
the energetically lowest s-waves contribute to the scattering process. This makes
scattering very simple to describe, because the wave function is simply a super-
position of an incoming plane wave and a scattered spherical wave. The scattered
wave is isotropic and contains no angular momentum. The cross section is given
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Figure 2.4: Feshbach resonances of the three lowest hyperfine states of 6Li. The
plot shows the scattering length a in units of Bohr’s radius in dependence of the
magnetic field [19].

as σtot = σ0 = 4πa2. The only parameter still influencing the scattering in this
regime is the so-called s-wave scattering length a.
The scattering cross section can be imagined as an effective extension of the par-

ticle for the actual interaction. For low energies, this extension is given by the
scattering length. The cross section is therefore proportional to a2. However, the
cross section cannot exceed the expansion of the wave packet given by the de-
Broglie wave length λdB = 2π/k. Thus when the scattering length diverges, the
cross section is no longer determined by the scattering length but by the momen-
tum of the particles σ ∝ 1/k2. To calculate the cross section in regimes between
these extrema a simple interpolation turns out to describe reality quite well (cp.
[20]):

σ =
4πa2

1 + k2a2
. (2.13)
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Figure 2.5: A Feshbach resonance occurs when a bound state of a closed channel
lies in the vicinity of the continuum of an open channel. The relative position of
the two channels can be tuned with a magnetic field. If the bound state lies slightly
below the continuum, molecules with a binding energy of EB = ~2/ma2 can be
formed.

2.2.2 Hyperfine states of 6Li

Since two identical fermions cannot interact with each other via s-wave inter-
actions due to symmetry reasons, at least two non-identical particles have to be
involved to achieve scattering in a fermionic sample at low temperatures. This
is necessary to perform evaporation and to reach ultracold temperatures. As a
second particle species other bosonic isotopes of the fermion or completely other
particles can be choosen. These particles sympathetically cool the fermions. The
third and experimentally most simple option is to use different spin states of the
same fermions, as it is done in our experiment. Figure 2.3 shows the Zeeman ener-
gies of the lowest hyperfine states of 6Li and their scaling with the magnetic field.
Since we load our dipole trap with fermions in the state F = 1/2, we naturally
work with a mixture of the two different spin states mF = 1/2 and mF = −1/2.
The third state that scales negative with increasing magnetic field and that is of
relevance for this thesis is the |F = 3/2,mF = −3/2〉. For convenience, the
states are numbered ascending from the lowest. This nomenclature will be used
throughout this thesis. In an RF field, transitions between the |1〉 ↔ |2〉 and the
|2〉 ↔ |3〉 states can be driven. The transition between |1〉 and |3〉 is forbidden in
first order due to angular momentum conservation.
A reason for choosing 6Li for our experiment is that the scattering length of

all three of the lowest hyperfine states can be tuned over a wide range with a
magnetic offset field. The field to access the full range of scattering length is
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quite comfortably to reach. On the other hand, the width of the tuning regime
is wide enough so that the necessary stability of the magnetic field is accessable
without too much effort. Figure 2.4 gives an overview of the scattering length
versus magnetic field for all three combinations of these states. The bold one is
the |1〉 ↔ |2〉 resonance, which is the important resonance for our first BEC. The
others become relevant in the last part of this thesis, where the creation of a stable
mixture of three distinguishable fermions is presented.

2.2.3 Tuning interactions
One of the great features of the experiment is the nearly arbitrary tunability of the
scattering length between two particles via a scattering resonance. By means of
a magnetic offset field the scattering length is tuneable from a zero crossing to
infinite positive values on the one side of the resonance and from infinite negative
to the background scattering length on the other side. At large positive scattering
lengths this allows to experiment with bound fermions forming bosons in a repul-
sive meanfield and create a BEC. On the other side, negative scattering lengths
lead to weakly bound fermions in an attractive mean-field forming a BCS-like
system. The crossover is continuous in all parameters, meaning that the systems
undergoes no phase transition but a smooth transfer from one side of the reso-
nance to the other. The repulsive interaction of the molecules on the BEC side is
smoothly taken over by the Fermi repulsion of the free fermions on the BCS side.
At the position where the scattering length becomes infinite, the behavior of the
particles becomes independent of all other parameters and is only determined by
the momentum of the fermions. It is equal for all fermion combinations and is
therefore called unitary. The isentropy of the crossover allows to create a highly
degenerated Fermi gas, when producing a BEC at the side of the resonances where
the scattering lengths is positive and afterwards ramp up the magnetic field so that
the scattering length changes its sign and molecules transform into weakly bound
Cooper pairs. Such resonances were first predicted in nuclear physics by Her-
man Feshbach [21] and are therefore called Feshbach resonances. The underlying
process of such resonances is described in the following:
The scattering potential between two particles in a well defined state is called a

channel. Changing the internal state of one of the particles leads to a different
channel with a different interaction potential and a different magnetic moment.
The channels therefore tune slightly different with the magnetic field. A channel
is called closed, if its continuum lies above the energy of the incoming particles,
which means that they cannot access the channel without violating energy con-
servation. It is called open, if the continuum of the channel degenerates with the
kinetic energy of the incoming particles or lies lower.
A Feshbach resonance occurs, when a bound state of a closed channel lies close
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to the continuum of the open channel (cp. figure 2.5). If the channels are coupled
to each other, e.g. via hyperfine interaction, the particles can virtually enter the
bound state, but due to energy conservation they have to leave it again after a
time proportional to the inverse of the energy difference between the continuum
and the bound state. This results in a coupling process between the particles of
second order. If the bound state lies closely beneath the continuum, a third particle
can carry away energy and momentum difference and molecules with a binding
energy E = ~2/ma2 can be formed. Note that this equation is only valid as
long as the scattering length is large compared to the range of the van-der-Waals
interaction. This is the case in our experiment, because the range of the van-
der-Waals interaction is typically below 100a0 and the scattering lengths in our
experiment lie in the range of a few thousand a0. Here a0 denotes Bohr’s radius.
If the scattering channels have different magnetic momenta, the relative position

of the bound state and the continuum can be tuned by simply changing the mag-
netic field: ∆E = ∆µB. The scattering length then tunes with the magnetic field
as:

a(B) = abg

(
1− ∆

B −B0

)
(2.14)

where abg is the background scattering length, B0 is the position and ∆ the width
of the resonance. Note that the width of the resonance depends quadratically on
the coupling strength, which reflects that the scattering is a second order process.
For the |1〉 ↔ |2〉 these values were found to be abg = −1405a0, B0 = 834.149 G
and ∆ = 300 G [22].

2.3 Bose-Einstein condensation
The main observables in the experiment are distributions of particles in position
and in momentum space, because these are the values that can be obtained directly
with the imaging system. The shape of a trap formed by two beams crossed under
a small angel has the form of a cigar. The harmonic approximation of the center
of such a trap yields nearly two equal frequencies ωx = ωy = ω in the directions
perpendicular to the symmetry axis of the beam propagation and a larger one
λωz = ω in line with this axis. λ is the inverse of the aspect ratio of the trap and in
our current setup λ ≈ 1/10. Since this is the relevant situation in our experiment,
the following calculations will be done assuming such a trap.
The bosonic sample undergoes a phase transition during condensation. That is

why there is a region in which we have a sample containing condensed and un-
condensed parts. Observing a bimodal distribution which reveals the existence of
a thermal and a condensed part is still the smoking gun to prove that condensation
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has actually been reached. Therefore, the critical temperature and the condensate
fraction in dependence of temperature are further values which are of interest for
the experimentalist. The discussion is done following [23].

2.3.1 Spatial and momentum distribution
The spatial ground state distribution of a Bose-Einstein condensate (BEC) can be
calculated very easily in the Thomas-Fermi approximation, which is derived in
the following.
Since Bose-Einstein condensation is a many-body phenomenon, it is an adequate

approach to start with the many body Hamilton operator for N interacting bosons
in an external potential Vext:

H =

∫
d~rΨ†(~r)

[
− ~2

2m
∇2 + Vext(~r)

]
Ψ(~r)+

1

2

∫
d~rd~r′Ψ†(~r)Ψ†(~r′)V (~r − ~r′)Ψ(~r)Ψ(~r′) (2.15)

where Ψ†(~r) and Ψ(~r) are the creation and annihilation field operators for a boson
at position ~r and V (~r − ~r′) is the interaction potential between two particles.
Inserting this Hamiltonian into the Heisenberg equation the time evolution of the
field operator can be written as:

i~
∂

∂t
Ψ(~r, t) = [Ψ,H] =

[
− ~2

2m
∇2 + Vext(~r) +

∫
d~r′Ψ†(~r′, t)V (~r′ − ~r)Ψ(~r′)

]
Ψ(~r, t) . (2.16)

Up to this point, the equation is exact and in general solvable with numerical
methods. However, the calculations become quite lengthy and complicated for
large N . They become much simpler, if the field operator Ψ(~r, t) is replaced by
a classical field Φ(~r, t). The first idea is to replace the field operator by its ex-
pectation value Φ(~r, t) = 〈Ψ(~r, t)〉. The absolute square of this function is the
density distribution of the ground state, that is the condensate. Since the phase
of the field is also well defined, this parameter can be used to describe the order
in the system. The field changes dramatically when the system undergos a phase
transition to the condensate phase and has therefore the meaning of an order pa-
rameter. The function looks like the ground state function for a single particle,
and although it is not a single particle probability density function but a many
particle density distribution it is called the wave function of the condensate. The
kinetic term and the term for the external potential only change slightly by this
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replacement. But for the integral over the interaction potential this simplification
yields in general no good results, since the contribution of many particles to the
interaction has to be taken into account. However, if the sample is dilute and the
interatomic distance is large compared to the effective range of the interactions,
the interaction can be restricted to two body scattering in an effective delta po-
tential V (~r′ − ~r) = gδ(~r′ − ~r). Furthermore, it can be assumed that the energy
involved is very small, so the strength of the interaction g depends only on the
s-wave scattering length a and g can be calculated as g = 4π~2a/m. This yields
an equation for the ground state wave function Φ

i~
∂

∂t
Φ(~r, t) =

(
− ~2

2m
∇2 + Vext(~r) + g |Φ(~r, t)|2

)
Φ(~r, t) (2.17)

called the Gross-Pitaevskii equation (GPE) [24]. Because the Hamiltonian is time-
independent, the time evolution can be seperated by writting

Φ(~r, t) = Φ(r) exp (−iµt/~) . (2.18)

This allows to execute the time derivative on the left side and makes the time
dependence drop out:

µΦ(~r) =

(
− ~2

2m
∇2 + Vext(~r) + g |Φ(~r)|2

)
.Φ(~r) . (2.19)

This equation is called the time-independent GPE. If the interaction energy of
the particles is large compared to their kinetic energy, the kinetic term can be
neglected. This conditions can qualitatively be written as Na/aho � 1. Here
aho =

√
(~/mLiωλ1/3) is the harmonic oscillator length, the relevant length

scale to characterize the trapping potential. The parameter Na/aho is called the
Thomas-Fermi parameter and will occure in the equations for most of the relevant
properties of the condensate. The GPE can now be written as:

µΦ(~r) =
(
Vext(~r) + g |Φ(~r)|2

)
Φ(~r) . (2.20)

This equation called the Thomas-Fermi equation. Since the particle number dis-
tribution is proportional to the absolute square of the wave function, this quantity
can easily be derived:

n(~r) = |Φ(~r, t)|2 =
µ− Vext(~r)

g
. (2.21)

This formula results of course only physical values, if µ > Vext(~r) since the
absolute square of a wave function cannot be negative. Outside a certain radiusRk

the wave function Φ(~r) drops to zero. Rk can be obtained by solving µ = Vext(Rk)
with respect to Rk.
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Knowing the coupling between the particles g and the external potential given
as a harmonic oscillator potential Vext(~r) =

∑3
k=1

1
2
mω2

kr
2
k, leaves just a short

calculation for the chemical potential. It is given by the boundary condition that
the integral of the density distribution over the whole space has to yield the total
particle number N =

∫
n(~r)d3r:

µ =
~ω
2

(
15Na

aho

)2/5

. (2.22)

Now we can also compute the extension Rk of the condensate in the direction xk
by solving µ = 1

2
ω2
kR

2
k which yields:

Rk = λ
1
3aho

(
15Na

aho

)1/5
ω

ωk
(2.23)

The momentum distribution can then simply be obtained by Fourier transforming
the resulting density distribution:

n(~p) = N
15

16~3
R3

(
J2(p̃)

p̃2

)2

. (2.24)

Here R = (RxRyRz)
1/3 is the mean condensate expansion and ~2p̃2 = (p2

xR
2
x +

p2
yR

2
y+p

2
zR

2
z) is the scaled total momentum. J2(x) denotes the second order Bessel

function. Note, however, that the interaction energy for the values of a reached
in our experiments is much larger than the kinetic energy. So the expansion in
a time of flight measurement will mainly be determined by the interaction of the
particles.

2.3.2 Critical temperature and condensate fraction
Estimating the condensate fraction is simply estimating the number of particles in
the ground state. Estimating the critical temperature TC for condensation to set
in is calculating the point, where this number becomes macroscopic. Neglecting
interaction between the particles the distribution in energy space is given by the
Bose-Einstein distribution:

n(εi) =
1

exp (β(εi − µ))− 1
(2.25)

with β = (kBT )−1. Assuming again a harmonic oscillator potential, the eigen-
energies εi of the system are known. Condensation sets in, when all particles are
in excited states and adding a particle would take the energy it takes to add a
particle to the ground state. The energy necessary to add one particle to a system
is given by the chemical potential. Hence the second condition is fulfilled by
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setting µ = ε0. Assuming a small level spacing compared to the total energy of
the system, the sum over the excited states can be replaced by an integral. The
integral does not weight the zero point. Therefore, the particles in the ground
state are not counted, but the integral results only the particles in the excited state.
This leaves us with the following equation to solve for β(TC):

N =

∫
dnxdnydnz

1

exp [β~(ωxnx + ωyny + ωznz)]− 1
. (2.26)

The result turns out to be

kBTC = ~ω
(
λN

ζ(3)

)1/3

(2.27)

with ζ(x) is the Riemann function and ζ(3) ≈ 1.202. The condensate fraction
in dependence of temperature results immediately when taking into account that
N0 +NT = N :

N0

N
= 1−

(
T

TC

)3

. (2.28)

Note that these equations only hold in the case of non-interacting bosons. Taking
interaction into account complicates the whole calculations a lot. But since the
scattering length in our experiments reaches a few thousand Bohr radii this equa-
tions have to be used very carefully. A first order correction term for the critical
temperature has been found by Giorgini et al. [25]:

δTC
T 0
C

= −1.32a

√
mω

~
(λN)1/6 . (2.29)

T 0
C is the transition temperature calculated for the non-interacting case. However,

since this formula leads to corrections in the order of 20 % in the actual situation
in our experiment, even higher order corrections have to be taken into account to
find values that agree with our measurements.

2.3.3 Bimodal distribution
Below the critical temperature the atomic cloud will start to condense. Imaging
the cloud will lead to a bimodal distribution, revealing a Gaussian shaped part
for the thermal cloud, and a inverted parabola for the condensate part. Having a
closer look reveals that the thermal part itself is not a simple Gaussian. At low
temperatures the bosonic nature of the particles has to be taken into account and
the Boltzmann distribution has to be replaced by the Bose-Einstein distribution.
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Figure 2.6: Fit of a simple BEC model to a distribution where the interaction
between thermal and condensate part had been taken into account. The points are
calculated with the model presented in section 2.3.3, the fit is a simple bimodal fit
with a inverted parabola added to a Gaussian. As one can observe the deviations
are very small and can therefore be neglected in the evaluation.

When solving the integrals occurring in these calculations, the polylogarithmic
functions appear. They are defined as gp(z) =

∑∞
k=1 z

k/kp.
The density distribution can be calculated by integrating the Bose-Einstein dis-

tribution for particles in a harmonic trap over momentum space. The effective
potential that has to be inserted into the equation is given as the sum over the
external potential Vext and the meanfield interaction energy 2gn(~r):

nT (~r) =

∫
d3p

1

exp β [p2/2m+ Vext(~r) + 2gn(~r)]− 1
(2.30)

⇒ nT (~r) =
1

λ3
th

g3/2

(
e−β(Vext(~r)+2gn(~r))

)
(2.31)

with λ2
th = 2π~2/mkBT is called the thermal deBroglie wavelength. In general

n(~r) = nT (~r) + n0(~r) with nT being the thermal and n0 being the condensate
particle distribution function. Solving this problem is difficult, since the coupled
differential equation cannot be solved analytically. But regarding that the thermal
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cloud is very dilute, its density compared to the density in the condensate can be
neglected:

nT (~r) =
1

λ3
th

g3/2

(
e−β(Vext(~r)+2gn0(~r))

)
. (2.32)

The distribution for the condensate itself is given by equation 2.21, reduced by the
interaction of the thermal cloud. But as mentioned above, the effects of the weak
meanfield interaction in the dilute thermal gas can be neglected. For the fit the
function has to be restricted to the region where it is valid by multiplying equation
2.21 with the step function Θ(x). This avoids the distribution from producing
negative output:

n0(~r) =
µ− Vext(~r)

g
Θ(µ− Vext(~r)) . (2.33)

However, since the atomic cloud is too dense for our imaging system, we can
only observe the momentum distribution after a certain time-of-flight. The small
deviations in the starting conditions for the thermal part will certainly blur out
during the time-of-flight and a normal Gaussian momentum distribution will be
observed. In the condensate part, the effects of the dilute thermal cloud can even
be neglected in the distribution in position space. Since the kinetic energy of the
atoms is small compared to the meanfield energy, it will be possible to calculate
the distribution after the time-of-flight by simply assuming a transformation of
the meanfield energy into kinetic energy. This will be sufficient to get a good
description by the fit.
Yet, since the scattering length of 6 Li and therefore the meanfield energy of the

condensate is very large, the width of the condensate after a time-of-flight is hard
to distinguish from the thermal part. According to equation 2.22 µ = µ(a) and
we can influence the interaction in and therefore the expansion of the condensate
part. We will make use of this feature later to obtain the bimodal distribution by
ramping down the magnetic field and so the scattering length a. This results a
clear difference between both parts after a time-of-flight of about 10 ms.

2.4 Degenerate Fermi gases
In this part, density and momentum distribution for a cold fermionic sample in
a harmonic trap are calculated according to [26]. The key parameters of the gas
are the chemical potential and the Fermi energy, that is the energy up to which
the energy levels are filled at zero temperature. These will be the first quantities
that have to be calculated. To simplify the calculations they are done assuming a
non-interacting Fermi gas. This is of course not the case in the experiment, but
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the considerations can help to understand the physics of the system and lead to a
rough estimation of the relevant values.

2.4.1 Fermi energy and chemical potential
We assume again a cigar-shaped potential as described above with a potential
V (~r) = Mω2

2
(x2 + y2 + λ2z2) where ω is the radial and ωa = λω the axial trap

frequency. The eigenvalues of this potential are:

εnx,ny ,nz = ~ω (nx + ny + λnz) . (2.34)

Counting the number of states in a unity energy volume results the continuous
density of states:

g(εnx,ny ,nz) =
ε2

2λ (~ω)3 . (2.35)

The replacement is valid if the thermal energy is much larger than the average
level spacing, which is the case in most experimental situations. For example, a
trap with a frequency of 500 Hz has a depth in terms of temperature of ≈ 100 nK
and a level spacing of about 0.6 nK. Using the Fermi distribution and integrating
over all particles yields an implicit expression for the chemical potential:

N =

∫
g(ε)dε

eβ(ε−µ) + 1
. (2.36)

This equation can in general not be solved analytically for µ. To derive explicit
results anyway, it is possible to restrict the consideration to the low and zero tem-
perature case. Here equation 2.36 simplifies and becomes solvable.
In the case of zero temperature the Fermi-Dirac occupation factor

f(ε) =
1

exp (β(ε− µ)) + 1
(2.37)

is one for energies smaller than the Fermi energy Ef and zero for energies larger,
which makes the integral quite easy to solve. Only the integration of g(ε) from
zero to Ef has to be obtained. Solving for N yields an expression for the Fermi
energy:

Ef = ~ω (6Nλ)(1/3) . (2.38)

Note that the critical temperature in the BEC case scales in the same way with
particle number and trap frequency, simply the prefactor is different for the two
cases.
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To get an expression for the chemical potential at low temperatures the Som-
merfeld expansion can be used. The expansion makes use of the fact, that the
derivative of the Fermi distribution for low temperature is only different from
zero in a small area around the Fermi edge. Since at zero temperature the lowest
energy levels simply fill up with particles under consideration of Pauli’s exclusion
law, the distribution in momentum space has a sharp edge at the momentum cor-
responding to the highest filled energy level. The step from unity to zero in the
occupation number of the energy states is called the Fermi edge, which is widened
when increasing temperature, because the particles in the highest state can access
higher energy levels due to their thermal energy.
The Sommerfeld expansion gives a general solution for integrals of the form

I(T ) =

∞∫
−∞

dEg(E)f(E) (2.39)

where f(E) is the Fermi distribution, for low temperatures. The first step is now
to execute a partial integration. If g(E) drops to zero for E → −∞ and g(E) will
not diverge as fast as exp (E) with increasing E, the boundary values vanish. Since
the derivative of f(E) at low temperatures is only different from zero close to the
Fermi edge, the remaining integrand can be expanded around E = µ. Taking
into account that only the even powers of (E − µ) contribute to the sum due to
symmetry reasons, the integral can be expressed as (see [27]):

I(T ) =

µ∫
−∞

dEg(E)+2
∞∑
n=1

(1−21−2n)ζ(2n) (kBT )2n

[
d2n−1g(E)

dE2n−1

]
E=µ

. (2.40)

The equation looks quite complicated, but simplifies equation 2.36 such, that it
can be solved for µ analytically, since at low energies only the first term of the
sum has to be taken into account:

µ(T,N) = EF

[
1− π2

3

(
kBT

EF

)2
]

(2.41)

2.4.2 Spatial and momentum distribution
It is possible to find analytical expressions for the density in momentum and posi-
tion space for T = 0. A good starting point for this is to derive implicit equations
for a continuous, semi classical picture and then evaluate the results for T = 0.
These results give a good approximation to the values in the ultracold regime
where our experiments take place and T is not greater than a few hundred nK.
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Under the assumption that the particles can be described as wave packets located
at a position ~r and with wave vector ~k the phase space distribution can be written
by employing the Fermi distribution and replacing the energy with the Hamilto-
nian H = H((~r), ~~k). Normalizing to the density of states in the phase space
(2π)−3 yields the number density:

ω(~r,~k;T, µ) =
1

(2π)3

1

eβ(H(~r,~~k) + 1
. (2.42)

As a boundary condition the integral of the number density over the whole phase
space has to result the total particle number N . This yields an implicit equation
for the chemical potential. The distribution of states for the Hamiltonian is known.
The momentum and spatial distribution can be derived after solving for the chem-
ical potential. This is done by integrating over the other three dimension of the
phase space and with this projecting the phase space distribution to the position
or momentum space:

n(~r;T ) =

∫
d3~k ω(~r,~k;T, µ) (2.43)

n(~k;T ) =

∫
d3~r ω(~r,~k;T, µ) . (2.44)

For T = 0 things become quite simple again. The occupied space in ~k space is
simply a sphere with the radius of the Fermi wave vector ~kF . Dividing through
the density of states in phase space yields the density in position space. Since the
Fermi energy is constant for the whole sample, but the trap potential V (~r) varies
with position, a "local" Fermi energy can be defined in a way that potential and
kinetic energy of the particles always sum up to the Fermi energy:

~2kF (~r)2

2m
+ V (~r) = EF . (2.45)

This helps to write the density distribution in position space for T = 0 as:

n(~r) =
8Nλ

π2R3
F

(
1− ρ2

R2
F

)3/2

. (2.46)

where R2
F = 2EF/mω

2
r is called the Fermi radius and ρ2 = x2 + y2 + λ2z2 is the

effective distance from the center of the trap. Of course this equation only makes
sense for ρ < RF . The distribution drops to zero for all other values.
Note that the Fermi radius scales with ω−1, whereas the expansion of a BEC

scales with ω−2/5. Hence for low trap frequencies a bosonic cloud has a smaller
extension than the fermionic one. This is a direct effect of the Fermi pressure
induced by Pauli blocking.
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To obtain the momentum distribution, the integral over the position space has to
be executed. Since this distribution in the case of T = 0 is a step function, the
integral becomes just the volume in position space occupied by states whose local
Fermi wave vector is smaller than the absolute value of the wave vector for which
the density is calculated. The positive and negative solutions of equation 2.45
for ~r result the upper and lower borders for the volume integral. This yields the
density distribution in momentum space:

n(~k) =
8N

π2K3
F

1−

∣∣∣~k∣∣∣2
K2
F


3/2

, (2.47)

whereK2
F = kF (0)2 = 2MEF/~2 is the global Fermi wave number. Note that the

momentum distribution is isotropic even for the elliptic trap, whereas the spatial
distribution is influenced by the shape of the trap.

2.4.3 Phase transition

In the bosonic case it was shown that there is a phase transition when the phase
space density of the atomic cloud exceeds unity. In a non-interacting Fermi gas
such a transition cannot be observed when increasing the phase space density. The
gas becomes more and more degenerate until at zero temperature all energy levels
are filled up to the Fermi energy. However, as Bardeen, Cooper and Schrieffer
found out for the case of electrons in metals, an arbitrary weak interaction is suf-
ficient to bind the fermions in momentum space to delocalized Cooper pairs. The
pairs are no stable molecules, but a meanfield phenomenon. The particles have
no fixed partner but form many-body pairs, meaning that two fermions are only
associated with each other for a short time and then change their partner. In order
to excite such a gas from the ground state at least one of the pairs has to be broken.
This minimal excitation energy is called excitation gap and has been calculated to
be

∆ =
1

2

(
2

e

)7/3

EF exp

(
− π

2kF |a|

)
(2.48)

if the gas is homogeneous and the coupling is only mediated via s-wave scattering.
The presence of such a gap is in nearly every case connected with superfluidity. So
if a minimal interaction is present, the Fermi gas undergoes a phase transition into
a superfluid state at a temperature proportional to the gap. It therefore depends
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exponentially on the scattering length a and the Fermi wave number kF

TBCS =
eγ

π

(
2

e

)7/3

TF exp

(
− π

2kF |a|

)
≈ 0.277TF exp

(
− π

2kF |a|

)
(2.49)

where γ ≈ 0.577216 is Euler’s constant. In a weak interacting gas the transition
temperature is orders of magnitude smaller than the Fermi temperature. For ex-
ample, taking the trap frequencies of the lowest trap we used so far with a typical
particle number at background scattering length yields a transition temperature
of TBCS = 10−4 TC . This regime cannot be reached with today’s experiments.
But with the help of Feshbach resonances the scattering length can be increased
dramatically. Although the approximation above is only valid for small interac-
tions, the transition energy for a Fermi gas at unitarity has been calculated to be
TBCS = 0.2TC . In this regime such a phase transition has been observed. The
commonly accepted signature of the superfluid phase are so-called vortices, quan-
tizised twirls in a rotating gas. Such vortices could be observed by the group of W.
Ketterle [28] in 2005. The regime also seems to be reachable in our experiment,
but the observation of vortices is still a difficult thing to do.
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Chapter 3

Experimental setup and techniques

3.1 Vacuum and MOT

As in the preceding chapter this chapter will not go into details concerning the
experimental setup that have already been described in-depth by the predecessors
in the group. Up to the dipole trap, only the main facts will be summarized and
the reader is referred to [13] for MOT performance and vacuum setup and [14] for
details on the offset locks of MOT and imaging lasers.
Since every collision with a particle from the background gas leads to losses

from the trap, the atomic cloud would immediately be destroyed at atmospheric
pressure. This is why experiments have to be conducted in an ultra high vacuum.
Therefore, the heart of the experiment is a vacuum chamber at a pressure of about
10−11 − 10−12 mbar. An overview over the vacuum setup with pumps and 6Li-
oven is given in figure 3.1.
The oven is heated to a temperature of 350 ◦C to create a sufficient vapor pressure

to supply the experiment with a suitable flux of 6 Li atoms. After leaving the
oven, the atoms enter the Zeeman slower, which decelerates them to about 50 m/s.
At this speed they can be trapped in the MOT. The MOT consists of three retro
reflected beams and a quadrupole field, which makes it possible to trap the atoms
in position space and precool them to about 410µK, so that they can be loaded into
an optical dipole trap. The lasers of the MOT have to match the atomic transition
very precisely and therefore, it is necessary to control the stability of the lasers
with sub-MHz precision. This is done via Doppler-free saturation spectroscopy
and offset locks. The offset locks enable to tune the frequency of the lasers with
respect to the atomic transition. The whole setup for the creation of the MOT and
imaging lasers is placed on a separate optical table and the beams are transferred
to the actual experiment by optical fibres. This decouples these laser system from
the dipole setup and saves valuable space around the octagon.
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1: Titanium sublimator
2: Ion pump
3: Lithium oven
4: Zeeman slower
5: Octagon
6: Gate valve

Figure 3.1: Overview over the vacuum setup with oven, pumps and experimental
chamber. The red parts are the coils providing the magnetic field for the MOT
and the Zeeman slower. The gate valve opens the oppurtunity to add parts to the
experimental chamber without breaking the vacuum.

3.2 Imaging

A powerful tool to gather information about the atomic ensemble is to measure
density distributions by imaging the particles in the cloud with resonant light.
Note that at sufficient magnetic field the energy difference between the hyperfine
states allows for independently imaging each component by tuning the frequency
of the imaging beam. The imaging can be done via measuring the fluorescence
of light that is scattered by the atoms or the other way around via measuring the
absorption of photons from a resonant beam. It is not possible to observe the
alignment of the beams in the chamber directly, so parameters like the spatial
overlap of the MOT and the dipole beams can only be observed by the behavior
of the atoms in the traps. Therefore the imaging of the atoms plays an important
role even in aligning and optimizing the trap.
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Fluorescence imaging is done by counting the photons scattered onto the camera.
Considering that the scattering is isotrope, the number of atoms can be deduced
from the scattering rate and the exposure time of the camera. As only a small
fraction of the scattered photons is observed, many photons have to be scattered
for a sufficient signal. For example, assuming a lens collecting the light within a
diameter of 1′′ =̂ 2.54 cm in a distance of 15 cm from the atomic cloud results a
solid angle of 1.8 × 10−3 in which photons are collected. In the dipole trap the
scattering rate of photons is much too small to get a image with a good signal-to-
noise ratio. To get a sufficient number of photons, the cloud is recaptured into the
MOT before performing such a measurement. Unfortunately, this also destroys
all spatial information and the atom number is the only useable value that can be
obtained from these measurements.
A more effective tool is the measurement of the absorption of photons from a res-

onant laser beam. The measurement counts all the photons that are not scattered
in the direction of the camera. Since the dynamics of the sample are slow com-
pared to the duration in which the laser beam is applied to the sample, nearly all
spatial information of the atoms is preserved. Since the main observation tool in
the presented experiments is absorption imaging, the calculations necessary to get
the spatial density distribution from the images taken by the camera will briefly
be pointed out.
In fact, for a single absorption image three pictures have to be taken: The ab-

sorption image itself, a reference picture with no atoms present and a background
image, which is taken without turning on the imaging beam. By the imaging the
3D density distribution, it is integrated in the direction of the camera. The 2D
optical density distribution can be calculated from the three pictures as

ρop(x, y) = − ln
Iabs(x, y)− Ibg(x, y)

Iref (x, y)− Ibg(x, y)
. (3.1)

The optical density and the particle density are connected by the scattering cross
section of the light with the atoms:

σsc =
ρop
n

=
3λ2

2π
. (3.2)

This formula for the cross section is valid for light matching the atomic transition,
which in the given case would be circularly polarized light. However, since the
imaging beam runs perpendicularly to the quantization axis given by the magnetic
field, it cannot be polarized circularly. With the actually used horizontally polar-
ized light we get only half the cross section. To evalute the image it is once again
integrated, this time by the camera programm to increase the signal-to-noise ratio
and to simplify evalutaion. The resulting 1D density distribution is fitted with a
Gaussian. Since in most cases the particles follow a thermal momentum distribu-
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tion, the Gaussian shape corresponds quite well with the measured density profile.
Dividing the area under the curve by the scattering cross section σsc leads to the
total number of particles

N =
Agauss
σsc

Apixel
M2

(3.3)

where Apixel = 8.4µm × 19.6µm is the total area of one pixel and M = 1.17 the
magnification of our imaging system.
By measuring a density distribution, the distribution of the atomic cloud in mo-

mentum space can also be determined, when measuring the cloud after a cer-
tain time-of-flight (TOF). This kind of measurement is accomplished by instantly
switching off all trapping potentials and leaving the atoms to a free flight for typ-
ically a few ms before imaging them. If the gas is thermal, the momentum is
distributed according to the Maxwell-Boltzmann distribution, hence a Gaussian
can be fitted to the expanded cloud. Assuming a very small initial expansion of
the cloud compared to the width σ after the TOF, a simple calculation results the
temperature of the cloud:

T =
mv2

2kB
=

mLiσ
2

2(∆t)2kB
(3.4)

where ∆t is the time between trap release and imaging.
However, for few fermion systems the limit for this kind of imaging is reached. If

single particles should be resolved, the resolution of the imaging system has to be
on the same order of magnitude as the object that shall be imaged. The resonant
light “sees” the atoms with their cross section of about (λ/2)2. With the asphere
recently implemented into the setup our imaging system has a resolution of about
2µm ≈ 3λ. This means that without enhancing the resolution by another factor
of 3− 4 we will not be able to resolve single particles. When doing fluorescence
imaging the resolution only has to be on the same order of magnitude as the inter-
atomic distance, because the atoms are the sources of the photons. Hence, for this
purpose it might be better to fall back on fluorescence imaging again. With the
asphere we can collect photons in a solid angle of 10−1. The precision with which
the number N of incoming photons can be determined is limited by

√
N due to

the Poisson distribution of the counts. This effect is called shot noise. At least
10 photons have to be collected from each atom to get a signal that can clearly
be distinguished from this noise. The photons will be detected with an EM-CCD
camera (Andor iXon DC887BI), which will allow to reach the shot noise limit.
Summing up, this results in a total number of 100 photons that has to be scattered
from each atom for the measurement. The near future will show if it is possible
to scatter the necessary number of photons without destroying spatial information
before measuring it.

32



3.3 Dipole trap

3.3.1 Setup

The dipole trap is formed by a single mode Ytterbium doped fiber laser (IPG
YLR-200-SM) with a center wavelength of 1070 nm and a line width of about
3 nm. The laser can produce a maximum output power of 200 W. The beam is
focused to a diameter (twice the waist of a Gauss fit to the beam profile) of about
1.3 mm to fit through two acousto-optic modulators (AOMs)(Crystal Technology
3110-191 and -197). In an AOM the beam undergoes Bragg diffraction on a sound
wave in a crytall. The sound wave in the crystall is produced by a piezoelectric
crystall, driven with RF power. The AOMs are used on the one hand to control the
laser power via varying the RF power and with that the diffraction efficiency of the
AOM. On the other hand, this provides the possibility of creating time averaged
potentials if the frequency of the RF signal and with that the diffraction angle
of the AOMs are tuned much faster than the trap frequencies. The RF signal is
produced by a VCO (Z-Communications V110-ME01) that can be tuned with a
frequency of up to 10 MHz, which is fast compared to the highest trap frequency
of 18.4 kHz we can reach with the current setup. The power of the RF signal
can be adjusted using a variable attenuator (Minicircuits ZX73-2500M-S+) before
amplifying the signal to the desired power for optimal operation of the AOMs
(amplifier: Minicircuits ZHL-03-5WF).
All diffraction orders except for the first one of both AOMs are filtered out in a

water cooled beam dump. The remaining beam is enlarged to a diameter of about
4.1 mm. In between the polarization of the beam can be tuned by a half wave
plate to pass through a Brewster polarizer. The polarizer suppresses the polariza-
tion noise of the fiber laser with a specified extinction rate of 10−3. This is done
because the lifetime of the atoms in the trap highly depends on the relative polar-
ization of the two counter propagating beams. We observed, that it is very critical
for a long lifetime of particles in the trap, that the two beams are polarized or-
thogonally and that a slight misalignment leads to a significant decreament of the
lifetime. That is why it is necessary to clean the polarization as good as possible.
The collimated beam is focused into the chamber using a lens with a focal length

of 300 mm leading to a focus of 100µm diameter. On the other side of the cham-
ber the beam is recollimated, the polarization is rotated by 90◦ and the beam is
refocused into the chamber, crossing the incoming beam in the center of the cham-
ber at an angle of about 14◦. Finally the beam is dumped into another water cooled
beam dump.
Since the mirrors only reflect about 99.9% of the light, the transmitted beam can

be used for monitoring purposes. In our setup this is done once behind the second
mirror (counted in beam direction from the fiber coupler of the dipole laser) to
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Figure 3.2: Optical setup around the vacuum chamber
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Figure 3.3: Measurement of the axial trap frequency at a laser power of 760 mW.
When shaking the trap with different frequencies, the temperature reaches a max-
imum at the double trap frequency. The errors are the statistical errors of at least
five independent measurements.

monitor the power via two photo diodes and once behind the fourth to observe the
beam profile with a CCD camera. The two photodiodes are necessary to measure
the power over a wide range and a great sensitivity at low beam power. The wide
range is covered with a silicon diode (Thorlabs PDA36A) with a large excitation
gap compared to the energy of the infrared photons. Therefore, relatively high
beam power can be measured without saturating the diode. The precision at low
power is reached with a GaAs diode (Hamamatsu G8370-81). Because GaAs has
a smaller excitation gap it is more sensitive to the infrared photons, which helps
to improve signal-to-noise ratio at low beam intensities.
The shape of the beam in the focus can be observed with a focusing lens and a

beam profile camera (DataRay, WinCamD). It is important to check the profile
regularly since dust or other particles on the optics can lead to strong distortion of
the beam due to thermal lensing effects, especially at high beam power.
Since we work with quite high laser power, thermal effects were an important is-

sue when setting up the dipole trap. They occur when optical elements change
their refractive structure due to the heat absorbed when the beam propagates
through them. However, calculating those effects is not straight forward, since
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a lot of simplifications have to be made to derive quantitive values. In our case
it turned out that the experiment is the most reliable possibility to quantify these
effects and to decide, whether the experiment will work with them or not. Here a
short summary of the results of the analysis is given:
The optical isolator first implemented into the setup (LINOS Photonics FI-1060-

8SI) contains a Terbium Gallium Garnet (TGG) crystal of 40 mm length. A beam
collimated to a diameter of 4.3 mm at 10W was focused to a beam with a minimal
diameter of 0.9 mm in a distance of 2 m from the isolator. The isolator was there-
fore removed from the setup. Cubes made of borosilicate glass (BK7) also showed
strong focusing effects, e.g. a 12 mm cube deformes a 2.5 mm collimated beam
to a focused one with a focus of 1 mm and a focal length of 1 m when increasing
the power as described above. That is why the setup is built completely without
any cubes. Smaller effects produced by BK7 lenses could slightly be improved by
choosing ones made of fused silica (SiO2) at locations where the beam is small and
power densities are high. Luckily, the TeO2-crystals used in the AOMs showed
nearly no thermal lensing effects. The slight astigmatism produced by the fact
that the two axis of the crystal are not otically equal is nearly compensated by the
fact that we use two perpendicular AOMs. However, the final step to overcome
thermal lensing effects and produce a defined trap was to keep high power duty
cycles short. In the current experimental cycle the laser operates at full power for
less than 10 ms and is decreased to less than half this power within the first 100 ms
of forced evaporation. This minimizes the heat transferred to the optical elements.

3.3.2 Performance
Key properties of the trap are the trap frequencies of the main axes, the heating
rate and the particle loss rate. The first one is given by the size of the trap and the
laser power. Heating rate and loss rate are mainly determined by the noise of the
laser and the residual photon scattering rate in the trap.
The trap frequency are directly connected with the beam power and scale with
P ∝

√
ω. They can be measured by simply modulating the intensity of the laser

power and thereby parametrically heat the trap. The number of atoms and the
temperature after a defined number of kicks in dependence of this excitation fre-
quency can be observed. When the frequency is equal to twice the trap frequency
the atoms are heated and leave the trap. This is because the atoms get a kick in
both turning points of their movement in the harmonic potential. Hence the energy
of each kick adds up until the energy of the particle exceeds the trapping potential
and it leaves the trap. Since the trap is not fully harmonic, but becomes anhar-
monic in the regions further away from the center of the Gaussian beam, the loss
of atoms reaches its maximum at frequencies lower than the real trap frequency.
This is because the anharmonic part of the potential shifts down the eigenfrequen-
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Figure 3.4: Measurement of the axial trap frequency at a laser power of 120 mW.
Ramping up the magnetic field for a few ms causes the atomic cloud to oscillate
in the trap with the trap frequency. The fit shows a damped sine. The errors are
the statistical errors of at least five independent measurements.

cies of the oscillator. A more precise indicator is therefore the temperature of the
sample, obtained by a time-of-flight (TOF) measurement. For efficient heating of
the whole atomic sample, the atoms have to be shaken without immediately leav-
ing the trap. The temperature therefore reaches its maximum at the frequency at
which the bottom of the trap is in resonance with the excitation frequency, that is
the actual trap frequency. Figure 3.3 shows one example of such a measurement.
Note that the temperature decreases slightly before it increases to the maximum
value. This is also a consequence of the anharmonic part of the trap. Since the
hottest particle with the highest energy are preferably in the anharmonic region,
they are removed at lower frequency. Removing the hottest particle leads to a
decrement of the total temperature. Figure 3.5 shows the obtained trap frequen-
cies for our trap in dependence of the potential depth. The plotted error bars in the
trap frequency measurement are the standard error from at least five independent
measurements, the errors in the trap frequency graph are taken from the fit. The
frequencies decrease with the square root of the laser power as expected.
A cross-check for the validity of this type of measurement is the excitation of

dipole oscillation of the cloud. After evaporatively cooling the cloud to a certain

37



0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 1 . 2 1 . 4 1 . 6 1 . 8
2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0  p a r a m e t r i c  h e a t i n g
 d i p o l e  o s c i l l a t i o n s

 

 
ax

ial 
tra

p f
req

ue
nc

y [
Hz

]

b e a m  p o w e r  [ W ]

Figure 3.5: Axial trap frequency versus laser intensity. The red points were mea-
sured by exiting dipole oscillations, the black ones by parametric heating. The
errors are the 95 % confidence interval of the fit to the respective measurement.
All points lie within their error bars on the fitted square root function.

trap depth, the potential can be ramped up and an oscillation of the center of
mass of the cloud in the trap with the trap frequency can be excited. For this
purpose we make use of a magnetic field gradient in our trap, which excites such
an oscillation when ramping up the magnetic field for a few ms. The damping
of this oscillation is an indicator for the anharmonicity of the trap, since higher
orders in the expansion of the trapping potential lead to a dephasing of the motion
of the particles, blurring the oscillation of the cloud and damping it out. Figure
3.4 gives an example of such a measurement. Observing these oscillations in the
slow axis of our trap, we can clearly see that both measurements lead to equal
trap frequencies within the experimental errors. A comparison of a fit only to the
points measured by exciting dipole oscillations and the ones measured by shaking
the trap revealed a difference of 5% between both measurements. This seems a
plausible value for the error of the trap frequencies.
Heating in a trap results from noise in the laser power, its pointing instability and

from remaining photon scattering processes. Figure 3.6 shows the heating rate in
the trap at different laser powers at a magnetic field of 561 G, where we make our
three component Fermi mixture. The evaporation was obtained down to a laser
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Figure 3.6: Heating rate of the trap measured in a fermionic sample. Each point
originates from a fit to a lifetime measurement at the respective trap depth. The
sample was evaporated to a depth of 135 mW, then the trap was compressed up
to the probe depth and the temperature was observed over 20 s. The errors are the
95 % confidence interval of the fit parameters.

power of 135mW as explained in chapter 5. Then the magnetic field is switched
to 561 G and the laser power is ramped up to the respective probe value. This has
to be done slowly compared to the trap frequencies to minimalize heating by re-
compression of the trap. However, the trap is heated adiabatically, proportional to
the square root of the beam power. The particles of state |2〉 are removed from the
trap with a resonant laser pulse to ensure that only single particle processes take
part in the heating. Since identical fermions cannot scatter via s-wave scattering
and therefore do not interact at low temperatures, the only possibility to deposit
energy in the sample is by photon-atom interaction. The heating rates plotted in
figure 3.6 are the result of a linear fit to the evolution of the temperature during
the first 2 s after the laser power has reached the probe value.
A rough estimate of the heating induced by the scattering of photons can be

obtained assuming that the atoms scatter photons with a rate of the peak scattering
rate derived from equation 2.6. This is valid, since at a truncation parameter of
7.14 all of the atoms are close to the trap center. An upper limit for the heating
rate can be derived by assuming that every particle remains in the trap and absorbs
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the total energy of the scattered photons. This would lead to a heating rate of
kBṪ = Γsc(0)(~k)2/2m, which yields a heating rate of 11.2 nK/s at a beam
power of 400 mW. Note that the heating drops to zero at a beam power of 0.2 W
which corresponds to a trap depth in terms of temperature of 6µK. A single
photon transfers an energy of Erec = (~k)2/m = 3µK to the atoms. This is
exactly half the potential depth. But since the atoms can leave the trap into the
single beams forming the trap, the barrier for escaping is only half as high as the
total trap depth. Hence all particles that scatter a photon leave the trap and cannot
contribute to heating.
Of course, this model overestimates the real heating rate. Yet the fact that the

measured heating rates are on the same order of magnitude as these results and
the zero crossing is consistent with the recoil energy transfered in a single scat-
tering process shows, that we are primarily limited by the remaining photon scat-
tering. To achieve lower heating rates, a laser with a larger wavelength has to be
used. This would reduce the energy of a single photon as well as the scattering
rate. Since this would also lower the potential depth, the power would have to be
increased to achieve the same experimental conditions.

3.4 Drawing time-averaged potentials

2f ff

AOM

Figure 3.7: A lens transforms a change in the propagation angle into a change in
position, if the AOM is set up in the focus of the lens. Deflection dimensions are
exaggerated.

In an acousto-optic modulator (AOM), a beam traveling through a crystal is de-
flected by a sound wave in the crystal. The deviations in the optical density created
by the sound wave produce a lattice at which the incoming beam undergoes Bragg
diffraction. By varying the frequency of the sound wave, the diffraction angle of
the diffracted beams can be influenced. Since momentum conservation has to be
fulfilled, changing the frequency of the sound wave also changes the frequency
of the transmitted beam. But since the dipole trap laser is very far detuned with
respect to the atomic transition, in this case this effect can be neglected . We can
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Figure 3.8: Beam camera images for different amplitudes of modulation. The
beam diameter decreases from left to right from 200µm to 100µm.

therefore use the possibility of changing the diffraction angle of the first diffrac-
tion order to "paint" a variety of potentials. "Painting" means here that the laser
scans a certain area with a frequency much higher than the trap frequencies, so
that the atoms are only influenced by the time-averaged potential. In detail this is
done the following way:
The beam is transmitted through two AOMs, mounted perpendicular to each

other. Assuming the z-axis in the direction of the beam propagation, the beam
can be moved in the x− y-plane. Moving means here that the diffration angle of
the AOM and therefore initially the angle of propagation can be changed. A lens
set up in the distance of the focal length transforms the change in the propagation
angle into a change in position. When the beam is reflected back into the chamber,
the movement is mirrored at the optical axis as shown in 3.7. Therefore, moving
the beam of a crossed dipole trap always leads to a symmetric time-averaged po-
tential.
Since we can control the frequency of the sound wave using an arbitrary wave-

form generator (AWG) we can load waveforms at will into the memory of the
AWG and accomplish movements in nearly any path of the x-y-plane within the
limits of the AOM. However, the diffraction efficiency depends on the diffraction
angle. It has to be taken into account that at regions further away from the center,
the beam has to stay longer to transfer an equal amount of energy to that point.
Figure 3.8 shows beam profiles produced by applying a spiral movement with
different amplitudes to the AOM. The pictures were taken with a beam profile
camera.
The first idea was to enlarge the trap for the transfer from the MOT to the dipole

trap. Since the MOT covers a far larger volume than the dipole trap, it can be
hoped that by enlarging the dipole trap the spatial overlap of both traps increases
and more atoms can be transferred. During evaporation the trap is reduced to
the actual focus of the trapping beam again. Figure 3.9 shows the number of
transferred particles after the first step of evaporation, where trap sizes are equal
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Figure 3.9: Number of atoms after first part of evaporation versus beam waist at
transfer. The errors are the statistical errors of at least five independent measure-
ments.

again. The trap was enlarged by changing the RF frequency of the vertical AOM in
a sinusoidal way with a frequency of 200 kHz. The x-axis gives the maximum size
of the beam at transfer. Unfortunately, the overall transfer rate is neither reduced
nor enlarged at small modulating amplitudes. At higher amplitudes the number of
transferred atoms decreases, probably because the gain in spatial overlap of both
traps is overcompensated by the flattening of the trap. Modulating the beam in
both axis does not improve this problem.
However, we found that the properties of the trap can slightly be improved by

modulating the beam at the end of evaporation. At small trap depth the particles
are the most sensitive to the laser noise. Modulating the beam position a little bit
might flatten the inhomogenities in the trapping potential, which possibly reduces
heating or particle loss. Figure 3.10 shows the gain in particle number for a given
expansion energy of the condensate when doing the final evaporation by enlarging
the effective beam. It might be possible to get rid of the final loss shown in figure
4.2 using this method. But since this method also lowers the trap frequencies, a
closer look at the phase space density has to be taken before judging which method
is the better choice on the way towards a cold with low expansion energies.
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Figure 3.10: Final part of evaporation. The trap is lowered to a depth of 70 mW as
described in chapter 4. For the black curve the beam power was simply lowered
further down to different trap values. After 1s plain evaporation the expansion
energy and the number of atoms of the sample were measured in a time of flight
measurement. For the red curve the trap was widened to different sizes and the
same measurements were performed.

3.5 Magnetic field

3.5.1 Feshbach coils

The interaction between the particles can simply be tuned by applying a magnetic
field as shown in section 2.2. This field is provided by two coils in Helmholtz
configuration around the center of the octagon, called Feshbach coils. To access
the full resonant region, these coils have to provide a homogeneous field of up to
1500 G at the point where the atoms are trapped. The design of these coils is one
of the great challenges in the setup of our experiment.
In principle, there are two posibilities to construct these coils: Either the coils can

be placed far away from the trap with sufficient space for large coils and a complex
cooling system. Or small coils can be produced and brought close to the atomic
cloud. However, this raises the problem that the space for cooling equipment is
rather limited. Although these coils would need less power, it is a challenge to
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dissipate the produced heat from the coils and avoid destruction.
The vacuum chamber has an inset for the Feshbach coils at the reentrant viewport.

This allows to bring the coils to a distance of 31 mm. At the same time it limits
the inner diameter of the coil to 58 mm and fixes the outer diameter to 96 mm.
The coils consists of a copper wire of 1 mm × 5 mm. To get a sufficient amount
of windings for a homogeneous field, the width of the wire was chosen small. In
contrast, the length was chosen larger to increase the area conducting the current.
This reduces the resistance of the wire and with that the heat produced in the coils.
The choosen extensions allow for the creation of coils with 15 windings, requiring
400 A to produce a field of 1500 G in the given configuration. The resistance of
the coils was measured to be ≈ 13 mΩ, which results a power deposited in the
coils of P = RI2 = 2000 W.
The great challenge is now to dissipate the heat from the coils. Therefore, they

are glued to a heat sink made of copper. The critical point in the cooling process
is the transport of the heat from the wire to the sink. Since the isolation of the
copper wire is a bad thermal conductor, the upper side of the coils was abraded
before being glued to the sink. For the first generation of coils we used a filled
epoxy (Emerson and Cuming, Stycast 2762FT) with a thermal conductivity of
1.34 W/mK. These coils have a maximal continuous operation current of about
210 A. At this current the maximal temperature of the coils reaches up to 100 ◦C,
a temperature that should not be exceeded too much, since the glue of the coils
as well as the octagon itself could suffer critical damage. The coils can be driven
with 400 A for a few 100 ms. These operation properties are sufficient for the ex-
periment, since the magnetic field for evaporation can be produced continuously,
while for experiments in the high field regime the provided time is sufficient.
However, we found that the performance of the coils decreases with time. Roughly

half a year after the coils were put into operation, the highest temperature of the
coils at continuous operation with 210 A raised to about 160 ◦C. This might be
caused by degradation of the thermal connection between coil and sink, because
the porous Stycast cannot cope with the mechanical stress during many experi-
mental cycles. This forces us to build a second generation of coils, employing
diamond filled Epoxy (AI technology, Prima-Bond ME7159), with a thermal con-
ductivity of 11.4 W/mK. This Epoxy showed promising properties when trying
to repair the existing coils and will hopefully work even better in the new set of
coils.

3.5.2 Switching polarity
In order to get a homogeneous magnetic field at the center of the trap, it is impor-
tant that the atomic cloud is in the exact center of the magnetic field created by
the Feshbach coils. To rule out any misalignment the coils creating the MOT-field
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Figure 3.11: Circuit diagram for the H-bridge changing the polarization of the
Feshbach coils.

are switched off and the field is taken over by the Feshbach coils shortly before
the atoms are transferred into the dipole trap. Since the MOT needs a quadrupole
field that is created by two coils in Anti-Helmholtz configuration, it must be pos-
sible to switch the polarity of at least one of the coils. To avoid particle loss and
heating, this has to be done at a time scale of about 1 ms. Switching is done by a
so-called H-bridge presented in figure 3.11. Via four MOSFETs the supply lines
of the coil can be connected either to the positive potential of the power supply or
to ground. The two possibilities to operate the coil are to open MOSFET 1 and 4
or 2 and 3 and close the other two. To switch off the coil, gates 2 and 4 or 1 and 3
have to be opened. In every case it must be avoided to open 1 and 2 or 3 and 4 at
the same time, because this would lead to a short circuit which could destroy the
setup. The MOSFETs can also be destroyed by only partly opening their gates. If
the resistance of the MOSFETs increases, the current of up to 400A will imme-
diately overheat the device. Luckily there are ICs available, which take care of
these problems. The HIP4081a automatically avoids short circuits and intermedi-
ate voltage at the gates. Apart from these logic elements, the HIP is essentially a
charge pump, which pumps the charge from external capacitors to the gates of the
MOSFETs in the moment of switching. This allows the HIP to be independent of
absolute voltages and to hold the potential difference between the three pairs of
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Figure 3.12: Picture of the MOSFET bench for switching the polarity of the coils.

the six outputs constant. The two connection possibilities on each side of the core
can be switched very conveniently with a TTL signal.
The MOSFETs have to switch up to 400 A. In the normal design of these compo-

nents the maximum current is limited by the current their connectors can conduct.
The connectors can only safely be driven with a current of less then 80 A. This
leaves the possibility to switch to more expensive devices or to connect many
MOSFETs in parallel. As the second alternative is cheaper and in the case of
failure more convenient to repair, we decided to put 10 MOSFETs (IRFB3077)
for each switching point in parallel. The MOSFETs are screwed onto a copper
bench which can dissipate the produced heat (see figure 3.12). The resistance of
the MOSFETs between source and drain is about 3 mΩ. At a current of 200 A this
results a power of P = RI2 = 1.2 W per MOSFET. Of course, the whole setup is
oversized for the dissipation of this power . Yet since the power increases quadrat-
ically with the current and for high fields the MOSFETs have to switch twice the
current, we are sure that everything will keep working, even if single MOSFETs
are destroyed. Another advantage of this system is that MOSFETs that are not
working anymore can be replaced very easily. The bench is capable of up to 80
MOSFETs to switch the polarity of both coils. This can be used to ramp down
the magnetic field very fast by changing the polarity of both coils. It reduces in-
duced currents and accelerates the decay of the magnetic field. Since for current
experiments this is not necessary yet, there are only 40 MOSFETs implemented
to switch one coil at the transfer.
To make sure that the MOSFETs are not destroyed by induction voltage, there are

varistors connected in parallel to the MOSFETs. These devices work like voltage
dependent resistors which direct the current around the MOSFETs if the voltage
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exceeds the normal operating voltage.

3.5.3 Stabilization and calibration
The magnetic field is stabilized with a 100 kHz digital PID loop implemented in
our experiment control. The current running through the coils is first transformed
with a current transducer (Danfysik, Ultrastab866-600) with a ratio of 1500 : 1
and then transformed into a voltage by a high precision resistor (ISA-Plan type
A-H, Isabellenhütte). This voltage is amplified by a factor of three by an opera-
tional amplifier to fit the full range of the input of our experimental control. The
remaining noise on the current is in the order of 10−4 RMS, corresponding to a
field stability of ±50 mG at a magnetic field of 500 G. The input has a resolution
of 16 bit for ±10 V, which corresponds to a step size of 0.3 mV or 53 mG per bit.
This limits the control of the magnetic field, because the flipping of a single bit
on the control signal can be observed. Extending the input to 18 bit will increase
the magnetic field resolution by a factor of four and offers the possibility of more
precise experiments.
The calibration of the magnetic field is done by driving transitions between the

lowest hyperfine states. Since the desired frequency of the RF field is extremely
sensitive to the magnetic field, this gives a sufficient calibration. For instance,
the number of particles in state |1〉 can be observed while scanning the frequency
around a roughly estimated transition. From the frequency where maximal loss
from state |1〉 is observed, the related magnetic field can be calculated. The tran-
sition frequency scales with 16 kHz/G at a field of 300 G. This means that we are
able to calibrate the magnetic field with higher precision than the setup allows to
control the field.

3.6 RF setup
To induce a transition between the three lowest hyperfine states, a RF field ac-
cording to the energy differences of these states has to be applied to the sample.
The energy differences and therefore the required frequencies scale with the mag-
netic field. At the field applied in our setup the desired frequencies vary between
70 − 85 MHz, which corresponds to wavelengths of about ≈ 4 m. The field is
produced by an antenna connected to a RF generator setup. Since the distance be-
tween the antenna and the center of the trap is much smaller than the wavelength,
the point where the field is required lies in the near field range of the antenna and
the antenna does not have to send electromagnetic waves. A simple and effective
setup is to use a wire antenna. The wire is turned to a circle fitting around the
MOT beam at the reentrant viewport. The impedance of the antenna has to be
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matched to the impedance of the amplifier output to avoid backreflection of the
RF signal at the connector. This is done by a capacitor that is connected parallel
to the antenna. The other value that has to be adjusted is the resonance frequency
of the oscillating circuit composed by the inductance and the capacity of the wire.
This is done by connecting a capacitor in series with the antenna. This maximizes
the current in the antenna and therefore the field at the center of the trap. In the
current setup the antenna is designed to be in resonance at a frequency of 80 MHz.
The RF is needed to create a balanced mixture between the three lowest hyperfine

states of 6Li. The |1〉 ↔ |3〉 transition is forbidden in first order due to angular
momentum conservation, so only the transitions |1〉 ↔ |2〉 and |2〉 ↔ |3〉 can
be driven. Therefore, we need to apply two RF frequencies simultaneously to
the atomic sample. The two frequencies can be produced by mixing the center
frequency with a frequency equal to half of the frequency difference. Mixing
both signals yields frequencies at the desired amount, since mixing two sinusoidal
signals always produces the sum and the difference frequency of the two separate
signals.
The only device able to produce a frequency higher than 80 MHz in our lab is

a 6 GHz spectrum analyzer (Rhode und Schwarz FSL) with a generator output,
which can be controlled via our experiment control. The spectrum analyzer is
used to produce the center frequency. The much lower difference frequency is
taken from an arbitrary waveform generator (AWG) (Stanford Research DS345)
and mixed with the signal from the spectrum analyser.
During the inital evaporation a slight imbalance between states |1〉 and |2〉 is

removed with the RF signal from another AWG (Agilent 33250 A). Its output is
fed through a frequency doubler to reach the desired frequency. A switch allows
to choose between the two signals and also makes it possible to turn off the RF
completely. After the switch the signal is send through a 5 W amplifier, whose
output is connected to the antenna. The antenna is set up at the lower reentrant
viewport, as close to the atomic sample as possible. It produces an AC field from
the RF signal to drive the atomic transitions. A new amplifier with an output power
of 100 W is already bought and will soon be implemented into the setup. The
gain in power by a factor of 20 will simplify and accelerate driving RF transitions.
Small disalignments between the magnetic field and the RF frequency will be
compensated by the high power.
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Chapter 4

Creation of a molecular BEC

4.1 Motivation
With the creation of a molecular BEC our apparatus catches up to the state of
the art in the field of ultracold quantum gases. Since our first BEC in February
2008 we have reproduced a number of milestones in experiments with ultracold
fermions. By doing this, we have learned how our apparatus works and are ready
to go for new physics.
On our way towards a finite degenerate Fermi gas, with the creation of a molecu-

lar BEC we have reached the point, where we can also create a degenerate Fermi
gas. By simply ramping the magnetic field over the Feshbach resonance, the
bosonic molecules can be transformed into fermions. Since the bosons are de-
generate and the crossing of the resonance is isentropic, also the fermions will be
degenerate. There are also ways to cool fermions directly. Yet there are some
major problems: Since cooling in these samples is obtained by evaporation, scat-
tering is a vital process to reach ultracold temperatures. Because s-wave scattering
is forbidden for identical fermions, scattering nearly vanishes at low temperatures.
In order to reach degeneracy a second particle species has to be added. We chose
the experimentally most simple option, which is to trap two different hyperfine
states. However, even with two different fermions, scattering starts to be sup-
pressed when degeneracy sets in. Due to Pauli blocking only fermions at the
Fermi edge can find free momentum states in their vincinity and therefore change
their momentum in s-wave collisions. Forming molecules from the fermions cir-
cumvents all these problems and leads directly to a deeply degenerate Fermi gas.
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4.2 Evaporation
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Figure 4.1: Evaluation of the number of particles and their temperature during
PID loop evaporation for a molecular BEC. The errorbars are the statistical errors
of at least five independent measurements. The fit to the number of atoms is done
with the model given in equation 2.10. It results η = 8.88(2). The fit to the
temperature is a linear one with a slope of 2.71(1)µK/W, which corresponds to
η = 11.3(1). The errors are taken from the fit and certainly underestimate the real
errors.

At an oven temperature of 350 ◦C our MOT loads about 2 × 108 atoms in 1 s.
The particles are transferred into the dipole trap and cooled towards a BEC in the
following experimental cycle:
About 90 ms before the transfer, the MOT coils are switched off and the quadrupole

field is produced by the Feshbach coils. This is done to position the atomic cloud
in the exact center of the homogeneous field produced by the Feshbach coils, cir-
cumventing any possible misalignment of the coils. 10 ms before the transfer the
laser intensity in the MOT beams is lowered while at the same time the detuning
of the laser approaches resonance to compress and cool the trap for the transfer.
5 ms before the transfer the power of the dipole laser starts to increase, taking
3 ms to reach its full power of 130 W in the trap. In the moment of the transfer the
cooler and the repumper laser are switched off, the polarity of the Feshbach coils is
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Figure 4.2: Evolution of the number of particles during the last ramp of evapo-
ration and 300 ms plain evaporation. The time scale is counted from the end of
evaporation. Before plain evaporation there is a ramp of 1000 ms from 270 mW
to 35 mW (red curve) and to 68 mW (black curve). The curves reveal a loss at
low trap depth, probably induced by a magnetic field gradient. The errorbars are
the statistical errors of at least five independent measurements.

switched to produce a homogeneous field and the current of the coils is turned up
to create a field of 751 G and so tuning the scattering length to a value of 3500 a0,
where fast and efficient evaporation is possible. The repumper is switched off
slightly before the cooler, ensuring that all atoms are transferred to the dipole trap
in the F = 1/2 state.
5 ms after the transfer, forced evaporation starts. At first the laser power is low-

ered by simply employing the external control input of the laser and so ramping
down the beam power from 130 W to 50 W in 150 ms and then further from 50 W
to 22 W within 400 ms.
The second part of the evaporation is done by lowering the laser power using

the vertical AOM. The power transmitted through the AOM is monitored by a
photo diode and can therefore be stabilized using a digital PID loop implemented
into our experimental control. This way we execute two ramps employing a SI-
diode, one from 12.9 W → 2.29 W in 500 ms and one from 2.29 W → 1.25 W in
another 500 ms. For the last ramp we employ a GaAs-diode to improve signal-to-
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noise ratios at low intensities and finally ramp down the laser power to 34.8 mW
in 1200 ms, followed by 300 ms plain evaporation.
Figure 4.1 shows the measured number of particles at different stages of evapo-

ration. 10 ms before the atoms are released for the time-of-flight measurement the
magnetic field is ramped up to 786 G. At this field the binding energy is reduced
to Ebin/kB = 500nK and the molecules can be imaged with resonant light. Note
that for different temperatures the time-of-flight had to be adjusted to get reliable
data. The absorption imaging has large errors if the cloud is too dilute and signal-
to-noise ratio is bad. If the cloud is too dense the absorption becomes saturated
which also leads to false values. This is why the estimated number of atoms dif-
fers from the linear fit at the end and at the beginning of each measurement. The
fit to the number of atoms is evaluated according to the model given in equation
2.10 and results η = 8.88(2). The linear fit to the temperature versus beam power
is much more direct since the inverse of the slope is proportional to η. The con-
version factor however depends quadratically on the beam waist at the center of
the trap (compare equation 2.7). Since the focus in the vacuum chamber cannot
be observed directly, the uncertainty of this value also leads to an uncertainty in
the conversion factor. Those systematic errors from the experiment are large com-
pared to the ones obtained from the fit. The difference between both η shows, that
a number of particles is lost during evaporation due to residual heating. However,
the estimated value is quite rough, since it depends strongly on the chosen start
values U0 and N0 for the fit. Those uncertainties lead to an an error in the order of
at least 10%.
In general, the values resulting for η are quite good, but still there is room for

improvement. Since the improvement would have to lead to much longer exper-
imental cycles and the number of particles at the end of evaporation would only
increase slightly, we chose this trade-off between efficiency and speed. The num-
ber of particles at the end of the last ramp is sufficient for the planned experiments.

4.3 Creation of molecules
When the temperature of the particles decreases further and further, their kinetic
energy originating from their thermal motion comes into the same order of mag-
nitude as the binding energy of a stable molecule and molecule formation sets
in. The fraction of atoms bound in molecules at a certain temperature in ther-
mal equilibrium can be calculated as exp(−kBT/EB), with EB the binding en-
ergy of the molecule. At a magnetic field of 751 G the scattering length for the
|1〉 ↔ |2〉 mixture is 3560 a0, which yields a binding energy in terms of tempera-
ture of EB/kB = ~2/(ma2kB) ≈ 2.2µK.
The process of molecule formation can be measured in two different ways: The
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Figure 4.3: Molecule formation during evaporation. The red curve shows the
number of atom measured at a field of 560 G, where the atoms bound in molecules
are not in resonance with the imaging beam. For the black curve the field was
ramped up to 786 G, where the binding energy is low and quasi-free atoms can
be imaged. The errorbars are the statistical errors of at least five independent
measurements.

first one makes use of the fact that in a bound state the atomic transitions are
shifted. That means that they cannot be imaged with light resonant to the transition
of a free atom. Figure 4.3 shows two curves. For the red one the atoms are imaged
at a field of 560 G. For the black one the measurement is done at a field of 786 G.
The evaporation is done as described in section 4.2 and the field is afterwards
ramped to 560 G. Because the binding energy increases with decreasing magnetic
field, molecular relaxation becomes more likely to lead to a loss from the trap.
To be sure that this loss is not taken into account when measuring the difference
between molecules and atoms, for both measurements the field is decreased 15 ms
before the image is taken. For the red curve the picture is taken at this field,
and for the black one the field is ramped up to 786 G 4 ms before the imaging.
Trying to ramp the field closer to the moment of imaging yields a decrement of the
number of atoms, indicating that the field has not yet reached its final value and the
atomic transition is not in resonance with the absorption beam. Since the binding
energy scales with the inverse square of the scattering length, the binding energy
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Figure 4.4: Number of molecules over temperature obtained from the difference
of the two curves from figure 4.3. The fit is an exponential function, resulting a
binding energy of 1.13µK.

dramatically decreases when approaching the resonance. At a magnetic field of
786 G the binding energy of the molecules is small enough that they constituents
can be imaged as quasi-free particles. The difference between the two measured
values is close to twice the number of formed molecules as plotted in figure 4.4.
The fit gives a binding energy of 1.1µK. The underestimation of the molecule
number rises from the fact that the cross section of the molecules and the light is
not zero, even though the light is not in resonance with the molecule transition.
Therefore, a number of photons is also scattered by the molecules but counted for
atoms.
Another way to show the formation of molecules employs RF spectroscopy as

shown in figure 4.5. After evaporation down to a certain potential depth a RF
pulse is applied to the atomic sample. If the frequency of the signal matches the
atomic transition |2〉 ↔ |3〉, the atoms will flip their spin and become invisible
for the imaging done with light resonant for the atoms in state |2〉. If the atoms
are bound in molecules, the energy from the RF photon must be able to break
the molecules before flipping the spin. The loss peak in the number of atoms for
atoms bound in molecules is therefore detected at energies slightly higher: In the
first graph of figure 4.5, the loss peak is at the atomic transition frequency. Cool-
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Figure 4.5: RF spectroscopy of an atomic sample at different temperatures. The
left dip is produced by atoms in resonance with the RF field, the right one is shifted
by the binding energy of the molecules, since the atoms have to be released before
the spin can be flipped. The errorbars are the statistical errors of at least five
independent measurements.

ing down further leads to the creation of molecules and a second peak appears.
This peak rises from atoms bound in molecules. In the third graph, nearly all
atoms have formed molecules. The shape of the molecule peak reflects the mo-
mentum distribution of the atoms in the molecule. It is the Fourier transform of
the molecul wave function. The distance between the two peaks of ≈ 150 kHz
allows to estimate a binding energy of EB ≈ 600 peV =̂ 7µK. This agrees with
the expectations for spectroscopy at a magnetic field of 720 G, where a = 2180a0.
This is no surprise, since the scattering lengths were determined this way [22] and
the agreement only shows that our apparatus works within the expected resolution.

4.4 Condensation
Further cooling leads to the condensation of Feshbach molecules into a BEC. In
an absorption image this can be observed by a bimodal distribution arising from
the thermal part and the condensate part at temperatures slightly below the critical
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Figure 4.6: Bimodal distribution close to the critical temperature TC . The lower
images are the twice integrated density distributions after 10 ms TOF, the upper
ones are false color absorption images taken by a CCD camera. The x-axis of
the density distribution corresponds to the long axis of the absortion image and
extends over 670µm.

temperature. Since the mean field energy is very large at 751 G, the expansion of
the condensate is on the same order of magnitude as the expansion of the thermal
part. This makes it difficult to distinguish between both parts after a time-of-flight
measurement. However, a little trick makes things easier: Directly after the trap
is switched off for a time-of-flight measurement, the magnetic field is ramped to
500 G, decreasing the meanfield energy and with that the expansion velocity of
the BEC. Then the field is ramped up again to 785 G for imaging. This decreases
the binding energy of the molecules as far that single atoms can be imaged.
Figure 4.6 illustrates the process of condensation. The absorption images in the

lower part show that the peak density dramatically increases from the right one at
high temperatures to the left one taken at much lower temperatures. Integrating
over the radial axis leads to the curves shown in the upper part of the figure. This
data is used to execute a bimodal fit. The fit is simply an inverted parabola added
to a Gaussian, neglecting all interaction effects. The diluteness of the thermal
cloud motivates such a neglection, and the quality of the fit (adjusted R2 = 0.997
for the bimodal distributions) proves the correctness of the assumption. The pa-
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Property Cloud C1 Cloud C2 Cloud C3 Cloud C4

Beam Power [mW] 35(2) 61(2) 99(3) 189(6)
Radial trap freq. [Hz] 194(10) 277(14) 367(19) 519(26)
Axial trap freq. [Hz] 19(1) 26(2) 34(2) 48(3)
Number of particles [×103] 55(1) 76(2) 99(2) 75(3)
Temperature [nK] 28(2) 115(1) 189(2) 309(3)
Condensate fraction 0.68(3) 0.24(1) 0.10(1) 0.002(2)

Table 4.1: Properties of the atomic clouds shown in figure 4.6

rameters of the fit are the physical values: condensate fraction fBEC , width of the
BEC wBEC (determined by the meanfield energy), width of the thermal cloud wth
(proportional to the temperature) and total areaAtot (proportional to the number of
particles) plus a center xc and integration offset y0. The normalization condition
for the total area yields the amplitudes of the Gaussian and of the parabola:

AGauss =
1− fBEC√

2πwth
Atot (4.1)

ABEC =
15

16wBEC
fBECAtot . (4.2)

Using these values the fitted function is given as:

y = AGauss exp

(
−(x− xc)2

2w2
th

)
+ ABEC

(
1−

(
x− xc
wBEC

)2
)2

(4.3)

where the second part of the sum is only applied for xc − wBEC < x < xc +
wBEC . It is important to choose the initial values for the fit carefully, because the
convergence of the fit strongly depends on the starting conditions. Luckily, good
initial parameters can be obtained from simply guessing them from the plotted
graph. It is also possible to calculate the values using the considerations of chapter
2, but since the image is not taken in the trap but after a certain time-of-flight, it
is not straight forward to do so. The case becomes even more complicated by the
fact that during the expansion the interaction is tuned in a not exactly known way.
Another reason why the formulas for the non-interacting case become senseless
is that the scattering length in the condensate is in the order of a few thousand
Bohr radii. A short calculation concerning a model presented in [25] showed that
the estimated values differ from the non-interacting case by about 20 %. Since
this model is only valid for small deviations, even these approximations are not
sufficient for our case. A detailed analysis of the behavior of the gas in such a
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strong interacting regime is very difficult. But since the findings would not lead
to great insights here, only the parameters obtained directly from the fit are given
in table 4.1. The values and their errors for temperature, number of particles and
condensate fraction are estimated from the fitted values. The error for the beam
power of 3 % is the specified error of the thermal head of the power meter, since
the error rising from the linear fit to the calibration measurements is an order
of magnitude lower. It is noticeable that the number of particles for the highest
temperature is lower than for the two lower temperatures. But as the absorption
images show, several atoms have left the region of interest during time-of-flight
and are not counted when summing up. The region of interest was chosen small in
the direction of integration to increase signal-to-noise ratio. The less space with
no significant signal is considered in the integration the less noise is added up.

4.5 BEC of |1〉 − |3〉 molecules
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Figure 4.7: Avoided crossing around a resonance in an adiabatic passage.

Via driving RF transitions between state |2〉 and state |3〉 we can create a conden-
sate from molecules of atoms in states |1〉 and |3〉. The sequence of the production
also shows that ramping over the resonance does not affect the codensate: After
the evaporation as described in section 4.2, the magnetic field is slowly increased
from 751 G to 894 G in 100 ms. Along the way the resonance is crossed and the
BCS side of the resonance is reached. This means that the molecules transform
into weakly bound Cooper pairs.
The free atoms of state |2〉 are transformed into state |3〉 in an adiabatic passage.

In general, an adiabatic passage is a possibility to transform all particles from a
certain ground state |g〉 into an exited state |e〉 when crossing a resonance. This
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Figure 4.8: Bimodal distribution revealing a condensate of molecules formed by
atoms in states |1〉 and |3〉.

is possible, because the eigenstates of the Hamiltonian of an atom in an external
field are no longer the eigenstates of the atoms, but two new eigenstates |+〉 and
|−〉, so-called dressed states. These eigenstates are a combination of the two
atomic eigenstates and their contribution depends on the detuning δ of the external
field relative to the atomic transition [29]. Figure 4.7 shows the behavior of the
eigenstates of the Hamiltonian when crossing the resonance. Calculations show
that at large negative detuning the |−〉 eigenstate is equal to the ground state |g〉.
On the other side of the resonance, at large positive detuning the state |−〉 is
approximately equal to |e〉. Since the |−〉 state is an eigenstate of the Hamiltonian
of the system the atoms will stay in this eigenstate, if the detuning is not changed
too fast. This way all atoms of the ground state will end up in the excited state
when the frequency of the external field adiabatically crosses the resonance.
In our concrete case the ground state is an atom in state |2〉 and the exicted state

is an atom in state |3〉. In the current setup it is not possible to slowly vary the
frequency during an experimental cycle. So we keep the RF frequency fixed and
vary the magnetic field. Due to the Zeeman effect the transition energy between
the two states get shifted. This way we do not bring the external field into reso-
nance with the transition but the transition into resonance with the external field.
In the experiment this is done by applying an RF field resonant to the |2〉 ↔ |3〉
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transition at approximately 897G for 3 ms while ramping the magnetic field from
894 G to 900 G. Thereafter nearly all the atoms in state |2〉 end up in state |3〉. The
magnetic field is then ramped down to 666 G, crossing the |1〉−|3〉 resonance. The
final value is close to the resonance on the BEC side. Stable molecules are formed
and condense into a BEC. Figure 4.8 shows a bimodal distribution at a temperature
slightly below the critical temperature, obtained as described in section 4.4.

4.6 Crossover to the BCS regime
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Figure 4.9: Width of an atomic cloud after 2 ms time of flight in dependence of
the magnetic field. The errors are the statistical errors of at least five independent
measurements. The dashed line indicates the theoretical width of a non-interacting
ferminonic cloud.

The molecular BEC is not the actual system of interest for our experiments. It
is one milestone on our way towards a mesoscopic degenerate Fermi gas. The
first experiment in the cross-over from the BEC to the BCS side of the resonance
is shown in figure 4.9. The plot gives the width of the atomic sample after after
2 ms time-of-flight for different magnetic field values. For this measurement we
evaporated the sample as described above until a beam power of 300 mW =̂ 9µK
is reached. During the last 50 ms before the atoms are released from the trap the
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magnetic field is adiabatically ramped from 751 G where the evaporation takes
place to the probe value. The trap is compressed from 300 mw to 700 mW in
25 ms. This ramp also starts 50 ms befor the trap is switched off. After 2 ms
time-of-flight the atoms are imaged with absorbtion imaging. The resulting 2D
density distribution is integrated once in the radial and once in the axial direction.
A 1D Gaussian is fitted to each of the two resulting density distribution. With the
obtained widths the release energy of the sample can be computed. According to
[30] this can done by calculating

Erel =
1

2
mLi

(
2σ2

rad + σ2
ax

τ

)2

. (4.4)

Here σi is the width of the Gaussian fit for the respectiv direction an τ is the
time-of-flight. Note that this equation neglegts the finite extension of the cloud
in the trap. This is why the points far on the BEC side where the cloud is small,
deviate a bit from the smooth decreasing of the width that is expected. The dashed
line in figure 4.9 is the release energy for a ideal non-interacting Fermi gas. It was
calculated by taking the momentum distribution ~k from equation 2.47 and obtain
the density distribution after 2 ms TOF by simply substituting k = mx/~τ . The
resulting curve was used for a Gaussian fit and the obtained width σx was inserted
into the equation for Erel. If the gas was an ideal Fermi gas, this value should be
reached on the BCS side far of resonance. However, the large negative background
scattering length of 6Li leads to an attractive meanfield interaction. This attractive
meanfield leads to a reduction of the Fermi energy and so to a lower width after
expansion as for the non-interacting case.
The graph also shows that the cross-over is continuous in the interaction energy.

Since the expansion at this trap depth is mainly determined by the meanfield en-
ergy of the sample, it demonstrates that the role of the repulsive interaction at
positive scattering lengths is smoothly taken over by the Fermi pressure on the
BCS side.
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Chapter 5

Experiments in a three-component
Fermi mixture

5.1 Motivation

Three component Fermi systems have been of great interest to theoretical work
during the last few years. In the bosonic case, the production of trimers was
predicted [31] and found [32] as the so-called Efimov states. What makes these
states so special is that there is no underlying two-component bound state avail-
able in the parameter region where the trimers are formed. Either three particles
are bound together or no particles are bound at all. Whether such a state also ex-
ists for a mixture of three distinguishable fermions is still a topic of discussions.
There are calculations predicting such a trimer state as the energetically lowest,
others suggest that dimer formation is still the dominating process in such a gas
and the third particle will only remain a spectator. This could lead to a pairing
competition between the different possible dimer combinations [33]. The predic-
tions concerning the stability differ as well. It is not known, if there is a parameter
regime where such a mixture is stable. At equal densities the Fermi pressure in
a three component mixture is reduced, because the same momentum state can be
accessed by three different fermions. The reduced Fermi pressure might lead at
some point to a collapse of the gas in a so called “Ferminova” [34]. Calculations
also promise a fascinating and complex phase diagram. However, up to now there
has been no experimental realization of a three component Fermi mixture. This
has been achieved for the first time in our experiment.
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Figure 5.1: Evolution of the number of particles and their temperature during
evaporation for a three component mixture. The errorbars are the statistical errors
of at least five independent measurements. The fit is taken from the model given
in equation 2.10 and results a truncation parameter of η = 6.07(5). The linear
fit to the temperature results η = 11.2(1). For further evaluation of these values
compare chapter 4

5.2 Sequence

To get such a mixture, the evaporation process is slightly different from the one
used to produce a BEC. When the sample has reached a temperature of about
10µK the magnetic field is ramped down to 300 G. Here the scattering length
between states |1〉 and |2〉 is small and negative, avoiding molecule formation.
Molecules would complicate the production of a mixture of three spin states, since
the molecules had to be broken befor flipping the spin. The released energy can
result losses or heating.
The smaller scattering length has the disadvantage that more time is needed for

efficient evaporation. This makes the preparation process of the spin mixture a bit
more lengthy than the production of a BEC. Table 5.1 gives an overview over the
laser ramps executed during forced evaporation. The efficiency of the evaporation
is also reduced as can be seen in figure 5.1, where the fit reveals a truncation
parameter of η ≈ 6 for the AOM-controlled evaporation.
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Beam power Time Field Control mode

130 W→ 50 W 150 ms 751 G Open loop
50 W→ 20 W 400 ms 751 G Open loop
20 W→ 3.4 W 500 ms 751 G PID loop (Si-PD)

3.4 W→ 1.4 W 500 ms 751 G PID loop (Si-PD)
1.4 W→ 0.27 W 1500 ms 300 G PID loop (GaAs-PD)

270 mW→135 mW 1000 ms 300 G PID loop (GaAs-PD)
135 mW→ 28 mW 1500 ms 300 G PID loop (GaAs-PD)

28 mW 500 ms 300 G Plain evaporation

Table 5.1: Progress of evaporation for the preparation of a three component Fermi
mixture. The table gives the ramps of the beam power, the magnetic field applied
during the ramp and the mode in which the beam power is controlled.

After completing evaporation, the magnetic field is ramped up to 526 G, where
the |1〉 ↔ |2〉 scattering length is nearly zero and the others are small and neg-
ative. Here the lifetime of the mixture is on the order of seconds, which allows
to apply a RF field composed of two frequencies matching the |1〉 ↔ |2〉 and the
|2〉 ↔ |3〉 transition for 1s. The RF field forces the atoms to perform Rabi oscilla-
tions, which leads to a coherent superposition of the states. The Rabi frequencies
were measured to be on the order of 1 kHz. This was done by observing the time
evolution of the particle number in state |2〉 during the first 2 ms after the RF field
driving the |2〉 ↔ |3〉 transition was switched on. The coherence is destroyed
by collisions between the particles, forcing the wave function of the particles to
collapse to one defined state. The collistion rate for the observed sample is about
300 Hz. This has been calucalted by employing equation 2.46 for the peak den-
sity n. Equation 2.13 is used to calculate the scattering cross section σ with the
mean scattering length a = −225 a0. Equating the thermal energy at 10µK with
the kinetic energy 3/2 kT = 1/2mLiv

2 = ~2k2/2m the mean wavevector k and
the average velocity v can be obtained. The scattering frequency can then be cal-
culated as τ = nσv ≈ 300 Hz. Since the pulse duration is much larger than
the collision rate and the Rabi frequency, we end up with a incoherent balanced
mixture off all three states.

5.3 Experimental results
Our first experiment with the prepared mixture consisted in investigating the life-
time of the mixture in dependence of the magnetic field. This was done in a first
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Figure 5.2: Remaining particle fraction for all three states in dependence of mag-
netic field. The errors are the statistical errors of at least three independent mea-
surements.

step by ramping to the probe field after creating the mixture and measuring the
remaining fraction of particles in the three states after 250 ms by absorption imag-
ing. The result is given in 5.2. The graph shows a decrement of the remaining
particle fraction from 0 to about 500 G. This decrement is interrupted by a strong
loss feature around 130G and followed by a region of stability between 540 G and
590 G. At higher fields the lifetime once again decreases dramatically, revealing
a difference between the three states. Particles in state |2〉 survive longer.
Searching for possible explanations for such a behavior led us to the investigation

of the lifetime of a two component mixture produced under the same conditions.
For this purpose we added a resonant laser pulse to the experimental sequence,
removing one of the three components. The results are shown in figure 5.3. In all
possible two-component mixtures there is no structure visible in these measure-
ment, except for the expected loss feature when the magnetic field approaches the
respective two particle Feshbach resonance.
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Figure 5.3: Magnetic field scan for the three possible two component mixtures.
The vertical line indicates the position of the respective Feshbach resonance. The
remaining particle fraction is nearly constant until the region of the Feshbach res-
onance is reached. The errors are the statistical errors of at least three independent
measurements.
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Figure 5.4: Tuning of the continuum and the molecule state with magnetic field
close to a Feshbach resonance. Figure taken from [20].

5.4 Possible interpretation
Since the physics in a three component Fermi mixture is essentially not understood
yet and the existing calculations do not fit our measured data, in a first step we tried
to explain the behavior based on well understood two body physics. However,
the fact that the reference measurement with two components reveal no structure
indicates that the underlying process involves all three components.
The loss above of 600 G can then be explained directly by the proximity of the
|1〉 ↔ |3〉 resonance. At large positive scattering lengths molecules of particles
in state |1〉 and |3〉 are formed. These molecules decay in collisions with particles
from state |2〉 or with each other. The binding energy is transformed into kinetic
energy and the particles can leave the trap. Since the particles of state |2〉 are
not involved in the molecule formation process, the remaining fraction of these
particles is significantly higher until the |2〉 ↔ |3〉 resonance is approached. The
stable region between 540 G and 590 G and below 70 G can also be explained by
the behavior of the two body scattering lengths: In this region all three scattering
lengths are small, leading to an effective reduction of the number of interacting
components. A possible explanation for the decrement of the particle fraction
with increasing magnetic field can be obtained from figure 5.4. This figure picture
shows the tuning of the molecular state and the continuum with magnetic field.
Since the molecule state is formed by two coupled channels, the molecule state
and the virtual bound state undergo an avoided crossing as known for coupled two
level systems in atom physics. The point of interest in this case is that the distance
between the continuum and the molecular state decreases with increasing field.
Therefore, it becomes more likely that the atoms enter the molecule state and get
lost from the trap due to relaxation processes.
The most fascinating and least understood process is the loss feature at 130 G.
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The two body scattering lengths are small and negative at this magnetic field and
show no peculiar behavior. Possible explanations are simple spin flip collision or
a relaxation into deeply bound dimer states, assisted by the third component and
suppressed in a two component mixture. Also likely and more interesting is the
possibility of a trimer formation comparable to the Efimov state in the bosonic
case. If this is the case, the three spin components could be an analogy for the
three colors in QCD and further investigation could help understanding baryon
formation from three quarks with different color charge.
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Chapter 6

Conclusion and outlook

This thesis presented the setup of an apparatus for the creation of a highly de-
generate Fermi gas. Special features of the setup are the arbritrary tunability of
the interactions between particles by means of Feshbach resonances as well as the
possibility to shape the trapping potential nearly at will with two perpendicular
AOMs. The dipole trap was caracterized by means of the trap frequencies and
the heating rate. The apparatus can create a molecular BEC within less than 4 s,
making it one of the fastest in the world. It is also very reliable, since it works
nearly without maintenance. Usually neither of the partly very sensitive allign-
ments of the lasers have to be realigned within weeks. Even after a complete
dismantling of the MOT and major changes in the setup, the apparatus was ready
to preform measurements within an hour. This can partly be attributed to the fact
that the group persuits of keeping things simple and falling back on established
techniques wherever they are available. All this makes working with the apparatus
very efficient and convenient.
In the following chapters first experiments in the dipole trap were presented. The

evaporation and the formation of molecules were characterized. The condensate
defied quantitative analyses and comparison with theory due to the large mean-
field interaction. This will certainly become possible as soon as the cloud can be
imaged in-situ with the high resolution imaging.
The fifth chapter explained the creation of a three component Fermi mixture and

first lifetime measurements in such a sample. The results are published in our first
paper [35]. The most exciting detail of the graph plotting the remaining fraction
of atoms in the trap after 250 ms, is a loss feature at 130G. The physics we are
observing here has definitely attract attention, especially theoretician’s. The dis-
cussion about the origin of this loss feature is still in progress. Priliminary calcu-
lations of D. Petrov very recently showed that our measurements can qualitatively
be reproduced by assuming two trimer states crossing the continuum. Choosing
the real and the imaginary part of the three body parameter adequately, his results
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agree with the shape of our measured curve. It is the first theoretical indication
that the three body loss process might actually be traced back to trimer formation.
In the future we want to concentrate on two subjects: The creation and investi-

gation of few fermion quantum systems and further experiments with the three-
component mixture. With the few Fermion system we hope to gain better un-
derstanding of many-body physics. Our experiment opens up the possibility to
investigate these systems in a variety of regimes that could not be accessed in pre-
vious experiments. This might enlarge our knowledge about few particle physics.
When the imaging system is optimized to resolve single particles, we might be
able to observe the formation of pairs in momentum space or the emergence of
shells. Exciting and observing collective oscillations will possibly result in a bet-
ter understanding of giant resonances observed in atomic cores.
In the three-component mixture we will first try to understand the process of

pairing. Proving experimentally that trimers are formed is the next step in this
process. Thereafter we will try to observe meanfield effects in this system. Here
the points of interest are collective oscillations or indications for superfluiditiy.
To answer these questions experimentally we will first have to finish the setup

of the high resolution imaging (HRI). The asphere has already been implemented
into the setup and first images in the vertical axis have been taken. A test of the
setup revealed a resolution of 2µm, nearly one order of magnitude better than the
currently used imaging system. This will allow for imaging the particles directly
in the trap. Only minor problems have to be solved to start working with this new
imaging system.
We will then continue our investigation of the three component mixture. We

will try to examine the pairing behavior of the three components by doing RF
spectroscopy. Also, if there is phase separation of different states or of bound and
unbound atoms, this will be seen with the HRI. After that, we will try to excite
collective oscillations to learn more about the manybody properties of the sample.
And perhaps it will even be possible to observe vortices in the trap and so prove
the existence of superfluidity in the sample.
The last step towards the creation and observation of a few fermion degenerate

quantum gas is the setup of the micro trap. For this purpose, two AOMs (for scan-
ning and controlling the intensity of the beam) and a dicroic cube (for combining
trap and imaging beam) have to be bought and brought into position. Getting all
the elements to work together will certainly be a challange. Yet if things go as
well as they went for the last year, I am positive that we will be able to explore a
wide field of new and intriguing physis very soon.
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Appendix

Fundamental constants

Symbol Value Meaning

~ 1.054571628×10−34 Js Planck’s constant over 2π
c 2.99792458×108 m/s Speed of light in vacuum
kB 1.3806504×10−23 JK−1 Boltzmann’s constant
a0 0.52917720859×10−10 m Bohr’s radius
ε0 8.854187817×10−12 Fm−1 Electric constant

mLi 9.98834146×10−27 kg Mass of a 6Li atom
ΓLi 36.898×106 s−1 Natural linewidth of the D2 line of 6Li
λLi 670.977338×10−9 m Wavelength of the D2 line of 6Li in vacuum

Table 6.1: Constants used in this thesis. The fundamental constants are taken from
[36], the properties of 6Li can be found in [37].

73



74



Bibliography

[1] S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable. Experimental observation of
optically trapped atoms. Phys. Rev. Lett., 57(3):314–317, Jul 1986.

[2] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cor-
nell. Observation of Bose-Einstein condensation in a dilute atomic vapor. Science,
269:198–201, Jul 1995.

[3] K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M.
Kurn, and W. Ketterle. Bose-Einstein condensation in a gas of sodium atoms. Phys.
Rev. Lett., 75(22):3969–3973, Nov 1995.

[4] J. Stenger, S. Inouye, M. R. Andrews, H.-J. Miesner, D. M. Stamper-Kurn, and
W. Ketterle. Strongly enhanced inelastic collisions in a Bose-Einstein condensate
near Feshbach resonances. Phys. Rev. Lett., 82(12):2422–2425, Mar 1999.

[5] C. A. Regal, C. Ticknor, J. L. Bohn, and D. S. Jin. Creation of ultracold molecules
from a Fermi gas of atoms. Nature, 424(6944):47–50, 2003.

[6] M. Greiner, C. A. Regal, and D. S. Jin. Emergence of a molecular Bose-Einstein
condensate from a Fermi gas. Nature, 426:537–540, 2003.

[7] S. Jochim, M. Bartenstein, A. Altmeyer, G. Hendl, S. Riedl, C. Chin, J. Hecker Den-
schlag, and R. Grimm. Bose-Einstein condensation of molecules. Science,
302(5653):2101–2103, 2003.

[8] M. W. Zwierlein, C. A. Stan, C. H. Schunck, S. M. F. Raupach, S. Gupta, Z. Hadz-
ibabic, and W. Ketterle. Observation of Bose-Einstein condensation of molecules.
Phys. Rev. Lett., 91(25):250401, Dec 2003.

[9] J. Bardeen, L. N. Cooper, and J. R. Schrieffer. Theory of superconductivity. Phys.
Rev., 108(5):1175–1204, Dec 1957.

[10] C. A. Regal, M. Greiner, and D. S. Jin. Observation of resonance condensation of
fermionic atom pairs. Phys. Rev. Lett., 92(4):040403, Jan 2004.

[11] M. Bartenstein, A. Altmeyer, S. Riedl, S. Jochim, C. Chin, J. Hecker Denschlag, and
R. Grimm. Crossover from a molecular Bose-Einstein condensate to a degenerate
Fermi gas. Phys. Rev. Lett., 92(12):120401, Mar 2004.

75



[12] Ákos Rapp, Gergely Zaránd, Carsten Honerkamp, and Walter Hofstetter. Color
superfluidity and “baryon” formation in ultracold fermions. Phys. Rev. Lett.,
98:160405, 2007.

[13] Friedhelm Serwane. The setup of a magneto optical trap for the preparation of a
mesoscopic degenerate Fermi gas. Diploma thesis, 2007.

[14] Thomas Lompe. An appartus for the production of molecular Bose-Einstein con-
densates. Diploma thesis, 2008.

[15] Harold J. Metcalf and Peter van der Straten. Laser Cooling and Trapping. Springer-
Verlag, New York, 1999.

[16] M. Weidemüller R. Grimm and Y. B. Ovchinnikov. Optical dipole traps for neutral
atoms. Advances in Atomic, Molecular and Optical Physics, 42:95, 2000.

[17] Bahaa E. A. Saleh and Malvin Carl Teich. Fundamentals of Photonics. John Wiley
and Sons, Inc., 1991.

[18] K. M. O’Hara, M. E. Gehm, S. R. Granade, and J. E. Thomas. Scaling laws for
evaporative cooling in time-dependent optical traps. Phys. Rev. A, 64(5):051403,
Oct 2001.

[19] Paul Julienne. Private communications, calculations done according to [22].

[20] Selim Jochim. Bose-Einstein Condensation of Molecules. PhD thesis, Universität
Innsbruck, 2004.

[21] Herman Feshbach. A unified theory of nuclear reactions. Ann. Phys., 5(337), 1958.

[22] M. Bartenstein, A. Altmeyer, S. Riedl, R. Geursen, S. Jochim, C. Chin, J. Hecker
Denschlag, R. Grimm, A. Simoni, E. Tiesinga, C. J. Williams, and P. S. Julienne.
Precise determination of 6Li cold collision parameters by radio-frequency spec-
troscopy on weakly bound molecules. Physical Review Letters, 94(10):103201,
2005.

[23] Lev Pitaevskii and Sandro Stringari. Bose-Einstein Condensation. Oxford Science
Publications, 2003.

[24] L. P. Pitaevskii F. Dalfovo, S. Giorgini and S. Stringari. Theory of Bose-Einstein
condensation in trapped gases. Rev. Mod. Phys., 71(3):463–512, Apr 1999.

[25] S. Giorgini, L. P. Pitaevskii, and S. Stringari. Condensate fraction and critical tem-
perature of a trapped interacting Bose gas. Phys. Rev. A, 54(6):R4633–R4636, Dec
1996.

[26] D. A. Butts and D. S. Rokhsar. Trapped Fermi gases. Phys. Rev. A, 55(6):4346–
4350, Jun 1997.

76



[27] Wolfgang Nolting. Grundkurs Theoretische Physik 6: Statistische Physik. Springer
Verlag Berlin Heidelberg, 5 edition, 2005.

[28] M. W. Zwierlein, J. R. Abo-Shaeer, A. Schirotze, C. H. Schunck, and W. Ketterle.
Vortices and superfluidity in a strongly interacting Fermi gas. Nature, 435:1047–
1051, 2005.

[29] J. Dalibard and C. Cohen-Tannoudji. Dressed-atom approach to atomic motion in
laser light: the dipole force revisited. Journal of the Optical Society of America B,
2(11):1707, 1985.

[30] T. Bourdel, L. Khaykovich, J. Cubizolles, J. Zhang, F. Chevy, M. Teichmann, L. Tar-
ruell, S. J. J. M. F. Kokkelmans, and C. Salomon. Experimental study of the BEC-
BCS crossover region in Lithium 6. Physical Review Letters, 93(5):050401, 2004.

[31] V. Efimov. Weakly-bound states of three resonantly-interacting particles. Sov. J.
Nucl. Phys., 12:589–595, 1971.

[32] H.-C. Nägerl, T. Kraemer, M. Mark, P. Waldburger, J. G. Danzl, B. Engeser, A. D.
Lange, K. Pilch, A. Jaakkola, C. Chin, and R. Grimm. Experimental evidence for
Efimov quantum states in an ultracold gas of caesium atoms. Nature, 440:315, Mar
2006.

[33] T. Paananen, J.-P. Martikainen, and P. Törmä. Pairing in a three-component Fermi
gas. Phys. Rev. A, 73(5):053606, 2006.

[34] D. Blume, Seth T. Rittenhouse, J. von Stecher, and Chris H. Greene. Stability of
inhomogeneous multicomponent Fermi gases. Phys. Rev. A, 77(3):033627, 2008.

[35] T. B. Ottenstein, T. Lompe, M. Kohnen, A. N. Wenz, and S. Jochim. Collisional
stability of a three-component degenerate Fermi gas. arxiv.org, 0806:0587, 2008.

[36] NIST. http://physics.nist.gov/cuu/constants/.

[37] M. E. Gehm. Properties of 6Lithium, 2003:
http://www.phy.duke.edu/research/photon/qoptics/techdocs/pdf/PropertiesOfLi.pdf.

77



78



Danksagung

Ich möchte ein paar Menschen danken, die in ihrer jeweiligen Art und Weise mich bei
der Erstellung dieser Arbeit unterstützt haben und ohne die diese Arbeit so nicht hätte zu
Stande kommen können:
Zunächst möchte ich Selim danken, dass er mir die Möglichkeit gegeben hat, in seiner

Gruppe zu arbeiten. Für seine Bereitschaft, immer da zu sein, wenn es Fragen und Prob-
leme gab, für seine Geduld, wenn er mir etwas erklärte und für seine Unterstützung in so
vielen Belangen.
Dafür danke ich auch der ganzen Gruppe: Timo, Thomas, André, Gerhard und Fried-

helm, mit denen ich ein spannendes und lehrreiches Jahr verbringen durfte, von denen ich
viel gelernt und auch viel Hilfe erfahren habe.
Ich danke Alexander Dorn, dass er die Zweitkorrektur dieser Arbeit übernimmt und

David Zorn für die Hilfe bei der sprachlichen Optimierung.
Ich danke Moritz und Tobias, die mich das ganze Studium über begleitet haben und ohne

die ich vielleicht schon nach den ersten Übungszetteln aufgegeben hätte.
Ich danke meinen jetztigen und ehemaligen Mitbewohnern im AMH, besonders M.K.,

moje słoneczko, für so viele schöne Stunden. Ich durfte eine Gemeinschaft erleben, die
mich nach so manchem schweren Tag aufgefangen und aufgebaut hat. Es hat einen un-
schätzbaren Wert, vier schöne Jahre mit euch verbringen zu dürfen, und ich danke euch
dafür von ganzem Herzen.
Danken möchte ich auch meiner Familie, meinen Eltern und Geschwistern, für eine Un-

terstützung, die die Dauer dieses Studiums um ein Weites übertrifft. Das Glück, eine
Familie zu haben, auf die man sich verlassen kann und die immer bereit ist, einem den
Rücken zu stärken, ist nicht selbstverständlich und Anlass zu großer Dankbarkeit.
Das, was wir sind und was wir vollbringen, ist letztlich nicht unser eigener Verdienst und

unsere eigene Leistung. Es ist ein Geschenk. Ich bin dankbar und glücklich, das ich so
reich mit Gutem beschenkt wurde und werde.

79



80



Erklärung:

Ich versichere, dass ich diese Arbeit selbstständig verfasst und keine anderen als die
angegebenen Quellen und Hilfsmittel benutzt habe.

Heidelberg, den
Unterschrift


	Introduction
	Overview
	Experimental goals
	Content

	Degenerate quantum gases
	Trapping and cooling of neutral atoms
	Scattering forces
	Slowing with radiation pressure
	Trapping in position space
	Dipole traps
	Evaporative cooling

	Feshbach resonances of 6Li
	Scattering
	Hyperfine states of 6Li
	Tuning interactions

	Bose-Einstein condensation
	Spatial and momentum distribution
	Critical temperature and condensate fraction
	Bimodal distribution

	Degenerate Fermi gases
	Fermi energy and chemical potential
	Spatial and momentum distribution
	Phase transition


	Experimental setup and techniques
	Vacuum and MOT
	Imaging
	Dipole trap
	Setup
	Performance

	Drawing time-averaged potentials
	Magnetic field
	Feshbach coils
	Switching polarity
	Stabilization and calibration

	RF setup

	Creation of a molecular BEC
	Motivation
	Evaporation
	Creation of molecules
	Condensation
	BEC of "026A30C 1 "526930B - "026A30C 3 "526930B  molecules
	Crossover to the BCS regime

	Experiments in a three-component Fermi mixture
	Motivation
	Sequence
	Experimental results
	Possible interpretation

	Conclusion and outlook

