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1 Introduction

According to Feynman, quantum interference “has in it the heart of quantum mechan-
ics”. Almost all phenomena described by quantum mechanics in one way or another
involve interference or the related concept of coherence. This in particular holds true
for the field of quantum optics, which is the study and application of the interactions
of light with matter at the quantum level. The invention of the laser as a versatile
source of coherent light has led to a multitude of fascinating concepts and applications
in quantum optics all relying on coherence and interference. Coherence usually can be
thought of as a correlation or a fixed phase relation. Examples are the relative phase
between two quantum states of an atom (atomic coherence), correlations between dif-
ferent positions in a section through a light beam perpendicular to the propagation
axis (transverse coherence) or a fixed phase relation between different positions along
the propagation direction of a laser beam (longitudinal coherence). The laser is an
indispensable tool in quantum optics not least because it conveniently allows to induce
coherences in the studied quantum systems. The relation between coherence and inter-
ference effects arises from the fact that quantum interference relies on the presence of
different indistinguishable pathways, and depends on the relative phase of the respec-
tive pathways. Typically, interference effects vanish if these phases are random, and
thus fixed phase relations – coherences – are required for interference to take place.

In this work, different aspects of coherence and interference in quantum optics will
be discussed. In analogy to the archetype Young’s double slit experiment, Sec. 2 starts
by analyzing pathway interference within a single quantum object. In these systems,
the respective pathways correspond to different indistinguishable electronic evolutions
of the atom. Such analysis is of interest both from a fundamental and from an ap-
plication point of view. For example, in Sec. 2.1 it turns out that the interference
observed is enforced by complementarity of energy and time, rather than position and
momentum as in the usual double slit experiments. Thus in this setup, a different class
of interference effects can be studied. At the same time, the proposed model system
is an ideal candidate to observe so-called spontaneously generated coherences, which
despite the huge interest from the theoretical side have not been observed in atomic
systems yet. Sec. 2.2 discusses the control of quantum interference via the phases
of driving laser fields. For this, the resonance fluorescence spectrum of a three-level
system in Λ configuration is studied, where the transition between the two ground
states is driven by a strong laser field. In previous work, the driving field was treated
classically, which prohibited a clear interpretation of the found results. Here, a quan-
tum treatment enables one to clearly identify the underlying mechanisms such that
they could be applied to more complex systems. It turns out that even though the
atomic structure is in Λ configuration, interference takes place in V -type subsystems
dynamically induced by the quantized driving field.

In the following Sec. 3, light propagation through coherently prepared media is
discussed, which is an important application of atom-light interactions, e.g., for the
optical processing of information. Based on an atomic coherence effect, electromag-
netically induced transparency (EIT), a probe pulse can propagate through a near-
resonant medium essentially unattenuated. With EIT, also an extensive control of the
group velocity of probe pulses is possible. In Sec. 3.1, light propagation in so-called
closed-loop systems is analyzed. This is a particular class of atomic media, where the
applied laser fields form a closed interaction loop. These media feature interesting
interference effects, but at the same time require a time-dependent analysis as they in
general do not evolve into a stationary state. Applications both for the group velocity
control and for the non-linear self-phase modulation of light in closed-loop media are
discussed. In Sec. 3.2, a system is presented which enables one to control the group
velocity of light pulses in the ultra violet frequency domain. This is of importance
since ongoing advancement of laser technology extends the operational range of lasers
to higher and higher frequencies. Thus, the need for optical elements that operate
beyond the visible frequency range arises. Dispersive quantum optical media could
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be an interesting alternative to conventional optical elements. The last subsection 3.3
demonstrates that closed-loop atoms are an ideal candidate to realize media with a
negative index of refraction in atomic gases. In particular, metastable neon is identi-
fied as a promising model system to achieve lossless negative refraction or even active,
amplifying negative index media. Different aspects of the calculation, such as the
treatment of dense atomic gases and the chiral response of the medium to the applied
probe field, are discussed.

A difference to classical double slit experiments and realizations in atomic systems
arises due to the internal structure of the atoms. This leads to vanishing interference
fringe visibility in light scattering of strong driving fields off of regular structures of
atoms, which hampers applications. In Sec. 4, it is demonstrated how the interference
can be recovered at strong driving, and the properties of the scattered light are ana-
lyzed in detail. The key idea here is to modify the mode density of the electromagnetic
vacuum field, causing a redistribution of the relevant dressed state populations in the
driven atoms. This can be done in such a way that the coherent nature of the scattered
light is recovered, and that quantum interference in the scattered light can take place.

In the next Sec. 5, coherence and interference effects in interacting ensembles of
atoms are discussed. The first part Sec. 5.1 focusses on an exact treatment of the
dipole-dipole interaction of a pair of atoms, with the emphasis on the geometrical
structure of this coupling, and on interactions between transitions with orthogonal
dipole moments. It is shown that the geometry alone can crucially influence the elec-
tronic dynamics of the system. Depending on the relative orientation of two atoms,
the system either evolves into a time-independent stationary state or not. Further
analysis based on these results leads to the conclusion that the few-level approxima-
tion in general is invalid in collective systems. Rather, the involved atoms must be
modelled using complete Zeeman manifolds in order to guarantee correct results. As
an application for the extended level space, decoherence-free subspaces in collective
multilevel systems are discussed. The second part Sec. 5.2 analyzes coherent control of
many-particle systems in the Dicke limit. As the main applications, it is demonstrated
how an ensemble of atoms driven only by an incoherent thermal bath can be used as
a versatile source of nonclassical light.

Complementary to the tremendous process in advancing quantum optics to a preci-
sion science in the frequency and time domain for example with applications for optical
clocks, in Sec. 6 precision schemes in the spatial domain are discussed. The first part
deals with the sub-wavelength position determination for a single atom. Multiple si-
multaneous measurements are facilitated in order to improve the spatial resolution,
or to achieve multidimensional localization. In the second part, the localization of a
small ensemble of interacting particles based on the collective quantum dynamics of
the sample is discussed. In Sec. 6.1.3, a scheme to measure interatomic distances far
below the classical resolution limit is presented. Finally, in Sec. 6.2, it is shown how
resonant interferometric lithography can be used to write structures with feature size
smaller than the employed light wavelength.

It is interesting to note that in most cases, quantum optical models are abstractions
that do not exclusively refer to atomic systems. Therefore, in the last Sec 7, the
extension of quantum optical schemes to nuclear physics is discussed. Upcoming high-
frequency free-electron lasing facilities allow to near-resonantly drive selected nuclei,
such that one may hope to extend the extensive control schemes of atomic quantum
optics to nuclear physics. These laser sources, however, suffer from a limited coherence
length of the light pulses, such that the partial coherence must be considered in the
theoretical modelling. Both near-resonant and off-resonant driving with super-intense
laser fields are discussed, together with applications in triggering the controlled de-
excitation of nuclear isomers.
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2 Pathway interference within atoms

2.1 Interference in the time-energy domain

Quantum interference is a powerful tool to change the dynamics of an atomic system.
This especially holds true if the interference takes place within the studied quan-
tum object itself. A particular class of such internal interferences are related to the
so-called spontaneously generated coherences (SGC). These arise if an atom emits a
(virtual) photon on one transition in such a way that the photon does not leave the
atom, but rather is absorbed on a different transition in the same atom, see Fig. 1(a).
This process is related to the self-energy leading, e.g., to the Lamb shift, where pho-
ton emission and absorption take place on the same transition [Fig. 1(b)], and to the
dipole-dipole interaction where the photon is emitted and absorbed by different parti-
cles, see Fig. 1(c). Spontaneously generated coherences have been studied in numerous
theoretical works due to their fascinating applications [Fic05], but so far in atomic sys-
tems, there is only a single experiment [Xia96], which furthermore could not be verified
in a repetition of the experiment [Li00]. SGC have been observed, however, in artificial
quantum systems [Dut05]. The reason for this lack of experimental confirmation is the
stringent conditions on the atomic structure for SGC to take place. The two involved
transitions must be near-degenerate and must have non-orthogonal transition dipole
moments. Loosely speaking, the emitted virtual photon has to match the absorbing
transitions. In real atoms, this cannot be fulfilled, for example, the commonly studied
V - or Λ-type level schemes of Fig. 1(a).

The conditions are fulfilled, however, in a four-level system in J = 1/2 ↔ J = 1/2
configuration as shown in Fig. 2(a), by the two π-transitions preserving the magnetic
quantum number mj. This level structure can be found, e.g., in mercury ions [26, 29].
Light scattering from trapped mercury ions has already been studied experimen-
tally [Eic93a, Ita98]. But in the J = 1/2 ↔ J = 1/2 system, the two π transitions do
not share common states, and thus it is not clear if an atom can absorb photons on
the one transition after having emitted on the other transition. On the other hand,
one finds that in the equations of motion, there are indeed terms which resemble typ-
ical SGC contributions. Thus the question arises whether SGC and vacuum-induced
interferences take place in this realistic system.

This question can be addressed by assuming that the two π-transitions are driven
by a single laser field and by calculating the fluorescence intensity and the fluorescence
spectrum emitted on these transitions. Both can be calculated in terms of the steady-
state two-time correlation function〈

[�ez · Ê(−)(�r, t + τ)][�ez · Ê(+)(�r, t)]
〉

t→∞
,

where Ê(±) are the positive and negative frequency part of the quantized electromag-
netic field, �r is the detector position, and �ez is the unit polarization vector. The
fluorescence intensity follows with τ = 0, and it is found that it is not affected by SGC

V−type atom 2−level atom atom 1 atom 2

(a) (b) (c)
|1〉|1〉 |2〉

|g〉|g〉

|e〉1 |e〉2

|g〉1 |g〉2

Figure 1: Vacuum-induced processes contributing to (a) spontaneously generated co-
herences, (b) the self energy, and (c) the dipole-dipole interaction between two atoms.
The green arrow denotes the vacuum-mediated population transfer, the red arrows
indicate the involved atomic transitions.
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Figure 2: (a) 4-level atom in J = 1/2 ↔ J = 1/2 configuration as found, e.g., in
mercury ions. The green lines denote spontaneous emission channels, the red line
indicates coherent driving with frequency ωL on the so-called π transitions. (b) Res-
onance fluorescence spectrum emitted from the π transitions. The black line shows
the complete fluorescence spectrum for perfect detector resolution. The green line is
the spectrum with interference terms artificially omitted. The vertical line at ω = ωL

denotes the elastic Rayleigh peak that is present both with and without interference
terms. If observed with a finite frequency resolution of order of the natural decay rate
γ, the spectra with and without interference terms are virtually identical (red line).

or interference, because the terms in the equations of motion turn out to be propor-
tional to 〈|1〉〈3| |4〉〈2| 〉t→∞ which is zero because of the orthogonality of the ground
states. Thus, the more general level scheme suppresses the SGC contributions in the
equations of motion as suspected above.

But in contrast, surprisingly the fluorescence spectrum does show signatures of
interference, as can be seen from Fig. 2(b). A closer analysis reveals that for the
spectrum, the two operators |1〉〈3| and |4〉〈2| have to be evaluated at different times,
τ �= 0. Then, they are no longer orthogonal and the SGC contributions can contribute.
Thus, it can be concluded that the presented system indeed is a realistic setup to verify
the as yet unobserved presence of SGC in atomic systems [26].

But perhaps even more interesting, the interpretation of the results reveals that
they arise from complementarity of energy and time [29]. If the observer decides
to measure the total intensity, then the detector does not detect the energies of the
different photons. Since there is no spectral information, complementarity does not
impose any restrictions on the time resolution of such a measurement, and hence
it is in principle possible to detect the photons in a time resolved way. Thus the
experimental conditions allow, at least in principle, to determine the atomic ground
state immediately after the detection of a π-photon. This implies that the π-photons
cannot interfere, since one could decide on which of the two π-transitions the photon
was emitted and hence reveal the quantum path taken by the system.

This completely changes if the spectrum of resonance fluorescence is measured.
Here, the observer decides to measure the photon energies precisely. Since time and
energy are complementary observables, no information on the time sequence of the
emission can be obtained simultaneously, and the photon emission times are indeter-
minate. In contrast to the measurement of the total intensity, it is now impossible to
decide on which transition the π-photon has been emitted, such that different indistin-
guishable pathways are possible. Therefore, the SGC can contribute and interference
occurs. A similar argument explains why interference was observed in a recent atto-
second time-energy double-slit experiment [Lin05a], where the spectral resolution of
the detector makes the “time slits” indistinguishable.

An quantitative analysis is possible in terms of the time-energy uncertainty relation,
supported by a calculation for spectral measurements with variable frequency resolu-
tion. Also, a dressed-state analysis allows to clearly identify the interfering pathways,
further supporting the above interpretation [26, 29].
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Figure 3: (a) The considered Λ-type system. The multiple lines for each state denote
the Fock state multiplets induced by the coupling of the atom with a quantized driving
field. The upper states |3, n〉 decay spontaneously into the two lower state multiplets
|1, n〉 and |2, n〉. Here, n is the number of photons in the respective driving field Fock
modes. The two lower state multiplets are coupled by the quantized driving field.
gk and ĝk are coupling constants for the interaction with the vacuum giving rise to
spontaneous emission, ḡ is the coupling constant for the driving field. (b) Spontaneous
emission spectrum. The black and the red line indicate spectra for different driving
field phases in the phase-dependent system. The blue curve is the result for the phase-
independent system, and can also be obtained by averaging over all phases.

2.2 Phase control of quantum interference

Quantum interference relies on the interplay of different pathways from one initial to a
final state. The outcome of the interference of the different pathways crucially depends
on the relative phases of the different pathways, as already found in Young’s double
slit experiment. This in principle also holds true for laser-field induced pathways, even
though it is experimentally challenging to control the phase of laser fields in atom-
field interactions. In particular at optical frequencies, usually only the relative phase
between two laser fields can be controlled, for example, because the phases depend on
the distance between the laser source and the driven atom. Nevertheless, the influence
of the relative phase on the quantum dynamics of an atomic system has been studied
experimentally [Kor99b].

Among the simplest examples for a phase-sensitive system is a three-level system
in Λ configuration, as shown in Fig. 3(a) [Mar97]. The transition dipole moments
from the upper state to the two lower states are assumed to be non-orthogonal, giving
rise to interference effects as discussed in the last Sec. 2.1. It is easy to show that
this system depends on the phase of the control field coupling the two ground states,
such that, for example, the spontaneous emission spectrum becomes asymmetric and
phase-dependent. In Fig. 3(b), the emission spectrum is shown for two different driving
field phases (black and red curves). The blue curve is the reference obtained if the
phase-dependence is ignored.

This phase dependence is usually attributed to the fact that due to the driving
field, each of the two lower states can be reached via two pathways: Either by a
direct spontaneous decay, or by a decay into the other state followed by a driving
field-induced transition. The two paths interfere, with a relative phase between the
two path amplitudes equal to the driving field phase. This classical interpretation,
however, is unsatisfactory. First of all, the respective initial and the final states of two
interfering pathways are obviously not the same, as one involves an interaction with
the driving field, whereas the other does not. Thus one could argue that the two paths
do not interfere, as they could be distinguished by a measurement. A typical counter-
argument against this is that the photon number distribution of a strong coherent
driving field has a large width, such that the two paths cannot be distinguished. This
argument, however, cannot be verified using a semi-classical description of the system.
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|+, n+1〉
|+, n〉
|+, n−1〉

|−, n+1〉
|−, n〉
|−, n−1〉

|+, n−2〉

|−, n−2〉

|3, n+1〉
|3, n〉

|3, n−1〉

ω21

2|Ω|

gk ĝk

Figure 4: Decay pathways starting from single upper state Fock modes |3, n〉 into
the corresponding lower dressed states. The solid (dashed) arrows are decays due to
coupling via coupling constant gk (ĝk). The ellipses mark interfering pathways. The
parameters are chosen such that the AC-Stark splitting |Ω| is larger than the photon
frequency splitting ω21, as indicated by the double arrows.

Also, while it is clear that the two pathways must have either a different initial or a
different final state, it is not apparent in the semiclassical description what the exact
pathways are.

These problems can be resolved with a fully quantized treatment of the problem,
as it is indicated by the different photon number states |n〉 of the quantized control
field coupling states |1〉 and |2〉 in Fig. 3(a) [22]. The spontaneous emission spectrum
can be explained with the help of the dressed states with respect to the field coupling
|1〉 and |2〉,

|+, n〉 =
1√
2

(
|1, n + 1〉 + i eiφ |2, n〉

)
, (1a)

|−, n〉 =
1√
2

(
|1, n + 1〉 − i eiφ |2, n〉

)
, (1b)

where φ is the phase of the control field. The four transitions between the dressed states
correspond to the four peaks seen in the blue reference curve without interference in
Fig. 3(b).

The quantized treatment of the driving field allows to explore the effect of non-
classical driving fields, and thereby determine the origin of the quantum interference.
It is found that for a driving field which consists of a single Fock number state mode,
no interference effects are present. Similarly, a driving field which is a superposition
of many non-adjacent Fock modes dos not induce any interference effects. Here, non-
adjacent means that the modes are such that if Fock state |n〉 is populated, then the
adjacent modes |n±1〉 are not populated. Finally, if two adjacent Fock modes are pop-
ulated, then interference and thus phase-dependence appears, and if the range of pop-
ulated adjacent Fock states increases, the classical result with full phase-dependence
is approached.

This behavior can be understood from Fig. 4, which shows a dressed-state repre-
sentation of the system. It is important to note that even though the driving field
is assumed to couple the two lower states only, in the energy spectrum, the upper
state atomic state |3〉 also splits up in a multiplet of states |3, n〉 which decays into
the corresponding dressed states. Fig. 4 shows all the possible decay pathways from
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three adjacent upper states |3, n + 1〉, |3, n〉 and |3, n − 1〉. First, only state |3, n〉 is
assumed to be populated, i.e. a single Fock mode. Then Fig. 4 shows that each of the
possible final states is only reached via a single pathway from the initial state. Thus
no interference is possible. Next all three adjacent upper states |3, n〉 and |3, n±1〉 are
assumed populated. Then some of the final states can be reached via two pathways, as
indicated by the ellipses in Fig. 4, which gives rise to the studied interference and phase
effects. It is interesting to note that the two initial states of the interfering pathways
are different, only the final state is the same. The two initial states, however, have a
fixed phase relation with relative phase φ, which nevertheless allows for interference
to take place. The interfering subsystems are thus independent three-level systems
in V configuration, even though the initial level structure is a Λ-type system. This
conclusion can be further verified by noting from Fig. 4 that for each final state, one
of the pathways is mediated by the coupling constant gk, whereas the other path is
proportional to ĝk. Thus the interference effects should also be controllable via the
relative phase of these coupling constants just as via the phase φ. A numerical check
shows that this is indeed the case.

A closer analysis shows that the laser-induced V -type subsystems are not entirely
equivalent to a three-level V −-type atom with parallel dipole moments, in that different
conditions for maximum interference must be fulfilled. The analysis further enables
one to identify the correct treatment of the quantized driving field phase [22].

3 Light propagation in coherently prepared media

One of the most important applications of light-matter interaction both from a fun-
damental and from an application point of view is the propagation of a light pulse
through a dispersive medium. A landmark achievement in this area that fueled much
of the following work was the realization that laser-induced atomic coherence in the
form of electromagnetically induced transparency (EIT) could be used to propagate
a probe pulse through a near-resonant medium essentially unperturbed [Har97]. In
particular, the modification of the group velocity of a probe field pulse has received
considerable attention. Based on EIT, also the group velocity of probe pulses can
be controlled to a great extend, including a complete stopping of light in a suitably
prepared medium [Fle05].

The group velocity vg of probe pulses in dispersive media is essentially determined
by the slope of the real part of the susceptibility [Fic05],

vg =
c

n′(ωp) + ωp/[2n′(ωp)]
∂χ′(ωp)

∂ωp

. (2)

Here, n′ and χ′ are the real parts of the index of refraction and the susceptibility,
and ωp is the probe field frequency. Typically, the derivative part dominates the
denominator for applications in group velocity control. If the derivative part is large
and positive, then vg � c, and slow (subluminal) light propagation is achieved. If the
derivative part is negative, then either vg > c (superluminal propagation) or vg < 0
(negative group velocity) are possible. It should be noted that only in some cases,
the group velocity coincides with the velocity at which information can be sent, such
that causality is always preserved. All cases have been realized in coherently prepared
atomic media, and the susceptibility and thus the group velocity can be calculated
from the atomic probe field transition coherence.

3.1 Beyond the multiphoton resonance condition

A particular class of atomic media are so-called loop media [Koc90, Kei93, Mor02,
Kor99a], in which a certain initial atomic state is connected to another atomic state
via several different combinations of laser field interactions. For example, starting from
state |1〉 in Figure 5, it is possible to evolve the atomic population by laser fields via
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|1〉
|2〉

|3〉

|4〉

g31 g32 g42g41

γ13 γ14 γ23 γ24

Figure 5: The four-level double-Λ type schemes considered in the analysis, driven
by four laser fields indicated by the red arrows with Rabi frequencies gij (i ∈ {3, 4},
j ∈ {1, 2}). The laser configuration forms a closed interaction loop. This loop gives rise
to a dependence on the relative phase of the different laser fields, and in general makes
a time-independent steady state of the system dynamics impossible. The spontaneous
decays with rates γij are denoted by the wiggly green lines.

states |3〉, |2〉 and |4〉 back to the initial state |1〉, such that the condition for a closed-
loop system is fulfilled. This greatly affects the optical properties since the different
possible pathways can interfere [22]. On the other hand, closed-loop systems in general
do not have a time-independent stationary state. A steady state is reached only if a
particular linear combination of the detunings of all incident laser fields is zero, that is,
if the so-called multiphoton resonance condition is fulfilled. This assumption was made
in previous studies, but is invalid for pulse propagation analysis, because a probe pulse
which is finite in time necessarily consists of different frequency components which
cannot fulfill the multiphoton condition simultaneously. Therefore, a time-dependent
study beyond the multiphoton resonance condition is required [24, 50].

In the considered model system depicted in Figure 5, the probe field is applied
to transition |1〉 ↔ |4〉. Mathematically, the closed-loop property implies that it is
impossible to find an interaction picture in which the Hamiltonian does not have an
explicit time dependence. The simplest form for the Hamiltonian V is

V =�(Δ32 − Δ31)ρ̃22 − �Δ31ρ̃33 + �(Δ32 − Δ31 − Δ42)ρ̃44

− �
(
g31ρ̃31 + g32ρ̃32 + g42ρ̃42 + g41ρ̃41e

−iΦ + h.c.
)

. (3)

Here, ρ̃ij is the operator |i〉〈j| in the chosen reference frame (i, j ∈ {1, . . . , 4}). The
Rabi frequencies are gij , and Δij are laser field detunings. In this interaction picture,
the residual time dependence along with the laser field phases appears only together
with the probe field Rabi frequency g41 in the parameter Φ given by

Φ = Δt − �K�r + φ0 , Δ = (Δ32 + Δ41) − (Δ31 + Δ42) , (4a)
�K = (�k32 + �k41) − (�k31 + �k42) , φ0 = (φ32 + φ41) − (φ31 + φ42) . (4b)

The parameters Δ, �K and φ0 are known as the multiphoton resonance detuning,
wave vector mismatch and initial phase difference, respectively. These parameters
are a direct consequence of the closed-loop nature. In general it is not possible to
find a reference frame where the explicit time dependence due to Δ vanishes from
the Hamiltonian, such that for Δ �= 0 no stationary long-time limit can be expected.
Therefore, a time-dependent solution of the density matrix equations is required. Using
the notation ḡ41 = g41 exp[−i �K�r + iφ0], the density matrix equations of motion can
be written as

∂

∂t
R̃ + Σ = MR̃, (5)

where R̃ is a vector containing the density matrix elements. M is a time-dependent ma-
trix, and Σ a time-dependent vector independent of the density matrix elements which
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(a) (b) (c)

|1〉|1〉|1〉 |2〉|2〉|2〉

|3〉 |3〉|3〉

|4〉 |4〉|4〉

g31 g∗32 g42 g41 g∗41probeprobeprobe

Figure 6: Interpretation of the different contributions to the probe field susceptibility in
terms of transition pathways. (a) represents the interaction loop leading to a scattering
of the driving fields into the probe field mode. (b) is the direct scattering of the probe
field off of the probe transition. (c) shows a counter-rotating term. The solid red arrows
indicate coupling field transitions, the dashed blue line is a probe field interaction.

arises from eliminating one of the state populations from the equations of motion via
the trace condition Tr(ρ̃) = 1. For a weak probe field, using Floquet’s theorem [Flo83],
the solution R̃ can be obtained with a series ansatz

R̃ = R̃0 + ḡ41e
−iΔtR̃1 + ḡ∗41e

iΔtR̃−1 + . . . , (6)

where R̃i (i ∈ {0,±1, . . . ) are time-independent coefficient vectors. Using this ansatz,
the time-dependent solution to the density matrix equations of motion can be found,
which allows to evaluate all observables [24, 50].

3.1.1 Linear response: Group velocity control

In an interaction picture oscillating in phase with the applied probe field, the probe
field transition coherence ρ̂41 determining the light pulse propagation through the
medium can be written as,

ρ̂41 = [R̃0]13 eiΦ + g41[R̃1]13 + g∗41[R̃−1]13 e2iΦ , (7)

where [x]13 denotes the relevant 13th component of the vector x [24]. The different
contributions to this result naturally arising from the Floquet analysis correspond to
the various involved physical processes and allow to in detail understand the medium
response.

The first part of Eq. (7) represents the scattering of the driving fields into the probe
field mode arises from [R̃0]13, as shown in Fig. 6(a). This contribution in general does
not oscillate at the probe field frequency, but rather at the combination frequency
ω31 + ω42 − ω32 of the three driving fields. This frequency coincides with the probe
field frequency only under multiphoton resonance. The contribution proportional to
[R̃1]13 shown in Fig. 6(b) is in phase with the probe field for all values of Δ, and is
independent of the relative field phase. It represents the direct scattering of the probe
field off of the probe field transition. The third contribution proportional to [R̃−1]13
can be interpreted as a counter-rotating term which in the Floquet expansion differs
by 2Δ from the probe field frequency, and is depicted in Fig. 6(c).

As an important result, it can be concluded that the phase-dependence of the
loop-configuration studied here is restricted to the multiphoton resonance condition
Δ = 0, because it arises from the scattering of the coupling fields into the probe field
mode. Furthermore, it can be seen from Eq. (7) that all contributions but the direct
scattering acquire an additional dependence on the wave vector mismatch �K together
with the dependence on the phase φ0. Therefore, the laser field geometry influences
the relevance of these contributions to the detection signal in probe field propagation
direction. In general, only the direct scattering contribution can be detected in prop-
agation direction of the probe beam regardless of the separation of detector and the
scattering atoms.
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Figure 7: (a) Real (blue solid line) and imaginary (red dashed line) parts of the
contribution to the Floquet decomposition representing the direct scattering of the
probe field off of the probe transition, g41 [R̃1]13 against the probe field detuning Δ41.
This corresponds to a calculation relevant for the evaluation of the group velocity, but
violates the multiphoton resonance condition and thus requires a Floquet analysis. The
parameters are Δ31 = Δ32 = Δ42 = 0, 2γ13 = 2γ14 = 2γ23 = 2γ24 = γ0, g31 = 2γ0,
g32 = 0.1γ0, g42 = 0.8γ0, and g41 = 0.01γ0. (b) Real part of the Floquet contribution
[R̃1]13 [see Eq. (7)] as in (a). The solid blue line is for g31 = 0.7γ0, the red dashed
line for g31 = 0.85γ0, and the green dash-dotted line for g31 = 1.5γ0. The other
parameters are Δ31 = Δ42 = 0, g32 = 0, 2γ13 = 2γ14 = 2γ23 = 2γ24 = γ0, g42 = 0.2γ0,
and g41 = 0.01γ0.

The considered system enables one to control the pulse propagation to a great
extend. In Fig. 7(a), the probe field susceptibility is shown against the probe field
detuning Δ41, while the coupling field detunings are Δ31 = Δ32 = Δ42 = 0. This
corresponds to a calculation relevant for the evaluation of the group velocity, but
violates the multiphoton resonance condition Δ = 0 for most values of Δ41 shown in the
figure and thus requires the use of the time-dependent Floquet analysis. Consequently,
only the component oscillating in phase with the probe field is shown. It can be seen
in Fig. 7(a) that around Δ41 = ±2 γ0, the real part of the susceptibility has positive
slope, while the imaginary part is strongly negative. This indicates subluminal light
propagation with gain. At about Δ41 = 0, the real part of the susceptibility has
negative slope over a wide frequency range, together with a small positive or even
negative imaginary part. This corresponds to superluminal propagation with small
absorption or gain.

For suitable parameters, the light propagation can conveniently be controlled via
one of the coupling field Rabi frequencies, as shown in Fig. 7(b). The different curves
correspond to different Rabi frequencies on transition |3〉 ↔ |1〉. At resonant probe
field Δ41 = 0, for the parameters in this figure the absorption vanishes for all three
curves [24].

3.1.2 Non-linear response: Self-phase modulation

The double-Λ system also offers interesting prospects for non-linear light-matter in-
teractions, with applications as beam focussing, pulse compression, phase modulation
or optical switching [Boy92]. For example, in addition to the linear index of refrac-
tion, stronger probe fields experience a nonlinear index of refraction, which induces a
so-called self-phase modulation given by

ΔΦNL = n2IkL ,

where n2 is the non-linear index of refraction, I the probe field intensity, k the probe
field wave vector and L the propagation length. In the following, the self-phase mod-
ulation is evaluated for the given double-Λ system using realistic parameters for hot a
sodium vapor [50]. The analysis includes Doppler and pressure broadening, as well as
argon as a buffer gas to compensate for the large Doppler broadening. As in Sec. 3.1.1,
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Figure 8: (a) Real part (dash-dotted blue line) and imaginary part (solid red line) of the
nonlinear susceptibility together with the real part (blue dotted line) and the imaginary
part of the linear susceptibility (dashed red line). The sodium gas has a temperature
of T = 548 K, which leads to a density N = 1.0 × 1020 m−3 and a Doppler linewidth
of δω = 2π × 1.78 GHz. The argon buffer gas has a density of Nb = 3.95 × 1023 m−3.
The control fields have Rabi frequencies g42 = 60 GHz, g31 = 30 GHz, g32 = 25 GHz,
and the detunings are Δ31 = 1.6 GHz, Δ32 = Δ42 = 0. The solid black line shows the
second derivative of the real part of the linear susceptibility required to calculate the
group velocity dispersion. (b) Magnification of the relevant part of (a).

a time-dependent Floquet analysis is required, but including higher-order contributions
to evaluate the nonlinear response. Doppler broadening in a hot vapor effectively leads
to an additional velocity-dependent detuning which can be modelled by averaging the
results over a Gaussian velocity distribution. The buffer gas causes frequent collisions
between the different vapor particles and effectively leads to an additional decay of
the atomic coherences. Co-propagating driving and probe laser fields were found to
be most advantageous as in standard electromagnetically induced transparency.

The real and imaginary parts of the linear and non-linear index of refraction are
shown in Fig. 8(a). At the probe field frequency Δmin

41 indicated by the vertical solid
black line, the imaginary parts of the linear and non-linear indices of refraction are
about an order of magnitude smaller than the real part of the non-linear index of
refraction. Also, their sign indicates small gain rather than losses. At a slightly higher
frequency, the linear and non-linear imaginary parts have opposite signs, such that a
cancelling of the respective linear absorption and non-linear gain could be possible.

In both cases, significant non-linear effects can be observed in pulse propagation
without significant distortion of the probe pulse. Assuming a probe field strength of
10% of the smallest control field strengths, a non-linear self-phase modulation of π is
found to occur after a propagation of about 6.4 cm through the sodium gas.

Fig. 8(b) shows a magnification of the relevant part around Δmin
41 . A closer analysis

shows that the non-linear self-phase modulation could be observed for pulses with a
spectral width of several natural linewidths of the considered sodium D1 transition
γ = 2π × 9.76 MHz. In the same region, group velocity dispersion is low such that
pulse shape distortions can be expected to be small.

3.2 Group velocity control in the ultraviolet domain

Recent advancement in technology allows to extend the frequency range at which
lasers are available to higher and higher frequencies. This raises the need for optical
elements at frequencies beyond visible light, a question that in particular at very high
frequencies has not been answered so far. An interesting alternative to conventional
optical elements could be dispersive quantum optical systems, if the control schemes
known for the optical frequency range can be extended to higher frequencies. In this
section, it will be shown that group-velocity control as required, for example, for optical
delay lines, can be extended to the ultraviolet frequency region [46].
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Figure 9: Level scheme for group velocity control in the ultraviolet frequency region.
(a) Schematic setup. Red arrows indicate coherent fields, and the probe transition
is |3〉 ↔ |2〉. Green arrows denote spontaneous emission, and the blue arrow is an
incoherent bidirectional pumping rate. (b) Possible realization in mercury.
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Figure 10: (a) Real (dashed blue) and imaginary (solid red) parts of the probe field
susceptibility for probe field detunings Δp close to the interacting dark state resonance.
The negative sign of the imaginary part indicates gain. (b) Slope of the real part of
the susceptibility for different incoherent pump rates Λ. The three curves correspond
to different coupling field strengths on transition |4〉 ↔ |2〉. This slope determines the
group velocity of pulses propagating through the medium, and can be controlled over
a wide range via Λ.

The required atomic level scheme can be found, e.g., in mercury [Fry00]. Both a
schematical and a realistic implementation are shown in Fig. 9. The probe field is
applied to transition |2〉 ↔ |3〉. The atomic structure is essentially a three-level elec-
tromagnetically induced transparency (EIT) system in ladder configuration consisting
of states |2〉, |3〉 and |4〉. This subsystem alone exhibits EIT, albeit imperfect due to
the negative effect of the spontaneous emission. In addition, a perturbing state |1〉 is
weakly coupled to the system. This gives rise to a very narrow peak structure in the
optical response curves, due to an interference effect which has been termed interacting
dark state resonance in the literature [Luk99].

As explained in Sec. 3.1.1, resonance structures like the interacting dark state
resonance are of great interest for the control of the group velocity vg of probe pulses, as
they imply a strong frequency dependence of the optical response. It turns out that the
properties of the interacting dark state resonance can be controlled via an additional
incoherent pump rate on the probe field transition [Fry00] [46]. Usually, the dark
state resonance is absorptive, but increasing the incoherent pumping, a population
inversion on the relevant dressed states is achieved such that the probe transition
becomes amplifying. As an example, the real and the imaginary part of the probe field
susceptibility around the narrow structure induced by the perturbing field are shown
in Fig. 10(a). Note that unlike typical EIT structures, the width of the structure is
only about 10−3γ, where γ is a natural decay rate in the system.

In Fig. 10(a), two frequency ranges which are of interest for pulse propagation are
indicated by the vertical purple lines. Around these frequencies, the medium absorp-
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tion is low or even vanishes. In Fig. 10(b), the slope of the real part of the susceptibility
is shown for different incoherent pump field strengths at this frequency of vanishing
absorption. It can be seen that by varying the incoherent pump field strength, the
system can be transferred from superluminal light propagation to subluminal light
propagation without absorption. In this figure, the respective curves correspond to
different coupling field strengths. The strong dependence already on a very weak
incoherent pumping suggests sensitive control, e.g., in light switching schemes.

While the interacting dark state resonances offer interesting perspectives for the
group velocity control in the ultraviolet domain, one has to keep in mind that the
supported frequency width is narrow. Thus, the pulses must not be too short, such
that their frequency spectrum is supported by the resonance. One might be tempted
to conclude that Doppler broadening would completely wash out the resonance in an
experiment. But despite the low width of the structure, an implementation in Doppler-
broadened gases is possible. Using co-propagating laser fields, all relevant results of this
section can be recovered, and the narrow interacting dark state resonance persists [46].

3.3 Lossless negative refraction in dense atomic gases

Media with a negative index of refraction promise a multitude of fascinating applica-
tions such as perfect lenses or improvement in antenna design [Sha07]. But also from a
conceptual point of view, negative refraction is of great interest. First of all, the results
obtained with negative refractive media often challenge the physical intuition gained in
daily life, for example, in computer simulations of images of object falling into a liquid
with negative refractive index [Weg]. But more general, negative refractive media pave
the way towards quantum optics with magnetic fields.

Negative refraction is typically requires coupling of both the magnetic and the
electric field component of a single electromagnetic probe field to the medium. The
challenge is thus to provide a medium with sufficient electric and magnetic response at
the same frequency. So far, experiments focus on metamaterials, which are artificial
structures that can be designed in such a way that the desired electromagnetic response
is achieved. Tremendous progress has been achieved, mostly related to the ongoing
miniaturization of such artificial structures. Current designs for high-frequency meta-
materials, however, are essentially two-dimensional, lossy, and hard to fabricate, which
hampers potential applications.

As an alternative approach, negative refraction has recently been predicted in a
dense gas of atoms (see, e.g., [K0̈7]). Gases are naturally extended, and the probe
frequency is limited by the availability of suitable atomic systems rather than by the
feature size of nano-fabrication methods. The proposed systems, however, up to now
have in common with the metamaterials that they are passive and lossy.

|1〉

|3〉

|2〉

|4〉

|5〉

Ωa

Ωb

B

E

Ωcr

(a)

|1〉 = 2p5(2P3/2)3s2[3/2]−2

|3〉 = 2p5(2P1/2)3d2[3/2]−1

|2〉 = 2p5(2P1/2)3s2[1/2]−1

|4〉 = 2p5(2P1/2)4p2[1/2]+0

|5〉 = 2p5(2P1/2)12s2[1/2]−1(b)

Figure 11: The model system. E and B are the electric and the magnetic components
of a single electromagnetic probe field, Ωi (i ∈ {a, b, c}) are Rabi frequencies of coher-
ent coupling fields, and r is an incoherent pump field. (b) A possible realization in
metastable Neon.
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In the following it is shown how the dense gas approach can be used to obtain
lossless negative refraction in an active, i.e., amplifying dens gas of metastable Neon
atoms. A weak incoherent pumping field can be facilitated to reduce absorption or to
transfer the system to an active state in a controlled fashion [53].

The model system is shown in Fig. 11; it can be realized, e.g., in metastable Neon
atoms where the probe transitions have a wavelength of about 5.4 μm. E and B
indicate the electric and the magnetic component of the probe field, while the Ωi

(i ∈ {a, b, c}) are coherent control fields. r indicates an incoherent pump rate.
The various control fields serve different purposes. It is a major problem in design-

ing media for negative refraction that magnetic and electric dipole allowed transitions
naturally are rarely degenerate. To address this problem, Ωc is used to give rise to an
AC-Stark splitting of state |4〉, such that one of the dressed states is shifted to lower
energies. This allows to counter frequency differences naturally found in Neon between
the electric and the magnetic probe transitions |3〉 ↔ |4〉 and |1〉 ↔ |2〉. Alternatively,
Zeeman shifts via magnetic fields can be used, which however requires strong magnetic
fields to shift both transitions into resonance. Instead of bringing the transitions in
exact resonance, a two-photon transition between |3〉 and |2〉 can be induced where
|4〉 only serves as virtual intermediate state. Both techniques allow to lessen the strin-
gent requirement of near-degenerate electric- and magnetic-dipole allowed transitions
to achieve negative refraction [53].

The incoherent pumping field r effectively induces a population inversion on the
electric probe transition. That way, absorption in the magnetic component of the probe
field can be countered by gain in the electric component of the same field. Successively
increasing r allows to tune the system from passive to an active, amplifying state. This
way, for the first time a controlled transition to an amplifying negative refractive media
is possible.

Finally, the four state |1〉 to |4〉 are in a closed-loop configuration as discussed in
Sec. 3.1. It turns out that this configuration effectively allows to increase the magnetic
response by about one power of the fine structure constant α due to scattering of the
electric probe field component and the control fields into the magnetic probe field mode.
Since the probe field enters the multiphoton resonance condition for the given level
scheme twice with opposite signs, this scattering mechanism is present for arbitrary
probe field frequencies [55].

The optical response to the weak probe beam can be calculated using linear re-
sponse theory. For this, the equations of motion of the system are solved up to linear
order in the applied probe field. But achieving negative refraction typically requires
both electric and magnetic response of the medium. Sufficient magnetic response,
however, according to current knowledge is only possible for dense media, where the
individual atoms cannot be treated individually. Then, local electromagnetic fields
EL experienced by the atoms are different from the externally applied fields EE , as
expressed by the Lorentz-Lorenz relation EL = EE +(4π/3)P . Here, P is the medium
polarization. Thus, the local fields can be large if the medium polarization is large.
It is important to note that local fields appear in the Hamiltonian and the equations
of motion, but it is the external field which is the weak field that must be used in
the linear response expansion. Still, in the literature typically the solution for density
matrix is expanded to first order in the local field and only afterwards corrected by a
local field correction. This approach does not give satisfactory results in our system,
most likely due to a large medium polarization and this strong local fields.

Therefore, here the local fields are replaced already in the equations of motion via
the Lorentz-Lorenz relations [Bow93]. This has the advantage that an expansion in the
weak external field is possible. But the replacement renders the equations of motion
non-linear since the polarization itself depends on the density matrix of the system. In
order to extract the linear response coefficients, the non-linear equations of motion are
solved numerically for different intensities of the probe beam which allows to obtain
the coefficients using linear regression [53].
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Figure 12: (a) Refractive index, absorption and figure of merit FOM = |Re(n)/Im(n)|
for Neon. The parameters are r = 1.718 · 10−2γ, Ωa = 6.3 · 10−3γ, Ωb = 5.6γ, and
Ωc or magnetic fields such that the difference in the transition energies of the electric
and magnetic probe field transition is 560γ. The detuning of field Ωa is −10−2γ, the
gas density is N = 2.5 · 1017cm−3. The scaling parameter γ = 107s−1 is a typical
spontaneous decay rate in metastable Neon. (b) ε, μ, ±n and n2 as function of the
incoherent pump rate. 1, 2 and 3 indicate different pump strengths.

The medium response at the probe field frequency ωp is given by the polarization
and the magnetization, which can be written as

P = χEE(ωp)E + ξEH(ωp)H/4π , M = χHH(ωp)H + ξHE(ωp)E/4π . (8)

Note that the electric response depends both on the electric and the magnetic probe
field component. This is unusual for atomic gases, but common, e.g., in crystals. As
already mentioned, the cross-coupling allows for a considerable increase in the magnetic
probe response due to scattering of control fields and the electric probe component into
the magnetic probe component, if the multiphoton resonance condition is fulfilled [55].
The index of refraction is then given by [K0̈7]

n± =

√
εμ − (ξEH + ξHE)2

4
± i

2
(ξHE − ξEH) , (9)

where the correct sign has to be chosen from physical arguments. This choice is simple
for a passive system, which is necessarily absorptive, but difficult for active media,
where so far no simple general criterion has been found. Fig. 12(a) shows example
results for metastable Neon. The respective curves depict the refractive index, the
absorption and the figure of merit, which is given by the ratio of real and imaginary
part of the index of refraction.

In Fig. 12(a), results are shown for metastable neon. Negative refraction is achieved
with zero absorption or even small gain, such that the figure of merit becomes very
large over a frequency range of order of the natural decay rate. Thus the system
enables one to study a qualitatively new parameter range not accessible with current
devices, and in addition allows to significantly reduce absorption as required for a
successful implementation of the interesting applications of negative refraction.

In order to choose the correct sign of the refractive index Eq. (9), the incoherent
pump rate which renders the system active can be varied smoothly [53]. Then, the
permeability, the permittivity and the index of refraction move in the complex plane
as indicated in Fig. 12(b). Starting from the passive system, where the correct sign
corresponds to the branch with absorption, the correct sign of n for the active case
can be found from continuity arguments. In general, however, this procedure requires
care as a simple physical interpretation of the susceptibility along the real axis in the
complex frequency plane is only possible if the branch point of the square root function
n =

√
ε μ does not lie in the upper half of the complex plane [Ska06]. This condition
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is fulfilled in the present example, but was found to be violated for certain incoherent
pump strengths in related systems [55].

4 Strong field light scattering off of regular struc-
tures

In atomic and molecular physics, light scattered by a quantum system is one of the
primary observables used to analyze the properties of the object under study. A sys-
tematic characterization of the light is possible with the help of the different correlation
functions of light [Gla07].

Physics related to the first-order correlation function already played a major role
in the early days of quantum physics. For example, Young’s double slit together
with different extensions frequently served as thought experiment in discussions on
the foundations of quantum mechanics. A modern variant of Young’s experiment
involves light scattering off of atoms [Eic93b, Esc01]. As in the original setup, light is
scattered such that different indistinguishable pathways connect source and detector,
and thus interference may arise. The most direct analogy to the double slit experiment
is achieved for a structure of different atoms, but analogous interference is also possible
with single particles, where the different interfering pathways correspond to different
internal time evolutions as discussed in Sec. 2.1 [Lin05b] [29].

There is, however, a difference between the classic double slit setup and the corre-
sponding realizations with light scattered by atoms. The atoms have internal structure,
and their scattering properties depend on the intensity of the scattered light. In the
limit of very small light intensity, the scattered light is almost entirely coherent, such
that high interference visibility is possible. For strong driving fields, however, the
atomic transitions saturate, and the interference visibility vanishes [Sko01]. Yet, most
applications would benefit from a high intensity of coherently scattered light.

This motivates the study of quantum interference in light scattered by regular
structures driven by strong laser fields [32]. As a starting point, a pair of distinguish-
able atoms located at positions �ra, �rb and separated by �rab, is studied. The particles
are assumed to be two-level atoms with transition frequency ω0. The driving laser
field has frequency ωL = ckL, wave vector �kL, and is aligned such that �kL · �rab = 0
(see Fig. 13). The distance of the particles is assumed large enough such that direct
interactions between the particles can be neglected.

strong laser

coincidenceline of atoms

�R1

�R2
α1

α2

�rab

τ

Figure 13: Two-level atoms positioned in a linear structure with constant inter-particle
distances �rab. All atoms are driven by a near-resonant strong laser field with wave
vector �kL. Two detectors D1, D2 placed in observation directions �R1, �R2 measure
properties of the emitted scattered light such as intensity, spectrum, and correlations
between different photons. τ depicts a delay unit for the coincidence measurements.
The observation directions are also characterized by the angles α1, α2 between �rab and
�R1, �R2. The atoms and the detectors are located in a plane, and the driving field
propagates perpendicular to this plane.
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Figure 14: (a) Central band visibility VCB as function of η for a resonant strong
driving field. (b) Central band intensity ICB(�R1)/N2 (arbitrary units) as function of
α1. Here, the bath parameters are such that VCB = 0.95. Solid line: N = 10, dashed
curve: N = 2. Note the different axis scales of the two subfigures.

In the limit of a strong driving field, the spectrum of the scattered light separates
into distinct spectral bands like in the well-known single-atom Mollow resonance flu-
orescence spectrum [Scu97], such that spectral properties have to be defined for each
spectral band separately. It is found that the scattered light separates into a central
spectral band at the laser frequency ωL (C), and two left/right sidebands (L, R) at
frequencies ω± centered around ωL.

As the key element of the control scheme, in the following, it is assumed that
the atoms are embedded in a frequency-dependent environmental bath, such that the
mode densities at the two sideband frequencies ω+ and ω− differ considerably. Thus,
the structure interacts with different mode densities at the various dressed-state fre-
quencies. Because the spontaneous decay rates γ(ω) are proportional to the density of
modes at the transition frequencies, the dressed-state populations redistribute depend-
ing on the parameter η = γ(ω+)/γ(ω−). Techniques to achieve such a modification of
the vacuum were demonstrated experimentally, e.g., in [Zhu88, Flo04].

4.1 First-order correlation function: Interference recovery

For the measurement of the first-order correlation function or intensity of the scattered
light, a single detector at a position given by the angle α (see Fig. 13) registers the
light intensity at a particular frequency in the optical far-field limit. As observable,
the intensity of the central spectral band is chosen, for which the visibility

V =
Imax − Imin

Imax + Imin

is defined, where Imax [Imin] are the maximum [minimum] intensity as a function of
the detector position α. The driving field is assumed to be on resonance and strong.
Then, for plain vacuum with η = 1, the visibility is found to be zero.

This conclusion changes completely if the surrounding electromagnetic reservoir
is modified, see Fig. 14(a). It can be seen that maximum visibility (V ≈ 1) can be
obtained for η � 1 or η 
 1. The case η → 0 is achieved if the mode density
at the low-frequency sideband is much larger than the corresponding high-frequency
sideband mode density, or if the high-frequency sideband mode density vanishes. The
opposite case η → ∞ is achieved if the conditions for the densities at high- and low-
frequency sideband are interchanged. Thus, if the densities of the electromagnetic field
modes at the dressed transition frequencies ω± differ considerably, then the interference
pattern is recovered in the central band with near-complete visibility. This opens the
possibility to explore coherent light scattering in the limit of strong driving fields [32].
Figure 14(b) shows a corresponding interference pattern versus detection angle α.

The interpretation for this recovery can be given in terms of scattering via symmet-
ric and anti-symmetric collective states of the two-atom system [32]. Note that this
collective symmetry property is independent of the single-particle dressed states, which
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can be either symmetric or anti-symmetric. As shown in [Sko01], transitions involving
symmetric collective states give rise to interference with a bright center. This means
that the light intensity is at a maximum value if the path lengths from the atoms to the
detector are the same. Scattering via the anti-symmetric state leads to the opposite
dark-center interference. In plain vacuum at strong driving, both scattering channels
have equal probability, such that the two kinds of interference cancel each other. In a
modified vacuum surrounding, for η � 1 or η 
 1, however, only symmetric collective
states are populated. Thus one finds bright center interference, as can also be seen
from Fig. 14(b).

The discussion of the first-order correlation function can be extended to many-atom
ensembles. If N independent two-level atoms are uniformly distributed in a linear chain
(rab = ri,i−1), then their central-band intensity (up to a pre-factor) evaluates to

ICB(�R1) =N(1 − z) + zF(δ1) . (10)

Here, δi = kLrab cosαi, F(x) = sin2[Nx/2]/ sin2[x/2], and z is a function of the dressed
state populations. Maxima of the light intensity ICB scattered into the central fre-
quency band occur for kLrab cosα = 2πn with z = 1, where the intensity I

(max)
CB (�R)

scales with the number of atoms N squared. Thus the central-band visibility is sig-
nificantly improved. In analogy to the multi-slip experiment in classical optics, the
resolution of the sub-wavelength pattern of the different maxima scales with the atom
number, see Fig. 14(b).

4.2 Second-order correlation function: Lithography

In this section, the second-order correlation function of the steady-state resonance
fluorescence emitted in the three spectral bands is discussed. The coherence properties
of an electromagnetic field, at space-point �R, can be evaluated with the help of the
second-order coherence functions:

g(2)
mn(τ, �R1, �R2) =

〈a+
m(t, �R1) a+

n (t + τ, �R2) an(t + τ, �R2) am(t, �R1)〉
〈a+

m(t, �R1) am(t, �R1)〉 〈a+
n (t, �R2) an(t, �R2)〉

, (11)

where a+
n (an) (n ∈ {C, L, R}) are the photon creation (annihilation) operator for the

central (C) spectral band or the sideband modes (L, R) which occur at strong driving.
The quantity g

(2)
mn(τ) can be interpreted as a measure for the probability for detecting

one photon emitted in mode m and another photon emitted in mode n with delay τ .
From now on, all correlation functions are evaluated for τ = 0, and the variable τ
is dropped. For τ = 0, the second-order correlation function determines the photon
statistics of the emitted light, which could, e.g., be (sub-) poissonian, or coherent.
Further, the two Cauchy-Schwarz parameters

χL(�R1, �R2) =
g
(2)
LL(�R1, �R2)g

(2)
RR(�R1, �R2)

[g(2)
LR(�R1, R2)]2

, (12a)

χR(�R1, �R2) =
g
(2)
LL(�R1, �R2)g

(2)
RR(�R1, �R2)

[g(2)
RL(�R1, R2)]2

, (12b)

relate the correlation between photons emitted into individual modes to the cross-
correlation between photons emitted into two different modes. If χL < 1 or χR < 1,
then respective Cauchy-Schwarz inequalities are violated, and the correlations are non-
classical [Lou80].

To evaluate potential applications in lithography, the setup is specialized to the case
of a medium sensitive to two-photon exposure [Bot00, D’A01, Xio05, Hem06] [49]. For
this, both photons are assumed to be detected at the same position δ = krab cos(α),
i.e. �R1 = �R2 ≡ �R. A suitable performance indicator for lithography is the interference
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Figure 15: The Cauchy-Schwarz parameter χL = χR as function of detector positions
α1, α2. Here, rab/λ = 7. The number of atoms is (a) N = 2 and (b) N = 10.

fringe resolution, which is a measure for the smallest structure size that can be created
by means of optical exposure via such a system. In the strong-field limit, with resonant
driving field, one finds g

(2)
CC(�R) = 1+cos2 δ. Comparing this result to the weak driving

field case, where the different spectral bands are unresolved [Sko01], it is found that
the spatial fringe resolution is twice as high in the strong field case as in the weak
field case. Thus, simply increasing the driving field strength effectively doubles the
resolution of the spatial pattern around the central frequency ωL [32].

More insight in the system properties can be gained by studying light emitted into
the spectral sidebands (L, R) [52]. Again, detection in the far zone limit is assumed,
but this time with detectors at different positions. For this setup, the Cauchy-Schwarz
parameters in Eq. (12) turn out to be equal χL = χR, and are shown in Fig. 15(a) for
an inter-particle distance rab = 7λ and for two atoms (N = 2). It can be seen that
the Cauchy-Schwarz inequalities are violated for broad ranges of detector positions
δ1, δ2, where χL = χR < 1. The structure of χL and χR can be understood by
inspecting Eq. (12). The Cauchy-Schwarz parameters are given by the ratio of the
product of the sideband second-order photon correlations g

(2)
LL(�R) and g

(2)
RR(�R) to the

cross correlation g
(2)
LR(�R) or g

(2)
RL(�R) squared. Therefore, the oscillatory structures of

both quantities combine to give the result in Fig. 15(a). It is interesting to note that
it is not possible to distinguish whether the first photon is emitted on the left or on
the right sideband, since the two different cross-correlations g

(2)
LR(�R) and g

(2)
RL(�R) are

equal.
These results can also be generalized to the case of N independent two-level atoms

that are uniformly distributed in a regular chain with inter-particle distance r0. Con-
sistent with our assumption of detection in the far-zone limit, the linear dimension
of the chain L = (N − 1)r0 is much smaller than the distances between chain and
detectors |�R1| and |�R2|. An example for N = 10 atoms is shown in Figure 15(b). In
this figure, the Cauchy-Schwarz parameters range between below unity up to four.

5 Collective quantum dynamics in ensembles of atoms

If two atoms are close to each other, they can interact via the vacuum radiation field in
a process where a (virtual) photon emitted by one of the atoms is re-absorbed by the
other atom [Aga74]. This dipole-dipole coupling gives rise to a collective quantum dy-
namics, which can significantly deviate from a corresponding single-particle dynamics.
In the following, two different approaches are presented to deal with such collective
systems. The first approach in Sec. 5.1 takes into account the exact position-dependent
coupling of the individual particles to the relevant electromagnetic fields. This enables
one to study in particular the geometrical structure of the inter-particle coupling, but
the computational complexity restricts the treatment to few-particle systems. The
second approach employed in Sec. 5.2, on the other hand, neglects the individual po-
sitions of the particles by assuming that all particles interact with the external fields
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in the same way. This approximation was introduced by Dicke [Dic54], and allows
to analytically treat systems of arbitrary particle number. However, within this ap-
proximation the notion of an individual particle looses its meaning and the precise
structure of the inter-particle coupling cannot be studied. Thus both approaches are
complementary.

5.1 Geometrical structure of the dipole-dipole interaction

Most previous work in quantum optics on dipole-dipole interacting atoms has focussed
on two-level systems, often restricted to somewhat special geometries. For example, the
alignment of the transition dipole moments, the interatomic distance vectors, the laser
field wave vectors and the observation direction are often assumed fixed and parallel or
perpendicular to each other [Fic02]. The motivation for this might be that for collective
effects to occur, the emitting and the absorbing transitions should be near-degenerate,
and the polarization of the emitted photon must match the absorbing transition dipole
moment. Thus often this dipole-dipole interaction is thought to couple only non-
orthogonal transition dipole moments. This restriction is in complete analogy to the
stringent conditions for the appearance of spontaneous-emission interference between
transitions in single-particle systems, which only occurs for non-orthogonal transition
dipole moments, as discussed in Sec. 2.1 [Fic05].

It turns out, however, that in contrast to the single-atom case, dipole-dipole cou-
plings are also possible between transitions with orthogonal dipole moments [Aga01] [31,
41, 43]. Effects of such orthogonal couplings have been observed, for example, in low-
dimensional samples of ultracold gases [Car04]. Simply speaking, this occurs if the
projection of the polarization of the emitted photon on the absorbing dipole moment
is non-zero, a condition which strongly depends on the geometry of the setup [31]. In
the following, implications of these dipole-dipole couplings between orthogonal transi-
tion dipole moments (DDOTDM) are discussed [31, 41, 43].

5.1.1 Geometry-dependent dynamics via vacuum-induced coherences

As a first step, it is shown that the DDOTDM couplings may lead to a geometry-
dependence of the electronic dynamics for a pair of laser-driven Λ-type atoms, see
Fig. 16 [31]. The two atoms are driven by two laser fields propagating in z direction,
and the total fluorescence intensity of the light scattered in y direction is recorded.
The first atom is located in the coordinate system origin, the second atom is located
at �r12. In Fig. 17, the fluorescence intensity emitted in y-direction is shown for two
different geometries �r12. In the first case, both atoms are aligned along the z axis. In
the second case, the second atom is in the x − y plane. In both cases, the remaining
setup of driving fields and detectors is the same.

From Fig. 17, it is found that the spatial orientation of the two-atom pair alone
can decide if the system reaches a true constant steady state or if it exhibits periodic

δ

Δ1 Δ2

Ω1 Ω2γ1 γ2

|1〉
|2〉

|3〉

(b)

Figure 16: (a) System of two dipole-dipole interacting atoms in arbitrary geometry.
(b) Atomic level structure as used in Sec. 5.1.1
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Figure 17: (a) Short time and (b) long time dynamics of the fluorescence light emitted
in y-direction. The two atoms are three-level Λ-type atoms, where each of the two
dipole-allowed transition is driven by a stationary laser field (Ω1 = Ω2 = 5 γ, Δ1 = 0,
Δ2 = 2 γ). The geometry is chosen as φ = π/4, and θ = π/2 (solid red line) and θ = 0
(dashed green line). Since the oscillation of the solid line continues undamped for all
times. Apart from the angle θ, all parameters for the two curves are identical.

oscillations in the long-time limit. If the two atoms are aligned along the z axis, then
the system reaches a steady state (green curve). If, however, atom B is in the x − y
plane, then the system never reaches a steady state, and the intensity exhibits periodic
oscillations in the long-time limit, see the red curve in Fig 17(b).

This unusual geometry dependence of the internal dynamics can directly be related
to the DDOTDM. For the case where the system reaches a steady state, the DDOTDM
vanish. But for the case where the system exhibits periodic oscillations in the emitted
light intensity, the DDOTDM couple the dipole-allowed transitions with orthogonal
dipole moments in the two atoms. Then, each transition is effectively driven twice.
First, the direct driving by the external laser field with frequency of the first laser field.
Second, indirect driving via the DDOTDM with frequency of the second driving field.
Thus, if the two laser field frequencies differ, the DDOTDM effectively give rise to a
bichromatic driving of the atoms, which leads to the non-stationary long time limit.

Thus, it is found that the DDOTDM couplings enable one to influence the dynamics
of a pair of atoms simply by changing the relative orientation of the two atoms, such
that the evolution strongly depends on the system geometry.

5.1.2 Orthogonal dipole-dipole couplings in time-dependent geometries

The DDOTDM strongly depend on the relative orientation and distance of the in-
volved particles. In many situations of interest, however, this geometry is not fixed.
For example, in a linear trap, the inter-atomic distance usually can be described clas-
sically as a sinusoidal oscillation around a mean distance. In this case, a dependence
of the dynamics on the orientation of the dipole moments relative to the oscillation
direction can be expected. A gas of atoms corresponds to a setup where both the
orientation and the distance of any given pair of atoms changes with time. Thus the
question arises, whether the geometry-dependent effects of the dipole-dipole interac-
tion of orthogonal transition dipole moments (DDOTDM) survive an averaging over
different geometries [48]. A convenient observable to find an answer to this question is
the oscillation of the fluorescence intensity in the long time limit found in the previous
Sec. 5.1.1, which could be traced back exclusively to the DDOTDM.

Two different ansatzes for an averaging of the configuration space are compared.
First, one can assume that the internal electronic dynamics is much faster than the
change of the geometrical setup [adiabatic case (AC)]. In the opposite limit, the change
in geometry is fast enough such that the atoms essentially see an averaged interaction
potential [average potential (AP) method]. The latter approach for example is used
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Figure 18: (a) Dependence of the amplitude of the fluorescence intensity modulations
on the oscillation amplitude r12 of the atom for a mean distance rm = 2.25λ. In
(i) the AC is used and in (ii) the AP method. The inter-atomic distance vector is
oriented such that φ = π/4 and θ = π/2. The laser parameters are Ω1 = 3 γ, Ω2 = 5 γ,
Δ1 = 0, Δ2 = 2γ, and the two lower states are assumed degenerate δ = 0. (b) Time-
dependent fluorescence signal for different fixed distances r12 without any averaging.
(i) r12 = 0.10 λ, (ii) r12 = 0.08 λ, (iii) r12 = 0.06 λ, (iv) r12 = 0.05 λ, (v) r12 = 0.04 λ.
The other parameters are as in (a). The vertical lines allow to easily judge the relative
phase shifts of the different curves.

in the context of ultracold quantum gases to derive the 1/r long-range potential from
the dipole-dipole coupling of parallel dipole moments by averaging over all possible
orientations of the inter-atomic distance vectors [Cra84].

Averaging over different parameter ranges of relevance, it is found that in general
the orthogonal couplings can survive an extensive averaging over different geometries
as long as the inter-particle distance remains small [48]. The magnitude of the effects in
the averaged signal, however, strongly depends on the averaging range, and also on the
averaging method. Typically, one- or two-dimensional systems can be expected to show
larger effects of the dipole-dipole coupling. Also, the two averaging methods considered
can give very different results when averaged over the same set of geometries. In most
situations, however, the case where the change in geometry is slow as compared to the
internal dynamics is more favorable.

An example for the averaged results, in Fig. 18 results are shown for a sinusoidal
oscillation of the inter-particle distance r12 around a mean value,

r12(α) = rm + ra sin(α) .

In Fig. 18(a), the fluorescence intensity oscillation amplitude in the long-time limit
ΔI is shown against the oscillation amplitude ra for a mean distance rm = 2.25λ.
It can be seen that the curve exhibits a series of resonances, which occur due to
an alternating destructive and constructive superposition of the contributions from
different distances in the averaging process. This can be seen from Fig. 18(b), where
some examples of unaveraged time-dependent signals for small inter-atomic distances
are shown. For distances larger than about 0.06 λ, the relevant contributions oscillate
approximately in phase, see curves (i) and (ii). For smaller distances, however, the
contributions move out of phase, as can be seen from curves (iii)-(v). Curves (iv) and
(v) approximately have maxima where curves (i) and (ii) have minima, and vice versa.
Curve (iii) is an intermediate case. Therefore, the oscillations with different phases
cancel each other in the averaging process if distances below about 0.06 λ are included
in the averaging. Similar relative phase shifts of the intensity modulations occur also
for larger inter-particle distances.

In Fig. 18(b), at very small distances, the fluorescence intensity decreases, because
then the level shifts induced by the dipole-dipole coupling are strong enough to shift
the relevant transition frequencies out of resonance with the driving laser fields.
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Figure 19: Collective state space of two interacting 4-level atoms. The excited states
are Zeeman split and both atoms are located in the x − y plane. The lowest state
corresponds to both atoms in the ground state. In the intermediate state manifold,
one atom is excited, whereas the other is not. In the upper set of states, both atoms
are in one of the three excited states. The red curve indicates the four-dimensional
decoherence free subspace.

The approximate minimum in curve (ii) of Fig. 18(a) is due to the fact that for
this oscillation amplitude, the DDOTDM are small at the classical turning point of
the oscillation, such that the influence of the DDOTDM are small. Clearly, the two
averaging methods corresponding to different physical situations give very different
results for this set of parameters.

Other situations of interest are studied in [48], such as averaging over the orienta-
tion, over orientation and interparticle distance, and over particle A flying past particle
B on a straight trajectory.

5.1.3 Breakdown of the few-level approximation in collective systems

From the above discussion it is clear that the DDOTDM in general play a crucial role
in the collective dynamics of dipole-dipole-interacting systems. In particular, one has
to realize that DDOTDM may lead to a population transfer to excited states that
are not driven by any external field [Aga01] [41]. To understand the effect of this
for collective systems rigorously, it is useful to study the archetype case of two dipole-
dipole interacting atoms, and model each atom by complete sets of angular momentum
multiplets. As a first step, the intuitive result can be proven that the dipole-dipole
induced energy shifts between collective two-atom states are invariant under rotations
of the separation vector if complete and degenerate multiplets are considered[41]. The
physical reason for this is that such a system does not have a preferred direction in
space.

This result, however, can only be established if the DDOTDM are included in
the analysis, and if complete angular momentum multiplets are considered. On the
contrary, the artificial omission of any of the Zeeman sublevels of a multiplet leads to
a spurious dependence of the energy shifts on the orientation, and thus to incorrect
predictions. For example, if only one excited state |e〉 and the ground state |g〉 are
retained, the position-dependent energy splitting between the entangled two-particle
states (|e, g〉 ± |g, e〉)/

√
2 is recovered which has previously been reported for a pair of

two-level systems.
Thus the few-level approximation violates the expected rotational invariance, and

one has to conclude that in general the few-level approximation which is ubiquitous
in quantum optics cannot be applied to collective systems. A state reduction of the
angular momentum multiplets is only possible for few selected geometries, which can
easily be identified using the techniques developed throughout the analysis in [41].

23



5.1.4 Multi-particle decoherence free subspaces

In the previous Sec. 5.1.3 it was explained that the DDOTDM enforce the inclusion of
complete angular momentum multiplets in modelling dipole-dipole interacting systems.
On the one hand, this renders the analysis more demanding as compared to the treat-
ment of interacting two-level systems because of the larger state space. On the other
hand, however, multilevel systems offer interesting perspectives for novel applications.
One example is the possibility for a decoherence-free subspace (DFS) [Zan97, Lid98]
in a system of two dipole-dipole interacting multi-level atoms [43] The ground state
of each atom is taken to be a S0 singlet state, and the excited state multiplet is a
P1 triplet. A subspace V of the complete Hilbert space is called decoherence-free if
the time evolution inside V is purely unitary. An analysis of the system dynamics
reveals that in the limit of vanishing interatomic distance, the state space of our sys-
tem contains a four-dimensional DFS, see Fig. 19. The excited states in the DFS are
the generalization of the well-known sub-radiant Dicke state found in two two-level
systems. Their lifetime and thus the operation time of the DFS depends on the inter-
atomic distance, and becomes infinite in the limit of vanishing interatomic distance.
Using a single cw laser field, the DFS can be populated probabilistically without re-
quiring, e.g., field gradients on the wavelength distance scale as employed by previously
proposed schemes. After preparing the system in the DFS, arbitrary single-qubit op-
erations can be executed between two excited states within the DFS either using a
static magnetic field or a rf field. Thus it is possible to induce a controlled dynamics
within a subspace that is approximately decoupled from the dissipative interaction
with the vacuum field. It should be noted that despite the approximate spontaneous
emission suppression, the lifetime of such a system is typically short as compared to
coherence times of nuclear spin systems. But the operation times can be significantly
shorter than in spin systems due to the large atom-field coupling constants, such that
the number of operations per coherence time may become comparable. The antisym-
metric sub-radiant states can also be identified as long-lived entangled states.

5.2 Many-particle quantum dynamics

In the Dicke model employed in this section, the different constituents of the ensemble
are assumed to be confined to a small region in space such that the relevant electro-
magnetic field modes interact with all atoms in the same way, see Fig. 20(a). In view
of most experiments done so far, for example in extended gas cells, the validity of this
approximation is not obvious. Indeed, extended media show additional effects like a
re-absorption of emitted light that are not captured by the original model by Dicke.
Nevertheless, the Dicke model allows to successfully predict the relevant features of the
collective quantum dynamics. More recent experiments allow to closely approximate

Sample of atoms
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≤ λ

T > 0
|1〉

|2〉

|3〉

2γ1

2γ2

(b)

Figure 20: (a) Schematic illustration of the Dicke approximation. The atoms are con-
centrated in a region in space which is small as compared to the wavelength of the
relevant electromagnetic fields. (b) Setup with three-level atoms in ladder configura-
tion in a thermal bath with temperature T > 0 as used in Sec. 5.2.2.

24



(a) (b)

Ω2Ω2

Ω3

Ω3 γ2
γ2 γ3γ3

rp2rp2 rp3rp3

|1〉

|1〉 |2〉

|2〉

|3〉

|3〉

Figure 21: Three-level atoms in (a) V - and (b) Λ configuration. Red arrows indi-
cate coherent driving, green arrows spontaneous emission, and blue arrows incoherent
pumping.

the original conditions assumed by Dicke [Gre00]. If Fig. 20(b), a setup with a small
sample of atoms together with the internal structure that will be analyzed in Sec. 5.2.2
is shown as an example.

In essence, the small sample approximation allows to introduce collective operators,
which are sums over single-particle operators. These enable one to solve the collective
Master equation in certain limiting cases analytically for arbitrary particle numbers.
But it also entails conceptional differences to the analysis in Sec. 5.1. In the Dicke
limit, e.g., it is only possible to evaluate how many of the atoms are excited, but not
which of the atoms. Thus the notion of an individual particle looses its meaning in
this framework.

5.2.1 Coherent control of collective quantum dynamics

Collective quantum systems are known to offer a number of interesting properties,
such as an accelerated internal evolution, or a certain robustness against perturba-
tions [Dic54]. In previous studies, the implications of collectivity have been analyzed
in great detail, but the focus was mostly on a description of the properties [And93].
In contrast, for most applications, a precise control of the system under study is re-
quired. For example, a complete and rapid transfer of the system population between
various system states may be desirable in order to control the optical properties of
the system. Thus it is not surprising that many control schemes have been proposed,
though mostly for single-atom systems [Fic05]. In the following, the question is ad-
dressed whether similar control schemes can also be found for for collective quantum
systems [6, 10, 13, 19, 23, 44].

As model system, ensembles of three-level atoms in V - or Λ configuration are
studied, see Fig. 21. The atoms are embedded in a mode-selective cavity, which induces
quantum interference between the two dipole-allowed transitions [Pat99, Zho00]. This
interference renders the systems sensitive to the relative phase Φ of the two coherent
driving fields, which can thus be used as a control parameter [c.f. Sec. 2.2]. The
coherent fields are taken to be strong, such that an analysis in terms of the dressed
states of the system is convenient. In the following, the population of one of these
dressed states,

|Ψ1〉 =
Ω3

Ω
|2〉 − Ω2

Ω
|3〉, Ω =

√
Ω2

2 + Ω2
3, (13)

will be used as an observable. This dressed state is a linear combination of the two ex-
cited states in the V -type system, and of the two ground states in the Λ-type setup. In
addition, the total fluorescence intensity emitted on the two dipole-allowed transitions
is studied.

Fig. 22(a) shows the steady-state population in the collective dressed state |Ψ1〉
per atom of the V -type system for different numbers of atoms N versus the relative
phase Δφ between the two applied strong resonant laser fields. For a single atom

25



0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

Δφ [π]
〈R

1
1
〉/

N

(a)

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

�� ���

� �
�
�
�

���

Figure 22: (a) Population of one of the dressed states for different number of atoms in
the ensemble plotted against the relative phase φ of the driving fields. (b) Fluorescence
intensity emitted by the ensemble. In both cases, the driving fields are strong, and
the red line corresponds to number of atoms N = 1, the blue line to N = 10, and the
black line to N = 200. Further Ω2 = Ω3, η = 1, Φ(r) = 1 and C = 2.

(N = 1), the atom may only be trapped in |Ψ1〉 for Δφ = n · 2π (n ∈ {0, 1, . . . }).
With increasing number of atoms, the range δ(Δφ), for which the collective coherent
population trapping effect occurs, grows until in the limit N → ∞ the system exhibits
jumps between two states with either all or none of the population in the collective
state |Ψ1〉. Increasing the number of atoms involved also can be shown to lead to
a more rapid transfer of the atoms into the trapping states or vice versa. These
properties may be used to build fast optical switching devices conveniently controlled
by the relative phase of the two laser fields. The steady state of the collection of atoms
also influences the absorption or gain of an additional weak probe beam, such that the
fast switching between the ground and the excited state might be used to construct
e.g. a quantum optical transistor.

The collective steady-state fluorescence intensity per emitted atom IV /N2 with
minima Δφ = πn for n ∈ {0, 1, 2, . . .} is depicted in Fig. 22(b). A comparison with
Fig. 22(a) shows that the minima occurring for even n are due to the trapping of
the population in the collective dressed state |Ψ1〉, i.e. in the collective upper bare
states |2〉 and |3〉. While for the single atom case the intensity only vanishes exactly
at Δφ = 2πn, the trapping range increases with the atom number as discussed for
the populations. In Fig. 22(b), at phase differences corresponding to odd n, the
fluorescent intensity also tends to zero for N 
 1. However, at these phase differences
the population is not trapped in |Ψ1〉 as for even n, but with equal weights in the two
other dressed states. This means that 0.5 of the atomic population is in the ground
bare state |1〉, while 0.25 of the population is in each of the upper bare state |2〉 and
|3〉. As the inhibition of fluorescence does not occur in the single atom case, these
minima may be associated with subradiant states: The photons emitted by the half of
atoms in the excited states is absorbed by the other half in the ground state.

Similar results are found for the Λ-type system [6, 19]. It was further shown that
also other control parameters allow to prepare the systems favorably, e.g., incoherent
pump fields [10] or thermal baths [13]. The localization of small ensembles of atoms
is discussed in Sec. 6.1.2 of this work.

5.2.2 Quantum correlations via an incoherent bath

Entanglement and correlations are key resources for applications in quantum infor-
mation processing. A major challenge in this area typically is the preservation of
these correlations under perturbing interactions with the environment that cause de-
coherence. But surprisingly, it has been shown that under certain conditions the
interaction with an incoherent heat bath can be favorable and even induce correla-
tions [Arn01, Ple02]. In this Section, it will be shown that this favorable impact also
can be observed for small ensembles of atoms subject to an incoherent bath [23].
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Figure 23: Second order correlation function of photons emitted on transition |1〉 ↔ |2〉
as a function of the number of atoms in the ensemble. (a) Results for g

(2)
11 (0) indicating

the photon statistics. The three curves correspond to different bath temperatures
η1 = η2 = 1 (lower curve), 0.5, 0.1 (upper curve). In addition, red triangles (blue
squares) denote bunching (anti-bunching) obtained from g

(2)
11 (τ). (b) Dependence of

g
(2)
11 (τ) on the delay τ . (i) N = 15, η1 = η2 = 0.6, (ii) N = 6, η1 = 0.8, η2 = 0.05, (iii)

N = 1, η1 = η2 = 0.2.

A collection of three-level atoms in ladder configuration is embedded in an incoher-
ent bath that drives the two transitions, as shown in Fig. 20(b). The incoherent bath
can either be thermal with a Boltzmann distribution of the bath excitation (for exam-
ple in the microwave frequency regime), or pseudo-thermal induced by an incoherent
driving field (e.g. at optical frequencies). The bath temperature can be parameterized
via the parameters ηi = n̄i/(1 + n̄i), where n̄i is the mean thermal photon number at
the transition frequency of transition i (i ∈ {1, 2}). Zero temperature corresponds to
ηi = 0, while for hot bathes this parameter approaches unity.

The created correlations can most conveniently be measured via the light emitted
by the ensemble, characterized by the normalized steady-state second order correlation
function

g
(2)
ij (τ) =

〈S+
i (t)S+

j (t + τ)S−
j (t + τ)S−

i (t)〉
〈S+

i (t)S−
i (t)〉 S+

j (t)S−
j (t)〉

∣∣∣
t→∞

.

Here, i, j ∈ {1, 2} parameterize the two transitions and S±
i is the atomic raising

(lowering) operator on transition i. The quantity g
(2)
ij (τ) can be interpreted as a mea-

sure for the probability for detecting one photon emitted on transition i and another
photon emitted on transition j with time delay τ . g

(2)
ij (0) < 1 characterizes sub-

poissonian, g
(2)
ij (0) > 1 super-poissonian, and g

(2)
ij (0) = 1 poissonian photon statistics.

g
(2)
ij (τ) > g

(2)
ij (0) is the condition for photon anti-bunching, whereas g

(2)
ij (τ) < g

(2)
ij (0)

means bunching. Correlation functions with i = j describe the photon statistics of
the fluorescence light emitted on a single atomic transition, and g

(2)
i�=j(0) the cross-

correlations between the photon emission on two different transitions.
Example results are shown in Fig. 23(a). Here, the second order correlation function

at τ = 0 of fluorescence light emitted on transition |1〉 ↔ |2〉 is shown. For single par-
ticles, sub-poissonian light is emitted, which however with increasing particle number
turns via coherent light emission to super-poissonian statistics. The different curves
correspond to different temperatures. It can be seen that for lower temperatures, the
change to super-poissonian statistics occurs at lower particle number. Non-integer par-
ticle numbers can be interpreted as mean number of particles interacting with the bath
for example if a particle beam traverses a bath cavity field. In addition, in Fig. 23(a),
the red triangles (blue squares) denote bunching (anti-bunching) of the emitted light.
In order to determine whether the emitted light is bunched or anti-bunched, g

(2)
11 (τ)

needs to be calculated. Examples are shown in Fig. 23(b). Curve (i) shows bunching
with super-poissonian photon statistics, (ii) anti-bunching with super-poissonian pho-
ton statistics, and (iii) is the reference result with anti-bunching for a single particle.
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Interestingly, all combinations of sub-/super-poissonian statistics and bunching/anti-
bunching are found in Fig. 23(a), which illustrates the fact that these two properties
of the light field are independent.

Thus the given system is a versatile source of non-classical light, as required for
many applications in quantum optics and information science [23]. Similar correlations
can also be found between light emitted on different transitions. The cross correlations
g
(2)
ij (τ) for i �= j can be shown to violate Cauchy-Schwarz inequalities for a range of

bath parameters [23].

6 High-precision quantum optics in the spatial do-
main

In the recent past, quantum optics is advancing more and more towards a precision
science. This is in particular visible in the energy-time domain, where, for exam-
ple, optical clocks aim at superseding current atomic clocks [Lud08, Ros08]. Similar
breakthroughs were achieved in measuring optical transition frequencies with very
high precision, such as in the hydrogen 1S-2S measurement based on optical frequency
combs [Han06]. These and related applications rely on quantum mechanics in or-
der to improve performance as compared to previous, classical schemes such as the
measurement of time with mechanical clocks.

The same trend also holds for the position-momentum domain. Light has been
used both as a tool to measure and to manipulate with high spatial precision, for
example in microscopes, telescopes, or mask-based optical lithography. The simplest
techniques, however, are limited by classical constraints such as the Rayleigh criterion
which states that classical uncorrelated light of wavelength λ can typically only be
used to resolve or write structures of about λ/2 [Lor79]. Due to the tremendous
range of applications, it is of great interest to beat such classical limits, and thus it
is not surprising that in the past several decades, many methods have been developed
to overcome this limit. Prominent examples for imaging techniques are near-field
imaging, where the distance between object and measurement device is small enough
that so-called evanescent electromagnetic waves originating from the object can be
picked up by the microscope [Lew03], and various optical far field techniques [Hel07].
Mask-based optical lithography is a standard method for the production of nano- and
semiconductor structures. In the following subsections, alternative methods will be
presented which facilitate quantum mechanics in order to overcome classical limits
both in imaging and in optical lithography.

6.1 Localization of quantum particles

6.1.1 Atom localization via multiple measurements

The question of localizing single quantum particles already started in the early days of
quantum mechanics, when Heisenberg asked the question whether it would be possible
to measure the position of an atom with the help of scattered light. The techno-
logical advancement since then nowadays allows to realize such thought experiments
(see [Tho95] and references therein). Localization schemes under consideration here
generally rely on a measurement-induced collapse of a continuous position probabil-
ity distribution of the particle [Sto92]. After the measurement, the possible position
reduces to a set of narrow regions with high probability. Many schemes rely on a
position-dependent interaction of the quantum particle with a standing wave light
field. In this case, typically several potential positions per wavelength of the driv-
ing field are obtained. These schemes that facilitate a spatially modulated light field
as a reference for the position measurement, however, face a common problem. The
far-field measurements typically only allow one to reconstruct the interaction strength
between quantum object and field. But, due to the periodicity of the standing-wave
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Figure 24: (a) Atomic level scheme suitable for multiple simultaneous measurements.
Each light field couples to one of the transitions such that a phase shift is imprinted on
the light field. (b) Possible light field setup for two-dimensional localization. The atom
indicated by the green circle passes through the intersection region of two standing
wave fields.
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Figure 25: Conditional probabilities for the position x of a quantum particle. The
dashed blue and the dash-dotted green curves show results from individual measure-
ments. The solid red curve is the combined probability that reduces to a single position
per wavelength λ.

intensity modulation, the mapping between coupling intensity and spatial position is
not unique. Rather, there is a large number of potential positions within the standing-
wave field that gives rise to equal coupling strength. Therefore, such measurements
typically have to be accompanied by a conventional position measurement that allows
one to pinpoint the position ideally to about λ/2, where λ is the wavelength of the
incident light field. The quantum measurement then is used to refine this conventional
position measurement to a small set of narrow potential positions within the classical
range of λ/2. The goal of subsequent work was thus to reduce the number of pos-
sible positions within one wavelength in order to improve the localization (see, e.g.,
[Sah05]).

One way of doing so is to perform localization and center-of-mass wavefunction
measurements of a single quantum particle using multiple simultaneous dispersive in-
teractions of the particle with different standing wave fields [39]. The measurements
turn out to be independent, if objects are considered with an internal structure con-
sisting of a single ground state and several excited states, see Fig. 24(a). If the light
fields are off-resonant with the atomic transition frequencies, then no population dy-
namics is induced. Rather, the atom imprints phase shifts on the light fields during
the interaction, which are the observable for the position determination.

As compared to different sequential interactions, simultaneous measurements allow
to reduce the required total interaction time, which is favorable because of unavoid-
able decoherence in the system. Also, each interaction between particle and light
fields gives rise to transversal momentum changes of the particle. In multiple se-
quential interactions, the initial momentum becomes less and less defined. Therefore
multiple simultaneous measurements allow both to increase the measurement or local-
ization precision in a single direction and to perform multi-dimensional measurements
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or localization, depending on the alignment of the different standing wave fields. The
increased precision occurs because each individual measurement can be translated into
a probability distribution for the particle position.

Example distributions corresponding to two different measurements are indicated
as the dash-dotted green and the dashed blue curve in Fig. 25. Different probability
distribution can then be combined to a total position distribution conditioned on the
outcome of all measurements. Ideally, the total distribution reduces to a single peak
per wavelength, as it is the case for the solid red curve in Fig. 25.

Apart from an improved localization in one spatial dimension, multi-dimensional
localization is possible via simultaneous measurements with perpendicular standing
wave fields as shown in Fig. 24.

6.1.2 Localization of atomic ensembles via superfluorescence

In view of the general trend in science towards more complex systems, the question
arises whether current localization schemes are also applicable for larger quantum
systems. It turns out that localization is possible for small ensembles of interacting
quantum particles via the light scattered from a standing wave field [44]. A suitable
setup is shown in Fig. 26. The linear dimension of the ensemble is assumed to be
smaller than the relevant optical wavelength, such that the Dicke limit applies [Dic54].
The scattered light intensity is proportional to the number of atoms in the ensemble
squared, which is a signature of superfluorescence. As in the single particle case, the
fluorescence intensity is a function of the position of the ensemble in the standing wave
field. For example, at the nodes, the ensemble is not driven and no light is scattered.
But while in the single-particle case the fluorescence intensity slowly increases when
moving the particle away from the nodes, the ensemble exhibits a very narrow dip
to zero intensity at the nodes of the standing wave field. Examples for the intensity
profiles found for different numbers of atoms in the ensemble are shown in Fig. 27. This
narrowing arising from the collective speed-up of the system dynamics. The width of
this dip depends on the particle number, and can be decreased by increasing the light
intensity and a suitable choice of the standing wave frequency.

Therefore a coincidence of ensemble position and standing wave node gives precise
spatial information via the absence of fluorescence light. This is in contrast to previous
localization schemes, where the measurement relied on the spectrum of non-vanishing
fluorescence light. By suitably tailoring the fluorescence profile via the standing wave
parameters, moving the standing wave nodes via phase shifts and continuously moni-
toring the fluorescence intensity, the ensemble position can be identified. For example,
in the upper figure of Fig. 26, the ensemble is at a random position inside the standing
wave, and scatters light into the detector. Then the phase of the standing wave is
shifted until the fluorescence ceases. In this case, the ensemble is known to be at a
node of the standing wave, see the lower panel of Fig. 26.

Generalizations of this scheme can be used to measure the position of ensembles

(a) (b)

Figure 26: Localization of an ensemble via scanning-dip spectroscopy of scattered
superfluorescence light. The ensemble (green circle) scatters light out of the driving
cavity field, as shown in (a). The intensity of the scattered light sensitively depends
on the position of the ensemble relative to the standing light field nodes. A phase
shift of the standing wave allows to determine coincidences of ensemble positions and
standing wave nodes with high precision by the drop in intensity as indicated in (b).
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Figure 27: Position-dependent fluorescence intensity of an ensemble of atoms. k is the
wavevector, x the position of the ensemble, and k x = π/2 corresponds to a node of
the standing wave field. N is the number of atoms, which is N = 2 for the red curve,
N = 4 for the green curve, and N = 8 for the blue curve.

passing the cavity field, the distance between two ensembles, or the diameter of an
ensemble [44].

6.1.3 Interparticle distance measurements beyond classical limit

Besides the precise position measurement of quantum objects, interparticle distance
measurements are a fundamental element for the spatial analysis of quantum sys-
tems. The distance measurement between two quantum objects can also be seen as
an archetype system for the analysis of quantum mechanical optical resolution en-
hancement. A number of sophisticated schemes have been devised to subsequently
improve spatial resolution from λ/2 in steps of improvement by a factor of 2 down
to λ/16 (see, e.g. [Mut04] and references therein). These schemes, however, do not
consider the particle interaction, and do not scale easily to higher resolution. Alter-
natively, a method was proposed to reach sub-wavelength resolution that is essentially
based on the possibility to individually address the two nearby particles [Bet95]. This
idea was subsequently realized in a landmark experiment of Hettich et al. [Het02].
They combined near-field and far-field fluorescence spectroscopy techniques, using the
fluorescence spectrum to label different molecules inside an inhomogeneous external
electrical field. They also noticed the existence of the dipole-dipole interaction be-
tween the adjacent objects [Fic04] and used it to correct the measurement result.
These observations paved the road for nanometer distance measurements using optical
illuminating far-field imaging only.

The general setup considered here is shown in Fig. 28. Two nearby quantum sys-
tems modelled by two-level atoms are driven near-resonantly by a standing wave laser
field. A detector measures the far field resonance fluorescence spectrum [27]. In a
standing wave field, the effective driving field strength depends on the particle posi-
tions. Each particle generates sharp sideband peaks in the spectrum, with frequencies
directly related to the driving strengths and thus to the positions. For sub-wavelength
distances, the two particles dipole-dipole interact and can no longer be considered
independent [41]. This dipole-dipole interaction energy depends on the interparticle
distance and can be extracted from the fluorescence spectrum, providing the desired
distance information. Thus both position and distance can be recovered from the spec-
trum. Fig. 29(a) shows a typical resonance fluorescence spectrum for an intermediate
distance range λ/30 < r12 < λ/10. Together with the central peak, the two sideband
groups at ±50γ and ±130γ can be interpreted as the Mollow resonance fluorescence
spectra of the two atoms driven with different coupling strengths. The splitting of
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out of the standing wave field mode that is measured by a detector.
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Figure 29: (a,b) Fluorescence spectrum of two nearby atoms driven by a near-resonant
standing-wave laser field. The interparticle distance is (a) r12 = 0.09λ, (b) r12 =
0.035λ. Solid line: fixed distance; dashed line: average over harmonic oscillation
around the equilibrium distance with an amplitude of ±0.007λ.

each sideband peak into two sub-peaks is due to the dipole-dipole interaction. Thus,
all coupling strengths can be directly obtained from the spectrum. Fig. 29(b) show
the small-distance case r12 ≈ λ/30, where the dipole-dipole interaction dominates. In
this case, the two peaks are separated by the dipole-dipole energy, and the standing
wave driving leads to a barely visible splitting of both peaks. For such small distances,
oscillations of the particles around their equilibrium positions become relevant, but do
not spoil the measurement since spatial information can still be extracted from the
spectrum. For example, in Fig. 29(b), the averaged spectrum emitted by oscillating
particles contains a further splitting of the spectral peaks, with maxima corresponding
to the classical turning points of the oscillation.

With the presented technique, interparticle distances can be measured down to
small fractions of the involved light wavelength, and prior knowledge of the approx-
imate distance is not required as long as it is below the wavelength scale. Using a
similar setup, sub-wavelength localization is also possible via second-order correlation
function measurements [25].

6.2 Resonant interferometric lithography

The miniaturization of nano- and semiconductor structures generated by optical lithog-
raphy is necessary to maintain the current pace of technological innovation. Optical
lithography employs a photoresist applied on top of a substrate material, that is ex-
posed using an intensity-patterned light field. A subsequent etching process then allows
to separate exposed parts of the resist from the non-exposed parts and thus to create
structures reflecting the light pattern in the substrate. Classically, optical lithography
is limited by diffraction just as optical imaging. Improvement is possible by increasing
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Figure 30: The internal structure that is used to model the photoresist. |T 〉 is the target
state that can be selectively transferred to the exposed state, e.g., via ionization. Rn

and Sn (n ∈ {1, . . . , N}) indicate standing wave field Rabi frequencies.

the light frequency, by making better use of the light source e.g. by immersing the
target material in fluids, or by novel, alternative lithography methods.

A particular alternative method is interference lithography [Bru98]. It aims at
creating sequences of closely-spaced features similar to the fringe pattern in a double-
slit experiment. Patterns of different frequencies can then be combined to a desired
target image using techniques based on Fourier decomposition [Sun07]. Thus, in
contrast to imaging lithography, it does not work with a mask. Several schemes in
the literature allow to improve the spatial resolution of interference lithography be-
yond classical limit [Bot00, Ben04, Pe’04, Hem06, Sun07]. The approach of quantum
lithography [Bot00] is based on entangled photon-number states that are experimen-
tally difficult to generate and sustain. In order to overcome this difficulty, other
approaches achieve the desired resolution enhancement via classical coherent light
pulses [Ben04, Pe’04]. These approaches suffer from a reduced visibility of the gen-
erated structures, which could be improved in [Hem06, Sun07]. In this reference,
subwavelength resolution was accomplished by correlating wave vector and frequency
in a narrow band multiphoton detection process. All of these methods have in com-
mon, however, that they are based on N -photon absorption, and therefore require high
light field intensities which hampers an experimental realization.

To overcome this difficulty, it was shown that sub-wavelength resolution can be
obtained relying entirely on resonant light-matter interactions [49]. Then, very weak
driving fields can be used. The key idea of the method is to apply standing wave light
fields to the target material in such a way that a position-dependent dark state in the
medium is generated. For this, consider a medium as shown in Fig. 30, which can be
characterized as a N ×Λ scheme with N instances of the archetype three-level Λ setup.
It is assumed that one of the states, denoted as the target state |T 〉, can selectively be
transfered to the exposed state, e.g., by ionization. Thus, the observable of interest is
the spatial dependence of the population of |T 〉. Each transition is driven resonantly
by a standing wave laser field Ri or Si. The system then evolves into a dark state
|D〉 in direct generalization of the well-known dark state in a three-level system in
Λ-configuration [Scu97]. For a specific light field configuration

Sn(z) = Sn sin[k0z + (n − 1)π/N ] , Rn(z) = Rn sin[k0z + (2n − 1)π/(2N)] , (14)

with Rabi frequencies |R1| = |SN | = ηΩ0, and |RN | = |S1| = |Rn| = |Sn| = Ω0

(1 < n < N), where 0 < η � 1 is a small parameter, the target state acquires a
position-dependent population given by

|〈T |D〉|2 =
1
2
[1 − cos(2Nk0z)] + O(η2) . (15)

Thus, the population of the target state displays periodic oscillations with full visibility
and with a spacing of the population maxima given by λ/(2N). This corresponds to
an improvement in spatial resolution by a factor of N as compared to the spatial
modulation of the light fields and to the Rayleigh criterion. By choosing different
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Figure 31: Medium response to the applied standing wave fields. Solid line, without
ground state decoherence. Dotted line, with all ground state decoherence rates set to
5γ. Other parameters are η = 1/25, Ω0 = 2.5γ. γ is the natural decay rate on the
transitions from the upper to the lower states.

subsets of a given extended level scheme, the various frequency components required
for a Fourier composition of the desired pattern can be created. An example is shown in
Fig. 31, where the solid line shows the position-dependent population pattern created
in a 5-level 2 × Λ system.

It turns out that the explanation of the subwavelength spatial population mod-
ulations entirely in terms of a dark state, which can be understood as arising from
coherent population trapping (CPT) induced by the laser fields, does not provide the
complete picture. CPT relies on the preservation of the ground state coherence rates,
which in realistic implementations of our scheme is not guaranteed due to inevitable
perturbations. Thus ground state decoherence appears to be a major limitation of the
presented scheme. But it turns out that even very high ground state decoherence rates
do not prohibit the scheme to work successfully. To illustrate this result, Fig. 31 also
shows the corresponding result with ground state decoherence rates between any two
of the ground states set to 5γ. Here, γ is the natural decay rate on the dipole-allowed
transition from the excited to the ground states. It can be seen that the results with
and without ground state decoherence are virtually the same. This can be understood
by noting that most features in Fig. 31 can already be explained by simple optical
pumping. For example, zeros in the population of the target state occur if the driving
field R1 is non-zero, while S1 is zero. Then population is pumped out of |T 〉 indepen-
dent of the value of any atomic coherence. Also, the scheme is rather robust against
perturbations, e.g., of the standing wave frequencies or laser field pointing errors [49].
Intensity fluctuations can be handled by deriving the various standing wave fields from
the same primary laser source, as the position-dependent dark state only depends on
relative Rabi frequencies.

To produce higher harmonics of the incident writing fields, an extended energy level
scheme is required. This suggests two possible candidate systems. One possible real-
ization involves the selective exposure of the target resist conditioned on the internal
state of atoms that pass through the light fields before hitting the target surface and
thus acquire a position-dependent population pattern as in atomic resonance lithogra-
phy [Thy05]. Suitable level structures can be found, e.g. in 85Rb and 87Rb [Bal05]. In
this method, a resolution limitation arises from the center of mass motion of atoms in
the gas. A second potential realization is the direct exposure of a photoresist on a sur-
face, such that no center of mass motion occurs. Suitable coherence times have already
been demonstrated in other solid state systems, such as between spin states in doped
solids [Tur01]. Also coherent population transfer has been demonstrated [Kle07]. The
temperature of the target material must be chosen such that sufficient ground state
coherence times are obtained [Tur02, Got06] while the resonances are broad enough
for a simultaneous driving [Kol05]. Ideally, different vibrational transitions could be
utilized to achieve the desired level scheme [Hem06].
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7 Nuclear quantum optics

While quantum optics usually entails electronic excitations in atoms via coupling to
light fields, it is important to note that the theoretical description employed are typi-
cally based on models that are valid beyond the scope of atomic quantum optics. Thus
the question arises whether the abundance of successful schemes in quantum optics
can be transferred to different physical systems.

One candidate field could be nuclear physics, with the aim to enhance preparation,
control or detection methods. Traditionally, however, this possibility has mostly been
dismissed because the direct laser-nucleus interaction strength is small. But with the
advent of novel super-intense coherent light sources both in the visible and in the
x-ray frequency regime [Col06], this negligence needs revision. Two cases have to be
distinguished. First, the resonant interaction of coherent light with nuclear transitions,
where the matching of x-ray photon and transition frequency is potentially assisted
by an acceleration of the target nuclei [28]. This approach is the most promising for
potential applications, but demanding in terms of the light source. In this case, also
the limit coherence length typical for free electron lasers needs to be considered, in
contrast to quantum optics with cw lasers in the optical range which have much longer
coherence lengths. The second case involves strongly off-resonant interactions, for
example, of ultra-intense optical (ωL ∼ eV) laser fields with nuclear transitions [30].
Both cases, together with isomer triggering as an application for resonant excitation
of nuclei [34], will be discussed in the following.

7.1 Direct resonant laser-nucleus interactions

To a good approximation, the nuclear system can be reduced to a small set of dis-
crete energy levels as in quantum optics, depending on the decay branching ratios
of the excited states. The laser-nucleus interaction can then modeled by the famous
Jaynes-Cummings Hamiltonian in a master equation for the density matrix ρ including
spontaneous emission with rates γSE . Additionally, a limited coherence time γ−1

d of
the driving laser field has to be considered, since current and upcoming high-frequency
lasing facilities typically do not offer full temporal coherence [Alt06]. The master equa-
tion then reads

∂ρ

∂t
=

i

�
[H0, ρ] − γSE

2
([Aeg , Ageρ] + H.c.) − γd([Aee, Aeeρ] + H.c.) , (16)

Here, Aij = |i〉〈j| are population or transition operators, and i, j range over all included
nuclear states. Suitable nuclear systems are those with low-lying excited states such
that resonant laser-driving is possible. In contrast to atomic quantum optics, higher
multipole transitions such as M1 or E2 transitions can be as efficient as electric dipole
allowed E1 transitions [51].

In order to estimate the response of the nuclei to the incident light field, the number
of scattered photons is calculated. The laser parameters are chosen as planned for the
upcoming European XFEL facility currently under construction at Hamburg [Alt06,
The], which will deliver pulses with a duration of 100 fs and an average brilliance of
1.6×1025 photons/(sec mrad2 mm2 0.1% bandwidth). Further, a focal diameter of the
laser of 20 μm is assumed together with a repetition rate of 40 kHz. For transitions
below the maximum photon energy of about 12.4 keV, a solid state target with a
density of 1020 nuclei/cm2 is considered, and the branching ratio between radiative
deexcitation and competing electronic processes is taken into account. For transitions
above 12.4 keV, an acceleration of the target nuclei is required in order to match the
photon and nuclear transition energy. Thus an ion beam with 2.5×1010 particles with
bunch length of τ = 50 ns in a beam of 2 mm diameter is adopted [Tah05]. The target
particle density is then 5.3 × 108 cm−3. For the new Synchrotron SIS100 that will be
built in the future at FAIR [Fac] the beam parameters yield a particle density of 1011

ions/cm3 [Tah05]. In the calculation of the photon rate per second, the latter rate
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Figure 32: Signal photons per second for laser driving of nuclear transitions with ener-
gies (A) below 12.4 keV and (B) above 12.4 keV. The energy of the nuclear transition
is given on the abscissa. The green squares denote E1 transitions, the blue circles E2
transitions and the red crosses M1 transitions. The considered experimental laser and
target parameters are discussed in Sec. 7.1.

together with a matching of the ion and laser pulse repetition rates are assumed. It
can be seen from Fig. 32 that between 10−2 and 104 signal photons per second can
be expected for the considered parameters, depending on the nucleus. Nevertheless
it should be noted that on average the nuclei remain mostly in the ground state,
because the laser parameters do not allow to exceed the low excitation regime. This
is unfortunate since most coherent control schemes rely on relatively strong driving of
individual transitions. A primary reason for the weak driving is the width of nuclear
resonances, which is very small as compared to the spectral width of the laser pulse.
Thus, most photons pass the nuclei without interacting. Still, some control schemes
may succeed, for example, if the excited nuclei can selectively be addressed. Other
approaches could involve the laser-driving of low-energetic transitions either in exotic
nuclei or between excited states, or the artificial broadening of nuclear resonances.

The role of the limited coherence of the driving laser field generated in a free-
electron laser is demonstrated in Fig. 33. In this figure, W is the population inversion,
and the laser parameters are such that with full temporal coherence, the nuclei undergo
few Rabi oscillations and at the end of the laser pulse remain in the excited state (black
line). The other curves show identical parameters except for the limited coherence
length τd of the light field. It can be seen that with decreasing coherence, the Rabi
oscillations become less pronounced, until they finally vanish. This clearly shows that
the population inversion encountered in Rabi oscillations are a direct consequence of
the atomic coherence that can only be induced by coherent driving fields.
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Figure 33: Influence on the limited coherence length of the light generated in a free
electron laser. W is the population inversion of the nuclei, and τd is the coherence
length of the light pulse.
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Figure 34: Partial level scheme of 93
42Mo. The isomeric state (I) can be excited to the

triggering level (T ) which subsequently decays back to I or to a level F , initiating a
cascade via different intermediate states (dashed line) to the ground state (GS). The
direct I → F decay is a strongly hindered E4 transition.

7.2 Isomer triggering via resonant excitation of the nucleus

An interesting application for the controlled transfer of nuclear population as discussed
in Sec. 7.1 is given by so-called isomers. Isomers are long-lived metastable nuclear
states. Triggering the decay of such isomers via an excitation to a freely radiating
state releases the energy difference between the excitation energy and the transition
energy to the nuclear ground state, which can be large. Thus it is not surprising that
isomers have been studied in the context of so-called nuclear batteries that would allow
to release nuclear energy on demand without fission or fusion. But isomers also play an
important role in the formation of elements and the evolution of the universe [Wal99].
Isomer triggering is schematically presented in Fig. 34 for the case of 93Mo, and can
occur via a number of nuclear excitation mechanisms such as photoexcitation, Coulomb
excitation or coupling to the atomic shells.

Motivated by the need to identify efficient energy release mechanisms, triggering
by coupling to the atomic shell via nuclear excitation by electron capture (NEEC) and
triggering via x-ray photons are compared. NEEC is a resonant process in which an
electron is captured into a bound state of a highly-charged ion with the simultaneous
excitation of the nucleus. In the following, energy release is studied via the nearest
triggering level lying above the metastable state that has been either experimentally
confirmed or for which the corresponding transition is theoretically predicted. Low-
lying triggering levels are desirable for obtaining high energy gain and facilitating the
excitation to the triggering level.

Results for few isomers are summarized in Table 1. The total resonance strength
SI→F

NEEC is the integral of the total cross section σ for NEEC over the continuum electron
energy, followed by the decay of the triggering level to the state F . The NEEC rate
is calculated using a rigorous treatment of the electron-nucleus interaction following
the formalism developed in [P0́6]. In comparison, x-ray excitation resonance strengths
SI→F

x−ray using the same triggering levels are also presented. It can be seen that the
NEEC nuclear excitation mechanism is more efficient than photo-triggering, except
for 189

76 Os. A further comparison for 242
95 Am with other excitation mechanisms shows

that NEEC is the most efficient mechanism for this isotope, in contrast to previous
predictions [Zad02].

Up to now, NEEC could not be observed mostly due to the strong atomic back-
ground and the narrow nuclear state widths [Mor04]. But isomer triggering via NEEC
has the advantage that the excitation and the signal photon energies can be very differ-
ent, such that much of the background can be suppressed. Using realistic parameters
of the future GSI facility in Darmstadt, a reaction rate of 6.5×10−2 s−1 for the NEEC
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Table 1: Total resonance strengths S (in b eV) for NEEC and x-ray triggering of
isomers. EI and ET are the isomeric state and triggering level energies, respectively.

A
ZX EI (keV) ET (keV) SI→F

NEEC SI→F
x−ray

93
42Mo 2424.89 2429.69 9.1 × 10−6 1.4 × 10−8

152
63 Eu 45.599 65.296 3.4 × 10−4 6.5 × 10−5

178
72 Hf 2446.05 2573.5 2.0 × 10−7 5.4 × 10−8

189
76 Os 30.812 216.661 1.2 × 10−3 2.2 × 10−2

204
82 Pb 2185.79 2264.33 4.9 × 10−5 8.7 × 10−6

235
92 U 0.076 51.709 1.3 × 10−1 1.3 × 10−2

242
95 Am 48.60 52.70 3.6 × 10−3 2.4 × 10−8

triggering of 235mU and of 1.1 × 10−3 s−1 for the case of 189mOs is obtained [34].

7.3 Off-resonant laser-nucleus interactions

In addition to near-resonant direct driving of nuclei discussed in Sec. 7.1, here strongly
off-resonant interactions are considered, for example, of ultra-intense optical (ωL ∼ eV)
laser fields with nuclear transitions [30]. The dynamical nuclear Stark shift relative
to the transition frequency can be comparable to typical shifts in atomic physics al-
ready below the critical field strength I ≈ 1029 W/cm2. Variations of standard nuclear
physics parameters, such as the proton density, the shape, or the radius, can be ex-
pected at or above the critical field strength. With currently available laser intensities,
a direct observation of the induced Stark shifts would be challenging. But off-resonant
interactions may be of relevance in indirect laser-nucleus interactions via secondary
particles, if the required field strengths are reached in the intermediate step.
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