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Abstract

In this diploma thesis, we evaluate the process of laser-assisted bremsstrahlung. In the usual,
well-known bremsstrahlung process, an electron scatters off a Coulomb potential and sponta-
neously emits a photon. Here, the same process is considered, but in the presence of a strong,
circularly polarized laser field. The intensities of the lasers we consider here are in the range of
1019 W/cm

2
to 1021 W/cm

2
so that a fully relativistic description is necessary. Consequently, we

use a quantum-electrodynamical approach. In our formalism, we take the laser field into account
by using the solutions of the Dirac equation coupled to an external field – the so-called Volkov
solutions. Apart from the theoretical derivation of the laser-dressed bremsstrahlung cross sec-
tion, the numerical evaluation of the resulting expression with the help of a self-written Fortran
90 programme is an essential part of the thesis at hand. One of the main results is that the
cross section shows resonances at – depending on the scattering geometry – integer multiples of
the laser frequency. In other words, we have higher harmonic generation in the bremsstrahlung
process.
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Chapter 1

Introduction and Notation

1.1 Introduction

“A solution looking for a problem.”

General perception of the first lasers in the scientific community

Quantum electrodynamics (QED) deals with the quantized electromagnetic field. It is the most
precise physical theory mankind has advanced so far. For example, Landé’s g factor of the
electron – the gyromagnetic ratio – is predicted to be1

g − 2

2
= 0.001 159 652 140± 0.000 000 000 028

according to QED. The most recent experiments give [2]

gexp − 2

2
= 0.001 159 652 180 85(76).

This is a most remarkable agreement between theory and experiment to an accuracy greater than
one part in a billion. Transition frequencies of hydrogen and deuterium were recently calculated
to an even higher precision [3].

QED-processes are in most cases calculated according to a diagram-technique originally devel-
oped by R. P. Feynman. Feynman diagrams are a graphical representation of the expansion of the
S-matrix in powers of the fine-structure constant α. However, for a free electron, the first-order
process (commonly referred to as the elementary QED-vertex since all higher-order Feynman
diagrams consist of combinations of this vertex, see figure (1.1)) is forbidden by four-momentum
conservation. This will be proven briefly. The four-momenta of the initial and final electron

are pi,f = (Ei,f , ~pi,f ), and the corresponding four-momentum of the photon is k =
(

ω,~k
)

(for

questions due to units, please consult the next section). Thus, one would get at the vertex

k = pi − pf ⇒ k2 = (pi − pf )
2 !

= 0

1J. Schwinger did a first calculation to second order in 1948 and found (g−2)/2 = α/(2π). Today’s theoretical
prediction includes terms up to four loops; see [1].
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pi

k

pf

Figure 1.1: The elementary QED-vertex corresponds to photon emission or absorption by a free
electron or positron. Here and in all other Feynman diagrams, the time evolves from left to
right. Hence, the QED-vertex depicted here shows photon emission by an electron. This process
is forbidden by four-momentum conservation.

for a real photon. On the other hand, we have:

(pi − pf )2 = p2
i + p2

f − 2pipf = 2m2
e − 2EiEf + 2~pi~pf

= 2m2
e − 2E2

i + 2ωEi + 2~p 2
i − 2~k~pi

= 2ωEi − 2ωEi

√

1 − m2
e

E2
i

︸ ︷︷ ︸

<1

cosα

> 0.

with E2
i = p2

i +m2
e and α = ∠(~k, ~pi). The square root could only be equal to 1 if Ei → ∞, i.e.

the electron moves with the velocity of light. This is of course not possible because the electron
is not massless. Hence, we get a contradiction; the process is not allowed consequently.

A second-order process is the emission of bremsstrahlung ; the corresponding Feynman di-
agrams are depicted in figure (1.2). In contrast to the first-order process we just considered,
bremsstrahlung is not forbidden by four-momentum conservation. The reason is that the inter-
mediate electron, i.e. the electron between the two vertices, does not have to fulfill the on-shell
condition p2 = m2

e. Bremsstrahlung occurs whenever a charged particle is deflected by the
Coulomb field of a nucleus. The Coulomb force acting on the charged particle leads to the emis-
sion of a photon. This is also well-known from classical electrodynamics. A fully relativistic
calculation of this process using the means of QED was done by H. Bethe and W. Heitler [4].

In 1935, D. M. Volkov solved the Dirac equation for a spin-1/2-particle in an external (i.e.
classical), electromagnetic plane-wave field [5]. This achievement laid the foundation for a cal-

Figure 1.2: Bremsstrahlung is a second-order process. The incoming electron first interacts with
the Coulomb potential of a nucleus (dashed line with cross) and then emits the bremsstrahlung
photon or vice versa. These two processes interfere coherently.
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Figure 1.3: The elementary QED-process is not forbidden anymore if it takes place in an external
laser field for which we introduce the nonstandard notation of a zigzag-line. We will refer to this
process as laser-dressed Compton scattering.

culation of QED-processes in these fields by using the so-called Volkov states as initial and final
states. However, back in those days, monochromatic plane-wave fields were just of theoretical
interest; an experimental realisation of such a field was impossible. Things changed in 1960 when
Theodore Maiman built a special light source using l ight amplification by stimulated emission of
radiation – a so-called laser [6]. Experimental physicists started to investigate the behaviour of
charged particles in monochromatic external fields. Consequently, theoretical interest also arose.
With the discovery of higher harmonic generation of radiation, this new field became even more
fascinating. Higher harmonic radiation is radiation which is emitted during a process in a laser
field whose frequency ωe is an integer multiple of the laser frequency ω: ωe = nω, n = 1, 2, 3 . . .
A well-written account of atomic physics with high-intensity lasers including the historical de-
velopment is the review article [7].

The external field can be seen as a pool which “provides” energy and momentum. Conse-
quently, the first-order process which is forbidden by four-momentum conservation in the vacuum
will be allowed in an external field. The Feynman diagram for this laser-dressed or laser-assisted
Compton scattering2 can be seen in figure (1.3). This is the first process taking place in an
external field which was analysed using QED ([8, 9], and recently [10]). However, a numeri-
cal evaluation of the results is very hard because in the expressions appear infinite sums over
so-called generalized Bessel functions.

For a couple of years now, modern computers are fast enough to tackle this problem. Si-
multaneously, lasers became that powerful that the ponderomotive energy3 Up of an electron in
the laser field is of the order of its rest mass: Up & mec

2. In order to describe these processes
correctly, calculations have to be carried out relativistically.

In this diploma thesis, we will now go over to a second-order process – namely bremsstrahlung
– and analyse its features if the process is exposed to an external, circularly polarized plane-wave
field (see figure (1.4)). The derivation of the cross section will be done fully relativistically,
taking into account the laser-dressed electron propagator. Then, the result will be evaluated
numerically by a Fortran 90 programme. In fact, the numerical analysis of the cross section is
quite demanding because we will encounter several infinite sums in the expression of the cross
section. Thus, an analytical approach for the evaluation is impossible. Finally, numerical results
both for the differential cross section and the integrated one over the direction of the outgoing
electron will be presented for different scattering geometries. We will see that we have emission
of higher harmonics. Since the Bethe-Heitler formula is the counterpart to the laser-dressed

2Compton scattering is the inelastic scattering of a photon off an electron. However, this is the special case
of photon emission by an electron in an external field if this field contains just one photon. Therefore, this much
more general process is called laser-dressed Compton scattering in scientific articles.

3This is the average classical kinetic energy of a particle in an external field. This concept will be explained
in more detail below.
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Figure 1.4: Bremsstrahlung can also take place in an external field. Then not only the initial
and final electron states, but also the electron propagator are modified by the interaction with
the field.

case discussed here, we will present a full and detailed re-derivation of this nontrivial result in
appendix A. In fact, for a vanishing laser field or, equivalently, arguments of the Bessel functions
equal to zero, the laser-dressed cross section goes over into the Bethe-Heitler cross section as
it will be discussed in section 2.4.1. In a further appendix C, we will shortly discuss the role
of the interference term of bremsstrahlung and laser-dressed Compton scattering. Since both
processes have the same initial and final states, one could assume that they interfere with each
other. However, we will show that this is not the case.

1.2 Units and Notation

“It has been a mystery ever since it was discovered . . . , and all good

theoretical physicists put this number up on their wall and worry about it.”

R. P. Feynman about the fine-structure constant α

In the following thesis, natural units will be used if not stated otherwise explicitly. Thus, we
have ~ = c = ε0 = 1. As an example, we may consider the connection between the unit charge e
and the fine-structure constant α:

α =
e2

4πε0~c
≈ 1

137.036
→ α =

e2

4π
≈ 1

137.036
.

Moreover, one easily finds:

~ = 1 ⇒ [J ] =
1

[t]
= MeV;

c = 1 ⇒ [s] = [t] = MeV−1.

This leads to the following conversion factors from natural to SI-units:

~ = 6.585× 10−22 MeV s ⇒ s = 1.519× 1021 MeV−1

~c = 1.975× 10−13 MeV m ⇒ m = 5.063× 1012 MeV−1

c2 = E0/me =
0.511 MeV

9.1094× 10−31 kg
⇒ kg = 5.610× 1029 MeV

A very important quantity is the intensity I of a laser. It is defined as the energy density
times its velocity, i.e. it is the energy flux: I = (dE/dV )c. For circular polarization, we find
I = a2ω2 with a being the amplitude of the laser four-potential and ω being the laser frequency.
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Hence [I ] = MeV4 in natural units, whereas [I ] = W/cm2 in SI-units. Thus, the conversion
factor between the intensity in SI- and natural units is4

I

[
W

cm2

]

= 6.239× 1029 W/cm2

MeV4 a
2ω2

with a and ω given in MeV.
According to most textbooks, Greek letters in connection with the Minkowski notation denote

indices running from 0 to 3, Latin letters denote the spatial components only. Hence, they run
from 1 to 3. The metric tensor is

gµν = gµν =







1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1






.

It relates contravariant and covariant four-vectors. For example, for the contravariant four-
momentum pµ = (E, ~p), one gets the covariant four-momentum by

pµ =

3∑

ν=0

gµνp
ν = gµνp

ν = (E,−~p).

As in the example above, Einstein’s summation convention is also used. The four-vector product
is denoted by a dot: p · k = gµνpµkν = p0k0 − ~p~k.

According to the most common notation, the Dirac adjoint will be denoted by a bar and is
by definition

u = u†γ0 for a spinor u,

M = γ0M †γ0 for a 4×4-matrix M .

The dagger † is of course the hermitean conjugate. E.g., we get for the Dirac adjoint of a wave
function ψ = Mu, which is the product of a matrix with a spinor,

ψ = Mu = (Mu)†γ0 = u†M †γ0 = u†γ0γ0M †γ0 = uM.

For explicit calculations, we will use the Dirac representation of the γ-matrices:

γ0 =







1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1






, γ1 =







0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0






,

γ2 =







0 0 0 −i
0 0 i 0
0 i 0 0
−i 0 0 0






, γ3 =







0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0






.

In contrast to many textbooks, the Feynman dagger will not be denoted by /p = γµpµ, but by
p̂ = γµpµ for any four-vector p. The reason is quite simple: While /p looks good, the “Feynman

daggered” four-potential A – namely /A – is hard to read. The hat ˆ is a common notation in
laser-physics.

4This is not correct for linear polarization because then the energy and intensity of the laser depends on the
phase of the laser. Therefore, for linear polarization, one uses the average value over one laser cycle. This leads
to a factor 1/2.
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1.3 The Ponderomotive Energy

The ponderomotive energy of a charged particle in an external laser field is the non-relativistic
average kinetic energy of the particle in one cycle. Hence, it is defined by

Up =
e2E2

0

4meω2
.

Here, E0 is the peak of the electric field, ω the laser frequency. In the case of circular polarization,
we have Aµ = a(κ1

µ cosφ+ κ2
µ sinφ) with φ = kµxµ (see below). We obtain the electric field by

~E = − ∂
∂t
~A− ~∇A0 to be ~E = aω(~κ1 sinφ− ~κ2 cosφ). Thus, we can calculate the ponderomotive

energy:

Up =
e2a2

4me
.

If the ponderomotive energy of a particle is of the order of its rest mass, a fully relativistic
description of a process is necessary since the non-relativistic approximation breaks down. The
laser intensity a at which this regime starts is easily calculated:

Up =
e2a2

4me
& me

⇒ a =
2me

e
= 3.38 MeV

Typical intensities we will consider are a = 10 MeV, 20 MeV, 30 MeV.



Chapter 2

Derivation of the Bremsstrahlung

Cross Section

“God runs electromagnetics by wave theory on Monday, Wednesday, and

Friday, and the Devil runs them by quantum theory on Tuesday,

Thursday, and Saturday.”

Sir William Bragg

One of the main tasks of this thesis is – as stated above in the introduction – the derivation of
the cross section for a bremsstrahlung process of a relativistic electron in a circularly polarized
laser field. This will be done in this section. For such processes, the differential cross section is
given by the well-known formula [11, 12]

dσ =
1

|~vi|
V T

|Sfi|2
V d3kb

(2π)3
V d3pf

(2π)3
. (2.1)

~vi is the velocity of the incoming electron. Hence, |~vi|/V corresponds to the incoming particle
flux because we will normalize the wave functions in such a way that there is exactly one particle
per unit volume V . The last two fractions give the number of final states within the range of
momentum d3kb and d3pf , respectively. Sfi is the S-matrix element. If we have an initial state
|Φ(−∞)〉 = |i〉 long before a scattering occcurs (ti = −∞) and |Φ(∞)〉 is the state into which
the initial state evolves at t = ∞, then the S-matrix relates |Φ(∞)〉 to |Φ(−∞)〉 and is defined
by

|Φ(∞)〉 = S|Φ(−∞)〉 = S|i〉.
The scattering can lead to many different final states |f〉. The transition probability that after
the scattering the particle is in the state |f〉 is given by |〈f |Φ(∞)〉|2 and the corresponding
probability amplitude is

〈f |Φ(∞)〉 = 〈f |S|i〉 ≡ Sfi.

Therefore, we can interpret the scattering cross section as a transition probability per particle
and per unit time divided by the incoming particle flux.

In principle, the S-matrix can be calculated arbitrarily accurately. However in reality, it is
an expansion in powers of the fine-structure constant α. Thus the calculation must be aborted
after a few terms. The summands of the expansion can be depicted by so-called Feynman
diagrams. They can be calculated using the standard technics developed by Feynman. For the

bremsstrahlung process, which is under consideration here, there are two diagrams S
(1)
fi and S

(2)
fi .
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Figure 2.1: Bremsstrahlung amplitude S
(1)
fi Figure 2.2: Bremsstrahlung amplitude S

(2)
fi

Both have the same ingoing (namely one electron with four-momentum pi) and outgoing states
(one electron with four-momentum pf and an emitted bremsstrahlung photon with kb). This

means that the two processes S
(1)
fi and S

(2)
fi will interfere quantum mechanically and a distinction

which of the two processes takes place is not possible. Therefore, the two Feynman diagrams

must be added up coherently: Sfi = S
(1)
fi +S

(2)
fi . One can infer from the diagrams that the wave

function of an electron in the laser field and the full, laser-dressed electron propagator as well as
the vector potentials of both the nucleus and the emitted bremsstrahlung photon are needed in
order to evaluate the Feynman diagrams correctly. This will be done in the next three chapters.
Afterwards, the S-matrix will be calculated and then the differential cross section (2.1) will be
evaluated.

We know from non-relativistic quantum mechanics that recollision effects of the electron with
the nucleus in a laser field are the decisive reason for higher harmonic generation [13, 7]. We may
wonder whether this is also true in the relativistic case. If this is the case, then the laser-dressed

bremsstrahlung cross section as shown in the Feynman diagrams S
(1)
fi and S

(2)
fi will not be a

good approximation since we just take one electron-nucleus interaction into account. However,
we will show in appendix B that the electron which is exposed to a very intense laser field will
not recollide with the nucleus. Thus, in the relativistic regime with an unbound electron, higher
harmonic generation is not due to recollision effects.

2.1 Volkov Solutions of the Dirac Equation in a Circularly

Polarized Field

The process which will be considered here is the scattering of a spin-1/2-particle at relativistic
energies. For such processes, Dirac’s equation must be used. The external monochromatic laser
field is described by a 4-potential Aµ. Since we will only consider plane waves, Aµ depends on

space and time only via the product φ = kµ ·xµ = ωt−~k~x with k =
(

ω,~k
)

being the wave vector

of the external field and xµ the corresponding position vector. According to Einstein’s famous
law E2 = m2 + ~p 2 and since photons do not have any rest mass, one immediately obtains that

kµkµ = ω2 − ~k2 = 0.

The external laser field Aµ ≡ Aµ(φ) is coupled to the Dirac equation in the normal way. Thus,
the relativistic wave equation for an electron in an external field looks:

[

p̂− eÂ(φ) −me

]

ψ (x) = 0
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The solutions were originally derived by Volkov [5]. An instructive derivation can be found in
[11]. The Volkov solutions can thus be written down as follows1

ψp,r(x) =

√
me

ẼV

(

1 +
ek̂Â (φ)

2 (k · p)

)

ur (p) eiSp[φ]

with

Sp [φ] = −p · x−
∫ φ

0

(

e
p ·A (φ′)

k · p − e2
A2 (φ′)

2 (k · p)

)

dφ′.

p is the momentum of the electron, and r labels the spinor index. The spinors ur(p), which
appear in the Volkov solutions, are the same spinors as in the free Dirac equation. Therefore,
they also obey the relation [p̂−me]ur(p) = 0.

In this thesis, we will only deal with a circularly polarized plane-wave field. Such fields are
described by the following expression [12]:

Aµ(φ) = a
(
κ1

µ cosφ+ κ2
µ sinφ

)

with the laser polarization vectors κ1
µ and κ2

µ. At this point, it is important to make some
remarks on the gauge we will use throughout this thesis. A nice feature of the Lorenz gauge
∂µA

µ = 0 is its Lorentz-covariance. However, it is still possible to restrict this gauge class

further. Thus, we can set A0 = 0 and ~∇ ~A = 0. This gauge is called radiation gauge. In this
gauge, photons can have only two polarization states λ = 1, 2. Both are transversal and purely
space-like (κµ)1,2 = (0, ~κ1,2). Keeping this in mind, it is easy to derive the following important
relations and normalization conditions:

~κi~k = 0 ⇒ kµAµ = 0, (2.2)

κ1µ · κ2
µ = 0, (2.3)

κiµ · κi
µ = −1, ~κi~κi = 1, (2.4)

AµAµ = −a2.

Obviously, the radiation gauge is not Lorentz-covariant and only valid in one particular Lorentz-
frame. On the other hand, the Lorentz-covariance of the formalism will be broken later on
anyway by carrying out the calculation in the rest frame of the nucleus. Thus, we are free to
choose a gauge which is noncovariant and helpful for our calculations.

The phase integration in Sp[φ] is elementary in the circularly polarized case and yields

Sp [φ] = −q · x+ ξ sinφ+ η cosφ− η.

Here, we introduced the abbreviations

ξ = −eap · κ
1

k · p , η =
eap · κ2

k · p

(for later use: ξj and ηj respectively correspond to ξ, η with momentum pj .). We also defined
the effective momentum of the electron in the laser field:

qµ := pµ +
e2a2

2k · pk
µ, qµ =

(

Ẽ, ~q
)

, Ẽ = q0. (2.5)

1The normalization factor, especially the meaning of Ẽ, will be discussed in a few lines below
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We note that k · q = k · p and κ1,2 · q = κ1,2 · p. As a result, ξ and η can also be expressed in
terms of the effective momentum q:

ξ = −eaq · κ
1

k · q , η =
eaq · κ2

k · q .

The effective momentum directly leads to an effective mass m∗
e which is defined by

m∗
e
2 := q2 = m2

e + e2a2.

Therefore, we get a modified relativistic energy-momentum relation:

Ẽ2 = |~q|2 +m∗
e
2.

If we want to impose the box normalization condition onto the wave function, we demand
that the average particle density amounts to one particle in the volume V. This condition leads
to a slightly different normalization factor compared to the field free case; it now depends on the

effective energy Ẽ and looks
√

me/(ẼV ). This explains the prefactor in (2.1).

Plugging the effective momentum into the expression for the wave function ψp,r(x), we get

ψp,r(x) =

√
me

ẼV

(

exp [iξ sinφ+ iη cosφ] +

eak̂κ̂1

2k · p cosφ exp [iξ sinφ+ iη cosφ] +

eak̂κ̂2

2k · p sinφ exp [iξ sinφ+ iη cosφ]
)

×

ur(p)e
−iq·x−iη .

Having a closer look at this expression, we see that we can rewrite it using the generalized Bessel
functions B0, B1, and B2. These are derived in the appendix E. Thus, we finally end up with2

ψp,r(x) =

√
me

ẼV

∞∑

s=−∞

{

B0
s (ξ, η) +

eak̂κ̂1

2k · p B
1
s (ξ, η) +

eak̂κ̂2

2k · p B
2
s (ξ, η)

}

︸ ︷︷ ︸

=:U(s,ξ,η,a,k,p)

×

ur (p) e−iη−i(q−sk)·x.

(2.6)

For calculating the Dirac adjoint ψ, we use relation (D.2) from the appendix D:

ψp,r(x) =

√
me

ẼV

∞∑

s=−∞
ur (p)

{

B0∗
s (ξ, η) +

(
κ̂1B1∗

s (ξ, η) + κ̂2B2∗
s (ξ, η)

) eak̂

2k · p

}

︸ ︷︷ ︸

=:U(s,ξ,η,a,k,p)

×

e+iη+i(q−sk)·x

2We could write down the expression for the Volkov wave function without using generalized Bessel functions
as it is done in [11] or according to (E.9). However we think that the structure of our expressions are reflected
in a nicer way when we keep the generalized Bessel functions. Moreover in the linear case, it is not possible to
reduce the generalized Bessel functions to normal Bessel functions. So we can compare our results more easily
with the linear case.
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We observe:

1. For a→ 0, we recover the solution for the free Dirac particle (using Js(0) = δs,0):

ψfree(x) =

√
me

EV
ur(p)e

−ip·x.

2. Linearly polarized light Aµ = aεµ cosφ is not a special case of circularly polarized light
Aµ = a(κ1

µ cosφ+ κ2
µ sinφ) since κ2 cannot be zero (κ2µ · κ2

µ = −1).

2.2 The Full, Laser-Dressed Electron Propagator

We already pointed out at the beginning of this section that we also have to calculate the full,
laser-dressed electron propagator in addition to the Volkov solutions. In general, propagators
are the Green’s functions to the equation of motion. Therefore, the free electron propagator SF

is the Green’s function to the free Dirac equation

(

i∂̂ −me

)

SF (x2, x1) = δ(4)(x2 − x1).

The solution is

SF (x2, x1) =

∫
d4p

(2π)4
p̂+me

p2 −m2
e + iε

e−ip(x2−x1).

Accordingly, the laser-dressed electron propagator G(x2, x1) is given by

(

i∂̂ − eÂ−me

)

G(x2, x1) = δ(4)(x2 − x1).

In order to find G, one could solve this linear differential equation. This can be done by consid-
ering the second-order Dirac equation and is shown in [14].

However, we will pursue another, more elegant way according to [15, 16]. For this purpose,
we rewrite the Volkov solution in the following way:

ψp,r(x) = Ep(x)ur(p)

with

Ep(x) =

(

1 +
ek̂Â(φ)

2k · p

)

×

exp

[

−ip · x− i

∫ φ

0

(
ep · A(φ′)

k · p − e2A2(φ′)

2k · p

)

dφ′
]

.

Consequently,

Ep(x) =

(

1 +
eÂ(φ)k̂

2k · p

)

×

exp

[

ip · x+ i

∫ φ

0

(
ep · A(φ′)

k · p − e2A2(φ′)

2k · p

)

dφ′
]

.
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We note that there is no normalization as in (2.1). According to [16], the matrix Ep(x) fulfills
the following orthogonality and completeness relations:

∫
d4x

(2π)4
Ep(x)Ep′ (x) = δ(4)(p− p′),

∫
d4p

(2π)4
Ep(x)Ep(x

′) = δ(4)(x − x′). (2.7)

Whereas the first of these two relations is quite obvious, the second one is not as evident. An
elaborate treatment on the question of orthogonality and completeness of the Volkov solutions
can be found in [17].

Moreover, we can derive

(

−i∂̂ + i∂̂ − eÂ−me

)

Ep(x)ur(p) =
(

−Ep(x)p̂ +Ep(x)p̂− eÂEp(x) −meEp(x)
)

ur(p)

=
(

−Ep(x)p̂ − eÂEp(x)
)

ur(p).

We remember that Ep(x) is a matrix and hence does not commute with other matrices in general.
Since ur(p) is the free Dirac spinor, we could use the relation (p̂ −me)ur(p) = 0. We also used

∂̂Â(φ)k̂ = k̂Â′(φ)k̂ = 0. On the other hand,
(

i∂̂ − eÂ−me

)

Ep(x)ur(p) = 0. Thus, we can

write −i∂̂Ep(x)ur(p) =
(

−Ep(x)p̂− eÂEp(x)
)

ur(p) which is equivalent to

(

i∂̂ − eÂ(φ)
)

Ep(x) = Ep(x)p̂. (2.8)

With these expressions, we can easily prove the following statement: The laser-dressed Green’s
function looks [16]:

G(x2, x1) =

∫
d4p

(2π)4
Ep(x2)

p̂+me

p2 −m2
e + iε

Ep(x1)

=

∫
d4p

(2π)4

(

1 +
ek̂Â(φ2)

2k · p

)

p̂+me

p2 −m2
e + iε

(

1 +
eÂ(φ1)k̂

2k · p

)

×

exp

[

−ip(x− x′) − i

∫ φ2

φ1

(

ep · A(φ̃)

k · p − e2A2(φ̃)

2k · p

)

dφ̃

]

.

Here φ1,2 = k · x1,2. In words, this means that the laser-dressed Green’s function is more or less
the free propagator inserted between the Volkov solutions of the Dirac equation in an external
field.

(i∂̂ − eÂ−me)G(x2, x1) =

∫
d4p

(2π)4
Ep(x2) (p̂−me)

1

p̂−me
Ep(x1) using (2.8)

=

∫
d4p

(2π)4
Ep(x)Ep(x

′)

= δ(4)(x2 − x1) using (2.7)

Herewith it is proven that G(x2, x1) really is the laser-dressed electron propagator. For a = 0,
we immediately recover the free electron propagator since in this case Ep(x) = exp[−ipx].
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We can rewrite the above expression for the propagator using the generalized Bessel functions.
All this happens in exactly the same way as in the previous section. Thus, we get

G(x2, x1) =

∫
d4p

(2π)4

+∞∑

s,s′=−∞

{

B0
s (ξ, η) +

eak̂

2k · p
(
κ̂1B1

s (ξ, η) + κ̂2B2
s (ξ, η)

)

}

×

p̂+me

p2 −m2
e + iε

{

B0
s′

∗
(ξ, η) +

(

κ̂1B1
s′

∗
(ξ, η) + κ̂2B2

s′

∗
(ξ, η)

) eak̂

2k · p

}

×

exp [−iq (x2 − x1) + ik (sx2 − s′x1)] .

We substitute pµ = qµ − e2a2

2k·p k
µ for the integration variable in order to get a nicer dependence of

the exponent on the variable of integration. The jacobian for this coordinate transformation is:

J = det

(
∂qµ

∂pν

)

= εµνρσ ∂q
0

∂pµ

∂q1

∂pν

∂q2

∂pρ

∂q3

∂pσ

= εµνρσ

(

δ0µ +
e2a2kµk

0

2(k · p)2
)(

δ1ν +
e2a2kνk

1

2(k · p)2
)

×
(

δ2ρ +
e2a2kρk

2

2(k · p)2
)(

δ3σ +
e2a2kσk

3

2(k · p)2
)

= ε0123 +

(
e2a2

2(k · p)2
)4

εµνρσkµkνkρkσk
0k1k2k3

= 1

by virtue of the completely antisymmetric tensor εµνρσ with ε0123 = +1. Thus d4p = 1
J d4q = d4q.

After renaming q → p, we finally end up with

G(x2, x1) =

∫
d4p

(2π)4

+∞∑

s,s′=−∞

{

B0
s (ξ, η) +

eak̂

2k · p
(
κ̂1B1

s (ξ, η) + κ̂2B2
s (ξ, η)

)

}

×

p̂− e2a2

2k·p k̂ +me

p2 −m∗
e
2 + iε

{

B0
s′

∗
(ξ, η) +

(

κ̂1B1
s′

∗
(ξ, η) + κ̂2B2

s′

∗
(ξ, η)

) eak̂

2k · p

}

×

exp [−ip(x2 − x1) + ik(sx2 − s′x1)]

(2.9)

with the effective mass m∗
e =

√

m2
e + e2a2. We remember that k · p = k · q. Obviously, the poles

are shifted to the effective mass shell, as it is evident from the occurence of the denominator
p2 −m∗

e
2 + iε.

2.3 The Vector Potentials ACoul(x) and Ab,λ(x)

Before we can start to calculate the elements S
(1)
fi and S

(2)
fi , we still have to make some remarks

on the two electromagnetic four-potentials Ab,λ of the emitted bremsstrahlung photon and ACoul

of the nucleus.
The bremsstrahlung photon wave function is given by

Aµ
b,λ =

1√
2ωbV

εµb,λ
(
e−ikb·x + eikb·x)
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according to [12]. The normalization factor 1√
2ωbV

is due to a finite normalization volume V also

explained in [12]. If one compares this expression with the second-quantized field operator for
the transverse part of the electromagnetic vector potential with discrete modes

~A(t, ~x) =
∑

~kλ

1
√

2|~k|V
~ελ(~k)

(

a~kλe
−ik·x + a†~kλ

eik·x
)

,

one immediately sees that the emission of a bremsstrahlung photon (i.e. the “creation” of a
photon) is connected with the positive exponential exp [ikb · x] [18]. Thus, the four-potential of
the emitted bremsstrahlung photon reads

Aµ
b,λ =

1√
2ωbV

εµb,λe
ikb·x. (2.10)

The polarization vector εb,λ with λ = 1, 2 fulfills the equivalent relations as κ1,2, namely

εb,λ · εb,λ′ = −δλλ′ ,

kb · εb,λ = 0.
(2.11)

The incoming electron interacts with the Coulomb field ACoul of a nucleus. We assume the
nucleus to be infinitely heavy so that the whole calculation is done in the Born approximation, i.e.
recoil effects of the nucleus are neglected. Instead the nucleus serves as an absorber or source of

momentum. Hence, the four-potential of the Coulomb field is given by ACoul(x) =
(

A0
Coul(x),~0

)

with A0
Coul(x) being the normal Coulomb potential

Aµ
Coul(x) = − Ze

4π|~x|δ
µ0.

However, it is more convenient to use the Fourier representation of the Coulomb potential for
the calculation

Aµ
Coul(x) =

∫
d4q

(2π)4
Aµ

Coul(q)e
−iq·x (2.12)

with [12]

Aµ
Coul(q) = 2πδ

(
q0
)
[

−Ze
~q 2

]

δµ0. (2.13)

We already mentioned that the use of the radiation gauge breaks the Lorentz-covariance of
the formalism. Obviously, Lorentz-covariance would have been broken anyway by using this
particular Coulomb potential which is only correct in the rest frame of the nucleus. Therefore,
the whole calculation takes place in this particular frame.

2.4 The S-Matrix and the Cross Section

We can now start to calculate the S-matrix of laser-dressed bremsstrahlung. Starting point is
the same S-matrix as for the laser-free case, namely equation (A.1). Obviously, we have to
substitute Volkov states and the laser-dressed Green’s function for the free states and the free
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electron propagator:

Sfi = S
(1)
fi + S

(2)
fi

= e2
∫

d4x1

∫

d4x2 ψf (x2)
{(

−iÂb,λ(x2)
)

iG(x2, x1)
(

−iÂCoul(x1)
)

+ (2.14)

(

−iÂCoul(x2)
)

iG(x2, x1)
(

−iÂb,λ(x1)
)}

ψi(x1)

= e2
∫

d4x1

∫

d4x2ur(pf )Epf
(x2) ×

{(

−iÂb,λ(x2)
)(

i
1

(2π)4

∫

d4pEp(x2)
p̂+me

p2 −m2
e + iε

Ep(x1)

)(

−iÂCoul(x1)
)

+

(

−iÂCoul(x2)
)(

i
1

(2π)4

∫

d4pEp(x2)
p̂+me

p2 −m2
e + iε

Ep(x1)

)(

−iÂb,λ(x1)
)}

×

Epi
(x1)ur(pi).

Already from this expression, one can conclude that we will get peaks in the S-matrix (and
thus also in the cross section) whenever the denominator of the propagator equals zero, i.e. if
the virtual electron is “on shell” (becomes real). This leads to a nice interpretation: Whenever
there are peaks in the cross section resulting from the propagator, the cross section is in fact the
multiplication of two first-order processes. These processes are laser-assisted Compton scattering
[8] and deflection of an electron by a Coulomb field [19].

As one might guess the calculation and simplification of this term is quite demanding, e.g.
one has to take into account several identities involving the Dirac algebra and generalized Bessel
functions. On the other hand, there is not much insight during the calculation from a physical

point of view. Therefore, we will do the simplification of the term S
(1)
fi explicitly in the appendix

F. A completely analogous calculation then yields S
(2)
fi .

Thus, the expression for Sfi looks like

Sfi =2πi
Ze3me

√

2ωbẼiẼfV 3

exp[i(ηf − ηi)]
∞∑

n,s=−∞

δ(1)
(
q0n
)

~q 2
n

urf
(pf )×



F
f,pn,s

−n−s (ξp − ξf , ηp)
p̂n,s − e2a2

2k·pn,s
k̂ +me

p2
n,s −m∗

e
2 + iε

G
i,pn,s

−s (ξp, ηp)+

G
f,p′

n,s

−n−s(ξp′ − ξf , ηp′)
p̂′n,s − e2a2

2k·p′

n,s
k̂ +me

p′2n,s −m∗
e
2 + iε

F
i,p′

n,s

−s (ξp′ , ηp′)



 uri
(pi)

(2.15)

with

F j,q
m (ξ, η) =

(

ε̂b,λ +
ea

2k · pj

ea

2k · q k̂ε̂b,λk̂
)

B0
m(ξ, η)+

(
ea

2k · q ε̂b,λk̂κ̂1 +
ea

2k · pj
κ̂1k̂ε̂b,λ

)

B1
m(ξ, η)+

(
ea

2k · q ε̂b,λk̂κ̂2 +
ea

2k · pj
κ̂2k̂ε̂b,λ

)

B2
m(ξ, η)

(2.16)
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and

Gj,q
m (ξ, η) =

(

γ0 +
ea

2k · pj

ea

2k · q k̂γ
0k̂

)

B0
m(ξ, η)+

(
ea

2k · q γ
0k̂κ̂1 +

ea

2k · pj
κ̂1k̂γ0

)

B1
m(ξ, η)+

(
ea

2k · q γ
0k̂κ̂2 +

ea

2k · pj
κ̂2k̂γ0

)

B2
m(ξ, η).

(2.17)

j can take the values j = i, f in order to differ between incoming and outgoing electron. In our
notation, the momentum transfer onto the nucleus q gained an index n since it is dependent on
the sum over n: q ≡ qn. Thus, F describes the emission of the bremsstrahlung photon, whereas
the interaction between the electron and the nucleus is formulated in G.

During the calculation of Sfi, δ-functions occur which ensure momentum conservation:

~qf = ~qi + n~k − ~kb + ~qn.

The intermediate electron momenta pn,s and p′n,s are defined by

pn,s = qf − (n+ s)k + kb = qi − sk + qn,

p′n,s = qi − sk − kb = qf − (n+ s)k − qn.
(2.18)

It should already be stressed here that ξp, ηp, ξp′ , and ηp′ , which enter as arguments into the
expression of the S-matrix, are not dependent on s; ξp′ and ηp′ even not on n. This can easily
be seen by having a look at their definition:

ξp = −eapn,s · κ1

k · pn,s
= −ea (qf − (n+ s)k + kb) · κ1

k · (qf − (n+ s)k + kb)

= −ea
(
qf · κ1 + kb · κ1

)

k · qf + k · kb
,

ξp′ = −ea
(
qi · κ1 − kb · κ1

)

k · qi − k · kb
,

ηp =
ea
(
qf · κ2 + kb · κ2

)

k · qf + k · kb
,

ηp′ =
ea
(
qi · κ2 − kb · κ2

)

k · qi − k · kb
.

So, we can finally write down the S-matrix in full beauty and length. Using (2.1), it should
be straightforward to derive the differential cross section in consideration. However, one may ask

whether it is correct to use the factor
V d3pf

(2π)3 in (2.1). The whole bremsstrahlung process takes

place in the laser field, so it may look consistent to replace pf by the effective momentum of the
electron in the laser field qf . The differential cross section will then read

dσ =
1

|~vi|
V T

|Sfi|2
V d3kb

(2π)3
V d3qf
(2π)3

. (2.19)

We remember the definition of the effective momentum: qµ = pµ + e2a2

2k·p k
µ. Since we have a

fixed laser frequency ω, it follows that d3k = 0 and consequently that the phase space of the
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free momentum p and the effective momentum q are equal: d3pf = d3qf . Now, ~vi has to be
understood as the effective velocity of the electron within the laser field.

Another thing needs to be explained in more detail: When we calculate |Sfi|2, we get the
square of a δ-function. From a mathematical point of view, this is not a well-defined quantity.
However, we can make this expression plausible when we assume that the whole process lasts
only a finite time T . At the end, we take the limit T → ∞. Then we can write for the energy-
conserving δ-function

2πδ
(

Ẽf − Ẽi − nω + ωb

)

= lim
T→∞

∫ T/2

−T/2

dt exp
[

i
(

Ẽf − Ẽi − nω + ωb

)

t
]

.

For Ẽf = Ẽi + nω − ωb, it follows

2πδ (0) = lim
T→∞

∫ T/2

−T/2

dt = lim
T→∞

T.

Thus, it is justified to substitute

(

δ
(

Ẽf − Ẽi − nω + ωb

))2

→ T

2π
δ
(

Ẽf − Ẽi − nω + ωb

)

. (2.20)

Before we will finally plug all expresssions into the formula for the cross section, we have to
remember some constants and relations:

α =
e2

4π
fine-structure constant,

Ẽi|~vi| =
1

√

1 − ~v 2
i

m∗
e |~vi| = |~qi|,

d3kb = |~kb|2d|~kb|dΩb = ω2
bdωbdΩb,

d3qf = |~qf |2d|~qf |dΩf ,

Ẽf dẼf = |~qf |d|~qf |.

We consider an unpolarized electron beam. Then, we can use the elegant trace formalism
which was introduced by H. B. G. Casimir in 1933 [20]. For any 4 × 4-matrix Γ, the following
relation is true [12]:

∑

ri,rf=1,2

∣
∣urf

(pf )Γuri
(pi)

∣
∣
2

= Tr

[

Γ
p̂i +me

2me
Γ
p̂f +me

2me

]

. (2.21)

ri and rf are the spin polarization indices. Summing over spin polarizations and using the above
relation, we get

∑

ri,rf

|Sfi|2 =
4π2Z2e6m2

e

2ωbẼiẼfV 3

∑

n

∑

n′

δ(1)
(

Ẽf − Ẽi − nω + ωb

)

δ(1)
(

Ẽf − Ẽi − n′ω + ωb

)

×

1

~q 2
n

1

~q 2
n′

Tr

[(
∑

s

Qλ
n,s

)

p̂i +me

2me

(
∑

s′

Q
λ

n,s′

)

p̂f +me

2me

]
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with

Qλ
n,s =F

f,pn,s

−n−s (ξp − ξf , ηp)
p̂n,s − e2a2

2k·pn,s
k̂ +me

p2
n,s −m∗

e
2 + iε

G
i,pn,s

−s (ξp, ηp)+

G
f,p′

n,s

−n−s(ξp′ − ξf , ηp′)
p̂′n,s − e2a2

2k·p′

n,s
k̂ +me

p′2n,s −m∗
e
2 + iε

F
i,p′

n,s

−s (ξp′ , ηp′).

(2.22)

Because of the two δ-functions, only terms with n = n′ contribute and just one δ-function remains
according to (2.20). Plugging all results into (2.19) and summing over photon polarization as
well, we get the unpolarized differential cross section dσ =

∑

ri,rf ,λ dσ. Moreover, the averaging

over incoming spins yields a factor 1/2.

dσ

dΩfdΩbdωb
=

4π2Z2e6m2
eV

3ω2
b

4ωbẼiẼfV 3(2π)6|~vi|2π(2me)2

∑

λ=1,2

∑

n

δ(1)
(

Ẽf − Ẽi − nω + ωb

)

×

|~qf |2dqf
|~qn|4

Tr

[(
∑

s

Qλ
n,s

)

(p̂i +me)

(
∑

s′

Q
λ

n,s′

)

(p̂f +me)

]

=
α(Zα)2ωb

8π2

1

|~qi|
∑

λ=1,2

∑

n

|~qf |
|~qn|4

δ(1)(Ẽf − Ẽi − nω + ωb) ×

Tr

[(
∑

s

Qλ
n,s

)

(p̂i +me)

(
∑

s′

Q
λ

n,s′

)

(p̂f +me)

]

dẼf .

Since we are not interested in the dependence of the cross section on the energy Ẽf of the

outgoing electron, we integrate over Ẽf . Together with the δ-function in the cross section, this
yields the energy conservation

Ẽf = Ẽi + nω − ωb.

Thus, the cross section for bremsstrahlung in a circularly polarized field is finally derived:

dσ

dΩfdΩbdωb
=
α(Zα)2ωb

8π2

1

|~qi|
∑

λ=1,2

∑

n

|~qf |
|~qn|4

×

Tr

[(
∑

s

Qλ
n,s

)

(p̂i +me)

(
∑

s′

Q
λ

n,s′

)

(p̂f +me)

]

Θ(Ẽf −m∗
e).

(2.23)

The step function appears to make sure that the energy of the outgoing electron is always greater
than its rest mass. This is in close analogy to the Bethe-Heitler formula. We see that the cross
section is differential in the energy of the bremsstrahlung photon and in the directions of both
the final electron and the emitted photon.

2.4.1 Limit of Vanishing Laser Field a → 0

Expression (2.23) is fairly complicated. To check whether it is a reasonable result, the easiest
possibility is to “turn off” the laser field. Then, we should retrieve the Bethe-Heitler cross
section. So, let us consider the case a → 0. Trivially, qf = pf and qi = pi. Obviously, all

ξ’s and η’s equal zero then. Subsequently, F
j,pn,s
n (0, 0) = ε̂b,λB

0
n(0, 0) = ε̂b,λδn,0 and similarly
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G
j,pn,s
n (0, 0) = γ0δn,0. From this, it follows that

Qλ
n,s =ε̂b,λδ−n−s,0

p̂n,s +me

p2
n,s −m2

e + iε
γ0δ−s,0+

γ0δ−n−s,0

p̂′n,s +me

p′2n,s −m2
e + iε

ε̂b,λδ−s,0.

Here, we used (D.1) from appendix D. Because of the Kronecker-δ’s in the cross section, the
infinite sums break down. Only the terms with n = s = s′ = 0 survive. In order to go on, we
make use of the completeness relation for the photon polarization vectors εµb,λ [12]:

∑

λ=1,2

εµb,λε
ν
b,λ = −gµν + gauge terms.

The gauge terms drop out in the field-free case when we calculate any observables. Thus, we can
write down the cross section in the limit a = 0:

dσ

dΩbdΩfdωb
= −α(Zα)2ωb

8π2

|~pf |
|~pi|

1

|~q|4 Θ(Ei −me − ωb)×

Tr

[(

γµ p̂f + k̂b +me

2pf · kb
γ0 + γ0 p̂i − k̂b +me

−2pi · kb
γµ

)

(p̂i +me)×
(

γ0 p̂f + k̂b +me

2pf · kb
γµ + γµ

p̂i − k̂b +me

−2pi · kb
γ0

)

(p̂f +me)

]

.

This is already the Bethe-Heitler cross section as we can see by comparison with the formula in
appendix A.

2.4.2 Integrated Cross Section

The cross section (2.23) derived up to here is differential in the energy of the bremsstrahlung
photon and in the solid angles of both the electron and the photon. However, from an exper-
imental point of view, this is difficult to measure since the photons and the electrons have to
be detected in coincidence. Moreover, the main focus is put on the bremsstrahlung photon; the
electron is just used to “create” it, what it “does” afterwards is of not so much interest. So,
we will integrate over dΩf in order to get a cross section only dependent on the energy of the
bremsstrahlung photon and its direction of emission:

dσ

dΩbdωb
=

∫

dΩf
dσ

dΩbdΩfdωb
. (2.24)

Obviously, this integration can only be done numerically in the general case of equation (2.23)
since it is an integration over Bessel functions. The numerical integration routine will be discussed
in more detail when the Fortran 90 programme is explained in section 3.3. We note that in the
field-free case (i.e. for the Bethe-Heitler formula) an analytical integration is possible. The result
is shown in appendix A.

2.5 Resonances and Higher Harmonic Generation

Resonances of the cross section are generated when the denominators of the propagators (2.22)
become zero (or at least close to zero). Thus, the conditions for resonances are

p2
n,s −m∗

e
2 = 0 and p′2n,s −m∗

e
2 = 0.
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We define two four-vectors ñ and ñb by k = ωñ and kb = ωbñb. The first relation of the two
equations above can then be rewritten as

(qf − (n+ s)ωñ+ ωbñb)
2 −m∗

e
2 = 0

−(n+ s)ωqf · ñ+ ωbqf · ñb − (n+ s)ωωbñ · ñb = 0.

We solve this expression for ωb and scale it with the laser frequency ω. This yields the condition
for resonances of our cross section:

ωb

ω
=

(n+ s)qf · ñ
qf · ñb − (n+ s)k · ñb

. (2.25)

The equivalent calculation for the second relation gives:

ωb

ω
=

sqi · ñ
−qi · ñb + sk · ñb

. (2.26)

In general, one speaks of higher harmonics if the frequency of the emitted photon is an integer
multiple of the laser frequency or, in mathematical terms, if ωb/ω = n with n ∈ �

. A closer look
at (2.25) and (2.26) reveals that there will be higher harmonics if ñb = ñ. The two equations
simplify to

ωb

ω
= n+ s and

ωb

ω
= −s.

However, for an arbitrary direction of the emitted bremsstrahlung photon, we can estimate
the spacing between two resonances easily. We neglect the k · ñb-term since it is only a small
contribution and get

∆
(ωb

ω

)

=
qf · ñ
qf · ñb

and ∆
(ωb

ω

)

=
qi · ñ
qi · ñb

. (2.27)

Let us consider the resonance frequency ωb in the rest frame of the electron. The electron
moves with a velocity of |~vi,f | = |~qi,f |/Ẽi,f . The relativistic Doppler shift is

ω′ = γω (1 − |~v| cos θ) .

Here, ω′ is the frequency in the moving frame (i.e. the rest frame of the electron), ω the frequency

in the laboratory frame, and θ is the angle in the laboratory frame between ~v and ~k. In the

following, θel = ∠
(

~v,~k
)

and θeb = ∠
(

~v,~kb

)

. We thus get

ω′ = γω (1 − |~v| cos θel) ,

ω′
b = γωb (1 − |~v| cos θeb) .

We will just consider the case (2.25); the other one is treated in exactly the same manner and
yields obviously an equivalent result.

ω′
b

ω′ =
ωb

ω

1 − |~v2| cos θeb

1 − |~v2| cos θel

= (n+ s)
Ẽf − |~qf | cos θel

Ẽf − |~qf | cos θeb − (n+ s)k · ñb

1 − |~v2| cos θeb

1 − |~v2| cos θel
using (2.25).
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Ẽf is of the order of 10 MeV, whereas ω is of the order of 10−6 MeV. Therefore, we can neglect
the term k · ñb in the denominator as long as the number (n + s) of the resonance is not too
large. Then, the two fractions cancel each other, and we end up with

ω′
b

ω′ = n+ s.

As we will see later, the number of resonances (n + s) is in all relevant cases not greater than
O(103). So, we can conclude that all resonances are higher harmonics in the rest frame of the
electron, but not in the laboratory frame.

2.6 Finite Peaks – the Imaginary Mass and Energy

Whenever we have a resonance peak of our cross section (i.e. the intermediate electron “goes
on shell”), the value of the cross section is infinite. This is due to the fact that at a resonance
the virtual electron becomes real and the denominator is equal to zero as we saw in the previous
section. However, infinities do not show up in nature. We have to consider higher-order Feynman
diagrams of the electron propagator in order to suppress this unphysical behaviour. The next
higher-order Feynman diagram, the so-called electron self-energy (here laser-dressed), is shown
in figure (2.3). The calculation of the contribution of the electron self-energy yields a shift of
the electron mass in the propagator. This calculation is very demanding. However, making use
of the so-called Cutkowsky rule, it is comparatively easy to calculate the imaginary mass shift
of the electron mass. This was done for the first time by [15]. The imaginary mass shift of the
electron is given by [21]

me → me − iΓm with Γm =
p̃0

2me
Wγ . (2.28)

We remark that this is a nonstandard notation; in the literature Γm/2 is commonly used instead
of Γm. However, we will use the same notation as in [15, 21]. p̃0 is the zero-component (i.e.
the energy) of the four-momentum of the intermediate electron; in our case, it is p̃0 = p0

n,s

or p̃0 = p′0n,s. Wγ is the total probability of photon emission, i.e. of laser-dressed Compton
scattering:

Wγ =

∫
∣
∣
∣

∣
∣
∣

2

V T

V d3kb

(2π)3
V d3qf
(2π)3

=

∫
∣
∣
∣e
∫

d4xψf (x)
(

−iÂc,λ(x)
)

ψi(x)
∣
∣
∣

2

V T

V d3kb

(2π)3
V d3qf
(2π)3

Figure 2.3: The so-called self-energy of the electron is due to (in lowest order) a virtual photon
which is emitted and then reabsorbed by the electron. This process leads to a mass shift of the
electron mass.
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The index c in Ac,λ denotes that we talk about a Compton photon and not about a bremsstrah-
lung photon (as in Ab,λ) anymore. Of course, ψi and ψf are Volkov wave functions.

Wγ is calculated in [11] for circular polarization. So, we will just state the result here3:

Wγ =
αm2

e

4p̃0

∞∑

s=1

∫ us

0

du

(1 + u)2
×

{

−4J2
s (z) + ζ2

(

2 +
u2

1 + u

)
(
J2

s+1(z) + J2
s−1(z) − 2J2

s (z)
)
}

(2.29)

=:
αm2

e

4p̃0
W̃γ(k · p̃)

with4

ζ =
ea

me
, us = 2s

k · p̃
m∗

e
2 , z = 2s

ζ
√

1 + ζ2

√

u

us

(

1 − u

us

)

.

As we will see later in 3.5, W̃γ(k · p̃) is a function linear in k · p̃ (at least in our range of paramters).

Therefore it can be written as W̃γ(k · p̃) = ba(k · p̃). The slope ba of the straight line depends on
a. For example, we will find b20 = 240 MeV−2.

However, with the implementation of the imaginary mass in our formalism, an imaginary
energy has to be introduced as well to make the formalism consistent again:

Ẽ → Ẽ − iΓẼ.

Again, we do not use the standard notation Ẽ → Ẽ − iΓẼ/2. We found that the effective four-
momentum also fulfills the Einstein-relation q2 = m∗

e
2. By introducing only the imaginary mass

shift, this relation would be violated. We will choose ΓẼ in such a way that this relation also
holds with the imaginary mass shift. With m∗

e
2 → (me − iΓm)2 + e2a2 ≈ m∗

e
2 − 2imeΓm, we

write
(

Ẽ − iΓẼ

)2

= m∗
e
2 − 2imeΓm + ~q 2

Ẽ2 − 2iẼΓẼ = m∗
e
2 − 2imeΓm + ~q 2

⇒ ΓẼ =
me

Ẽ
Γm. (2.30)

We define the shifted effective momentum qΓ =
(

Ẽ − i(me/Ẽ)Γm, ~q
)

.

In the numerator of the propagators (2.22), both the electron mass and the effective momen-
tum appear, but the imaginary shifts are so small compared to the other values that they can be
neglected. However, the denominator equals zero when the electron is “on shell”. Therefore, even
small correction terms must not be neglected. Thus, in the denominators, we have to replace

p2
n,s −m∗

e
2 →

(
qΓf − (n+ s)k + kb

)2 −m∗
e
2 + 2imeΓm

=2

[

−(n+ s)qf · k + qf · kb − (n+ s)k · kb + i
me

Ẽf

Γm ((n+ s)ω − ωb)

]
(2.31)

3In [11], e2 equals the fine-structure constant α. This is not true in our system of units. The formula in [11]
is changed accordingly.

4In [11] eq. (101,17), there is a misprint in the definition of z which becomes obvious by dimensional consider-
ations. It also contradicts [21]. The treatment in [11] becomes consisten with [21] (taking the appropriate limit)
and with dimensional considerations when we neglect m2

e in the definition of z.
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and

p′n,s
2 −m∗

e
2 →

(
qΓi − sk − kb

)2 −m∗
e
2 + 2imeΓm

=2

[

−sqi · k − qi · kb + sk · kb + i
me

Ẽi

Γm (sω + ωb)

]

.

Γm can be rewritten as

Γm =
p̃0

2me
Wγ =

p̃0

2me

αm2
e

4p̃0
ba(k · p̃) =

αme

8
ba(k · p̃). (2.32)

What is the interpretation of the imaginary energy? To get some insight, we replace q with
qΓ in the Volkov state (2.6). We find

ψΓ
p,r(x) = ψp,r(x)e

−ΓẼt,

|ψΓ
p,r(x)|2 = |ψp,r(x)|2e−2ΓẼt.

Thus, the Volkov state becomes a decaying state. This is not very amazing because the electron
in the laser field shows a level structure – the levels are labelled by the number s of absorbed or
emitted laser photons in (2.6). Transitions between these levels are possible.

2.7 Explicit Calculation of the Cross Section – the Scat-

tering Geometry

The scattering geometry we consider is depicted in figure (2.4). Since one expects the most
interesting physics from a head-on collision of the electrons and the laser photons, we assume
the incoming electrons and the laser photons to counterpropagate. The x-axis is defined by
the direction ~pi. After the scattering process, the outgoing electrons are deflected by an angle

θf = ∠ (~qi, ~qf ). The bremsstrahlung photon is emitted by an angle θb = ∠
(

~qi, ~kb

)

. In order to

describe the directions of the outgoing electron and the bremsstrahlung photon exactly, we also
need the azimuthal angles ρf for the final electron and ρb for the bremsstrahlung photon. They
are defined according to figure (2.5). Now, we can easily write down explicit expressions for the
different four-vectors:

qi =

(

Ẽi,

√

Ẽ2
i −m∗

e
2, 0, 0

)

,

qf =

(

Ẽf ,
√

Ẽ2
f −m∗

e
2 cos θf ,

√

Ẽ2
f −m∗

e
2 sin θf cos ρf ,

√

Ẽ2
f −m∗

e
2 sin θf sin ρf

)

,

k = (ω,−ω, 0, 0) ,

kb = (ωb, ωb cos θb, ωb sin θb cos ρb, ωb sin θb sin ρb) .

We also have to find expressions for the polarization vectors κ1,κ2 and εb,1, εb,2. Since the εb’s
have to fulfill the relations (2.11), we can choose

εb,1 = (0, 0,− sinρb, cos ρb) ,

εb,2 = (0,− sin θb, cos θb cos ρb, cos θb sin ρb) .

The κ’s obey the equivalent relations (2.2), (2.3), and (2.4). The first and simplest choice for an
explicit representation would be κ1 = (0, 0, 1, 0) and κ2 = (0, 0, 0, 1). However, it turns out that
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~qf

θf~qi
~k

θb

~kb

x

y

z

Figure 2.4: In our scattering geometry, the incoming electron with qi and laser photons with k
are counterpropagating. The directions of the final electron and the bremsstrahlung photon can
be determined in each case with two angles. In this projection on the xy-plane, only the polar
angles θf and θb are visible.

y

z x

ρf

ρb

~qf

~kb

Figure 2.5: A projection of the scattering geometry on the yz-plane shows the azimuthal angles
ρf of the final electron and ρb of the bremsstrahlung photon.
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it is more convenient to use a slightly more complicated representation, namely

κ1 = (0, 0, cosρf , sin ρf ) ,

κ2 = (0, 0,− sinρf , cos ρf ) .

The reason for this choice will be given in a few lines below.
Apart from the fact that we expect the most interesting physics from a head-on collision of

electrons and photons, it also yields the nice result ξi = ηi = 0:

ξi = −ea
=0

︷ ︸︸ ︷

qi · κ1

q · k = 0;

ηi ∝ qi · κ2 = 0.

Moreover – and this is due to the more complicated choice of the κ’s –, we even find that ηf = 0:

ηf ∝ qf · κ2

= −
√

Ẽ2
f −m∗2 (− sin θf cos ρf sin ρf + sin θf sin ρf cos ρf )

= 0.

Thus, this little difference in choosing an explicit representation of the polarization vectors κ1 and
κ2 will make a huge difference in evaluating the cross section formular numerically. For example,
we can derive much easier formulars for the sum rules of the generalised Bessel functions (see
appendix E). It should be stressed however that this simplification is a special feature of circular
polarization and our scattering geometry.
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Chapter 3

The Numerical Evaluation:

Discussion of the Fortran Code

After having derived an expression for the bremsstrahlung cross section (2.23), it is now our main
task to evaluate this expression. Obviously, this can only be done numerically. In this section,
a Fortran 90 programme will be described which is capable of doing this. Moreover, numerical
and other difficulties will be addressed and solved.

Why do we use Fortran 90 and not, for example, C++? Of course, this would be possible,
too. However, a nice feature of Fortran is that both complex numbers and matrix calculation are
already implemented. We do not have to write our own class or download something to “upgrade”
Fortran as in the case of C++. Moreover, there is a general agreement in the community –
although this has not been analysed thoroughly – that Fortran is approximately a factor of 2
faster than C.

This chapter is organised in the following way: In the first section, we will give an overview
over the whole programme with the help of a simplified flowchart. Then, the implementation of
the special features of the Minkowski metric and the Dirac algebra are described. Afterwards,
we will have a closer look at the numerical integration and the calculation of the differential cross
section. At the end of this chapter, we will shortly explain how the imaginary mass and energy is
calculated and perform some numerical tests of our code. For a closer investigation of our code,
we refer to appendix G where the main programme and the calculation of the propagators are
presented.

In the following, everything which is printed in a typewriter font is quoted from the Fortran
90 programme.

3.1 Overview over the Whole Programme

The simplified flowchart shown in figure (3.1) depicts the organization of the programme. All
functions and subroutines which can be seen in the flowchart have their counterpart in the source
code in appendix G. We note that we will present the programme for the calculation of spectra,
i.e. the cross section is presented as a function of the bremsstrahlung frequency ωb. For other
kinds of graphs, minor modifications must be implemented. Nevertheless, this does not effect
the overall structure of the programme.

In an outer loop, ωb is increased step by step. After each cycle, the result is written to a file
which can then be imported by another programme (in our case XMGrace) to create the graphs.
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main programme
loop over ωb

integration
∫

dΩf

differential cross section

dσ
dΩfdΩbdωb

write result to file
go on with loop ωb or stop

ωb = ωb + ∆ωb

function integrand theta1

subroutine int rho1
with argument sum n

function sum n

function cross

subroutine int theta1
with argument integrand theta1

subroutine gaus8
with argument integrand theta1

function GenBessel

module variable declaration

function prop

function propprime

Figure 3.1: A simplified flowchart depicts the organization of the Fortran programme for the
evaluation of the cross section.

During each cycle, the differential cross section (2.23) is numerically integrated over the direction
of the outgoing electron in order to yield the total cross section (2.24). In the programme,
this is organised in the following way: We assign a function (called integrand_theta1) to the
routine which performs the θf -integration. integrand_theta1 itself is the differential cross
section integrated over ρf or, in other words, performs the numerical integration over ρf . Hence,
the function calculating the differential cross section is assigned to integrand_theta1 as an
argument. The two numerical integrations will be discussed in more detail below.

The calculation of the differential cross section is split up into two functions, namely sum_n

and cross. These two functions will also be explained below. We remark that the Bessel
functions are calculated in the module Besselfunctions_GenBesselfunctions. The declaration
of variables and constants is bundled in a further module called variable_declaration.
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3.2 Implementation of the Minkowski Metric and the Dirac

Algebra into Fortran 90

In particle physics, expressions involving traces can in most cases be simplified considerably by
using methods of the Dirac algebra and relations for traces. A similar approach was done in [18].
However, it turns out that we do not have any simplifications in the laser-dressed case. So, it
is advantageous to choose an explicit representation of the γ-matrices. We choose, as already
stated at the beginning of this thesis, the Dirac representation.

All constants (constant matrices) we need, i.e. the unit matrix, the metric tensor g and the
γ-matrices γ0, γ1, γ2, γ3, are defined in an extra module called variable_declaration.f90. For
example, the definition for γ2 in the Dirac representation looks

complex(kind=QD), dimension (0:3,0:3), parameter:: gamma2 = reshape&

((/(0._QD,0._QD),(0._QD,0._QD),(0._QD,0._QD),-(0._QD,1._QD),&

(0._QD,0._QD),(0._QD,0._QD),(0._QD,1._QD),(0._QD,0._QD),&

(0._QD,0._QD),(0._QD,1._QD),(0._QD,0._QD),(0._QD,0._QD),&

-(0._QD,1._QD),(0._QD,0._QD),(0._QD,0._QD),(0._QD,0._QD)/),&

(/4,4/),order=(/2,1/))

complex just means that we define a complex number. In Fortran, complex numbers are given
by two numbers in brackets: (a,b) ≡ a + bi. The kind-statement specifies the precision; QD
can take the values 8 and 16 corresponding to double and quadruple precision, respectively. The
command dimension(0:3,0:3) generates a 4× 4-matrix with indices running from 0 to 3. The
reshape- and order-commands (which is a new feature of Fortran 90) assure that the components
are correctly assigned. One has to be careful since it easily happens that the rows and columns of
the matrix are interchanged. parameter tells the compiler that this “variable” is a constant which
cannot be changed throughout the programme. The rest of the command assignes the values to
each component of the matrix called gamma2. For example, -(0._QD,1._QD) corresponds to the
value −i with precision QD. All other definitions look more or less the same – be it a variable then
without the parameter-command, be it a scalar then without the dimension(...)-command.

Now let us turn our attention to the functions we need for the upcoming four-dimensional
calculations. They are all internally defined.

The following function calculates the Feynman dagger of a four-vector p:

function slash(p) result (slash_p)

implicit none

real(kind=QD), intent(in), dimension(0:3) :: p

complex(kind=QD), dimension(0:3,0:3) :: slash_p

slash_p=gamma0*p(0)-(gamma1*p(1)+gamma2*p(2)+gamma3*p(3))

end function slash

As an argument, the function slash receives the four-vector p. The return value is called slash_p

and is defined in this function as a complex 4×4-matrix. In the last but one line of the function,
the value p̂ = γ0p0 − (γ1p1 + γ2p2 + γ3p3) is assigned to slash_p.

The function diracadj is used for calculating the Dirac adjoint M of a matrix M :

function diracadj(M) result (Mbar)

implicit none

complex(kind=QD), intent(in), dimension(0:3,0:3) :: M

complex(kind=QD), dimension(0:3,0:3) :: Mbar
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Mbar = matmul(matmul(gamma0, conjg(transpose(M))), gamma0)

end function diracadj

Here, we make use of Fortran’s abilities to manipulate matrices: conjg(transpose(M)) ≡
(M t)

∗
= M †. The matrix multiplication of two matrices A and B is denoted by the command

matmul(A,B)≡ AB. Hence, Mbar = matmul(matmul(gamma0,M †, gamma0) ≡ γ0M †γ0 = M .
The function g with the two arguments x and y is obviously the Fortran representation of

the scalar product x · y = xµyµ:

function g(x,y)

implicit none

real(kind=QD), intent(in), dimension(0:3) :: x,y

real(kind=QD) :: g

g=x(0)*y(0)-(x(1)*y(1)+x(2)*y(2)+x(3)*y(3))

end function g

After the previous considerations and explanations, this function is straightforward. Accord-
ing to our metric, this function assigns the value xµyµ = x0y0 − (x1y1 + x2y2 + x3y3) ≡
x(0)*y(0)-(x(1)*y(1)+x(2)*y(2)+x(3)*y(3)) to g.

Although this is not part of four-dimensional calculations, we will present a function for
calculating the norm of a three-dimensional vector (only spatial components) here:

function norm(vec)

implicit none

real(kind=QD), intent(in), dimension (1:3) :: vec

real(kind=QD) :: norm

norm=sqrt(sum(vec**2))

end function norm

vec**2 just squares each component of the vector which are then sumed up by the command
sum: sum(vec**2)=sum(vec(1)2,vec(2)2,vec(3)2)=vec(1)2+vec(2)2+vec(3)2.

3.3 The Numerical Integration over dΩf

“God does not care about our mathematical difficulties. He integrates

empirically.”

Albert Einstein

We can rewrite dΩf as dΩf = sin θfdθfdρf . So, we perform an integration over the polar angle
θf and the azimuthal angle ρf .

For the θf -integration, we use a Gaussian integration routine which is part of the integration
library intlib.f90. The subroutine gaus8 integrates real functions over finite intervals using
an adaptive algorithm [22]. This finite interval is [0, π] for the polar integration. However, as we
can see in figure (3.2), the differential cross section decreases very fast with increasing θf . The
explanation for this behaviour is very easy. We remember that the momentum transfer onto the
nucleus is given by ~qn = ~qf − ~qi − n~k + ~kb. So, if ~qf ‖ ~qi, the momentum transfer will be very
small and hence the cross section very big because of dσ ∝ 1/|~qn|4. On the other hand, if ~qf ∦ ~qi,
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Figure 3.2: The differential cross falls off rapidly with increasing polar angle θf . This feature
can be exploited to speed up the numerical integration.

|~qn| can get much larger, and the cross section is consequently strongly suppressed. Therefore,
it is enough to integrate over θf from 0 to approximately 10−4.1

Whenever we call the routine int_theta1(integrand_theta1,0._QD,0.0001_QD) in the
main programme, these limits are used. int_theta1 itself then calls the earlier mentioned
routine gaus8. As an argument, we assign the function integrand_theta1:

function integrand_theta1(theta1)

...

a = 0._QD

b = pi

call int_rho1(sum_n, a, b, theta1)

integrand_theta1 = 2._QD * result * sin(theta1)

return

end function integrand_theta1

integrand_theta1 calls the routine int_rho1. This routine integrates over the azimuthal an-

gle ρf , i.e. it does the integration
∫ b

a
dρf sum n(ρf , θf ). Here, we use a Romberg integration.

The Romberg method uses the trapezoidal rule and subinterval halving [22]. As we can see in
integrand_theta1, the integration interval is just [0, π] and not up to 2π as one would expect.

1In figure (3.2), we set a = 20 MeV, ωb = 1.5ω, and θb = 179◦; however, varying these numbers have almost
no effect on this particular behaviour.
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Figure 3.3: The differential cross section in dependence on ρf is symmetric around ρf = ρb.
Therefore, the integration over ρf simplifies.

This is due to a special symmetry in our scattering geometry and a feature of circular polariza-
tion. We have only two characteristic directions, namely the direction of the laser photon ~k/ω

and the direction of the emitted bremsstrahlung photon ~kb/ωb. Why do we have only these two?

~qi/|~qi| is antiparallel to ~k/ω and thus does not yield a new characteristic direction (this is due to

our scattering geometry). Finally, ~A or, respectively, ~E and ~B do not contribute either since we
consider a circularly polarized field (so, our argumentation does not hold for linear polarization).

Therefore, the plane spanned by the vectors ~k and ~kb is a plane of symmetry or, to be more
explicit, the value of the cross section on one side of the plane is the same as on the opposite side
of the plane. Thus, we have to integrate the differential cross section from ρb − π to ρb (from
0 to π if we choose ρb = π) and take the resulting value times two. Figure (3.2) clearly reflects
our considerations: ρf was set to π; hence, the differential cross section in dependence on ρf is
symmetric around π.

The value of the azimuthal integration is stored in the variable result. integrand_theta1
returns the value 2._QD * result * sin(theta1). The factor 2 is due to the symmetry we
just explained. The second factor sin(theta1) ≡ sin θf comes from the expression of the solid
angle we mentioned at the beginning of this section.
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Figure 3.4: The progression of the generalized Bessel function B0
k as a function of the index k

shows a clear cutoff (here we printed the function log
∣
∣
(
B0

k(75,−100)
)∣
∣). The theoretical cutoff

is at k = ±175.

3.4 Calculation of the Differential Cross Section – the Func-

tions sum n and cross

The functions sum_n and cross calculate the differential cross section (2.23) in dependence on
the solid angle of the outgoing electron dΩf = sin θfdθfdρf ≡ sin(theta1)d(theta1)d(rho1). In
cross, we find the calculation of the trace Tr [. . . ] with the two sums over s and s′. The result
is returned to sum_n where we have the n- and λ-sum among other things.

At this point, we want to emphasize again that the sums over n, s, and s′ theoretically run
from −∞ to ∞. A numerical evaluation of an infinite sum is obviously not possible. Therefore,
we have to find certain summation limits so that the “infinite” sum can be done in a finite
time intervall. From a physical point of view, these sums have to converge since otherwise the
cross section would be infinite – an unphysical behaviour! Mathematical, this convergence is
due to the fact that Bessel functions tend to zero very fast if the index becomes greater than
the argument (see appendix E). We can use that in order to derive summation limits for the
summation variables n, s, and s′ which appear as indices of the generalized Bessel functions. To
this end, we go back to the definition of B0

k in order to find kmax,min so that

∞∑

k=−∞
B0

k(ξ, η) (. . . ) ≈
kmax∑

k=kmin

B0
k(ξ, η) (. . . ) .
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This is easily done:

∞∑

k=−∞
B0

k(ξ, η) (. . . ) =

∞∑

k=−∞

∞∑

n=−∞
ikJn−k(ξ)Jn(η) (. . . )

≈
∞∑

k=−∞

|η|
∑

n=−|η|
ikJn−k(ξ)Jn(η) (. . . )

≈
|ξ|+|η|
∑

k=−(|ξ|+|η|)

|η|
∑

n=−|η|
ikJn−k(ξ)Jn(η) (. . . ) .

Thus we find kmax = −kmin = |ξ| + |η|. We can see these summation limits as a cutoff of the
generalized Bessel function B0

k in figure (3.4).
We can apply this rule to obtain the summation limits for the n- and s-sum. According

(2.22), we set smax = max (|ξp| + |ηp|, |ξp′ | + |ηp′ |) and, using this result, nmax = max(|ξp − ξf |+
|ηp|, |ξp′ − ξf | + |ηp′ |) + smax.

function sum_n(rho1, theta1)

...

kappa1 = ...

kappa2 = ...

xipprime = ...

etapprime = ...

do n= -nmax,nmax

if (step(Etilde2-mstar)) then

q2 = ...

p2 = ...

qn = ...

xi2 = ...

eta2 = ...

xip = ...

etap = ...

smax = ...

nmax_test = ...

...

allocate (bessel1(0:2, -abs(n)-smax:abs(n)+smax))

...

bessel1(:,:) = GenBessel(abs(n)+smax,xip-xi2,etap)

...

do lambda = 1,2

sum_n = sum_n + cross(n,lambda,smax)

end do

deallocate (bessel1)
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...

end if

end if

end do

sum_n = sum_n*finestructure*(finestructure*Z)**2*wb/&

(8._QD*pi**2*norm(q1(1:3)))

end function sum_n

!----------------------------------------------------------------

function cross(n, lambda, smax) result (intres)

...

integer :: s, r1, r2

...

do s = -smax, smax

qsum = qsum + prop(n,s,lambda) + propprime(n,s,lambda)

end do

qbarsum = diracadj(qsum)

! spinor outgoing electron---------------------------------------

u2(1,0) = (1._QD,0._QD)

u2(1,1) = (0._QD,0._QD)

...

u2 = u2 * Sqrt((p2(0)+m)/(2._QD*m))

! ---------------------------------------------------------------

do r1 = 1,2

do r2 = 1,2

testcom = (dot_product(matmul(conjg(u2(r2,:)),gamma0),&

matmul(qsum,u1(r1,:))))

intres=intres+ testcom*conjg(testcom)

end do

end do

intres = intres * norm(q2(1:3))/norm(qn(1:3))**4

end function cross

As stated above, in sum_n we find the n-summation running from -nmax up to nmax. For
each n, we can now calculate the values for almost all quantities we need to go on: qf , pf , qn,
ξf , ηf and, since they are not s-dependent, ξp, ηp, ξp′ , and ηp′ . In a next step, we allocate an
array with dimensions according to our summation limits in which we store the values of the
generalized Bessel functions. We can do this at this particular point and do not have to wait
until we perform the loop for the s-summation because the generalized Bessel functions do not
depend on s. This is a great advantage since the calculation of them is numerically demanding.
We then proceed by doing the summation over the two possible photon polarizations λ = 1, 2.
Within this loop, we call the function cross: sum_n = sum_n + cross(n,lambda,smax). We
see that the return value sum_n is incremented for each cycle of the nested loops over n and λ by
the return value of the function cross. At the end, we deallocate the array and multiply sum_n

with the prefactors in (2.23).
The function cross is fairly intuitive; therefore, we will not discuss the details as the s-
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loop. However, one point is remarkable: In the derivation of the cross section, we made use
of the trace formalism (2.21). During the numerical evaluation, it turns out that the trace is
numerically unstable for certain parameters. Therefore, we evaluate the cross section by doing
the sums over the spinors uri

and urf
explicitly. The explicit representation of the spinors can

be found in appendix D. In the following, we present some result for the differential cross section
using the trace- and the spinor-formalism (a = 4 MeV, θf = ρf = 0◦, θb = 179◦, ρb = 180◦):

ωb/ω trace spinor

0.8 −5.7 × 1016 MeV−3 7.0 × 1015 MeV−3

0.9 5.4 × 1015 MeV−3 5.2 × 1015 MeV−3

1.0 −2.7 × 1016 MeV−3 3.2 × 1015 MeV−3

1.1 1.0 × 1016 MeV−3 2.4 × 1015 MeV−3

1.2 1.3 × 1016 MeV−3 2.1 × 1015 MeV−3

1.3 −7.4 × 1014 MeV−3 1.5 × 1015 MeV−3

Negative cross sections make no sense. However, these strange results are due to a too low
precision of the internal processes or, equivalently, to cancellation effects in the sums.

Now, we presented the main parts of the programme for calculating the total cross section
(2.24). Of course, for different plots the programme will be changed accordingly. However, the
basic structure of the programme will always be the same. If we are interested in the differential
cross section, then we can use the same programme and directly call the function sum_n. We
just do not integrate over dΩf .

3.5 Calculation of the Imaginary Mass and Energy Shift

In order to be able to include the imaginary mass and energy shift in our evaluation, we have to
calculate (2.29), or, to be more precise,

W̃γ(k · p) =

∞∑

s=1

∫ us

0

du

(1 + u)2

{

−4J2
s (z) + ζ2

(

2 +
u2

1 + u

)
(
J2

s+1(z) + J2
s−1(z) − 2J2

s (z)
)
}

.

For each a, W̃γ is calculated with a separate programme. This will not be discussed here because
it does not use any new concepts. The infinite sum over s can be truncated by the same
rules which were presented in the previous section. However, the convergence is worse since the
argument z of the Bessel functions increases with the increase of the index s as well. Nevertheless,
the sum converges – anthing else makes no sense because we talk about the propability of photon
emission – but we have to include many more terms; s is, depending on a, of the order of O(104).

In a loop, (k · p) is increased from 0 to approximately 10−4 MeV2 – this is the typical range
of values in the propagator. The programme then returns the value W̃γ(k · p). In this range, W̃γ

is a linear function of (k · p) as we can see in figure (3.5). Thus, we can approximate W̃γ by a

regression line of the form W̃γ(k · p) ≈ ba(k · p). ba will then be used for the calculation of the
imaginary mass and energy shift according to (2.30) and (2.32).
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Figure 3.5: The calculation of some values of the function W̃γ(k · p) is fairly complicated and
takes some time. It turns out that it can be approximated by a linear function (in colour) to a
very high accuracy in the range of our interest.

According to figure (3.5), we find

a [MeV] ba
[
MeV−2

]

1 3.4
5 46
10 110
20 240
30 371
40 499

3.6 Numerical Tests of the Validity of the Code

In all spectra we will present later, we will show the corresponding cross section without an
external field (i.e. the Bethe-Heitler cross section) as a comparison. As we saw above, the
Bethe-Heitler cross section is a special case of our more general cross section; namely for the case
a→ 0. Since we have an analytic expression for the Bethe-Heitler cross section, we can compare
the results of our programme for a → 0 with the results of that expression in order to test the
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validity of our Fortran code2.
So, in a first step, we compare the results of the differential cross section (2.23) with the

Bethe-Heitler cross section (A.2). Further information on the specific parameters for the energy
of the incoming electron and the laser frequency will be given below. In this section, we want to
compare the two results to make us believe in our programmes. We arbitrarily choose θf = 0◦,
ρf = 0◦, θb = 90◦, and ρb = 180◦.

As we can see from some exemplary numbers in the tabular below and from the top graph
(3.6), the agreement between the limit of our cross section and the Bethe-Heitler cross section
is almost perfect. In fact, this calculation was done with double precision; a higher (quadruple)
precision yields results which are in perfect agreement with each other.

ωb/ω laser-dressed cross section with a = 0 Bethe-Heitler cross section

1.0 5.868× 109 MeV−3 5.905× 109 MeV−3

1.5 1.751× 109 MeV−3 1.750× 109 MeV−3

5.0 47.232× 106 MeV−3 47.242× 106 MeV−3

10.0 5.905× 106 MeV−3 5.905× 106 MeV−3

20.0 738.157× 103 MeV−3 738.160× 103 MeV−3

In a next step, we want to check the numerical integration over the solid angle dΩf . As a
test function, we again use the laser-dressed cross section (2.23) with a = 0. If we integrate it
numerically, we should obtain the same result as from the analytically integrated Bethe-Heitler
formula (A.3). We again present some values for the same scattering geometry:

ωb/ω numerical integration analytical integration

1.0 0.128 MeV−3 0.128 MeV−3

2.0 6.370× 10−2 MeV−3 6.262× 10−2 MeV−3

5.0 2.414× 10−2 MeV−3 2.346× 10−2 MeV−3

10.0 1.121× 10−2 MeV−3 1.117× 10−2 MeV−3

20.0 5.222× 10−3 MeV−3 5.303× 10−3 MeV−3

We find a very close agreement between the numerical and analytical integration. This
is obvious from both the above tabular and from the bottom diagram (3.6). Therefore, our
numerical integration works perfectly. We could again achieve an even better agreement by
increasing the precision (using quadruple precision).

We want to shortly summarize these two checks. First, we compared only the differential
cross sections with each other. Since we showed theoretically that in the limit a → 0 the laser-
dressed cross section and the Bethe-Heitler formula will agree with each other, this numerical
test is a check whether the Fortran programme works properly. At least in the limit a → 0,
this is the case. Then, we integrated the differential cross section over dΩf in the limit a → 0.
Since we now know that the function to be integrated, namely the differential cross section, is
correct, this is a check whether the numerical integration works correctly. The comparison with
the analytic integration shows that the numerical integration passes this test, too.

2The programmes which are written to evaluate the Bethe-Heitler cross section are fairly simple and will not
be presented in this thesis.
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Figure 3.6: The comparison between the Bethe-Heitler and the laser-dressed cross section with
a = 0 shows clearly that not only theoretically but also numerically the laser-dressed bremsstrah-
lung cross section coincides with the Bethe-Heitler cross section for a vanishing laser field. This
is also a numerical test of the validity of the code. In the top diagram, we see the differential
cross section, whereas it is integrated over the solid angle dΩf in the bottom diagram.
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Chapter 4

Results

Although we could choose an arbitrary laser frequency, we set ω = 1.1698 × 10−6 MeV in all
calculations. This corresponds to a wavelength of 1060 nm of the laser. Hence, it is a typical
neodymium laser. Moreover, the energy of the incoming electron is in all cases Ei = 10me. So,
despite the fact that a fully relativistic description of the process is necessary because of the
high-intensity laser, we also need a relativistic description since the (undressed) electron itself
is highly relativistic. Possible differences from these conventions will be stated at that point
explicitly.

The laser intensity I is defined as the energy flux: I = dE
dV c with c ≡ 1 in natural units. The

energy is E = 1
2

∫

V
d3x

(

~E2 + ~B2
)

. The ~E- and ~B-field can be calculated from ~E = −∂ ~A
∂t − ~∇A0

and ~B = ~∇ × ~A. This leads to I = (aω)2. We give the values of the intensity in SI-units for
different amplitudes a:

a[ MeV] I [W/cm2]
5 2.13× 1019

10 8.54× 1019

20 3.41× 1020

30 7.68× 1020

First we will compare and analyse the differences between the free and the laser-dressed
electron propagator as well as the differences between the cross sections with and without the
imaginary mass shift. This is probably mainly of theoretical interest. Then, in a next step, we
will present “normal” spectra – normal in the sense that we plot the cross section versus the
frequency ωb of the emitted bremsstrahlung photon. We will scale ωb with the frequency ω of
the laser – hence, the value at the x-axis is ωb/ω. At the end of this section, some peculiarities
of the bremsstrahlung cross section will be discussed.

If not stated otherwise explicitly, we always choose ρb = 180◦ and ρf = 0◦ (if we consider
differential cross sections; otherwise we integrate over ρf anyway).

4.1 Comparison between the Free and the Laser-Dressed

Electron Propagator

One might assume that the free electron propagator is a good approximation for the laser-
dressed one we derived above. An intuitive explanation for this assumption is the following: The
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Figure 4.1: The comparison between the free and the laser-dressed electron propagator shows
clearly that the free electron propagator is not a good approximation at all for laser-dressed
processes such as bremsstrahlung.

time elapsed between the interaction of the electron with the nucleus and the emission of the
bremsstrahlung photon (or vice versa) is so short that the intermediate electron cannot interact
with the laser field. It would then propagate as a free electron, and the free propagator would
be a good approximation.

Although this sounds reasonable at first glance, there is also strong evidence that this as-
sumption does not hold. When we go back to the derivation of the S-matrix in equation (2.14),
we see that the propagator depends on the space-time points x1 and x2 of the two interactions
(namely the interaction with the nucleus and the emission of the bremsstrahlung photon). Thus,
the time difference is t2 − t1 which has to be very small according to the assumption above.
However, in order to calculate the S-matrix, we have to integrate over x2 and x1. Therefore,
t2 − t1 can get both arbitrarily small and arbitrarily big. We conclude that the assumption does
not seem to be justified from a mathematical point of view.

We will now compare cross sections calculated with the free and the full, laser-dressed propa-
gator. We did not treat the derivation of the cross section with the free propagator in this thesis.
Obviously, it is much easier since we just plug SF (x2, x1) instead of G (x2, x1) into equation
(2.14). We also replace me → m∗

e which seems to be a better approximation than the “pure”
free propagator.

In diagram (4.1), we see a differential cross section evaluated with the free and the laser-
dressed propagator. Although the explicit scattering geometry is of no interest at this point, we
note that we set θf = (6 × 10−4)◦, θb = 90◦, and a = 20 MeV.

Our mathematical explanation why the free propagator cannot be a good approximation is
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obviously proved by the numerical comparison. The number of resonances in the free case is
much lower. Moreover, the value of the cross section with the free propagator is several orders
of magnitude higher than the one with the laser-dressed propagator. This enormeous increase of
roughly ten orders of magnitude (even more compared to the laser-free, i.e. Bethe-Heitler cross
section) also seems to be unphysical.

The reason why the free propagator cannot be a good approximation can also be explained
in a more intuitive way. One laser cycle lasts 1060 nm/c = 3.5 fs. The time scale tb for photon
emission can be estimated with the help of Heisenberg’s uncertainty relation for time and energy:
Ebtb ≥ ~. With Eb = ~ωb = n~ω, we get t ≥ 1/(nω) & fs/n. For small n (e.g. of the order of
1), one laser cycle and the time scale of photon emission are both in the femto-second region.
Thus, the influence of the external laser on the intermediate electron must not be neglected, and
the full propagator must be used. However, if the energy of the bremsstrahlung photon exceeds
the energy of the laser photons by several orders (very big n), the time scale of the emission of
a bremsstrahlung photon will be very small or – in other words – the external field almost static
during this short time interval. Then, we expect the free propagator to be a good approximation
for our process. This rather naive argumentation can rigouroursly be proven and is confirmed in
[23].

4.2 Comparison of the Cross Sections with and without

the Imaginary Mass and Energy

We remember that we calculated the imaginary mass and energy shift of the electron in order
to get finite peaks at the resonances. These shifts are only small contributions to the “normal”
electron mass and energy. The influence of them will only be visible in a small region around
the resonances. This is precisely what we get when we have a look at figure (4.2a). Both cross
sections coincide more or less exactly.

To check whether the resonances are really finite we “zoom” into the first peak of the differ-
ential cross section. Indeed, we find the cross section with the imaginary shift to be finite in the
next figure; the unregularized cross section seems to tend to infinity as we expect it.

4.3 Differential Cross Sections

In this section, we will have a closer look at differential cross sections – differential in the energy
and the solid angle of the emitted bremsstrahlung photon and differential in the solid angle of
the outgoing electron. We stated before that we are mainly interested in the total cross section.
However, we expect differential and total cross sections to be qualitatively the same if we consider
no deflection of the electron. This expectation is reasonable because of the strong decrease of the
differential cross section with increasing θf (see section 3.3). Therefore, we can use the differential
cross section for qualitative analysis of the bremsstrahlung process – the big advantage is that
its evaluation is much faster than the one for the total cross section.

So, we will start with θb = 179◦ in the top diagram of figure (4.3). From now on, we will
also show the field-free cross section (i.e. the Bethe-Heitler cross section) as a comparison. It

is drawn as a solid black line. Since ~kb and ~k are almost parallel, we expect the appearance of
higher harmonics in the narrower sense1. We recognize that our expectation is fulfilled for all

1We remember from our theoretical discussion that all resonances are higher harmonics in the rest frame of

the electron. For this scattering geometry, however, the resonances are also “higher harmonics” in the laboratory
frame.
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Figure 4.2: The comparison between the differential cross section with and without the imaginary
mass and energy shift shows that the cross sections coincide (top, diagram (a) with θb = 179◦).
Only around the resonances, the cross section with the imaginary shift yields a finite value
whereas the other one goes to infinity (bottom, diagram (b) with θb = 90◦). This is the expected
behaviour.
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Figure 4.3: The differential cross section for θb = 179◦ (top diagram) shows resonance peaks at
integer multiples of the laser frequency. If the bremsstrahlung photon is not emitted parallel
to the laser photons (bottom diagram), the resonance peaks are not higher harmonics in the
laboratory frame. The number of resonances strongly depends on the angle θb (here we set
a = 20 MeV).
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Figure 4.4: The dependence of the spacing between resonances on the polar angle θb is shown in
this diagram. The greatest spacing is achieved for low laser intensities and anti-parallel emission
of the bremsstrahlung photon compared to the laser photons.

intensities. Nevertheless, the resonances vanish after just four or five peaks.
In the bottom diagram of the same figure (4.3), we see the differential cross section for

a = 20 MeV. The bremsstrahlung photon is in one case emitted with an angle θb = 90◦ and
in the other case with θb = 1◦. We can calculate the spacing between the resonances with the
formulas (2.27). For our approximation, it does not matter whether we take the first or the
second formula since the electron is not deflected. We calculate a spacing of ∆(ωb/ω) = 1.5 for
θb = 90◦ and ∆(ωb/ω) = 2.8 for θb = 1◦. These values are in very good agreement with the
diagram.

We will have a closer look at the formulas (2.27) for the spacing of the resonances. We
consider no deflection of the electron (which is – as explained above – the most interesting case)
so that both formulas yield approximately the same result. We find

∆
(ωb

ω

)

=
Ẽi +

√

Ẽ2
i −m∗

e
2

Ẽi −
√

Ẽ2
i −m∗

e
2 cos θb

. (4.1)

We plot this as a function of θb and get diagram (4.4). We see from the graph (and we can also
easily calculate it) that we get a minimum at θb = 180◦. The value at this point is always –
independent of any other parameters – ∆ (ωb/ω)

∣
∣
θb=180◦

= 1. This is of course the result we

expected from our previous considerations. The maximum spacing we can get is at θb = 0◦ with

∆ (ωb/ω)
∣
∣
θb=0◦

=

(

Ẽi +
√

Ẽ2
i −m∗

e
2

)2

/m∗
e
2. Therefore, for a fixed laser intensity a, we get a

finite maximal spacing.
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4.4 Total Cross Sections

The main reason why we calculate the total cross section – the cross section integrated over all
directions of the outgoing electron – is that the emission of the bremsstrahlung photon and its
features are the most interesting aspects of the whole process. Moreover, from an experimental
point of view, it is much more demanding to measure the differential cross section since we would
have to be able to detect electron and photon in coincidence. However, the calculations for the
total cross sections last much longer than in the differential case (this is due to the numerical
integration and the use of quadrupel precision); the calculations of the upcoming spectra took
typically several weeks.

We first present spectra with θb = 179◦. After all, it is no surprise that we see higher
harmonics at integer values of ωb/ω in the top diagram of figure (4.5). If we compare this
graph with the differential cross section (4.3) (top diagram), our assumption of the qualitative
agreement in the previous section is confirmed. However, as we can see, the total cross section is
of the same order of magnitude as the Bethe-Heitler cross section whereas the differential cross
section (4.3) is enhanced by approximately three orders of magnitude. This enhancement in the
differential case is due to the fact that we just considered final electrons without any deflection
(i.e. θf = 0◦). As we saw, the differential cross section falls off rapidly with increasing polar
angle θf so that the total cross section is of the same order as the Bethe-Heitler cross section.

So let us turn our attention to another spectrum, namely the bottom graph in figure (4.5)
with the polar angle θb = 1◦. The first striking feature is probably the large difference in the
spacing of the resonances of the two spectra. However, if we go back to our considerations in the
previous chapter, this is not very amazing any more. According to diagram (4.4), the dependence
of the spacing on a becomes greater with decreasing angle θb. Thus we expect a spacing of just
below 3 for a = 20 MeV and just below 12 for a = 10 MeV. This is in perfect agreement with
figure (4.5).

Up to here, we just considered spectra where we varied the energy ωb. We did not consider
the angular distribution of the radiation so far. Of course, if we want to get resonances at certain
multiples of the laser frequency, then we have to detect the bremsstrahlung photons at a specific
polar angle θb which we can calculate with formula (4.1). Therefore, the experimentalist will
probably fix θb according to his interests. Nevertheless, it is quite interesting to know the angular
distribution of the bremsstrahlung radiation. For example, one could assume that some angles
θb are favoured compared to others – similar to the case of a relativistically accelerated charge
(the maximal intensity is found for a polar angle 1/(2γ); γ being the relativistic factor). For this
purpose, we fix the energy ωb and vary the angle θb. The calculations yield the next diagram
(4.6). The peaks we see are resonances which are also caused by intermediate on-shell electrons.
Hence, the equations (2.25) and (2.26) must be fulfilled at the peaks. As we know, it is enough
for a first approximation to use just one of the equations; we will use (2.26). We neglect the
(k · ñb)-term in the denominator. With qi · ñb = Ẽi − |~qi| cos θb, we get

cos θb =
s

ωb/ω

(

Ẽi

|~qi|
+ 1

)

+
Ẽi

|~qi|
.

The ratio Ẽi/|~qi| depends on the laser intensity a:

a [MeV] Ẽi/|~qi|
10 1.200
20 2.103
30 8.835
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Figure 4.5: The total cross section for θb = 179◦ (top diagram) shows resonances at integer
multiples of the laser frequency as it was expected from our theoretical considerations. In contrast
to the differential cross section, the total cross section is not enhanced compared to the Bethe-
Heitler cross section. As we can clearly see in bottom diagram with the polar angle θb = 1◦, the
spacing of the resonances also depends on the laser intensity a.
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Figure 4.6: The angular distribution of the total cross section for the laser intensity a = 10 MeV
shows resonance peaks at various angles θb.

We chose a = 10 MeV so that we can write

θb = arccos

(

2.2
s

ωb/ω
+ 1.2

)

Let us choose ωb = 5ω as an example. Then, we can get resonances for s = −5, −4, −3, −2,
and −1. For all other values of s, the argument of the arccos is either above +1 or below −1.
The corresponding angles are θb = 180◦, 124◦, 97◦, 71◦, and 41◦. This can also be seen in the
diagram2.

4.5 The Peculiar Behaviour for a Varying Laser Intensity

At the end of this section, we want to have a look on the behaviour of the (differential) cross
section in dependence of the laser intensity a. Consequently, we have to fix the energy of the
bremsstrahlung photon; we set it to ωb = 1.5ω3. The cross section will be plotted for the four
different combinations of the two angles θb = 1◦, 179◦ and θf = 0◦, 180◦. The resulting plot can
be seen in figure (4.7).

The peaks occur due to intermediate on-shell electrons; the fluctuations for higher intensities
in the dashed graph is numerical noise which could be stopped by using a higher precision.

2The resonance at θb = 180◦ is suppressed due to other effects. There is no fifth higher harmonic in the top
diagram of figure (4.5), either.

3This energy is arbitrarily chosen; a different energy does not change the overall behaviour and the feature we
will examine in this subsection.
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Figure 4.7: The cross section shows a step at a ≈ 33.5 MeV if we fix all angles and the energy
and vary the laser intensity a. The position of this step does not depend on the angles or the
energy of the bremsstrahlung photon.

However, this is not what we are interested in. As we can see in the diagram, there is a huge step
of order O(1010) at an intensity of a ≈ 34 MeV. The cross sections with final electrons which are
not deflected (θf = 0◦) drop dramatically; whereas in the opposite case, when the final electron
is reflected (θf = 180◦), the cross sections increase from very low up to very high values. How
can this unexpected behaviour be explained?

For this reason, we go back to the definition of the effective momentum (2.5) and have a look

at the x-component: qx
i = px

i − e2a2

2k·pi
ω. Obviously, qx

i can become negative if a is large enough;
the electron will then effectively travel backwards in the laser field. But if the electron travels
backwards, we will hardly detect any electrons in the forward direction (θf = 0◦) but most of
them in the backward direction (θf = 180◦). So, we expect the laser intensity atp ≈ 34 MeV at
which there is the huge step in figure (4.7) to be the “turning point”, i.e. qx

i

∣
∣
a=atp

= 0.

0
!
= px

i −
e2a2

tp

2k · pi
ω

⇔ atp =

√

2px
i (k · pi)

e2ω

=

√
√
√
√2

√

E2
i −m2

e

(

Ei +
√

E2
i −m2

e

)

e2

≈ 2γme

e
for ultrarelativistic electrons Ei = γme ≫ me

We see that atp depends only on the energy of the incoming electron. In our case with γ = 10,
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Figure 4.8: The differential cross section behaves significantly differently at laser intensities
around atp.

the (exact) formula yields atp = 33.6 MeV. This is in perfect agreement with figure (4.7)4.
Let us shortly have a look at spectra of the differential cross section at laser intensities around

atp. We set θb = 179◦ and θf = 0◦. The spectra are shown in the next diagram (4.8).
For a = 34 MeV, the cross section is very small. According to our previous discussion and

the fact that 34 MeV > atp, this is easily understood. For a = atp we get many resonances;
moreover the overall cross section decreases exponentially. However, one might wonder whether
our calculations are valid at this particular laser intensity.

We want to stress again that this peculiar behaviour of the cross section depending on a is a
special feature of the differential cross section. If we consider the total cross section, we will not
be able to see the step at atp. The integration over θf will blur all traces.

4The approximated formula yields atp = 33.7 MeV with γ = 10.
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Chapter 5

Summary and Outlook

At the end of this thesis, we want to discuss shortly what we found out during our analysis and
what problems and questions arose.

The basic aim of the thesis was to derive analytically the bremsstrahlung cross section in a
circularly polarized field. Hereby, a QED-approach had to be used. Moreover – as important as
the derivation – in a second step, this cross section had to be numerically evaluated by using a
Fortran 90 programme. These two steps were the requirements for all following discussions.

In the derivation, we used the solutions of the Dirac equation in an external plane-wave field
– the so-called Volkov solutions – as initial and final electron states (2.6). Another focus was put
on the use of the full, laser-dressed electron propagator (2.9). We found that the poles of the
propagator are shifted to the effective mass shell. Furthermore, we showed that it is necessary to
implement the laser-dressed propagator in order to make any useful predictions. This is obvious
from figure (4.1) in chapter 4.1. An approximation with the free electron propagator can only
be justified for high energies ωb of the bremsstrahlung photon. In fact, we are the first who
implemented and evaluated the laser-dressed electron propagator in a nontrivial, second-order
process.

One of the great discoveries of laser-assisted experiments with bound electrons was the cre-
ation of higher harmonics. This can be qualitatively and quantitatively explained in the semi-
classical three-step-model by considering recollision effects [13]. We were interested in the question
whether higher harmonic generation could also occur in our unbound system. Recollision effects
do not play any role as we showed in appendix B; a semiclassical approach could not be used.
However, we showed analytically in section 2.5 that we expect resonances in the cross section for
certain scattering geometries and energies. By choosing the proper parameters – namely brems-
strahlung emission parallel to the propagation of the laser photons –, we could create a system
which indeed emits bremsstrahlung photons with frequencies preferable at integer multiples of
the laser frequency. This happens for both the differential and the total cross section as it can
be seen in figures (4.3) and (4.5). In fact, we showed in section 2.5 that all resonances are higher
harmonics in the rest frame of the electron in a very good approximation. Resonances generally
occur whenever the intermediate electron is on-shell, i.e. becomes real. Then, the second-order
bremsstahlung process factorizes into a product of two first-order processes, namely laser-dressed
Compton scattering [8, 10] and laser-assisted Coulomb scattering [19, 24].

Whenever the electron fulfills the on-shell condition, the denominator of the propagator be-
comes zero; as a result, the total expression is singular. In order to circumvent this unphysical
behaviour, we included an imaginary mass shift according to equation (2.28). This we described
in section 2.6. When implementing the imaginary mass shift, it is crucial to also introduce an



54 Chapter 5. Summary and Outlook

imaginary energy shift as in (2.30). Without doing this, the destructive interference between

the exchange and the direct terms of the two transition amplitudes S
(1)
fi and S

(2)
fi (figure (1.4))

becomes constructive, and the overall cross section is increased by more then ten orders of mag-
nitude – a result which is obviously incorrect. The imaginary energy follows immediately from
the condition that, even for complex masses, the energy-momentum relation q2 = m∗

e
2 has to be

fulfilled. On the other hand, it can also be motivated from the fact that the electron shows a level
structure in an external laser field. Transitions between different levels are possible by absorbing
or emitting laser photons. Thus, the electron in the laser field can be seen as a decaying system
and therefore has a complex energy. With the implementation of the imaginary mass and energy,
the singularities caused by intermediate on-shell electrons disappear. This can clearly be seen in
figure (4.2).

Since laser-dressed Compton scattering and bremsstrahlung have the same initial and final
states, one could assume that both processes interfere. However, we showed in appendix C
that this not the case. This is due to the different energy conservation relations which the two
processes obey.

At this point, we want to shortly point out a problem of our formalism. For this purpose,
we remember that the cross section is divided by the absolute value of the momentum transfer
|~qn| to the fourth power as in equation (2.23). If |~qn| = 0, then the cross section will be infinite.
|~qn| can only equal zero if each component equals zero, i.e. if qµ

n = 0µ. This means that we
have four-momentum conservation qf = qi + nk − kb which is equivalent to qi · kb = n qf · k. If
we express this in terms of qi, this is equal to qi · kb = n(qi · k − k · kb) which corresponds to
the equation (2.26) for resonance peaks of the propagator for n → −s. Expressed in terms of
qf , we end up with n qf · k = qf · kb − nk · kb which, in turn, equals (2.25) for resonance peaks
for n → n + s. It can be shown that, for certain (very small) angles θf , |~qn| really equals zero.
Hence, the cross section will be singular at the resonances for this particular angle θf . This also
explains why the peaks of the differential cross sections are in general finite as it can be seen in
figure (4.2). On the other hand, the resonances of the total cross section will be singular since
we integrate over θf . It should be stressed here that these infinities are due to the Coulomb
potential we use. The imaginary mass and energy just regularize the propagators.

This behaviour is in fact not really unexpected. In the Bethe-Heitler formula, there is also an
infinity for ωb → 0 – the so-called infrared divergence or infrared catastrophe. For a (hypothetical)
bremsstahlung photon with ωb = 0, the Bethe-Heitler cross section yields infinity because |~qn| will
be zero. This is independent of regularizing the electron mass. The same happens in the laser-
assisted case. Here, we get the infinity at ωb = 0 as well but also at the resonances for a particular
θf . In the case of the Bethe-Heitler cross section, we know that it is not correct for very small ωb;
however, since we are not interested in this frequency regime, we do not have to worry about it.
In the laser-assisted case, things change completely: We are especially interested in the regime
where resonances occur. On the other hand, doubts might be appropriate whether our formalism
describes the physical reality around the resonances correctly. A solution to this dilemma is the
use of a screened Coulomb potential, i.e. a Yukawa potential. It modifies the Coulomb potential for
small momentum transfer |~q| and is of the form A0

Yukawa(x) ∝ exp [−|~x|/λ] /|~x| with the screening
length λ. The Fourier-transformed Yukawa potential looks A0

Yukawa(q) ∝ 1/
(
~q 2 + λ−2

)
. In the

cross section (2.23), this yields the replacement 1/|~qn|4 → 1/
(
~q 2 + λ−2

)2
. Therefore, even if the

momentum transfer onto the nucleus q is zero, the screening length λ prevents the expression
from going to infinity.

Summarizing we can say that we accomplished our goal insofar as we could derive and numer-
ically calculate the laser-dressed bremsstrahlung cross section. A more detailed analysis showed
that bremsstrahlung does not compete with Compton scattering; both processes take place in-
dependently from each other. However, the use of the Coulomb potential leads to infinities at
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the resonances. This is a problem which can be solved by using the Yukawa potential. Another
problem which was only indicated in this thesis so far is the duration of the numerical integration.
Since we have to use quadrupel precision to get reasonable results, the evaluation is slowed down
considerably. Therefore, another problem for a future work on this topic is how the evaluation
can be sped up even more.

An article in which the main results of this thesis will be published is in preparation [25].
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Appendix A

Derivation of the Bethe-Heitler

Cross Section

There are two approaches to QED – a more formal one starting from field theoretical consid-
erations and another, more illustrative approach originating from Stückelberg and Feynman.
Whereas the former one directly quantizes the occuring fields, the latter uses a propagator for-
malism. However, both approaches are equivalent and lead to a set of rules – the so-called
Feynman rules – for writing down transition amplitudes for Feynman diagrams.

We will now derive the bremsstrahlung cross section in lowest, i.e. in second-order pertur-
bation theory. We will basically follow the derivation in [12]. The Feynman rules in coordinate
space we have to apply are:

1. In nth order of perturbation theory, one has to draw all possible, topologically distinct
Feynman diagrams with n vertices and the specified external lines.

2. With each external line, one has to associate the following factors:

(a) incoming electron: ψi(x1)

(b) outgoing electron: ψf (x2)

(c) outgoing photon: Aµ
λ(x) = 1√

2ωV
εµλe

ik·x

(d) interaction with external potential: Aµ
Potential(x)

3. With each internal electron line connecting two vertices, one has to associate the electron

propagator iSF (x2 − x1) =
∫

d4p
(2π)4 exp [−ip · (x2 − x1)]

i(p̂+me)
p2−m2

e+iε .

4. Each vertex is associated with a factor −ieγµ.

5. Then, one has to integrate over the space-time xi of all vertices i = 1, 2, . . . , n.

6. Finally, one has to add the amplitudes of all possible Feynman-diagrams coherently.

In second order, there are only two distinct Feynman diagrams which are shown in figure (A.1).
With the above rules, we can directly write down the transition amplitude Sfi:

Sfi =

∫

dx1

∫

dx2ψf (x2)
{(

−ieγµA
µ
b,λ(x2)

)

iSF (x2 − x1) (−ieγµA
µ
Coul(x1)) +

(−ieγµA
µ
Coul(x2)) iSF (x2 − x1)

(

−ieγµA
µ
b,λ(x1)

)}

ψi(x1).

(A.1)
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Figure A.1: These two bremsstrahlung Feynman diagrams are the starting point for the deriva-
tion of the Bethe-Heitler formula.

We refer to section (2.3) for a more detailed discussion on the two vector potentials, espe-
cially how the Fourier-transformed Coulomb potential ACoul looks like. The solution of the free
Dirac equation is well-known: ψi(x1) =

√

me/(EiV )uri
(pi) exp [−ipi · x1] and hence ψf (x2) =

√

me/(EfV )urf
(pf ) exp [+ipf · x2]. We plug all these expressions into the above equation:

Sfi = iZe3

√

m2
e

2ωbEiEfV 3

∫

dx1

∫

dx2

∫
d4p

(2π)4

∫
d4q

(2π)4
2πδ

(
q0
)
×

urf
(pf )eipf ·x2

{
(
ε̂b,λe

ikb·x2
) p̂+me

p2 −m2
e + iε

e−ip·(x2−x1)

(

γ0 1

|~q|2 e
−iq·x1

)

+

(

γ0 1

|~q|2 e
−iq·x2

)
p̂+me

p2 −m2
e + iε

e−ip·(x2−x1)
(
ε̂b,λe

ikb·x1
)
}

uri
(pi)e

−ipi·x1 .

The integration over x1, x2, and p can be done without any problems. We consider the expo-
nentials of the first summand:

∫

dx1

∫

dx2

∫
d4p

(2π)4
exp [i(pf + kb − p) · x2 + i(p− q − pi) · x1]

=

∫
d4p

(2π)4
(2π)4δ(4)(pf + kb − p)(2π)4δ(4)(p− q − pi)

=(2π)4δ(4)(pf + kb − q − pi).

We note that the intermediate momentum can be expressed as p = pf + kb. The equivalent
integration of the second summand yields the same result. However, here the intermediate
momentum obeys the relation p = pi − kb. Now, it is also no problem to perform the integration
over q, the momentum transfer onto the nucleus.

∫
d4q

(2π)4
2πδ

(
q0
)
(2π)4δ(4)(pf + kb − q − pi) = 2πδ(Ef + ωb −Ei)

The momentum transfer is given by ~q = ~pf + ~kb − ~pi according to the δ-function. Energy is not
transferred onto the nucleus since it was assumed to be infinitely heavy.

For the intermediate momenta, we plug in pf + kb and pi − kb, respectively. The simplified
transition amplitude now looks

Sfi = iZe32πδ(Ef + ωb −Ei)

√

m2
e

2ωbEiEfV 3

1

|~q|2 ε
µ
b,λMµ(kb)
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with the matrix element

Mµ(kb) = urf
(pf )

{

γµ
p̂f + k̂b +me

2pf · k + iε
γ0 + γ0

p̂i − k̂b +me

−2pi · kb + iε
εµ

}

uri
(pi).

In the denominator, we used the energy-momentum relations p2
i = p2

f = m2
e and k2 = 0.

The cross section is given by (for closer explanation, we refer to chapter 2)

dσ =
1

|~vi|
V T

|Sfi|2
V d3kb

(2π)3
V d3pf

(2π)3

=
Z2e6m2

eπ

ωbEiEf |~vi|
1

|~q|4 δ(Ef + ωb −Ei)
∣
∣
∣ε

µ
b,λMµ(kb)

∣
∣
∣

2 d3kb

(2π)3
d3pf

(2π)3

For the square of the δ-function, we made the substitution according to (2.20). We want to
determine the unpolarized differential cross section. This implies that we have to sum over the
final electron spin rf and over the photon polarization λ. Averaging over the incoming electron
spins (since we consider an unpolarized electron beam) also results in summing over the (initial)
spin ri and dividing the whole expression by two. We obtain

dσ ≡ 1

2

2∑

λ=1

2∑

ri,rf=1

dσ =
1

2

2∑

λ=1

2∑

ri,rf=1

Z2e6m2
eπ

ωbEiEf |~vi|
1

|~q|4 δ(Ef + ωb −Ei)
∣
∣
∣ε

µ
b,λMµ(kb)

∣
∣
∣

2 d3kb

(2π)3
d3pf

(2π)3

We use the completeness relation of the photon polarization vector [12]

∑

λ=1,2

εµλε
ν
λ = −gµν + gauge terms

to remove the λ-sum. Here, we can neglect the gauge terms since they do not contribute to any
physical observable [12]. The sum over all spins can be rewritten as a trace with the help of
equation (2.21). Finally, some of the prefactors will be expressed in terms of other quantities;
we use the relations we wrote down in section (2.4). We can thus write:

dσ

dΩbdΩfdωb
= −α(Zα)2ωb

8π2

|~pf |
|~pi|

1

|~q|4 δ(Ef + ωb −Ei)dEf×

Tr

[(

γµ p̂f + k̂b +me

2pf · kb
γ0 + γ0 p̂i − k̂b +me

−2pi · kb
γµ

)

(p̂i +me)×
(

γ0 p̂f + k̂b +me

2pf · kb
γµ + γµ

p̂i − k̂b +me

−2pi · kb
γ0

)

(p̂f +me)

]

.

We still have to integrate over the energy of the final electron. Because of the δ-function,
this yields the energy conservation: Ef = Ei − ωb. Since the energy Ef of the outgoing electron
has to be at least equal to its rest mass Ef ≥ me, we find the inequality: Ef = Ei − ωb ⇔
Ei −me − ωb ≥ 0. If this inequality is not fulfilled, then the cross section must be zero. This
is implemented into the formula with a step-function. In this way, we derived the differential
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Bethe-Heitler cross section:

dσ

dΩbdΩfdωb
= −α(Zα)2ωb

8π2

|~pf |
|~pi|

1

|~q|4 Θ(Ei −me − ωb)×

Tr

[(

γµ p̂f + k̂b +me

2pf · kb
γ0 + γ0 p̂i − k̂b +me

−2pi · kb
γµ

)

(p̂i +me)×
(

γ0 p̂f + k̂b +me

2pf · kb
γµ + γµ

p̂i − k̂b +me

−2pi · kb
γ0

)

(p̂f +me)

]

.

This representation of the Bethe-Heitler cross section is probably the best one if one wants
to analyse the different parts. However, using standard methods for calculations with Dirac
matrices, we can rewrite it without the trace. Nevertheless, this is a quite cumbersome procedure
and does not give any new physical insight. We therefore refer to the literature [12] and just
quote the result:

dσ

dΩbdΩfdωb
= − α(Zα)2ωb

4π2

|~pf |
|~pi|

1

|~q|4 Θ(Ei −me − ωb)×

1

(kb · pi)2(kb · pf )2

[

4m2
e (Efkb · pf −Eikb · pi)

2
+

(
(kb · pf )2 + (kb · pi)

2
)
(2kb · pikb · pf + q2m2

e)+

2q2kb · pikb · pf

(
E2

f +E2
i − pi · pf

) ]

.

(A.2)

This expression can be integrated analytically over the solid angle dΩf of the outgoing electron.
We again just give the result of the total Bethe-Heitler cross section; see equation 2BN in [26]1:

dσ

dΩbdωb
=
α(Zα)2

8πωb

|~pf |
|~pi|

{

8m2
e sin2 θb

(
2E2

i +m2
e

)

|~pi|2∆4
− 2

(
5E2

1 + 2EiEf + 3m2
e

)

|~pi|2∆2
−

2
(
|~pi|2 − ω2

b

)

Q2∆2
+

4Ef

|~pi|2∆
+

L

|~pi||~pf |

[

4m2
eEi sin2 θb

(
3m2

eωb − |~pi|2Ef

)

|~pi|2∆4
+

4E2
i

(

E2
i +E2

f

)

|~pi|2∆2
+

2m4
e − 2m2

e

(

7E2
i − 3EiEf +E2

f

)

|~pi|2∆2
+

2ωb

(
E2

i +EiEf −m2
e

)

|~pi|2∆

]

− 4ε

|~pf |∆
+

εQ

|~pf |Q

[

4m2
e

∆2
− 6ωb

∆
− 2ωb

(
|~pi|2 − ω2

b

)

Q2∆

]}

(A.3)

with the following definitions

L = ln

[
EiEf −m2

e + |~pi||~pf |
EiEf −m2

e − |~pi||~pf |

]

, ∆ = Ei − |~pi| cos θb, ε = ln

[
Ef + |~pf |
Ef − |~pf |

]

and

Q2 = |~pi|2 + ω2
b − 2|~pi|ωb cos θb, εQ = ln

[
Q+ |~pf |
Q− |~pf |

]

.

1In order to switch to our system of units, we set r0 = α/me and use our definition of the energies.
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Figure A.2: The integrated Bethe-Heitler cross section for different emission angles θb of the
bremsstrahlung photon goes to infinity for low energies of the bremsstrahlung photon. This
is due to intermediate on-shell electrons and the Coulomb potential and is called the infrared
divergence.

Figure (A.2) shows the total Bethe-Heitler cross section for three different angles θb (for the
scattering geometry please consult section 2.7). We see that the cross section tends towards in-
finity for ωb → 0. This unphysical behaviour is called infrared divergence or infrared catastrophe.
Even if we regularize the mass, the total cross section will go to infinity. This is then due to the
use of the Coulomb potential: 1/|~q|4 = 1/q4 = 1/(qf − qi)

4 → ∞ for certain angles of the final
electron, namely if it is not deflected at all.
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Appendix B

Classical Motion of an Electron in

a Plane-Wave Field

We will derive the trajectory of an electron in a plane-wave field Aµ in a fully covariant way. We
follow the derivation for linear polarization sketched in [27]. The external field looks Aµ(φ) =
a (κµ

1 δ cosφ+ κµ
2 sinφ) with φ = k ·x. The different four-vectors obey relations which are stated

in section 2.1. For δ = 0, we retrieve linear polarization, δ = 1 corresponds to circular polariza-
tion. We calculate the field-strength tensor: F µν = ∂µAν −∂νAµ = (kµκν

1 − kνκµ
1 ) (−aδ sinφ)+

(kµκν
2 − kνκµ

2 ) (a cosφ). The relativistic equation of motion in a covariant notation then looks

me
duµ(τ)

dτ
= −eF µ

νu
ν(τ). (B.1)

τ is the proper time – the time elapsed in the rest frame of the electron –, and u is the four-
velocity of the electron: uµ = dxµ/dτ . This is the differential equation we have to solve in order
to find the electron trajectory xµ(τ).

We multiply both sides of (B.1) with kµ and find k · u(τ) = k · u(0) = const because in
our gauge kµF

µ
ν = 0. We arbitrarily set xµ(0) = 0. With xµ(τ) = uµ(τ)τ , we can write

φ = k · x(τ) = k · u(τ)τ = k · u(0)τ . Thus, dφ = k · u(0)dτ .
Now, we can rewrite (B.1) in the following way:

duµ(φ)

dφ
= − e

me

[(
κ1 · u(φ)

k · u(0)
kµ − κµ

1

)

(−aδ sinφ) +

(
κ2 · u(φ)

k · u(0)
kµ − κµ

2

)

(a cosφ)

]

.

After multiplication with κ1µ or κ2µ and integration over dφ, we obtain

κ1 · u(φ) = κ1 · u(0) − ea

me
δ(cosφ− cos 0),

κ2 · u(φ) = κ2 · u(0) − ea

me
(sinφ− sin 0).

We plug these two relations into the previous equation and end up with

duµ

dφ
= − ea

me

[(
κ1 · u(0)

k · u(0)
kµ − ea

me

cosφ− 1

k · u(0)
kµ − κµ

1

)

(−aδ sinφ)+

(
κ2 · u(0)

k · u(0)
kµ − ea

me

sinφ

k · u(0)
kµ − κµ

2

)

(a cosφ)

]

.
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This expression can now be integrated with respect to φ yielding uµ(φ). A second integration
with respect to τ then gives xµ. Hereby, we use the relations

∫
dτ(cosφ−1) = (sinφ−φ)/(k ·u(0))

and
∫

dτ(cosφ− 1)2 =
(

1
4 sin(2φ) − 2 sinφ+ 3

2φ
)
/(k · u(0)). Our final result looks

xµ(φ) =

∫ τ

0

dτ ′
∫ φ

0

dφ′
duµ(φ′)

dφ′

=

∫ τ

0

dτ ′
{

uµ(0) − ea

me
δ (cosφ′ − cos 0)

[
κ1 · u(0)

k · u(0)
kµ − κµ

1

]

−

ea

me
(sinφ′ − sin 0)

[
κ2 · u(0)

k · u(0)
kµ − κµ

2

]

+

e2a2

2m2
e

[

δ (cosφ′ − cos 0)
2
+ (sinφ′ − sin 0)

2
] kµ

k · u(0)

}

=
uµ(0)

k · u(0)
φ+

ea

me
δ(sinφ− φ)

κµ
1

k · u(0)
− ea

me
(cosφ− 1)

κµ
2

k · u(0)
−

ea

me

[

δκ1 · u(0)(sinφ− φ) − κ2 · u(0)(cosφ− 1) −

ea

8me
{(δ − 1) sin(2φ) − 8δ sinφ+ (6δ + 2)φ}

]
kµ

(k · u(0))
2 .

This formula yields the position of the electron at the laser phase φ. This can be converted to
the proper time with φ = k ·u(0)τ . u(0) is the initial four-velocity and is derived from the initial
momentum of the electron: uµ(0) = pµ

i /me. We can now plot the electron trajectory (using the
scattering geometry introduced in section (2.7)) for three laser cycle and a = 20 MeV. In figure
(B.1), we see that the electron moves along a spiral trajectory.

Since we consider relativistic intensities, the drift velocity induced by the ~B-field must not
be neglected. An electron which is initially at rest travels approximately 780 × 103 MeV−1

during one laser cycle due to the drift velocity. If we compare this with the first Bohr radius
a0 = 1/(Zαme) ≈ 270 MeV−1 (Z = 1), we see that this distance is roughly 3000 times greater
than the Bohr radius. Hence, there is only one interaction between electron and nucleus possible;
a recollision will not happen. Therefore, our calculation taking just one interaction between the
electron and the nucleus into account is well-justified.
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Figure B.1: A classical electron moves along a helix if it is exposed to an external, circularly
polarized laser field.
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Appendix C

The Role of the Interference Term

Bremsstrahlung is, as we already saw in the introduction, a second-order process. The cor-
responding first-order process – namely photon emission by an electron in an external field
(laser-dressed Compton scattering) – is, in contrast to the field-free case, allowed, too. In our
second-order bremsstrahlung process and in the first-order Compton scattering, we have the
same in- and out-states (the initial and the final electron and the emitted photon). Hence, we
could expect that these processes interfere with each other. The S-matrix has to be written in
the following form then:

S =

︸ ︷︷ ︸

Sc

+ + .

︸ ︷︷ ︸

Sb

In all observables (e.g. cross sections), |S|2 enters. Therefore, we get1

|S|2 = |Sc + Sb|2 = |Sc|2 + |Sb|2 + 2<(ScS
∗
b ).

The first summand describes laser-dressed Compton scattering. This process was discussed quite
a long time ago in [28] or, more recently, in [10]. Consequently, we will not discuss it here. The
effects of the second summand are widely discussed in this thesis. The third summand finally
is a term which describes quantum mechanical interference of the two processes laser-dressed
Compton scattering and bremsstrahlung.

So, let us focus our attention on the interference term <(ScS
∗
b ). In Sc, we have four-

momentum conservation at the vertex which yields a δ-function δ(4)(qf − qi + kc − mk). Sb

is determined according to equation (2.15) with the momentum relation ~qf = ~qi + n~k − ~kb + ~qn.
Therefore, we can write

<(ScS
∗
b ) ∝ <

(
∑

m,n

1

~q 2
n

δ(4) (qf − qi + kc −mk) δ(1)
(
q0f − q0i + k0

b − nk0
)

)

.

In the interference case (i.e. the same in- and out-states), kc = kb and hence, because of the
two δ-functions, n = m. The spatial parts of the first δ-function in connection with the above

1The index c denotes Compton scattering in contrast to b meaning “bremsstrahlung”.
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momentum relation then yield ~qn = ~0. Thus, <(ScS
∗
b ) ∝ 1/0 → ∞. There must obviously be an

error in our considerations; the only possibility is that in the physical reality these two processis
do not interfere. The question remains: Why is there no interference despite the fact that we
have the same in- and out-states?

The answer is quite simple. Interference occurs whenever the experimentalist cannot deter-
mine which of two (or more) processes takes place during an experiment. For example, if we
defract an electron beam at two slits, we will get an interference pattern on a screen as long
as we do not detect through which slit the electrons pass. If we do so, the interference pattern
will vanish. It is somehow similar in our case here. Since we know the energies of all initial and
final particles, we can deduce just because of the different energy conservation relation whether
laser-dressed Compton scattering or the bremsstrahlung process took place. Because of this

knowledge, interference is not possible. In contrast, the two bremsstrahlung amplitudes S
(1)
fi and

S
(2)
fi obey the same energy conservation relation. Thus, they interfere with each other.

We can turn our argumentation around. In the special case of bremsstrahlung with zero
momentum transfer onto the nucleus, i.e. ~qn = ~0, laser-dressed Compton scattering and brems-
strahlung obey the same energy and momentum conservation relation. Do they intefere in this
special case then? However, as in the above paragraph, we will get infinity. The reason is that
the Coulomb potential (2.13) is an approximation which is not valid for zero momentum.

We conclude that laser-dressed Compton scattering and bremsstrahlung are two processes
which take place completely independent of each other. An expansion of the S-matrix as in the
beginning of this section is not correct.



Appendix D

Dirac Algebra and the Free Dirac

Spinor

In this section, we want to remind of some important relations which can be derived from the
Dirac equation. We will also prove relations which will be very useful in the evaluation of the
cross section.

The γ-matrices form a Clifford Algebra and satisfy, independently of their particular repre-
sentation, the anticommutation relation

{γµ, γν} = 2gµν �

and the Hermiticity condition
γµ† = γ0γµγ0.

These are the constitutional relations for the γ-matrices. If we use a particular representation,
we will use the Dirac representation which is given in the introduction.

The Dirac equation can easily be solved in the vacuum. For a general four-momentum p, one
obtains two linearly independent solutions of positive frequency for the spinor [29]:

ur(p) =

√

p0 +me

2me

(
χr

~σ~p
p0+me

χr

)

with

χ1 =

(
1
0

)

and χ2 =

(
0
1

)

.

This solution depends on the particular representation of the γ-matrices. r labels the two possible
spin directions. The components of the vector ~σ = (σ1, σ2, σ3) are Pauli’s spin matrices. The
free Dirac spinors ur(p), which also enter into the Volkov solutions, satisfy the orthonormality

relation ur(p)us(p) = δrs and ur(p)γ
µur(p) = pµ

me

In the following, we will prove some useful relations containing γ-matrices. From the anti-
commutation relation, one immediately gets:

γ0γ0 = � ,

γ0γ0γ0 = γ0,

γ0γi = −γiγ0,

γ0γiγ0 = −γi.
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For an arbitrary real four-vector p = p∗, we use the Hermiticity condition of the γ-matrices in
order to obtain

p̂ = γ0p̂†γ0 = γ0 (γµ)
†
p∗µγ

0 = γµpµ = p̂. (D.1)

With this relation, we easily prove the following relation for any two real four-vectors a and b
and a spinor u:

b̂âu =
(

b̂âu
)†
γ0 = u†γ0γ0â†γ0γ0b̂†γ0 = uâb̂. (D.2)

In the following, the upper index i can take the values 1 and 2 in order to denote the two
polarization vectors κ1 and κ2 of the external laser field.

κ̂iκ̂i = γµγνκi
µκi

ν = 2gµνκi
µκi

ν − γνγµκi
νκi

µ

= 2κiµ · κi
µ − κ̂iκ̂i = −2 − κ̂iκ̂i using (2.4)

⇒ κ̂iκ̂i = −1

In the same way, we can show that
k̂k̂ = 0

for the wave vector k of the laser field. Using this, we can derive two useful rules for an arbitrary
four-vector a:

κ̂ik̂âk̂κ̂i = −k̂κ̂iâk̂κ̂i with (2.2)

= −k̂
(
2κi · a

)
k̂κ̂i + k̂âκ̂ik̂κ̂i

= −
(
2κi · a

)
k̂k̂κ̂i − k̂âk̂κ̂iκ̂i with (2.2)

= k̂âk̂ (D.3)

and

κ̂2k̂âk̂κ̂1 = −k̂κ̂2âk̂κ̂1 with (2.2)

= −
(
2κ2 · a

)
k̂k̂κ̂1 + k̂âκ̂2k̂κ̂1 = −k̂âk̂κ̂2κ̂1

= k̂âk̂κ̂1κ̂2 with (2.3)

= −k̂âκ̂1k̂κ̂2 = k̂κ̂1âk̂κ̂2 −
(
2a · κ1

)
k̂k̂κ̂2

= −κ̂1k̂âk̂κ̂2. (D.4)

We will need these rules for a = (1, 0, 0, 0) so that â = γ0 and a = εb,λ.



Appendix E

Bessel Functions and Generalized

Bessel Functions

A definition of Bessel functions of the first kind is

Jn(x) =
(x

2

)n ∞∑

j=0

(−1)j

j! Γ(j + n+ 1)

(x

2

)2j

.

Since we will only consider Bessel functions with integer index, the Γ-function can be written
as a factorial Γ(j + n+ 1) = (j + n)!. The following properties of Bessel functions just hold for
Bessel functions with integer indices.

One can easily verify the following relations for Bessel functions by plugging them into the
above definition (and keeping in mind that n! = ∞ ∀n < 0):

Jn(x) = (−1)nJ−n(x), (E.1)

Jn(x) = (−1)nJn(−x), (E.2)

Jn(x) = J−n(−x). (E.3)

In particular, one gets Jn(0) = δn,0 which can easily be derived from the the definition of the
Bessel functions.

There are also well-known sum rules [30]:

Jn−1(x) + Jn+1(x) =
2n

x
Jn(x),

∞∑

k=−∞
Js+k(x)Jt+k(y) = Js−t(x− y). (E.4)

A generalisation of this sum rule is Graf’s addition theorem [31]

Js(z)

(
x− ye−iφ

x− yeiφ

) 1
2

s

=

∞∑

k=−∞
Js+k(x)Jk(y)eikφ (E.5)

with
∣
∣ye±iφ

∣
∣ < |x| and z = (x2 +y2−2xy cosφ)

1
2 . One has to be very careful when implementing

this theorem into a computer programme. The problem is the square root of a complex number
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Figure E.1: From our theoretical considerations, we expect Bessel functions to show a cutoff if
the index gets greater than the argument of the Bessel function. The progression of the function
log |Jn(450)| reflects our expectation.

which is not well-defined:

√

x+ iy =
(√

x2 + y2 exp
[

i arctan
y

x
+ 2πik

]) 1
2

=
(
x2 + y2

) 1
4 exp

[
i

2
arctan

y

x
+ πik

]

with k = 0, 1.
We consider Bessel functions with large, but fixed argument x = |x|. We want to know the

behaviour if the index n is of the order of x, i.e. also very large: n & x. We can then rewrite the
Γ-function with the well-known approximation formula (Stirling’s formula) for large argument
s: Γ(s) ≈ ss+1/2 exp(−s)

√
2π. We thus have

Jn(x) ≈
(x

2

)n ∞∑

j=0

(−1)j exp(j + n)

j! (j + n)j+n+1/2
√

2π

(x

2

)2j

≈ 1√
2π

( ex

2n

)n

.

From this approximation, we can conclude that there will be a fast decrease in the magnitude of
the Bessel function whenever the index becomes greater than the argument of the Bessel function.
This can be used to establish summation limits when we have to sum over the indices of Bessel
functions. As an example, we recognise the expected behaviour in diagram (E.1). Because of
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the relations (E.1) and (E.2), we can easily adapt this rule to negative indices or arguments.
Consequently, we will find the decrease in the magnitude of a Bessel function whenever |n| > |x|.

Bessel functions can be used to expand plane waves. This is done by applying the so-called
Jacobi-Anger expansion [30]:

eiz cos θ =

+∞∑

s=−∞
isJs(z)e

isθ.

By replacing θ → θ − π/2, we obtain

eiz sin θ =

+∞∑

s=−∞
Js(z)e

isθ.

With θ = 0, we get in particular

∞∑

s=−∞
isJs(z) = eiz ,

∞∑

s=−∞
Js(z) = 1.

Using the Jacobi-Anger-expansions, we can easily derive the following formulas:

eiξ sin φ+iη cos φ =
∞∑

s=−∞
B0

s (ξ, η)eisφ

with B0
s (ξ, η) =

∞∑

l=−∞
ilJs−l(ξ)Jl(η), (E.6)

cosφ eiξ sin φ+iη cos φ =

∞∑

s=−∞
B1

s (ξ, η)eisφ

with B1
s (ξ, η) =

1

2

[
B0

s−1(ξ, η) +B0
s+1(ξ, η)

]
, (E.7)

sinφ eiξ sin φ+iη cos φ =

∞∑

s=−∞
B2

s (ξ, η)eisφ

with B2
s (ξ, η) =

1

2i

[
B0

s−1(ξ, η) −B0
s+1(ξ, η)

]
(E.8)

with the three generalized Bessel functions B0, B1, and B2. They seem to be characteristical for
the wave function in a circularly polarized field. Considering the special case φ = 0, we obtain
in particular

∑

s

B0
s (ξ, η) = eiη ,

∑

s

B1
s (ξ, η) = eiη ,

∑

s

B2
s (ξ, η) = 0.

Having a closer look at the generalized Bessel functions, we see that we can apply Graf’s addition
theorem. We easily derive (by cross-checking in order to take the right solution of the root
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operation):

B0
s (ξ, η) =







Js

(√

ξ2 + η2
)

exp[ i
2
s·arctan(η,ξ)]

exp[ i
2
s·arctan(−η,ξ)]

if ξ 6= 0, η 6= 0,

Js(ξ) if ξ 6= 0, η = 0,
isJs(η) if ξ = 0, η 6= 0,
δs0 if ξ = η = 0.

(E.9)

arctan (η, ξ) gives the arc tangent of η
ξ , taking into account in which quadrant the point (ξ, η)

is. This is implemented into the Fortran code by using the function atan2(ξ, η).

It is not very hard to derive more useful relations containing the generalized Bessel function
B0, B1, and B2.

B0
s
∗
(ξ, η) =

∑

n

(−i)nJs−n(ξ)Jn(η)

=
∑

n

inJs−n(ξ)Jn(−η) using (E.2)

= B0
s (ξ,−η) (E.10)

B0
−s(ξ, η) =

∑

n

inJ−s−n(ξ)Jn(η)

=
∑

n

inJs+n(−ξ)Jn(η) using (E.2)

=
∑

n

i−nJs−n(−ξ)J−n(η) renaming n→ −n

=
∑

n

(−1)ninJs−n(−ξ)J−n(η)

=
∑

n

inJs−n(−ξ)Jn(η) using (E.2)

= B0
s (−ξ, η) (E.11)

Similarly, we obtain

B1
s
∗
(ξ, η) = B1

s (ξ,−η), (E.12)

B2
s
∗
(ξ, η) = −B2

s (ξ,−η), (E.13)

B1
−s(ξ, η) = B1

s (−ξ, η), (E.14)

B2
−s(ξ, η) = −B2

s (−ξ, η). (E.15)

In the calculation of the cross section, we will also encounter infinite sums over generalized
Bessel functions. The application of Graf’s addition theorem leads to an enormous simplification
of these sums. The derivation is not very instructive but rather technical and will be shown for
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just one case. In the other cases, the derivation is done analogously.

∞∑

k=−∞
B0

k+s(α, β)B0
k+t(γ, δ)

=
∑

k

(
∑

n

inJk+s−n(α)Jn(β)

)(
∑

m

imJk+t−m(γ)Jm(δ)

)

=
∑

n,m

{

in+mJn(β)Jm(δ)
∑

k

Jk+s−n(α)Jk+t−m(γ)

}

=
∑

n,m

in+mJn(β)Jm(δ)J−n+m+s−t(α− γ) using (E.4)

=
∑

n

inJn(β)J−n+s−t

((
δ2 + (α − γ)2

)1/2
)

×

(
α− γ + iδ

α− γ − iδ

)− 1
2
n+ 1

2
s− 1

2
t

using (E.5) and |α− γ| > |δ|

δ=0
= B0

s−t(α− γ, β)

We will show later that it is enough for the calculation of the cross section to restrict ourselves to
the case where one argument (here δ) becomes zero1. Of course, B0

s−t(α−γ, β) can be evaluated
according to (E.9). The other sums yield

∑

k

B1
k+s(α, β)B1

k+t(γ, δ)
δ=0
=

1

2

(
B1

s−t+1(α− γ, β) +B1
s−t−1(α − γ, β)

)
,

∑

k

B2
k+s(α, β)B2

k+t(γ, δ)
δ=0
=

1

2i

(
B2

s−t+1(α− γ, β) −B2
s−t−1(α− γ, β)

)
,

∑

k

B1
k+s(α, β)B0

k+t(γ, δ) =

{
B1

s−t(α− γ, β) if δ = 0,
B1

s−t(α− γ, δ) if β = 0,

∑

k

B2
k+s(α, β)B0

k+t(γ, δ) =

{
B2

s−t(α− γ, β) if δ = 0,
B2

s−t(α− γ, δ) if β = 0,

∑

k

B1
k+s(α, β)B2

k+t(γ, δ) =

{
1
4i

(
B0

s−t+2(α − γ, β) −B0
s−t−2(α− γ, β)

)
if δ = 0,

1
4i

(
B0

s−t+2(α − γ, δ) −B0
s−t−2(α− γ, δ)

)
if β = 0.

1see section 2.7
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Appendix F

Derivation of S
(1)
fi

We start from

S
(1)
fi = e2

∫

d4x1

∫

d4x2ψf (x2)
{(

−iÂb,λ(x2)
)

iG(x2, x1)
(

−iÂCoul(x1)
)}

ψi(x1)

and use the expressions (2.10) and (2.12) for the two vector potentials, the Volkov wave function
(2.6) as initial and final states, and the laser-dressed electron propagator (2.9).

S
(1)
fi = i

Ze3me
√

2ωbẼiẼfV 3

∑

s1,s2

∑

m1,m2

∫

d4x1

∫

d4x2

∫
d4p

(2π)4

∫
d4q

(2π)4
(
2πδ(q0)

)
×

urf
(pf )U(m2, ξf , ηf , a, k, pf ) exp [iηf + iqf · x2 − im2k · x2] ×

(ε̂b,λ exp [ikb · x2])

{

B0
s2

(ξp, ηp) +
eak̂

2k · p
(
κ̂1B1

s2
(ξp, ηp) + κ̂2B2

s2
(ξp, ηp)

)

}

×

p̂− e2a2

2k·p k̂ +me

p2 −m∗
e
2

{

B0∗
s1

(ξp, ηp) +
(
κ̂1B1∗

s1
(ξp, ηp) + κ̂2B2∗

s1
(ξp, ηp)

) eak̂

2k · p

}

×

exp [−ip · (x2 − x1) + ik · (s2x2 − s1x1)]

(

γ0 1

~q 2

)

exp [−iq · x1] ×

U(m1, ξi, ηi, a, k, pi)uri
(pi) exp [−iηi − iqi · x1 + im1k · x1]
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S
(1)
fi = i

Ze3me
√

2ωbẼiẼfV 3

exp [i(ηf − ηi)]
∑

s1,s2

∑

m1,m2

∫

d4x1

∫

d4x2 ×

∫
d4p

(2π)4

∫
d4q

(2π)4
(
2πδ(q0)

)
urf

(pf )U(m2, ξf , ηf , a, k, pf ) ×

ε̂b,λ

{

B0
s2

(ξp, ηp) +
eak̂

2k · p
(
κ̂1B1

s2
(ξp, ηp) + κ̂2B2

s2
(ξp, ηp)

)

}

×

p̂− e2a2

2k·p k̂ +me

p2 −m∗
e
2

{

B0∗
s1

(ξp, ηp) +
(
κ̂1B1∗

s1
(ξp, ηp) + κ̂2B2∗

s1
(ξp, ηp)

) eak̂

2k · p

}

×

γ0 1

~q 2
U(m1, ξi, ηi, a, k, pi)uri

(pi) ×

exp [i(qf −m2k + kb − p+ s2k) · x2] exp [i(p− s1k − q − qi +m1k) · x1]

We will evaluate some integrals before we proceed.

∫

d4x1

∫

d4x2

∫
d4p

(2π)4
exp [i(qf −m2k + kb − p+ s2k) · x2] exp [i(p− s1k − q − qi +m1k) · x1]

=

∫

d4p(2π)4δ(4) (qf −m2k + kb − p+ s2k) δ
(4) (p− s1k − q − qi +m1k)

=(2π)4δ(4) (qf −m2k + kb + s2k − s1k − q − qi +m1k)

Since we integrated over a δ-function in the last step, we obtain the momentum relation for the
intermediate electron

p = qf − (m2 − s2)k + kb = qi − (m1 − s1)k + q.

Hence,

S
(1)
fi = i

Ze3me
√

2ωbẼiẼfV 3

exp [i(ηf − ηi)]
∑

s1,s2

∑

m1,m2

∫

d4q
(
2πδ(q0)

)
×

urf
(pf )U(m2, ξf , ηf , a, k, pf )ε̂b,λ ×

{

B0
s2

(ξp, ηp) +
eak̂

2k · p
(
κ̂1B1

s2
(ξp, ηp) + κ̂2B2

s2
(ξp, ηp)

)

}

p̂− e2a2

2k·p k̂ +me

p2 −m∗
e
2 ×

{

B0∗
s1

(ξp, ηp) +
(
κ̂1B1∗

s1
(ξp, ηp) + κ̂2B2∗

s1
(ξp, ηp)

) eak̂

2k · p

}

γ0 1

~q 2
×

U(m1, ξi, ηi, a, k, pi)uri
(pi)δ

(4) (qf − qi − (m2 − s2)k + (m1 − s1)k + kb − q)

Since the indices run from negative infinity to positive infinity, they can be shifted or renamed.
We choose

m2 − s2 = m, s2 = m′,

m1 − s1 = s, s1 = s′,
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and can write pm ≡ p = qf −mk + kb. We perform the remaining integration over d4q. This
yields the energy and momentum conservation:

Ẽf = Ẽi + (m− s)ω − ωb,

~qf = ~qi + (m− s)~k − ~kb + ~qm,s with qm,s ≡ q.

So, we get

S
(1)
fi = 2πi

Ze3me
√

2ωbẼiẼfV 3

exp [i(ηf − ηi)]
∑

m

∑

m′

urf
(pf ) ×

{

B0∗
m+m′(ξf , ηf ) +

(
κ̂1B1∗

m+m′(ξf , ηf ) + κ̂2B2∗
m+m′(ξf , ηf )

) eak̂

2k · pf

}

ε̂b,λ ×
{

B0
m′(ξp, ηp) +

eak̂

2k · p
(
κ̂1B1

m′(ξp, ηp) + κ̂2B2
m′(ξp, ηp)

)

}

p̂m − e2a2

2k·pm
k̂ +me

p2
m −m∗

e
2 ×

∑

s

∑

s′

δ(q0)

~q 2
m,s

{

B0∗
s′ (ξp, ηp) +

(
κ̂1B1∗

s′ (ξp, ηp) + κ̂2B2∗
s′ (ξp, ηp)

) eak̂

2k · p

}

γ0 ×
{

B0
s+s′(ξi, ηi) +

eak̂

2k · pi

(
κ̂1B1

s+s′ (ξi, ηi) + κ̂2B2
s+s′(ξi, ηi)

)

}

uri
(pi)

Using the relations (E.10), (E.12), (E.13), this expression can be rewritten without any complex
conjugated generalized Bessel functions.

S
(1)
fi = 2πi

Ze3me
√

2ωbẼiẼfV 3

exp [i(ηf − ηi)]
∑

m,m′

urf
(pf ) ×

{

B0
m+m′(ξf ,−ηf ) +

(
κ̂1B1

m+m′(ξf ,−ηf ) − κ̂2B2
m+m′(ξf ,−ηf )

) eak̂

2k · pf

}

ε̂b,λ ×
{

B0
m′(ξp, ηp) +

eak̂

2k · p
(
κ̂1B1

m′(ξp, ηp) + κ̂2B2
m′(ξp, ηp)

)

}
p̂m − e2a2

2k·pm
k̂ +me

p2
m −m∗

e
2 ×

∑

s,s′

δ(q0)

~q 2
m,s

{

B0
s′(ξp,−ηp) +

(
κ̂1B1

s′(ξp,−ηp) − κ̂2B2
s′(ξp,−ηp)

) eak̂

2k · p

}

γ0 ×
{

B0
s+s′(ξi, ηi) +

eak̂

2k · pi

(
κ̂1B1

s+s′ (ξi, ηi) + κ̂2B2
s+s′ (ξi, ηi)

)

}

uri
(pi)

Before we proceed, some remarks on the scattering geometry are necessary in order to use the
sum rules derived at the end of appendix E. Without loss of generality, the incoming electron

propagates in x-direction: pi =
(
Ef ,

√

E2
f −m2

e, 0, 0
)
. Since it is the most interesting case,

we will choose the laser to be antiparallel: k = (ω,−ω, 0, 0). The effective four-momentum of
the outgoing electron is given in its most general form (using spherical coordinates) by qf =
(

Ẽf ,
√

Ẽ2
f −m∗

e
2 cos θf ,

√

Ẽ2
f −m∗

e
2 sin θf cos ρf ,

√

Ẽ2
f −m∗

e
2 sin θf sin ρf

)

. Now, the question

arises how to choose the laser polarization vectors. They must fulfill the relations (2.2), (2.3), and
(2.4). Thus, an obvious choice would be κ1 = (0, 0, 1, 0) and κ2 = (0, 0, 0, 1). This is, of course,
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possible. However, we can also choose κ1 = (0, 0, cosρf , sin ρf ) and κ2 = (0, 0,− sinρf , cos ρf ).
Trivially, because of the scattering geometry, ξi = ηi = 0. Moreover, we now even obtain ηf = 0.
Because of this result, it is possible to apply the sum rules of the generalized Bessel functions
derived in appendix E. Besides, it will increase the speed of the computer programme. The
scattering geometry will be presented in full detail in section (2.7). At this point, we know

enough about it to go on with the derivation of S
(1)
fi .

So from now on, we have ξi = ηi = ηf = 0. We sum over s′ and m′ using the sum rules
presented at the end of appendix E.

S
(1)
fi = 2πi

Ze3me
√

2ωbẼiẼfV 3

∑

m,s

δ(q0)

~q 2
m,s

urf
(pf ) ×

{

ε̂b,λB
0
−m(ξp − ξf , ηp) +

ea

2k · pm
ε̂b,λk̂κ̂1B1

−m(ξp − ξf , ηp)+

ea

2k · pm
ε̂b,λk̂κ̂2B2

−m(ξp − ξf , ηp) +
ea

2k · pf
κ̂1k̂ε̂b,λB

1
m(ξf − ξp, ηp) +

ea

2k · pf

ea

2k · pm
κ̂1k̂ε̂b,λk̂κ̂1 1

2

(
B1

−m+1(ξp − ξf , ηp) + B1
−m−1(ξp − ξf , ηp)

)
+

ea

2k · pf

ea

2k · pm
κ̂1k̂ε̂b,λk̂κ̂2 1

4i

(
B0

m+2(ξf − ξp, ηp) −B0
m−2(ξf − ξp, ηp)

)
−

ea

2k · pf
κ̂2k̂ε̂b,λB

2
m(ξf − ξp, ηp) −

ea

2k · pf

ea

2k · pm
κ̂2k̂ε̂b,λk̂κ̂1 1

4i

(
B0

−m+2(ξp − ξf , ηp) −B0
−m−2(ξp − ξf , ηp)

)
−

ea

2k · pf

ea

2k · pm
κ̂2k̂ε̂b,λk̂κ̂2 1

2i

(
B2

−m+1(ξp − ξf , ηp) −B2
−m−1(ξp − ξf , ηp)

)
}

×

p̂m − e2a2

2k·pm
k̂ +me

p2
m −m∗

e
2 ×

{

γ0B0
−s(ξp,−ηp) +

ea

2k · pi
γ0k̂κ̂1B1

s (−ξp,−ηp)+

ea

2k · pi
γ0k̂κ̂2B2

s (−ξp,−ηp) +
ea

2k · pm
κ̂1k̂γ0B1

−s(ξp,−ηp) +

ea

2k · pm

ea

2k · pi
κ̂1k̂γ0k̂κ̂1 1

2

(
B1

−s+1(ξp,−ηp) +B1
−s−1(ξp,−ηp)

)
+

ea

2k · pm

ea

2k · pi
κ̂1k̂γ0k̂κ̂2 1

4i

(
B0

−s+2(ξp,−ηp) −B0
−s−2(ξp,−ηp)

)
−

ea

2k · pm
κ̂2k̂γ0B2

−s(ξp,−ηp) −

ea

2k · pm

ea

2k · pi
κ̂2k̂γ0k̂κ̂1 1

4i

(
B0

s+2(−ξp,−ηp) −B0
s−2(−ξp,−ηp)

)
−

ea

2k · pm

ea

2k · pi
κ̂2k̂γ0k̂κ̂2 1

2i

(
B2

−s+1(ξp,−ηp) −B2
−s−1(ξp,−ηp)

)
}

uri
(pi)

This very long expression can be simplified considerably by using the relations (D.3), (D.4),
(E.11), (E.14), (E.15), and the definition of the generalized Bessel functions (E.6), (E.7), and
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(E.8).

S
(1)
fi = 2πi

Ze3me
√

2ωbẼiẼfV 3

∑

m,s

δ(q0)

~q 2
m,s

urf
(pf ) ×

{(

ε̂b,λ +
ea

2k · pf

ea

2k · pm
k̂ε̂b,λk̂

)

B0
−m(ξp − ξf , ηp)+

(
ea

2k · pm
ε̂b,λk̂κ̂1 +

ea

2k · pf
κ̂1k̂ε̂b,λ

)

B1
−m(ξp − ξf , ηp) +

(
ea

2k · pm
ε̂b,λk̂κ̂2 +

ea

2k · pf
κ̂2k̂ε̂b,λ

)

B2
−m(ξp − ξf , ηp)

}

×

p̂m − e2a2

2k·pm
k̂ +me

p2
m −m∗

e
2 ×

{(

γ0 +
ea

2k · pm

ea

2k · pi
k̂γ0k̂

)

B0
−s(ξp,−ηp)+

(
ea

2k · pi
γ0k̂κ̂1 +

ea

2k · pm
κ̂1k̂γ0

)

B1
−s(ξp,−ηp) −

(
ea

2k · pi
γ0k̂κ̂2 +

ea

2k · pm
κ̂2k̂γ0

)

B2
−s(ξp,−ηp)

}

uri
(pi)

We want the energy and momentum conservation to depend on only one index. Therefore we
define m − s =: n. Then, qf = qi + nk − kb + qn with qn ≡ q. As a further result, we have
pm ≡ pn,s = qf − (n + s)k + kb. With the definition (2.16) and (2.17) and using (D.1), (E.10),
(E.12), and (E.13), this can be written in a more compact form:

S
(1)
fi =2πi

Ze3me
√

2ωbẼiẼfV 3

∑

n,s

δ(q0n)

~q 2
n

urf
(pf )×






F

f,pn,s

−n−s (ξp − ξf , ηp)
p̂n,s − e2a2

2k·pn,s
k̂ +me

p2
n,s −m∗

e
2 G

i,pn,s

−s (ξp, ηp)






uri

(pi).

A completely analogous calculation yields the second contribution S
(2)
fi to the S-matrix. This

calculation will not be presented in this thesis. Adding S
(1)
fi and S

(2)
fi up leads to the expression

(2.15).
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Appendix G

Main Structure of the Programme

In the following, the main structure of the programme will be presented. This does not mean that
every definition or every calculation will be shown. Rather we want to present the most important
parts like modules, functions, and loops, and how they are interconnected. One should note that
we will present the programme for the calculation of spectra, i.e. the bremsstrahlung frequency
ωb is varied. For other graphs, the programme has to be modified accordingly. However, the
overall structure remains the same in all cases. Lines which are written in a typewriter font

are direct quotes from the programme code; the lines in-between written in normal letters are
explanations of the preceding lines.

include ’bessel.f90’

include ’intlib.f90’

include ’variable_declaration.f90’

program int_brems

use variable_declaration

use Besselfunctions_GenBesselfunctions

...

The module Besselfunctions_GenBesselfunctions calculates the Bessel functions. In the
other module variable_declaration, all variables are declared. With the help of the use-
statement right at the beginning of the programme, both modules are made accessible to all
parts (functions and subroutines) of the programme. They are included by the commands
include ’bessel.f90’, include ’variable_declaration.f90’. The input file intlib.f90

is a library of numerical integration routines which will be used later on.

!* Start of Executable Section

...

!* Start of Loop wb

!* (cross section in dependance on wb)

open(unit=25,file=’output.dat’,status=’new’,action=’write’,iostat=status)

...
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if (status == 0) then

do wb = 0.01_QD*w,10._QD*w,0.01_QD*w

...

call int_theta1(integrand_theta1,0._QD,0.0001_QD)

...

write(25,*), real(wb/w), real(total,8)

end do

else

print*, "Error while trying to open file."

end if

close(unit=25)

Here, we can see the main loop over ωb ≡ wb and how it is incremented after each cycle. The
laser frequency ω ≡ w serves as a scaling factor. During each cycle, the integration routine
int_theta1 is called with the function to be integrated as an argument (for closer explanations,
see section (3.3)). Afterwards, the result is written to a file called output.dat.

contains

!* Functions used for the Calculation

function sum_n(rho1, theta1)

...

do n= -nmax,nmax

...

do lambda = 1,2

sum_n = sum_n + cross(n,lambda,smax)

end do

...

end do

...

end function sum_n

sum_n is the function which we use for the calculation of the differential cross section. The sums
over n ≡ n and λ ≡ lambda take place in this function. For the calculation of the trace in (2.23),
which also includes the s-sum, we call the following function.

function cross(n, lambda, smax) result (intres)

...

do s = -smax, smax

...

qsum = qsum + prop(n,s,lambda)

...

qsum = qsum + propprime(n,s,lambda)

...

end do

...

end function cross

The two propagators are calculated in separate functions prop and propprime which will be
explained below. Their value is then summed up over s ≡ s.
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function slash(p) result (slash_p)

...

end function slash

function diracadj(M) result (Mbar)

...

end function diracadj

function trace(m) result (trace_m)

...

end function trace

function g(x,y)

...

end function g

function step(x)

...

end function step

function norm(vec)

...

end function norm

Those little functions are thoroughly discussed in section (3.2) and are used to implement the
Minkowski metric and the four-vector calculation into Fortran.

!* Propagators prop (n,s,lambda) and

!* propprime(n,s,lambda)

function prop(n,s,lambda)

...

psn = q2-(n+s)*k+kb ! electron propagator p

...

! imaginary mass shift--------------------------------------------------------

Wkp = 240._QD*g(k,psn) ! a = 30 MeV: b = 371 1/MeV

! a = 20 MeV: b = 240 1/MeV

! a = 10 MeV: b = 110 1/MeV

propagator = (slash(psn)-e**2*atilde**2/(2._QD*g(k,psn))*slash(k)+m*unit)/&

(2._QD*(-(n+s)*g(q2,k)+g(q2,kb)-(n+s)*g(k,kb)+&

(0._QD,1._QD)*(n+s)*(m**2/Etilde2)*w*finestructure/8._QD*Wkp-&

(0._QD,1._QD)*(m**2/Etilde2)*wb*finestructure/8._QD*Wkp))

! ----------------------------------------------------------------------------

aa = (slash(epsilonb(lambda,:))+e**2*atilde**2/(4._QD*g(k,p2)*g(k,psn))*&

matmul(matmul(slash(k),slash(epsilonb(lambda,:))),slash(k)))*&

bessel1(0,-n-s)
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bb = ...

cc = ...

dd = ...

ee = ...

ff = ...

prop = matmul(matmul(aa+bb+cc,propagator),diracadj(dd+ee+ff))

end function prop

function propprime(n,s,lambda)

...

end function propprime

The propagator Q according to (2.22) is calculated in the Fortran programme by Qλ
n,s =

prop(n,s,lambda) + propprime(n,s,lambda). The two functions prop and propprime are
very similar to each other. Therefore, we will only discuss prop here.

In (2.22), we have the two functions F and G which themselves consist of three summands
(2.16), (2.17). Thus, we can write F = aa + bb + cc and G = dd + ee + ff. Again, we will
just show the summand aa since all summands are all similar to each other. As arguments, the
three summation indices n, s, and λ are assigned to prop. All other variables like qf ≡ q2,
kb ≡ kb etc. are globally defined and can be accessed by all functions. First, the four-momentum
pn,s ≡ psn of the intermediate electron is calculated. Then, we need the imaginary mass shift:

W̃γ(k · pn,s) ≡ Wkp = 240._QD*g(k,psn). Here, the slope is already set to 240 according to
a = 20 MeV. Now, we can easily write down the propagator according to equation (2.31), here
in a mixed mathematical–Fortran notation:

propagator =
slash(psn)− e2a2

2g(k,psn)slash(k)+ m �

2(-(n+s)g(q2,k)+g(q2,kb)-(n+s)g(k,kb)+ i m
2finestructure

8 Etilde2
((n+s)w-wb))

.

Then, we have to calculate aa =
(

ε̂b,λ + ea
2k·pi

ea
2k·pn,s

k̂ε̂b,λk̂
)

B0
n(ξ, η). The generalized Bessel

functions are stored in an array: B0
−n−s ≡ bessel1(0,-n-s)1.

According to (2.16), (2.17), and (2.22), we can finally write down the expression for the return
value of the function prop:

prop = (aa + bb + cc) · propagator · (dd + ee + ff).

!* subroutines for numerical integration

!* making use of libary intlib.f90

function integrand_theta1(theta1)

...

call int_rho1(sum_n, a, b, theta1)

...

end function integrand_theta1

subroutine int_theta1 ( func, a, b )

...

1The Bessel and generalized Bessel functions are calculated using an algorithm described in [18].
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call gaus8 ( func, a, b, err, result, ier )

return

end subroutine int_theta1

subroutine int_rho1 ( func, a, b, theta1 )

...

call quad (...)

return

end subroutine int_rho1

end program int_brems

These routines and functions are used for the numerical integration of the differential cross
section. This is explained in section (3.3).
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