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Particle acceleration in the dynamically evolving environment of Supernova Remnants is discussed in
the framework of a genuinely time-dependent nonlinear theory, assuming spherical symmetry. As a
consequence the dependence of injection on the angle between shock normal and external magnetic field
direction requires a renormalisation of the calculated particle fluxes. The recent observational results in
TeV gamma-rays from such objects are discussed and found to be consistent with theory. We conclude
that for the present instrumental sensitivities there are no reasons to draw premature negative conclusions
as to the possible origin of the Galactic Cosmic Rays below the ”knee” in Supernova Remnants. In
addition, theoretical predictions and observations are getting very close. Therefore the coming generation
of ground-based and space-borne detectors will decide this basic question of astrophysics.

1 Introduction

Supernova (SN) explosions in the ensemble of stars constitute the largest, ”steady”
mechanical energy input in galaxies. They release an amount ��� � ���� ergs of
mechanical energy per event, at a rate of 1 event per 30 to 100 yrs in the Milky Way.
Supernova Remnants (SNR) are also the largest heat source for the Interstellar Gas,
and have long been speculated to be the dominant accelerators of the so-called Galactic
Cosmic Rays (CRs). It is the latter question which we shall discuss here.

We begin with a review of particle acceleration in the outer SNR shock wave that
communicates the explosion energy to the ambient medium. We shall in particular
discuss the injection process, and will argue that spherically symmetric models are
incomplete without a renormalisation of the calculated particle fluxes. High energy
�-ray emission due to inelastic collisions of the energetic particles with gas nuclei
or background photons is an observational consequence of particle acceleration. We



shall therefore critically evaluate the recently available observational results in TeV
�-ray emission from the young objects SN 1006, SNR RX J 1713-3946, Cas A, and
Tycho’s SNR. Several older objects, like IC443 or �-Cygni, are observationally still
too complex to draw general conclusions.

Finally, we shall turn to the observations of the diffuse �-ray emission from the
Galactic disk. At TeV energies it might be interpreted as the unresolved sum of indi-
vidual �-ray sources in the form of CR sources. These may be SNRs or other objects,
and we may be able to identify them in other wavelength ranges, like the radio con-
tinuum. Thus, apart from a rather well-known truly diffuse background contribution,
the spatial distribution of this ”diffuse” TeV �-ray emission should be compared with
the known SNR distribution in the Galaxy and, mutatis mutandis, its energy spectrum
ought to correspond to the inferred average CR source spectrum.

2 Particle acceleration in SNRs

The �-rays from SNRs stem from particles that have at some time in the past been
accelerated at the outer SNR shock to a momentum distribution that is nonthermal;
it corresponds to a power law � ���. In fact, the number density �� of particles
participating in the acceleration process, the injection fraction, is quite small compared
to the thermal particle density ���, with � � ������ � ����. In one plausible picture
�� �� �� � - see however� for a different view - the injected ions are those which are able
to escape from the shocked (i.e. suddenly decelerated and heated) downstream thermal
distribution along the magnetic field into the incoming plasma region upstream of the
shock, where they excite MHD waves (“Alfvén waves”) and thus initiate the diffusive
acceleration process.

These scattering waves � keep the particle distribution close to isotropic, and in
the process particles are stochastically scattered back and forth across the shock front
many times, gaining energy in each shock crossing, before being convected down-
stream together with the scattering wave field. This picture holds in its simplest form
for nonrelativistic shocks, i.e. for the case in which the difference in flow speed across
the shock front is nonrelativistic. In any conventional view SNR remnants fulfill this
condition, and in the sequel we shall confine our attention to this case.

Apart from the fundamental aspect of the excitation of scattering waves by the ac-
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Figure 1: Particle energy dis-
tribution at the shock (arbitrary
units). The downstream thermal
plasma has a quasi-Maxwellian
distribution with thermal energy
���, whereas above a some-
what larger energy (injection)
the accelerated nonthermal dis-
tribution starts to dominate.

celerating particle component itself, shock accelera-
tion can also be described in terms of a well-known
transport equation for the isotropic part of the dis-
tribution function that contains the mechanisms of
adiabatic energisation/deceleration, spatial diffusion
and convection. This diffusive shock acceleration
process has been reviewed extensively in the past,
e.g. ��� ��� ��.
In order to go beyond the test particle limit, it is
apparently necessary to include the energy and mo-
mentum exchange of the scattering particles with the
thermal gas (plasma) and the wave field in the cal-
culation of the overall dynamical evolution of the
system. Then, for a strong shock, the downstream
nonthermal and thermal energy densities turn out
to be comparable, ������	
�� � ���	
��. This
means that the process can be highly nonlinear and
efficient�; for a very recent review, see	. The dif-
ferential energy distribution in the relativistic range

is close to a ��� -law, i.e. it contains essentially equal energy per decade in particle
energy �. The ratio of the energy densities and the spectrum are both rather close to
what is observed for the CRs in our Galaxy and in many astronomical objects which
exhibit nonthermal emission.



All this pertains to nuclei which are known to dominate electrons in the Galac-
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Figure 2: At the spherical SNR
particles are injected from the in-
side and remain diffusively con-
fined after acceleration, expand-
ing with the thermal gas until
its velocity ���� decreases below
characteristic ambient velocities.

tic CRs by a factor of � ���. However, the large
Thompson cross section allows the electrons to ra-
diate very effectively, and therefore they play a
significant role for the nonthermal emission from
SNRs�� and other nonthermal sources.
The special characteristics of SNRs lie in the fact
that they are the result of a strong point explosion.
Therefore they are intrinsically time dependent ob-
jects, to lowest order spherically symmetric, and in-
deed strongly nonlinear accelerators. Particles that
have been accelerated remain inside the expand-
ing remnant, undergoing adiabatic expansion losses
and diffusive transport in the interior, before be-
ing ultimately released into the Interstellar Medium
when the remnant gets old and starts to decay (Fig.
2).

2.1 Volume-integrated particle, �-ray spectra, and energies

In the simplest case of a uniform Interstellar Medium, the external magnetic
field � is uniform and thus the angle ��� between the shock normal and � varies
systematically over the shock surface. Assuming
for simplicity nevertheless spherical symmetry for
the solution of the nonlinear acceleration problem,
not only the acceleration process is calculated for a
”parallel shock” (��� � �), but also the injection
efficiency is assumed to be the same over the entire
shock surface, indeed equal to that for ��� � �.
Whereas the first approximation is possible for al-
most all values ��� �� � , e.g. ��, this is not true for
the injection rate, e.g. �� �, and we shall argue that
this requires a renormalisation of the spherically
symmetric result. For the case of a uniform ambi-
ent medium, typically appropriate for SNe type Ia
and core collapse SNe type II from precursor stars
considerably less massive than ����, the nonlin-
ear set of equations describing nucleon acceleration
and the dynamical backreaction on the thermal gas

Figure 3: (a) Volume-integrated
proton momentum spectra 	���
for different SNR ages 
 in units
of the sweep-up time 
� �

���	 yr, for an injection frac-
tion � � ����, upstream den-
sity � � ��	 H-atoms cm��,
��� � ���� erg, ejected mass
�	� � ����, and � � 
�G.

has been solved numerically�� ���, covering the complete time evolution. Fig. 3 shows
an example of the momentum distribution of energetic protons, spatially integrated
over the SNR volume��.

Above the injection momentum the integrated spectrum is close to a power law
which is getting harder towards the cutoff due to nonlinear shock modification; the
overall average spectral index is close to 2; the maximum momentum reaches about



Figure 4: Volume-integrated
�-decay �-ray spectrum corre-
sponding to the parameters of
Fig. 2.

	 � �������� at late times for the particular pa-
rameters chosen�� . (As a side remark: radio syn-
chrotron electrons, with typical energies as low as
10 GeV, should therefore have a somewhat steeper
spectrum for the nonlinearly modified, very strong
shocks characterising young remnants�� ���; in fact,
the observed radio spectral index often exceeds the
value 0.5 that would correspond to the spectra at
high momenta)
Of similar interest is the volume-integrated inte-
gral �-ray spectrum from the SNR due to �-decay
from inelastic collisions with thermal gas nuclei,
Fig. 4.

For a spatially resolved observation one has, of course, to compare the locally calcu-
lated emission.

Another aspect of the time-dependent evolution can be recognised in the differ-

Figure 5: Volume-integrated en-
ergy fractions for the parameters
of Fig. 3. The quantities ��, ��,
��, and �� correspond to ejecta
energy, gas thermal energy, CR
energy, and gas kinetic energy,
respectively.

ent components of the volume-integrated energy in
the system, Fig. 5. Whereas initially the entire hy-
drodynamic energy is in the ejected mass, the ther-
mal and kinetic energies of the gas and the energy
�� in accelerated particles increase as a function
of time. �� is greater or about equal to the other
energy components in the Sedov phase, reaching a
value ������ � ��
 in the late Sedov phase, when
particles should be released�� .
CR observations on the other hand suggest a sig-
nificantly lower average source efficiency. Indeed,
according to standard estimates ��, the energy in-
put into CRs from an individual SNR is about
�����
����
�	� � ��� � ������ , and we shall

use this number in the sequel.

2.2 Renormalisation of integral �-ray fluxes

The physical reason for the overproduction of nonthermal energy in the spheri-
cally symmetric model lies in its assumption of a constant injection efficiency over
the shock surface. This is actually not the case. To lowest order the mean magnetic
field configuration for a point-like energy input into an environment with a uniform
field looks like the cartoon in Fig. 6: The external magnetic field lines are refracted
into the interior. The minimum field-aligned speed of a downstream particle required
to outrun the radially propagating shock wave into the upstream plasma along a field
line is proportional to cos������� and appears in the (quasi-exponential) tail of the
velocity distribution of the shocked downstream plasma.



In reality, the magnetic field in the collisionless (sub)shock is much more compli-
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Figure 6: Cartoon of the B-field
refraction in a SNR situated in a
uniform field region. The angle
����� between the downstream
field �� and the shock normal di-
rection � becomes so large be-
yond the hatched ”polar” region
that injection is effectively inhib-
ited.

cated, even in the ”parallel” case ����� � ����. As
a rough approximation we may nevertheless scale
the injection velocity with the factor cos�������

which dramatically reduces the injection rate for in-
creasing shock obliquity.
We shall not go into the details here. However, it is
clear that for a sizeable fraction of the shock surface
near the ”equator”, cos����� � �, particle acceler-
ation will be inefficient relative to that in the regions
near the ”poles”.
To lowest order, the spatial integral of the accel-
erated spectrum should therefore be reduced by
multiplying the spherically symmetric result with a
renomalizing factor given by the ratio of shock sur-
face area with efficient injection to the total shock
area. Instead of such a theoretical factor we shall
use here an even simpler prescription. This is an
empirical renormalization factor, on the assump-
tion that SNRs are indeed the sources of the Galac-
tic CRs, and corresponds to the ratio of the ex-
pected value ��� ���	
�	����� � ��� to the calcu-
lated value of ������ . For the case of Fig. 5 it is
about 1/5.

3 Observed young SNRs

3.1 SN 1006 in the Southern Hemisphere

Being a bright radio synchrotron source, this historical remnant of a SN type Ia
has also been detected in nonthermal X-rays��� �	, believed to be synchrotron emis-
sion. The X-ray morphology is characterized by two symmetrically situated emission
regions of unequal strength, reminiscent of the ”polar” regions of preferred injection
discussed before. Given the implied high electron energies of � ��� TeV�� and as-
suming magnetic fields below �� �G , SN 1006 was consequently also predicted as an
Inverse Compton (IC) �-ray source by��� ��� ��. A TeV �-ray detection was finally re-
ported by the Japanese/Australian CANGAROO collaboration�� . The report contained
also indications of a �-ray morphology resembling that in nonthermal X-rays.

Using the popular estimate�� ��� of the expected �-decay emission for the param-
eters of SN 1006, it turns out�� that the CANGAROO flux is more than a factor of
about four higher than this estimate, making a hadronic �-ray source implausible for
the given parameters. A detailed recent kinetic modeling of the nonthermal X-ray and
�-ray emission�	 raises the �-decay luminosity by a factor� �, making it comparable
to the IC �-ray luminosity. However, as argued above, this flux should be renormalized
- by a factor of �  - which once again appears to rule out a hadronic origin.�� have
presented a more phenomenological discussion which in particular points out that the
implied �-ray morphology fits much better a shell-type hadronic �-ray emission rather
than an IC emission that they expected to be rather uniform across the remnant, given



the uniformity of the target photon distribution. On the arguments from Fig. 6 how-
ever, a nonuniformity of the �-ray emission is expected in any case since the particle
distribution is asymetric.

Given the present experimental results, much depends on the strength of the ef-
fective magnetic field in the acceleration region. There is clearly a need to observe at
lower and higher �-ray energies than 1 TeV with more sensitive instruments to obtain
precise spectral information, especially about �-ray cutoffs, in order to allow a distinc-
tion between a nucleonic and an IC origin of the � radiation. At the same time, the
available improvements in spatial resolution will be important in order to obtain a clear
�-ray morphology for this large remnant of � ��
Æ diameter.

3.2 SNR RX J1713.7-3946 in the Southern Hemisphere

This large, �Æ diameter SNR had been discovered in the ROSAT All-Sky Survey��

and was observed as a strong nonthermal X-ray and radio source�� � ��. In fact, SNR
RX J1713.7-3946 is the only SNR that does not show significant evidence for thermal
X-ray emission from any portion of the remnant! It has been reported as a TeV �-
ray source by CANGAROO ��. However, the parameters, like distance, circumstellar
environment, and age, are not well known. In particular, the distance has been esti-
mated as widely different as 1 kpc�� and 6 kpc ��, at gas densities of ���� H-atoms
cm��. The latter authors also concluded that the progenitor should have been a mas-
sive star, in whose wind-blown bubble the SNR shock still propagates today.

If the reported �-ray emission is interpreted as Inverse Compton emission in the
Cosmic Microwave Background, then it is consistent with a rather low magnetic field
strength of � ���G, �� independently of distance, etc., given the observed nonther-
mal X-ray flux as synchrotron emission from the same electrons. Whether the �-
ray emission could also be due to �-decay is an open question, given all the uncer-
tainties. However, if the remnant was indeed as distant as 6 kpc, then the �-decay
flux would be negligible compared to the observed flux. If, in addition the SNR shock
still propagated in the rarefied wind bubble of a massive star, then the �-decay flux
should be significantly reduced due to the dilution effect in the bubble�� . A lot more
work must be done before this extraordinary source is clearly understood.

3.3 Tycho’s SNR in the Northern Sky

The progenitor of this SN type Ia was probably situated in a more or less uni-
form environment, making it another “astronomically simple” object, like SN 1006
in the South. Although the observed X-ray continuum between 10 and 20 keV��

from RXTE may be interpreted as synchrotron emission (see however�� for a different
view), the X-ray flux is in general dominated by line emission which suggests that IC
�-ray emission is not the dominant contributor to the expected TeV �-ray flux. In many
ways Tycho should be the prototype of a recently born CR source in the Galaxy. An
earlier attempt to detect it was made by the Whipple group which, after an observation
time of � �� hrs, could set an upper limit to the flux at 300 GeV��. More recently
the HEGRA stereoscopic system has observed the source for � 
 hours at energies
above 1 TeV��. No significant �-ray flux was detected either, leading to an upper limit
of 
��� � �����ph cm�� sec�� above 1 TeV, roughly 4 times lower than the Whipple
upper limit if the different energy is accounted for. If the radio and the keV flux are
interpreted as synchrotron radiation, then the non-observation of a corresponding IC
�-ray flux implies a lower limit to the magnetic field strength of about ���G. Using



the analysis of the ASCA detection�	 , on the other hand, weakens such an upper limit
to about �G. Although on the high side for an unperturbed upstream interstellar field,
even a ���G field strength might actually exist, a �G field is in any case possible .

The hadronic �-ray flux predictions�� , rescaled from�� and renormalised cf. sec-

Figure 7: Time dependent calculation of the
�-decay �-ray flux for Tycho’s SNR for four
different parameter sets: dashed line, case a)
� � ���� and � � 
�G; solid line, case b)
� � ���� and � � 	��G; dash-dotted line,
case c) � � ���� and � � 
�G; dotted line,
case d) is a single velocity ejecta case with
� � ���� and � � 


tion 2, give a result that is equally close
to the deduced upper limit: The exper-
imental results appear however to ex-
clude high injection rates, � � ����,
cases (a) and (b) in Fig. 7. Disre-
garding the rather unphysical case (d)
that assumes a constant mean ejecta
velocity, the upper limit is only slightly
above the low injection case (c), with
� � ����.
Therefore, the �-ray observations of Ty-
cho’s SNR come so close to theoretical
predictions that a deeper observation,
like it will be possible with the VER-
ITAS array or the MAGIC telescope,
should indeed lead to a detection, even
taking into account the general astro-
nomical uncertainties in distance, am-
bient density and total energy that exist

also for this object.

3.4 Cassiopeia A in the Northern Hemisphere

Cas A is presumably the youngest known SNR in the Galaxy, dating back to about
1680, and the strongest radio source in the sky. It has been detected in TeV �-rays

Figure 8: Model for the synchrotron SED for
Cas A. The inhomogeneous remnant is di-
vided into 2 components (zones), where zone
1 comprises the many small-scale features, as-
sumed to be sources of energetic particles, and
the remaining diffuse emission region (zone
2) fed by zone 1 sources and the outer SNR
shock. A good fit to the data points is obtained

in the deepest �-ray observation up to
now�� at a level of � 	 % of the Crab
flux. The observations are described in
these Proceedings�� . If besides the ra-
dio continuum also the hard X-ray flux
�	 is interpreted as synchrotron emis-
sion ��, see Fig. 8, a corresponding
�-ray emission due to Bremsstrahlung
and IC scattering should result. The
existing observational results are com-
pared with model predictions in Fig. 9.
The magnetic field strengths assumed
are in the � � mG range, whereas the
implied matter density corresponds to
15 H-atoms cm��. A total energy in
protons �� � � � ���� erg was as-
sumed, for a proton differential spec-

tral index of 2.15 and a cutoff energy of 100 TeV. The higher extension in energy,
expected for the nucleonic spectrum, slightly favors a nucleonic origin for the �-



ray emission.



Recently, Laming �� has argued that the hard X-ray emission could also be
Bremsstrahlung from nonthermal electrons with several tens of keV, energised by

CAT

IACT System
HEGRA

Whipple

Crab

Figure 9: Measured flux and spectral index
of Cas A in the context of model predictions.
Shaded area shows 1� error range for the spec-
tral index. Solid and dashed lines show pre-
dicted IC plus bremsstrahlung flux for two dif-
ferent values of the B-field, whereas the dotted
line shows a possible form for the hadronic �-
ray flux. Also indicated are the upper limits mea-
sured by EGRET, Whipple and CAT, and the val-
ues for the Crab Nebula.

lower hybrid waves from shock re-
flected ions at quasi-perpendicular
shocks. Such a mechanism had
been first suggested by ��. Since
the progenitor of Cas A is presum-
ably a massive, fast-rotating Wolf-
Rayet star in whose Red Supergiant
wind the SNR shock is presently
propagating ��, the shock may in-
deed be largely quasi-perpendicular.
If this latter electron energisation
scenario produces enough energy to
yield the observed Bremsstrahlung,
the detection of Cas A in �-rays
would necessarily imply a dominant
hadronic �-ray production! More-
over, the effect opens the Pandora
box also for SNe of the type Ia like
Tycho, or even SN 1006, in that
a relevant fraction of the observed
hard X-ray continuum could be non-

thermal bremsstrahlung due to the partly quasi-perpendicular nature of the SNR shock
in a uniform external magnetic field (section 2.2). This would clearly shift the inter-
pretation towards an increasing nucleonic �-ray fraction in general.

4 Older core collapse SNRs in TeV �-rays

Several older core collapse SNRs have been observed as well, and none of them
could be detected in TeV �-rays ��� ��� ��, even though they had been detected in GeV
�-rays by the EGRET instrument. We shall concentrate here on �-Cygni and IC 443,
since both the Wipple and the HEGRA telescopes have observed them. Even if the
upper limits would have corresponded to detections, a naive straight line interpolation
between the EGRET and the TeV fluxes would not correspond to the expected CR
source spectrum but rather to one that is considerably steeper.

In the case of �-Cygni also the EGRET error circle is fully inside and much smaller
than the radio shell that marks the SNR morphology. Therefore the EGRET source
cannot be the shell SNR. In fact, later X-ray measurements�	 have indicated the pres-
ence of a young pulsar, although the discussion is not really closed�� .

IC 443 is a more complex case. In contrast to �-Cygni, this remnant appears indeed
to be interacting with dense cloud material, as indicated by the presence of OH maser
emission�� . However, the X-ray emission is again characterised by localised patches,
partly outside the EGRET error circle, and not delineating a uniformly illuminating if
inhomogeneous shell remnant. The expected �-decay �-ray flux is, within the con-
siderable uncertainties of the astronomical parameters, about equal to the Whipple and
HEGRA upper limits. Therefore a deeper �-ray observation might well lead to a TeV



detection.

From the point of view of acceleration theory both SNRs might possibly also be
rather rare and older so-called Wind-Supernovae, where the SNR shock is outside the
stellar wind region of the massive progenitor but still inside the low-density, hot bubble
of shocked wind material. It is expected that such objects exhibit a low �-ray emission
of nucleonic origin, and presumably a low IC/Bremsstrahlung emission as well��.

Even though the experimental situation is not fully clarified, these sources are
complex enough in every respect that it is difficult to draw any firm conclusions at
present. This has not prevented rather pessimistic reactions, either observationally�� ,
or theoretically ��. The prime lesson we can learn from these examples is probably
that SNRs have very individual characteristics, far from being simple templates like
low-mass main sequence stars.

5 Diffuse �-ray emission from the Galactic disk

EGRET observations have shown an enhanced �-ray emission from the Galac-
tic disk above a few GeV in comparison with the standard models which otherwise
describe the spectral intensity and �-ray morphology of the disk fairly well��. This
hardening of the energy spectrum, which is particularly pronounced near the disk’s
midplane, might be due to CR propagation effects, e.g. ��� ��. An interesting alterna-
tive is its origin in the hard spectrum of �-ray production inside SNRs if these SNRs
contribute a sufficiently strong unresolved background of CR sources in the disk. Es-
timates �� have shown that this should indeed be the case, the source contribution
dominating above � ��� GeV.

Recent HEGRA observations have not detected a diffuse �-ray background in the
Galactic disk above 1 TeV��. However, they have been able to establish an upper limit
which lies only a factor of � � above the predicted emission from the unresolved en-
semble of CR sources in the form of SNRs. If this was indeed the case, then deeper
observations with the upcoming arrays H.E.S.S. and CANGAROO in the Southern
Hemisphere should be able to detect this background and thus to establish the average
form of the Galactic CR source spectrum due to SNRs. Furthermore, a TeV-detection
of the radial �-ray distribution in the Galaxy would be a complementary result, allow-
ing a direct comparison with the SNR distribution inferred from radio measurements.

6 Conclusions

SNRs are complex nonthermal objects, often situated in a disturbed environment,
and they defy oversimplified quantitative theoretical as well as – in many cases – obser-
vational interpretations. On the other hand, they are the only nonthermal astrophysical
sources for which something exists what one might call a real theory in the first place,
even if it is not complete as we have seen. The sensitivity of present �-ray detectors
is still marginal for the detection of such objects��. We have argued that the exist-
ing, in their majority unsuccessful, observational searches are nevertheless consistent
with theoretical expectations. For the detected remnants it is difficult to seperate the
�-ray fluxes of nucleonic and of electronic origin. For this reason, and for the fact that
none of the three claimed detections has yet been confirmed by independent measure-
ments, the question of a SNR origin of the Galactic CRs below the ”knee” remains
open. We have, however, also pointed out, how close some of the most recent obser-



vational results are to the corresponding theoretical flux estimates. This gives the next
generation of �-ray detectors a decisive role. Let us see what the experiment says!
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