
CHEP, San Diego, USA, March 2003

DIRAC – Distributed Infrastructure with Remote Agent Control

E. van Herwijnen, J. Closier, M. Frank, C. Gaspar, F. Loverre, S. Ponce (CERN),
R.Graciani Diaz (Barcelona), D. Galli, U. Marconi, V. Vagnoni (Bologna), N. Brook
(Bristol), A. Buckley, K. Harrison (Cambridge), M. Schmelling (GRIDKA, Karlsruhe),
U.Egede (Imperial College London), A.Tsaregorodtsev, V. Garonne (IN2P3, Marseille), A.
Bogdanchikov (INP, Novosibirsk), I.Korolko(ITEP, Moscow), A. Washbrook, J.P.Palacios
(Liverpool), S. Klous (Nikhef and Vrije Universiteit Amsterdam), J.J.Saborido (Santiago
de Compostela), A. Khan (ScotGrid, Edinburgh), A.Pickford (ScotGrid, Glasgow), A.
Soroko (Oxford), V. Romanovski (IHEP,Protvino), G.N. Patrick, G.Kuznetsov (RAL), M.
Gandelman (UFRJ, Rio de Janeiro)

This paper describes DIRAC, the LHCb Monte Carlo production system. DIRAC has a client/server architecture
based on: · Compute elements distributed among the collaborating institutes; Databases for production
management, bookkeeping (the metadata catalogue) and software configuration; · Monitoring and cataloguing
services for updating and accessing the databases. Locally installed software agents implemented in Python
monitor the local batch queue, interrogate the production database for any outstanding production requests using
the XML-RPC protocol and initiate the job submission. The agent checks and, if necessary, installs any required
software automatically. After the job has processed the events, the agent transfers the output data and updates the
metadata catalogue. DIRAC has been successfully installed at 18 collaborating institutes, including the DataGrid,
and has been used in recent Physics Data Challenges. In the near to medium term future we must use a mixed
environment with different types of grid middleware or no middleware. We describe how this flexibility has been
achieved and how ubiquitously available grid middleware would improve DIRAC.

1 INTRODUCTION

LHCb is one of the four future experiments in
High Energy Physics at the Large Hadron Collider
(LHC) at CERN, Geneva. It will attempt to answer
the most challenging questions on the nature of
fundamental particles, the origin of the CP violation
phenomenon underlying the asymmetry between the
matter and antimatter. To achieve its goals the
LHCb experiment will record an unprecedented
amount of the data going up to 2 PB’s per year. The
data will be distributed in many laboratories in
Europe and will be analyzed by the international
collaboration of scientists. Therefore, there is a clear
need for a distributed hierarchical computing
system which will allow to effectively share the
data and resources necessary to process them. Many
projects are currently in progress to build
distributed computing grids. Among them, the EU
funded EDG (European Data Grid) project was
initiated to provide a solution for such data intensive
distributed computing infrastructure.

However, the design of the LHCb experiment
requires a large amount of modeling of the physics
processes inside the detector. This modeling already
now requires a large number of computing
resources to work together in a coherent production
system. Therefore, the LHCb experiment has built
its own distributed production system to satisfy its
needs in generation of a large volume of Monte-
Carlo simulation data. The system is called DIRAC

that stands for the “Distributed Infrastructure with
Remote Agent Control”.
The DIRAC distributed production system has the
following functionality:

• Definition of production tasks
• Software installation on production sites
• Job scheduling and monitoring
• Data bookkeeping and replica management

Many production operations are automated in
order to minimize the interventions by local
production managers to maintain the system. This is
an important requirement for the LHCb considering
limited dedicated manpower.

DIRAC has been successfully installed at 17
collaborating institutes and has been also interfaced
with the DataGRID. In the latter case the DataGRID
was used as one single production site.

DIRAC was used for the LHCb Physics Data
Challenge recently with very good results. Its
architecture allowed to fully exploit the available
distributed computing resources. The success of the
DIRAC system is largely due to the job scheduling
mechanism that can be characterized as a “pull”
approach.

In the following Section 2 describes the
architecture of the system and its main components.
Sections 3 gives details on production operations
and experience gained with the system. Section 4

TUAT006

CHEP, San Diego, USA, March 2003

describes how DataGrid was integrated into
DIRAC, and the tests that were done to study the
DataGrid as a production environment. In Section 5
we summarize some of the lessons learnt that will
be necessary to take into account in the further
development.

2 ARCHITECTURE

The design of the production system starts with
the choice of necessary components that should
cooperate to achieve the production goals. Among
these components, the job scheduling (or workload
management) system is crucial for the overall
performance. Several approaches are possible for
the implementation of this component.

2.1 “Pull” versus “Push” job
scheduling paradigm

One of the choices that should be made in the
design of a job scheduling component is whether
the scheduler is realizing the “push” or “pull”
paradigm.

In the “push” paradigm the scheduler is using the
information about the availability and status of the
computing resources in order to find the best match
to a particular job requirements. Then the job is sent
to the chosen computing element for execution. So,
in this case the scheduler is an active component
whereas the computing element is passive.

In the “pull” paradigm, it is the computing
resource that is actively seeking tasks to be
executed. The jobs are first accumulated by a
production service, validated and put into a waiting
queue. Once a computing resource is available, it
sends a request for a work to be done to the
production service. The production service chooses
a job according to the resource capabilities and then
serves it in response to the request.

There are advantages and disadvantages in both
approaches. In the “push” approach the information
about the dynamic status of all the resources is
usually collected in one place and for each job a

best possible choice can be done. This is fine. But
the number of matching operations to be done is
proportional to the product of the numbers of
resources and jobs. This leads to scalability
problems since both numbers will be constantly
increasing.

In the “pull” approach the matching is done on
demand of a computing resource and for this
resource only. This is certainly a more scalable
solution although in each scheduling act the choice
of a job-resource pair might be suboptimal. In
addition there are other advantages as well:

• It is easier to achieve efficient usage of the
available power because an idle resource
manifests itself immediately.

• The load balancing is also achieved
naturally since the more powerful resource
will simply request jobs more frequently.

• It is easier to incorporate new production
sites since little or no information about
them is needed at the central production
service.

In developing the DIRAC MC production system
we have chosen the “pull” approach.

2.2 DIRAC architecture components

The DIRAC architecture is presented in . It
consists of central services: Production, Monitoring
and Bookkeeping services, and of software
processes called Production Agents that are
permanently running on each production site. The
central services have facilities for preparing
productions, monitoring the jobs execution and
bookkeeping of the jobs parameters.

The Agents are examining the status of the local
production queues. If the local resources are capable
of accepting the LHCb workload the Agent is
sending a request for outstanding jobs to the central
Production service and ensures the execution and
monitoring of the job received. After the job has
processed the events, the Agent transfers the output
data and updates the metadata catalog.

TUAT006

CHEP, San Diego, USA, March 2003

Edit

Prod.Mgr

Work flow
Editor

Production
Editor

Instantiate
Workflow

Production
data

Scripts

Production DB

Production Service

Application
Packager

Create
application

tar file

Production
Agent

Bookkeeping info Bookkeeping
Service

Bookkeeping DB

Job request
Monitoring Service Status report

Production site

Production preparation phase

Execution phase

CASTOR

Dataset replica

Figure 1: Dirac architecture

2.3 Software packaging

Before the production can start, the production
application software should be prepared for
shipping and installation on a production site. It was
an important requirement for the DIRAC system to
be able to install new versions of the production
software immediately after the release is done by an
LHCb software manager. Therefore, a utility was
provided to prepare a binary package for each
application that contains all the necessary libraries
to run it. With such packaging we do not make any
assumptions of any software preinstalled at a
production site. The resulting binary tar file contains
a setup script also generated automatically to
bootstrap the application on a working node before
it runs.

2.4 Production database

Production database is the core component of the
central services. All the information describing the
production tasks as well as job status parameters are
stored in the Production database. It is implemented
as an Oracle database running on a CERN server.

2.5 Production preparation phase

 While the production preparation phase all the
necessary software and production tasks are made
readily available to the requests of Production
Agents. Ideally, this is the only time where the

central production manager intervenes. Once the
production tasks are defined, their execution is
completely automated.

2.5.1 Workflow definition
The first step of preparing a production task is to

define its workflow (). Usually a task consists of
several stages each using different applications,
databases, options, etc. The workflow describes the
sequence of applications to be executed together
with all the necessary application parameters. This
includes software versions, application options,
input and output data types. The workflow
definitions are stored in the Production database to
ensure data history information.

2.5.2 Production jobs
Once the workflow is defined, it can be used in a

production run. The production run determines a set
of data to be produced under same conditions. It
instantiates a particular workflow together with
some extra parameters like a number of events to be
produced, specific application options for this run, a
particular destination site for this run, etc.

The production run is split into jobs as units of
the scheduling procedure. Each Production Agent
request is served with a single job. The job is
described in a XML file and contains all the
necessary information for the Agent to successfully
execute it.

TUAT006

CHEP, San Diego, USA, March 2003

Gauss
- v5

GenTag v7

Gauss
- v5

Brunel -

 v12

Gauss
- v5

Gauss

- v5

Brunel -
 v12

Pythia
– v2

Workflow description

 +
- Event type
- Application options
- Number of events
- Execution mode
- Destination site …

Production run description

XML job descriptions

Production manager

Production
DB

Web based
editors

Figure 2: Definition of the production tasks

All the production run parameters as well as job
descriptions are stored in the Production database.

2.6 Production service

The Production service is an interface to the
Production database allowing communicating with
the Agents. It receives requests for jobs, checks the
corresponding resource capabilities and then serves
an outstanding job to the Agent.

The Production service has an XML-RPC server
interface.

2.7 Monitoring service

Throughout the life cycle of a job its Agent sends
messages to the Monitoring service to report the job
progress. These messages are stored in the
Production database and are visualized on a
dedicated web page.

The Monitoring service has an XML-RPC server
interface.

2.8 Bookkeeping service

When new datasets are produced they are
registered by sending an XML dataset description to
the Bookkeeping service. Here all the dataset
descriptions are stored in a cache before they are
checked by the production manager. After the check
is done, the dataset metadata information is passed
to the LHCb Bookeeping database.

The Bookkeeping database is hosted by the
CERN Oracle server. It can be interrogated by users
using a dedicated web page with specialized forms.
The output of the queries can be used directly in the
user analysis jobs to specify input data.

The Bookkeeping service has an XML-RPC
server interface.

2.9 Production Agent

The set of Agents running on all the production
sites is the most important part of the system. It is
their continuous work that allows to fill the
computing resources with the LHCb production
jobs thus realizing the “pull” job scheduling
paradigm.

2.9.1 Agent setup on a production site
For a first time installation at a production site, a

script is downloaded from a web page. This script
creates the required directory structure and
downloads the latest Production Agent software
environment. Some local customizations are
necessary. They are kept in a single script and
concern mostly the interface to the local mass
storage and to the local batch system. Subsequent
releases of scripts are installed on top of currently
installed ones, except the locally modified ones. No
production application software is installed at this
moment. This will be done later based on the
requirements of a particular job.

This installation procedure is very simple making
the addition of new sites easy.

TUAT006

CHEP, San Diego, USA, March 2003

 Production
agent

batch
system

Production
service

isQueueAvalabl
ee

()

requestJob (queue)

SW distribution
service

installPackag
e

()

Monitoring
service

submitJob (queue)

Bookkeeping
service

setJobStatus (step 1)

setJobStatus (step 2)

setJobStatus (step n)
…

sendBookkeepin
g

()

Castor

sendFileToCasto
r

()

addReplica ()

Ru
nni
ng
job

Figure 3: Production Agent operationsAgent operations

The Production Agent is invoked regularly at a
production site to perform the following
operations (Figure 3):

• When the occupancy of a local batch
queue drops below a given level, the
Production Agent interrogates the
production service for new production
requests.

• The Production Agent gets a job and
checks if the required version of the
software is available; if not it fetches it
from the release area at CERN and
installs it.

• The production agent submits a job to
the local batch system.

• The job executes and writes its output to
the local storage system.

• Upon completion of the job, the
production agent ensures the output
datasets are transferred to Castor at
CERN and the bookkeeping database is
updated.

• When the datasets have been
successfully transferred, the replica
information is added to the bookkeeping
database.

2.9.2 Agent implementation
The Agent is implemented as a set of classes

written in Python. This allows to have a clean
object-oriented design together with a rapid

development environment. It uses XML-RPC
protocol to communicate with central services.

The entire Agent functionality is implemented
using the facilities from the standard Python
library.

The Agent runs as a daemon process or can be
configured as a cron job. It requires an outbound
IP connection for communicating with the central
Production Service.

In the Agent functionality implementation
special attention was paid to dealing with
different types of failures. In particular, when the
Agent fails to submit a job to the local batch
system, the job is automatically rescheduled and
can be picked up by another production site.

One of the most delicate operations in the job
life cycle is the transfer of datasets since the
volumes of data transmitted over the network are
large. In case of transfer failures, the data stays
cached on a production site and another attempt
to their transfer is done during the next Agent
invocation until the transfer is successful.

All the sensitive files, like job logs, metadata
updates are also cached at the production site if
even they are transferred to CERN storage to be
made available through the bookkeeping web
server.

TUAT006

CHEP, San Diego, USA, March 2003

3 USING DIRAC FOR THE LHCB
DATA CHALLENGES

The first LHCb Physics Data Challenge took
place in February-April 2003. The goal of this
production run was to provide sufficient amount
of data to evaluate the LHCb physics
performance to be presented in the Technical
Design Report (TDR). This was also the first
time the DIRAC system was used in the full scale
LHCb production.

 The results of the Data Challenge can be
summarized in the following numbers:

• 2 months of continuous running;
• 36600 jobs executed; each job was

running 20 to 40 hours depending on the
hosting CPU;

• 34000 jobs executed successfully,
success rate is 92%; the failures were
due to the LHCb software errors (2%) as
well as due to problems on production
sites (disk quotas, batch system) and
while data transfers (6%);

• 250’000 datasets were produced;
• ~20 TB of data stored to the mass

storage.
We have achieved the level of about 1000 jobs

running simultaneously during several weeks in
18 LHCb production sites. The status of the
production jobs was available at any moment
through the monitoring web page as an interface
to the production database. Summary plots were
automatically generated to facilitate the
production progress. The CPU time sharing
among the production centers is shown in Figure
4

During this production there were several
software updates that were automatically
installed by the system. This flexibility allowed
to react promptly to the needs of the physics
analysis and to study various LHCb detector
configurations.

In the whole the DIRAC production system
proved to be very stable and efficient in using all
the computing resources available to the LHCb
collaboration.

It allowed achieving the goals of the Data
Challenge ahead of schedule, that was
conservatively based on our previous production
experience.

TUAT006

CHEP, San Diego, USA, March 2003

Figure 4: Sharing the CPU resources among different LHCb production sites

4 INTERFACING DIRAC TO THE
EDG TESTBED

As all the functionality required to steer the
execution of jobs on a production site is
encapsulated in a single component (the Production
Agent) very little adaptation was necessary to
integrate the DataGRID into DIRAC. As far as
DIRAC is concerned, the DataGrid is just yet
another remote center.

4.1 Deploying Agents on the
DataGRID

A standard Production Agent running on the
DataGRID portal, i.e. the host with an installed
Grid user interface, ensures the job submission to
the DataGRID. The same LHCb production service
is used to get the jobs from. Then the job XML
description together with an Agent installation
script is packed into a InputSandbox detailed by
the job JDL file. The so specified job is submitted
the DataGRID Resource Broker. Upon starting the
job on a Worker Node (WN), the Production Agent
software is first installed thus effectively turning

the WN into a LHCb production site. From this
point onwards all the operations necessary to steer
the job execution are the same as is described
above for any other LHCb site

The Agent running on the WN first checks and
installs the applications software. The software is
installed either on the closest Storage Element (SE)
or in the job current directory. The latter is done if
files in the closest SE are not available via a
POSIX open call.

The Agent sends messages to the monitoring
service to trace the job execution progress.

In the end of the job execution the produced data
sets are copied to the Castor mass storage system
at CERN. For that we use the Replica Manager
software. In this case a dataset is copied to a SE
situated at CERN configured in such a way that
each dataset copy triggers execution of a GDMP
script that saves the newly arrived file to the Castor
storage. Doing so, we achieved the goal of easy
access to data produced in the DataGRID by users
outside the DataGRID. The bookkeeping
information about the datasets produced is
provided in both DataGRID Replica Catalog and in
the LHCb bookkeeping database.

TUAT006

CHEP, San Diego, USA, March 2003

Resource Broker

WN

WN

WN

DataGRID

Replica catalog

Production service

Monitoring service
Bookkeeping service

Castor

DataGRID portal

job.xml
JDL

Replica manager

CERN SE

Resource Broker

WN

WN

WN

DataGRID

Replica catalog

Resource Broker

WN

WN

WN

DataGRID

Replica catalog

Production service

Monitoring service
Bookkeeping service

Castor

Production service

Monitoring service
Bookkeeping service

Castor

DataGRID portalDataGRID portal

job.xml
JDL

job.xml
JDL

Replica managerReplica manager

CERN SECERN SE

Figure 5: Running DIRAC jobs on the DataGRID

4.2 Results of the tests

A set of about 2000 test jobs were executed in
the DIRAC/DataGRID setting in February-March
2003. The jobs differed by their time length
ranging from 20 minutes to 50 hours on a 1GHz
CPU. We have encountered many problems most
of which are coming from the instabilities of the
middleware available at this moment. The job
success rate was between 25% and 60% depending
on the job durability (the longer the jobs the higher
their probability to fail). Nevertheless, we have
demonstrated that the DataGRID can be included
into the DIRAC production procedure. Standard
LHCb production jobs were used in the tests
without simplification to accommodate possible
DataGRID shortcomings. The data produced are
available for the LHCb users outside the Grid and
can be traced both through the LHCb bookkeeping
database and with the DataGRID replica catalogue.

5 DISCUSSION

The use of DIRAC in the LHCb MC production
as well as tests with the DataGRID testbed
revealed a number of problems that we will have to
resolve in the future and/or can be addressed by the
Grid middleware developers. Here we mention
some of them and we not address all the well-
known problems of the existing middleware.

5.1 Application software installation

During the production it is often the case that the
application software is getting updated because of
the bugs found or a new crucial bit of code is
added. The new versions of the software should be
immediately available on all the production sites.
In DIRAC this is achieved by automatic
installation in the local disk area that is write-
accessible for the Production Agent. In case of
running the DIRAC jobs on the DataGRID the
standard place where VO software is installed is
usually not accessible for writing. Therefore, the
closest SE is used for the installation which is not a
satisfactory solution. In some cases the SE is not
reachable via POSIX calls and then all the
application libraries should be copied to the
working directory before the execution starts. This
is a clear waste of resources. Therefore, a standard
middleware API for the VO software installation is
very desirable. This should include methods for
software installation and uninstallation, registration
of the installed packages, getting information on
the available software, tracking dependencies
between the packages.

5.2 WN IP connectivity

The experience of the DIRAC operation showed
a great importance of the possibility for the
running jobs to send messages to the central
services. This is the only way to have fine grain
information of the job progress that allows reacting

TUAT006

CHEP, San Diego, USA, March 2003

quickly in case of problems. It requires however
the outbound IP connectivity of the working nodes
that is highly debatable because of the security
concerns. Having a dedicated Agent running on the
production site gatekeeper host can solve this
problem by channeling the messages through the
Agent. The gatekeeper host has normally access to
the outside WAN and can be also reached from
outside network. Therefore, this allows sending
messages to the running job and opens the
possibility to run interactive tasks. This is very
desirable for future data analysis models. In
particular, the possibility of running experiment-
dedicated daemons on a computing element can be
included to the eventual grid middleware.

6 CONCLUSIONS

The DIRAC system is routinely used now in the
LHCb Collaboration for massive MC data
productions. It allowed to efficiently use all the
available computing resources with a minimum
intervention of the local production site managers.
The Physic Data Challenge 1 that took place in

February-April 2003 was a success justifying the
DIRAC conceptual choices.

The modular client/server design with central
services and a set of distributed Agents allowed the
rapid development of different components once
the communication protocols were fixed.

The “pull” job scheduling strategy proved to be
adequate for the MC production tasks. We are
looking forward now to extend the DIRAC
functionality to the analysis type tasks, i.e. the
tasks that need a selection of input data and which
are not planned regularly.

DIRAC system does not rely on Grid
technology; with DataGrid being used as a separate
production center. DIRAC thus provides LHCb
with the flexibility to use different types of Grids
and non-Grid farms simultaneously.

References

[1] GAUDI applications framework
[2] CMT code management tool
[3[AliEn Grid environment
[4] EDG project

TUAT006

