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Abstract

We report fully differential cross section (FDCS) calculations and absolute measurements

for ion-atom impact ionization.  Using the COLTRIMS (cold target recoil ion momentum

spectroscopy) method, we have obtained absolute FDCS both in the scattering plane as

well as out of the scattering plane for 100 MeV/amu C6+ ionization of helium.  FDCS

results are presented for different projectile scattering angles and ejected-electron

energies.  The measurements are compared with a theoretical calculation employing an

asymptotically exact three-body final-state wavefunction that contains all active two-

particle subsystem interactions to infinite order in perturbation theory.  For the active

electron, a Hartree-Fock bound-state  wavefunction is used for the initial state and

numerical continuum-state eigenfunctions of a Hartree-Fock potential for the ion are used

for the final state.  In the scattering plane, these theoretical results are in very good

agreement with experiment for small and intermediate momentum transfer.  However,

some significant discrepancies are found for large momentum transfer and outside the

scattering plane.  These discrepancies disappear upon comparison with successively less-

differential cross sections.
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1.  Introduction

Fully differential cross sections (FDCS) have been studied for electron-impact ionization

of atoms for over three decades and significant theoretical progress has been made

particularly in the last twenty years.  For the case of electron-impact ionization of

hydrogen and helium, experiment and theory are in reasonably good accord in the

scattering plane for energies well above threshold (Jones and Madison 1998 and 2000,

Bray et al. 2001).  The important remaining questions are mainly concerned with near-

threshold ionization of hydrogen and this problem has recently attracted intense interest

and controversy (Bencze and Chandler 1999, Bray 1999, Stelbovics 1999, Rescigno et al.

1999, Bray 2000, Madison et al. 2000, Bray et al. 2001 and 2002, Baertschy 2002).  The

situation is much different for electron-impact ionization of the heavier inert gases where

experiment and theory are not in good accord for incident electron energies below about

100 eV (Haynes and Lohmann 2001a and 2001b, Biava et al. 2002).  It should be noted

that the different theoretical methods discussed in the above cited papers all give

essentially identical total ionization cross sections.  Discrepancies appear only when their

respective differential cross sections are compared.  Thus the importance of differential

cross section measurements cannot be overemphasized.  In the present COLTRIMS (cold

target recoil ion momentum spectroscopy) experiment, all ionizing events are determined

in full coincidence which means that the total cross sections and all differential cross

sections are obtained simultaneously in a single experiment.

For the case of heavy-particle impact ionization, experimental technology for measuring

FDCS was not developed until 1994 (Moshammer et al. 1994).  However, it took another

seven years until the first measurements were actually reported (Schulz et al., 2001).  In

that paper, FDCS measurements were presented for 100 MeV/amu C6+ ionization of

helium for different energies of the ejected electron and different angles of the scattered

projectile.  It was found that the shape of the FDCS in the scattering plane was very

similar to electron scattering cross sections for comparable kinematical conditions with a

binary peak near the momentum transfer direction and a recoil peak in the opposite

direction.  In the scattering plane, the shape of the experimental data was in good
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agreement with both the first Born approximation (FBA) and the three-Coulomb-wave

(3C) results as would be expected for a high-energy collision.  The unexpected

observation was that the experimental data out of the scattering plane exhibited structure

that was not well reproduced by theory.  This observation suggested that effects not

contained in the theories might be important out of the scattering plane.

We have now placed the experimental data on an absolute scale and we have improved

the theory.  The 3C code that was previously used was restricted to approximating the

final-state wavefunctions for both the scattered projectile and ejected electron as

hydrogenic Coulomb waves for some effective charge.  Consequently, the standard

helium effective charge of 1.69 was used (we will call these results the 3C-169).

Although this effective charge is probably reasonable for distances close to the nucleus, it

is asymptotically incorrect.  It has been well established for electron scattering that it is

important to use wavefunctions that are asymptotically correct.  Therefore, a much better

approach, particularly for the ejected electron, would be to use a wavefunction calculated

from the Hartree-Fock static potential for the residual helium ion since this wavefunction

would have the proper behavior both close to the nucleus as well as asymptotically

(Madison and Shelton 1973, Manson et al. 1975, Fainstein et al. 1994, Gulyás et al.,

1995, Stolterfoht et al. 1997, Gulyás and Fainstein 1998).  Here we will report the results

of such a calculation.

The overwhelming majority of both perturbative and non-perturbative theoretical

descriptions of ion-atom ionization use a straight-line trajectory for the projectile and

ignore the internuclear interaction (see review by Fainstein et al. 1991 and references

therein, Stolterfoht et al. 1997, Fiol et al. 2001).  This impact parameter treatment in

conjunction with the neglect of the internuclear interaction at high impact energies is an

excellent example of the right way to do theoretical physics if one is interested in electron

spectra (Moshammer et al. 1999) since the goal of theory should be to explain physical

observations using the minimum amount of necessary physics.  Nevertheless, these

approximations are not valid for fully differential cross sections (or any cross section

differential in projectile scattering angle – see Salin 1989, Fukuda et al. 1991a and
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1991b, Fang and Reading 1991, Rodríguez and Barrachina 1998, Moshammer et al.

2001, Fiol et al. 2001, Schulz et al. 2002).  Therefore, in the present work, the

internuclear interaction is included and the projectile motion is treated fully quantum

mechanically.

2. Theory

We consider ionization of atoms in the ground state by incident charged particles of

arbitrary charge and mass.  For this case, one needs to use the center-of-mass (CM)

system.  The ionization event is regarded as an effective three-body process –  the

incident projectile with mass Mp and charge Zp, the ejected electron, and the residual ion

with mass MI and asymptotic charge of +1.  In the CM system, all quantities can be

expressed in terms of the Jacobi coordinates (r,R), where r is the coordinate of the

atomic electron relative to the center of mass of the ion and R is the position of the

projectile relative to the center of mass of the ion plus electron (see fig. 1).  For all

practical purposes, both the laboratory and Jacobi coordinate systems will have their

origins at the nucleus of the target, which we assume is at rest.  In the CM coordinate

system, the fully differential cross section (FDCS) is given by (Bethe 1930, Inokuti 1971,

Berkadar et al. 1993)

d3σ
dΩ pdΩedEe

= Ne (2π)4 µ Ie µPA
2 k f ke

ki
Tfi

2
(1)

Here Ne  is the number of identical electrons in the atomic shell which is ionized and the

reduced masses are given by

µIe =
MI

MI +1
≈ 1

µPA = MP (MI +1)

MP + MI +1
≈ MP MI

MP + MI

(2)
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The projectile momentum Ki (K f )  is the CM initial (final) momentum conjugate to R

Ki = µ PAV0

K f = µ PAV f
(3)

with V0 (V f )  being the initial (final) velocity of the projectile relative to the atomic center

of mass.  If Eo  is the incident energy of the  projectile (in the lab frame) and ∆E  is the

energy loss of the projectile, we have

V0 =
2 E0
MP

Vf = V0
2 −

2∆E

µ PA

(4)

The momentum of the ejected electron is

ke = µ Ieve (5)

where ve is the velocity of the ejected electron with respect to the center of mass of the

ion.  In Eq. (1), the projectile is scattered into solid angle dΩ P  relative to the incident

beam direction ˆ K i  and the atomic electron is ejected into solid angle dΩe  with energy

Ee .  Consequently, the FDCS of Eq. (1) is really a five-fold differential cross section

(four angles and one energy).  The flux factor in Eq. (1) assumes that all continuum

waves are normalized to a delta function in momentum.  The T-matrix is given by

Tfi = Ψf
−(R, r) H − H0 Φi (R ,r) (6)

Where H is the full Hamiltonian for the system, Ψf  is the exact final-state three-body

wavefunction which is an eigenfunction of H and

H0 Φi (R,r) = E Φi (R ,r) (7)
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with E the total energy. If we represent the ion by a Hartree-Fock (HF) spherically

symmetric potential Uion , the full Hamiltonian will have the form

H = TP +Te +VPe + ZP Uion + Ze Uion (8)

where TP (Te)  is the kinetic energy operator for the projectile (electron), VPe  is the

projectile-electron interaction and the charge of the electron Ze = −1.  The initial-state

Hamiltonian is

H0 = TP + Te + Ze Uion (9)

As a result, the initial-state wavefunction will be a product of a plane wave PWi (R)  for

the projectile and a bound-state HF wavefunction for the electron ψ i (r).  In principle, the

bound-state wavefunction should be calculated as an eigenfunction of Uion .  In practice

we use the bound-state Hartree-Fock wavefunction which was used in the calculation of

Uion .  Consequently

Tfi = Ψf
−(R, r) VPe + ZP Uion ψ i(r) PWi(R) (10)

No approximations (to the effective three-body problem) have been made to this point.

For a practical calculation, one has to approximate the exact final-state wavefunction.

For the case of ionization of hydrogen by electron impact, Brauner, Briggs and Klar

(1989) demonstrated that it was necessary to pick a final-state wavefunction that satisfied

the exact three-body boundary conditions in order to get good agreement with experiment

for intermediate impact energies.  For hydrogen, the resulting wavefunction, known as

the 3C wavefunction, is a product of two Coulomb waves and a Coulomb distortion

factor.  This wavefunction contains the Coulomb interaction for each two-particle

subsystem of the three particles.  While it is reasonable to use a Coulomb wave for the
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fast projectile with Zeff = 1, a Coulomb wave is likely to be unreliable for a slow ejected

electron.  Consequently, the final-state wavefunction is approximated as

Ψf
−(R, r) = CWP

−(R) χe
− (r)CPe

− (R, r) (11)

where CWP  is a Coulomb wave for the projectile (Zeff = 1 for the ion), χe  is the

wavefunction for the ejected electron, and CPe(R, r)  is the Coulomb distortion factor for

the projectile-electron sub-system.  With these approximations, the T-matrix we evaluate

for ionization of helium is

Tfi = CWP
−(R) χe

−(r)CPe
− (R, r) VPe + ZP Uion ψ i (r) PWi (R) (12)

We have set CWP to a Coulomb wave for charge unity to satisfy the asymptotic boundary

conditions and in the same spirit we set the interaction of the projectile with the ion as

ZP Uion =
ZP
R

(13)

Finally, the ejected-electron wavefunction χe is a numerical solution of the Schrödinger

equation

(Te + Ze Uion −
ke

2

2µIe
) χe

− = 0 (14)

Similar to the projectile wavefunction, χe is asymptotically in a Coulomb field for charge

unity.  The numerical solutions of the Schrödinger equation (14) contain the static

electron-ion interaction to infinite order in perturbation series.  Since the initial state of

the ejected electron is a HF wavefunction and the final state is a static HF wavefunction,

we call our results 3C-HF.  We evaluate the amplitude (10) through a full 6-dimensional

integration without making any additional approximations about the trajectory of the

heavy projectile.
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In the next section we will also show first Born approximation results.  There are many

different variations of the FBA depending on the choice of initial and final state

wavefunctions for the active electron and depending on whether or not the projectile-

nuclear interaction is included in the interaction operator.  The FBA T-matrix we evaluate

is

T FBA−HF = PWP(R) χe
−(r) VPe + ZP Uion ψ i(r) PWi(R) (15)

Hence, our first Born results represent the limit of the 3C-HF calculation when the

projectile wavefunction in the final state is a plane wave and the final-state projectile-

electron interaction is ignored.  Consequently we label this approximation as FBA-HF.

For orthogonal initial and final active-electron wavefunctions (which is nearly the case

here), the projectile-ion interaction makes not contribution to the T-matrix.  It is

important to note that the initial- and final-state wavefunctions for the active electron are

the same in both the FBA-HF and 3C-HF.  Consequently, even though this is a first-Born

approximation for the projectile, the static electron-ion interaction is contained to infinite

order in perturbation series.

3. Results

The absolute normalization of the experimental data was performed by exploiting the

large acceptance of the spectrometer as follows:  The experiment is not only

kinematically complete but, in addition, simultaneously records in a triple coincidence all

electrons with energies between 0 and 50 eV, all recoiling ions with momenta smaller

than 10 a.u. as well as all the scattered projectiles.  Thus, a large part of the total cross

section is measured simultaneously and the integrated total number of coincident

recoiling He+ ions, for instance, corresponds to a well defined part of the total single

ionization cross section, namely the single differential ionization cross sections (SDCS)

as a function of the ionized electron energy integrated from 0 to 50 eV.  Rudd et al.

(1985, 1992) demonstrated that the present FBA-HF is reliable for calculating the SDCS
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integrated over ejected electron energy.  Consequently, the integrated recoil spectrum and

thereby subsequently all measured FDCS were normalized to 1.29 x 10-17 cm2 which is

the FBA-HF results integrated over the same energy range.  It should be kept in mind that

any FDCS projected out of the complete data set are automatically normalized relative to

each other and are on an absolute scale by the above procedure.

3.1 Scattering Plane

The fully differential cross sections are differential in the solid angle of observation for

the scattered projectile, differential in the solid angle of observation for the ejected

electron and differential in the energy of the ejected electron (five fold differential).  The

coordinate system we use has the z-axis parallel to the incident beam direction, the y-axis

perpendicular to the scattering plane and directed up, and the x-axis in the scattering

plane directed left of the beam direction for an observer above the scattering plane

looking along the beam propagation (see fig. 2).  The projectile is scattered to the left (in

the positive x-direction) which causes the binary electrons to be scattered to the right in

the negative x-direction.  The momentum transfer direction Q = Ki −K f  is very close to

90° which would correspond to the negative x-direction.  We use standard spherical

coordinates with θe  being measured relative to the beam direction, φe = 0  corresponds to

the half plane containing the positive x-axis and φe = π  corresponds to the half plane

containing the negative x-axis.  The binary peak lies in the φe = π  half plane and the

recoil peak lies in the φe = 0  half plane.  For this coordinate system, the FDCS can be

expressed as σ(θp ,θe, φe , Ee)  since the projectile is in the φe = 0  plane by definition.

Although the cross sections depend on the observation angles of the projectile θp , it is

customary to express the projectile polar scattering angle in terms of an equivalent

parameter – the magnitude of the momentum transfer Q .

The present 3C-HF results are compared with the absolute experimental measurements,

the FBA-HF and 3C-169 in fig. 3 for 100 MeV/amu C6+ ionization of helium.  For

convenience, we plot results in the scattering plane in figs. 3-5 from zero to 360° which

corresponds first to the φe = π  half plane (zero to 180°) followed by the φe = 0  half plane
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(180° to 360° ) with the angles being measured continuously clockwise relative to the

beam direction.  Although all the formulas are given for the CM system, the cross

sections in the figures are presented for the laboratory system since this is the system of

the experimental measurements.  The conversion from CM to laboratory is a constant

factor of 16 for the present FDCS. The momentum transfers of fig. 3 correspond to lab

scattering angles of 0.7, 1.13, and 2.1 µrad respectively.

There are several important observations to be made from the results presented in fig. 3.

First, both the experiment and theory have the same characteristic shape as one would

expect from electron impact scattering with a binary peak (larger peak at 90°) and recoil

peak (smaller peak at 270°).  The binary peak results from a single two-particle

projectile-electron collision and is located in the direction of the momentum transfer

vector.  The recoil peak is attributed to a double scattering mechanism in which the

projectile first collides with the electron and then the electron back-scatters off the atomic

nucleus.  As can be seen from fig. 3, the recoil peak decreases rapidly with increasing

momentum transfer (projectile scattering angle).

In Schulz et al. (2001), it was found that the shape of the 3C-169 results was in good

agreement with the shape of the experimental data for all three momentum transfers

displayed in fig. 3.  Here we see that the 3C-169 (dashed curve) is about a factor of 3

smaller than the absolute data for all three cases.  Both the FBA-HF (dotted curve) and

3C-HF (solid curve) results are in reasonable agreement with the absolute data for the

two smallest momentum transfers with the 3C-HF being somewhat better.  However, for

the largest momentum transfer and largest ejected-electron energy, the FBA-HF and 3C-

HF are almost the same and about a factor of 2 smaller than the data.  For electron

impact, the FBA-HF and 3C-HF results would be essentially identical for projectile-

electron energies above about 1 KeV (speed of about 10 a.u.).  The projectile speed for

these experiments is about 60 a.u.!  Here we see noticeable differences for the lower

ejected-electron energies and smaller momentum transfers resulting from the larger

charge of the projectile.
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The experimental data presented in fig. 3 are averaged over finite bin sizes for both the

energy of the ejected electron and the momentum transfer for the projectile while the

theories were calculated at the centroid values.  In fig. 4, 3C-HF results are presented that

have been convolved over the experimental bin sizes (dashed curves).  For the top part of

the figure, the energy and momentum transfer convolution was for

( 6.5 eV ± 3.5 eV, Q = 0.88 ± 0.11) , for the middle part of the figure

(17.5 eV ± 7.5 eV, Q =1.43 ± 0.22) , and for the bottom ( 37.5 eV ±12.5 eV, Q = 2.65 ± 0.44) .  It is

seen that the convolution had a small effect on the results.  Interestingly, the convolution

slightly improved agreement between experiment and theory for the small momentum

transfers where the agreement was already good and made it worse at the largest

momentum transfer where the agreement with experiment is worst.  Since the effect of

convolution was small while dramatically increasing the computing cost, the remaining

results in the paper will not be convolved.

Although HF wavefunctions have been used for some time now (Fainstein et al. 1994), it

is still common practice to represent the initial and final states of the active electron as

hydrogenic wavefunctions for some effective charge (Fiol et al. 2001, Olson and Fiol

2001).  For helium, two different effective charges are typically used – 1.34 which yields

the proper energy for ionizing the first electron and 1.69 which comes from minimizing

the total energy for the helium atom.  From fig. 3, it is seen that there is a significant

difference in magnitude between using an effective charge of 1.69 (for both the bound

and continuum state) and using HF bound states and static HF continuum states.

Consequently, we decided to investigate the accuracy of effective charges further.  In fig.

5, FBA results using different effective charges are compared with the FBA-HF results

and experiment.  When using effective charges, one has the choice of either using the

same or different effective charges for the bound and continuum states.  It can be argued

that the same effective charge should be used for both states to ensure orthogonality of

the active-electron wavefunction.  As mentioned above, orthogonal active-electron

wavefunctions cause the internuclear term to vanish.  Further, if the wavefunctions are

not orthogonal, additional shake-type amplitudes will be present which should be

evaluated (Jones et al. 1992).  FBA results are shown in fig. 5 obtained using an effective
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charge of 1.34 for both the bound and continuum electron (chain curve) as well as 1.69

for both the bound and continuum electron (dashed curve).  Recently, Olson and Fiol

(2001) reported double differential cross sections for this process using an effective

charge of 1.34 for the bound state and 1.0 for the continuum electron.  FBA results

(including the internuclear interaction) are also shown in fig. 5 for the effective charges

of Olson and Fiol (2001) (dotted curve).  Since the goal of the effective charges is to

represent the helium atom and ion, the accuracy of the effective charges is determined by

how well they reproduce the HF results (and not how well they reproduce the

experiment!).  From fig.5, it is clear that none of the choices for the effective charges are

very accurate.  An effective charge of 1.34 for both the bound and continuum electron

fortuitously yields a better agreement with the experimental binary peak.  On the other

hand, the binary to recoil peak ratio is worse for this case.  Since there is very little

difference between the FBA-HF and 3C-HF results, our conclusion is that the HF

approach is necessary for accurate results.

3.2  Out-of-Plane Results

In Schulz et al. (2001), it was noted that agreement between experiment and theory (at

least shape agreement) was very good in the scattering plane but not as good in a plane

perpendicular to the scattering plane, oriented such that it contains the beam direction.

Consequently, we decided to investigate out-of-plane cross sections further.  In the FBA,

the cross sections are symmetric about the momentum transfer direction.  As a result,

according to the FBA, there should be no new information contained in any out-of-plane

results.  For the results shown in fig. 3, the momentum transfer direction is essentially at

90° (actually 89° to two significant figures) relative to the incident beam direction.

Consequently, the FBA predicts that the cross sections in a plane perpendicular to the

scattering plane and orientated such that it contains the momentum transfer direction

should be the same as the in-plane results.  3C-HF cross sections in the scattering plane

and in the plane perpendicular to the beam direction are compared with absolute

experimental measurements in fig. 6 for ejected electrons with 6.5 eV and in fig. 7 for

ejected electrons with 37.5 eV.  The angular dependence of the perpendicular plane
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results is the azimuthal angle φe .  However, to make a direct comparison with the in-

plane results, we define a new azimuthal angle βe =φe −
π
2

.  Looking from the incident

beam direction, βe = 0  corresponds to straight up (y-axis), βe =
π
2

 corresponds to the

momentum transfer direction Q, βe = π  corresponds to straight down (negative y-axis),

and βe =
3π
2

 corresponds to the x-axis.  Since this perpendicular plane (nearly) contains

the momentum transfer direction, the FBA predicts that the in-plane and out-of-plane

cross sections should be the same.  From fig. 6, it is seen that the agreement between

experiment and theory is better in the scattering plane than it is in the perpendicular plane

where the experimental data has a noticeably larger width for the binary peak. Also

shown are the ratios of the cross sections in the two planes which would be (essentially)

unity in the FBA.  It is seen that the disagreement between experiment and theory is

greatly enhanced in the ratio where the shape of the experiment and theory is almost

opposite for both 6.5 eV and 37.5 eV!  It should also be noted that another nice feature of

the ratio is that it is independent of absolute values for the cross sections.

3.3  Integrated Cross Sections

We have seen that the experimental and theoretical FDCS are in satisfactory agreement in

the scattering plane for 6.5 and 17.5 eV ejected electrons.  On the other hand, fairly poor

agreement was found for 37.5 eV ejected electrons in the scattering plane and serious

problems were also found outside the scattering plane for all energies.  The factor of two

disagreement in the magnitude of the in-plane results at 37.5 eV was somewhat surprising

since the shape of the experimental and theoretical results are in reasonable accord.  It is

of interest to see how the problems in the FDCS are reflected in less differential cross

sections.  First we examine a cross section integrated over the electron polar scattering

angle and summed over two symmetric azimuthal angles

σ4 (θp ,φe , Ee) = [σ (θ p,θe ,φe , Ee) +σ(θ p,θe ,φe +π, Ee )
0

π
∫ ] sin(θe)dθe (16)
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This four-fold differential cross section depends on the azimuthal angle φe  with φe ≤
π
2

(negative φe  corresponds to below the scattering plane).  The φe = 0  results correspond to

the integral of the scattering plane cross sections of fig. 3.  By symmetry about the

scattering plane, positive and negative angles must be identical.

Absolute experimental results for this integral are compared with 3C-HF and FBA-HF

results in figs. 8-9 for 6.5 and 37.5 eV ejected electrons respectively.  For 6.5 eV, the

agreement between experiment and theory is very good except in the direction

perpendicular to the scattering plane.  For 37.5 eV., on the other hand, the agreement

perpendicular to the scattering plane is good while the theory is about a factor of two

smaller in the scattering plane (as would be expected from the in-plane FDCS results).

Doubly differential cross sections (DDCS) can be obtained by integrating over all

possible emission angles of the ejected-electron plus the azimuthal angle for the

projectile.  Most of the DDCS work in the early years concentrated in cross sections

integrated over all projectile scattering angles but here we are interested in cross sections

differential in the polar scattering angle of the projectile and the ionized electron energy.

Therefore we consider

σ DDCS (θp , Ee ) = 2π σ(θ p,θe ,φe , Ee )∫∫ dΩe (17)

The 2π  comes from the integration over the projectile azimuthal angle.  In fig. 10,

absolute experimental DDCS are compared with theory for the ejected-electron energies

of figs. 8-9.  Since there would be little difference between the 3C-HF and FBA-HF, only

the FBA-HF results are shown as they are much easier to calculate.  Instead of plotting

the DDCS in terms of the projectile scattering angle (in micro-radians), it is more

common to use an equivalent parameter – the momentum transfer perpendicular to the

beam direction and this convention has been used for fig. 10.  For the results presented

here, the perpendicular component of the momentum transfer Qperp and the momentum
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transfer Q are the same to two decimal digits.  The momentum transfer cross sections are

given by

σ DDCS (Qperp, Ee ) =σ DDCS (θ p, Ee )
tan(θ p )

K f
 (18)

Recall that all the equations are for the CM system and the variables are CM quantities.

One of the advantages of the momentum transfer cross section is that it is the same in

both the center of mass and laboratory systems.  The 6.5 eV results integrated over all φe

emission angles of fig. 8 corresponds to one point in the top figure at 0.88 and the

integral of the 37.5 eV results for fig. 9 lies at 2.65 in the bottom part of the figure.  From

Figs. 3 and 8, we see that the FDCS for 6.5 eV are in good agreement with experiment

and here we see that the DDCS for the same momentum transfer is also in good

agreement with experiment (within 1%).  In a similar vein, the FDCS for 37.5 eV was

approximately a factor of 2 smaller than experiment at the binary peak in fig. 3 and a

factor of two smaller for angles near the scattering plane in fig. 9 and here this is reflected

by the DDCS being lower than experiment for 37.5 eV electrons and a momentum

transfer of  2.65.  However, the ratio experiment/theory is reduced to 1.7.  It is interesting

that there is good agreement between experiment and DDCS theory for all small

momentum transfers for 6.5 eV ejected electrons while the agreement is good only for a

limited range of momentum transfers near 2.0 for 37.5 eV ejected electrons.  Moshammer

et al. (2001) and Olson and Fiol (2001) also presented DDCS for this process but at

different ejected-electron energies.  A visual comparison of the DDCS plots in those

papers with the present results suggests that the present results are in better agreement

with experiment.  This evidently stems from the fact that both of the those calculations

used effective charges for the bound and continuum states of the active electron.

Disagreement at very small momentum transfers below about 0.7 a.u. will become

significantly less pronounced if the theoretical results were convoluted with the

experimental resolution in the transverse momentum transfer of about 0.2 a.u. (see the

discussion in Moshammer et al. (2001)).
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The next level of cross section to consider is the single differential cross section (SDCS).

The SDCS is defined as

σ SDCS (Ee ) = σ DDCS(θ p, Ee)∫ sin(θ p) dθ p (19)

Theoretical FBA-HF SDCS results are compared with absolute measurements in fig. 11.

It is seen that there is excellent agreement between experiment and theory at 6.5 eV (4%

difference) and theory is lower than experiment at 37.5 eV as one would have expected.

However, now the difference between theory and experiment at 37.5 eV is only 11%

which further illustrates the fact that detailed information about the collision is lost upon

each integration.  Finally the total cross section is the integral of the results of fig. 11 over

energy.  The integral for the theoretical cross sections is 1.44 x 10-17 cm2 which is in very

good agreement with the recommend value of 1.48 x 10-17 cm2 by Rudd et al. (1985).

4.  Conclusions

We have presented the first absolute measurements of the FDCS (fully differential cross

section) for ion-atom ionization both in and out of the scattering plane.  These

measurements were compared with a 3C-HF calculation.  The 3C-HF wavefunction is

asymptotically an exact solution of the final-state effective three-body problem.  In the

past, theoretical treatments of ion-atom ionization, even if Hartree-Fock wavefunctions

were used (Fainstein et al. 1994), have typically made a straight line approximation for

the motion of the projectile and have neglected the projectile-nuclear interaction

(Fainstein et al. 1991).  Neither of these approximations is made in this work.  Another

advantage of the present approach is that a Hartree-Fock wavefunction is used for the

initial state of the ejected electron and the final state is calculated numerically as an

eigenfunction of the static Hartree-Fock potential for the ion.  It has also been common to

treat the initial and final states for the ejected-electron as an analytic Coulomb wave for

some effective charge and the differences between using Coulomb and Hartree-Fock

wavefunctions can represent factors of two or more.
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It was found that the 3C-HF results were in very good agreement with absolute in-plane

FDCS measurements for intermediate momentum transfer.  For the largest momentum

transfer, we found a factor of two difference between the magnitude of experiment and

theory. This discrepancy becomes less pronounced when one looks at less differential

cross sections and it is almost completely masked at the level of SDCS.

The out-of-plane results also indicated some substantial disagreement between

experiment and theory.  In the FBA, the FDCS is symmetric about the momentum

transfer direction.  According to the FBA, there is no new physics contained in the out-

of-plane geometry and the cross sections in any plane containing the momentum transfer

vector should be identical.  We looked at two such planes – the scattering plane and a

plane perpendicular to the incident beam which (nearly) contains the momentum transfer

vector. For these two planes, the experimental data were noticeably different.

Interestingly, the theoretical 3C-HF and experimental ratios of the cross sections for these

two planes (predicted to be essentially unity in the FBA) exhibited an almost opposite

behavior. This observation strongly suggests that the out-of-plane experimental results

contain some physical effects not included in the theoretical approach.

The present theoretical approach is, in principle, a first order perturbation approach that

contains many aspects of the problem to infinite order.  The final-state 3C wavefunction

individually contains the projectile-ion interaction, the projectile-electron interaction and

the electron-ion interaction to infinite order.  What is contained to first order is the initial-

state projectile-ion and projectile-electron interaction.  Consequently, it would be easy to

argue that the discrepancy between experiment and theory must come from higher-order

terms in the initial-state interactions.  However, these interactions are contained in the

CDW-EIS (continuum distorted wave with eikonal initial-state) approach and preliminary

CDW-EIS calculations (with no other approximations) indicate that initial-state

interactions will have very little effect on these results.
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The important question then concerns the physics leading to the lack of agreement

between experiment and theory for large momentum transfers and outside the scattering

plane for a high-energy situation where one would have expected excellent agreement

between experiment and theory.  One plausible explanation for the lack of agreement

outside the scattering plane is our reduction of the four-body problem to an effective

three-body one.  Note, however, that the FBA would be the same for any plane

containing Q even if an exact helium wave function is used initially and finally.  Thus, a

higher-order theory in the projectile-atom interaction is needed to explain the out-of-

plane data.  On the other hand, a higher-order theory with a HF description of the target

(3C-HF) does not reproduce the broadening of the binary peak observed in the plane

perpendicular to the beam axis.  Thus, both a higher-order theory and a better description

of the helium atom are needed to explain the out-of-plane measurements.  In contrast, the

discrepancy in the scattering plane for larger momentum transfer could conceivably be

resolved in the FBA by employing a better target description alone.

In summary, the present experimental results represent the first absolute FDCS

measurements capable of obtaining cross sections in complete 3D-space.  These results

represent an exciting challenge to test theory at the most detailed level.  Here we have

seen that the 3C-HF approach is capable of explaining the in-plane intermediate

momentum transfer results quantitatively and the high momentum-transfer results

qualitatively.  However, significant discrepancies were found outside the scattering plane

which disappears upon comparison with successively less-differential cross sections.
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Figure Captions

Figure 1.  Jacobi coordinates used in the present work.  The vector from the CM of the

ion to the active electron is r and R is the vector form the CN of the ion-electron

system to the projectile.

Figure 2  Spherical coordinate system used in the present work.  The z-axis is parallel to

the incident beam direction, the xz-plane is the scattering plane and the y-axis is

perpendicular to the scattering plane.
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Figure 3.  Scattering plane fully differential cross sections in the laboratory frame for 100

MeV/amu C6+ single ionization of helium.  The energy of the ejected electron and the

momentum transfer of the projectile is indicated in each part of the figure.  The angle θe

is the emission angle of the electron in the scattering plane measured clockwise from the

beam direction.   The solid circles are the present absolute measurements and the

theoretical curves are:  dashed – 3C-169; dotted – FBA-HF; and solid – 3C-HF.
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Figure 4.  Same as fig. 3 except that the 3C-HF results have been convolved over

experimental uncertainties in energy and momentum transfer.  The solid circles are the

present absolute measurements.  The theoretical curves are:  dashed – convolved 3C-HF

and solid – 3C-HF.
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Figure 5.  FBA fully differential cross sections in the laboratory frame using different

wavefunctions for the active electron for 100 MeV/amu C6+ single ionization of

helium.  The energy of the ejected electron is 6.5 eV and the momentum transfer of

the projectile is 0.88 a.u.  The solid circles are the present absolute measurements

and the theoretical curves are: solid – FBA-HF; dashed – FBA with hydrogenic

bound and continuum wavefunctions for Zeff = 1.69; chain - FBA with hydrogenic

bound and continuum wavefunctions for Zeff = 1.34; dotted – FBA with Zeff = 1.34

for the bound state wavefunction and Zeff = 1.0 for the continuum wavefunction.
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Figure 6.  Comparison of in-plane and out-of-plane fully differential cross sections in the

laboratory frame for 100 MeV/amu C6+ single ionization of helium.  The top part of

the figure corresponds to the in-plane FDCS depending upon the polar scattering

angle θe .  The middle part of the figure corresponds to a plane perpendicular to the

incident beam direction and containing the momentum transfer vector Q.  The

angular dependence for the perpendicular plane is βe .  If the scattering plane is

horizontal and one is viewing the collision from behind the incident beam, βe = 0  in

the perpendicular plane corresponds to straight up and βe = 90  nearly corresponds to

the location of the momentum transfer direction in the scattering plane (see text).

The energy of the ejected electron is 6.5 eV and the momentum transfer of the

projectile  0.88 a.u.  The solid circles are the present absolute measurements the

theoretical curves are the 3C-HF.  The bottom part of the figure corresponds to the

ratio of the results in the top figure and those in the middle figure
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Figure 7.  Same as fig. 6 except that the energy of the ejected electron is 37.5 eV and the

momentum transfer of the projectile is 2.65 a.u.

Figure 8.  Integral of the laboratory FDCS over the polar emission angle θe  of the ejected

electron  for 100 MeV/amu C6+ single ionization of helium (see Eq. 16).  The

scattering plane corresponds to ϕe = 0 .  Positive angles correspond to above the

scattering plane and negative angles correspond to below the scattering plane.  The

cross section must be symmetric about the scattering plane.  The energy of the
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ejected electron is 6.5 eV and the momentum transfer of the projectile is 0.88 a.u.

The solid circles are the present absolute measurements.  The theoretical curves are:

dotted – FBA-HF; and solid – 3C-HF.

Figure 9.  Same as fig. 8 except that the energy of the ejected electron is 37.5 eV and the

momentum transfer of the projectile is 2.65 a.u.
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Figure 10.  Double differential cross sections of Eq. (18) for 100 MeV/amu C6+ single

ionization of helium in units of a0
2 /hartree/a.u.(Qperp).  Results are shown for two different

ejected-electron energies indicated on the figure and the horizontal axis is the

perpendicular component of the momentum transferred to the projectile.  These cross

sections are the same in the laboratory frame and the CM frame.  The solid circles are the

present absolute measurements and the theoretical curves are the FBA-HF.
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Figure 11.  Single differential cross sections of Eq. (19) for 100 MeV/amu C6+ single

ionization of helium.  The horizontal axis is the energy of the ejected electron.  The

solid circles are the present absolute measurements and the theoretical curves are the

FBA-HF.
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