Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Spectral Properties of the k-Body Embedded Gaussian Ensembles of Random Matrices for Bosons

MPG-Autoren
/persons/resource/persons30264

Asaga,  T.
Prof. Hans A. Weidenmüller, Emeriti, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons30294

Benet,  L.
Prof. Hans A. Weidenmüller, Emeriti, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons30965

Rupp,  T.
Prof. Hans A. Weidenmüller, Emeriti, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons31164

Weidenmüller,  H.A.
Prof. Hans A. Weidenmüller, Emeriti, MPI for Nuclear Physics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Asaga, T., Benet, L., Rupp, T., & Weidenmüller, H. (2002). Spectral Properties of the k-Body Embedded Gaussian Ensembles of Random Matrices for Bosons. Annals of Physics, 298, 229-249.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0011-84DD-0
Zusammenfassung
We consider m spinless Bosons distributed over l degenerate single-particle states and interacting through a k-body random interaction with Gaussian probability distribution (the Bosonic embedded k-body ensembles). We address the cases of orthogonal and unitary symmetry in the limit of infinite matrix dimension, attained either as l goes against infiniti or as m goes adainst infiniti. We derive an eigenvalue expansion for the second moment of the many-body matrix elements of these ensembles. Using properties of this expansion, the supersymmetry technique, and the binary correlation method, we show that in the limit l goes against infiniti the ensembles have nearly the same spectral properties as the corresponding Fermionic embedded ensembles. Novel features specific for Bosons arise in the dense limit defined as m goes against infiniti with both k and l fixed. Here we show that the ensemble is not ergodic and that the spectral fluctuations are not of Wigner-Dyson type. We present numerical results for the dense limit using both ensemble unfolding and spectral unfolding. These differ strongly, demonstrating the lack of ergodicity of the ensemble. Spectral unfolding shows a strong tendency toward picket-fence-type spectra. Certain eigenfunctions of individual realizations of the ensemble display Fock-space localization.