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Abstract

Multiple ionisation of atoms by an ultrashort intense laser pulse is a process in which the few-

body problem is closely interrelated with the highly nonlinear interaction between the electrons

and the external field. We review recent advances in unveiling the mechanisms behind the un-

usually large ion yields for double and multiple ionisation observed in a strong laser pulse. Its

study requires on the one hand the combination of highly differential experimental techniques with

laser systems having high repetition rates and on the other the development of new theoretical

methods to simultaneously account for the long-ranged Coulomb interaction between the particles

and the field nonlinearity. Different mechanisms are analysed diagrammatically and quantitatively

in comparison with experimental data for the total ion yields. Distributions for the electron and

ion momenta of coincidence measurements are discussed along with predictions of the various

theoretical methods.
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I. INTRODUCTION

About 25 years after the quantum mechanical description of the photo-electric effect by

Einstein [1] it was Göppert-Mayer [2] who predicted that the energies of more than one

photon can be combined to achieve the emission of an electron from an atom or molecule,

when the energy of one photon is not sufficient to overcome the binding potential. The

observation of such multiphoton phenomena requires a high photon density at the location

of the target, which became available with the evolution of the laser in the 1960s. Modern

laser systems (e.g. the Ti:sapphire lasers) provide peak light intensities of the order of 1020

W/cm2 or above in pulses shorter than 100 fs. The field strength at these intensities is a

hundred times the Coulomb field binding the ground state electron in the hydrogen atom [3].

These extreme photon densities allow highly nonlinear multiphoton processes such as above-

threshold ionisation, high harmonic generation, laser-induced tunneling, Coulomb explosion,

multiple ionisation and others, where up to a few hundred photons can be absorbed from

the laser field.

Single ionisation and other single-active-electron phenomena in intense fields have been

intensively studied for many years. The experimental observables are the ionisation yields as

a function of the laser intensity, the energy and angular distribution of the emitted electron

or the emission of higher harmonic light. We refer the interested reader to several review

articles covering this broad field [4–11].

In this review we focus on recent advances in unveiling the mechanisms of double and

multiple ionisation in strong laser fields. It reveals new aspects of the electron-electron

correlation, different from those in the ground state of atoms or in the double ionisation by

charged particle (see [12] for a review) or single photon (see [13, 14] for reviews) impact.

This few-body problem is not only an intellectual challenge, but it has also a wide ranging

impact to many fields of science and technology. It is the correlated motion of electrons,

which is responsible for the structure and the evolution of large parts of our macroscopic

world. It drives chemical reactions and is the ultimate reason for superconductivity and

many other effects in the condensed phase. In atomic processes few-body correlation effects

can be studied in a particular clear manner.

With the increase of the electron number in the process the challenges in experimental

observations and theoretical analysis increase. In the early experiments the yields of the
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multiply charged ions were measured. Recently it became possible to detect also the energy

or the momentum vector of the electrons and the ions in coincidence by combining highly dif-

ferential experimental techniques, that are standard in the fields of ion-atom, electron-atom

and high energy single photon-atom collision studies, with laser systems having a kilohertz

repetition rate. On the other hand, for an exact ab-initio simulation of a system with two

electrons one needs to solve a set of six dimensional partial differential equations over a

large space-time grid. Considerable progress has been made recently in this direction using

high power computers [15–20]. An alternative ab-initio approach is provided by the Intense-

Field Many-Body S-Matrix Theory (IMST). It is a systematic approximation method for

the analysis of processes which require to account simultaneously for different interactions

of similar strength (in the present case the Coulombic interaction and the laser interaction).

Further, a number of approximative methods have been developed, e.g. lower-dimensional

numerical simulations or Classical Trajectory Monte Carlo calculations. Below we present

and discuss recent observations and their analysis as well as the resulting physical picture

of the correlated electron emission from an atom interacting with an intense laser pulse.

II. MECHANISMS OF DOUBLE IONISATION IN STRONG FIELDS

A. Ionisation yields

Single ionisation of atoms and molecules in intense laser pulses can be satisfactorily de-

scribed using the single-active-electron (SAE) approximation [21], where only the outermost

electron, moving in the effective potential of the ionic core and the other electrons, is as-

sumed to interact with the field. In this picture the electron-electron interaction is negligible.

It would imply for the double ionisation process that the electrons are emitted sequentially,

i.e. the neutral atom gets first ionised, then the cation is further ionised independently

of the first step et cetera. But, theoretical predictions based on this sequential ionisation

mechanism do not account for the large double and multiple ionisation yields in intense laser

fields observed at near infrared wavelengths. This is exemplified in Fig. 1 in plots of the

ionisation yields as a function of the laser intensity. Here both double ionisation yields of He

as observed by Walker et al. (Fig. 1(a), [22]) and multiple ionisation yields of Xe as mea-

sured by Larochelle et al. (1(c), [24]) are shown. At low intensities the experimental data
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FIG. 1: Measured yields of double ionisation of Helium at 780 nm (panel a, [22]) and 248 nm

(panel b, [23]), and multiple ionisation of Xenon at 800 nm (panel c, [24]) for linearly polarised

laser light. Predictions of the S-matrix theory [25, 26] are shown as solid lines. Note the strong

enhancement of the double and multiple ionisation yields over the sequential prediction at the

infrared wavelengths (dashed lines) and its absence at 248 nm.

show a strong enhancement of the double and multiple ionisation yields over the predictions

of the sequential mechanism (dashed lines, S-matrix calculations [25, 26], or nearly equal

results of SAE simulations, see e.g. [22]). There is also the ubiquitous ”knee”-structure

to be seen in the double (and multiple) ionisation curves, which has been observed for the

first time in the 1980s by L’Huillier et al. [27]. Note also that at 248 nm (Fig. 1(b)) no

excessive double ionisation yield over the prediction of the sequential mechanism has been

observed [23]. Thus, while at near infrared wavelengths a nonsequential ejection of two or

more electrons dominates, there is no sign of it at the shorter UV wavelength.

B. Mechanisms and diagrams

What is the mechanism leading to nonsequential double (and multiple) ionisation? This

seemingly well defined question does not necessarily have a unambiguous quantum mechani-

cal answer, since it is not always straightforward to deduce such a picture from a theoretical

analysis and even if this is possible often the contributions from different mechanisms have

to be added coherently. An example is the single-photon double ionisation process at low

light intensities. Here at least contributions of two mechanisms, called shake-off and two-

step-one (their strong field analogous will be discussed below), have to be considered to
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FIG. 2: Three (out of eight) diagrams that are generated by the the first leading terms of IMST.

The diagrams correspond to qualitative mechanisms for nonsequential double ionisation proposed

in the literature, namely (a) Shake-off, (b) Rescattering and (c) Sequential ionisation and Collective

Tunneling.

obtain an agreement with the observations [28, 29]. This is not the case for nonsequential

double ionisation in strong fields. As it will be seen below, there is one mechanism that

dominates strongly.

Becker and Faisal have identified [30–32] diagrammatically and quantitatively the main

mechanism of double ionisation using the Intense-Field Many-Body S-Matrix Theory

(IMST). This theory is a thorough rearrangement of the usual S-matrix series such that

all features of the process appear in the first leading terms of the series (for a review of

IMST see [33]). In the case of double ionisation of an atom the IMST generates eight

Feynman-like diagrams up to the second order of the series. Three of these diagrams are

shown in Fig. 2, which is a form of representation of the S-matrix terms, that is convenient

to obtain intuitive pictures or mechanisms of the process of interest. In the diagrams time

is assumed to flow from the bottom upward and straight lines stand for the evolution of

the two electrons. The three diagrams in Fig. 2 correspond to the following mechanisms

qualitatively proposed before in the literature:

Shake-Off: If one electron is removed rapidly from an atom or a molecule by the in-
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teraction with an intense field, for example, the wave function of the remaining electron

has to relax to the new eigenstates of the altered potential. Some of these states are in

the continuum, so that a second electron can be shaken off during this relaxation process.

This process corresponds to the first-order diagram in Fig. 2a. Here, the two electrons are

initially (time ti) in the ground state of the He atom. Electron correlation is included as

indicated by the dotted line. At time t1 one of the two electron leaves after the interaction

with the field (denoted by ‘-x’) so quickly that the second is shaken-off from the atom. The

electrons propagate in the final state with momenta ka and kb in the presence of the field.

The shake-off mechanism is well known for example from beta decay, where the nuclear

charge is changed. It is also known to be one of the mechanisms for double ionisation by

absorption or Compton scattering of a single photon (see the discussion in [34] and references

therein). Its strong-field analog has been originally proposed by Fittinghoff et al. [35].

Rescattering: In diagram 2b one electron becomes active first and absorbs energy from

the field at time t1, at a later time t2 it interacts with the second electron via the electron-

electron interaction and the two electrons may emerge together from the atom. During the

time interval t2− t1 the two electrons are in virtual intermediate states, namely one electron

in the Volkov states (field dressed plane wave states) of momenta {k} and the second electron

in intermediate states of the ion {j}. The diagram includes the rather analogous antenna

picture, advanced by Kuchiev [36], and the semi-classical rescattering mechanism proposed

by Corkum [37] and Schafer et al. [38]. According to the rescattering picture, first one

electron is set free by quasi-static tunneling. Then it is accelerated by the laser field, gains

energy and, depending on the phase of the field upon the moment of ejection, the electron

can be driven back to its parent ion when the field changes its sign. Upon recollision

with the ion the electron can either recombine and emit higher harmonic radiation, scatter

elastically and get further accelerated or it scatters inelastically with simultaneous excitation

or ionisation of the ion. Rescattering can be seen as a strong-field extension of the Two-Step-

One mechanism (TS1), known for single photon double ionisation at low photon energies

[39]. In the TS1 mechanism one electron absorbs the photon and knocks out the second

one via an electron-electron collision on its way through the atom. Thus, while for the TS1

mechanism the electron correlation appears to be dominant on a very short time scale (a

few attoseconds) and confined to a small region of space (the size of the electron cloud),

in the rescattering mechanism there is a femtosecond time delay between the first and the
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second step. The diagram in Fig. 2(b) involves in the intermediate state both, short-time

propagation (t2 − t1 < π/2ω, electron-electron collision on the way through the atom, TS1)

and long time propagation (t2 − t1 < π/2ω, rescattering).

Collective tunneling: According to this mechanism the two electrons tunnel out simul-

taneously from the atom or molecule. It was advanced by Eichmann et al. [40] inspired

by the fact that single ionisation at sufficiently high field strengths is well described by an

one-electron tunneling formula (e.g. [41]). This mechanism is part of the S-matrix diagram

in Fig. 2c. Here, the two electrons interact independently, at times t1 and t2 respectively,

with the field and leave the atom. The diagram includes the sequential double ionisation for

long intermediate times t2− t1 as well as a collective double ionisation for short intermediate

times.

The experimental observation that double ejection is strongly suppressed in ionisation

with circularly polarised light [42, 43] (see also figure 19 in [5]) provided strong evidence

that the rescattering mechanism is dominantly responsible for double ionisation by strong

laser fields. The rescattering mechanism is inhibited by the circular polarisation since the

rotating electric field does not drive the electrons back to their parent ion. The other

mechanisms, in contrast, are expected to be polarisation independent.

Becker and Faisal have also identified [31, 32] in their IMST analysis the rescattering

diagram (Fig. 2b) as the dominant diagram for nonsequential double ionisation. For ex-

ample, its contribution to the total ionisation rate was found to exceed by many orders of

magnitude over that from the shake-off diagram [32]. It has been further shown by Zon [44]

and Eichmann et al. [40] that the rate of collective two-electron tunneling is much too low

to account for the large nonsequential double ionisation yields. The strong dominance of

the rescattering mechanism for the ejection of two electrons also suggests [24, 26] a physi-

cal mechanism for nonsequential multiple ionisation, in which the first step of the process

remains the same but the second is a generalisation to a (e−,ne−) collisional ionisation.

For the analysis of the ion yields of double and multiple ionisation Becker and Faisal

proposed [25, 26, 45, 46] a simple model formula, which combines rates for single ionisation

at the first stage of the process with collisional ionisation rates ((e−,ne−), n = 2, 3, . . .) at

the second stage. Predictions of this model are found to be in good agreement with data

of a large number of experiments [25, 26, 47]. As examples, the comparisons for the much

discussed knee structure in double ionisation of He at near infrared wavelengths and for the
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case of up to six-fold ionisation of Xe as well as its absence at the UV wavelength are shown

in Fig. 1 (solid lines). Before leaving this discussion of the total ion yields we note that it

also has been shown experimentally and theoretically [46] that electrons from an inner shell

can be ejected through the mechanism of nonsequential double and multiple ionisation.

III. ANALYSIS OF COINCIDENCE MEASUREMENTS

To gain further insight in the double ionisation process differential measurements which

go beyond the measured total ion yields are necessary. For a long time, however, the experi-

mental study of electron correlation has suffered from the technical challenge to observe more

than one electron emerging from a multiple ionisation event. Only recently a breakthrough

has been made by two types of such experiments: Electron time-of-flight measurements in

coincidence with the ion charge state [48–50, 52] and those using the COLTRIMS (Cold

Target Recoil Ion Momentum Spectroscopy, [53]) technique, where the ion momentum alone

[54–60] or in coincidence with the momentum of one of the electrons [61–68] have been

measured.

A. Recoil ion momenta

Recoil ion momentum distributions have been measured for helium (He+,He2+) [54], neon

(Ne+ - Ne4+) [55, 60] and argon (Ar1+ - Ar4+) [56, 60, 63]. Fig. 3 summaries some of

the experimental data for helium (upper row, [54]) in comparison with S-matrix results

(lower row, [69]) for 800 nm laser light at 6.6 × 1014 W/cm2. Shown are the momentum

components parallel (left hand panels) and perpendicular (right hand panels) to the field

direction. The features of the distributions observed in the experiments are a distinct double

peak structure for the parallel momentum component (Fig. 3a) and a single peak structure

for the perpendicular component (Fig. 3b).

It has been shown [54, 55] that the double peak structure automatically rules out the

shake-off [35] and the collective tunneling [40] mechanisms, since for both a strong peak at

the origin would be expected. At the same time, the peaks were found to be in qualitative

agreement with the recollision [37] or the antenna [36] mechanism. As mentioned above, in

the rescattering picture there is a significant time delay between the emission of the first
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FIG. 3: Distributions of the recoil momentum of doubly charged Helium ions generated by 800

nm, 200 fs laser pulses at 6.6× 1014 W/cm2. Left hand panels: Components parallel to the field

direction, right hand panels: Components perpendicular to the field direction. Experimental data

(upper row, [54]) are compared with results of the S-matrix calculations [69] with (filled squares)

and without (open squares) the final state Volkov dressing.

electron and the return to its parent ion. Estimating t2 − t1 for a rescattering trajectory

which has sufficient energy to ionise the residual ion leads to ion momenta close to the

measured peak positions [54, 55, 57].

Soon after the measurement of the first ion momentum distributions Becker and Faisal

made the first theoretical predictions [69] for double ionisation of He by evaluating the

dominant Feynman diagram from the Intense-Field Many-Body S-Matrix Theory (c.f. Fig.

2b). The results for the momentum distributions of the He2+ ion calculated as the sum

momentum of the two electrons are shown in Fig. 3(c,d) (solid squares). The double peak

structure, its width and the position of the maxima for the parallel component (panel c) are

reproduced by the calculations as well as the single hump structure for the perpendicular

component (panel d). The minimum at momentum zero in the distribution for the parallel

momentum is more pronounced in the calculation than in the data, which might be due

to non-negligible contributions from higher-order diagrams (see also discussion below). To
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FIG. 4: Momentum distributions of He2+ ions at an intensity of 6.6×1014 W/cm2 for all panels. prz

is the component parallel to the laser polarisation. a) Solution of the one dimensional Schrödinger

equation [76], b) Classical Trajectory Monte Carlo calculations [77], c) S-matrix calculation with

additional saddle point approximation [71], and d) Wannier type calculation [74] .

unveil the physical origin responsible for the double hump structure Becker and Faisal have

evaluated the rescattering diagram also by replacing the final Volkov (or field dressed) states

by plane waves. Physically, this corresponds to switching off the laser field after both

electrons are in the continuum. In the calculation this leads to a collapse of the double peak

structure to a single peak (open squares in Fig. 3(c)), which confirms the interpretation

given above, that it is the acceleration of the ion (or the electrons, respectively) in the field

after the rescattering, which leads to the large ion momenta. The distribution perpendicular

to field does not change (Fig. 3(d)), since the final state momenta of the electron do not

couple to the field in this direction. It has been further shown by Jaroń and Becker [70] that

the component of the sum-momentum parallel to the field is largest when the drift energy

of the active electron in the intermediate state is close to zero.

The rescattering diagram has been also estimated by introducing different approxima-

tions in the evaluation. A stationary phase approximation has been used to evaluate the

integrations over the time and the momentum in the intermediate state. This additional

approximation reduces the computation time significantly and does not change the calcu-
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lated ion momentum distribution significantly as shown by Goreslavskii and Popruzhenko

(Fig. 4c [71, 72]). Kopold et al. [73] further replaced the electron-electron interaction by a

zero-range contact potential. Using these approximations they were to able to show that a

(third-order) diagram, which implies an excitation of the He+ ion via the electron-electron

interaction, followed by the ionisation of the excited ion by the field, gives contributions

near zero momentum of the recoil ion and may fill the valley in the parallel momentum

distributions of the minimum at zero momentum.

A conceptionally different approach was used by Sacha and Eckhardt [74]. They argued

that rescattering will produce a highly excited intermediate complex, which will then decay

in the presence of the field. In a Wannier type analysis they studied the decay using clas-

sical trajectories in the saddle potential created by the field and the Coulomb potentials.

Interestingly the recoil ion momentum exhibits a double peak structure, that does not de-

pend strongly on the time of creation but on the energy. Sacha and Eckhardt find parallel

and perpendicular momentum distributions, which are for helium (Fig. 4d) and neon in

reasonable agreement with the experiment. Recently, they extended this model to examine

the decay of highly excited three electron atoms [75].

Computation of the time dependent Schrödinger equation for two electrons in three di-

mensions is extremely challenging and there are no predictions of recoil ion momenta or other

differential information in the ”long” wavelength regime of presently available high-intensity

lasers up to now. Lein et al. [76] reported the first results on recoil ion momenta based on

an integration of the one-dimensional Schrödinger equation (see Fig. 4a). The momentum

distribution peaks at zero momentum in contrast to all other results. This might be due

to a well known problem of one-dimensional calculations, namely that the effect of electron

repulsion is overemphasised.

Chen et al. [77] have performed a Classical Trajectory Monte Carlo calculation (CTMC)

in which they solved the classical Hamilton equations of motion for all three particles in

the field. The initial state in the simulation is determined by the momentum distributions

following from tunneling of one electron from the atom. The results of this calculation also

yields the observed double peak structure (Fig. 4b).

Nevertheless, the interpretation remains puzzling, if one compares recoil ion momentum

distributions for different targets. In Fig. 5 experimental data for the parallel component as

obtained by de Jesus et al. [59] for the doubly charged helium, neon and argon ions in 23 fs,
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FIG. 5: Longitudinal ion momentum distributions for double ionisation of He, Ne and Ar at

intensities as indicated in the upper left corner of each panel (in units of 1015 W/cm2). Ratios of

the maximum recollision impact energy to the ionisation potential of the second electron, Erec/Ip,

are plotted in the upper right corners. The shaded areas represent the regions of the most probable

momenta assuming classical electron motion and direct impact ionisation.

linearly polarised Ti:sapphire laser pulses at intensities between 0.35×1015 W/cm2 and 1.25×
1015 W/cm2 are shown. While the pronounced double peak structure along the polarisation

direction is found for the neon target at all intensities, this feature is considerably less

apparent or even absent at the lowest intensity for the other two targets. Similar observations

have been made for helium by Weber et al. [54] and for neon by Eremina et al. [64].

According to the semi-classical rescattering model the final drift momentum of the ion

should depend on ratio of the maximum recollision energy, Erec, to the ionisation potential

of the second electron, Ip, only. Note that the data in Fig. 5 are taken at similar ratios of

Erec/Ip (indicated in the upper left corner of each panel). Obviously, the distributions show

a strong target dependence.

An explanation for this observation has been put forward by de Jesus et al. [59] based

on the relative strength of the two mechanisms, namely the direct ionisation of the second

electron via rescattering and its excitation via rescattering followed by subsequent field

ionisation. In the latter mechanism ions with small momenta are generated. de Jesus et al.
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FIG. 6: Left panel: Ion momentum distributions as in fig.5 but for slightly higher intensities. Right

panel: Total excitation (solid lines) and ionisation (dashed lines) cross sections of He+, Ne+ and

Ar+ as a function of the electron impact energy in units of the ionisation potential. The vertical

line indicates the maximum recollision energy for the present intensities.

have found that the contribution of the latter mechanism can exceed those of the former for

He and Ar but not for Ne, which explains the differences between the measured recoil ion

momentum distributions for the different targets (see Fig. 6). This is due to the fact that for

He and Ar electron impact excitation cross sections for the singly charged ion exceed those

for ionisation at all energies, which is not the case for Ne. It will be interesting to see in

future, if calculations based on one of the theories discussed above can further substantiate

these conclusions.

Momentum distributions of triply and fourfold charged ions have been observed by

Moshammer et al. [55] for Ne3+ and by Rudenko et al. [60] up to Ne4+ and Ar4+. In

Fig. 7 the results for the parallel momentum components observed in the latter experiment

measured with 25 fs laser pulses at intensities of 1.2 × 1015 W/cm2 and 2 × 1015 W/cm2

are shown. The narrow distribution of the Ne2+ ions with a maximum at zero momentum

indicates that at the present intensities double ionisation occurs via the sequential mecha-

nism. At the same intensity the distributions for the higher charged states of Ne, however,

exhibit a clear double peak structure with almost no ions created with zero momentum.
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FIG. 7: Longitudinal momentum distributions of the recoil ion for double, triple and fourfold

ionisation of Ne and Ar (see text).

The spectra extend slightly beyond pmax = 2n
√
Up (n = 3, 4) (indicated by the arrows),

which corresponds to the maximum classical longitudinal momentum the Nen+ ion gains

when the electrons are set free via a (e,ne)-rescattering event. For the multiply charged Ar

ions the distributions are very different. The Ar3+ distributions exhibit a shallow minimum

at zero, whereas for the Ar4+ ions there is no double peak structure at all. Further, both

the distributions are much smaller than in the case of Ne and lie well within the classi-

cal limits of 2n
√
Up (see arrows). This indicates that for Ar at these intensities the direct

(e,ne)-rescattering event is not the dominant mechanism.

B. Electron energies

Electron energy distributions for double ionisation have been reported for helium [49],

argon [50, 52], neon [51] and xenon [48, 52]. A common feature of all these experiments is

that the distributions generated via nonsequential double ionisation extend to much larger

energies than those generated in single ionisation. Using the S-matrix theory Becker and

Faisal have analysed [32] the data for He obtained by Lafon et al. [49] at 780 nm. In Fig.

8 the results of calculations from the rescattering diagram (solid lines, c.f. Fig. 2b) and

the shake-off diagram (dashed lines, c.f. Fig. 2a) are compared with the experimental data

(circles) at (a) 4×1014 W/cm2 and (b) 8×1014 W/cm2. In both, experiment and calculation,

the emission direction of one electron has been fixed along the polarisation direction while

the energy and the emission direction of the other electron were kept unresolved (integrated
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FIG. 8: Electron energy spectra from double ionisation of He at 780 nm and two intensities, (a)

4×1014 Wcm2 and (b) 8×1014 W/cm2. S-matrix results [32] from the rescattering diagram (solid

lines) are compared with those from the shake-off diagram (dashed lines) and the experimental

data (circles) obtained by Lafon et al. [49].

.

in theory). It is seen from the comparison that the experimental data are in full agreement

with the theoretical predictions from the rescattering diagram, except for a narrow region

near the threshold. In contrast, the results for the shake-off diagram decrease very quickly

and fail completely to follow the trend of the experimental data.

Recently, Chaloupka et al. [52] have resolved distinct resonance-like structures in electron

energy spectra of double ionisation of Xe, while in Ar featureless spectra, consistent with

the rescattering mechanism, have been observed. They interpreted this observation as a

progression from the tunneling and rescattering mechanism to a (unknown) multiphoton

mechanism. There is no theoretical analysis of these observations up to now, and the

underlying physics remains unclear.

C. Correlated electron momenta

More information can be obtained from the momentum correlation between the two

electrons. In an experiment one possible choice would be to observe the momenta of both

electrons in coincidence. In this case the recoil ion momentum could be calculated from

the momentum conservation. From an experimental point of view however, it is easier

to detect the ion and one of the electrons, in which case the momentum of the second

electron can be inferred from momentum conservation. It is experimentally simpler, since

the additional knowledge of the ion charge state, allows for an effective suppression of random
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FIG. 9: Momentum correlation between the two emitted electrons when an Ar2+ ion is produced in

the focus of a 220 fs, 800 nm laser pulse at peak intensities of 3.8×1014 W/cm2 and 15×1014 W/cm2.

The horizontal axis shows the momentum component of one electron along the polarisation of the

laser field; the vertical axis represents the same momentum component of the corresponding second

electron. Same sign of the momenta for both electrons represents an emission to the same half

sphere. The data are integrated over the momentum components in the direction perpendicular

to the polarisation direction. The gray shading shows the differential rate in arbitrary units on a

linear scale (adapted from [61]).

coincidences. Moreover, electron and ion are detected on opposite detectors circumventing

possible problems of multihit detection. Many successful studies for single photon double

ionisation have been performed this way [34, 78–80].

Measurements of the momentum components parallel to the field of electron and ion

while integrating over all the other momentum components have been reported by Weber

et al. [61], Feuerstein et al. [63], Moshammer et al. [67] and de Jesus et al. [68]. The data

of the first observations from double ionisation of Ar are shown in Fig. 9 [61]. Events in the

first and third quadrant are those where both electrons are emitted to the same hemisphere,

the second and fourth quadrant correspond to emission to opposite half spheres. The upper

panel shows the electron momenta at an intensity of 3.6×1014 W/cm2, which is in the regime
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FIG. 10: Components of the correlated momenta of the electrons parallel for the field direction

for double ionisation of He. (a) Experimental data at 5 × 1014 W/cm2 [68], (b) Results from the

Classical Trajectory Monte Carlo calculation at 1015 W/cm2 [77], (c) Results of one-dimensional

numerical simulations at 7×1014 W/cm2 [76] and (d) results from S-matrix calculations at 6.6×1014

W/cm2 [32].

of nonsequential ionisation. The distribution shows a strong correlation between the two

electrons, they are most likely emitted to the same hemisphere with a similar momentum

of about 1 a.u.. At higher intensity, where double ionisation proceeds sequentially this

correlation is lost (lower panel in figure 9).

In Fig. 10(a) the correlated momenta of the two electrons parallel to the polarisation

direction for double ionisation of helium by 23 fs, 5 × 1014 W/cm2, as measured by de

Jesus et al. [68], are presented. Similar as for argon [61, 63, 64], but different from neon

[67], a considerable amount of events appears in the second and fourth quadrant. Thus,

the correlated momentum spectra indicate that as for Ar (c.f. [63]) also for He another

mechanism, different from direct ionisation via rescattering, has to be present.

Also shown in Fig. 10 are theoretical predictions for the distribution of the electron

momentum components parallel to the field direction at laser intensities close to the ex-

perimental one. First, the results from the Classical Trajectory Monte Carlo calculation

(CTMC) by Chen et al [77] are shown in panel (b). Although excitation of the ion due
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to rescattering is included in their calculations, a tunneling ionisation of the (excited) ion

is excluded. Accordingly, the distribution of the final electron momenta are found to be

well within the classically allowed regime (the first and third quadrant) for direct ionisation

by rescattering only. The results of a solution of the one-dimensional Schrödinger equation

by Lein et al. [76] (Fig. 10c) show, in agreement with the experimental data, a consider-

able flux in the second and fourth quadrant. However, discrepancies to the experimental

results are obtained along the diagonal in the first and third quadrant, when both electrons

have the same longitudinal momentum. The maximum of the experimental distribution

is located here with only a slight indication of a minimum along the diagonal, whereas a

distinct minimum (zero) is found in the theory. This is obviously due to the restriction

to an one-dimensional model, in which the electron-electron interaction is overestimated.

Finally, panel (d) shows the results from the rescattering diagram of the S-matrix theory

(c.f. Fig. 2b) obtained by Becker and Faisal [32]. Again, the distribution is overwhelmingly

located in the first and third quadrant. Similar results have been obtained by other authors

[81] calculating the rescattering diagram using additional approximations. This result un-

derlines that the significant probabilities in the second and fourth quadrant go beyond the

direct ionisation by recollision. It would be interesting to see if the prediction [63] that an

excitation of the ion upon recollision followed by ionisation of the excited ion is responsible

for these contributions can be substantiated by theoretical calculations. Experimentally this

prediction has been supported by more complete experiments (see Fig. 13) which will be

discussed below.

For double ionisation of Ar Weckenbrock et al. [62] and Moshammer et al. [82] measured

in addition to the momentum parallel to the field also the transverse momentum of the

detected electron. Both find that the longitudinal correlation pattern strongly depends on

this transverse momentum (see Fig. 11). If one electron is emitted with any transverse

momentum larger than 0.1 a.u. (i.e. with some angle to the polarisation axis) one mostly

finds both electrons with a similar momentum component in the field direction. It is this

configuration which dominates the integrated spectrum in Fig. 9. If, however, one electron

is emitted almost parallel to the polarisation with a very small transverse momentum of

p⊥ < 0.1 a.u. one finds that the parallel momentum distribution does no longer peak on

the diagonal. In this case most likely one electron is fast and the other slow. Recently, it

has been shown by Figueira de Morisson Faria et al. [83, 84] that this is due to a strong
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FIG. 11: Momentum correlation between the two emitted electrons when an Ar2+ ion is produced

in the focus of a 150 fs, 780 nm laser pulse at peak intensities of 4.7 × 1014 W/cm2. Axis as in

Fig. 9. Each panel represents a part of the final state for a fixed transverse momentum (p⊥) of

one of the electrons. (a) One of the electrons has a transverse momentum of p⊥ < 0.1 a.u., (b)

0.1 < p⊥ < 0.2 a.u., (c) 0.2 < p⊥ < 0.3 a.u., (d) 0.3 < p⊥ < 0.4 a.u.. The gray scale shows the

differential rate in arbitrary units and linear scale (from [62]).

electron-electron interaction between the two electrons in the final state.

Recently, Weckenbrock et al. [65] investigated in a joint experimental and theoretical

study the momentum balance in the direction perpendicular to the polarisation axis. In

this kinematical geometry the subtleties of the Coulombic interaction in the rescattering

processes can be tested, since the perpendicular momentum components are not affected

by the field. In Fig. 12 the distribution of the momentum components perpendicular to

the polarization axis of one of the electrons, b, is plotted. The momentum component of

the other electron in the same plane is shown by the arrow, the parallel components of

both momenta as well as the magnitude of the momentum of electron a are not resolved

in the experiment (integrated in the theory). The experimental data show clearly, that

the two electrons are emitted to opposite sides. This back-to-back emission is found to be

due to a strong interaction between the two electrons after their double escape, as can be

seen from the results of S-matrix calculations displayed in the other panels. Theoretical

predictions and experimental data are in good agreement with each other (Fig. 12), when
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FIG. 12: Momentum distribution of electron b in the plane perpendicular to the field direction for

the double ionisation of Ar at 780 nm and 1.9× 1014 W/cm2 [65]. The perpendicular momentum

direction of the other electron, a, is shown by the arrow. The data are integrated over all momentum

components along the polarisation direction and the magnitude of the momentum of electron a. A

comparison is shown between (a) the experimental data, (b) theoretical results from the extended

rescattering diagram including electron-electron interaction in the final state and (c) theoretical

result from the rescattering diagram without electron-electron interaction in the final state.

the rescattering diagram (Fig. 2b) is extended such that the full electron-electron interaction

is taken into account in the final state (panel b). The results neglecting the electron-electron

interaction (as in the original rescattering diagram, Fig. 2b) do not show the back-to-back

characteristics (Fig. 12). This reveals the importance of the final-state repulsion between the

electrons for the nonsequential double ionisation process. In the experiment a back-to-back

correlation between one of the electrons and the ion has been observed too. This could not

be reproduced by the predictions from rescattering diagrams, which do not include effects

of the electron-ion interaction and the collisional excitation process.

Kinematically complete experiments, i.e. experiments in which all momentum compo-

nents of all particles have been reported by Weckenbrock et al. [85] for double ionisation

of neon when the recollision energy of the first electron is on the order of the ionisation

potential. The experiment finds, that the electron repulsion in the perpendicular plane (as

for example in Fig. 12) is only present if both electrons have similar longitudinal momenta

(Fig. 13). In contrast, repulsion is not visible for events where the two electrons are located

in the second and fourth quadrant (Fig. 13a), i.e. are driven by the field in opposite direc-

tion. These findings directly supports the interpretation of parallel momenta as time stamps

which we put forward throughout this review: Correlated electron momentum detection is a
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FIG. 13: Double ionisation of Neon at 1.9 × 1014 W/cm2, 800 nm, 40 fsec. (a) horizontal axis:

momentum of electron a parallel to the polarisation direction, vertical axis: momentum of electron

b parallel to the polarisation direction. The areas indicated by the circles show the region of events

selected in panel b) and c). (b) Momentum components of electron b in the plane perpendicular to

the polarisation, the perpendicular momentum of electron a is along the positive y axis as shown

by the arrow. Only events within the circles in region A have been selected. (c) same as (b) but

for events in circles in region B (from [85])

subcycle time correlation measurement on the attosecond time scale. For the case that the

recolliding electron is close to the ionisation threshold, which is well fulfilled in experiment

shown in Fig. 13, the difference in the parallel momenta between the electrons correspond

to the difference of their time of birth. Electrons in regions A (Fig. 13a) are both created

at the time of recollision while electrons in region B are emitted at different times. In con-

sequence, electrons in region A show repulsions in the perpendicular plane while those in

region B do not feel their repulsion. The latter electrons are likely produced via recollision

with excitation followed by delayed field ionisation as discussed above.

The final step towards complete information on the strong field double ionisation process

21



q
a

FIG. 14: Double ionisation of Neon at 1.9 × 1014 W/cm2, 800 nm, 40 fsec. Angular distribution

of electron b. The polarisation axis is horizontal, the sum energy of electron a and b is 10 eV <

(Ea + Eb) < 24 eV. Both electrons have the same energy (from [85])

.

is to investigate the angular distribution of one electron of well defined energy for fixed angle

and energy of the second electron. First successful steps towards this goal have been done

for the multiphoton case as well [85]. Fig. 14 shows one of those angular distributions.

They highlight that most of the electrons are emitted with only a small angle between them

with some influence of the electron repulsion still visible. There is however a smaller second

lobe of electrons which are emitted back to back. Once such studies are performed with

an energy resolution on the electron sum energy below the single photon energy, it can be

expected that dipole selection rules become visible in these distributions as they dominate

the structure of the three-particle continuum for the single photon case.

IV. OUTLOOK

In the future, we will certainly experience a continuation of the rapid progress on either

sides, the COLTRIMS technique and in laser technology, and theoretical efforts towards ab-

initio simulations and many-electron emission. For the laser technology, efforts concentrate

to produce ultrashort pulses with only two or three optical cycles as well as to control the

phase of the carrier-wave within the pulse envelope over reasonably long time-scales. With

such pulses it will be possible not only to precisely adjust the temporal shape of the electric

field of the light wave but also to control its direction and strength at the instant of electron

recollision. It can be anticipated that this will enable new insights into the many aspects

of the electron dynamics in double ionisation on fs or even sub-fs time scales. Pioneering
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measurements for single ionisation indicated already a strong dependence of the electron

emission characteristics on the carrier-envelope phase. On the experimental side, though

kinematically complete data sets on double ionisation of Ne have been collected for the first

time, further experiments with improved statistics are certainly needed to ultimately test

theory and to disentangle the still unexplained target dependences. Clearly, most desirable

are fully differential data with good resolution for double ionisation of He, the prototype

system for theory. With the advent of larger computer systems one can anticipate that ab-

initio simulations in this simplest two-electron system interacting with infrared laser pulses

will become available in the next years. This will further help in unveiling the temporal

details of the mechanism leading to nonsequential double ionisation and may lead also to

improved models for multiple ionisation. Concerning triple or even quadruple ionisation, so

far only the ion momenta have been measured for Ar and Ne. In order to obtain conclusive

answers about the involved reaction pathways as well as on their dependences on the target

structure measurements differential in the electron momenta represent most likely the next

step.

Another important future direction are studies of the wavelength dependence of dou-

ble ionisation. At present, experimental data are at hand only for the two extreme cases,

namely single and multiphoton absorption (more than 50 photons for the case of He). The

intermediate regime of two or three photon two-electron transitions is experimentally com-

pletely unexplored. This will change in the very near future when the free-electron laser at

the TESLA Test facility in Hamburg will start its operation in the beginning of 2005. It

will open exciting possibilities to explore a new regime of non-linear multi-photon processes,

where only a few high-energy photons interact with few electrons. Experiments for two-

photon double ionisation of helium are under preparation. Theoretical investigations in this

direction have already begun.
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