Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Experimental Mg IX photorecombination rate coefficient

MPG-Autoren
/persons/resource/persons30989

Schippers,  S.
Division Prof. Dr. Klaus Blaum, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons31003

Schnell,  M.
Prof. Dirk Schwalm, Emeriti, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons31190

Wolf,  A.
Division Prof. Dr. Klaus Blaum, MPI for Nuclear Physics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Schippers, S., Schnell, M., Brandau, C., Kieslich, S., Müller, A., & Wolf, A. (2004). Experimental Mg IX photorecombination rate coefficient. Astronomy & Astrophysics, 421, 1185-1191.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0011-8D13-A
Zusammenfassung
The rate coefficient for radiative and dielectronic recombination of beryllium-like magnesium ions was measured with high resolution at the Heidelberg heavy-ion storage ring TSR. In the electron-ion collision energy range 0-207 eV resonances due to 2s to 2p (ΔN=0) and 2s to 3l (ΔN=1) core excitations were detected. At low energies below 0.15 eV the recombination rate coefficient is dominated by strong resonances with the strongest one occuring at an energy of only 21 meV. These resonances decisively influence the recombination rate coefficient in a low temperature plasma. The experimentally derived dielectronic recombination rate coefficient ( systematical uncertainty) is compared with the recommendation by Mazzotta et al. (1998, A&AS, 133, 403) and the recent calculations by Gu (2003, ApJ, 590, 1131) and by Colgan et al. (2003, A&A, 412, 597). These results deviate from the experimental rate coefficient by 130%, 82% and 25%, respectively, at the temperature where the fractional abundance of is expected to peak in a photoionized plasma. At this temperature a theoretical uncertainty in the resonance positions of only 100 meV would translate into an uncertainty of the plasma rate coefficient of almost a factor 3. This finding emphasizes that an accurate theoretical calculation of the recombination rate coefficient from first principles is challenging.