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Abstract

Piriformospora indica is an endophytic fungus that colonizes roots of many plant species and promotes growth and
resistance to certain plant pathogens. Despite its potential use in agriculture, little is known on the molecular basis of this
beneficial plant-fungal interaction. In a genetic screen for plants, which do not show a P. indica- induced growth response,
we isolated an Arabidopsis mutant in the OXI1 (Oxidative Signal Inducible1) gene. OXI1 has been characterized as a protein
kinase which plays a role in pathogen response and is regulated by H2O2 and PDK1 (3-PHOSPHOINOSITIDE-DEPENDENT
PROTEIN KINASE1). A genetic analysis showed that double mutants of the two closely related PDK1.1 and PDK1.2 genes are
defective in the growth response to P. indica. While OXI1 and PDK1 gene expression is upregulated in P. indica-colonized
roots, defense genes are downregulated, indicating that the fungus suppresses plant defense reactions. PDK1 is activated
by phosphatidic acid (PA) and P. indica triggers PA synthesis in Arabidopsis plants. Under beneficial co-cultivation
conditions, H2O2 formation is even reduced by the fungus. Importantly, phospholipase D (PLD)a1 or PLDd mutants, which
are impaired in PA synthesis do not show growth promotion in response to fungal infection. These data establish that the P.
indica-stimulated growth response is mediated by a pathway consisting of the PLD-PDK1-OXI1 cascade.
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Introduction

The endophytic fungus Piriformospora indica, a cultivable basidio-

mycete of Sebacinales, colonizes the roots of many plant species

including Arabidopsis [1,2]. Like other members of Sebacinales, P.

indica is found worldwide in association with roots [3], and

stimulates growth, biomass and seed production of the hosts

[1,2,4–11]. The fungus promotes nitrate and phosphate uptake and

metabolism [6,12,13]. P. indica also confers resistance against abiotic

[7,14,15] and biotic stress [2,16]. The broad host range of P. indica

indicates that the beneficial interaction may be based on general

recognition and signalling pathways. Little is yet understood about

the molecular steps leading to P. indica-induced growth promotion.

Plant growth can be induced by a fungal exudate component [9],

suggesting the involvement of specific receptors at the plant cell

surface. In support of this hypothesis, an atypical receptor kinase

with leucine-rich repeats was identified to be required for the

growth response in Arabidopsis [5]. Moreover, a rapid increase in

the intracellular calcium concentration in the root cells indicates

that an intracellular signalling cascade is triggered early upon plant-

fungal interaction [9]. So far, however, no further components of

the signalling pathway have been identified.

In mammals, the phospholipid-binding 3-PHOSPHOINOSI-

TIDE-DEPENDENT PROTEIN KINASE1 (PDK1) sustains and

regulates the balance between growth, cell division and apoptosis

[17–19]. PDK1 is a member of the cAMP-dependent protein

kinase A / protein kinase G / protein kinase C (AGC) kinase

family [17] and the Arabidopsis homolog AtPDK1 is regulated by

binding to the lipid phosphatidic acid (PA) [20,21]. Phospholipase

D (PLD)a1 is the main producer of PA in Arabidopsis roots [22].

In plants, PA is a second messenger [23,24] that links lipid

signalling to oxidative stress signalling [25], e.g. during abscisic

acid-induced stomatal closure or defense against pathogens [26–

28]. PDK1 is the only AGC kinase in plants with an identifiable

lipid-binding domain [20,21,29,30].

OXIDATIVE SIGNAL INDUCIBLE1 (OXI1) is a serine/

threonine kinase necessary for oxidative burst-mediated signalling

in Arabidopsis roots [20,31]. OXI1 is a member of the AGC

protein kinase family (also called AGC2-1 [30]) and its expression

is induced by H2O2 [31]. OXI1 is required for full activation of

the two mitogen-activating protein kinases 3 and 6 (MPK3 and

MPK6) after treatment with reactive oxygen species (ROS) or

elicitors and for different ROS-mediated processes including

basal resistance to Hyaloperonospora arabidopsidis (previously known

as Peronospora parasitica) infection and root hair growth [31].

Among all AGC kinases in Arabidopsis [30], AGC2-2 might be

considered as an OXI1 homolog, however this kinase has not yet

been investigated. The active OXI1 phosphorylates and thus
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activates the downstream serine/threonine kinase PTI1-2 in

response to ROS and phospholipid signals [21], and many of

these signals derive from microbial pathogens or elicitors, such as

cell wall fragments or specific protein factors released by

pathogens [32,33]. Besides ROS, OXI1 is also activated by

PDK1 [20].

In this work, we report on the results of a genetic screen for

Arabidopsis mutants, which do not respond to P. indica. By

positional cloning, we have identified OXI1 as the responsible gene

for the growth phenotype induced by P. indica. Since OXI1 is an

AGC protein kinase that can be activated by H2O2 and PDK1, we

also tested whether mutants in PDK1.1 and PDK1.2 are defective

in the P. indica-induced growth phenotype. We found that pdk1.1

pdk1.2 double knock out mutants do not respond to P. indica. The

fungus stimulates PA, but not H2O2 synthesis in Arabidopsis

plants. PA is produced by several pathways including by PLD.

When PA synthesis was reduced by inactivation of phospholipase

D (PLD)a1 or PLDd, the P. indica-induced growth promotion was

compromised. These results suggest that P. indica stimulates growth

by PA-mediated activation of PDK1, which subsequently activates

OXI1.

Results

Beneficial interaction between P. indica and Arabidopsis
requires OXI1

Arabidopsis plants co-cultivated with P. indica are taller than

the uncolonized controls [1,2]. On the basis of this growth

phenotype, we searched for ethylmethane sulfonate-induced

mutants, which grow like uncolonized plants or are smaller in

the presence of the fungus. One of these mutants, called

Piriformospora indica-insensitive12 (pii12), was smaller in the presence

of the fungus (Figure 1) and mapped to a region on chromosome

3 that included oxi1. Moreover, the pii12 mutant had reduced

root hair lengths and reduced oxi1 mRNA levels in roots and

shoots when compared to the wild-type (Figure S1 in Text S1).

Sequence analysis uncovered that the mutant lacks a 19 bp

segment upstream of the putative translation start site, while the

coding region was intact. To clarify whether OXI1 is responsible

for the absence of the P. indica-induced growth response in

Arabidopsis, pii12 was complemented with the full-length cDNA

of OXI1. Three independent transformants had higher OXI1

mRNA levels when compared to pii12 and showed a growth

response to the fungus, which was comparable to the wild type

(Figure S2 in Text S1). An independent T-DNA insertion line for

oxi1 was used for further analysis, because it completely lacked

OXI1 mRNA (Figure S3A in Text S1). Like pii12, growth

promotion by P. indica was inhibited in oxi1 plants (Figure 1 and

Figure S2 in Text S1). These results confirm that a deletion in the

OXI1 promoter region is responsible for the absence of the

growth response of Arabidopsis plants to P. indica. We conclude

that P. indica-induced growth promotion in Arabidopsis requires

OXI1.

H2O2 production is not stimulated upon fungal infection
of Arabidopsis roots

Previously, it was shown that OXI1 is induced by H2O2 in the

roots [31]. However, H2O2 measurements and staining of

colonized wild type roots with nitrobluetetrazolium chloride

(NBT) uncovered that P. indica does not induce H2O2 accumu-

lation [9]. Under growth promoting conditions, we even observed

a repression of H2O2 accumulation in the roots (Figure S4C in

Text S1). Also high concentrations of fungal hyphae, which are no

longer beneficial for the plants, did not result in H2O2 production

in the roots (H2O2 levels, no fungal treatment: 17.462.1 nmol/g

fresh weight; non-beneficial interaction: 17.161.7 nmol/g fresh

weight; n = 9 independent experiments).

Root hair mutant ire and rhd2 plants are not
compromised in P. indica-induced growth promotion of
Arabidopsis

The inability of oxi1 plants to respond to P. indica might be

caused by their shorter root hairs [31]. However, mRNA levels for

the P. indica translation elongation factor1 (Pitef1) were comparable

in oxi1 and wild-type roots (Figure S5 in Text S1), indicating that

root colonization does not differ from the wild-type in oxi1.

We also investigated the interaction of P. indica with two other

mutants with reduced root hair phenotypes: the AGC kinase ire

and the NADPH oxidase rhd2 ([34,35] Figure S3B in Text S1).

Growth of these mutants was promoted by P. indica (Figure 1),

and the degree of root colonization was again comparable to the

wild-type (Figure S5 in Text S1). Therefore, the root hair

phenotype does not seem to be responsible for the impaired

interaction of oxi1 with P. indica. Furthermore, among the RHD

genes expressed in Arabidopsis roots, RHD2 shows the highest

expression level and RHD2 is responsible for most of the H2O2

production in the roots [35]. Thus, the lower H2O2 production in

rhd2 roots does not compromise the beneficial plant-fungal

interaction.

AGC2-2, a homolog of OXI1, is required for P. indica-
induced growth promotion

AGC2-2 (At4g13000) is the closest homolog of OXI1 (see

phylogenetic tree in [30]) and shares .60% sequence identity to

OXI1. Both kinases contain an aspartic acid residue in their

active site (D149 in OXI1 and D146 in AGC2-2) and share a

conserved PDK1 binding site, the FxxF motif, at their C-terminal

ends [20]. However, in contrast to the OXI1 mRNA level, the

AGC2-2 mRNA level is not regulated by ROS (https://www.

genevestigator.com). agc2-2 plants did not show any visible

phenotype, produced the same amount of seeds, and – in

contrast to oxi1 [31] - root hairs of agc2-2 plants were not shorter

than those of wild-type plants (Figure S1B in Text S1). However,

despite the fact that root colonization was not affected by the

agc2-2 mutation (Figure S5 in Text S1), agc2-2 plants were

Author Summary

Like many root-colonizing microbes, the primitive Basid-
iomycete fungus Piriformospora indica colonizes the roots
of many plant species and promotes their growth. The lack
of host specificity suggests that the plant response to this
endopyhte is based on general signalling processes. In a
genetic screen for Arabidopsis plants, which do not show a
P. indica-induced growth response, we isolated a mutant
in the OXI1 (Oxidative Signal Inducible1) gene. Previously,
this protein kinase has been shown to play a role in
pathogen response and is regulated by H2O2 and PDK1 (3-
PHOSPHOINOSITIDE-DEPENDENT PROTEIN KINASE1). A
genetic analysis showed that deletion of PDK1 also
abolishes the growth response to P. indica. PDK1 is
activated by phosphatidic acid (PA). P. indica triggers PA
synthesis and mutants impaired in PA synthesis do not
show growth promotion in response to fungal infection.
Since defense processes are repressed by P. indica, we
propose that a pathway consisting of the PLD-PDK1-OXI1
cascade mediates the P. indica-induced growth response.

OXI1 in P. indica/Arabidopsis Symbiosis
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compromised in the growth response to the fungus (Figure 1).

Thus, besides OXI1, the so far uncharacterized AGC2-2 is

important for P. indica-mediated growth promotion in Arabidop-

sis. Attempts to generate homozygous oxi1 agc2-2 double knock

out lines failed: among 98 F2 plants obtained from crosses of the

two mutants, all plants, which were homozygote for either oxi1 or

agc2-2 were heterozygote for the other kinase gene. This suggests

that both OXI1 and AGC2-2 might play a role in embryogenesis

in Arabidopsis.

PDK1 is required for P. indica-induced growth promotion
We next tried to identify the upstream components of the OXI1

cascade that is responsible for the fungal growth effect in plants.

Previously, it was shown that PDK1 and H2O2 can activate OXI1

in Arabidopsis [20,21]. Because P. indica infection did not alter

H2O2 levels in Arabidopsis, we turned our attention to the two

closely related PDK1 genes, PDK1.1 and PDK1.2 (92% homology

at the amino acid level), which are present in the Arabidopsis

genome (cf. phylogenetic tree of AGC kinases in [30]). Both PDK1

genes are expressed in roots. We generated a pdk1.1 pdk1.2 double

knock out line. RT-PCR analysis confirmed that neither PDK1.1

nor PDK1.2 transcripts can be detected in the double mutant line

(Figure 2A). A phenotypic analysis revealed that pdk1.1 pdk1.2

plants are smaller than the wild-type (Figure 2C), have shorter

siliques (Figure 2B) and produce only 41%66.8% (n = 23) of the

seeds of the wild-type. Importantly, fungal induced growth

promotion in pdk1.1 pdk1.2 plants was clearly compromised

(Figure 1), whereas root colonization was comparable to the

wild-type (Figure S5 in Text S1). Therefore, besides general

functions in growth regulation, the combination of PDK1.1 and

PDK1.2 is required for P. indica-induced growth promotion in

Arabidopsis.

PLDa1 and PLDd are required for P. indica-mediated
growth promotion

After having established that PDK1 is an important

component of the P. indica-induced growth response pathway,

we tried to go even further up in the cascade to identify the

regulator of the PDK1s. PDK1 in Arabidopsis is activated by

PA. PA is synthesized by PLD and by PLC/diacylglycerol

kinase. PA in roots is mainly generated by PLD activity [28,36].

The Arabidopsis genome contains 12 genes for PLDs, which are

classified into six types, PLDa (1–3), b (1 and 2), c (1–3), d, e
and f (1 and 2) [37]. The most abundantly expressed pld genes

in roots are plda1 and pldd [22,38]. PLDa1 is responsible for

most of the PA production in roots, and the PA content is

severely reduced in the roots of plda1 knock out mutants [22].

Furthermore, wounding-induced PA production is completely

eliminated in the plda1 pldd double knock out line [39].

Application of a P. indica exudate fraction, which promotes

plant growth [9] stimulates PA accumulation in a time- and

dose-dependent manner in the roots (Figure 3). Furthermore, the

growth response of plda1 and pldd insertion lines to P. indica was

severely impaired (Figure 4). In comparison, the response of

plda3 und plde (Figure 4, Figure S3C in Text S1) plants to P.

indica was similar to wild type. These results indicate that signals

from the fungus activate PA synthesis via PLDa1 and PLDd in

the roots.

Expression of defense-related genes is downregulated
but independent of the OXI1 pathway under beneficial
conditions

Compared to uncolonized roots, the two PDK1 mRNA levels

were ,2-fold higher and the OXI1 and AGC2-2 mRNA levels

Figure 1. P. indica-mediated increase in fresh weight (%) of wild-type (WT) and mutant plants. Data are based on 5–9 independent
experiments with 10 plants per treatment. Bars represent SEs (significant difference to WT; * p,0.05; ** p,0.001).
doi:10.1371/journal.ppat.1002051.g001

OXI1 in P. indica/Arabidopsis Symbiosis
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increased ,4-fold in P. indica-colonized roots (Figure 5A). In

contrast, three classical defense genes, which are targets of

PDK1 and OXI1 signalling after pathogen infections (PR3,

PDF1.2, ERF1 [20,21,31]), are downregulated in P. indica-

colonized wild-type roots (Figure 5B). Thus, upregulation of the

PDK1 and OXI1 mRNA by P. indica does not result in the

activation of the three defense genes. The expression level of

defense genes is also downregulated in the colonized pdk1.1

pdk1.2, oxi1 and agc2-2 plants. PR2 is mildly upregulated by the

fungus, but this occurs also in the colonized mutants (Figure 5B).

Thus, the regulation of the defense genes occurs independently

of the OXI1 pathway under beneficial co-cultivation conditions

of the two symbionts.

Expression of defense-related genes is upregulated
under non-beneficial conditions

To test whether the PDK1, OXI1 and AGC2-2 kinases activate

defense processes under non-beneficial conditions, we inoculated

Arabidopsis plants with high doses of P. indica. Seven days after

transfer to a dense fungal lawn, the seedlings still continued to

grow (Figure S4A in Text S1), but visible accumulation of

anthocyanin in the aerial parts were indicative of a stress response

in the plants. No H2O2 accumulation would be detected under

these co-cultivation conditions (Figure S4B in Text S1), however

the PDK1, OXI1 and AGC2-2 mRNA levels were moderately

upregulated (Figure 6A). In contrast to beneficial co-cultivation

conditions, also defense genes, and in particular PDF1.2, were

upregulated. However, this response was similar in wild type, oxi1,

agc2-2 and pdk1.1 pdk1.2 mutants (Figure 6B). Therefore,

upregulation of defense genes under non-physiological co-

cultivation conditions is not mediated by the OXI1 pathway as

well (Figure 6B).

Discussion

Growth promotion induced by P. indica in Arabidopsis depends

on various compounds including phytohormones such as auxin

and cytokinins [40], a balanced activation of defense responses in

the roots [7,41], the redox state in the cytoplasm [10] and

sufficient nutrient supply [6]. In this work, we demonstrate that

the OXI1 pathway is another important component, which

mediates the beneficial interaction between P. indica and

Arabidopsis. Moreover, we identified PLDa1, PLDd and PDK1

as components, which are required for P. indica-induced growth

promotion in Arabidopsis. Under beneficial co-cultivation

conditions, P. indica stimulates PA synthesis, but not H2O2

production in Arabidopsis plants. The genetic evidence presented

here and the biochemical data available for the OXI1 signalling

pathway in pathogenic systems [20,21,28,36] suggest that P. indica

regulates plant growth via PA-stimulated PDK1 activation that

subsequently triggers activation of the OXI1 and AGC2-2

protein kinases (Figure 7). The regulation of defense gene

expression in response to nonbeneficial P. indica doses occurs

also in pdk1.1 pdk1.2, oxi1 and agc2-2 mutants, indicating that the

defense gene regulation is mediated by a pathway that functions

independently of the OXI1 cascade.

Figure 2. Characterization of PDK1 mutants. (A) PDK1.1, PDK1.2 and GAPC2 transcript amounts were determined by RT-PCR with gene-specific
primer pairs. The pdk1.1 pdk1.2 line does not contain pdk1 transcripts. Two independent pdk1.1 lines (a and b), pdk1.2 and pdk1.1 pdk1.2 were
analysed. (B) Siliques and (C) phenotypes of pdk1.1 pdk1.2 and wild-type plants are shown.
doi:10.1371/journal.ppat.1002051.g002

OXI1 in P. indica/Arabidopsis Symbiosis
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OXI1 and AGC2-2
The pii12 and oxi1 mutants are impaired in P. indica-induced

growth promotion (Figure 1, Figure S2 in Text S1). The OXI1

kinase was shown to be induced by H2O2 and to activate defense

responses against pathogen infections [20,21,31,42]. However,

H2O2 production is repressed in P. indica-colonized roots under

beneficial co-cultivation conditions (Figure S4C in Text S1) and

some defense genes are downregulated under beneficial conditions

(Figure 5B). Exposure of Arabidopsis seedlings to high doses of the

fungal hyphae induces a mild defense response, which occurs also

in oxi1 mutants (Figure 6B). Thus, OXI1 is required for the growth

response but is not involved in defense gene activation in this

beneficial interaction (cf. below). Interestingly, the OXI1 over-

expressor lines behaved like the wild-type (Figure S2 in Text S1)

suggesting that wild-type amounts of the kinase are sufficient for

the beneficial interaction. Furthermore, AGC2-2, a so far

uncharacterized homolog of OXI1, is also required for the

beneficial interaction. AGC2-2 is not induced by H2O2, but by P.

indica in wild-type roots (Figure 5A). Since attempts to isolate a

homozygote oxi1 agc2-2 double mutant failed and since the two

single knock out lines fail to respond to P. indica, the two kinases

have important and presumably different functions. Interestingly,

Figure 3. Plant PA levels increase in response to treatment with P. indica exudate. Five-days old seedlings were 32Pi-labelled overnight and
then treated with P. indica exudates. (A) Time series of plant PA amounts induced by 50 ml P. indica exudates. (B) Dose response curve of plant PA
production in response to different amounts of P. indica exudate. Lipids were extracted, analysed by thin layer chromatography and PA levels were
quantified by phosphoimaging. 32P-PA control levels were ,1.5% of the total 32P-labelled lipids. The values represent: radioactivity [+P. indica extract/
+buffer]. Bars represent SEs, based on 3 independent experiments. Bars marked with an asterisk are significantly different compared to wild type
(p,0.05).
doi:10.1371/journal.ppat.1002051.g003

OXI1 in P. indica/Arabidopsis Symbiosis
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this highly related pair of protein kinases resembles the OXI1-

activated MAPKs MPK3 and MPK6, for which MPK3 is inducible

by pathogens, while MPK6 is constitutively expressed and mpk3

mpk6 double mutants are embryo-lethal [9,43]. In mammalian

systems, AGC kinases play important roles in growth and

proliferation. The activation mechanism of AGC kinases from

both kingdoms by lipids and their conserved epitopes [17] support

the idea that OXI1 and AGC2-2 play a crucial role in regulating

cell growth, division and/or elongation in response to the signals

from P. indica.

Because oxi1 mutants are also compromised in root hair growth,

we tested two mutants with shorter root hairs, ire and rhd2.

However, none of these mutants were impaired in the growth

response to the fungus (Figure 1). Moreover, because rhd2 is also

impaired in full production of H2O2 in roots, the inability of oxi1 to

respond to P. indica is not caused by the reduced root hair

phenotype or lower H2O2 levels in the roots.

PDK1s, PLDs and PA
PA is an important second messenger and is involved in

regulating plant growth, proliferation, biomass production, cell

expansion, as well as responses to biotic and abiotic stresses

[23,24,26-28,36,44–48]. In response to stresses, PA balances and

fine-tunes the appropriate plant response to environmental signals

[28,36]. PA accumulation is induced by exudate preparations from

P. indica in a dose- and time-dependent manner (Figure 3),

suggesting that the roots sense signalling molecules released from

the fungus. The requirement of the PA-activated PDK1s for the

beneficial interaction suggests a participation in growth regulation,

similar to mammalians [49–51]. Nitrate and phosphate uptake

and metabolism is stimulated by P. indica and required for growth

promotion [6,12,13]. PA also plays important roles in nitrogen

[48,52–54] and phosphate signalling [55,56]. These results might

provide a link between the P. indica-induced positive growth

phenotype and the primary metabolism. Further experiments are

necessary to investigate a role of PDK1, OXI1 and AGC2-2 in this

respect.

Interestingly, in mammals and yeast, PDK1 is a central

regulatory kinase, which phosphorylates and thus activates AGC

kinases in response to rises in the levels of the second messenger

phosphatidylinositol 3,4,5-trisphosphate [19,57]. pdk1 knock-out

mice are embryo-lethal [58]. Since the Arabidopsis pdk1.1 pdk1.2

double knock-out line is viable, activation of AGC kinases might

be different in plant and mammalian systems [19,57,58].

PA is synthesized by PLD or phospholipase C/diacylgycerol

kinase (PLC/DAG) [36]. PLDa1 and PLDd are abundantly

expressed in roots. We observed that their inactivation severely

reduces P. indica-induced growth promotion (Figure 4). plda1 was

shown previously to contain lower PA levels in the roots [22], has

reduced wounding-induced PA production, and this response is

completely eliminated in the plda1 pldd double knock out line [39].

PLDa1 and PA have also been implicated in regulating NADPH

oxidase activity and the production of H2O2 in ABA-mediated

stomatal closure [25]. The plasma-membrane-bound PLDd is

activated in response to H2O2 [59]. However, since H2O2 is not

accumulating in response to P. indica, the lipases might have a

different function and are differently regulated in this beneficial

interaction. PLDa1 and PLDd expression is not induced by P.

indica. PLDa1 activity is regulated by dynamic changes in

intracellular Ca2+ levels (cf. [28]), and the Ca2+ levels in the root

cytoplasm increases even faster in response to the same exudate

fraction from P. indica that induces PA accumulation (Figure 3;

[9]). These results suggest that signals from P. indica are decoded

via the two intracellular second messengers PA and Ca2+. It

remains to be determined how PA and Ca2+ cooperate to induce

the appropriate plant responses, and which mechanisms determine

whether they activate responses leading to a beneficial interaction

or defense activation.

Figure 4. P. indica-induced increases in fresh weight (%) of wild-type and pld mutants. Data are based on at least three independent
experiments with 10 plants per treatment. SEs are shown. Bars marked with an asterisk are significantly different compared to wild type (p,0.05).
doi:10.1371/journal.ppat.1002051.g004

OXI1 in P. indica/Arabidopsis Symbiosis

PLoS Pathogens | www.plospathogens.org 6 May 2011 | Volume 7 | Issue 5 | e1002051



In conclusion, we demonstrate that in the beneficial interaction

between P. indica and Arabidopsis the OXI1 pathway constitutes

a protein kinase signalling pathway that confers growth

stimulation (Figure 7). We propose a model whereby roots sense

signals derived from P. indica by activating a signalling pathway

that results in PA-mediated activation of PDK1, which

subsequently activates the OXI1 and AGC2-2 protein kinases.

Since MPK6 is a downstream target of OXI1 [31] and required

for P. indica-mediated growth promotion [9], it is possible that

MPK6 might be an additional component of this pathway.

Future studies on the targets of the OXI1 pathway should help to

clarify by which mechanism growth promotion occurs in plants

and how this knowledge could be used to improve yield and

productivity in agriculture. It also remains to be determined

whether promotion of plant growth by mycorrhizal fungi or

plant-growth promoting bacteria requires the same pathway, and

how the Arabidopsis mutants analysed in this study respond to

pathogens.

Figure 5. Expression levels of PDK1, OXI1 and AGC2-2 genes and defense genes in colonized wild-type or mutant roots relative to
uncolonized control plants. Panel A shows PDK1, OXI1 and AGC2-2 expression levels and panel B shows expression levels of several defense
genes. RNA was extracted from roots and real-time PCR analyses were performed with the housekeeping gene UBQ5 as control. Calculations were
performed according to [63]. Bars show the mean out of at least four independent experiments with SEs. Data are presented on a log scale.
doi:10.1371/journal.ppat.1002051.g005
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Materials and Methods

Growth conditions of plants and fungi, co-cultivation
experiments

Wild-type Arabidopsis thaliana seeds and seeds from the

homozygote T-DNA insertion lines were surface-sterilized and

placed on Petri dishes containing MS nutrient medium [60]. After

cold treatment at 4uC for 48 h, plates were incubated for 7 days at

22uC under continuous illumination (100 mmol m22 sec21). P.

indica was cultured as described previously [1,4] on Kaefer

medium. Nine day-old A. thaliana seedlings were transferred to

nylon disks (mesh size 70 mm) and placed on top of a modified

PNM culture medium (5 mM KNO3, 2 mM MgSO4, 2 mM

Ca(NO3)2, 0.01 mM FeSO4, 70 mM H3BO3, 14 mM MnCl2,

0.5 mM CuSO4, 1 mM ZnSO4, 0,2 mM Na2MoO4, 0.01 mM

CoCl2, 10.5 g L21 agar, pH 5.6), in 90 mm Petri dishes. Fungal

Figure 6. Expression levels of PDK1, OXI1 and AGC2-2 genes and defense genes after treatment with a high dosis of P. indica (for
details, cf. Methods and Materials and Figure S4A,B in Text S1). Panel A shows PDK1, OXI1 and AGC2-2 expression levels and panel B shows
expression levels of several defense genes. RNA was extracted from roots and real-time PCR analyses were performed with the housekeeping gene
GAPC2 as control. Calculations were performed according to [63]. Bars show fold-induction of RNA values from wild type and agc mutant roots 7 days
after co-cultivation on a fungal lawn relative to the RNA levels from seedlings grown in the absence of the fungus. Bars show the mean out of at least
three independent experiments with SEs. Data are presented on a log scale.
doi:10.1371/journal.ppat.1002051.g006
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plugs of 5 mm in diameter were placed at a distance of 1 cm from

the roots. Control seedlings remain untreated. Plates were

incubated at 22uC under continuous illumination from the side

(80 mmol m22 sec21).

The following homozygote T-DNA insertion lines were used:

rhd2 (At5g51060; [35] obtained from Prof. V. Zársky, Prague,

Czech Republic), ire (At5g62310) Salk_043276, oxi1 (At3g25250)

Gabi_355H08, agc2-2 (At4g13000) Salk_083220, pdk1.1a

(At5g04510) Salk_113251, pdk1.1b (At5g04510) Salk_007800,

pdk1.2 (At3g10540) Sail_450_B01, plda1-1 (At3g15730, [61])

Salk_067533, pldd (At4g35790, [61]) Salk_023247, plda3

(At5g25370) Salk_122059, plde (At1g55180) Koncz68434. pdk1.1

pdk1.2 was generated by crosses between pdk1.1 and pdk1.2.

Experiments on vermiculite
6 week-old adult plants were used for interaction studies with P.

indica. Arabidopsis seedlings, grown for 14 days on MS media,

were transferred to vermiculite (rather than soil), because this

allowed to harvest the intact roots including the lateral roots. The

growth response of the plants to P. indica on soil and on vermiculite

is comparable (data not shown). The vermiculite was mixed with

the fungus (1%, w/v) which was dissolved in PNM medium. 70 ml

of liquid PNM medium or inoculated PNM medium was used per

plant. The fungal mycelium was obtained from two weeks old

liquid cultures after the medium was removed and the mycelium

was washed with an excess of distilled water. Cultivation occurred

in pots in a temperature-controlled growth chamber at 22uC
under short-day conditions (light intensity: 80 mmol m22 sec21).

The sizes of the plants were monitored weekly and after six weeks

the fresh weights of the shoots were determined and the roots

harvested for RNA or DNA extraction.

Experiments with the fungal lawn
12-day-old seedlings were directly transferred from MS medium

to a plate with a fungal lawn. The fungal lawn was obtained by

placing a fungal plug on Kaefer medium and the fungus was

allowed to grow for 14 days at 24uC in the dark, before the

seedlings were transferred to the plate. Control seedlings were

transferred to Kaefer medium without the fungus. The plates were

incubated for 7 days at 22uC under continuous illumination

(80 mmol m22 sec21) from above. Fresh weights were determined

(data not shown) and RNA was extracted of the root material.

RNA analysis
RNA was isolated from the roots with an RNA isolation kit

(RNeasy, Qiagen, Hilden, Germany). For quantitative RT-PCR,

RNA from Arabidopsis roots grown in the absence or presence of

P. indica was used. Reverse transcription of 1 mg of total RNA was

performed with oligodT Primer. First strand synthesis was

performed with a kit from Qiagen (Omniscript, Qiagen, Hilden,

Germany). RT-PCR was conducted with the primer pairs given

in Figure S6 in Text S1. P. indica was monitored with a primer

pair for the translation elongation factor 1 (Pitef1; [62]). The

colonized (and control) roots were removed from vermiculite,

rinsed 6 times with an excess of sterile water and were frozen in

liquid nitrogen for RNA or DNA extraction. One of the two plant

genes (GAPC2 and UBQ5) was used as housekeeping genes for

Arabiopsis roots.

Semiquantitative analysis was performed after 27 PCR cycles:

the products were analysed on 2% agarose gels, stained with

ethidium bromide, and visualized bands were quantified with the

ImageQuant 5.0 (GE Healthcare Life Sciences). Real-time

quantitative RT-PCR was performed using the iCycler iQ real-

time PCR detection system and iCycler software version 2.2 (Bio-

Rad, Munich, Germany). For the amplification of the PCR

products, iQ SYBR Supermix (Bio-Rad) was used according to

the manufacturers instructions in a final volume of 23 ml. The

iCycler was programmed to 95uC 2 min, 356 (95uC 30 s, 55uC
40 s, 72uC 45 s), 72uC 10 min followed by a melting curve

programme (55–95uC in increasing steps of 0.5uC). All reactions

were repeated twice. The mRNA levels for each cDNA probe

were normalized with respect to the GAPC2 and UBQ5 message

levels. Fold induction values were calculated with the DDCP

equation of Pfaffl (2001) [63]. The ratio of a target gene was

calculated in the treated sample versus the untreated control in

comparison to a reference gene. The primer pairs are given in

Figure S6 in Text S1.

Figure 7. Proposed model describing the role of PLD, PA, AGC
and MAP kinases in the beneficial interaction between P. indica
and Arabidopsis. For MPK, see [9].
doi:10.1371/journal.ppat.1002051.g007
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H2O2 measurements
H2O2 was determined by an assay coupled to the peroxidase

[64]. Roots (0,1 g) were homogenized in 1 mL 1 M HClO4/

insoluble PVP (5%). The supernatant was clarified by centrifuga-

tion, adjusted to pH 5.6 with 5 M K2CO3 solution and incubated

with 1U ascorbate oxidase for 10 min to oxidize the ascorbate.

The reaction in 0.1 M phosphate buffer (pH 6.5), 3.3 mM 3-

(dimethylamino) benzoic acid, 0.07 mM 3-methyl-2-benzothiazo-

line hydrazone and 0.3 U peroxidase was started by adding the

oxidized extracts and followed by absorbance change at 590 nm

and 25uC. NBT staining has been described previously [9].

PA measurements
Arabidopsis seedlings (5-days-old) were labeled overnight in

400 mL buffer (2.5 mM MES-KOH, 1 mM KCl, pH 5.7)

containing 10 mCi of carrier-free PO4
32. Samples (3 seedlings

each) were treated by adding 100 mL water with or without elicitor

for the times and concentrations indicated. Treatments were

stopped by adding 50 mL 50% perchloric acid (w/v) and shaking

the samples vigorously for 5 min. Liquid was then removed and

replaced by 375 mL of CHCl3/MeOH/HCl [50:100:1 (v/v)]

followed by 100 mL 0.9 % NaCl (w/v), to extract the lipids while

shaking (10 min). A two-phase system was induced by the addition

of 375 mL of CHCl3 and 200 mL of 0.9% (w/v) NaCl. The

remainder of the extraction was performed as described before

[32]. For quantitative analysis, lipids were separated by thin-layer

chromatography (TLC) using heat-activated, potassium oxalate/

EDTA-impregnated, silica TLC plates (Merck, 2062060.1 cm)

and an alkaline solvent system of CHCl3/MeOH/25%NH4OH/

H2O [90:70:4:16 (v/v)], essentially as described in [65]. Phospho-

lipids were visualized and quantified by phosphoimaging (Molec-

ular Dynamics, Sunnyvale, CA, USA).

Statistics
All data were analysed with one-side, unpaired students t-Test

(p#0.05) in Excel.

Accession numbers
OXI1 (other names: AGC2; AGC2-1; OXIDATIVE SIGNAL-

INDUCIBLE1; ATOXI1; MJL12.22), At3g25250, NP_189162.1;

AGC2-2 (other names: F25G13.90; F25G13_90), At4g13000,

NP_193036.1; PDK1.1 (other names: 3’-PHOSPHOINOSI-

TIDE-DEPENDENT PROTEIN KINASE 1; ATPDK1;

PDK1; T32M21.110), At5g04510, NP_568138.1; PDK1.2 (other

names: PDK2; F13M14.18), At3g10540, NP_187665.2; RHD2

(other names: A. THALIANA RESPIRATORY BURST OXI-

DASE HOMOLOG C; ATRBOHC; K3K7.25; RBOHC;

ROOT HAIR DEFECTIVE 2), At5g51060, NP_199919.1; IRE

(other names: INCOMPLETE ROOT HAIR ELONGATION),

At5g62310, NP_201037.1; PLDa1 (other names: MSJ11.13;

PHOSPHOLIPASE D ALPHA 1; PLD), At3g15730,

NP_188194.1; PLDd (other names: ARABIDOPSIS THALIANA

PHOSPHOLIPASE D DELTA; ATPLDDELTA; F4B14.60;

PLDDELTA), At4g35790, NP_849501.1; PLDa3 (other names:

F18G18.110; PHOSPHOLIPASE D ALPHA 3; PLDALPHA3),

At5g25370, NP_197919.1; PLDe (other names: F7A10.25;

PHOSPHOLIPASE D ALPHA 4; PLDALPHA4; PLDEPSI-

LON), At1g55180, NP_175914.1

Information from http://www.ncbi.nlm.nih.gov/ and http://

www.arabidopsis.org/
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