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Abstract

We present two simple arguments for the potential relevance of a neurobiological analogue
of the finite-state architecture. The first assumes the classical cognitive framework, is well-
known, and is based on the assumption that the brain is finite with respect to its memory
organization. The second is formulated within a general dynamical systems framework and is
based on the assumption that the brain sustains some level of noise and/or does not utilize
infinite precision processing. We briefly review the classical cognitive framework based on
Church-Turing computability and non-classical approaches based on analog processing in
dynamical systems. We conclude that the dynamical neurobiological analogue of the finite-
state architecture appears to be relevant, at least at an implementational level, for cognitive
brain systems.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In the present paper we will provide two arguments for the neurobiological
relevance of the generic finite-state architecture (FSA), or rather, its approximate
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neurobiological analogue. The first will be outlined within the framework of classical
cognitive science and the second within a general dynamical systems framework. We
will also indicate some implications for natural language processing and artificial
grammar learning.

It has recently been suggested that the task of learning an artificial grammar is a
relevant model for aspects of language learning in infants [8], exploring species
differences in learning [9], and second-language learning in adults [6]. Recent FMRI
studies also indicate that language-related brain regions are engaged in artificial
syntax processing [16]. Now, some aspects of natural language are amenable to an
analysis within the classical framework of cognitive science. This framework suggests
that isomorphic models of cognition can be found within the framework of
Church-Turing computability (cf., [4]). A complementary perspective is offered by
network models of language processing (for a review, see e.g., [3]). The network
perspective represents a special case of the recently revived dynamical systems
perspective on analog information processing as a model for cognition, in which a
system is considered as processing information when a subclass of its states can be
viewed as cognitive (in the sense of [10, pp. 19-23]) and transitions between these can
be conceptualized as a process operating on these cognitive structures. In the present
context, it is important to realize that fundamental constraints on cognitive models
are imposed by the realizability requirement. For example, such constraints can be
elaborated in terms of tractable computability, constraints on real-time processing,
and memory organization.

1.1. Formal languages

From an extensional point of view, a formal language can be viewed as a set of
strings, an E-language. Given a finite alphabet of terminal symbols V" over which the
E-language is defined, the set of all possible finite symbol strings that can be
generated from the alphabet V is given by Kleene-star operator V* (cf., [5]). An
E-language L over V'is then defined as a subset L C V*; and a string s is well formed
if and only if it belongs to L (s € L). This extensional definition is of limited interest
from a cognitive point of view and a more fruitful generative approach [2] entails the
specification of (finite) mechanisms that are capable of generating the language in
question, an I-language, by specifying principles of combinations as well as non-
terminal symbols over which these mechanisms operate. The generative machinery
thus serves as an intentional definition of the language in the sense that a string of
terminal symbols is well formed if and only if it can be generated by the formal
mechanism(s). The class of I-languages is a subset of the class of E-languages. A
straightforward cardinality argument shows that the extensional definition entails an
uncountable infinity of different E-languages. It can also be shown that only a
countable infinity of different I-languages are possible, no matter how powerful the
generative methods used, as long as these are restricted to be finite and operate over
finitely specified representational schemes (cf., [4]). Informally, this means that most
E-languages lack structural regularities to such a degree that they cannot be
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generated by finite means. Conversely, the I-languages display a certain minimum
level of structural regularity.

Classes of generating mechanism can be ranked in terms of their expressivity, that
is, how structurally rich the generated languages are. A well-known example of this is
the Chomsky hierarchy of phrase structure grammars: right-linear < context-free <
context-sensitive — general production grammars, where — denotes strict inclusion
(cf., [4]). The different levels of expressivity in the Chomsky hierarchy correspond
exactly to a hierarchy of computational architectures: the finite-state, the non-
deterministic push-down, the non-deterministic linearly bounded, and the Turing
architecture (or unlimited register architecture), respectively. These computational
architectures are all finitely specified with respect to their computational mechanisms
and the Church-Turing hypothesis suggests that no class of finitely specified
computational machines is more powerful than the Turing architecture, and the
latter class can be simulated on a single universal Turing machine (cf., [4]). Given
that the levels of the Chomsky hierarchy are strictly inclusive, it is commonly held
that the FSA is too restrictive to capture all syntactic phenomena found in natural
languages. However, the computational expressivity of any given architecture
depends fundamentally on the complexity of the computational mechanism(s) and
importantly on its memory organization.

1.2. The complexity of computational mechanisms

The computational framework of classical cognitive science can be formulated
from a dynamical systems point of view. We will consider the conceptually simpler
case of a deterministic transition function. This is no restriction since non-
deterministic transition relations surprisingly do not add any computational power
(cf., [4]). Thus, let X be the input space (¢ € ), Q2 the state-space of internal states
(w € Q), and A the output space (1 € A). The possible transitions 7 between internal
states are then determined by a function 7 Q x ¥ — Q and the outputs by a
function R: Q x X — A. In other words, at processing step n, the system receives
input a(n) in state w(n), and changes its state into w(n + 1) while generating the
output A(n + 1) according to

w(n+ 1) = Tlw(n), o(n)], (H
An+1) = Rjo(n), o). )

In this way, the system traces a trajectory in state-space, ..., w(n), w(n + 1), ...,
while receiving the input ..., o(n), o(n+ 1), ..., and generating an output sequence

ooy M), A(n+ 1), .... Within the framework of Church-Turing computability », Q,
and A are all finite and thus 7' and R are finitely specified. Here we have not explicitly
described the system’s memory organization (cf. Table 1).

In the following it is important to distinguish between the complexity of the
computational mechanism of the architecture (machine complexity) and the
complexity of its memory organization. We will focus on just one aspect of
the memory organization, its storage capacity; in particular, whether this is finite or
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Table 1
The Chomsky hierarchy and the memory organization of respective architecture

Architecture Complexity Memory organization

Internal states Registers Stack Accessability
FSA Finite Finite — — —
PDA Finite Finite — Unlimited Top of stack
LBA Finite Finite Unlimited® — Random access
URA Finite Finite Unlimited — Random access

In the table, complexity refers to machine complexity. FSA = finite-state architecture, PDA =
(non-deterministic) push-down architecture, LBA = (non-deterministic) linearly bounded architecture,
URA = unlimited register architecture (which is equivalent to the Turing architecture).

“Linearly bound in the input size with a universal constant.

infinite. This turns out to be crucial for the expressivity of the system, one important
aspect of which is the types of recursive structure that can or are expressed in the
generated strings.

In all classical architectures, the transition function 7: Q2 x X — Q can be realized
in an FSA. Thus, with respect to the mechanism subserving transitions between
internal states there is no fundamental distinction in terms of machine complexity
between the different computational architectures (Table 1, cf., [17]). However, as
indicated by the strict inclusion in the Chomsky hierarchy, there are differences in
expressivity. These differences are fundamentally related to the interaction between
the generating mechanism and the available memory organization. The most
important determinant of structural expressivity is the availability (or not) of infinite
storage capacity. Thus, it is the characteristics of the memory organization, which in
a fundamental sense, allow the architecture to recursively employ its processing
capacities inherent in 7, to realize functions of high complexity or achieve complex
levels of expressivity. From a neurophysiological perspective it seems reasonable to
assume that the brain only possesses finite memory resources, with respect to both
short-term and long-term memory. If this is the case and assuming the classical
cognitive framework, then any cognitive brain function can be formulated within the
FSA (in the level 1 sense of [12]).

2. Learnability

Chomsky [1] suggested that prior innate constraints are necessary in order to
acquire a natural language. More specifically, he suggested that these constraints
represent a linguistically specific competence in the form of a specific language
acquisition device and a specific initial state of the language faculty. It should be
noted that this assumption transfers the problem of learnability to a problem of the
evolutionary origins of language. Moreover, this suggestion is often reinforced by
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invoking an early result by Gold [7], which states that under some circumstances no
super-finite class of languages is learnable from positive examples alone. It has also
been suggested that this is the case when statistical learning mechanisms are
employed [15]. Gold [7], however, noted that the learnability problem can be avoided
under suitable assumptions, including the existence and effective use of explicit
negative feedback, prior restrictions on possible languages, or restrictions on
possible language environments. Recent results in learning theory confirm this. For
example, under general constraints (i.e., not linguistically specific) it is possible to
learn infinitely rich classes of infinite languages from positive examples [18].
Furthermore, the acquisition task becomes potentially more tractable if there are
additional structure in the input or if only approximate identification is required.
One possibility is to generate expectations based on an internal model for prediction.
Within an unsupervised learning framework, the internal model can be acquired
through a learning process that is driven by the difference between input and
internally generated predictions (i.e., self-organized based on general constraints). A
simple example of this is the simple recurrent network (SRN) architecture (e.g., [5]).
Recent results suggest that this may be a viable approach for network models of
finite recursion [3].

3. Analog information processing in dynamical systems

The different architectures of the Chomsky hierarchy allow for different types of
recursion, a feature thought to be at the core of the language faculty [9,10]. For
example, the FSA supports unlimited concatenation recursion and can support finite
recursion of general type. This is also characteristic of human performance.
Unlimited embedding recursion is supported by the push-down architecture, while
unlimited cross-dependency recursion requires a linearly bound architecture (cf., [4]
and Table 1); none of these are characteristic of human (behavioral) performance.
These observations explain why simple computational schemes or architectures are
able to model human performance surprisingly well; for example, a recent study used
discrete-time SRNs to model different types of finite recursion with reasonable
success [3].

The discrete-time SRN can be viewed as a simple network analogue of the FSA.
More specifically, at time point n + 1, the output A(z + 1) of the SRN is a function of
the input o(n) and the previous internal state w(n). The internal state w(n) consist of
two components, w(n) = [h(n), c(n)]: the state of the hidden layer of computational
units /(n) and the state of a one-step short-term memory layer ¢(n) = h(n — 1). The
dynamics of the state transitions has the following form:

c(n+1) = Clo(n)] = hn), 3)

h(n + 1) = Alw(n), a(n)] = A[h(n), h(n — 1), a(n)], 4)
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and thus w(n + 1) = (4[w(n), a(n)], Clw(n)]), or equivalently,
wm+ 1) = Ulw(n), a(n)], &)

An + 1) = N[w(n), o(n)]. (6)

It is clear that the form of (5) and (6) are identical to Egs. (1) and (2), respectively.
This is consistent with an early result by McCulloch and Pitts [13], who showed that
the class of thresholding networks is equivalent to the FSA (see also [14,19]).

Generally, learning and development can be realized by making the system
function, for example N of the SRN, dependent on learning parameters o, yielding a
model space M = {N[«]| « realizable by the system}. Learning (or development) can
then be conceptualized as a trajectory in the model space M, driven by
environmental interaction in conjunction with constraints and system plasticity,
determined by an adaptive (learning) dynamics L of the system:

a(n+ 1) = L(au(n), a(n), n) (7

given an initial state o = oy; here L is explicitly dependent on time in order to capture
the idea of innately specified developmental processes and possible dependence on
the previous developmental history. In general, information processing and learning/
development can be viewed as coupled dynamical system, where the processing
dynamics (Egs. (5) and (6)) is coupled with the learning dynamics (Eq. (7)). If we
replace the discrete time n with a continuous time ¢ and specify the differential time
changes analogously, we have the general continuous-time case. It can be noted that
the SRN differs in processing capacity from the FSA to the extent that it can be
viewed as an analog model; in other words, to the extent that the SRN takes
advantage of infinite processing precision on real numbers (or any dense subset
thereof) in state-space or in time. To the extent that this is not the case, SRN
simulations reduce to the case of FSA simulations.

The analog recurrent neural network architecture can be viewed as a finite number
of analog registers (e.g., the “membrane potential”’) that processes information
interactively. The information processing is determined by the network topology as
well as the transfer functions of its processing units. Several non-standard
computational models have recently been outlined (for a review see e.g., [19]),
including generalizations of the Church-Turing framework: analog instead of
discrete states and/or time in combination with infinite processing precision;
parameterized models in combination with adaptive dynamics (remember that the
universal Turing machine can be viewed as parameterized by the ‘“‘program
number”; cf., [5]). Generally, analog network approaches offer interesting
possibilities to model cognition within a non-classical dynamical systems framework.
For example, memory characteristics arise naturally from particular network
architectures.

It is an interesting and curious fact that the processing power of discrete-time
recurrent networks depends on, among other things, the type of numbers utilized as
adaptive weights (e.g., natural, rational, or real numbers, which correspond precisely
to finite-state, Turing, and super-Turing models, respectively), and a very large class
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of dynamical systems do not possess greater processing capacities than the analog
discrete-time recurrent network architecture [19]. However, the dependence on
infinite precision processing implies that these capacities generally are sensitive to
system noise. In the present context it is important to note that there appears to be
several brain internal noise sources (cf. e.g., [11]). Moreover, it seems clear that any
reasonable analog model of a given brain system will have a state-space in the form
of a finite dimensional compact manifold (i.e., closed and bounded). Here
compactness represents the natural generalization of finiteness in the classical
framework. It follows from the compactness property that finite processing precision
or realistic levels noise would have the effect of coarse graining the state-space, and
thus effectively “discretizing” the state-space into a finite number of volume elements
of indistinguishable states. It thus appears that even if we model a given brain system
as an analog dynamical system, this would approximately behave as, or could be
approximated by, a finite-state analogue. Moreover, under the additional assump-
tion that the available processing time is finite, the same conclusion follows for the
continuous-time case, if finite temporal precision or temporal noise is assumed.

4. Conclusion

It has been suggested that classical cognitive models of language can be viewed as
approximate abstract descriptions of properties of the brain. It is well accepted that
neurobiological and functional brain constraints have important implications for the
characteristics of the language faculty [9,10]. In the present paper, we have offered
two simple arguments for the potential relevance of the neurobiological analogue of
the finite-state architecture (FSA). The first is based on the assumption that the brain
is finite with respect to its memory organization, and the second is based on the
assumption of a compact state-space in conjunction with some level of noise or finite
precision processing. Either of the assumptions seems necessary for physical
realizability. Moreover, if we are referring to a cognitive system, for example ‘natural
language’, as a system of the brain, the dynamical neurobiological analogue of the
FSA appears to be relevant, at least at an implementational level.
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