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Abstract: Remembering complex, multidimensional information typically requires strategic memory re-
trieval, during which information is structured, for instance by spatial- or temporal associations. Although
brain regions involved in strategic memory retrieval in general have been identified, differences in re-
trieval operations related to distinct retrieval strategies are not well-understood. Thus, our aim was to
identify brain regions whose activity is differentially involved in spatial-associative and temporal-associa-
tive retrieval. First, we showed that our behavioral paradigm probing memory for a set of object-location
associations promoted the use of a spatial-associative structure following an encoding condition that pro-
vided multiple associations to neighboring objects (spatial-associative condition) and the use of a tempo-
ral-associative structure following another study condition that provided predominantly temporal associa-
tions between sequentially presented items (temporal-associative condition). Next, we used an adapted
version of this paradigm for functional MRI, where we contrasted brain activity related to the recall of
object-location associations that were either encoded in the spatial- or the temporal-associative condition.
In addition to brain regions generally involved in recall, we found that activity in higher-order visual
regions, including the fusiform gyrus, the lingual gyrus, and the cuneus, was relatively enhanced when
subjects used a spatial-associative structure for retrieval. In contrast, activity in the globus pallidus and the
thalamus was relatively enhanced when subjects used a temporal-associative structure for retrieval. In
conclusion, we provide evidence for differential involvement of these brain regions related to different
types of strategic memory retrieval and the neural structures described play a role in either spatial-associa-
tive or temporal-associative memory retrieval.Hum Brain Mapp 29:1068–1079, 2008. VVC 2007Wiley-Liss, Inc.
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INTRODUCTION

Episodic memories of previous experience are based on
spatially and temporally defined sequences of events. The
focus of this study is on episodic memory retrieval of these
sequences of events, rather than single item memory. In
general, neural operations in distinct brain regions includ-
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ing the medial temporal lobe, the prefrontal and temporal-
parietal cortices support episodic memory retrieval ena-
bling people to travel backwards in subjective time to
remember specific sequences of events from their personal
past (Baddeley, 2001; Tulving, 2002; Wheeler, 2000). When
the episodic memories to be retrieved represent complex,
associative information, strategic processing (e.g., focusing
on specific aspects of the memory representations or types
of stored information) is beneficial in addition to the neces-
sary operations supporting the retrieval of simple item
information. Although still not well-understood, strategic
processing, or working with memory, is essential for the
organization (e.g., clustering or chunking along various
dimensions), selection, integration, and monitoring of the
output from memory stores (Moscovitch, 1994).
Within the concept of strategic processing, there are

several different problem-solving strategies possible
(Kirchhoff and Buckner, 2006) as for instance the use of
the spatial and/or temporal context of the encoded infor-
mation (Henson et al., 1999). Several brain regions
involved in the retrieval of spatial and/or temporal con-
text have been identified, as for instance prefrontal and pa-
rietal networks involved in performing temporal memory
tasks (Cabeza et al., 1997; Dobbins et al., 2003; Simons
et al., 2005). Further, dorsal midlateral right prefrontal
cortex was shown to be involved in context monitor-
ing (Henson et al., 1999). Upon retrieval of the temporal
order in which words were presented, dorsal prefrontal,
cuneus/precuneus and right posterior parietal regions
were also shown activated in a PET study (Cabeza et al.,
1997). However, when sequences of events, like object-
location associations, are to be retrieved, the spatial or
temporal structure of the sequence itself is not necessarily
retrieved, but may implicitly facilitate retrieval of object-
location associations. A prefrontal-parietal network was
found to be involved in implicit forms of strategic mem-
ory, as for instance in recoding information within work-
ing memory (Bor and Owen, 2007; Petersson et al., 2006).
It is currently unclear whether this network is involved in
different forms of implicit strategic memory, or whether
the implicit use of spatial context involves different brain
areas than the implicit use of temporal context in strategic
episodic memory.
In this study, we focus on episodic memory for sequen-

ces of object-location associations, whereby the location of
each object has to be remembered and the spatial or tem-
poral structure of the sequence may only be implicitly
used as a retrieval strategy. When strategic memory re-
trieval is predominantly driven by a strategy using spatial-
associative representations, brain regions known to be
involved in higher order visual processing and mental im-
agery like the cuneus and precuneus seem to be involved
(Fletcher et al., 1995, 1996; Kosslyn et al., 1995; Wheeler
et al., 2000). In contrast, the thalamus as well as the basal
ganglia, in particular their output structure, the globus pal-
lidus, are involved in forms of memory in which temporal
information is crucial, for example in implicit learning of

motor as well as nonmotor sequences (Forkstam and
Petersson, 2005; Forkstam et al., 2006; Lehericy et al., 2005;
Packard and Knowlton, 2002; Smith and McDowall, 2006;
Vakil et al., 2000). In line with this, patients with basal
ganglia degeneration like Parkinson’s disease show deficits
in implicit sequence learning (Smith and McDowall, 2006)
and strategic spatial location memory (Pillon et al., 1998).
Furthermore, the basal ganglia are known to be involved
in behavioral sequencing and strategy selection (Cools,
1980) and the basal ganglia as well as the cerebellum are
thought to be involved in internal time keeping function
(Harrington and Haaland, 1999; Ivry and Spencer, 2004;
Lalonde and Hannequin, 1999; Meck, 2005). Thus, it
appears that the thalamus and the basal ganglia can sup-
port episodic memory retrieval of object-location associa-
tions when this is facilitated by a strategy organizing the
information along a temporal-associative structure.
The primary objective of the present study was to iden-

tify brain regions whose activity is differentially involved
in implicit use of spatial-associatively and temporal-asso-
ciatively driven strategies. To this end, we designed two
experiments (Fig. 1) in which sets of object-location associ-
ations were encoded under two different conditions: (1)
Spatial-associative condition: Encoding of object-location
associations, providing multiple spatial associations
between the item location to be learned and its neighbor-
ing objects; (2) Temporal-associative condition: Encoding of
object-location associations by providing temporal order
associations and reducing the availability of spatial associ-
ations. Importantly, the retrieval conditions in the present
study differed only in the way the information was
encoded. Therefore, we expected to find only those brain
areas activated that are specifically involved in strategies
focusing on spatial-associative or temporal-associative rep-
resentations during object-location retrieval. In contrast,
we did not expect to find any differential activation in
those brain regions that are involved in episodic retrieval
of temporal structures themselves (as outlined above;
Konishi et al., 2002, 2006).
First we investigated our experimental paradigm in a be-

havioral experiment to show that these encoding condi-
tions elicited the use of either a spatial-associative or tem-
poral-associative strategy during recall with unconstrained
response order. Next, we measured brain activity during
the recall test, using functional magnetic resonance imag-
ing (fMRI), contrasting activity related to retrieval of asso-
ciations memorized either in the spatial or the temporal
encoding condition. In contrast to the behavioral experi-
ment, the response order during the recall test was prede-
fined in the fMRI experiment. Thus, differences in brain
activity related to different retrieval strategies were not
confounded by any overt response differences. We
expected both recall conditions to engage overlapping re-
trieval networks, including temporal, parietal, and prefron-
tal brain regions. These networks are generally considered
to be involved in different aspects of object-location re-
trieval, including the hippocampus (Smith and Milner,
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1989), the parahippocampal gyrus (Düzel et al., 2003;
Epstein et al., 2003; Hayes et al., 2004; Sommer et al.,
2005), parietal cortex (Konishi et al., 2000), and parts of the
prefrontal cortex (Cabeza et al., 2003; Dobbins and Han,
2006; Dobbins et al., 2002). Because the retrieval aspects
mediated by these networks might be recruited to the
same or similar extent in both retrieval conditions in this
study, we did not expect these brain regions to be differen-
tially activated. In contrast, we hypothesized that the two

recall conditions would differentially activate brain regions
involved in the use of the specific associative representa-
tions used for strategic memory retrieval. The parietal lobe
is important for spatial memory, but not necessarily for
mental imagination of a coherent picture. Therefore, we
predicted an increased activity in the cuneus and/or pre-
cuneus during the recall of spatial-associatively encoded
object-location associations and in the basal ganglia and/
or the thalamus during the recall of temporal-associatively
encoded object-location associations.

MATERIALS AND METHODS

Experiment 1—The Use of Different Retrieval

Strategies During Recall

Participants

Six young healthy volunteers participated in the first
experiment (3 female; mean age 5 27 years, SD 5 3.6,
range 21–31). The mean number of years of formal educa-

Figure 1.

Experimental design, showing the timeline for a single phase.

Three-by-three grids with simple line drawings were shown. (a)

For a spatial-associative encoding block, the subjects saw all the

nine pictures at once (presented simultaneously) and had to

make a living–nonliving decision on each of the pictures in a

fixed pseudo random order as indicated by the moving red

frame. (b) Half of the cycles started with a temporal-associative

encoding block in which participants looked at the nine pictures

one-by-one, while the others were hidden and a living–nonliving

decision had to be made on each picture in a random but prede-

fined order. (c) In both cases, the encoding phase was followed

by a 1-back working memory task, which served as distraction.

In this task, subjects had to indicate whether or not the picture

in the blue frame was the same as the previous picture in the

blue frame, irrespective of the location of the picture. (d) The

1-back working memory task was always followed by a recall

phase in which each of the nine pictures shown in the preceding

encoding phase were shown again and subjects had to indicate

their original location in the grid. In the behavioral experiment

(Experiment 1), subjects were allowed to order their recall

responses freely. They were presented with the studied objects

each printed on a small paper card, which had to be put on the

grid on the positions studied in the preceding encoding phase.

(e) In the fMRI experiment (Experiment 2), the objects studied

in the preceding encoding block were shown below the grid, all

nine of them sequentially but in random order and subjects had

to indicate their locations as A1, B2, etc., by appropriate button

presses. The recall phase was always followed by a rest phase, a

simple fixation cross (not shown here) after which the next

cycle started with the same sequence of tasks, randomly starting

with either a spatial-associative or a temporal-associative encod-

ing condition.
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tion was 18 (SD 5 1.0). All subjects were right-handed as
indexed by an Edinburgh handedness index (�90; Old-
field, 1971). Vision was normal or corrected-to-normal in
every participant. All subjects gave written informed con-
sent according to the Helsinki Declaration and the local
medical ethics committee.

Stimulus material and experimental procedure

We selected 117 black-on-white line drawings of com-
mon living and nonliving objects (Snodgrass and Vander-
wart, 1980). For each subject, we randomly chose nine
drawings (five living and four nonliving) for the distrac-
tion task, 54 drawings (27 living and 27 nonliving) for the
spatial-associative encoding condition and 54 drawings
(27 living and 27 nonliving) for the temporal-associative
encoding condition. In line with the subsequent fMRI
experiment, this behavioral experiment was structured in
12 cycles each including four phases: encoding, distraction,
visual fixation, and recall test (Fig. 1). Each cycle started
with either a spatial-associative or a temporal-associative
encoding condition, in which object-location associations
were memorized, and ended with an object-location cued-
recall memory test. During encoding, subjects were
required to memorize nine objects and their particular
location in a 3 3 3 grid displayed on a computer screen.
The subjects were instructed to make a living-nonliving
decision on each object and to respond verbally to ensure
active participation and good recall performance. In the
spatial-associative encoding condition, a red frame moved
through the grid in a fixed pseudo random order high-
lighting each item for 3 s, one item at a time, on which the
living-nonliving decision was made (Fig. 1a). The complete
grid-display with all nine objects was visible during the
entire encoding phase providing a rich spatial-associative
encoding context, in which each item location could easily
be associated with neighboring objects and the entire grid.
The temporal-associative encoding condition was identical
to the spatial study condition except that each object was
only transiently visible for 3 s, highlighted by the red
frame and while all other items were hidden by non-in-
formative masks (Fig. 1b). Thus, this condition did not
provide the entire grid with all objects as an associatively
rich spatial structure and its structure was therefore domi-
nated by the sequence of the presented objects.
To overwrite potentially maintained working memory of

the previous encoding phase, we introduced a one-back
object memory distraction task (Fig. 1c; Baddeley, 1995).
Subjects were shown a 3 3 3 grid with nine novel objects.
In this distraction condition, the sequential, random move-
ment of a blue frame over each grid-box was accompanied
by a random rearrangement of objects within the grid ev-
ery 3 s. For each highlighted (blue frame) object, subjects
had to indicate whether this object was identical with the
one shown previously in the blue frame independently of
the location within the grid over nine successive trials. To
parallelize this experiment as much as possible with the

subsequent fMRI experiment, we included a visual fixation
phase that was equally timed to the other phases (such
that every phase lasted 27 s). During this condition, a
white, central fixation cross on a black background was
displayed. No response was required in this condition.
Subjects were instructed to attentively fixate the cross.
During the recall task, which was identical for the spa-

tial-associative and the temporal-associative encoding
cycles, subjects were presented with a 3 3 3 grid in carton
paperboard, without drawings, as well as the studied
objects each printed on a small paper card and provided
at once in random spatial positions (Fig. 1d). Subjects were
instructed to put the cards on the 3 3 3 grid on the posi-
tions studied during the encoding phase in any order.
Before the actual experiment, subjects practiced the task

with two cycles (one spatial-associative and one temporal-
associative study condition) with additional line drawings,
which were not otherwise used during the experiment.
Participants were comfortably seated at a desk with a com-
puter monitor for stimulus presentation and the 3 3 3 grid
in front of them. We used a video camera to record the
responses made by the subjects for further analysis. First,
the recall performance was analyzed per subject, by divid-
ing the number of correct answers by the total number of
answers, to check that all subjects performed above chance
level. Next, to investigate the retrieval strategies used dur-
ing recall, we analyzed the correct answers only. Specifi-
cally, we analyzed the relationship between the spatial
structure of the grid and the recall order chosen by the
subjects, to determine whether subjects used the spatial
structure of the grid during retrieval in either of the two
conditions. The number of successive correct answers in
contiguous positions in the grid (Fig. 1: for instance B1 fol-
lowed by B2 or B1 followed by A1 is a contiguous answer,
but B1 followed by C3 is a noncontiguous answer) was
counted per subject and cycle. For example, in the case of
one cycle containing only two successive correct answers
being B1 and A1, the actual number of contiguous correct
answers would be 1. To correct this number of contiguous
correct answers for differences in performance, it was
expressed as a percentage of the number of contiguous
correct answers that would be expected by chance. The
chance level of contiguous correct answers was calculated
as the number of contiguous correct answers divided by
the total number of correct answers available in the grid
and then set at 100%. In the example outlined above of a
cycle containing only two successive correct answers the
first one being B1, the chance that the next correct answer
is in a contiguous position is 0.375; following B1 there are
three available contiguous answers: A1, B2, and C1, di-
vided by eight available correct answers (all nine positions
except B1). The chance level of contiguous correct answers
would then be set at 100%; so, in this example, 0.375 con-
tiguous correct answers are expected by chance. Since the
actual number of contiguous correct answers in this exam-
ple cycle is 1, the percentage of contiguous correct answers
is 1/0.375 3 100% 5 267% of chance level (5 0.375 5
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100%) for this particular example cycle. The percentage of
contiguous answers was calculated as a measure of the
use of the spatial-associative structure of the grid during
retrieval independent of the actual performance level in ei-
ther of the two conditions. To investigate whether subjects
used the encoding order during retrieval in either of the
two conditions, we also analyzed the relationship between
the given encoding order and the recall order chosen by
the subjects. Our measure of interest in this analysis was
the Pearson’s correlation between the encoding order and
the retrieval order.

Experiment 2—Brain Activity During Recall

Participants

Twenty young healthy volunteers participated in the
second experiment (not included in Experiment 1; 10
female; mean age 5 25 years, SD 5 4, range 19–33). The
mean number of years of formal education was 19 (SD 5
3). All remaining subject characteristics were identical to
the ones described for Experiment 1.

Stimulus material and experimental procedure

Experiment 2 was identical to experiment 1 except for:
(1) To obtain sufficient power; the second experiment con-
sisted of 20 instead of 12 cycles, each including four
phases: encoding, distraction, visual fixation, and recall
test (Fig. 1). Every phase lasted 29.7 s (nine items, 3.3 s
each). We selected 189 black-on-white line drawings [nine
drawings (five living and four nonliving) for the distrac-
tion task, 90 drawings (45 living and 45 nonliving) for the
spatial-associative encoding condition and 90 drawings (45
living and 45 nonliving) for the temporal-associative
encoding condition]; (2) Responses during encoding, dis-
traction, and recall were made by appropriate button
presses; (3) During the recall task, subjects were presented
with the 3 3 3 grid without drawings. The participants
could read the coordinates of each grid box, A1, A2, . . .,
C3 in the corresponding box. The encoded objects were
shown one at a time below the grid in random order (Fig.
1e; 3.3 s per item). Subjects were instructed to indicate the
position in the grid in which the object was presented dur-
ing the study phase by an appropriate combination of left
and right hand key presses. The assignment of the items
to the different conditions and grid positions as well as the
condition with which the experiment started was random-
ized across subjects.
Before going into the scanner, subjects practiced the task

in four cycles (two spatial-associative and two temporal-
associative study conditions) with additional line draw-
ings, which were not otherwise used during the experi-
ment. We used the Presentation software (www.nbs.neuro-
bs.com) to present the stimuli and recorded the responses
made by the subjects. Stimuli were back-projected via an
LCD-projector onto a translucent screen that subjects

viewed through a mirror mounted on the head coil. Sub-
jects responded with two optical key-devices, one in each
hand. The subject’s head was immobilized with a vacuum
cushion to reduce head motion during fMRI data acquisi-
tion. The behavioral responses subjects made while in the
scanner were analyzed for accuracy and reaction time. The
use of different retrieval strategies during recall was ana-
lyzed in Experiment 1 and thus not further analyzed in
Experiment 2. This approach was chosen, because it
allowed us to predefine the response order during recall in
the scanner, so that differences in brain activity related to
the different retrieval strategies would not be confounded
by any overt differences in responses.

MRI Data Acquisition

Whole head T2*-weighted EPI-BOLD fMRI data were
acquired with a Siemens Sonata 1.5T MR scanner using an
interleaved slice acquisition sequence (EPI; volume TR 5
2.93 s, TE 5 40 ms, 908 flip-angle, 37 axial slices, slice-
matrix size 5 64 3 64, slice thickness 5 3.5 mm, no slice
gap, FOV 5 224 mm, isotropic voxel-size 5 3.5 3 3.5 3
3.5 mm3). High-resolution structural MR images were
acquired with a T1-weighted MP-RAGE sequence (volume
TR 5 2.25 s, TE 5 3.93 ms, 158 flip-angle, 176 sagittal sli-
ces, slice-matrix size 5 256 3 256, slice thickness 5 1 mm,
no slice gap, voxel-size 5 1 3 1 3 1 mm3).

MR Image Preprocessing and Statistical Analysis

Image preprocessing and statistical analysis was exe-
cuted with the SPM2 software (www.fil.ion.ucl.ac.uk). The
functional EPI-BOLD images were realigned and the sub-
ject-mean functional MR images were coregistered with
the corresponding structural MR images using mutual in-
formation optimization. These were subsequently spatially
normalized (i.e., the normalization transformations were
generated from the structural MR images and applied to
the functional MR images) and transformed into a com-
mon approximate Talairach space (Talairach and Tour-
noux, 1988) defined by the SPM2 MNI T1 template, and
finally spatially filtered by convolving the functional
images with an isotropic 3D spatial Gaussian filter kernel
(8 mm FWHM; Hayasaka and Nichols, 2003; Petersson
et al., 1999). The fMRI data was proportionally scaled to
account for global effects and analyzed statistically using
the general linear model and statistical parametric map-
ping (Friston et al., 1995). The linear model included con-
volved explanatory variables (box-car regressors) modeling
the experimental conditions in a blocked fMRI design. The
explanatory variables were temporally convolved with the
canonical hemodynamic response function provided by
SPM2. In addition, the linear model included as effects of
no-interest: session/subject-effects, realignment parame-
ters, and a temporal high-pass filter to account for various
low-frequency effects. In the statistical analysis, relevant
contrasts corresponding to null-hypotheses were used to
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generate contrast images for each subject, which were sub-
sequently subjected to a second-level random effects analy-
sis. The suprathreshold cluster-size was used as test statis-
tic. In the random effects analyses, the suprathreshold
clusters were defined by the threshold t19 5 2.54 (except
for the baseline comparisons, in which the threshold was
set at t19 5 3.11 to generate clusters that were not too large
to render their interpretation difficult). Only clusters signif-
icant at P < 0.05 corrected for multiple nonindependent
comparisons based on the family-wise error rate (Worsley
et al., 1996) are reported. Subsequently, the significant
clusters were resolved into local maxima and only local
maxima significant at P < 0.05 corrected for multiple non-
independent comparisons based on the false discovery rate
(Genovese et al., 2002) are reported and no masking proce-
dure was applied. The terms of activation and deactivation
are used as synonyms for a relative increase and decrease
in BOLD signal, respectively.

RESULTS

Experiment 1—The Use of Different Retrieval

Strategies During Recall

The cued object-location recall performance was signifi-
cantly above chance level (5 11% 5 1/9 items 3 100%) for
both the spatial-associatively and temporal-associatively
encoded pictures (spatial: mean correct 5 74%, SD 5 27, t5
5 5.7, P 5 0.002; temporal: mean correct 5 71%, SD 5 26,
t5 5 5.6, P 5 0.002) and at a similar level for both condi-
tions (t5 5 0.87, n.s.). To investigate whether subjects used
the spatial-associative structure of the grid during retrieval
in either of the two conditions, independent of perform-
ance, we analyzed the positions in the grid of the correct
answers only. The number of spatial contiguous correct
answers, in the recall order chosen by the subjects, was
compared to the number of spatial contiguous correct
answers to be expected by chance (chance level was set at
100% for every sequence of correct answers). Only correct
answers were included in this analysis. On average, for
spatial-associatively encoded items, in the sequence pro-
vided by the subjects during free recall, the percentage of
correct answers that were in spatially contiguous positions
in the grid, was significantly above the defined chance
level (mean: 132% SD 5 26%; one-sample t-test, test value
5 100, P 5 0.031). Thus, of all correct answers there are
significantly more answers in contiguous positions than
would be expected by chance. On the other hand, for tem-
poral-associatively encoded items, the percentage of spatial
contiguous correct answers was not significantly different
from chance level (mean: 78.4% SD 5 46%, one-sample t-
test, test value 5 100, P 5 0.3). To investigate whether sub-
jects used the encoding order during retrieval in either of
the conditions, we analyzed the order of the correct
answers. There was a significant negative correlation
between the given encoding order and the recall order
chosen by the subjects for the temporal-associatively

encoded object-location associations (r 5 –0.78; P < 0.05),
but not for the spatial-associatively encoded associations (r
5 –0.30, n.s.). This negative correlation represents a mem-
ory retrieval strategy rather than a simple recency effect,
since it was absent in retrieval of the spatial-associatively
encoded associations, where a recency effect would be
expected to play a similar role. Thus, these findings sug-
gest that during the recall test without a constrained re-
trieval order subjects tend to utilize two different retrieval
structures, depending on the way the information was
encoded. For spatial-associatively encoded items, retrieval
is predominately driven by a strategy using a spatial-asso-
ciative structure, whereas subjects used the inverted
encoding order as a structure for object-location associa-
tions learned in the temporal-associative encoding condi-
tion.

Experiment 2—Brain Activity During Recall

Behavioral data

The cued recall performance was robust and signifi-
cantly above the chance level of 11% in both conditions
(spatial: mean correct 5 73%, SD 5 16, t19 5 17.2, P <
0.001; temporal: mean correct 5 67%, SD 5 16, t19 5 16.1,
P < 0.001) and slightly better for spatial- than for tempo-
ral-associatively studied object-location associations (t19 5
4.5, P < 0.001). To further investigate this small but signifi-
cant difference in behavioral performance, we did a corre-
lation between behavioral performance (accuracy score)
and fMRI data everywhere in the brain (not restricted to
the identified peak voxels or ROI data). We found that the
performance scores did not explain any variance in the
fMRI data, not even at high a-levels (P > 0.5). Therefore,
the performance scores were not analyzed further. The
reaction times for correct responses during recall did not
differ significantly between spatial-associatively compared
with temporal-associatively encoded information (spatial:
mean RT 5 1.55 s, SD 5 0.17; temporal: mean RT 5 1.57 s,
SD 5 0.14; t19 5 1.45, n.s.). However, these data may be
difficult to interpret, since two button presses were
required per answer, whereby a right hand button press
indicated A, B, or C, and a left hand button press indi-
cated 1, 2, or 3. The reaction times mentioned are the times
until the first button press (A, B, or C). Since the complete
answer has not been given at that time point, putative
differences in reaction time between the conditions may
have been diluted. The use of two different retrieval strate-
gies for spatial-associatively and temporal-associatively
encoded information was already shown in Experiment 1.
Relying on this result, we had the unique opportunity to
focus on the quality of our fMRI data in Experiment 2.
Therefore, the response order during the recall test in the
scanner was predefined so that differences in brain activity
related to different retrieval strategies and would not be
confounded by any overt differences in responses. Thus,
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the use of retrieval strategies was not further analyzed in
the fMRI experiment.

Imaging data

Compared to the visual-fixation baseline condition, recall
of both spatial-associatively and temporal-associatively
studied object-location associations activated similar brain
regions, including visual and associative processing
regions in the occipital [Brodmann’s area (BA) 17/18/19],
parietal (BA 7, 23/31, and 39/40), and temporal lobes (BA
37), as well as medial temporal (BA 36) and prefrontal (BA
6/8/9/44/45/46) regions (Fig. 2; all clusters P < 0.05, cor-
rected). Additional significant bilateral clusters were
observed in the anterior cingulate (BA 6/32), the frontal
operculum/anterior insula (BA 13/15/47), and the anterior
middle frontal region (BA 10/11) in the temporal-associa-
tive retrieval condition only. With respect to subcortical
structures, we observed significant activations in the thala-
mus and the basal ganglia in both the spatial-associative
condition [right thalamus, (x, y, z) 5 (14, 214, 18), P 5
0.001; (16, 26, 12), P 5 0.001; left thalamus, (216, 210, 16),
P 5 0.001; (212, 216, 8), P 5 0.001; right caudate/puta-
men: (20, 6, 8), P 5 0.008; left caudate/putamen: (220, 6,
8), P 5 0.008; left putamen/globus pallidus: (218, 0, 10),
P 5 0.003; (222, 26, 6), P 5 0.003] and the temporal-
associative condition [right thalamus, (14, 216, 16), P <
0.001; left thalamus, (212, 214, 10), P < 0.001; right cau-
date/putamen: (18, 6, 6), P < 0.001; left caudate/putamen:
(218, 4, 6), P < 0.001; left putamen/globus pallidus:
(214, 22, 12), P 5 0.003; all local maxima P-values
reported were corrected for multiple nonindependent
comparisons].
A direct comparison of brain activity associated with

recall of spatial-associatively and temporal-associatively
encoded object-location associations revealed that the
globus pallidus and the thalamus were significantly more
active during recall of temporal-associatively compared to
spatial-associatively studied object-location conjunctions
[bilateral cluster P 5 0.029, corrected; including local max-
ima in left thalamus: (210, 214, 0), Z 5 3.53; right thala-
mus: (8, 28, 4), Z 5 3.25; left thalamus/globus pallidus:
(214, 26, 0), Z 5 3.33; right thalamus/globus pallidus:
(12, 22, 4), Z 5 3.42; right thalamus: (28, 222, 4), Z 5
3.24; left globus pallidus: (218, 24, 0), Z 5 3.48; left
globus pallidus: (218, 28, 4), Z 5 3.00; Fig. 3 and Table I].
Conversely, the cuneus extending into the lingual and fusi-
form gyri (BA 17/18/19) were significantly more active
during recall of spatial-associatively compared to tem-
poral-associatively encoded object-location conjunctions
[bilateral cluster P < 0.001, corrected; including local max-
ima in right cuneus: (6, 284, 26), Z 5 3.72; left cuneus:
(24, 290, 10), Z 5 3.99; right lingual gyrus: (10, 272, 0), Z
5 4.05; left lingual gyrus: (28, 272, 12), Z 5 3.52; right
posterior fusiform gyrus: (26, 262, 22), Z 5 3.02; Fig. 3
and Table I].

DISCUSSION

In addition to operations supporting retrieval of item in-
formation, recall of complex sequences of information, as
commonly required for episodic retrieval, typically entails
strategic processing, and this has been conceptualized in
terms of working with memory (Gabrieli et al., 1996; Mos-
covitch, 1994). Our fMRI results show differential recruit-
ment of distinct brain regions during retrieval, depending
only on the way in which the information was encoded.
Together with the results from the behavioral experiment,
these data suggest that two different types of representa-
tions are used in strategic retrieval processing. In other
words, the use of a temporal-associative structure versus a
spatial-associative structure differentially recruits distinct
brain regions. More specifically, activity in the globus pal-
lidus and the thalamus is associated with memory retrieval
when subjects implicitly use the temporal-associative struc-
ture of the encoding sequence. On the other hand,
increased activity in posterior midline structures like the
lingual/fusiform gyrus and the cuneus is associated with
memory retrieval when subjects implicitly use a spatial-
associative structure. These results provide initial evidence
for a functional differentiation between two important
processes in strategic memory retrieval and also suggest
that the role of the basal ganglia in processing sequences
extends to the declarative memory system.
If subjects are allowed to order their recall responses

freely (as in Experiment 1), they tend to order their
responses along the type of structure that was predomi-
nantly provided during the preceding encoding condition.
Thus, the participants ordered their responses along the
spatial-associative structure provided during the spatial-
associative encoding condition, and along the temporal-
associative structure provided during the temporal-associa-
tive encoding condition. This result suggests that our ex-
perimental design manipulates the utilization of structured
memory representation for complex information provided
by the nine object-location associations during strategic
memory retrieval. Although the two recall conditions were
identical in Experiment 2, fMRI revealed a differential
involvement of distinct neural substrates: one for the re-
trieval of spatial-associatively encoded and another for
temporal-associatively encoded object-location associations.
While the overlapping brain regions are well-known to be
involved in associative memory retrieval (Buckner et al.,
1998a,b; Konishi et al., 2000) but not in temporal order re-
trieval itself or in recency judgment (Cabeza et al., 1997;
Dobbins et al., 2003), the present results support the idea
that the implicit use of different strategies during retrieval
involve distinct neural substrates. Our results cannot be
explained by differences in overt behavior, because the
order of recall responses was randomly predefined in
the fMRI experiment and thus, in contrast to an uncon-
strained retrieval order, in our design, every subject
retrieved the same object-location association on exactly
the same (relative) point in time. The two conditions of
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main interest differed only in the way in which the infor-
mation was encoded. Therefore, the identical design of the
two recall conditions prevents our findings from being
confounded by external factors, including differential vis-
ual or motor demands. A possible limitation of this
approach is that an objective measure confirming the dif-
ferential use of the two different strategies in the scanner
is lacking. In this respect, we rely on the behavioral experi-
ment showing that our two different encoding conditions
lead to the use of two different retrieval strategies. This is
a strong argument for assuming that, upon presentation of
the same types of encoding conditions, different retrieval
strategies would be used in the scanner as well.
Thus, the result that activity in posterior midline struc-

tures like the lingual/fusiform gyrus and the cuneus is
increased during retrieval of spatial-associatively encoded
object-location associations may be explained by the use of
a spatial-associatively driven strategy. It is conceivable that
this spatial-associatively driven strategy depended on
imagining the spatial-associative structure, in other words,
imagining the grid containing the nine objects as encoun-
tered during the entire encoding phase as a coherent
image (Fletcher et al., 1995, 1996; Kosslyn et al., 1995;
Wheeler et al., 2000). The higher order visual processing

Figure 3.

Brain regions activated in the direct comparison of the recall of spatial-associatively encoded

object-location associations versus the recall of temporal-associatively encoded object-location

associations (a) and the converse comparison (b). Activations are shown superimposed onto

selected slices of an individual high-resolution T1-weighted volume (left and middle figures) and

as intensity projections (right-hand figures). Only significant clusters are shown.

Figure 2.

Brain regions activated in the comparison of the recall of spatial-

associatively encoded object-location associations (left hand

columns) or the recall of temporal-associatively encoded object-

location associations (right hand columns) versus the visual fixa-

tion condition. Activations are shown on an individual brain

rendered in 3D. Only significant clusters are shown.
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areas, which we found to be recruited in relation to the
use of spatial-associative representations, are located in the
parietal and inferior temporal lobes. The parietal lobe con-
tributes importantly to aspects of episodic memory re-
trieval (Shannon and Buckner, 2004; Wagner et al., 2005).
Reactivation of higher order visual processing areas that
were activated during perception of items was shown to
mediate their retrieval (Wheeler et al., 2000). The mecha-
nism mediating this reactivation during retrieval remains
as yet unclear. Anatomical data in monkeys showed the
presence of neuronal projections between the medial tem-
poral lobe and the parietal lobe enabling interactions
between the two (Insausti et al., 1987; Kobayashi and Ama-
ral, 2003; Suzuki and Amaral, 1994). Possibly, parts of the
parietal lobe act as an interface between the prefrontal cor-
tex (executive functions) and the medial temporal lobe (de-
clarative memory functions; Kobayashi and Amaral, 2003;
Shannon and Buckner, 2004; Valenstein et al., 1987), facili-
tating mental imagery and thus mediating retrieval using
a spatial-associative strategy. In support of this hypothesis,
parts of the parietal lobe were found activated in tandem
with the prefrontal cortex during retrieval of imagined pic-
tures (Lundstrom et al., 2003, 2005).

The result that activity in the globus pallidus and the
thalamus increased during retrieval of temporal-asso-
ciatively encoded object-location associations may be ex-
plained by the use of a temporal-associatively driven
strategy. It is likely that the temporal-associatively driven
strategy depended on sequencing of the objects, or order-
ing them chronologically as encountered during the encod-
ing phase. The globus pallidus is part of the output system
of the basal ganglia and projects via the thalamus to the
prefrontal cortex (Alexander et al., 1986; Lawrence et al.,
1998) and thus is part of the cortico-striatal circuit (Mid-
dleton and Strick, 2000, 2001), which is considered to be
crucial for interval timing and coincidence detection
(Hinton and Meck, 2004; Matell and Meck, 2004; Meck and
Benson, 2002). Both the globus pallidus and the thalamus,
in which we observed activation specifically related to the
retrieval of temporal-associatively encoded information,
have also been observed to be activated in multiple forms
of sequencing, including memory-guided movement
sequencing (Menon et al., 2000), motor sequencing (Chan
et al., 2006), and semantic event sequencing (Tinaz et al.,
2006). Our results thus provide initial evidence that these
subcortical structures are also involved in organizing de-
clarative memories into a temporal-associative structure.
Moreover, our findings suggest yet another role of the ba-
sal ganglia in the declarative memory system (Gabrieli,
1998; Poldrack et al., 2001; Voermans et al., 2004).
It has been proposed that, by inhibiting cortical areas

not needed for the task in question, the globus pallidus
subserves a focusing role and thus might provide a selec-
tion mechanism in its interaction with the prefrontal cortex
(Mink and Thach, 1991). This focusing function of the
globus pallidus was recently considered to be crucial to ac-
complish a picture sequencing task (Tinaz et al., 2006).
Subthalamic inputs can excite pallidal neurons via the
indirect pathway, whereas striatal inputs inhibit pallidal
neurons via the direct pathway (Parent and Hazrati, 1993).
Depending on the relative activity of the direct and the
indirect pathway, this can lead to activity in the globus
pallidus that is important for selection of prefrontal areas
required in a particular cognitive task (Levy and Dubois,
2005). A task-related increase in globus pallidus activity,
as observed here during recall of temporal-associatively
encoded object-location associations, might thus reflect a
focusing on or selection of specific prefrontal areas. There-
fore, the deficits in strategic memory retrieval seen in
patients with basal ganglia dysfunction are likely to be the
result of abnormal input to the prefrontal cortex caused by
malfunctioning basal ganglia circuitry rather than of intrin-
sic prefrontal dysfunction per se (Berger et al., 2004; Owen
et al., 1998).
Nevertheless, strategic memory is likely to recruit parts

of the prefrontal cortex. It is clear that strategic processing,
which is here conceptualized in terms of working with or
reasoning about encoded information retrieved from mem-
ory stores, engages prefrontal functions (Bor et al., 2003,
2004; Fletcher and Henson, 2001; Henson et al., 1999;

TABLE I. Brain regions differentially activated during

recall of temporal-associatively and spatial-associatively

encoded object-location associations

Brain region BA Z-score Local maxima

Spatial versus temporal,
Cuneus cluster, P < 0.001
Right cuneus 18 3.72 (6, 284, 26)
Left cuneus 17 3.99 (24, 290, 10)
Left cuneus 17/18 4.33 (26, 286, 16)
Left cuneus 17/18 4.46 (28, 280, 20)
Right lingual gyrus 18 4.05 (10, 272, 0)
Right lingual gyrus 18 3.84 (10, 274, 4)
Right lingual gyrus 18 3.76 (14, 270, 26)
Right lingual gyrus 18/19 3.39 (4, 272, 8)
Left lingual gyrus 17/18 3.52 (28, 272, 12)
Right posterior fusiform gyrus 19 3.02 (26, 262, 22)
Right posterior fusiform gyrus 19 3.01 (24, 266, 22)
Right posterior fusiform gyrus 19 2.98 (20, 262, 2)

Temporal versus spatial, Basal
ganglia cluster, P 5 0.029
Left thalamus 3.53 (210, 214, 0)
Left thalamus 3.52 (210, 220, 22)
Left thalamus 3.49 (28, 210, 0)
Left thalamus 3.36 (26, 214, 4)
Right thalamus 3.25 (8, 28, 4)
Right thalamus 3.14 (10, 28, 8)
Right thalamus 3.02 (6, 210, 8)
Left thalamus/globus pallidus 3.33 (214, 26, 0)
Right thalamus/globus pallidus 3.42 (12, 22, 4)
Left globus pallidus/putamen 3.48 (218, 24, 0)
Left globus pallidus 3.00 (218, 28, 4)
Right thalamus/posterior putamen 3.19 (28, 222, 4)
Right posterior lateral putamen 3.24 (34, 220, 4)

BA 5 Brodmann’s area.
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Simons and Spiers, 2003). It was previously shown that the
use of the spatiotemporal context during retrieval was
associated with activation of a dorsal midlateral region of
the right prefrontal cortex (Henson et al., 1999). In the
present study, both recall conditions activated several pre-
frontal regions when compared with the visual-fixation
baseline condition. These included both dorsolateral and
ventrolateral prefrontal regions (Fig. 2). However, we did
not observe any significant difference in prefrontal activity
between the two recall conditions. The lack of differential
activation of the prefrontal cortex in the present study
might be due to an interaction of both sets of brain regions
(or a third set) with the prefrontal cortex to a similar
degree. If this is the case, the absence of a differential pre-
frontal response can be explained by the similar extent to
which both strategies involve prefrontal activity.
It has been shown that the basal ganglia and the medial

temporal lobe memory system can interact under certain
conditions in declarative memory (Poldrack et al., 2001;
Voermans et al., 2004) and it is well established that parts
of the thalamus form an integral part of the declarative
memory system (Aggleton and Brown, 1999). It therefore
appears that the globus pallidus and the thalamus are well
suited to regulate one form of strategic memory retrieval.
In interaction with the prefrontal cortex, the globus pal-
lidus and thalamus may select and organize information
retrieved from the medial temporal lobe memory system,
thus extending the role of the basal ganglia in processing
sequences to the declarative memory system.
In conclusion, our study provides new evidence for dif-

ferential involvement of distinct neural correlates in differ-
ent types of strategic memory retrieval and shows that the
role of the basal ganglia in processing sequences extends
to the declarative memory system. The neural pathway
used for retrieval may be flexible, depending on the way
in which complex information becomes structured during
retrieval contingent on encoding conditions. It is thus pos-
sible that, parts of the parietal and/or temporal lobe (spa-
tial-associative representations), or the globus pallidus and
the thalamus (temporal-associative representations), func-
tion as distinct interfaces between the medial temporal
lobe and the prefrontal cortex. These two routes into our
personal past can be flexibly used when traveling back-
ward in subjective time to remember specific events within
their spatial- and temporal-associative structures.
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