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The effects of finite molecular target size are investigated for partial-wave selected capture of

electrons by isotropically polarizable molecules and clusters within a generalized Vogt–Wannier

model. It is shown how expressions for partial-wave selected capture probabilities of zero-size

targets from Dashevskaya et al. (Phys. Chem. Chem. Phys., 2009, 11, 9364) can be modified to

account for finite target sizes of the molecules and clusters. The transition from quantum to

classical, from single- to multiple- and all-wave, behaviour of capture probabilities, cross sections,

and rate constants is illustrated.

1. Introduction

Electron attachment to polarizable neutral molecules is often

treated in terms of the Vogt–Wannier model for electron

capture1–4 in an interaction potential

V(r) = �e2a/2r4 (1.1)

where a is the polarizability of the neutral molecule and r is the

center-of-mass distance between the molecule and the electron.

Obviously, this potential is realistic only for large r. The

accommodation of the incoming electron by the molecular

electrons and the nuclear frame, through ‘‘electron–phonon

coupling’’ or ‘‘intramolecular vibrational redistribution

(IVR)’’, at small r requires a different treatment without

separation of electronic and nuclear coordinates, e.g. in terms

of R-matrix theory.2,4 Nevertheless, Vogt–Wannier electron

capture theory provides a most useful reference for comparison

with experimental data. Electron attachment by SF6 at low

electron energies, for instance, is well characterized2,4,5 by

s-wave capture and the Vogt–Wannier relationships, which

indicate that the long-range part of the potential of eqn (1.1)

here is adequate enough. With increasing energy, however, the

IVR problem becomes more serious and eqn (1.1) cannot be

considered sufficient for short ranges. In ref. 5, the deviations

from the Vogt–Wannier relationships were empirically

represented by an ‘‘IVR-factor’’ smaller than unity, introduced

to quantitatively characterize the deviations.

When the size of the molecular species increases, such as in

electron attachment to clusters or nanoparticles, the short-

range problem with eqn (1.1) becomes even more serious. In

this case, the finite size of the electron-attaching target often is

treated on the basis of a potential

V(r) = �e2a/[2r2(r2 � r0
2)] (1.2)

where r0 denotes the radius of the target species and, for the

particular model of a conducting sphere, r0 is simply related to

the polarizability by6 r0
3 E a. Adding centrifugal energy of the

orbital motion and determining the centrifugal maxima of the

effective potential, the classical capture cross section scap(E)
for the potential of eqn (1.2) takes the simple form7

scap(E) = pr0
2 + (2p2ae2/E)1/2 (1.3)

where the first term is the geometrical target cross section and

the second term is the classical Langevin cross section for a

zero-size polarizable target. After thermal averaging, eqn (1.3)

leads to the thermal capture rate constant

kcap(T) = pr0
2(8kBT/pm)

1/2 + kL (1.4)

with the Langevin rate constant

kL = 2pe(a/m)1/2 (1.5)

Eqn (1.3) is relevant for electron capture by large clusters and

nanoparticles under classical conditions, see the reviews of

ref. 4, 8 and 9. To mention two specific examples, eqn (1.3) in

ref. 10 was used for the analysis of cross sections of collisions

between electrons and sodium nanoclusters Na9000 with

r0 E 4 nm; likewise, eqn (1.3) in ref. 11 was applied to the

much smaller cluster C60, for which r0 = 0.35 nm.12

The classical eqn (1.3) and (1.4) require that many partial

waves of the electronic motion contribute to the capture

process, that the centrifugal barriers are located at long range

with r c r0, and that the energies are such that tunnelling

through the barriers is of minor importance. There is,

however, also an interest in intermediate situations, where only

a limited number of partial waves contribute. For instance, for

electron attachment to C60 the question arises13 whether the

finite size of C60 still can be described by the classical eqn (1.3)

such as this was done in ref. 11. This intermediate range is the

issue of the present article. We first extend the analytical

representation of Vogt–Wannier capture probabilities for

zero-size targets from earlier work (up to l = 4, see

ref. 2 and 13) up to l = 12. Then we extend the Vogt–Wannier

relationships to finite-size targets for partial waves where there

are centrifugal barriers (i.e., for l Z 1). We conclude that the

size effects diminish with decreasing l, while they approach the

results of the classical eqn (1.3) at large l.
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2. Finite-size effects in capture probabilities

We represent the capture cross section scap(k), with the wave

vector of the relative motion k ¼ p=�h ¼
ffiffiffiffiffiffiffiffiffiffiffi
2mE=

p
�h, as a sum of

partial-wave contributions

scap ¼
X
l

scap;lðkÞ ¼
X
l

ðp=k2Þ ð2l þ 1ÞPlðkÞ ð2:1Þ

where the Pl(k) denote the l-specific transmission coefficients

of partial waves across the effective potential Veff(r,l). The

latter is given by

Veff(r,l) = V(r) + l(l + 1)�h2/2mr2 (2.2)

with V(r) e.g. from eqn (1.2). We use dimensionless distances,

r = r/Rs and r0 = r0/Rs, and wave vectors, k = kRs, with the

scaling parameter Rs = (ame2/�h2)1/2, as well as dimensionless

energies, e = E/Es and veff(r) = Veff(r,l)/Es, with the scaling

parameter Es = �h4/am2e2, see ref. 3. The corresponding

Schrödinger equation has the form

1

2

d2cðrÞ
dr2

þ veffðrÞcðrÞ ¼
k2

2
cðrÞ ð2:3Þ

where

veff(r,l) = l(l + 1)/2r2 � 1/[2r2(r2 � r0
2)] (2.4)

With the proper capture boundary condition, the solution of

eqn (2.3) leads to transmission coefficients, representing the

capture probabilities, such as demonstrated for zero-size targets

(r0 = 0) in ref. 14 and 15. As we will express finite-size capture

probabilities relative to the corresponding zero-size quantities,

we present the latter here again such as derived in ref. 15. For

s-waves (l = 0), our optimum analytical approximation was

expressed in the form

Pl = 0(k)E1� 0.25 exp(�1.41k)� 0.75 exp(�4.86k) (2.5)

For higher waves (l > 0), the following expressions were

found to perform very well:

Pl40ðkÞ � ðk=k�l Þ
2lþ1glðk�l Þ for kok�l

glðkÞ for k � k�l

�
ð2:6Þ

where

gl(k) = 1/{1 + exp[�2Hl(k)]} (2.7)

and

Hl(k) = al(k � kl
(1/2)) + bl(k� kl

(1/2)) + cl(k� kl
(1/2))3 (2.8)

The l-specific parameters al, bl, cl, kl
(1/2), and kl* derived are

summarized in Table 1 for l = 1–12, extending our earlier

results for l = 1–4 from ref. 14 and 15. Eqn (2.5), for s-waves,

was shown to be precise within better than 1 percent.

Eqn (2.6)–(2.8) with the parameters of Table 1, on the other

hand, were found to be accurate within a few percent such as

documented for l = 1–4 in ref. 15.

While the Schrödinger eqn (2.3) could be solved easily for the

zero-target size Vogt–Wannier model, the particular short-range

form of the potential of eqn (1.2) created problems for finite

target sizes, i.e. for r0 a 0. However, since the potential of

eqn (1.2) is artificial anyway and does not account for the

short-range IVR problem, we only considered this potential in

the region of its centrifugal maxima (for l Z 1). Here, we

replaced the effective potential of eqn (2.4) by an inverted Morse

(iM) potential and employed its transmission coefficients both

for zero and finite target sizes, with the goal of obtaining a

finite-target size generalization of the Vogt–Wannier capture

model. This procedure clearly is limited to l Z 1, where there

are centrifugal barriers, and s-waves are not included in the

treatment. Also, capture probabilities at small energies, deep

in the tunnelling range, will not be represented properly.

However, for large energies the approach is shown to work

satisfactorily for the zero-target size Vogt–Wannier model,

which makes the approach also suitable for an extension to

finite target sizes. We provide this extension in the form of a

prescription for the choice of an effective keff,l(r0,l) to replace

the dimensionless wave vector k (being proportional to
ffiffiffiffi
E
p

) in

eqn (2.6)–(2.8) such that finite-size effects are accounted for

approximately. We emphasize that our procedure anticipates

numerical results for more adequate short-range potentials.

Nonetheless, its simplicity and reasonable physical foundations

at this stage makes the approach useful for quick estimates of

finite-target size effects of a variety of potentials.

For l > 0, in our approach we approximate the effective

potential veff(r) by an inverted Morse (iM) potential for which

transmission coefficients are available in explicit analytical

form (see ref. 16–20). The iM potential has the form

veff(r)/veff,max = {1 � [1 � exp(�(r � rmax)/a)]
2} (2.9)

where veff,max is the maximum value of veff(r), being located at

r = rmax, and a is a free fit parameter. The transmission

coefficients then are given by19

PiM
l (k) = [1 � exp(� 4pf)]/[1 + exp{2p(q � f)]} (2.10)

where f2 = k2a2 and q2 = 2veff,maxa
2. The probabilities

PiM
l from eqn (2.10) in our work are used to approximate

the partial wave transmission probabilities Pl for the effective

potential veff(r,l) of eqn (2.4).

For l > 0, the potential of eqn (2.4) possesses a maximum,

and the parameter a can be determined by fitting the iM

potential to this potential in such a way that the maxima

veff,max and the locations rmax of the maxima for a given l are

correctly reproduced. This is achieved by putting

rmax = {(z + z1/2)/[1(l + 1)]1/2} (2.11)

Table 1 Parameters in eqn (2.6)–(2.8) for capture probabilities of electrons
by zero-size targets (r0 = 0; results for l = 1–4 from ref. 14 and 15)

l k(1/2)l k*l al bl cl

1 1.187 0.68 1.50 �0.50 0.10
2 3.186 1.64 0.870 �0.150 3.00 � 10�2

3 6.186 2.55 0.610 �4.80 � 10�2 9.50 � 10�3

4 10.186 4.95 0.485 �2.50 � 10�2 1.70 � 10�3

5 15.186 7.00 0.400 �1.05 � 10�2 1.05 � 10�3

6 21.186 12.5 0.340 �8.25 � 10�3 2.00 � 10�4

7 28.186 17.5 0.300 �4.25 � 10�3 1.25 � 10�4

8 36.186 22.0 0.260 �3.60 � 10�3 5.00 � 10�5

9 45.186 29.0 0.230 �3.00 � 10�3 1.25 � 10�5

10 55.186 36.0 0.207 �2.40 � 10�3 0
11 66.186 48.0 0.193 �1.54 � 10�3 0
12 78.186 55.0 0.180 �1.08 � 10�3 0
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and

veff,max = {[l(l + 1)]/[1 + z1/2]}2/2 (2.12)

where z= l(l+1)r0
2 + 1. In addition, the parameter a should

be fitted. We have done this in two ways: either the halfwidths

Dr1/2 or the second derivatives at maximum of the two

potentials of eqn (2.4) and (2.9) were forced to be equal. In

the latter case, one has

d2veff ðr ¼ rmax; lÞ
dr2

¼ �4ð2veff;maxÞ3=2 ð2:13Þ

such that

a = (2veff,max)
�1/4/2 (2.14)

As an example, for l = 2 and r0 = 0.3, the halfwidth-based

value of a has the value a = 0.382, whereas the second

derivative-based value of a is equal to a = 0.306, see the

illustrations shown in the following.

In Fig. 1, we first demonstrate the influence of a finite target

size on the effective potential of eqn (2.4) by putting r0 = 0.3.

Whereas hardly any influence is noticeable for l = 0

where veff,max = 0, the maximum neff,max is reduced for l = 2.

For l > 0, veff,max and the width of the barrier with increasing

r0 are increasingly reduced. As a consequence, one expects

increasing capture probabilities with increasing r0.
Fig. 2, for l = 2 and r0 = 0.3, compares the effective

potential of eqn (2.4) with the iM potential of eqn (2.9) after

fitting of its parameters in the way described before. The fits

look satisfactory but reproduce the potential of eqn (2.4) in

different ways. The halfwidth-based fit (with a= 0.382) works

better for smaller energies whereas the second derivative-based

fit (with a = 0.306) looks better for larger energies. These

differences translate into minor differences of the modelled

transmission coefficients. For a number of reasons, we have

preferred the latter fit, see below.

Before investigating the influence of finite target sizes on the

transmission coefficients Pl(k), for zero-size targets we test the

consequences of using iM potentials instead of the polarization

potential of eqn (1.1) (with r0 = 0). This can only be done for

l larger than zero when maxima of the potentials arise. By

comparing iM results with accurate results from ref. 3, Fig. 3

shows the results for l = 1–5. For a better representation,

instead of k an abscissa l = �1/2 + [1/4 + 2k]1/2 is chosen
where k = (2e)1/2, see ref. 3. We consider two versions of the

iM results of eqn (2.10), the full iM result of eqn (2.10) and

the simplified result (siM) omitting the exponential term in the

numerator of eqn (2.10). Such as demonstrated for l = 1 in

Fig. 3, the iM and siM results nearly agree for l larger than 0.5

and PiM
l (k) larger than about 0.2. For l o 0.5, the iM, the

siM, and the accurate results increasingly disagree. This is not

unexpected because the potentials differ in the tunnelling range

where the transmission coefficients most sensitively depend on

the potential. With increasing l, the iM and siM results agree

increasingly better with the accurate results. Fig. 3 shows that,

apart from the described differences, the iM and siM results

for l Z 1 quite well approximate the accurate transmission

coefficients for the potential of eqn (1.1). In the following we

expect that this will also be the case for finite target sizes. In

order to improve the quality of the results, instead of using the

iM and siM results directly, however, we only determine the

shift of the transmission coefficient curves to the left for

finite target sizes by the iM model and we apply the derived

shift-relation to the accurate zero-size target transmission

coefficients. Fig. 4 illustrates the effect for PiM
l = 2(k,r0).

In the following we describe how a simple shift-relationship

can be obtained. We ask how k in PiM
l (k,r0 = 0) should be

replaced by an effective value keff(k,l,r0) such that the general

PiM
l (k,r0) is recovered. We then assume that approximately the

same shift-relationship can be used for the relation between

the accurate Pl(k,r0 = 0) and the general Pl(k,r0). As the

effects are small, we expect this approximation to hold suffi-

ciently well in practical applications.

The desired shift-relation can be derived from eqn (2.10) by

observing that, if the exponent in the numerator of the r.h.s. is

large enough (e.g. for k > 1/2, l > 0, 0 o r0 o 0.5, and

Fig. 1 Effective potentials veff(r) of eqn (2.4) for l = 0 and l = 2

(dashed lines: zero-size target, r0 = 0; full lines: finite-size target,

r0 = 0.3).

Fig. 2 Fit of effective potentials veff (r) of eqn (2.4) for l = 2 and

r0 = 0.3 by inverted Morse potentials iM of eqn (2.9) (full line:

eqn (2.4), dashed line: halfwidth-based iM with a= 0.382, dotted line:

second derivative-based iM with a = 0.306, see text).
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4pa(l,r0)k > p), the exponential term in the numerator can be

ignored, and PiM
l (k) assumes the simplified form

PsiM
l ðk; r0Þ ¼

1

1þ exp½2paðl; r0Þðkthðl; r0Þ � kÞ� ð2:15Þ

where kth(l,r0) is given by

kth(l,r0) = (2veff,max)
1/2 (2.16)

This is the siM model illustrated in Fig. 3 before. As an

interesting property of the PsiM
l (k,r0) one observes that any

PsiM
l (k,r0) can be generated from PsiM

l (k, 0) by a simple

transformation k - keff(k,l,r0). This transformation is obtained

by comparing PsiM
l (k,r0) and PsiM

l (keff,r0 = 0). It leads to

keffðk; l; r0Þ ¼
aðl; r0Þ

aðl; r0 ¼ 0Þ ðk� kthðl; r0ÞÞ þ kthðl; r0 ¼ 0Þ

ð2:17Þ

With the help of eqn (2.12) and (2.13), eqn (2.17) can be

rewritten as

keff(k,l,r0) = B(l,r0)(k � kth(l,r0)) + kth(l,r0 = 0), (2.18)

with B(l,r0) and kth(l,r0) explicitly given as

Bðl; r0Þ ¼
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðl þ 1Þr20 þ 1

q
2

0
@

1
A

1=2

ð2:19Þ

and

kthðl; r0Þ ¼
lðl þ 1Þ

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðl þ 1Þr20 þ 1

q ð2:20Þ

This shift-relation leads to the correct classical limit, when the

number of terms in eqn (2.1) is large.

A simpler shift relation, evaluated through the shifts of the

k-values for which PiM
l (k,r0) = 0.5, reads

keff(r0,l) E k(r0 = 0,l)[1 + 0.37l1.4r0
1.75] (2.21)

It describes, at least qualitatively, the way in which keff
increases with increasing l and r0. This shift-relation holds

reasonably well, but it does not lead to the correct classical

limit. The iM model is not restricted to integer l, but can also

be generalized to noninteger l. For l approaching zero,

eqn (2.21) then suggests that keff(r0,l - 0) E k(r0 = 0,l - 0),

i.e. finite-size effects should disappear for s-waves. Similar

conclusions are obtained when keff(k,l,r0) from eqn (2.18)–(2.20)

is considered. However, a rigorous confirmation of this

conclusion remains to be given.

The performance of the recommended shift-relationship of

eqn (2.18)–(2.20) is excellent over the range 0.1 o P o 1.

Increasingly larger deviations are observed only for smaller

values of P, i.e. deeper in the tunnelling range. According to

the calculations of this section, optimum results for capture

probabilities with finite-size targets are obtained, if k in the

expression for Pl(k,r0 = 0) from ref. 15, such as given by

eqn (2.6)–(2.8), is replaced by keff(r0,l) from eqn (2.18)–(2.21).

3. Finite-size effects in capture cross sections and

thermal capture rate constants

Making use of the transmission coefficients Pl(k,r0) elaborated
in section 2, capture cross sections scap and rate constants kcap
are easily calculated. We again represent the results as

scaled quantities3. The scaled energy-dependent rate coefficients.

Fig. 3 Capture probabilities Pl(l) for zero-size targets (l = �1/2 +

[1/4 + 2(2e)1/2]1/2, e = scaled energy, see text; full lines: accurate

results from eqn (2.5)–(2.8); dotted line for l = 1: results for inverted

Morse (iM) potential from eqn (2.10); dashed lines: results for

simplified inverted Morse (siM) potential from eqn (2.10) neglecting

the exponential term in the numerator).

Fig. 4 Capture probabilities PiM
l = 2(k,r0) for inverted Morse potential

and scaled target sizes r0 = 0, 0.5, and 1.0.
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i.e. the ratio of the capture rate coefficients and the

energy-independent Langevin rate coefficient, as a function

of k reads3

wðkÞ ¼
X
l

wlðkÞ ¼
X
l

ð2l þ 1Þ
2k

PlðkÞ ð3:1Þ

The energy-dependent rate coefficients kcap(E) in conventional

units are recovered from w(k) and the Langevin rate constant

kL from eqn (1.5) through

kcap(E) = w(k)kL (3.2)

with e = E/Es = k2/2. Finally, the capture cross section is

calculated from kcap(E) by the standard relation

scapðEÞ ¼ kcapðEÞ=
ffiffiffiffiffiffiffiffiffiffiffi
2E=m

p
ð3:3Þ

which in scaled form corresponds to

sred = scap/2pRs
2 = w(k)/k (3.4)

The thermally averaged counterpart of w(k), �w, depends on the

reduced temperature y = kBTmRs
2/�h2 = kBT/Es and is

expressed as

�wðyÞ ¼
Z1

0

wðkÞ FðkÞ dk ð3:5Þ

FðkÞ ¼ 2y�3=2

ð2pÞ1=2
k2 exp � k2

2y

� �
ð3:6Þ

Similar to eqn (3.2) one then has

kcap(T) = w(y)kL (3.7)

with T = yEs/kB. In the following we demonstrate how

fast capture cross sections and capture rate constants are

approached upon summation over a limited number of partial

waves l. We employ scaled quantities and we compare results

for zero-size and finite-size targets.

Fig. 5 compares scaled capture cross sections sred(e) as a

function of the scaled energy e = k2/2 for r0 = 0 and 1.0.

The summations over partial waves, for illustration of the

contributions of individual partial waves, extend over l = 0,

0 - 1, and 0 - 2 for r0 = 0, whereas l = 0, 0 - 1, 0 - 2,

0- 3, and 0- 4 are shown for r0 = 1. In both cases also the

all-wave results are shown. One observes that finite-size effects

become apparent at e above about 0.1. Furthermore, one also

notices that quantum effects are most important for e values
below a similar magnitude. sred in the quantum range then

increases to values above its classical value

sclred(e) = r0
2/2 + (2e)1/2 (3.8)

which, for r0 = 0, is also shown in Fig. 5. One realizes that, at

e smaller than unity, the summation over only few partial

waves suffices to bring sred close to sclred. The finite-size capture
probabilities from section 2 apparently are precise enough to

provide convergence to the correct classical limit.

We have illustrated in section 2 that the iM approach does

not provide reliable results for transmission coefficients in the

tunnelling range, i.e. for Pl(k,r0) below about 0.1. For this

range, the present iM approach can only be considered as a

first step towards a solution of the problem. For this reason,

the cross sections obtained with the iM approach cannot be

trusted at e o 0.01.

Fig. 6 illustrates the finite-size effects in scaled thermal

capture rate constants and compares the results with the scaled

classical rate constants corresponding to eqn (1.4), i.e.

�wcl(y) = r20(y/2)
1/2 + 1 (3.9)

Two observations appear worth noticing. At small temperatures,

y { 1, with dominant s-wave capture, the Bethe quantum

limit of �w(y - 0), which is equal to 2 for r0 = 0, is not

approached by the classical eqn (3.9) for which �wcl(y- 0) = 1.

With increasing y, an increasing number of partial waves

contributes where the size effects get stronger with increasing

l, until the classical eqn (3.9) is approached. Because of the

counteraction of two effects, there is a rate constant minimum

at values of y between 0.1 and 1. Fig. 6 also includes a

comparison between accurate results for zero-size targets

and results obtained by the iM approach. It appears that the

latter is good enough for most practical applications.

4. Conclusions

A series of conclusions can be drawn from the derived results.

Finite-size effects decrease with decreasing l and the trends

observed for higher partial waves suggest that such effects can

Fig. 5 Scaled capture cross sections sred as a function of the scaled

energy e (full lines: r0 = 0, lines from left to right: l = 0, l = 0 - 1,

all l; dashed lines: r0 = 1, lines from left to right: l= 0- 1, l= 0- 2,

l = 0 - 3, l = 0 - 4, all l; dotted line: classical result for r0 = 0).
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be neglected for s-waves. The shift relationships of

eqn (2.18)–(2.21) allow one to express the finite-size effects

for partial-wave selected capture probabilities in terms of the

analytical expressions for zero-size targets derived in ref. 15.

One may ask where such finite-size effects may become of

practice relevance. On the one hand, large targets generally

will be characterized by contributions from so many partial

waves that the classical capture cross sections from eqn (1.3)

will provide a sufficient description. On the other hand, targets

with decreasing size will generally be dominated by a decreasing

number of partial waves with decreasing l. For these, however,

the importance of finite-size effects will decrease. There should,

therefore, only be a limited range of target sizes and a limited

range of intermediate energies and/or temperatures where

partial-wave finite-size effects become of relevance. Such

intermediate ranges have been illustrated in section 3. In a

specific application, we found13 that electron capture by C60 at

energies E around 0.1 eV shows some deviations from the

classical relationship of eqn (1.4). However, these deviations

are still small. Electron capture by SF6, on the other hand, is

dominated by s-wave capture where finite-size effects are

probably negligible. Only for target sizes somewhere between

these two cases might quantum partial-wave finite-size effects

become noticeable in experiments.
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