Supplementary Material

In this document, we give some details about the implemiemtatf AUGUSTUS-
PPX, and the full set of tables of the results, for the intexdseader. The first section
explains in detail how block hits are determined in the cewkthe algorithm, the
second deals with performance issues.

Identifying block hits

To classify a given protein sequenc®f lengthw as ablock hit, we turn the scoring
function into a decision function by requirings) > 7, with a block-specific threshold
7 = 7). This section describes homis determined.

Two global parameteré, (= sped andd; (= bseng independent frond, are speci-
fied by the user, designed to ensure that estimated erreraegdow.

We consider two competing modeld,, describing random sequences distributed
according taP,.., andH; describing block motifs from a blodkunder consideration,
distributed according t&hiock = (P;)i=o,....w, the frequency matrix given in the profile.
P;(a) denotes the probability to observe amino agidt position: of a block motif,
while Py, (a) denotes the global probability farto appear anywhere. The odds-ratio

is given byR;(a) = ch(k“()a); for convenience, we consider in the following the log-
odds ratioL;(a) = log R;(a), turning the producp(s) = Ro(so) - ...+ Ruw—1(Sw-1)
into a sumé(s) = log p(s) = Lo(so) + ...+ Lw—_1(sw—1). Each of the two models
H; gives rise to a different expectation valug = E; (L) and variance; = Var; (L)
for the log-scores.

By putting the global parameters into the block-specifidesase obtain thresholds
T = pg +0p09, 77 = u1 — 01 01. A score exceeding~ is at least 6, standard
deviations above the expected score in the background maxigla score below™
is at most ¢, standard deviations less than the expected score for a biotk The
probability for a random sequence (in either model) to haseae in this range can
be approximated with the Gaussian distribution by

1 — ®(09) and 1-—®(6y),

where ® is the cumulative Gaussian distribution function; henbesé numbers are
bounding the estimated error rates.

For example, the valuély = 4.5 andf; = 1.5 used in the test runs correspond to a
false-positive rate less than- ®(4.5) = 3.3 - 10~° (one block hit in a random amino
acid sequence of 300 000 residues), and to a sensitivityleaat®(1.5) = 93.3%.

In order to fulfill both conditionsy must satisfyr— < 7 < 7+. Provided that
= < rt, wesetr = L(r~+ 7). Any sequence satisfying the conditié (s) > 7,
or equivalentlyp(® (s) > exp(r), is then considered a block hit. In the case> 7,
or if w < 6, the block is removed from the profile for the evaluation.

Performance issues of the modified Viterbi algorithm

An exhaustive evaluation of all combinations of block lasas and substates would
be computationally infeasible, causing an explosion ohmig time and memory re-
quirements; therefore, several techniques are appli¢élihéinate most of the substate
entries in order to control the computational cost. We stalestate scores dynamically,
reserving memory only for nonzero entries.



Precomputing block hit collections

To prepare the search for whole blocks found on the same éhertarget sequence
is searched for block hits in parallel to the main algorittamd the hits are stored in
collections of consecutive hits satisfying the distanaeditions. As mentioned in the
article, motifs that do not score over the threshold are aositlered for the collections.
In practice, this commonly leads to exon candidates witly ¥&w block hits or none
at all allowed on them, preventing the vast majority of sateséentries to be created.

Scores for blocks truncated at exon borders are calculatldonce for every lo-
cation. Furthermore, similar to the case of full blocksntrated blocks are subject to
filtering with thresholds if they exceed a minimum lengthaiag this leaves only few
values fori > 0 actually stored as substates.

Removing dominated substates

In the situation of Figure 1 of the article, an inter-bloclbstate(b, i) constrains the
admissible block start on the upcoming exon(s).The subgdbminated by two sub-
stategd, ') and(b, ") if they cover the same set of admissible block starts. Thisas
caseifi’ < i < i”andi” —i' < da* — g, If both of the dominating substates have
a higher score, the entry €, i) may be deleted from the Viterbi table.

Pruning dead state graph branches

In order to reduce the memory needed for the inflated Vitediliet, we remove from it
all entries that are not contained in any parse reachingutrertt DNA location. To this
end, for each substate entry, a counter is installed andrimented every time the entry
is maximizing the partial score for some successor stateibatate entry is deleted if
its successor count is zero at the time the algorithm hasg@segd to a location in the
target sequence beyond the maximal state length from the émtalysis showed that
about half of the memory usage could be saved this way.

Sharing substate tables

As the profile location is constant throughout an intron, mmgntan be saved by shar-
ing substate tables between consecutive intron statesaviiied length. In particular,
AUGUSTUS’ state model has intron states emitting a singleleatide, and candi-
date parses evaluated in the course of the Viterbi algor@bntain long sequences of
the single-nucleotide intron states in every long introlestlty with identical substate
entries just differing by a constant factor. Instead of gsirseparate copy for the sub-
state table for each nucleotide position, only the condtator is stored, and a link
to the substate table of the predecessor (the last DNA tmt#tiat an exon candidate
contributing substates was considered).



Setup and Results

Reference gene sets were created my mapping the referesteinmequences to the
genomes, using Scipio (Keller et al. 2008). In some casets phthe queries could
not be mapped (see Table 2); we believe it is safe to assurh¢hthaorresponding
genomic sequence is missing due to incomplete assembi@that the reference gene
structures comprise all true exons present in the genome.

The runnings were performed on the genomic regions sta2tingbps before and
ending 20 Kbps after the reference genes, but at least ogv280 Kbps.

Table 1. Genome resources and versions

species full name ucsc source NCBI project id assembly
version  (version) RefSeq assembly stage

human Homo sapiens hg19 GRC (37) 168 13178 chrom.
mouse Mus musculus mm9 GRC (37) 169 13183 chrom.
chicken  Gallusgallus galGal3  WashU (2.1) 10808 13342 chrom.
frog Xenopustropicalis xenTro2 JGI (4.1) 43581 12348 scaffolds
zebrafish Daniorerio N/A Sanger (Zv9) 11776 13922 chrom.
snail Lottia gigantea N/A JGI (1.0) N/A N/A  scaffolds

Version Zv9 of theD. rerio genome was downloaded from Ensembil:
ftp://ftp.ensenbl.org/ pub/assenbl y/ zebrafi sh/ Zvor el ease
ThelL. gigantea genome was downloaded from JGI:
ftp://ftp.joi-psf.org/pub/JA _data/lLottia_gigantea/vl.0
The other sequences were downloaded from UCSC:

ftp://hgdownl oad. cse. ucsc. edu/ gol denPat h/ <ver si on>/ bi gZi ps

Table 2. Genomic reference sequences used in DHC runs

species # of # of #ofbps av.prot. assembly av.gene

genes exons length qual. (%) len (Kbps)
human 16 1213 211788 4411.25 100.0 242.46
mouse 18 1338 235608 4368.89 99.8 206.84
chicken 12 891 152727 4363.67 97.2 93.88
frog 18 1275 218871 4367.33 92.8 143.05
zebrafish 14 963 163788  4293.29 90.8 127.65
snail 18 1358 241047 4518.39 98.8 44.69
total 96 7038 1223829 4392.01 96.7 144.75

Overview of the reference sequences used in the DHC runsvrSas assembly quality is the percentage of
the transcript that could be found in the genome.



Results of test runs

All inputfiles used in the runs, and the original output filesde downloaded from
htt p: //august us. gobi cs. de. All output was generated with AUGUSTUS
version 2.5.

Table 3. Accuracy at nucleotide level of DHC runs

species AUGUSTUS-PPX AUG. Scipio Genewise
full  fbs ex-ortho ab-initio cross-sp. full ex-ortho

sensitivity (%)

human 96.2 96.8 95.8 90.3 100.0 979 68.6
mouse 97.2 975 94.7 90.9 95.2 96.2 69.3
chicken  95.7 95.7 94.8 87.7 85.4 83.2 65.0
frog 93.2 926 92.0 85.1 68.7 82.4 66.2
zebrafish 96.1 96.1 95.2 89.4 70.8 86.3 66.0
snail 93.7 935 93.2 86.3 52.9 76.5 69.6
total 95.3 95.3 94.2 88.2 78.5 87.2 67.7
specificity (%)

human 96.8 97.5 97.0 94.2 100.0 96.7 89.0
mouse 90.3 90.7 88.6 76.6 99.9 95.9 86.1
chicken 942 94.6 93.6 89.5 99.3 92.9 86.7
frog 86.9 88.2 86.0 82.0 99.4 92.2 85.5
zebrafish  90.3 90.2 88.9 78.7 99.1 90.1 86.4
snail 947 95.6 94.0 86.3 99.5 95.4 93.4
total 92.1 92.7 91.1 84.0 99.6 94.2 88.0




Table 4. Accuracy at exon level of DHC runs

species AUGUSTUS-PPX AUG. Scipio Genewise
full  fbs ex-ortho ab-initio cross-sp. full ex-ortho

sensitivity (%)

human 93.3 936 91.0 84.5 N/A 83.7 51.8
mouse 93.6 93.7 90.5 85.1 86.0 80.4 50.1
chicken  89.3 89.8 87.5 80.5 66.0 68.8 46.2
frog 85.8 86.0 83.8 78.0 48.2 64.3 48.0
zebrafish 89.8 89.8 88.0 80.3 49.2 68.5 49.1
snail 859 86.5 84.3 78.9 31.6 59.3 49.1
total 89.6 89.9 87.5 81.3 63.5 70.9 49.2
specificity (%)

human 91.7 934 90.6 88.1 N/A 84.9 71.9
mouse 90.3 91.1 86.9 80.1 87.9 82.8 69.2
chicken 87.0 87.6 84.1 80.3 73.7 80.6 70.1
frog 759 80.5 74.7 77.9 64.6 74.3 67.8
zebrafish 82.1 82.8 79.5 77.1 64.0 75.9 70.2
snail 84.3 87.6 82,5 78.6 51.9 75.9 68.8
total 85.0 87.2 82.9 80.3 76.5 79.3 69.6

Table 5. Accuracy at gene level of DHC runs

species AUGUSTUS-PPX AUG. Scipio Genewise
full fbs ex-ortho ab-initio cross-sp.  full  ex-ortho
highly accurate at 95/85 (%)
human 62.5 68.8 62.5 31.3 N/A 93.8 6.3
mouse 722 778 61.1 22.2 88.9 55.6 0.0
chicken 58.3 58.3 50.0 8.3 8.3 16.7 0.0
frog 444 444 38.9 0.0 5.6 11.1 0.0
zebrafish 57.1 57.1 35.7 57.1 7.1 14.3 0.0
snail 444  50.0 44.4 5.6 0.0 11.1 0.0
total 56.3 59.4 49.0 115 36.5 34.4 1.0
highly accurate at 90/90 (%)
human 875 9338 81.3 25.0 0.0 93.8 6.3
mouse 722 778 66.7 27.8 88.9 88.9 0.0
chicken 83.3 833 75.0 16.7 333 41.7 0.0
frog 50.0 66.7 38.9 111 5.6 50.0 0.0
zebrafish 57.1 57.1 50.0 14.3 14.3 35.7 0.0
snail 778 833 72.2 22.2 0.0 38.9 16.7
total 708 77.1 63.5 19.8 24.0 59.4 4.2
identified genes (%)
human 100.0 100.0 93.8 N/A 100.0 100.0
mouse 100.0 100.0 94.4 100.0 100.0 88.9
chicken  100.0 100.0 100.0 100.0 91.7 83.3
frog 94.4  88.9 94.4 88.9 88.9 83.3
zebrafish 929 929 92.9 92.9 92.9 78.6
snail 88.9 833 88.9 83.3 88.9 88.9
total 95.8 93.8 93.8 95.8 93.8 87.5

Percentage of genes predicted at high accurasgmatspec level. A gene is considered highly accurate if
sequence overlap of prediction and reference is at $eas¥ of reference angpec% of prediction; overlap
is measured in % of bps. Below the rate of genes identified asfH& relevant for AUGUSTUS ab-initio).



Table 6. Overview of PFAM families used

family accession # of seqs #of core seqs #ofseqs # of core seqs
in database used (human) (human)
HSP70 PF00012 9069 2374 14 8
Aldedh PF00171 16528 3669 19 9
AA _permease PF00324 13073 5185 24 15
Cullin PF00888 924 489 10 7
Secl PF00995 917 349 8 7
Table 7. Genomic reference sequences used in PFAM runs
family # of # of #ofbps av. prot. assembly av. gene
genes exons length qual. (%) len (Kbps)
HSP70 8 38 15576  648.00 100.0 4.63
Aldedh 9 121 16203  599.11 100.0 40.59
AA permease 15 205 32520 721.67 100.0 47.55
Cullin 7 130 16710 794.71 100.0 64.67
Secl 7 132 12609  600.57 99.8 56.90
total 46 626 93618  677.57 100.0 42.75

Table 8. Accuracy at nucleotide level of PFAM runs

AUGUSTUS Genewise

family AUGUSTUS-PPX

full  <80% <60% ab-initio
sensitivity (%)
HSP70 98.8 98.8 98.8 97.7 68.8
Aldedh 97.2 96.7 96.1 95.2 58.4
AA_permease 93.0 925 93.1 90.8 44.5
Cullin 93.1 930 93.0 88.5 73.6
Secl 953 953 95.9 90.7 70.7
total 95.0 947 94.9 92.3 59.7
specificity (%)
HSP70 979 979 97.7 90.7 99.6
Aldedh 87.7 86.9 85.9 87.5 98.2
AA_permease 87.4 873 87.5 75.7 84.5
Cullin 90.9 90.1 90.1 90.5 95.8
Secl 82.1 821 83.5 81.3 87.4
total 88.9 88.6 88.7 83.2 92.3




Table 9. Accuracy at exon level of PFAM runs

family AUGUSTUS-PPX AUGUSTUS Genewise
full  <80% <60% ab-initio

sensitivity (%)

HSP70 92.1 921 89.5 84.2 105
AldeDh 926 91.7 90.1 86.0 48.8
AA_perm 839 839 85.4 81.0 24.4
Cullin 87.7 86.9 86.9 83.1 56.9
Secl 939 939 94.7 87.1 44.7
total 89.0 887 88.8 83.9 39.3
specificity (%)

HSP70 921 921 89.5 71.1 25.0
AldeDh 76.7 755 71.2 77.0 76.6
AA perm 717 714 72.6 65.4 40.3
Cullin 90.5 856 85.6 89.3 67.9
Secl 87.3 873 88.7 83.9 59.0
total 80.5 793 78.9 75.9 57.7

Table 10. Accuracy at gene level of PFAM runs

family AUGUSTUS-PPX AUGUSTUS Genewise
full <80% <60% ab-initio

highly accurate genes at 95/85 (%)

HSP70 87.5 87.5 87.5 75.0 0.0
Aldedh 77.8 66.7 55.6 66.7 0.0
AA permease 53.3 53.3 53.3 33.3 0.0
Cullin 28.6 28.6 28.6 0.0 0.0
Secl 28.6 28.6 42.9 14.3 0.0
total 56.5 54.3 54.3 39.1 0.0
highly accurate genes at 90/90 (%)

HSP70 87.5 87.5 87.5 75.0 75.0
Aldedh 88.9 77.8 55.6 55.6 11.1
AA_permease 53.3 53.3 60.0 40.0 0.0
Cullin 57.1 57.1 57.1 14.3 0.0
Secl 42.9 42.9 57.1 42.9 14.3
total 65.2 63.0 63.0 45.7 17.4
completely correct genes (%)

HSP70 75.0 75.0 75.0 62.5 0.0
Aldedh 44.4 44.4 333 22.2 0.0
AA _permease  20.0 20.0 20.0 13.3 0.0
Cullin 0.0 0.0 0.0 0.0 0.0
Secl 14.3 14.3 14.3 14.3 0.0
total 30.4 30.4 28.3 217 0.0
identified genes (%)

HSP70 100.0 100.0 87.5 50.0
Aldedh 100.0 100.0 100.0 77.8
AA _permease 93.3 93.3 86.7 86.7
Cullin 100.0 100.0 100.0 100.0
Secl 100.0 100.0 100.0 85.7
total 97.8 97.8 93.5 80.4

Percentage of genes predicted at high accurassnafspec level, cf. Table 5. Gene level sensitivity (accuracy
100/100) is shown as well. Below the rate of genes identifiechambers of their families (not relevant for
AUGUSTUS ab-initio).



