
Supplementary Material

In this document, we give some details about the implementation of AUGUSTUS-
PPX, and the full set of tables of the results, for the interested reader. The first section
explains in detail how block hits are determined in the course of the algorithm, the
second deals with performance issues.

Identifying block hits

To classify a given protein sequences of lengthw as ablock hit, we turn the scoring
function into a decision function by requiringρ(s) > τ , with a block-specific threshold
τ = τ (b). This section describes howτ is determined.

Two global parametersθ0(= θspec) andθ1(= θsens) independent fromb, are speci-
fied by the user, designed to ensure that estimated error rates are low.

We consider two competing models,H0 describing random sequences distributed
according toPback, andH1 describing block motifs from a blockb under consideration,
distributed according toPblock = (Pi)i=0,...,w, the frequency matrix given in the profile.
Pi(a) denotes the probability to observe amino acida at positioni of a block motif,
whilePback(a) denotes the global probability fora to appear anywhere. The odds-ratio
is given byRi(a) = Pi(a)

Pback(a)
; for convenience, we consider in the following the log-

odds ratioLi(a) = logRi(a), turning the productρ(s) = R0(s0) · . . . · Rw−1(sw−1)
into a sumℓ(s) = log ρ(s) = L0(s0) + . . . + Lw−1(sw−1). Each of the two models
Hj gives rise to a different expectation valueµj = Ej(L) and varianceσ2

j = Varj(L)
for the log-scores.

By putting the global parameters into the block-specific scale, we obtain thresholds
τ− = µ0 + θ0 σ0, τ+ = µ1 − θ1 σ1. A score exceedingτ− is at least θ0 standard
deviations above the expected score in the background model, and a score belowτ−

is at most θ1 standard deviations less than the expected score for a blockmotif. The
probability for a random sequence (in either model) to have ascore in this range can
be approximated with the Gaussian distribution by

1− Φ(θ0) and 1− Φ(θ1),

whereΦ is the cumulative Gaussian distribution function; hence, these numbers are
bounding the estimated error rates.

For example, the valuesθ0 = 4.5 andθ1 = 1.5 used in the test runs correspond to a
false-positive rate less than1−Φ(4.5) = 3.3 · 10−6 (one block hit in a random amino
acid sequence of 300 000 residues), and to a sensitivity of atleastΦ(1.5) = 93.3%.

In order to fulfill both conditions,τ must satisfyτ− ≤ τ ≤ τ+. Provided that
τ− ≤ τ+, we setτ = 1

2 (τ
−+τ+). Any sequence satisfying the conditionℓ(b)(s) > τ ,

or equivalently,ρ(b)(s) > exp(τ), is then considered a block hit. In the caseτ− > τ+,
or if w < 6, the block is removed from the profile for the evaluation.

Performance issues of the modified Viterbi algorithm

An exhaustive evaluation of all combinations of block locations and substates would
be computationally infeasible, causing an explosion of running time and memory re-
quirements; therefore, several techniques are applied that eliminate most of the substate
entries in order to control the computational cost. We storesubstate scores dynamically,
reserving memory only for nonzero entries.
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Precomputing block hit collections

To prepare the search for whole blocks found on the same exon,the target sequence
is searched for block hits in parallel to the main algorithm,and the hits are stored in
collections of consecutive hits satisfying the distance conditions. As mentioned in the
article, motifs that do not score over the threshold are not considered for the collections.
In practice, this commonly leads to exon candidates with very few block hits or none
at all allowed on them, preventing the vast majority of substate entries to be created.

Scores for blocks truncated at exon borders are calculated only once for every lo-
cation. Furthermore, similar to the case of full blocks, truncated blocks are subject to
filtering with thresholds if they exceed a minimum length; again, this leaves only few
values fori > 0 actually stored as substates.

Removing dominated substates

In the situation of Figure 1 of the article, an inter-block substate(b, i) constrains the
admissible block start on the upcoming exon(s).The substate isdominated by two sub-
states(b, i′) and(b, i′′) if they cover the same set of admissible block starts. This isthe
case ifi′ < i < i′′ andi′′− i′ ≤ dmax

b −dmin
b . If both of the dominating substates have

a higher score, the entry at(b, i) may be deleted from the Viterbi table.

Pruning dead state graph branches

In order to reduce the memory needed for the inflated Viterbi table, we remove from it
all entries that are not contained in any parse reaching the current DNA location. To this
end, for each substate entry, a counter is installed and incremented every time the entry
is maximizing the partial score for some successor state. A substate entry is deleted if
its successor count is zero at the time the algorithm has progressed to a location in the
target sequence beyond the maximal state length from the entry. Analysis showed that
about half of the memory usage could be saved this way.

Sharing substate tables

As the profile location is constant throughout an intron, memory can be saved by shar-
ing substate tables between consecutive intron states witha fixed length. In particular,
AUGUSTUS’ state model has intron states emitting a single nucleotide, and candi-
date parses evaluated in the course of the Viterbi algorithmcontain long sequences of
the single-nucleotide intron states in every long intron, mostly with identical substate
entries just differing by a constant factor. Instead of using a separate copy for the sub-
state table for each nucleotide position, only the constantfactor is stored, and a link
to the substate table of the predecessor (the last DNA location that an exon candidate
contributing substates was considered).
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Setup and Results

Reference gene sets were created my mapping the reference protein sequences to the
genomes, using Scipio (Keller et al. 2008). In some cases, parts of the queries could
not be mapped (see Table 2); we believe it is safe to assume that the corresponding
genomic sequence is missing due to incomplete assemblies, and that the reference gene
structures comprise all true exons present in the genome.

The runnings were performed on the genomic regions starting20 Kbps before and
ending 20 Kbps after the reference genes, but at least covering 200 Kbps.

Table 1. Genome resources and versions

species full name UCSC source NCBI project id assembly
version (version) RefSeq assembly stage

human Homo sapiens hg19 GRC (37) 168 13178 chrom.
mouse Mus musculus mm9 GRC (37) 169 13183 chrom.
chicken Gallus gallus galGal3 WashU (2.1) 10808 13342 chrom.
frog Xenopus tropicalis xenTro2 JGI (4.1) 43581 12348 scaffolds
zebrafish Danio rerio N/A Sanger (Zv9) 11776 13922 chrom.
snail Lottia gigantea N/A JGI (1.0) N/A N/A scaffolds

Version Zv9 of theD. rerio genome was downloaded from Ensembl:
ftp://ftp.ensembl.org/pub/assembly/zebrafish/Zv9release
TheL. gigantea genome was downloaded from JGI:
ftp://ftp.jgi-psf.org/pub/JGI_data/Lottia_gigantea/v1.0
The other sequences were downloaded from UCSC:
ftp://hgdownload.cse.ucsc.edu/goldenPath/<version>/bigZips

Table 2. Genomic reference sequences used in DHC runs

species # of # of # of bps av. prot. assembly av. gene
genes exons length qual. (%) len (Kbps)

human 16 1213 211788 4411.25 100.0 242.46
mouse 18 1338 235608 4368.89 99.8 206.84
chicken 12 891 152727 4363.67 97.2 93.88
frog 18 1275 218871 4367.33 92.8 143.05
zebrafish 14 963 163788 4293.29 90.8 127.65
snail 18 1358 241047 4518.39 98.8 44.69
total 96 7038 1223829 4392.01 96.7 144.75

Overview of the reference sequences used in the DHC runs. Shown as assembly quality is the percentage of
the transcript that could be found in the genome.
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Results of test runs

All inputfiles used in the runs, and the original output files can be downloaded from
http://augustus.gobics.de. All output was generated with AUGUSTUS
version 2.5.

Table 3. Accuracy at nucleotide level of DHC runs

species AUGUSTUS-PPX AUG. Scipio Genewise
full fbs ex-ortho ab-initio cross-sp. full ex-ortho

sensitivity (%)
human 96.2 96.8 95.8 90.3 100.0 97.9 68.6
mouse 97.2 97.5 94.7 90.9 95.2 96.2 69.3
chicken 95.7 95.7 94.8 87.7 85.4 83.2 65.0
frog 93.2 92.6 92.0 85.1 68.7 82.4 66.2
zebrafish 96.1 96.1 95.2 89.4 70.8 86.3 66.0
snail 93.7 93.5 93.2 86.3 52.9 76.5 69.6
total 95.3 95.3 94.2 88.2 78.5 87.2 67.7

specificity (%)
human 96.8 97.5 97.0 94.2 100.0 96.7 89.0
mouse 90.3 90.7 88.6 76.6 99.9 95.9 86.1
chicken 94.2 94.6 93.6 89.5 99.3 92.9 86.7
frog 86.9 88.2 86.0 82.0 99.4 92.2 85.5
zebrafish 90.3 90.2 88.9 78.7 99.1 90.1 86.4
snail 94.7 95.6 94.0 86.3 99.5 95.4 93.4
total 92.1 92.7 91.1 84.0 99.6 94.2 88.0
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Table 4. Accuracy at exon level of DHC runs

species AUGUSTUS-PPX AUG. Scipio Genewise
full fbs ex-ortho ab-initio cross-sp. full ex-ortho

sensitivity (%)
human 93.3 93.6 91.0 84.5 N/A 83.7 51.8
mouse 93.6 93.7 90.5 85.1 86.0 80.4 50.1
chicken 89.3 89.8 87.5 80.5 66.0 68.8 46.2
frog 85.8 86.0 83.8 78.0 48.2 64.3 48.0
zebrafish 89.8 89.8 88.0 80.3 49.2 68.5 49.1
snail 85.9 86.5 84.3 78.9 31.6 59.3 49.1
total 89.6 89.9 87.5 81.3 63.5 70.9 49.2

specificity (%)
human 91.7 93.4 90.6 88.1 N/A 84.9 71.9
mouse 90.3 91.1 86.9 80.1 87.9 82.8 69.2
chicken 87.0 87.6 84.1 80.3 73.7 80.6 70.1
frog 75.9 80.5 74.7 77.9 64.6 74.3 67.8
zebrafish 82.1 82.8 79.5 77.1 64.0 75.9 70.2
snail 84.3 87.6 82.5 78.6 51.9 75.9 68.8
total 85.0 87.2 82.9 80.3 76.5 79.3 69.6

Table 5. Accuracy at gene level of DHC runs

species AUGUSTUS-PPX AUG. Scipio Genewise
full fbs ex-ortho ab-initio cross-sp. full ex-ortho

highly accurate at 95/85 (%)
human 62.5 68.8 62.5 31.3 N/A 93.8 6.3
mouse 72.2 77.8 61.1 22.2 88.9 55.6 0.0
chicken 58.3 58.3 50.0 8.3 8.3 16.7 0.0
frog 44.4 44.4 38.9 0.0 5.6 11.1 0.0
zebrafish 57.1 57.1 35.7 57.1 7.1 14.3 0.0
snail 44.4 50.0 44.4 5.6 0.0 11.1 0.0
total 56.3 59.4 49.0 11.5 36.5 34.4 1.0

highly accurate at 90/90 (%)
human 87.5 93.8 81.3 25.0 0.0 93.8 6.3
mouse 72.2 77.8 66.7 27.8 88.9 88.9 0.0
chicken 83.3 83.3 75.0 16.7 33.3 41.7 0.0
frog 50.0 66.7 38.9 11.1 5.6 50.0 0.0
zebrafish 57.1 57.1 50.0 14.3 14.3 35.7 0.0
snail 77.8 83.3 72.2 22.2 0.0 38.9 16.7
total 70.8 77.1 63.5 19.8 24.0 59.4 4.2

identified genes (%)
human 100.0 100.0 93.8 N/A 100.0 100.0
mouse 100.0 100.0 94.4 100.0 100.0 88.9
chicken 100.0 100.0 100.0 100.0 91.7 83.3
frog 94.4 88.9 94.4 88.9 88.9 83.3
zebrafish 92.9 92.9 92.9 92.9 92.9 78.6
snail 88.9 83.3 88.9 83.3 88.9 88.9
total 95.8 93.8 93.8 95.8 93.8 87.5

Percentage of genes predicted at high accuracy atsens/spec level. A gene is considered highly accurate if
sequence overlap of prediction and reference is at leastsens% of reference andspec% of prediction; overlap
is measured in % of bps. Below the rate of genes identified as DHCs (not relevant for AUGUSTUS ab-initio).
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Table 6. Overview of PFAM families used

family accession # of seqs # of core seqs # of seqs # of core seqs
in database used (human) (human)

HSP70 PF00012 9069 2374 14 8
Aldedh PF00171 16528 3669 19 9
AA permease PF00324 13073 5185 24 15
Cullin PF00888 924 489 10 7
Sec1 PF00995 917 349 8 7

Table 7. Genomic reference sequences used in PFAM runs

family # of # of # of bps av. prot. assembly av. gene
genes exons length qual. (%) len (Kbps)

HSP70 8 38 15576 648.00 100.0 4.63
Aldedh 9 121 16203 599.11 100.0 40.59
AA permease 15 205 32520 721.67 100.0 47.55
Cullin 7 130 16710 794.71 100.0 64.67
Sec1 7 132 12609 600.57 99.8 56.90
total 46 626 93618 677.57 100.0 42.75

Table 8. Accuracy at nucleotide level of PFAM runs

family AUGUSTUS-PPX AUGUSTUS Genewise
full <80% <60% ab-initio

sensitivity (%)
HSP70 98.8 98.8 98.8 97.7 68.8
Aldedh 97.2 96.7 96.1 95.2 58.4
AA permease 93.0 92.5 93.1 90.8 44.5
Cullin 93.1 93.0 93.0 88.5 73.6
Sec1 95.3 95.3 95.9 90.7 70.7
total 95.0 94.7 94.9 92.3 59.7

specificity (%)
HSP70 97.9 97.9 97.7 90.7 99.6
Aldedh 87.7 86.9 85.9 87.5 98.2
AA permease 87.4 87.3 87.5 75.7 84.5
Cullin 90.9 90.1 90.1 90.5 95.8
Sec1 82.1 82.1 83.5 81.3 87.4
total 88.9 88.6 88.7 83.2 92.3
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Table 9. Accuracy at exon level of PFAM runs

family AUGUSTUS-PPX AUGUSTUS Genewise
full <80% <60% ab-initio

sensitivity (%)
HSP70 92.1 92.1 89.5 84.2 10.5
AldeDh 92.6 91.7 90.1 86.0 48.8
AA perm 83.9 83.9 85.4 81.0 24.4
Cullin 87.7 86.9 86.9 83.1 56.9
Sec1 93.9 93.9 94.7 87.1 44.7
total 89.0 88.7 88.8 83.9 39.3

specificity (%)
HSP70 92.1 92.1 89.5 71.1 25.0
AldeDh 76.7 75.5 71.2 77.0 76.6
AA perm 71.7 71.4 72.6 65.4 40.3
Cullin 90.5 85.6 85.6 89.3 67.9
Sec1 87.3 87.3 88.7 83.9 59.0
total 80.5 79.3 78.9 75.9 57.7

Table 10. Accuracy at gene level of PFAM runs

family AUGUSTUS-PPX AUGUSTUS Genewise
full <80% <60% ab-initio

highly accurate genes at 95/85 (%)
HSP70 87.5 87.5 87.5 75.0 0.0
Aldedh 77.8 66.7 55.6 66.7 0.0
AA permease 53.3 53.3 53.3 33.3 0.0
Cullin 28.6 28.6 28.6 0.0 0.0
Sec1 28.6 28.6 42.9 14.3 0.0
total 56.5 54.3 54.3 39.1 0.0

highly accurate genes at 90/90 (%)
HSP70 87.5 87.5 87.5 75.0 75.0
Aldedh 88.9 77.8 55.6 55.6 11.1
AA permease 53.3 53.3 60.0 40.0 0.0
Cullin 57.1 57.1 57.1 14.3 0.0
Sec1 42.9 42.9 57.1 42.9 14.3
total 65.2 63.0 63.0 45.7 17.4

completely correct genes (%)
HSP70 75.0 75.0 75.0 62.5 0.0
Aldedh 44.4 44.4 33.3 22.2 0.0
AA permease 20.0 20.0 20.0 13.3 0.0
Cullin 0.0 0.0 0.0 0.0 0.0
Sec1 14.3 14.3 14.3 14.3 0.0
total 30.4 30.4 28.3 21.7 0.0

identified genes (%)
HSP70 100.0 100.0 87.5 50.0
Aldedh 100.0 100.0 100.0 77.8
AA permease 93.3 93.3 86.7 86.7
Cullin 100.0 100.0 100.0 100.0
Sec1 100.0 100.0 100.0 85.7
total 97.8 97.8 93.5 80.4

Percentage of genes predicted at high accuracy atsens/spec level, cf. Table 5. Gene level sensitivity (accuracy
100/100) is shown as well. Below the rate of genes identified as members of their families (not relevant for
AUGUSTUS ab-initio).
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