## Angewandte Chemie

Supporting Information<br>© Wiley-VCH 2011<br>69451 Weinheim, Germany

# Zwitterionic Si-C-Si-P and Si-P-Si-P Four-Membered Rings with Two-Coordinate Phosphorus Atoms** 

Sakya S. Sen, Shabana Khan, Herbert W. Roesky, * Daniel Kratzert, Kathrin Meindl, Julian Henn, Dietmar Stalke,* Jean-Philippe Demers, and Adam Lange
anie_201005866_sm_miscellaneous_information.pdf

## Content:

(S1). Syntheses of $\mathbf{3}$ and $\mathbf{4}$
(S2). Crystal data for $\mathbf{3}$ and $\mathbf{4}$
(S3). Theoretical Calculation for $\mathbf{3}$ and $\mathbf{4}$
(S4). Solid-state NMR
(S5). Probable mechanism for the formation of $\mathbf{3}$ and $\mathbf{4}$ from 2.
(S6). References
(S1). Syntheses of 3 and 4

All reactions and handling of reagents were performed under an atmosphere of dry nitrogen or argon using standard Schlenk techniques or a glove box where the $\mathrm{O}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$ levels were usually kept below 1 ppm . Adamantyl phosphalkyne was purchased from Aldrich and used as received. White phosphorus was sublimized prior to use. Compounds $\mathbf{1}$ and $\mathbf{2}$ were prepared according to literature methods. ${ }^{[\mathrm{S} 1, \mathrm{~S} 2]}$ Solvents were purified with the M-Braun solvent drying system. Solution NMR spectra were recorded on Bruker Avance 200, Bruker Avance 300, and Bruker Avance 500 MHz NMR spectrometers. Deuterated NMR solvents $\mathrm{C}_{6} \mathrm{D}_{6}$, and $\mathrm{D}_{8}{ }^{-}$ [THF] were dried by stirring for 2 days over $\mathrm{Na} / \mathrm{K}$ alloy followed by distillation in vacuum and degassed. EI-MS spectra were obtained with a Finnigan MAT 8230 or a Varian MAT CH5 instrument ( 70 eV ) by EI-MS methods. Elemental analyses were performed by the Analytisches Labor des Instituts für Anorganische Chemie der Universität Göttingen. Melting points were measured in sealed glass tubes on a Büchi B-540 melting point apparatus.

3: To the mixture of $1(0.29 \mathrm{~g}, 1.00 \mathrm{mmol})$ and 1-adamantyl phosphaalkyne $(0.07 \mathrm{~g}, 0.38$ $\mathrm{mmol})$ at $-20{ }^{\circ} \mathrm{C}$ toluene ( 25 mL ) was added and the color of the solution immediately
changed from colorless to red. The reaction mixture was stirred overnight. The solvent was removed under reduced pressure and the crude product was extracted with toluene ( 10 mL ). Concentration and storing at $0{ }^{\circ} \mathrm{C}$ in a freezer afforded reddish yellow crystals of $\mathbf{3}(0.15 \mathrm{~g}$, $68.22 \%) .{ }^{1}{ }^{H}$ NMR ( $200 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}$ ): $\delta 1.21(\mathrm{~s}, 4 \mathrm{H}, \mathrm{Ad}), 1.26(\mathrm{~s}, 36 \mathrm{H}, t \mathrm{Bu}), 1.72(\mathrm{~s}$, $12 \mathrm{H}, \mathrm{Ad}), 6.90-7.10(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ph}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ( $125.75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}$ ): $\delta 32.8$ (CMe 3 ), 40.2, 41.6, 50.9, 51.6 (adamantyl), $56.9\left(\mathrm{CMe}_{3}\right), 129.4,130.6,132.2,133.2$ (Ph), 136.2 (Si-C-Ad), 171.23 (NCN) ppm; ${ }^{31} \mathrm{P}$ NMR ( $121.5 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 25{ }^{\circ} \mathrm{C}$ ) -243 ppm; ${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $\left.99.36 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 25{ }^{\circ} \mathrm{C}\right): \delta-5.1 \mathrm{ppm}\left({ }^{1} J_{\mathrm{Si}-\mathrm{P}}=75.45 \mathrm{~Hz}\right)$; EI-MS: $m / z: 696$ (100\%). Elemental analysis for $\mathrm{C}_{41} \mathrm{H}_{61} \mathrm{~N}_{4} \mathrm{PSi}_{2}$ : calcd C, $70.64 ; \mathrm{H}, 8.82 ; \mathrm{N}, 8.04$; found C , 71.16; H, 9.12; N, 8.10.

Alternate synthesis of 3: To the mixture of $2(0.10 \mathrm{~g}, 0.19 \mathrm{mmol})$ and 1-adamantyl phosphaalkyne $(0.03 \mathrm{~g}, 0.19 \mathrm{mmol})$ at $-20^{\circ} \mathrm{C}$ toluene $(25 \mathrm{~mL})$ was added and the color of the solution immediately changed from dark red to pale red. The reaction mixture was stirred overnight. Concentration and storing at room temperature afforded reddish yellow crystals of 3 ( $0.06 \mathrm{~g}, 44.78 \%$ ).

4: To the mixture of $\mathbf{1}(0.29 \mathrm{~g}, 1.00 \mathrm{mmol})$ and white phosphorus $(0.124 \mathrm{~g}, 1.00 \mathrm{mmol})$ at room temperature toluene ( 25 mL ) was added and the color of the solution immediately changed from colorless to dark yellow with the formation of a yellow solid. The reaction mixture was stirred overnight. The solvent was removed under reduced pressure, the solid was washed with toluene (10 mL) to remove $\mathrm{PhC}(\mathrm{N} t \mathrm{Bu})_{2} \mathrm{SiCl}_{3}$ and then extracted with THF (25 $\mathrm{mL})$. Concentration and storing at $-32^{\circ} \mathrm{C}$ in a freezer afforded yellow crystals of $4(0.17 \mathrm{~g}$, $60 \%$ ). Mp $168-175^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz},\left[\mathrm{D}_{8}\right]$-THF, $25^{\circ} \mathrm{C}$ ): $\delta 1.36(\mathrm{~s}, 36 \mathrm{H}, t \mathrm{Bu}), 6.61-$ $6.98(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ph}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $\left.125.75 \mathrm{MHz},\left[\mathrm{D}_{8}\right]-\mathrm{THF}, 25{ }^{\circ} \mathrm{C}\right): \delta 33.1\left(\mathrm{CMe}_{3}\right), 53.5$ $\left(\mathrm{CMe}_{3}\right), 125.6,127.6,129.3,135.9(P h), 171.23(\mathrm{NCN}) \mathrm{ppm} ;{ }^{31} \mathrm{P}$ NMR (121.5 MHz, [D $\left.\mathrm{D}_{8}\right]-$

THF, $25{ }^{\circ} \mathrm{C}$ ): $d-166.02 \mathrm{ppm} ;{ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $99.36 \mathrm{MHz},\left[\mathrm{D}_{8}\right]$-THF, $25{ }^{\circ} \mathrm{C}$ ): $d 25.6 \mathrm{ppm}$ $\left({ }^{1} J_{\text {Si-P }}=109.02 \mathrm{~Hz}\right)$. EI-MS: $m / z: 580\left[\mathrm{M}^{+}\right](100 \%)$. Elemental analysis for $\mathrm{C}_{30} \mathrm{H}_{46} \mathrm{~N}_{4} \mathrm{P}_{2} \mathrm{Si}_{2}$ : calcd C, 62.04; H, 7.98; N, 9.65; found C, 62.29; H, 8.08; N, 9.72.


#### Abstract

Alternate synthesis of 4: THF ( 25 mL ) was charged to the mixture of white phosphorus $(0.03 \mathrm{~g}, 0.21 \mathrm{mmol})$ and $2(0.11 \mathrm{~g}, 0.21 \mathrm{mmol})$ at room temperature. The color of the solution changed immediately from deep red to faint red. The reaction mixture was stirred for 2 h and all volatiles were removed in vacuum. The residue was treated with THF ( 10 mL ) and filtered through celite. The solution was concentrated and stored at $-32^{\circ} \mathrm{C}$ to yield yellow crystals of 4 (0.12 g, 50\%).


## (S2). Crystal data for 3 and 4

Shock cooled crystals were selected and mounted under nitrogen atmosphere using the XTEMP2. ${ }^{[S 3]}$ The data of $\mathbf{3}$ was measured on a Bruker TXS-Mo rotating anode with Helios mirror optics; $\mathbf{4}$ was measured on an INCOATEC Mo Microsource with Quazar mirror optics. Both had a APEX II detector on a D8 goniometer. The diffractometers where equipped with a low-temperature device and used $\mathrm{MoK}_{\mathrm{a}}$ radiation, ? $=0.71073 \AA$. The data sets were integrated with SAINT ${ }^{[54]}$ and an empirical absorption (SADABS) was applied. ${ }^{[55]}$ The structures were solved by direct methods (SHELXS-97) and refined by full-matrix leastsquares methods against $F^{2}$ (SHELXL-97). ${ }^{[\mathrm{S} 6]}$ All non-hydrogen-atoms were refined with anisotropic displacement parameters. The hydrogen atoms were refined isotropically on calculated positions using a riding model with their $\mathrm{U}_{\mathrm{iso}}$ values constrained to equal to 1.5 times the $\mathrm{U}_{\mathrm{eq}}$ of their pivot atoms for terminal $\mathrm{sp}^{3}$ carbon atoms and 1.2 times for all other carbon atoms. Disordered moieties were refined using bond lengths restraints and isotropic displacement parameters restraints. Crystallographic data (excluding structure factors) for the structures reported in this paper have been deposited with the Cambridge Crystallographic

Data Center. The crystal data are available from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

|  | 3-3toluene | 4-2thf |
| :---: | :---: | :---: |
| CCDC number | 793275 | 793276 |
| Empirical formula | $\mathrm{C}_{62} \mathrm{H}_{85} \mathrm{~N}_{4} \mathrm{PSi}_{2}$ | $\mathrm{C}_{38} \mathrm{H}_{62} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{Si}_{2}$ |
| Formula weight | 973.49 | 725.04 |
| Temperature [K] | 100(2) | 100(2) |
| Wavelength [ A ] | 0.71073 | 0.71073 |
| Crystal system | Orthorhombic | Monoclinic |
| Space group | $P 2_{1} 2_{1} 2_{1}$ | C2/c |
| Unit cell dimensions [ $\AA$ ], [ ${ }^{\circ}$ ] | $a=13.540$ (2) | $a=13.7643$ (15) |
|  | $b=18.636(3)$ | $b=23.392(3) \quad \beta=104.973$ (2) |
|  | $c=22.541(4)$ | $c=13.0870(14)$ |
| Volume [ $\AA^{3}$ ] | 5687.8(17) | 4070.6(8) |
| Z | 4 | 4 |
| Density (calculated) [ $\mathrm{Mg} / \mathrm{m}$ ] | 1.137 | 1.183 |
| Absorption coefficient [ $\mathrm{mm}^{-1}$ ] | 0.132 | 0.202 |
| $F(000)$ | 2112 | 1568 |
| Crystal size [ $\mathrm{mm}^{3}$ ] | $0.256 \times 0.138 \times 0.10$ | $0.12 \times 0.1 \times 0.08$ |
| Theta range for data collection [ ${ }^{\circ}$ ] | 1.42 to 27.13 | 1.74 to 27.69 |
| Index ranges | $-17<=h<=17,-23<=k<=23$, | $-17<=h<=17,-30<=k<=30$, |
|  | $-28<=l<=28$ | $-17<=l<=17$ |
| Reflections collected | 84501 | 52804 |
| Independent reflections | $12583[R(\mathrm{int})=0.0341]$ | $4761[R($ int $)=0.0510]$ |
| Completeness to theta $=27.13^{\circ}$ | 99.9 \% | 99.8\% |
| Absorption correction | Semi-empirical from equivalents | Semi-empirical from equivalents |
| Max. and min. transmission | 0.98279 and 0.91086 | 0.9828 and 0.8726 |
| Refinement method | Full-matrix least-squares on $F^{2}$ | Full-matrix least-squares on $F^{2}$ |
| Data / restraints / parameters | 12583 / 228 / 720 | 4761 / 0 / 227 |
| Goodness-of-fit on $F^{2}$ | 1.086 | 1.065 |
| Final R indices [ $\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$ ] | $R 1=0.0467, w R 2=0.1240$ | $R 1=0.0451, w R 2=0.1134$ |
| R indices (all data) | $R 1=0.0505, w R 2=0.1267$ | $R 1=0.0580, w R 2=0.1223$ |
| Largest diff. peak and hole [ $\mathrm{C}^{-}{ }^{-3}$ ] | 0.686 and -0.271 | 0.902 and -0.232 |

(S3). Theoretical Calculations for 3 and 4
All theoretical calculations were performed with Gaussian 09 (Rev. A.02) on the B3LYP/6-311G* level of theory. ${ }^{[S 7]}$

Coordinates of the optimized geometry of $\mathbf{3}$

| N1 | -2.829836 | -0.776811 | -1.047294 |
| :---: | :---: | :---: | :---: |
| N2 | -2.824241 | -0.647476 | 1.105392 |
| N3 | 2.806978 | -0.662134 | 1.114555 |
| N4 | 2.808124 | -0.826327 | -1.034851 |
| P1 | -0.023152 | -2.599586 | 0.148800 |
| SI1 | -1.259368 | -0.767081 | 0.029421 |
| SI2 | 1.239878 | -0.786597 | 0.037128 |
| C1 | 5.090299 | -0.829485 | 0.041074 |
| C2 | 5.825480 | 0.358985 | -0.016939 |
| H2 | 5.306829 | 1.310472 | -0.058519 |
| C3 | 7.217273 | 0.323837 | -0.038795 |
| H3 | 7.777119 | 1.252028 | -0.086641 |
| C4 | 7.887312 | -0.897450 | -0.004110 |
| H4 | 8.971837 | -0.924290 | -0.022826 |
| C5 | 7.159601 | -2.084164 | 0.055653 |
| H5 | 7.674755 | -3.038574 | 0.086167 |
| C6 | 5.767280 | -2.052343 | 0.079074 |
| H6 | 5.205819 | -2.977910 | 0.137157 |
| C7 | 3.110374 | -1.150439 | -2.450830 |
| C8 | 4.281231 | -0.321133 | -3.005695 |
| H8A | 5.239339 | -0.597317 | -2.567072 |
| H8B | 4.117486 | 0.746056 | -2.836019 |
| H8C | 4.355599 | -0.481025 | -4.084884 |
| C9 | 3.397229 | -2.657454 | -2.595692 |
| H9A | 2.573377 | -3.242526 | -2.181305 |
| H9B | 4.319227 | -2.940220 | -2.083932 |
| H9C | 3.510728 | -2.923124 | -3.650953 |
| C10 | 1.845855 | -0.809575 | -3.250926 |
| H10A | 1.604871 | 0.252021 | -3.174986 |
| H10B | 0.993762 | -1.380819 | -2.883515 |
| H10C | 1.995650 | -1.055829 | -4.305248 |
| C11 | 3.598247 | -0.779351 | 0.042890 |
| C12 | 3.134279 | -0.570742 | 2.559048 |
| C13 | 1.797752 | -0.628982 | 3.311343 |
| H13A | 1.284056 | -1.571382 | 3.114193 |
| H13B | 1.137591 | 0.184196 | 3.007893 |
| H13C | 1.972102 | -0.547184 | 4.387222 |
| C14 | 3.835790 | 0.761481 | 2.880994 |
| H14A | 3.232147 | 1.606950 | 2.542544 |
| H14B | 4.818895 | 0.827874 | 2.412744 |
| H14C | 3.977308 | 0.859080 | 3.961211 |
| C15 | 3.999714 | -1.758140 | 3.020568 |
| H15A | 5.005744 | -1.727869 | 2.602391 |
| H15B | 3.531737 | -2.704434 | 2.738726 |
| H15C | 4.095609 | -1.741595 | 4.109825 |
| C16 | -3.617911 | -0.745188 | 0.030960 |
| C17 | -5.110592 | -0.792899 | 0.041314 |
| C18 | -5.790447 | -2.014308 | 0.070705 |
| H18 | -5.230834 | -2.942748 | 0.073474 |
| C19 | -7.183179 | -2.042418 | 0.090771 |
| H19 | -7.699721 | -2.996244 | 0.114830 |
| C20 | -7.908688 | -0.853283 | 0.078104 |


| H20 | -8.993343 | -0.877061 | 0.092690 |
| :---: | :---: | :---: | :---: |
| C21 | -7.236112 | 0.366844 | 0.046332 |
| H21 | -7.794121 | 1.297309 | 0.036686 |
| C22 | -5.844359 | 0.398040 | 0.029878 |
| H22 | -5.323848 | 1.349263 | 0.013481 |
| C23 | -3.160000 | -0.865331 | -2.491767 |
| C24 | -1.820502 | -0.887114 | -3.240242 |
| H24A | -1.238441 | -1.765965 | -2.957533 |
| H24B | -1.226909 | -0.000971 | -3.013588 |
| H24C | -1.996231 | -0.921422 | -4.318410 |
| C25 | -3.912485 | -2.170708 | -2.812093 |
| H25A | -4.917169 | -2.183054 | -2.389274 |
| H25B | -3.360110 | -3.032497 | -2.430252 |
| H25C | -4.010106 | -2.284773 | -3.895498 |
| C26 | -3.977339 | 0.354356 | -2.954144 |
| H26A | -3.457548 | 1.283260 | -2.709859 |
| H26B | -4.967534 | 0.381348 | -2.497685 |
| H26C | -4.115334 | 0.319374 | -4.038571 |
| C27 | -3.128425 | -0.822121 | 2.548471 |
| C28 | -4.212346 | 0.157340 | 3.031315 |
| H28A | -5.194878 | -0.065745 | 2.616478 |
| H28B | -3.951106 | 1.185492 | 2.767545 |
| H28C | -4.294346 | 0.101007 | 4.120392 |
| C29 | -3.544315 | -2.277120 | 2.838682 |
| H29A | -2.780915 | -2.969500 | 2.477225 |
| H29B | -4.497118 | -2.526575 | 2.368673 |
| H29C | -3.659272 | -2.428892 | 3.916024 |
| C30 | -1.825595 | -0.526602 | 3.302793 |
| H30A | -1.493012 | 0.497610 | 3.128826 |
| H30B | -1.034186 | -1.204409 | 2.981444 |
| H30C | -1.979096 | -0.661596 | 4.376456 |
| C31 | 0.001327 | 0.506179 | -0.072972 |
| C32 | 0.020513 | 2.024450 | -0.119977 |
| C33 | 1.337702 | 2.555426 | -0.747021 |
| H33A | 2.191387 | 2.185210 | -0.165349 |
| H33B | 1.447759 | 2.145354 | -1.757060 |
| C34 | -1.149173 | 2.586816 | -0.971583 |
| H34A | -1.082297 | 2.176567 | -1.985245 |
| H34B | -2.101147 | 2.237254 | -0.552786 |
| C35 | -0.103861 | 2.653518 | 1.297944 |
| H35A | 0.711241 | 2.280225 | 1.928038 |
| H35B | -1.036071 | 2.306675 | 1.757757 |
| C36 | -0.078746 | 4.194444 | 1.254703 |
| H36 | -0.166088 | 4.592415 | 2.273678 |
| C37 | 1.247177 | 4.665254 | 0.627166 |
| H37A | 1.289935 | 5.761498 | 0.603261 |
| H37B | 2.093162 | 4.331076 | 1.240855 |
| C38 | 1.368829 | 4.095677 | -0.798478 |
| H38 | 2.314361 | 4.426534 | -1.246897 |
| C39 | 0.190319 | 4.602292 | -1.651978 |
| H39A | 0.278427 | 4.224909 | -2.678259 |
| H39B | 0.210333 | 5.697514 | -1.716107 |
| C40 | -1.134922 | 4.127902 | -1.025415 |
| H40 | -1.976250 | 4.479780 | -1.636068 |
| C41 | -1.256963 | 4.698270 | 0.400011 |
| H41A | -1.265948 | 5.795195 | 0.370541 |
| H41B | -2.207991 | 4.387998 | 0.850804 |

Coordinates of the optimized geometry of $\mathbf{4}$

| N1 | 2.854412 | 1.077265 | 0.051541 |
| :---: | :---: | :---: | :---: |
| N2 | -2.854399 | 1.077278 | -0.051519 |
| P3 | 0.000000 | -0.000493 | -1.772599 |
| SI1 | 1.300291 | -0.000005 | -0.000002 |
| SI2 | -1.300255 | -0.000003 | -0.000002 |
| C1 | 3.147983 | 2.485359 | 0.421462 |
| C2 | 4.317534 | 3.067206 | -0.390612 |
| H2A | 5.275854 | 2.619072 | -0.131146 |
| H2B | 4.392158 | 4.140150 | -0.193742 |
| H 2 C | 4.150666 | 2.934482 | -1.462399 |
| C3 | 3.436916 | 2.581262 | 1.931285 |
| H3A | 2.611163 | 2.157588 | 2.506964 |
| H3B | 3.559931 | 3.626724 | 2.228989 |
| H3C | 4.355212 | 2.052381 | 2.196066 |
| C4 | 1.880877 | 3.289742 | 0.097584 |
| H4A | 1.629233 | 3.213704 | -0.962026 |
| H4B | 2.037306 | 4.343290 | 0.342538 |
| H4C | 1.032561 | 2.927771 | 0.679681 |
| C5 | 3.646736 | 0.000000 | -0.000001 |
| C6 | 5.138198 | -0.000001 | -0.000003 |
| C7 | 5.842873 | -0.121136 | 1.201567 |
| H7 | 5.301769 | -0.228530 | 2.135128 |
| C8 | 7.235346 | -0.117749 | 1.199888 |
| H8 | 7.773545 | -0.211594 | 2.137278 |
| C9 | 7.934236 | -0.000006 | -0.000005 |
| H9 | 9.019236 | -0.000008 | -0.000006 |
| C10 | -3.147983 | 2.485335 | -0.421619 |
| C11 | -1.880765 | 3.289729 | -0.098182 |
| H11A | -1.628767 | 3.213717 | 0.961344 |
| H11B | -2.037288 | 4.343274 | -0.343099 |
| H11C | -1.032624 | 2.927783 | -0.680551 |
| C12 | -4.317278 | 3.067317 | 0.390722 |
| H12A | -5.275642 | 2.618977 | 0.131800 |
| H12B | -4.392130 | 4.140186 | 0.193522 |
| H12C | -4.149925 | 2.934947 | 1.462474 |
| C13 | -3.437290 | 2.581038 | -1.931367 |
| H13A | -2.611784 | 2.157053 | -2.507186 |
| H13B | -3.560092 | 3.626479 | -2.229233 |
| H13C | -4.355786 | 2.052367 | -2.195844 |
| C14 | -3.646724 | 0.000006 | -0.000005 |
| C15 | -5.138191 | 0.000002 | -0.000011 |
| C16 | -5.842864 | -0.121265 | -1.201568 |
| H16 | -5.301769 | -0.228785 | -2.135119 |
| C17 | -7.235338 | -0.117879 | -1.199893 |
| H17 | -7.773528 | -0.211817 | -2.137279 |
| C18 | -7.934236 | -0.000013 | -0.000017 |
| H18 | -9.019237 | -0.000019 | -0.000019 |
| N1A | 2.854416 | -1.077269 | -0.051538 |
| N2A | -2.854407 | -1.077269 | 0.051527 |
| P3A | -0.000001 | 0.000480 | 1.772595 |
| C1A | 3.147997 | -2.485361 | -0.421458 |
| C2A | 4.317558 | -3.067192 | 0.390611 |
| H2AA | 5.275871 | -2.619043 | 0.131144 |
| H2BA | 4.392197 | -4.140135 | 0.193740 |
| H2CA | 4.150692 | -2.934473 | 1.462400 |
| C3A | 3.436926 | -2.581264 | -1.931282 |
| H3AA | 2.611167 | -2.157600 | -2.506959 |
| H3BA | 3.559954 | -3.626724 | -2.228984 |
| H3CA | 4.355216 | -2.052371 | -2.196066 |


| C4A | 1.880902 | -3.289759 | -0.097575 |
| :--- | ---: | ---: | ---: |
| H4AA | 1.629258 | -3.213722 | 0.962035 |
| H4BA | 2.037343 | -4.343306 | -0.342528 |
| H4CA | 1.032581 | -2.927800 | -1.201572 |
| C7A | 5.842872 | -2.135133 |  |
| H7A | 5.301767 | 0.22850 | -1.199896 |
| C8A | 7.235344 | -2.137288 |  |
| H8A | 7.773542 | 0.117738 | 0.421638 |
| C10A | -3.148015 | 0.211582 | -0.9617353 |
| C11A | -1.880829 | -2.485316 | 0.343099 |
| H11D | -1.628847 | -3.289751 | 0.680532 |
| H11E | -2.037382 | -3.213750 | -0.390681 |
| H11F | -1.032667 | -4.343291 | -0.131748 |
| C12A | -4.317347 | -2.927833 | -1.462473 |
| H12D | -5.275687 | -3.067252 | 1.931391 |
| H12E | -4.392245 | -2.618865 | 2.507197 |
| H12F | -4.150006 | -4.140117 | 2.229259 |
| C13A | -3.437300 | -2.934898 | 2.195883 |
| H13D | -2.611769 | -2.581007 | 1.201545 |
| H13E | -3.560138 | -2.157055 | 2.135098 |
| H13F | -4.355772 | -3.626444 | 1.199863 |
| C16A | -5.842871 | -2.052301 | 2.137247 |
| H16A | -5.301780 | 0.121255 | 0.228779 |
| C17A | -7.235345 | 0.117857 | 0.211789 |

## (S4). Solid-state NMR

Solid-state NMR spectra were recorded at temperatures of $5-10{ }^{\circ} \mathrm{C}$ on a $9.4 \mathrm{~T}\left(400 \mathrm{MHz}{ }^{1} \mathrm{H}\right.$ Larmor frequency) wide-bore instrument. $\mathbf{3}$ and $\mathbf{4}$ were prepared in micro-crystalline form and packed under inert atmosphere into $2.5-\mathrm{mm}$ and $4.0-\mathrm{mm}$ MAS rotors. ${ }^{1} \mathrm{H}-{ }^{29} \mathrm{Si}$ and ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ cross-polarization (CP) spectra were recorded on $4.0-\mathrm{mm}$ rotors, with MAS frequencies of $1675 \mathrm{~Hz}, 2860 \mathrm{~Hz}$ and 7000 Hz for ${ }^{29} \mathrm{Si}$, and 11000 Hz for ${ }^{13} \mathrm{C} .{ }^{1} \mathrm{H}-{ }^{31} \mathrm{P} \mathrm{CP}$ spectra were recorded on $2.5-\mathrm{mm}$ rotors at MAS frequencies of $5700 \mathrm{~Hz}, 7000 \mathrm{~Hz}$ and 20000 Hz . For 4, the $7 \mathrm{kHz}{ }^{1} \mathrm{H}-{ }^{31} \mathrm{P}$ spectra were recorded on a $4.0-\mathrm{mm}$ rotor.

The swept-frequency TPPM sequence was used for proton decoupling during acquisition, with an RF field amplitude of 83.3 kHz , sweep window of 0.32 and phase angle of $12.5^{\circ} .{ }^{[58]}$ Chemical shifts were calibrated using external references: TMS for ${ }^{29} \mathrm{Si}$, $1 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$ for ${ }^{31} \mathrm{P}$, adamantane for ${ }^{13} \mathrm{C}$ (corresponding to DSS at 0 ppm ).

The chemical shift anisotropies of ${ }^{29} \mathrm{Si}$ and ${ }^{31} \mathrm{P}$ were extracted by comparison of spinning sideband intensities with the sideband pattern of simulated spectra (Figure S4.2). Simulated spectra were generated within the numerical simulation routine $\mathrm{GAMMA}^{[59]}$ over a large range of possible anisotropy and asymmetry values. The ${ }^{29} \mathrm{Si}$ or ${ }^{31} \mathrm{P}$ anisotropic chemical shift was considered as the relevant internal system Hamiltonian, and powder averaging involved 1154 crystallite orientations. Values which minimized the peak intensity residual sum of squares were used to produce the back-calculated spectra (Table S4.1).

Table S4.1. Chemical shift tensor parameters and optimum CP contact times

| Compound | Nucleus | $\tau_{\mathrm{CP}}$ <br> $(\mathrm{ms})$ | $\delta_{\text {iso }}$ <br> $(\mathrm{ppm})$ | $\delta_{\mathrm{xx}}$ <br> $(\mathrm{ppm})$ | $\delta_{\mathrm{yy}}$ <br> $(\mathrm{ppm})$ | $\delta_{z z}$ <br> $(\mathrm{ppm})$ | $\eta_{\text {asym }}$ | $\delta_{\text {aniso }}$ <br> $(\mathrm{ppm})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | ---: | ---: |
| $\mathbf{3}$ (exp.) | ${ }^{31} \mathrm{P}$ | 5.6 | -326.1 | -367.7 | -367.7 | -242.9 | 0 | 83.2 |
| $\mathbf{3}$ (theo.) | ${ }^{31} \mathrm{P}$ |  | -341.1 | -405.6 | -389.9 | -227.9 | 0.139 | 113.2 |
| $\mathbf{4}$ (exp.) | ${ }^{31} \mathrm{P}$ | 11.6 | -166.4 | -49.6 | -63.4 | -386.2 | 0.063 | -219.8 |
| $\mathbf{4}$ (theo.) | ${ }^{31} \mathrm{P}$ |  | -132.0 | 39.7 | -43.0 | -392.8 | 0.317 | -260.8 |
| $\mathbf{3}$ | ${ }^{29} \mathrm{Si}$ | 5.1 | -8.4 | 43.8 | 3.4 | -72.4 | 0.631 | -64.0 |
| $\mathbf{4}$ | ${ }^{29} \mathrm{Si}$ | 7.8 | 24.0 | -46.2 | -21.8 | 140.0 | 0.210 | 116.0 |

The following convention is employed:
The principal components of the CSA tensor are $\delta_{\mathrm{xx}}$, $\delta_{\mathrm{yy}}$ and $\delta_{\mathrm{zz}}$,
with $\left|\delta_{\text {zz }}-\delta_{\text {iso }}\right| \geq\left|\delta_{\mathrm{xx}}-\delta_{\text {iso }}\right| \geq \delta_{\mathrm{yy}}-\delta_{\text {iso }} \mid$
Isotropic chemical shift: $\delta_{\mathrm{iso}}=\frac{1}{3}\left(\delta_{\mathrm{xx}}+\delta_{\mathrm{yy}}+\delta_{z z}\right)$
Anisotropy: $\delta_{\text {aniso }}=\delta_{z z}-\delta_{\text {iso }}$
Asymmetry: $\eta_{\text {asym }}=\frac{\delta_{y y}-\delta_{\text {xx }}}{\delta_{\text {aniso }}}$, where $\eta_{\text {asym }}=0$ is axially symmetric;
$\tau_{\mathrm{CP}}$ is the cross-polarization contact time yielding maximum intensity.


Figure S4.1. Cross-polarization profiles. The build-up of magnetization for compounds $\mathbf{3}$ (a,c) and 4 (b,d) was monitored by incrementing the contact time between ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}(\mathrm{a}, \mathrm{b}$; 20 kHz MAS), or ${ }^{1} \mathrm{H}$ and ${ }^{29} \mathrm{Si}$ (c,d; 7 kHz MAS). Arrows indicate the point of maximal intensity.


Figure S4.2. Experimental (black) and simulated (red) spinning sideband patterns for compounds 3 (a,c) and 4 (b,d). Cross-polarization spectra were recorded on ${ }^{31} \mathrm{P}(\mathrm{a}, \mathrm{b})$ and ${ }^{29} \mathrm{Si}$ (c,d) at multiple magic-angle spinning frequencies ( $\mathrm{v}_{\mathrm{MAS}}$ ). The isotropic peaks are indicated by arrows. The excerpt in (d) presents the multiplet structure of the ${ }^{29} \mathrm{Si}$ resonance of $\mathbf{4}$ due to silicon-phosphorus $J$ coupling.
(S5). Tentative mechanism for the formation of 3 and 4 from 2.


Mechanism for the formation of $\mathbf{3}$


Mechanism for the formation of 4
(S6). References
[S1] S. S. Sen, H. W. Roesky, D. Stern, J. Henn, D. Stalke, J. Am. Chem. Soc. 2010, 132, 1123-1126.
[S2] S. S. Sen, A. Jana, H. W. Roesky, C. Schulzke, Angew. Chem. 2009, 121, 8688 8690; Angew. Chem. Int. Ed. 2009, 48, 8536 - 8538.
[S3] T. Kottke, D. Stalke, J. Appl. Crystallogr. 1993, 26, 615 - 619.
[S4] Bruker, SAINT v 7.68A., Bruker AXS Inc., Madison (WI, USA), 2009.
[S5] G. M. Sheldrick, SADABS 2008/2, Göttingen, 2008.
[S6] G. M. Sheldrick, Acta Crystallogr. Sect. A 2008, 64, 112 - 122.
[S7] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S.
S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
[S8] a) C. V. Chandran, P. K. Madhu, N.D. Kurur, T. Bräuniger, Magn. Reson. Chem., 2008, 46, 943 - 947; b) R. S. Thakura, N. D. Kurur, P. K. Madhu, Chem. Phys. Lett., 2006, 426, 459 - 463
[S9] S.A. Smith, T.O. Levante, B.H. Meier, R.R. Ernst, J. Magn. Reson. A, 1994, 106, 75 105.

