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ABSTRACT

This paper presents the derivation of a model to explore the coupling between the dynamic and thermo-

dynamic processes of a cloud-topped boundary layer on mesoscales using a formal multiscale asymptotic

approach. The derived equations show how the anomalies in the heat, moisture, and mass budgets in the

boundary layer affect boundary layer motions, and how these motions can organize and amplify (or damp)

such anomalies.

The thermodynamics equations are similar to those that have been suggested in mixed layer studies; that is,

the evolution of the thermodynamics variables depends on the surface heat and moisture fluxes, cloud-top

radiative cooling rate, temperature, and moisture jumps across the capping inversion. However, these

equations are coupled to the dynamics equation through the entrainment rate at the top of the cloud deck.

The entrainment rate is parameterized from results obtained in laboratory experiments and clearly shows the

dependence on the velocity perturbation, which in turn strongly depends on the horizontal gradient of the

thermodynamics variables. The derived entrainment rate is applicable when the thermal jump at cloud top is

sufficiently weak and the velocity jump is on the order of the velocity perturbation.

Aside from some initial analyses of the main balances in steady-state solutions, the mathematical properties

and physical characteristics of the system of equations will be explored in future papers.

1. Introduction

The atmospheric boundary layer energetically couples

the atmosphere to the underlying surface, both directly

through its regulation of the transfer of heat, momentum,

and matter (e.g., water vapor) and indirectly through the

modulation of radiative fluxes. Boundary layer processes

thus readily imprint themselves on larger-scale circu-

lations. For instance, boundary layer processes trans-

late surface temperature gradients into shallow pressure

anomalies that drive regions of low-level convergence

and, hence, the climatology of precipitation (Lindzen and

Nigam 1987). Boundary layer processes also determine

the distribution of low-level clouds that play such a crucial

role in limiting the amount of radiant energy reaching the

surface ocean. For these, and similar reasons, the study of

boundary layer processes, and the development of theo-

ries or models capable of encapsulating them, is a topic of

enduring interest.

Bulk, or integral, models play a special role in the

study of boundary layer processes. Bulk models do not

resolve the vertical structure of the boundary layer but

rather predict the evolution of integral quantities such

as the boundary layer budgets of boundary layer mass,

momentum, energy, and perhaps material quantities as

well. Such models are useful in their own right. They also

provide a framework for understanding the behavior
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of more complex models. Of the variety of bulk models

that have been proposed (Stevens et al. 2005), a partic-

ularly interesting one is the mixed layer model of Lilly

(1968), as this provides an elegant framework for cou-

pling the diversity of physical processes thought to

control the distribution of marine stratiform cloudiness

within the marine boundary layer.

Like many bulk models, the mixed layer model of

Lilly is usually justified by assuming that the processes

within the boundary layers are occurring on spatial

scales much smaller, and temporal scales much shorter,

than the scales of processes within the environment in

which they are embedded. For instance, the large-scale

divergence, which plays an important role in controlling

boundary layer depth, or sea surface temperature gra-

dients, which may generate boundary layer pressure

gradients, are assumed to be decoupled from processes

within the boundary layer. As a result, most studies with

Lilly’s mixed layer theory take on an essentially ther-

modynamic character as they focus on the budgets of

thermal energy, moisture, and mass and their controls

on cloud amount without exploring how the develop-

ment of clouds, or cloud-scale processes, couples with

mesoscale fluid motions within the boundary layer. To

the extent that bulk models have been coupled to the

dynamical evolution of the layer, the emphasis has

been on the interaction between boundary layer pro-

cesses and much larger-scale circulations (Schubert et al.

1979).

The interplay between dynamics and thermodynamic

anomalies on a more intermediate scale is an issue that

interests us. Specifically, we wish to develop a simplified

theoretical framework applicable to such issues. Such

a framework could help answer questions such as whether

the local development of precipitation within the cloud

layer perturbs the flow in a manner that reinforces the

conditions that lead to the precipitation in the first place,

or whether the local development of cloudiness generates

flow anomalies that support the development of further

cloudiness.

We adopt a formal asymptotic approach that admits a

multiscale analysis. Our approach is based on a unified

mathematical framework for the derivation of reduced

multiscale models of geophysical flows, suggested by Klein

(2004). The framework involves four key steps. First, the

3D compressible flow equations on the rotating sphere are

made nondimensional through the identification of char-

acteristic scales. Second, universal nondimensional pa-

rameters are identified that are independent of any specific

flow phenomenon considered. Third, distinguished limits

between these parameters are chosen. A summary of the

distinguished limits and other assumptions are listed in

Table 1. Finally, multiple-scale asymptotic expansions

based on the small perturbation parameter are carried

out. An initial attempt to evaluate the approach is

made by exploring its ability to reproduce various well-

known (single scale) equations in geophysical fluid

dynamics. Such an evaluation strategy has proven to be

an important first step in the evaluation of the deriva-

tion of a variety of new multiscale models in the past

(for example, in Majda and Klein 2003; Klein 2004;

Biello and Majda 2005; Mikusky 2007; Dolaptchiev and

Klein 2009), and including the case of boundary layer

flows in the absence of cloud processes (Klein et al.

2005).

This paper presents the derivation of a model that

admits coupling between dynamic and thermodynamic

processes on intermediate scales. The derivation is based

on two types of principal assumptions: asymptotic scal-

ing assumptions and additional ones relating to param-

eterization closures. These assumptions are summarized

in Table 1. Although focused on a particular regime,

our asymptotic analysis addresses many of the more

general issues associated with the coupling of moisture,

phase changes, and the complications they entail to fluid-

dynamical processes. For the regime that we identify our

asymptotic analysis shows that

d the thermodynamics variables are coupled to the dy-

namics through the pressure and entrainment terms;
d the velocity perturbations enter the thermodynamics

equations through the entrainment rate and surface

fluxes;
d the coupling between the two thermodynamics equa-

tions is due mainly to diabatic processes such as en-

trainment, radiative, and precipitation effects.

The analysis also shows that shallow-water-like wave

dynamics appear if the thermal stratification capping the

boundary layer is weak. This might mean that such

wavelike dynamics is not important for most stratocu-

mulus boundary layers, or that it only becomes impor-

tant on larger space and longer time scales, which might

be resolvable in the larger-scale models that are often

forced to parameterize boundary layer processes as be-

ing essentially homogeneous over scales of hundreds of

kilometers.

The outline of our presentation is as follows. Section 2

describes basic equations in dimensionless form with the

appropriate space and time scales given in section 3. The

bulk evolution equations for momentum, energy, and

moisture are then derived in section 4. The equations

include the surface and entrainment fluxes and other

sources such as radiative and precipitation effects, which

are then derived asymptotically in section 5. A summary

of systems of equations based on the parameteriza-

tions is presented and discussed in section 6 for a weak
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buoyancy jump and weak surface fluxes. Our emphasis

throughout is on the derivation of the model equations,

but we also present some steady-state results in section 6.

Detailed mathematical properties and physical charac-

teristics of the ensuing equations will be explored in fu-

ture work.

2. Governing equations

Our starting point is the fully compressible gas dy-

namics equations, for which Klein (2004) introduced the

distinguished limit such that

«! 0: M 5
u

refffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p

ref
/r

ref

p ; «2; Fr 5
u

refffiffiffiffiffiffiffiffiffi
gh

sc

p ; «2;

Ro
hsc

5
u

ref

Vh
sc

; «�1, (1)

where the Mach M, Froude Fr, and Rossby Rohsc
numbers

are the dimensional numbers defined in terms of

the reference pressure pref 5 105 m21 s22, reference

density rref 5 1.25 kg m23, pressure scale height hsc 5

pref/grref ’ 10 km, characteristic speed uref 5 10 m s21,

reference temperature uref 5 300 K, characteristic time

tref 5 hsc/uref 5 103 s, earth’s rotation frequency V ;

1024 s21, and gravitational acceleration g 5 9.8 m21 s22.

Frequently used symbols are listed in Tables 2–4 for

subsequent reference.

Please note that, the appropriate Rossby number RoL

for most atmospheric flow phenomena involves the

horizontal rather than the vertical length scale as used

here. This is obtained from Rohsc
by an appropriate

rescaling with the relevant aspect ratio. For example, if

one was interested in a flow on a horizontal length scale

L 5 «ahsc, then the Rossby number for the motion would

simply be RoL 5 «2aRohsc
. If L was a synoptic length scale

with L 5 «22hsc, then one obtains RoL 5 O(«) � 1 as

expected.

One may think of « as a parameter measuring the ratio

of the gravitational versus angular accelerations:

« 5

ffiffiffiffiffiffiffi
aV

g

3

s
;

1

8
� � � 1

6
(2)

with the earth’s radius a ; 6000 km. In physical prob-

lems with more than one small parameter, it is known

that the asymptotic equations depend strongly on the

path by which the parameters approach their respective

limiting values. Thus, to remove this dependence one

requires a limit by which the parameters are related

to one another. Of course, different distinguishing lim-

its are possible, but the emergence of a wide family of

meteorological equations from one and the same dis-

tinguished limit as a starting point provides a posteriori

support for the distinguished limit given by (1); see Klein

(2010) and references therein. Table 5 identifies the

order of magnitudes that arise from an « expansion of

different variables that appear in this analysis.

In the following, we adopt a Cartesian coordinate

system x 5 (x, y, z) rotating with angular velocity V,

with gravity g acting in the (vertical) z direction. The

rotation vector V is assumed to take a constant value,

consistent with a tangent plane approximation. If r(x, t)

and v(x, t) 5 vk1 wk denote the fluid density and velocity

TABLE 1. The model assumptions: symbols are defined in Tables 2–4.

i. Distinguished limits based on dimensionless Mach M, Froude Fr, and Rossby Rohsc
numbers:

M 5
urefffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p
ref

/r
ref

p ; «2, Fr 5
urefffiffiffiffiffiffiffiffiffi
ghsc

p ; «2, Rohsc
5

uref

Vh
sc

; «�1.

ii. Distinguished limits that emerge from moist thermodynamics:

L
y
r

ref

pref

[ «�1L
y
*,

R
y

Rd

[ R*«0,
R

d

cpd

[ G*«,
c

l

cpd

[ cp*«�1,
ps,ref

pref

[ «3/2ps*,
L

y

R
y
uref

[ «�1A*.

In obtaining these distinguished limits the temperature or pressure dependencies in thermodynamic parameters have been neglected.

iii. The asymptotic expansions for the flow variables are given in (26a)–(26e), based on field observations.

iv. Closure assumptions

(a) No sources of heat are accounted for, other than the longwave radiative fluxes.

(b) Precipitation is the only source of moisture considered in the analysis.

(c) Saturation vapor pressure can be approximated by Clausius–Clapeyron equation.

(d) The bulk transfer formulas are used to parameterize the surface fluxes.

(e) Entrainment rate formula is based interfacial velocity jump and the bulk Richardson number.

Most of these closure assumptions are made to simplify the mathematical model and the neglected effects (e.g., shortwave radiation,

evaporation of precipitation) can always be reintroduced parametrically.

v. Distinguished limits that emerge from closure assumptions:

C
D,H,Q

[ «3C*, C
E

[ «C
E
*, a [ «�5/2a*.
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fields at position x 5 xk 1 zk and time t, the mass con-

servation equation is

›r

›t
1 $k � (rvk) 1

›

›z
(rw) 5 0. (3)

In conservation form, the horizontal component of the

momentum equation is

›

›t
(rvk) 1 $k � (rvk � vk) 1

›

›z
(rvkw) 1 «( bV 3 rv)k

1
1

«4
$kp 5 0, (4)

and the vertical component is given by

›

›t
(rw) 1 $k � (rvkw) 1

›

›z
(rww) 1 «( bV 3 rv)?

1
1

«4

›p

›z
5� 1

«4
r. (5)

The anisotropy between horizontal and vertical motions,

associated with the volumetric force due to gravity, which

appears on the rhs of (5), motivates our separate

treatment of the horizontal versus vertical component

of momentum.

The heat and moisture budgets are described by con-

servation laws for the equivalent potential temperature

(Emanuel 1994) and total water mixing ratio:

TABLE 2. Summary of symbols.

Symbol Meaning

cpd Specific heat capacity at constant pressure

of dry air (1007 J kg21 K21)

cl Heat capacity of liquid water (4217 J kg21 K21)

g Gravity (9.8 m s21)

hsc Pressure scale height (10 km)

p Pressure

qy Water vapor mixing ratio

ql Liquid water mixing ratio

qs Saturation mixing ratio

qt Total water mixing ratio

t Time

vk Horizontal velocities (u, y)

w Vertical velocity

z Height above the surface

CD Bulk transfer coefficient of momentum

CE Entrainment rate coefficient

CH Bulk transfer coefficient of heat

CQ Bulk transfer coefficient of moisture

CR Precipitation conversion rate

E Cloud-top entrainment velocity

H Depth of the boundary layer

Ly Latent heat of vaporization (2.47 MJ kg21)

Rd Gas constant for dry air (287.0 J kg21 K21)

Ry Gas constant for water vapor (461.5 J kg21 K21)

FL
[Y(z) Upward and downward longwave radiative

flux at height z

T Time associated with the horizontal

advection (;2 h)

Sue
Source term in the equivalent potential

temperature equation

Sqt
Source term in the total water mixing ratio equation

b Free tropospheric gradient of equivalent

potential temperature

b1 Gradient of liquid water mixing ratio

in the cloud layer

d Asymptotic scaling parameter (d 5
ffiffiffi
«
p

)

� Emissivity

« Asymptotic scaling parameter

h Height scaled with the depth of the boundary layer

hc Cloud-base height

ue Equivalent potential temperature

r Density

u(i) Given by (B8)

t Time associated with convective time

scale (;20 min)

j Length scaled with 600 mbV Normalized earth rotation vector

TABLE 3. Summary of subscripts, superscripts, and operators

relative to a variable f.

Symbol Meaning

fref Reference quantity of f

f0 Surface values

f(i) The dith coefficient in the asymptotic

expansion for f

f Fast scale average of f; see (27)

hfi The bulk average of f over H; see (19)

$kf Horizontal gradient operator based on 10-km scale

$Xf Horizontal gradient operator relative to the 70-km

length scale

$jf Horizontal gradient operator relative to 600-m

length scale

D(f)H Inversion jump f at H

TABLE 4. Summary of order one parameters.

Symbol Meaning

Introductory

equation

a* Extinction cross section of the

liquid water

Below (67)

c*p Specific heat capacity ratio (10)

ps* Saturation vapor pressure Below (A27)

A* Latent heat of vaporization,

scaled with Ryuref

Below (A26)

C* Bulk transfer coefficient Below (79)

C*E Entrainment rate coefficient Below (92)

Ly* Latent heat of vaporization

scaled with Rduref

(10)

R* Ratio of gas constants Ry/Rd (10)

P* Precipitation conversion rate (77)

G* Isentropic exponent (10)
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›

›t
(ru

e
) 1 $k � (rvkue

) 1
›

›z
(rwu

e
) 5 rS

u
e

(6)

and

›

›t
(rq

t
) 1 $k � (rvkqt

) 1
›

›z
(rwq

t
) 5 rS

q
t
, (7)

respectively. The source term Sue
represents diabatic

processes, for instance, radiation, as described in section

5b. The term Sqt
represents the net moisture addition (or

removal) rate, for instance, as a result of precipitation.

Equations (3)–(7) are closed given an equation of state,

which we take to be that of an ideal mixture of water vapor

and dry air. Here we write it in terms of the equivalent

potential temperature and our small parameter «:

ru
e
5 (1 1 q

t
)

p

(1 1 R*q
y
)

� �[1�«G
«
] q

s

q
y

� �«G
«
R*q

y

3 exp L
y
*
(1 1 R*q

y
)

(1 1 q
t
)

rq
y

p

� �
. (8)

In deriving (8) we have introduced the abbreviation

G
«

5
G*

1 1 «�1c
p
*q

t

(9)

and have extended the distinguished limits in (1) to incor-

porate dimensionless thermodynamic numbers so that

L
y
r

ref

p
ref

[ «�1L
y
*;

R
y

R
d

[ R*«0;
R

d

cpd

[ G*«;

c
l

cpd

[ c
p
*«�1, (10)

where G*, Ly*, R*, and cp* are on the order of unity.

These terms are obtained by choosing typical values of

Ly, Rd, Ry, cl, and cpd (see Table 2) and writing the ex-

pressions in (10) as orders of magnitude in terms of «.

Temperature or pressure dependencies in the original

thermodynamic parameters have been neglected. This is

justified since, for example, Ly 5 2.50 MJ kg21, cl 5

1005.16 J kg21 K21, and cpd 5 4178 J kg21 K21 at 08C

and increasing the temperature to, say, 408C yields Ly 5

2.41 MJ kg21, cl 5 1006.19 J kg21 K21, and cpd 5

4178 J kg21 K21. The full derivation and justification of

(8) is provided in the appendix A (see also Klein and

Majda 2006). For now it is sufficient to note that, while

the complexity of (8) results from our retention of all the

terms in the definition of ue, it adds nothing of substance

to the leading-order systems of equations that we derive:

one contribution of this work is to demonstrate this

point, which can be readily extended to analogous sys-

tems of equations in more common usage.

As we explore the implications of the distinguished

limit introduced through (1) and (10) we shall find that

we arrive at equations that are incomplete, or not closed.

Closure requires models for the representation of small-

scale fluid dynamical processes such as surface and en-

trainment fluxes, and non-fluid-dynamical processes such

as radiative transfer or cloud microphysical interactions.

Even the simplest models that one proposes to represent

such processes, and hence close our equations, introduce

additional parameters that must be scaled and cast in the

framework of our distinguished limit. So doing compli-

cates the analysis and further illustrates the challenge of

developing an asymptotically consistent ansatz for atmo-

spheric flows involving cloud processes.

In summary, (3)–(8) define a closed system of equa-

tions under the distinguished limit given by (1) and (10).

They form the starting point for our subsequent anal-

ysis. The equations themselves are standard; however, the

limit, and its elaboration through the incorporation of

additional physical processes, is not. Our hypothesis is

that the distinguished limit that we introduce captures

essential asymptotic behavior of the real system, and thus

is meaningful.

3. Spatial and temporal scales

Stratocumulus evince structure on a wide range of

spatial and temporal scales, particularly under the in-

fluence of remotely generated gravity waves or in the

presence of diabatic processes such as precipitation

(Savic-Jovcic and Stevens 2007). Here we explore the

coupling of thermodynamic and dynamic processes on

the mesoscale, which we define to be a horizontal scale

of about 70 km (i.e., «21hsc). These scales are much

TABLE 5. Dimensional magnitudes (with varying but convenient

units) for reference quantities for « 5 1/7.

a «a «auref «ahref «auref «atref

23 345 3450 km 4 d

25/2 130 1296 km 1.5 d

22 49 490 km 14 h

23/2 19 185 m s21 185 km 5 h

21 7 70 m s21 70 km 2 h

21/2 2.65 26 m s21 26 km 44 min

0 1 10 m s21 10 km 300 K 17 min

1/2 0.38 3.78 m s21 3780 m 113 K 6 min

1 0.14 1.43 m s21 1429 m 43 K 2 min

3/2 0.054 0.54 m s21 540 m 16 K 54 s

2 0.020 0.20 m s21 204 m 6.1 K 20 s

5/2 0.0077 7.71 cm s21 77 m 2.3 K 8 s

3 0.0029 2.92 cm s21 29 m 0.87 K 3 s

7/2 0.0011 1.10 cm s21 11 m 0.33 K 1 s

4 0.0004 0.42 cm s21 4 m 0.12 K 0.4 s
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smaller than those typically resolved by large-scale

models but much larger than the scales typically asso-

ciated with the energetic eddies of the boundary layer

itself. The latter scale with the boundary layer height,

which we take to be 500–600 m (i.e., «3/2hsc). Although

the cloud base height could potentially appear as an-

other independent length scale, we will rather extract it

from the thermodynamics later in section 5a as a conse-

quence of the present scalings.

We consider time scales associated with the horizontal

advection «21tref (;2 h) and convective time scale tref

(;20 min), assuming a convective velocity O(0.5 m s21)

(«3/2uref) and based on the short length scale «3/2hsc.

Thus, we will seek asymptotic solutions in terms of

the new multiple-scale coordinate system: X 5 «xk, j 5

«23/2xk, h 5 «23/2z, T 5 «t, and t 5 t. In these expres-

sions h is the scaled vertical coordinate, whereas j, t

are the fast and X, T the slow variables for the hori-

zontal directions and time, respectively. Based on these

scales and in terms of d 5 «1/2, the governing equations

(3)–(7) rescale to

d3 ›

›t
1 d2 ›

›T

� �
r 1($

j
1 d5$

X
) � (rvk) 1

›

›h
(rw) 5 0,

(11)

d3 ›

›t
1 d2 ›

›T

� �
(rvk) 1 ($

j
1 d5$

X
) � (rvk � vk)

1
›

›h
(rvkw) 1 d5( bV 3 rv)k1

1

d8
($

j
p 1 d5$

X
p) 5 0,

(12)

d3 ›

›t
1 d2 ›

›T

� �
(rw) 1 ($

j
1 d5$

X
) � (rvkw)

1
›

›h
(rww) 1 d5( bV 3 rv) 1

1

d8
(p

h
1 d3r) 5 0,

(13)

d3 ›

›t
1 d2 ›

›T

� �
(ru

e
) 1 ($

j
1 d5$

X
) � (rvkue

)

1
›

›h
(rwu

e
) 5 d3rS

u
e
, (14)

and

d3 ›

›t
1 d2 ›

›T

� �
(rq

t
) 1 ($

j
1 d5$

X
) � (rvkqt

)

1
›

›h
(rwq

t
) 5 d3rS

q
t
. (15)

The parameter d has been introduced instead of « so as

to allow a more finely grained selection of scales.

4. Averaging

In this section we derive a new set of bulk, or vertically

averaged, equations describing the leading-order bal-

ance of the intermediate scales selected for our analysis,

with the fine and fast scales averaged over and param-

eterized. Equations (11)–(15), together with the equa-

tion of state (8) expressed in terms of d, are taken as

a starting point. Three main steps are involved. First, we

vertically average our equations; second, the dependent

variables are expanded in terms of the small parameter d

and balances at different orders are identified; and,

third, we average over the short spatial and fast tem-

poral scales to derive the sublinear growth conditions

that determine the large-scale, long-time evolution.

Nonlinear terms that do not vanish under the averaging

over fast scales are then identified and parameteriza-

tions of these terms are introduced in the subsequent

section.

Vertical averaging of the equations introduces the

concept of the boundary layer depth and processes that

control it. We identify the boundary layer top as a

semipermeable surface, whose height we denote by H.

Vertical averaging also links the vertical momentum

equation to the equation of state. Because the leading-

order balances are hydrostatic, vertical averaging of the

vertical momentum provides a relationship between

pressure and density within the boundary layer, given

the pressure at H, pH. Combining this with the equation

of state provides a set of diagnostic relations for pressure

and density at different orders, and the thermodynamic

state of the boundary layer given by ue and qt. Hence, as

is familiar from bulk analyses (see, e.g., Schubert et al.

1979), one arrives at a new governing set of equations for

the prognostic variables fH, vk, ue, qtg, complemented

by a set of diagnostic relations that describe (perturba-

tions of) p and r as a function of ue, qt, pH, and h.

In what follows we outline the basic steps involved

and the technical difficulties insofar as they arise. Ex-

amples of how the analysis is performed are given for the

mass balance equation and can be extended by the in-

terested reader naturally to the case of the other equa-

tions. In so doing some technical difficulties arise in the

treatment of the pressure gradient terms in the hori-

zontal momentum equations. These issues, and how

they are dealt with, are specifically addressed in a sepa-

rate subsection.

a. Depth averaging

The equations are vertically integrated through the

layer from the surface at z 5 z0(x, y) to a free surface z 5

H(x, y, t) 1 z0(x, y). The lower boundary condition is

w 5 vk � $z0 on z 5 z0(x, y) and the kinematic free
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surface condition in the absence of entrainment is ›H/›t 5

v � n on z 5 H(x, y, t) 1 z0(x, y). The normal vector n 5

2$[z0(x, y) 1 H(x, y, t) 2 z] points upward, and vk and

$k denote the horizontal component of the velocity and

gradient operator, respectively. Throughout we denote

surface values by subscript 0. In subsequent analysis

we ignore the variation in the topography, that is, as-

sume z0 5 0.

The dimensionless free surface kinematic boundary

conditions on h 5 H is expressed as

d3 ›H

›t
5 (v 1 E) � n, (16)

which introduces the entrainment velocity, E 5 En, which

encapsulates the permeability of the interface at H.

Here n is the normal to the surface h 5 H so that n 5

k 2d3$kH. In terms of the multiscale coordinates, (16)

reads

d3 ›

›t
1d2 ›

›T

� �
H 1 vk � ($j

1d5$
x
)H 5 (w1E) on

h5H. (17)

Since we assume a flat bottom, the lower boundary con-

dition is given by

w 5 0 on h 5 0. (18)

We define the vertical average over the depth H of some

quantity f as

hfi5 1

H

ðH

0

f dh. (19)

So, for example, averaging the continuity equation (11)

and making use of the boundary condition in (18) results

in a revised continuity equation, one that describes the

overall mass balance in the layer of depth H and makes

explicit reference to the entrainment velocity E:

d3 ›

›t
1 d2 ›

›T

� �
(Hhri) 1 ($

j
1 d5$

X
) � (Hhrvki) 5 r

H
E.

(20)

b. Leading-order equations

The equations are now written in terms of dependent

flow variables expanded in terms of the small parameter

d. Thus, generically, for a dependent variable f we write

f 5�
i50

dif(i)(t, j, h, T , X). (21)

Applying this expansion to the mass continuity equation

for the layer in (20) results in

$
j
� (Hhrvki)

(i)
5 (r

H
E)(i) for i 5 0, 1, 2, (22)

›

›t
(Hhri)(i�3)

1$
j
� (Hhrvki)

(i)
5 (r

H
E)(i) for i 5 3, 4,

(23)

and

›

›t
(Hhri)(i�3)

1 $
j
� (Hhrvki)

(i)
5 (r

H
E)(i)

� ›

›T
(Hhri)(i�5)

1 $
X
� (Hhrvki)

(i�5)

� �
for i 5 5, 6, 7, � � � . (24)

Here we note that the decomposition results in the ini-

tial equation being broken into a sequence of equations

describing balances at different order. Compound terms

of the form (fc)(i) are to be understood in terms of their

component expansion such that

(fc)(i)
[ �

j50

i

f(i� j)c( j), (25)

where here f and c denote two different dependent

variables, for instance H and vk. Similar notation holds

for terms involving more than two dependent variables.

Although (21) holds in general, for specific variables

we will additionally assume that variability as a function

of the independent variables only emerges at a specific

order. So doing causes some terms to vanish at low order

because, for instance, gradients in the balance equations

are zero at that order. The assumptions we make are as

follows:

u
e
5 1 1 d3u(3)

e 1 d4u(4)
e 1 d5u(5)

e 1 d6u(6)
e (X, T)

1 d7u(7)
e (X, h, T) 1 d8u(8)

e (X, j, h, T, t) 1 � � � , (26a)

q
t
5 d3q

(3)
t 1 d4q

(4)
t 1 d5q

(5)
t 1 d6q

(6)
t (X, T)

1 d7q
(7)
t (X, h, T) 1 d8q

(8)
t (X, j, h, T , t) 1 � � � , (26b)

and

q
y
5 d3q(3)

y 1 d4q(4)
y 1 d5q(5)

y 1 d6q(6)
y (X, h, T)

1 d7q(7)
y (X, h, T) 1 d8q(8)

y (X, j, h, T , t) � � � . (26c)

We shall see later, especially from (B1)–(B3), that the

absence of first- and second-order terms in the expres-

sion for ue follows directly from the equation of state

and the hydrostatic balance that emerges at low order.

The structure for qy and qt assumed (i.e., water vapor
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perturbations are small compared to unity). It will be

shown in addition that the saturation vapor mixing ratio

qs follows the form given for qy.

For the boundary layer height we assume the follow-

ing dependencies at various orders:

H 5 H(0) 1 dH(1)(X, T) 1 d2H(2)(X, T)

1 d3H(3)(X, j, T, t) 1 � � � . (26d)

Finally, we assume that

vk5 v
(0)
k (X) 1 dv

(1)
k (X, T) 1 d2v

(2)
k (X, T)

1 d3v
(3)
k (X, j, h, T, t) 1 � � � . (26e)

The assumptions on the scalings given in (26) are based

on field observations and simulations (Stevens et al.

2003, 2005; Faloona et al. 2005). We will show later, for

example from (48), that v
(0)
k depends on the free atmo-

sphere geostrophic pressure gradient and thus one can

allow for variation in space X in v
(0)
k so as to allow for

large-scale vertical motion. By continuity this velocity

scaling implies that the leading-order terms for w vanish:

that is, w(i) 5 0 for i , 5.

c. Fast scale averaged equations

We average the equations over fast temporal and small

spatial scales; that is, we average over t and j, respectively.

Using the overbar to denote such averaging we have

c(X, h, T) 5 lim
t,A!‘

1

tA

ð
t,A

c(j, X, h, t, T) dj dt. (27)

Averaging over fast scales eliminates gradients on these

scales due to the so-called sublinear growth condition so

that, for instance, the leading-order terms of the mass

balance equation become

E
(i)

5 0 for i 5 0, 1, 2, 3, 4, 5 (28)

and

›H(1)

›T
1 H(0)$

X
� v(1)
k 1 H(1)$

X
� v(0)
k

1 v
(0)
k � $X

H(1) 5 E
(6)

. (29)

d. Pressure gradients

Averaging the horizontal momentum equation leads

to terms of the formðH

0

$
j
p dh and d5

ðH

0

$
X

p dh. (30)

The finescale pressure gradients appear at lower order

but are eliminated by the fast scale averaging. The larger-

scale pressure gradients must be evaluated. To do so we

derive diagnostic equations for the pressure at the de-

sired order starting with the equation of state and the

vertically integrated vertical momentum equation, which

remains hydrostatic on the scales of motion that interest

us. The appropriate order of the pressure is then sub-

stituted into the above integrals and used to evaluate the

vertically averaged pressure gradient terms. To make use

of the vertically averaged momentum equation we will

need a pressure boundary condition PH.

1) PRESSURE ABOVE THE BOUNDARY LAYER

Consider a vertical scale greater than the boundary

layer depth, that is, a scale on the order of the depth of

the troposphere, ;10 km. We further assume that the

nature of flow above the boundary layer is such that the

horizontal scale remains 70 km or larger. Reduced equa-

tions with such scaling can be obtained using the asymp-

totic expansions in powers of « (or d). Asymptotic analysis

of the continuity and momentum equations shows that the

pressure in the layer is essentially hydrostatic. From the

hydrostatic equation together with the equation of state,

that is,

p
z

5 �r and ru
e
5 p1�«G*, (31)

we find that

p 5 1� G*

b«
log(1 1 «2bz)

� �1/«G*

1 «4p
g
(X, T) 1 O(«5).

(32)

Here we have assumed the troposphere to be drier than

the boundary layer and to have a potential temperature

distribution

u
e
5 1 1 «2u(2)

e (z) 1 � � � , (33)

where u(2)
e (z) 5 bz with a constant lapse rate b.

Asymptotic analysis also shows that the horizontal

pressure gradient satisfies

$
X

p(i) 5 0 for i 5 0, 1, 2, 3 and

$
X

p(4) 5�(bV 3 r(0)v(0))k, (34)

where r(0) 5 exp(2z). As a consequence, the pressure

term pg in (32) satisfies the geostrophic condition, that is,

$
X

p
g

5�(bV 3 r(0)v(0))k. (35)
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Because the pressure p must be continuous at the top

of the boundary layer as z / d3H, then p / pH, giving

the required boundary condition for pressure. It follows

that

p
H

5 1� G*

bd2
log(11d7bH)

� �1/G*d2

1d8p
g
(X,T)1O(d10),

(36)

which upon expansion in terms of d implies that

p
H

5 1� d3H 1
1

2
d6H2 � 1

2
d8G*H2 1 d8p

g

� 1

6
d9H3 1

1

2
d10bH2 � � � . (37)

2) VERTICAL MOMENTUM BALANCE AND

EQUATION OF STATE EXPANSIONS

Expanding the rescaled governing equation for the ver-

tical momentum balance, and given the assumed velocity

structure so that w(i) 5 0 for i , 6, implies that hydrostatic

balances hold up to tenth order:

p(i)
h 5 0 for i 5 0, 1, 2 (38)

and

p(i)
h 1 r(i�3) 5 0 for i 5 3, . . . , 10, (39)

where the first equation simply reflects our choice of ex-

pansion wherein r(0) is the leading-order term in the

density. Integrating these equations over the depth of the

boundary layer and combining with the boundary con-

dition on pH and an expansion of the equation of state

yields expressions for pressure that can be used to eval-

uate vertically integrated pressure gradients in terms of

other known quantities. The derivation is presented in

appendix B, leading to the following expressions for the

bulk averaged pressure gradient:ðH

0

$
X

p dh

� �(i)

5 0 for i 5 0, 1, 2, 3, 4, 5, 6, (40)

ðH

0

$
X

p dh

� �(7)

5 u(3)H(0)$
X

H(1), (41)

ðH

0

$
X

p dh

� �(8)

5 H(0)$
X

p
g

1 u(3)(H(0)$
X

H(2)

1 H(1)$
X

H(1)) 1 u(4)H(0)$
X

H(1),

(42)

and

ðH

0

=
X

p dh

� �(9)

5 H(1)$
X

p
g

1 u(3)(H(0)$
X

H(3) 1 H(1)$
X

H(2) 1 H(0)$
X

H(3)) 1 u(4)(H(0)$
X

H(2) 1 H(1)$
X

H(1))

1 u(5)H(0)$
X

H(1) 1
H(0)

2

2

$
X

(q
(6)
t � u(6)

e ) 1
b

1

6
(G*L

y
*� R*)$

X
h3

c , ð43Þ

where hc is the cloud-base height and u(i) 5 u(i)(u(i)
e , q

(i)
t ,

q(i)
y ) is given by (B8).

e. Intermediate summary of the asymptotic equations

At this point it proves useful to summarize the equa-

tions that we have derived on the basis of the analysis of

this section. They are

1) MASS BALANCE

E
(i)

5 0 for i 5 0, 1, 2, 3, 4, 5, (44)

›H(1)

›T
1 H(0)$

X
� v(1)
k 1 H(1)$

X
� v(0)
k 1 v

(0)
k $

X
H(1) 5 E

(6)
.

(45)

2) HORIZONTAL MOMENTUM BALANCE

0 5 (wrvk)
(i)
0 1 [D(rvk)H

E](i) for i 5 0, 1, 2, 3, (46)

0 5 (wrvk)
(4)
0 1 [D(rvk)H

E](4) � u(3)H(0)$
X

H(1), (47)

and

H(0)(bV 3 v(0))k1 H(0)$
X

p
g

5 (wrvk)
(5)
0 1 (D(rvk)H

E](5)

� u(4)H(0)$
X

H(1) � u(3)(H(0)$
X

H(2) 1 H(1)$
X

H(1)).

(48)

The last two sets of equations indicate that the pressure

gradients due to depth fluctuations are in balance with

the surface momentum and entrainment fluxes [related

to the jump D(rvk) at h 5 H], in particular fluxes O(d4)
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and O(d5). The implications of these fluxes on the flow

are discussed in the next section. At the next order, we

find an evolution equation for the first-order velocity

perturbation,

H(0)
›v

(1)
k

›T
1 H(0)v

(0)
k � $X

v
(1)
k 1 H(0)(bV 3 v(1))k1 $

X
F 5 (wrvk)

(6)
0 1 [D(rvk)H

E](6) � u(5)H(0)$
X

H(1)

� u(4)(H(1)$
X

H(1) 1 H(0)$
X

H(2))� u(3)(H(0)$
X

H(3)

1 H(1)$
X

H(2) 1 H(2)$
X

H(1))�H(1)(bV 3 v(0))k

�H(1)$
X

p
g
, (49)

where

F 5
H(0)

2

2

(�u(6)
e 1 q

(6)
t ) 1

b
1

6
(G*L

y
*� R*)h3

c .

The coupling between the thermodynamics and the mo-

mentum variables occurs through the (hydrostatic) pres-

sure gradient. Nonlinearities in the momentum equation

arise solely through this coupling as a result.

3) EQUIVALENT POTENTIAL TEMPERATURE

0 5 (wru
e
)

(i)
0 1 (HhrS

ue
i)(i�3) for i 5 0, 1, 2, 3, 4, 5,

(50)

0 5 (wru
e
)

(i)
0 1 [D(ru

e
)

H
E](i)

1 (HhrS
u

e
i)(i�3)

for i 5 6, 7, 8, 9, 10, (51)

and

›u(6)
e

›T
1 v

(0)
k � $X

u(6)
e 5

(wru
e
)

(11)
0

H(0)
1

[D(ru
e
)

H
E](11)

H(0)

1
(HhrS

u
e
i)(8)

H(0)
. (52)

4) TOTAL MOISTURE CONTENT

0 5 (wrq
t
)

(i)
0 1 (HhrS

qt
i)(i�3) for i 5 0, 1, 2, 3, 4, 5,

(53)

0 5 (wrq
t
)

(i)
0 1 [D(rq

t
)

H
E](i)

1 (HhrS
q

t
i)(i�3)

for i 5 6, 7, 8, 9, 10, (54)

and

›q
(6)
t

›T
1 v

(0)
k � $X

q
(6)
t 5

(wrq
t
)

(11)
0

H(0)
1

[D(rq
t
)

H
E](11)

H(0)

1
(HhrS

q
t
i)(8)

H(0)
. (55)

General remark: To separate asymptotic expansions

from the additional scaling assumptions associated with

specific parameterizations that are introduced in section

5, we have carried all the orders formally expressing all

physical quantities in terms of a minimal set of funda-

mental reference quantities. Depending on the specific

perturbation regime, say, for the strength of the en-

trainment flux, the expansions then include a number of

trivial lower-order terms with the physically relevant

expressions appearing formally at very high (e.g., 11th)

order. Once a specific regime is determined, it would be

possible to rephrase our expansions in such a way that

the perturbation equations would touch upon only the

leading one to three terms in the expansions. For ex-

ample, we have used uref to scale both the horizontal and

vertical components of velocity, whereas the vertical

velocity w ; d6uref. Since the nontrivial equivalent po-

tential temperature for a weak jump is ue ; d5uref, the

entrainment flux would have appeared at the first order

rather than at the 11th order had we rescaled w and ue

accordingly. The main motivation for including all the

terms in the expansions was to ease further develop-

ments for different asymptotic limit regimes.

5. Closure terms

The equations described in the previous section in-

clude a variety of aggregated quantities that must be

modeled or parameterized. These include surface and

entrainment fluxes, radiative transfer, and precipitation

processes. In the context of the distinguished limits we

propose here, both the form of the model that we as-

sume and the magnitude of the parameters each model

introduces emerge as structural uncertainties as they

contribute to the form of the leading-order equations

that we identify. Most of the models introduced either

arise from, or are modified by, the presence of the cloud

layer. As such, the depth of this layer, or equivalently the

liquid water path (LWP), emerges as an important pa-

rameter. Hence, in proposing models to close our equations

it is also necessary to develop consistent asymptotic
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relations for the input required by such models. In this

section we propose asymptotically consistent parame-

terizations for the radiative, surface, and entrainment

fluxes, but first we present the prerequisite asymptotic

analysis for the depth of the cloud layer.

a. Liquid water asymptotics

The liquid water mixing ratio is given by

q
l
5

q
t
� q

s
, if q

t
. q

s

0, otherwise.

�
(56)

Hence an asymptotic representation of ql depends on

the asymptotic representation of the saturation mixing

ratio of water vapor qs. By definition

q
s
(T) 5

1

R*

p9
s
(T)

p9
d

(57)

in which T is the temperature, ps the saturation vapor

pressure, pd is the partial pressure of dry air, and R* is

the ratio of the gas constant as represented by the dis-

tinguished limit as in (10). Note that the total pressure is

simply the sum of the partial pressures, and that here

primes represent dimensional quantities. The saturation

vapor pressure can be approximated as a function of

temperature, for instance by integrating the Clausius–

Clapeyron equation about a reference temperature and

vapor pressure. Doing so yields the following expression

for the dimensionless saturation vapor mixing ratio:

q
s
5

d3p
s
* exp

A*

d2
1� 1

T

� �� �
R*p� d3R*p

s
* exp

A*

d2
1� 1

T

� �� � . (58)

To arrive at this equation we have introduced the dis-

tinguished limit, p9s,ref/pref 5 0.035 ’ d3ps*, and made use

of the previous distinguished limits given by (10). Given

the expansion for pressure, it follows that (58) can be

written as an asymptotic series in d as follows:

q
s
5 d3 p

s
*

R*
1 1 dA*T(3) 1 d2A* T(4) 1

1

2
A*T(3)2

� �� �
1 d6(b

0
1 b

1
h) 1 O(d7), (59)

where

b
0

5
p

s
*

R*
A* T(5) 1 A*T(3)T(4) 1

1

6
A*2T(3)3

1
p

s
*

A*

� �
[ q(6)

s jh50
(60)

is the saturation mixing ratio at the surface and

b
1

5�
p

s
*

R*
. (61)

The expansion (59) with T (3), T (4), and T (5), given in ap-

pendix A by (A19), defines the component terms q(4)
s , q(5)

s ,

and q(6)
s implicitly.

To obtain an asymptotic expression for the cloud-base

height hc we assume that the cloud base appears where

the saturation mixing ratio matches the total mixing

ratio in the subcloud layer; that is, qt(hc) 5 qs(hc).

Above the cloud base, we assume that all vapor in excess

of saturation condenses to liquid water; that is, the total

mixing ratio is given by qt 5 qs 1 ql, which is the sum of

the saturation mixing ratio qs and the liquid water mix-

ing ratio ql. Therefore,

q
(6)
t (h

c
) 5 q(6)

s (h
c
) 5 b

0
1 b

1
h

c
5 q

(6)
s,0 1 b

1
h

c
(62)

(recalling subscript 0 denotes values valid at the surface).

Because q
(6)
t is assumed to be independent of height

(26b), we find that to leading order the cloud-base height

is given by

h
c
5

1

b
1

(q
(6)
t � q

(6)
s,0 ). (63)

These expressions can now be used with the definition

of the liquid water content (56) to derive an expression

for the depth-averaged liquid water path:

hq
l
iH 5

ðH

h
c

(q
t
� q

s
) dh

5 d6[(q
(6)
t � q

(6)
s,0 )(H � h

c
)�

b
1

2
(H2 � h2

c)] 1 � � �

5�d6 b
1

2
(H � h

c
)2

1 � � �. (64)

Thus,

hq(6)
l iH

(0) 5�
b

1

2
(H(0) � h

c
)2, (65)

which shows, as expected, that the leading-order verti-

cally averaged liquid water mixing ratio is proportional

to the square of the cloud thickness.

b. Radiative flux S
ue

The source term that appears in the equivalent po-

tential temperature balance is due to both longwave and

shortwave radiative effects. In our analysis we assume

a nocturnal situation for which only longwave fluxes are

important. The upward and downward radiative fluxes

are given by the expression
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F[Y
L (z) 5 (1� «)F[Y

bnd 1 �T4, (66)

which we have made dimensionless through the refer-

ence value of sT4
ref 5 460 W m22 with the Stefan–

Boltzmann constant s 5 5.67 3 1028 W m22 K24. In

(66) Fbnd denotes the boundary longwave flux, taken as

just above cloud top for the downward fluxes and just

below cloud base for the upward fluxes: that is, FL(H)

and FL(hc), respectively. The emissivity, denoted by �, is

taken to be independent of the direction of the radi-

ances. It is parameterized following the suggestion of

Stevens et al. (2005) as follows:

�5 1� exp �d�5a*

ðh

h
c

rq
l
dh

 !
. (67)

The term in the exponent measures the extinction cross

section of the liquid water, a, multiplied by the liquid

water path. The parameterization of radiation hence

introduces a further distinguished limit, namely that a 5

«25/2a*.

The net longwave radiation flux is given by FL 5 FL
[ 2

FL
Y and expansions O(d) lead to

F(0) 5 F
[(0)
L (h

c
)� F

Y(0)
L (H)0

›F

›h

(0)

5 0. (68)

Thus, to first approximation the radiative flux is con-

stant. At next order we have the balance

F(1) 5 DF(1) 1� a*

ðh

h
c

q
(6)
l dh

 !
, (69)

where DF(1) [ F
[(1)
L (h

c
)� F

Y(1)
L (H) defines the flux dif-

ference in the boundary fluxes. Therefore,

›F

›h

(1)

5�DF(1)a*q
(6)
l . (70)

This expression shows that the radiative flux is respon-

sive to changes in the modeled cloud structure through

the liquid water.

Radiative flux divergences at first order influence the

ue budget at a much lower order. This is evident from the

dimensionless form of the equation for the equivalent

potential temperature:

D

Dt
(ru

e
) 5 rS

u
e
5� sT4

ref

c
p
U

ref
r

ref
u

ref

›F

›z
5�d10 ›F

›z

5�d7 ›F

›h
, (71)

which, given that terms of order F (1) are the leading

order in the forcing, implies that the following holds up

to i 5 8:

(rS
ue

)(i)
5 0 for i 5 0, . . . , 7, (72)

and

(rS
u

e
)(8)

5�›F

›h

(1)

5 DF(1)a*q
(6)
l . (73)

The depth-averaged source terms are thus given by

hS(i)
u

e
i5 0 for i 5 0, 1, 2, 3, 4, 5, 6, 7, (74)

and

hS(8)
u

e
iH(0) 5DF(1)a*hq(6)

l iH
(0) 5�

b
1

2
DF(1)a*(H(0)�h

c
)2.

(75)

The asymptotics show that the radiative fluxes are re-

lated to the thickness of the cloud and are interactive in

the sense the fluxes evolves, through its dependence on

hc, with the total water mixing ratio q
(6)
t and the equiv-

alent potential temperature u(6)
e .

c. Precipitation flux S
qt

Formation of drizzle in cloudy air is an important

mechanism for depleting cloud water. Thus, when there

is drizzle, the total water is no longer a conserved quantity

because of the reduction of the liquid water in the cloud

layer and evaporation of the precipitation in the subcloud

layer; thus, total water mixing ratio balance is

D

Dt
rq

t
5 rS

q
t
5 rR

e
� rR

p
, (76)

where Rp is the rate of production of precipitation and

Re is the rate of evaporation of precipitation.

A simple bulk parameterization of Rp of the form

R
p

5 C
R

q
ap

l , that is, the precipitation rate is parame-

terized as some fraction of the liquid water (with CR a

precipitation conversion rate), has been proposed on the

basis of a number of studies (Pawlowska and Brenguier

2003; Comstock et al. 2005; van Zanten et al. 2005).

Although the evaporation of precipitation below stra-

tocumulus can be substantial, it is neglected for reasons

of simplicity in the present analysis. To the extent that

the equations developed here demonstrate practical

utility in understanding the interactions between the

dynamics and thermodynamics of stratocumulus on the
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mesoscale, such effects (among others, e.g., shortwave

radiation) can always be reintroduced parametrically.

Based on the aforementioned simple parameteriza-

tion, the drizzle effect is included in the total water

mixing ratio balance as

hS(8)
q

t
iH(0) 5�P*hq(6)

l i
a

p H(0) 5
b

1

2
P*(H(0) � h

c
)2a

p ,

(77)

where P* is a constant O(1) representing the precipita-

tion conversion rate. In principle the flux of precipita-

tion acts as a source of ue through the change to qt in that

equation. These effects, however, will only appear at

higher orders and, thus, do not enter into the asymptotic

balances we explore.

d. Parameterization of the surface fluxes

To the extent that ocean currents are negligible the

lower boundary conditions for the velocity components

are zero (i.e., vk 5 0). Other surface quantities are de-

noted, as before, by as subscript zero, so that the surface

temperature is denoted by T0. The equivalent potential

temperature at the surface ue,0 5 ue(T0, ps,0) as for a

water-covered surface qy,0 5 qs,0 5 qs(T0, ps,0). Hence,

using the equation of state to express u
(i)
e,0 in terms of T

(i)
0

and q
(i)
s,0, it is straightforward to show that (58) becomes

q
s,0

5 d3 p
s
*

R*
[1 1 dA*T

(3)
0 1 d2A*(T

(4)
0 1 A*T

(3)2

0 )]

1 d6 p
s
*

R*
A*

p
s
*

A*
1T

(5)
0

�
1 A*T

(3)
0 T

(4)
0 1

1

6
A*2T

(3)3

0

�
1 O(d7).

(78)

The parameterization of the surface fluxes is achieved

by the use of the bulk transfer formulas

(rvkw)
0
5�C

D
r

0
jvkjvk, (79)

(rwu
e
)

0
5�C

H
r

0
jvkj(u

e
� u

e,0
), (80)

and

(rwq
t
)

0
5�C

Q
r

0
vkj j(q

t
� q

s,0
), (81)

where jvkj 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 1 y2
p

and the density at the surface

r0 5 1 1 d3r
(3)
0 1 � � �, as obtained from (B1)–(B7). The

terms CD, CH, and CQ are the drag coefficients for mo-

mentum, sensible heat, and moisture, respectively.

These are considered here to be constant, hence stability

effects are not included in the surface exchange rules.

The values of the exchange coefficients range from

1.4 3 1023 to 4 3 1023. We explore the weak flux limit

wherein all coefficients are of the same order so that

CD,H,Q ; d6C* and C* is an O(1) constant.

1) MOMENTUM FLUXES

For these limits the momentum fluxes take the form

(ruw)
0

5�C*d6jvkj
(0)v

(0)
k � C*d7(jvkj

(1)v
(0)
k

1 jvkj
(0)v

(1)
k ) 1 � � � , (82)

where jvkj
(0)

5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u(0)2

1 y(0)2
p

and

jvkj
(1)

5
u(0)y(1) 1 u(1)y(0)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u(0)2

1 y(0)2
p .

Thus,

(rvkw)
(i)
0 5 0 for i 5 0, 1, 2, 3, 4, 5, (83)

(ruw)
(6)
0 5�C*jvkj

(0)v
(0)
k , (84)

and

(ruw)
(7)
0 5�C*ðjvkj

(0)v
(1)
k 1 jvkj

(1)v
(0)
k ). (85)

2) TOTAL MOISTURE FLUX

In section 5c and (44) we found that S
qt

5 d8S(8)
qt

1 � � �
and E 5 d6E(6) 1 � � �; thus, it follows from (53) and (54)

that

(rwq
t
)

(i)
0 5 0 for i 5 0, 1, 2, 3, 4, 5, 6, 7, 8. (86)

For a weak moisture jump

(rwq
t
)

(i)
0 5 0 for i 5 9, 10 (87)

and a similar expansion as in the momentum flux gives

(rwq
t
)

(11)
0 5�C*jvkj

(0) q
(5)
t � q

(5)
s,0

� 	
. (88)

3) EQUIVALENT POTENTIAL TEMPERATURE FLUX

We found in section 5b that S
ue

; d8; hence, given (51),

the condition of sublinear growth and the assumption that

entrainment effects first emerge for i 5 11 is consistent

with
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(rwu
e
)

(i)
0 5 0 for i 5 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. (89)

This condition is consistent with our representation of

surface fluxes, for which

(rwu
e
)

(11)
0 5�C*jvkj

(0)(u(5)
e � u

(5)
e,0 ). (90)

e. Entrainment velocity and entrainment flux

The entrainment closure is usually based on the tur-

bulent structure of the mixed layer. However, the lack of

consensus on the entrainment rate identified by Stevens

(2002) remains. In general, entrainment rates are expressed

in terms of the surface heat flux into the boundary layer,

cloud-top radiative flux out of the layer, radiative flux jump

occurring inside the entrainment zone, and some as-

sumption of entrainment buoyancy flux. In most studies

the wind shear is usually neglected, although stratocu-

mulus clouds simulations by Moeng (2000) show that an

increase in shear leads to increase in entrainment rate by

a significant amount. To avoid being tangled into the

entrainment debate, we estimate the entrainment ve-

locity based on results obtained from laboratory ex-

periments that include stratification and shear effects.

Entrainment velocity E as observed in mixing layer

flow experiments with interfacial shear flows takes the

form

E 5 C
E

DVj jRi�n
B , (91)

where RiB is the bulk Richardson number based on the

interfacial velocity jump DV defined as RiB 5 DbH/

(DV)2, where H is the depth of the mixed layer and

Db 5 gDr/r is the buoyancy jump at the top of the layer.

The parameter dependencies are similar to many of the

entrainment laws that have been suggested in the liter-

ature (Stevens 2002), except that here we link mixing to

the differences in the mean flow, as given by DV rather

than a convective velocity scale. Laboratory experi-

ments (e.g., Strang and Fernando 2001) identify three

regimes with n ’ 0 for RiB # 1.5, n ’ 2.63 6 0.45 for

1.5 # RiB # 5, and n ’ 1.30 6 0.15 for 5 # RiB # 20.

Thus, for the depth H ; d3hsc, the weak stratification

case Db ; d5g, and the weak surface flux case DV ; dyref

we find that RiB ; d6ghsc/y2
ref ; d6Fr�2 ; d�2, making

use of the distinguished limit (1). This value of the

Richardson number falls under the third regime of Strang

and Fernando’s experiments. Therefore, the dimensionless

entrainment velocity is given by

E 5 C
E
*d2 DVj j d5 r(DV)2

HDr

" #3/2

, (92)

where we have taken the constant CE 5 0.02 6 0.01 ’

d2CE* and n 5 1.5.

The problem now reduces to finding an expression for

interfacial density jump Dr. Recall that the pressure at

the region above the boundary layer is given by (32);

since in this region the pressure is hydrostatic, we find

that

r5�p
z
5

1

(11«2bz)
1�G*

b«
log(11«2bz)

� �(1/G*«)�1

1O(«5),

(93)

which implies that the density just above the inversion

layer Q
H1

is given by

r
H1

5 1� d3H 1 d5G*H 1
1

2
d6H2 � d7bH 1 O(d8).

(94)

From (B1) to (B7) we find that the density at the top of

the layer is given by

r
H�5 1� d3H 1 d5(G*H 1 u(5))

1 d6 1

2
H2 1 u(6)

� �
1 O(d7). (95)

Therefore the density jump at the inversion layer is

given by

(Dr)
H

5 r
H1
� r

H�5�d5u(5) � d6u(6) 1 O(d7). (96)

The velocity jump is given by Dvk 5 vkg � vk 5 (vkg�
v

(0)
k )� dv

(1)
k 1 O(d2) and, from (48), v

(0)
k 5 vkg for

a weak surface momentum flux. This leads to a velocity

jump jDvkj 5 djv(1)
k j1 O(d2). Therefore, the entrainment

velocity is given by

E 5 d6
C

E
*(v

(1)
k )4

H(0)(u(5))3/2
1 O(d7), (97)

where u(5) given by (B8) is assumed nonnegative. Equa-

tion (97) states that the leading-order entrainment, E(6),

depends mainly on v
(1)
k , which in turn depends on the

thermodynamics variables u(6) and q
(6)
t as per (49). The

evolution of these variables, given by (52) and (55), de-

pends on radiative flux and drizzle, respectively, in addi-

tion to the surface fluxes. Thus, we can conclude that

entrainment rate given by (97) is based on the strength of

the radiative driving of the layer and on contributions

from other energetic sources (e.g., surface fluxes, wind

shear at the boundary layer top, drizzle, etc.).
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For weak temperature jumps (Du
e
)

(5)
H and weak mois-

ture jumps (Dq
t
)

(5)
H , the entrainment fluxes first appear at

order 11; thus,

[ED(ru
e
)

H
](11)

5 E(6)D(ru
e
)

(5)
H and [ED(rq

t
)

H
](11)

5 E(6)D(rq
t
)

(5)
H . (98)

6. Weak interfacial buoyancy jump model

a. Summary of the closed systems of reduced
equations

The above discussion suggests that the structure of the

resultant equations depend on the magnitude of tem-

perature jump, moisture jump, and the drag coefficients.

The case of weak interfacial stability is interesting be-

cause it allows for entrainment effects to emerge at

lower orders and is discussed further below. For such

a case the equivalent potential temperature has an as-

ymptotic expansion of the form

u
e
5 1 1 d5u(5)

e 1 d6u(6)
e (X, T) 1 d7u(7)

e (X, h, T)

1 d8u(8)
e (X, j, h, T , t) 1 � � � . (99)

The momentum balance Eq. (48) thus reduces to

( bV 3 v(0))k1 $
X

p
g

5 0, (100)

and this places a constraint on the background flow v
(0)
k .

Equation (100) also implies that $
X
� v(0)
k 5 0.

Given the above, the closure terms following the dis-

cussion in section 5 result in the following system of

equations for the evolution of the intermediate or me-

soscale boundary layer flows:

›H

›T

(1)

1 v
(0)
k � $X

H(1) 1 H(0)$
X
� v(1)
k �

C
E
*(v

(1)
k )4

H(0)(u(5))3/2
5 0,

(101)

›v
(1)
k

›T
1 v

(0)
k � $X

v
(1)
k 1 ( bV 3 v(1))k1 u(5)$

X
H(1)

1
1

H(0)
$

X
F 1

C*

H(0)
jvkj

(0)v
(0)
k 5 0, (102)

›u
e

›T

(6)

1 v
(0)
k � $X

u(6)
e 1

b
1
a*

2H(0)
DF(1)(H(0) � h

c
)2

�
C

E
*(v

(1)
k )4

D(ru
e
)

(5)
H

H(0)2

(u(5))3/2
1

C*

H(0)
(jvkj

(0)(u(5)
e � u

(5)
e,0 ) 5 0,

(103)

and

›q
(6)
t

›T
1 v

(0)
k � $X

q
(6)
t �

b
1

2H(0)
P*(H(0) � h

c
)2a

p

�
C

E
* v

(1)
k

� 	4
D(rq

t
)

(5)
H

H(0)2

u(5)ð Þ3/2
1

C*

H(0)
jvkj

(0)(q
(5)
t � q

(5)
s,0 ) 5 0,

(104)

where

F 5
H(0)

2

2

(�u(6)
e 1 q

(6)
t ) 1

b
1

6
(G*L

y
*� R*)h3

c ,

the cloud-base height hc is given by (63), and u(5) 5

�u(5)
e 1 (1 1 G*L

y
*� R*)q

(5)
t .

b. Illustrative solutions

1) STEADY-STATE SOLUTIONS

We now consider some steady-state features of the

model described by (101)–(104) to demonstrate that it

gives physically realistic results. The steady-state results

are obtained by neglecting the time derivatives in the

equations; for simplicity, we assume a unidirectional

flow (i.e., ›/›y 5 0), the y-component wind is set to zero,

and we also neglect the Coriolis force in the mixed layer.

The background wind speed flow is assumed to be equal

to the geostrophic wind above the mixed layer. We further

neglect horizontal variation of moisture and momentum.

In this case, (104) simply shows that the steady-state flow

is a balance among the surface latent heat, entrainment

moisture fluxes, and precipitation; therefore, the entrain-

ment velocity is given by

Eu4 5
C* u(0)


 

D

s
Q

t

DQ
t

�
b

1
P*

2DQ
t

(H(0) � h
c
)2a

p , (105)

where the velocity perturbation v
(1)
k 5 u i, the entrain-

ment coefficient is denoted by E 5 C
E
*/H(0)u(5)�3/2

, h
c

is

the steady cloud-base height, DQe 5 �u(5)
e is the cloud-

top jump in equivalent potential temperature, and DQt 5

�q(5)
t is the cloud-top jump in total water mixing ratio,

with DsQe 5 (u(5)
e � u

(5)
e,0) the surface temperature jump,

DsQt 5 (q
(5)
t � q

(5)
s,0 ) the surface moisture jump, and u(5) 5

DQe 2 (1 1 G* Ly* 2 R*)DQt the buoyancy jump.

Making use of expression (105) together with (101)–

(103), it is found that the leading-order steady-state

cloud thickness (H(0) � hc) is a solution of the poly-

nomial equation

g
1
(H(0) � h

c
)2a

p 1 g
2
(H(0) � h

c
)2

1 g
3

5 0, (106a)
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with the coefficients

g
1

5�P*b
1
(2u� DQ

e
), (106b)

g
2

5 a*b
1
DFDQ

t
, (106c)

and

g
3

5 2C*ju(0)j D
s
Q

t
(2u� Du

e
)

�
1

2

H(0)
(u(0))2

�
1 D

s
Q

e

�
DQ

e

�
. (106d)

The cloud layer is assumed only in cases where the root

of polynomial equation (106) satisfies 0 # hc # H(0).

Equations (105) and (106) are solved by specifying the

values of the parameters, unless noted otherwise as

given in Table 6. These values are reasonably repre-

sentative for the stratocumulus clouds [see, e.g., Stevens

et al. (2005) for typical values]. We set the precipitation

tuning parameter ap to 3/2 based on the results obtained

by van Zanten et al. (2005). The standard precipitation

formation rate is given by P* 5 1. A value greater than

this will denote high precipitation efficiency, whereas a

value less than one is considered to be low precipitation

efficiency. The value P* 5 0 corresponds to switching

off the precipitation.

We focus on equilibria as a function of the net radia-

tive flux, the surface sensible heat flux, and surface latent

heat flux for a given precipitation conversion coefficient

P*. In this study we do not present any results on the

effect of the depth of boundary layer and the background

wind, since the main effect of reducing the depth of the

boundary layer is in reducing the extent in parameter space

where cloudy equilibria are found. The principal effect of

changing the wind speed is to change the surface fluxes,

with the larger u(0) corresponding to larger surface fluxes.

For a fixed surface flux, this is equivalent to varying the

bulk coefficients, with larger u(0) corresponding to smaller

coefficients. Here the drag coefficient is held fixed at C* 5

0.4, which corresponds to CD 5 CH 5 CQ 5 0.0014.

The effect of these parameters on the entrainment

rate and liquid water path are shown in Fig. 1 and are

summarized as follows:

(i) The effect of variations in surface latent heat flux

are evaluated by varying DsQt. The results shown in

Figs. 1a and 1b are consistent with the widely ac-

cepted view that the entrainment is strongly influ-

enced by the surface moisture flux (Moeng 2000),

with larger surface moisture fluxes driving more

entrainment.

(ii) To see the effect of the precipitation, we computed

the equilibrium solution with the drizzle conversion

rateP* 5 0, 0.5, 1, 1.5, 2 and compared the behavior

of the precipitation rate with the increase of the

latent heat flux. These figures show the consistent

behavior similar to that described in Lenderink and

Siebesma (2004), namely that the effect of the drizzle

is to reduce the entrainment rate and that the liquid

water path is reduced by heavy drizzle (Stevens

et al. 1998).

(iii) The effect of the radiative driving on the layer is

shown in Figs. 1c and 1d. An increase in radiative

cooling in the boundary layer leads to a marked

increase in the entrainment velocity, which dries

the layer and thins the clouds. This trend, which is

exaggerated because the cloud thinning is not al-

lowed to feed back on radiation in the present ex-

ample, is also discussed in Moeng et al. (1999). In

absence of the precipitation, the equilibrium bound-

ary layer is driven by a balance between the surface

moisture flux and the entrainment flux only. Thus, the

entrainment levels off in the absence of precipitation

for a fixed latent heat flux.

(iv) Figures 1e and 1f show that the net impact of sur-

face sensible heat flux on the entrainment rate and

cloud thickness are small for a given precipitation

rate. The trend of the computed values is in good

agreement with the mixed layer analysis of Pelly

and Belcher (2001) and observations by Moeng

(2000).

2) LINEAR STABILITY ANALYSIS

A linear stability analysis of the steady-state solutions

is carried out in terms of normal modes. The resulting

linearized eigenvalue problems describing the evolution

of perturbations and the dispersion relation, namely,

s4 1 iC
6
s3 1 [i(C

7
C3 1C

5
C2 1C

1
u(5))k�u(5)H(0)k2]s2

1 [(C
7
C

4
C

2
�C

6
C

5
C

2
�C

6
C

1
u(5))k�u(5)H(0)C

6
k2]s 50,

(107)

TABLE 6. Standard values of parameters used in the simulations.

Parameter Dimensionless value Approximate value

H(0) 1.5 900 m

u(0) 0.5 10 m s21

DF 3 75 W m2

DQe 1 2.3 K

DQt 21 8 g kg21

DsQe 21.1 15 W m22

DsQt 20.8 90 W m22

P* 1 1024 s21

ap 3/2
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are derived in appendix C. The Ci are expressions in-

volving the model parameters as given in that appendix.

The dispersion relation is a quartic equation for the in-

trinsic frequency s 5 v 2 u(0)k; thus, one finds four

independent propagating modes at each wavenumber k.

One of the modes is neutral and travels with the back-

ground wind. The imaginary part of the frequency v

represents the growth rate and the real part the temporal

frequency. If the imaginary part of the frequency is

positive, then the flow is unstable. In the following

subsections, various properties of the other three modes

are discussed in terms of the growth rates and phase

velocities.

(i) Wavenumber k 5 0

In the long wavelength limit, the dispersion relation

(107) reduces to

v4 1 iC
6
v3 5 0 0 v 5 0 ; v 5�iC

6

5�i
a

p

H(0)
P*(H(0) � h

c
)(2a

p
�1), (108)

leading to three stationary neutral mode with v 5 0 and

a stationary mode that decay at a rate of a
p
P*(H(0)�

hc)(2ap�1)/H(0). Thus, the steady-state solutions in the

longwave limit are stable. The maximum damping rates

FIG. 1. The steady-state entrainment rate and liquid water path (LWP) as functions of the (a),(b) surface latent

heat flux, (c),(d) net radiative flux, and (e),(f) surface sensible heat flux for various autoconversion efficiency rates:

P* 5 0 (solid), 0.5 (dashed), 1.0 (short dashed), 1.5 (dotted), and 2.0 (dotted–dashed).
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depends on the precipitation efficiency rate and the liquid

water path. Thus, the damping rate increases with in-

crease in the surface latent heat flux, decreases with

increase in radiative flux, and marginally decreases

with increase in surface sensible heat flux for a fixed

precipitation rate.

(ii) Wavenumber k . 0

We now illustrate the variations of the phase speed

and growth rate of the other three nonneutral eigen-

modes with wavenumbers in Fig. 2 for the standard

values of the parameters given in Table 6. The figure

shows that generally the modes have phase speeds that

approach u(0) �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u(5)H(0)

p
, u(0), and u(0) 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u(5)H(0)

p
for sufficiently large wavenumber. We shall refer to

these modes as W1, W2, and W3 respectively. The waves

W1 and W3 capture the contribution of the background

moisture states through u(5) (an ‘‘effective gravity’’) and

thus can be considered as moist gravity waves. The lin-

ear stability analysis reveals no scale-selective instability

in any of the regimes considered. The figure shows that

the system contains one unstable mode corresponding to

W2 with maximum growth rate 0.25 h21; it grows more

slowly as the wavenumber increases. The phase speed

corresponding to this maximum growth rate drops be-

low the background wind to 24 m s21. Modes W1 and

W3 are stable for the chosen parameters with maximum

decay rate 0.25 h21 and 0.8 h21, respectively. The figure

also shows that the system is only marginally unstable

for wavenumber k . 1.

We now investigate whether the structure of the

waves W1, W2, and W3 shows any mechanisms of in-

stability as the parameter values change. The sensitivity

of our model to parameter variations is shown in Fig. 3

for wavenumber 1 and 10. In general, the phase speed

variation caused by changes in the precipitation effi-

ciency rate, surface latent heat flux, radiative flux, and

surface sensible heat flux are negligible, and thus we

only describe the growth rates for the sensitivity ex-

periments. Figure 3 shows that the stability of the W1

mode and the instability of the M3 are generally robust

with the growth rate changing slightly when the pre-

cipitation efficiency rate, radiative flux, and sensible

heat flux are varied. However, the decay rate of W1

increases significantly with the increase in the surface

latent heat flux. The same applies to W3, as shown in Fig.

3b. The figures also reveal a parameter sensitivity to W3

that is different from W1 and W2—in particular, that

there exists a critical precipitation efficiency rate below

which mode W3 is unstable, as shown in Fig. 3a. Once

the moist gravity wave (W3) instability disappears as the

precipitation rate increases, the instability of the steady-

state solution is replaced by an W2 instability whose

growth rate is marginal. Finally, another aspect of W3 is

that an increase in radiative flux surface and sensible

heat flux leads to a decrease in decay rates (Figs. 3c,d).

7. Concluding remarks

In this paper we have derived sets of equations to

explore the coupling between the thermodynamic state

and the dynamic evolution of cloud-topped boundary

layers on the mesoscale. Our analysis is the first to for-

mally explore the multiscale asymptotics of flows in

which moisture effects are captured through the use of

moist conserved variables—and connected asymptoti-

cally through a distinguished limit—to the dynamic

structure of the flow. Although our analysis focuses on

a specific regime, the methods developed here may be of

broader utility. At the very least they identify the diffi-

culties moist atmospheric flows pose for a formal mul-

tiscale analysis.

Because our derivation formally relates approxima-

tions that one often makes in the representation of the

FIG. 2. (a) Phase speeds and (b) growth rates as functions of the wavenumbers for waves W1 (solid), W2 (dashed), and

W3 (short dashed).
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thermodynamics properties of the fluid to simplifica-

tions one would like to achieve in the dynamics, it

provides a formal justification for the bulk models

frequently encountered in the literature. The equa-

tions developed here have filtered out the fast time

scale and small spatial scales and identify a type of

bulk model. In addition to the identification of a new

reduced model for investigating the coupling of the

fluid dynamics of the boundary layer on the mesoscale

to the turbulent dynamics on the convective scale,

a significant finding of this work is a strong link be-

tween perturbation velocity v
(1)
k and the thermody-

namics perturbations. Traditional bulk models ignore

the coupling between the shallow-water-like dynamics

of mesoscale motions and the fast turbulent dynamics

that dominate the convective scales.

Further qualities of the reduced equations that we

derive include

d the evolution of v
(1)
k depends on the moist thermody-

namics in addition to the depth of the boundary layer

and surface fluxes of momentum;
d the entrainment rate depends directly on v

(1)
k , and

through the evolution of this quantity on the accu-

mulated effects of surface heat fluxes, the buoyancy

jump across the inversion layer, radiative cooling, and

any drizzle effects; and
d the velocity perturbations also driven by a depth

perturbation dependent on stratification, which is H(1)

for the case of weak stratification on which we focus.

It is obvious that much more could be done with the

model than is reported here. We leave a more sub-

stantial investigation of the model’s features to future

work but note that the derived bulk equations give

steady-state results that are physically realistic. For

example, the trend of the computed steady-state en-

trainment rates agrees qualitatively with large-eddy

simulations and observational studies, and the steady-

state liquid water path also shows the general character

of a precipitating cloud. We further showed that the

introduction of precipitation may be important for the

behavior of moist gravity waves. The linear stability

analysis reveals that the stability of the steady-state so-

lution does display some sensitivity to the parameter

that determines the efficiency with which precipitation

forms.
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APPENDIX A

Thermodynamic Relations

a. Equivalent potential temperature ue

The dimensional equivalent potential temperature is

given by

u9
e
5 T9

p
00

p9

� �R
d
/c

p*
V

e
exp

L
y
q

y

c
p*

T9

 !
, (A1)

where p is the pressure, p00 5 pref 5 1000 hPa is the

reference pressure, LV is latent heat of vaporization, T

temperature; qt 5 qy 1 ql is the total water mixing ratio

with qy the water vapor mixing ratio and ql the water

content mixing ratio, and cp*
5 cpd 1 clqt in which cpd

and cl are specific heat capacities for dry air and water,

respectively. Now we have

R
d

c
p*

5
R

d

c
pd

1 c
l
q

t

5
R

d

c
pd

1 1
c

l

c
pd

q
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 !�1

, (A2)

where Rd is the gas constants for dry air. We have

R
d

c
pd

5
g � 1

g
5

2

7
’ G*«,

c
l

c
pd

5
4217

1007
’ c

p
*«�1 (A3)

neglecting any variations of these values with tempera-

ture and pressure. The asterisk superscripts indicate

constants of order one. Thus,

R
d

c
p*

5 G*«(1 1 c
p
*«�1q

t
)�1. (A4)

Also,

R
y

c
p*

5
R

y

R
d

R
d

c
p*

5 R*G*«(1 1 c
p
*«�1q

t
)�1 with

R
y

R
d

5
461.5

287.0
’ 1.61 ; «0 [ R*, (A5)

where Ry is the gas constant for water vapor.

The equation of state is given by

p9 5 r9R
d
T9 1 1 q

y

R
y

R
d

� �
(1 1 q

t
)�1, (A6)

which implicitly defines expressions for the effective

(two-phase) gas constant R:

R 5 R
d

1 1 q
y

R
y

R
d

� �
(1 1 q

t
)�1. (A7)

The dimensionless temperature follows as

T 5 T9/T
ref

5 T9
R

d
r

ref

p
ref

� �
5

p

r

(1 1 q
t
)

(1 1 R*q
y
)

. (A8)

These relations can be used to define the dimensionless

enthalpy ratio:

L
y
q

y

c
p*

T
5

L
y
q

y

c
p*

rR
d
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which introduces Ly* as follows:

L
y
r

ref

p
ref

5 31.25 ; «�1L
y
*.

These relations allow us to write Ve as follows:

V
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5 1 1

R
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R
d
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y
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/c
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(A10)

All of which may be combined with the expression for

ue [(A1)] to derive a dimensionless equation of state

expressed in terms of distinguished limits for non-

dimensional thermodynamic parameters:
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b. The ue expansions

The expression for ue can be expanded in powers of d

as follows:

u(0)
e 5 1, (A12)

u(1)
e 5 0, (A13)

u(2)
e 5 0, (A14)

u(3)
e 5 T(3) 1 L

y
*G*q(3)

y , (A15)

u(4)
e 5 T(4) 1 L

y
*G*q(4)

y 1Q(4), (A16)

u(5)
e 5 T(5) 1 L

y
*G*q(5)

y 1Q(5), (A17)
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y
*G*q(6)

y 1 G*R*q(4)
y � L

y
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p
*q(4)2

y 1Q(6).

(A18)

These can be further specified given an expansion for T

in (A8) as

T(i) 5 p(i) � r(i) 1 q
(i)
t � R*q(i)

y for i 5 3, 4, 5, (A19)

T(6) 5 p(6) � r(6) 1 q
(6)
t � R*q(6)

y � R*q(3)
y T(3)

� (T(3) 1 R*q(3)
y )r(3) 1 q

(3)
t p(3), (A20)

and the Q(i) depend on the background moisture as fol-

lows:
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c. Saturation vapor mixing ratio qs

The saturated water vapor mixing ratio qs is defined

as

q
s
(T) 5

p9
s
(T)

R*[p9� p9(T)]
, (A24)

where T is the temperature, p is the air pressure, and

p9s(T) is the equilibrium saturation vapor pressure given

by Clausius–Clapeyron formula:

dp9
s

dT
5

L
y

R
y
T2

p9
s
. (A25)

Both R* and Ly are given as before. Integrating the

Clausius–Clapeyron equation assuming that Ly is in-

dependent of temperature yields the following approx-

imation for p9s:

p9
s
5 p9

s,ref
exp

L
y

R
y
T

ref

(T9� T
ref

)

T9

� �
, (A26)

where T0 5 300K and p9s,ref 5 3500 kg m21 s22. Defining

A 5 Ly /Ryuref 5 18.05 ’ «21A* and making use of the

distinguished limits [(10)] yields

p9
s
5 p9

s,ref
exp

A*

«
1� 1

T

� �� �
, (A27)

where the dimensionless temperature is given by (A8).

From this expression, and the additional distinguished limit

p9s,ref/pref 5 0.035 ’ «3/2 ps*, the following can be derived:

q
s
5

d3p
s
* exp

A*

d2
1� 1
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� �� �
R*p� d3R*p

s
* exp

A*

d2
1� 1

T

� �� � , (A28)
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which concludes the derivation of (58) in the main

text.

APPENDIX B

Bulk Averaged Pressure Gradients

Integrating the hydrostatic balance (38) and making

use of the boundary conditions (37) implies that p(0) 5 1,

p(1) 5 0, and p(2) 5 0. It follows from the equation of

state [(8)] that

r(0) 5 u(0)
e 5 p(0) 5 1, (B1)

r(1) 5 u(1)
e 5 p(1) 5 0, (B2)

r(2) 5 u(2)
e 5 p(2) 5 0. (B3)

Using these expressions simplifies further expansions of

the equation of state such that

r(3) 5 p(3) 1 u(3), (B4)

r(4) 5 p(4) 1 u(4), (B5)

r(5) 5 p(5) 1 u(5) � G*p(3), (B6)

r(6) 5 p(6) 1 u(6) � G*p(4) � r(3)u(3)
e � R*(u(3)

e

� G*L
y
*q(3)

y )q(3)
y 1 (1 1 G*c

p
*)q

(3)
t p(3)

1 (G*L
y
*� R*)q(3)
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where

u(i) 5�u(i)
e 1 q

(i)
t 1 (G*L

y
*� R*)q(i)

y 1Q(i), (B8)

and Q(3) 5 0 and Q(i) (for i 5 4, 5, 6) are given in ap-

pendix A by (A21)–(A23).

The above expressions for r(i) through i 5 6 allow us,

through integration of (39), to derive expressions for p

through i 5 9, these being

p(3) 5�h, (B9)

p(4) 5 0, (B10)

p(5) 5 0, (B11)

p(6) 5
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2
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where
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Based on the above, the pressure gradients are written

as a series expansion in d such that

$
X

p 5 d6(u(3)$
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Integrating (B16) over the vertical provides the desired

expression for the vertically integrated pressure gradi-

ent. This is straightforward once terms involving the

vertical integral of the water vapor terms of sixth order

and greater are evaluated. These contribute to the ex-

pression for p(9). As per our definition, the water vapor

mixing ratio is given by

q
y
5

q
s
, h $ h

c

q
t
, h , h

c
,

�
(B17)

where hc is the condensation height (an expression for it

is derived in section 5a). In section 4b we argued that qs

varies with h already at order six and in section 5a

showed that asymptotic expansion of saturation mixing

ratio yields q(6)
s 5 b0 1 b1h. Hence, for

ðH

h

q
y

dh 5 d4q
(4)
t (H � h) 1 d5q

(5)
t (H � h)

1 d6

ðH

h

q(6)
y dh 1 � � � , (B18)

we can evaluate the last term as follows:
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Taking the gradient and integrating over the boundary

layer provides the desired expression:ðH

0

$
X

ðH

h9

q(6)
y dh9
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X
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1
H2$
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1

6
$

X
h3
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Given the expansion for H assumed in section 4b, this

completes the derivation of the vertically averaged

pressure gradients.

APPENDIX C

Dispersion Relation

We linearize (101)–(104) about the steady-state so-

lution described in section 6b and neglect the Coriolis

effects, y variations in the flow variables, and the y

component of velocity. The linearized equations are

›h9
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1 u(0) ›h9
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1 C
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u9 5 0, (C1)
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7
u9 5 0, (C4)

where the prime denotes perturbations from the steady-

state solutions and
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u and h
c

denote the steady-state velocity u(1) and cloud-

base height hc, respectively; DQe is the cloud-top jump in

equivalent potential temperature; and DQt is the cloud

top jump in total water mixing ratio.

The linear stability analysis performed here is based

on the classical plane wave solutions to the equations

having the form

h9

u9

u
e
9

h
c
9

0BBB@
1CCCA5

bhbubu
ebh
c

0BBB@
1CCCAexp[i(kx� vt)],

where v denotes frequency and k is the wavenumber in

the x direction. With these substitutions, (C1)–(C4)

become

Mû 5 0 (C6)

in which

M 5
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1

0 0
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k iC
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s 5 v 2 u(0)k is the intrinsic frequency. The necessary

condition for a nontrivial solution of the resulting sys-

tem requires that det (M) 5 0. This condition, called

the dispersion relation, expresses the link between fre-

quency v and wavenumber k. The dispersion relation is

is given:

s4 1 iC
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