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ABSTRACT

Decadal climate prediction is a challenging aspect of climate research. It has been and will be tackled by

various modeling groups. This study proposes a simple empirical forecasting system for the near-surface

temperature that can be used as a benchmark for climate predictions obtained from atmosphere–ocean

GCMs (AOGCMs). It is assumed that the temperature time series can be decomposed into components

related to external forcing and internal variability. The considered external forcing consists of the atmo-

spheric CO2 concentration. Separation of the two components is achieved by using the Intergovernmental

Panel on Climate Change Fourth Assessment Report (IPCC AR4) twentieth-century integrations. Tem-

perature anomalies due to changing external forcing are described by a linear regression onto the forcing. The

future evolution of the external forcing that is needed for predictions is approximated by a linear extrapo-

lation of the forcing prior to the initial time. Temperature anomalies owing to the internal variability are

described by an autoregressive model. An evaluation of hindcast experiments shows that the empirical model

has a cross-validated correlation skill of 0.84 and a cross-validated rms error of 0.12 K in hindcasting global-

mean temperature anomalies 10 years ahead.

1. Introduction

Decadal climate prediction is one of the grand chal-

lenges in climate research. To achieve this goal, a new

generation of climate (earth system) models, in combi-

nation with advanced data assimilation techniques, has

been and will be used in internationally coordinated ef-

forts (Smith et al. 2007; Taylor et al. 2008). The results will

contribute to the upcoming Intergovernmental Panel

on Climate Change (IPCC) Fifth Assessment Report.

A summary of recent achievements in decadal climate

prediction is given by Meehl et al. (2009).

When evaluating predictions produced by complex cli-

mate models, simple forecast schemes should be studied

for at least two reasons. First, using simple schemes allows

us to address the question of efficiency, that is, the extent

to which a complex prediction model is more skillful than

simple schemes. In this sense, a simple scheme serves as

a benchmark for the evaluation of predictions produced

by complex climate models. The idea of using simple

forecast schemes as benchmarks is known and has been

applied for both weather and seasonal forecasts (see,

e.g., Livezey 1999; van Oldenborgh et al. 2005). Second,

a simple scheme, when properly designed, becomes use-

ful for quantifying different sources of prediction skills.

This is a more difficult task in the framework of complex

climate models.

It is generally believed that the skill of decadal pre-

dictions originates from the response to a changing ex-

ternal forcing and from low-frequency internal variability.

The present paper aims at a simple benchmark model that

allows a quantification of the prediction skill related to

each source. The model is formulated for annual-mean

near-surface air temperature anomalies. It is derived from

observed and simulated temperature anomaly records over

the common period from 1883 to 1999. The observed re-

cords are available from the 58 3 58 variance adjusted his-

torical surface temperature dataset (HadCRUT3v; Brohan

et al. 2006). The simulated records are available from the

World Climate Research Programme’s (WCRP’s) Cou-

pled Model Intercomparison Project phase 3 (CMIP3)
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multimodel dataset. Both observed and simulated anom-

alies are defined relative to the mean of the period from

1961 to 1990. After having derived our simple model, pre-

dictions of temperature anomalies can be performed from

given information about the external forcing and the tem-

perature at the initial time, without performing any climate

model simulation.

A benchmark for interannual to decadal prediction has

recently been suggested by Laepple et al. (2008). Dif-

ferent from the method by Laepple et al., which de-

scribes the temperature responses to the external forcing

through an ensemble mean of climate change simulations,

our model explicitly relates the temperature response to

the external forcing in terms of the model parameters.

Following the model description in sections 2 and 3,

the hindcast skill of our simple model will be evaluated

for temperature on both the global and local scale in

section 4. A summary is given in section 5.

2. Assumptions and fitting procedures

The simple empirical model is based on three assump-

tions. First, the temperature time series xt is assumed to be

decomposable into two components,

x
t
5 x

f
t 1 xi

t, (1)

where xt
f represents the response to the external forcing

and xt
i indicates the internal variability obtained without

the changing external forcing. Second, the response is as-

sumed to depend linearly on the CO2 concentration C via

x
f
t 5 a 1 bC

t�1
1 �

f
t . (2)

The forcing–response relationship described in Eq. (2)

is assumed to be valid for the coming decade, consistent

with the view that the temperature response to the

greenhouse gas forcing is insensitive to the detailed

evolution of the forcing in the coming decades of the

twenty-first century (Zwiers 2002). Term a indicates the

temperature anomaly that would be obtained by reducing

C to zero; b describes the response, delayed by one

year, to the forcing C. From a physical point of view,

a logarithmic dependence between temperature and CO2

concentration might be expected. However, a linear

approximation of a logarithmic forcing–response rela-

tionship is simple and thus serves the purpose of a

benchmark. Furthermore, a response time in our model

with a larger delay time, rather than a delay time of one

year, is plausible because of the large inertia of climate

components such as the ocean (Meehl et al. 2005). We

will come back to this point in section 4.

Finally, it is assumed that the internal variability can be

described by an autoregressive model of order 1 [AR(1)]:

xi
t 5 u 1 f xi

t�1 1 �i
t. (3)

With these assumptions, the temperature anomalies

are modeled by

x
t
5 a 1 bC

t�1
1 u 1 fxi

t�1 1 �
f
t 1 �i

t, (4)

with a, b, u, and f being the model parameters and �t
f

and �t
i being the error time series of the forcing–response

regression and internal variability, respectively. Note

that the temperature response to other greenhouse gases

is largely described through the atmospheric CO2 con-

centration, as they have a similar temporal evolution

while the responses to other external forcings, such as

solar irradiance, are covered by a and �t
f. Also note that

u represents an offset in internal variability that depends

on the CO2 forcing and the volcanic activity in the baseline

period. By including u, the hindcasts and the observed

anomalies have, relative to the same baseline period, the

same offset, ensuring that the rms errors (RMSEs) are

independent from the baseline period. Furthermore, other

components that are thought of to counteract temperature

changes due to changes in the CO2 concentration are not

included explicitly. The effects of such components, for

instance, sulfate loading, would hardly be statistically

distinguishable from the influence of CO2.

The model parameters are derived as follows: first,

parameters a and b are estimated by fitting Eq. (2) to the

past evolution of the CO2 concentration (provided by

the ENSEMBLES project available online at http://www.

cnrm.meteo.fr/ensembles/public/results/results.html) into

the ensemble mean of the IPCC Fourth Assessment

Report (AR4) twentieth-century integrations (Meehl

et al. 2007) that do not include volcanic forcing. The

ensemble mean is considered to be an estimate of xt
f,

since the ensemble average leads to a cancellation of

different internal variabilities simulated by various en-

semble members. The ensemble mean might be a biased

estimator of xt
f or might not completely represent xt

f.

However, the ensemble mean is the best estimator we

have today for xt
f. Thus, we assume the influence of po-

tential bias in the ensemble mean to be negligible.

After having estimated a and b, xt
i is obtained from

the observations xt
obs by

xi
t 5 xobs

t � x̂ f
t , (5)

where x̂ f
t is calculated using the estimates of a and b and

the known time evolution of C. The last parameters of

the model, the AR(1)-coefficients u and f, are then

estimated from the time series (5). Note that we use

the nonvolcanic CMIP3 ensemble mean to estimate x̂ f
t .

Consequently, any response to volcanic activity is a

component of xt
i. This response cannot be described by

an AR(1)-model.
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The described procedures are repeated following a

bootstrap scheme that is used later to cross-validate the

hindcast skill: the observed and simulated temperature

records cover the common period from 1883 to 1999. A

training period, from which the coefficients a, b, u, and

f are estimated, is this entire period minus a 10-yr gap.

Coefficients a, b, u, and f are repeatedly derived 107

times from such training periods.

For the globally averaged temperature anomaly, the

averaged values of the model parameters from the cross-

validation are 23.4387 K, 0.01041 K (ppm CO2)21,

20.0049 K, and 0.6099 for a, b, u, and f, respectively.

Thus, if the CO2 concentration was reduced to zero,

the temperature would be about 3.4 K colder than the

mean value derived from 1961 to 1990. The value of

b indicates a temperature increase of about 0.18C per

10 ppm increase of CO2 concentration. To what extent

the derived values are physically meaningful needs to

be examined elsewhere.

The described fitting procedures are only optimal when

the residuals of the regression and internal variability,

�t
f and �t

i, are independent and normally distributed. By

performing Kolmogorov–Smirnov tests, �t
f and �t

i are

found to be both normally distributed. The indepen-

dence, on the other hand, only holds for �t
i. Here �t

f

is autocorrelated. The autocorrelation can be removed

using a more sophisticated model, such as the generalized

least squares (GLS) model (Cochrane and Orcutt 1949).

Nevertheless, we chose to refrain from GLS models as we

want to keep our prediction scheme as simple as possible.

Furthermore, our results indicate that GLS models do not

significantly improve the skill of the hindcast experiments

(Krueger 2009).

Also note that it is possible to derive a model similar

to Eq. (4) by directly regressing the full temperature to

the forcing C and modeling the residual by an AR pro-

cess, without involving climate model simulations at all.

This approach is not considered for two reasons. First,

model (4), which relies on Eq. (1) and identification of xt
f

through an ensemble of climate integrations, allows a

more accurate specification of the sources of prediction

skill. When regressing the temperature onto the forcing

directly (without using the climate model ensemble), the

temporal behavior of x that results from internal vari-

ability can modify the coefficients a and b. Similarly and

to an unknown degree, coefficients u and f are connected

to the temporal behavior of x that comes from the re-

sponses to the external forcing. Consequently, prediction

skill resulting from the part described by coefficients a

and b and that described by u and f cannot completely

be attributed to the external forcing and internal vari-

ability. Second, by including additional data into the fit-

ting procedure, overfitting is effectively reduced. As a

consequence, model (4) derived from a climate model

ensemble has reasonably higher skill than a model

obtained from directly regressing temperature on C (not

shown). Lean and Rind (2008, 2009), who performed

such a direct regression, analyzed surface temperature

records and found that anthropogenic forcing is mainly

responsible for the atmospheric temperature increase.

Since they used datasets that already distinguish between

components of natural variability and of external forcing,

they did not need to estimate xt
f and xt

i independently from

each other. After estimating the future external forcing

and natural variability, they used their model to predict

the surface temperature for the following two decades.

3. The prediction scheme and hindcast experiments

When predicting the temperature anomaly at lead time

t, xt, using Eq. (4), one needs to know the evolution of the

forcing C up to lead time t 2 1. This study only considers

predictions at lead times up to 10 yr. Within such a pre-

diction interval, the CO2 concentration changes little with

time. Thus, the lagged value of C at lead time t can be

approximated via a Taylor expansion in terms of the

value of C at a time prior to the prediction, Ci:

C
t�1

5 C
i
, (6)

or in terms of both the value of C and that of the initial

tendency at a time prior to the prediction, Ci and _Ci:

C
t�1

5 C
i

1 _C
i
t. (7)

The linear-varying-forcing approximation (7) is more

accurate than the constant-forcing approximation (6)

in describing the forcing at lead time t. Despite that, it

remains to be examined whether the approximation (7)

is also superior to the approximation (6) in predicting

temperature changes. In the following, both possibilities

will be considered.

Using Eq. (4) in accordance with neglecting the residuals

�t
f and �t

i, a hindcast at lead time t is given by

x
t
5 a 1 bC

t�1
1 u�

j50

t�1

f j 1 ftxi
0. (8)

Here x0
i indicates the value of the internal variability

part xi at the initial time. The subscript 0 denotes the

initial time of a hindcast; x0
i is to be obtained by sub-

tracting the modeled response x0
f 5 a 1 bC21 from the

observed temperature anomaly at the initial time. The

subscript 21 indicates one time step before the initial

time, and u�t�1

j50f j 1 ftxi
0 corresponds to the prediction

of xi at lead time t with t . 0.
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To make a hindcast, Ct21 in Eq. (8) is approximated

using either the constant-forcing approximation (6) or

the linear-varying-forcing approximation (7). The values

Ci and _Ci in Eqs. (6) and (7) are chosen to be the values at

one time step prior to the initial time (i 5 21), rather than

directly at the initial time. This choice ensures that for t 5

0 the correct initial value of the internal variability x0
i is

obtained. Together with this choice, the hindcast at lead

time t with t 5 1, . . . , 10 is given either by

x
t
5 a 1 bC�1

1 u�
j50

t�1

f j 1 ftxi
0 (9)

or

x
t
5 a 1 bC�1

1 bC�1
t 1 u�

j50

t�1

f j 1 ftxi
0. (10)

The difference of C at two consecutive time steps before

the initial time determines _C21.

The hindcast skill will be cross-validated following the

bootstrap scheme described in section 2. Using Eqs. (9)

and (10), hindcast experiments were carried out every

year from 1883 to 1989. The length of each hindcast is

10 yr, and a total of n 5 107 hindcasts is obtained. The

10-yr periods excluded from the estimation of parame-

ters a, b, u, and f represent these hindcast periods. The

cross-validated hindcast skill is measured by the corre-

lation and the RMSE of the hindcasts. The correlation,

calculated from hindcasts at lead time t and respective

observations, measures the extent to which the hindcast

is in phase with the observations. On the other hand, the

RMSE quantifies the magnitude of hindcast errors. High

hindcast skills should be related to large values of the

correlation and small values of the RMSE. We also

provide associated uncertainty estimates for both hind-

cast skills that result from the choice of hindcast periods

via bootstrapping. The determined 95% confidence in-

tervals spread from 20.008 to 0.010 K around derived

values of the hindcast RMSE and from 20.228 to 0.097

around the values of the hindcast correlation.

For future predictions the averaged model parameters

(averaged over 107 estimates) can be used. We found that

the hindcast skill based on the averaged model parame-

ters is almost identical to the cross-validated skill based

on model parameters that are estimated from the whole

data period excluding the hindcast period.

4. Results

Consider first the hindcasts for the globally averaged

temperature anomaly. Table 1 displays the skill of hind-

casts for lead times of 1 yr, 2 yr, and the average of years

3–5 and 6–10. Figure 1 shows the correlation skill and the

RMSE as a function of lead time t. Relative to persistence

(line with unfilled diamonds), the hindcasts of our model

(10) (thick line) have higher correlation skill and a smaller

RMSE. The correlation skill of our model stays larger

than 0.79 and is about 0.87 for a lead time of 1 yr and

0.84 for a lead time of 10 yr. The RMSE increases from

;0.09 K in the first year to ;0.12 K in year 10. For

comparison, persistence hindcasts have a correlation

skill lower than about 0.7 and the RMSE is around

0.16 K for lead times longer than 7 yr.

A notable difference between the skill of our model

and that of persistence lies in its dependence on lead

time. The skill of persistence, as measured by both the

correlation and the RMSE, decreases monotonically with

lead time. On the contrary, the correlation skill of model

(10) first decreases within the first 5 yr and then increases.

This behavior is more clearly demonstrated in Fig. 2,

which zooms in on high correlations and on high RMSEs

around 0.12 K. Further, the RMSE of our model increases

less strongly with t than those of persistence hindcasts.

To understand this time dependence, the hindcast skill

of the following cases is evaluated.

Version (a): x
t
5 a 1 bC�1

1 b _C�1
t;

Version (b): x
t
5 u�

j50

t�1

f j 1 ftxi
0.

The first case, version (a), concentrates on the skill orig-

inating from the response to the changing external forc-

ing. For this case, the correlation skill increases with t

(thin line in Fig. 1 left panel), and the RMSE hardly de-

creases with t (thin line in Fig. 1 right panel). Version (b)

is different, as it focuses on the skill originating from the

internal variability. The skill, as measured by both the

correlation and the RMSE, is highest for the first years

and diminishes with t (lines with filled dots in Fig. 1).

Moreover, the skill in predicting the internal variability

using an AR(1)-process is low. The correlation even

becomes negative for a lead time greater than 3 yr. This

result suggests that, while the internal variability is re-

sponsible for the high skill at short lead times, the source

of skill in our model at long lead times is the response to

TABLE 1. Cross-validated correlation skill and RMSE of hind-

casts of globally averaged temperature anomalies obtained from

prediction model (10) for lead times of 1 yr and 2 yr and the av-

erage of yr 3–5 and 6–10.

Year

1 2 3–5 6–10

Correlation 0.871 0.817 0.841 0.882

RMSE (K) 0.095 0.113 0.102 0.093
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the CO2 forcing. If the prediction model captures the re-

sponse to the changing CO2 forcing and if the forcing

changes persist, then the skill resulting from such re-

sponses will increase with lead time, as the responses

amplify over time (von Storch 2008). In our model, the

response to the CO2 forcing is captured by the coefficient

b, which implies a warming. It is this warming trend

whose amplitude depends on the external forcing prior

to the hindcast that makes the correlation skill increase

with lead time and keeps the RMSE at about the same

level. It should be noted that the importance of the ex-

ternal forcing stands out more clearly when the internal

variability is only crudely described, as is the case when

using an AR(1)-model.

FIG. 1. Cross-validated (left) correlation skills and (right) RMSEs of globally averaged temperature anomaly

predictions, as derived from the prediction model (10) (thick solid lines), version (a) that concentrates on the role of

the external forcing (thin solid lines), version (b) that concentrates on the role of internal variability (lines with filled

circles), and the persistence forecast (lines with diamonds).

FIG. 2. Cross-validated (left) correlation skill and (right) RMSE of hindcasts of globally averaged temperature anomalies

obtained from prediction models with three different forcing formulations. Model (8) does not include any forcing ap-

proximation, model (9) makes use of a constant-forcing approximation, and model (10) of a linear-varying approximation.
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Additionally, the influence of the forcing formulation

is examined by comparing the hindcast skill obtained by

adopting actual values of the forcing without any ap-

proximation with that obtained by approximating the

forcing via Eq. (6) or (7). The prediction models corre-

sponding to different forcing formulations are given by

Eqs. (8)–(10). We performed hindcasts according to these

equations. The resulting skills are shown in Fig. 2. Adopting

actual values of the forcing yields the lowest correlation.

Making use of the constant-forcing approximation results

in the highest correlation and highest RMSE, while the

linear-varying-forcing approximation leads to the lowest

RMSE. In terms of the RMSE, the linear-varying-forcing

approximation gives the best results. The differences in the

RMSE between the constant-forcing approximation, the

linear-varying approximation, and adopting actual values

of the CO2 concentration are small in the first years and

increase with lead time. However, the differences in the

hindcast correlation of about 0.01–0.02 are small and not

significant at the 5% level. These small differences are

consistent with the analysis of Hawkins and Sutton (2009),

that external forcing becomes important for longer lead

times in decadal predictions but does not play an important

role in the first decades.

Despite the smallness, the differences in the correla-

tion appear to be systematic at large lead times. These

differences can be caused by the assumption that the

response to the external forcing occurs at a time lag of

1 yr, as formulated in Eqs. (2) and (8). We further ana-

lyzed the time lag of the response by modifying the

forcing–response relationship described in Eq. (2): in-

stead of a forcing–response relation with a 1-yr time

lag, we considered relations with different time lags. By

performing hindcasts with respective models, we found

that the highest skill is obtained when assuming a time

lag of about 7–10 yr between the forcing and the re-

sponse, though the associated change in the skill is

small (Krueger 2009). The result indicates that the

systematic differences in Fig. 2 are partially caused by

the less optimal assumption of a 1-yr time lag between

the forcing and the response. However, we refrained

from further optimizing our model since the improve-

ment is expected to be small.

The above statement about the forcing–response re-

lation cannot be directly applied to hindcast experiments

using coupled atmosphere–ocean GCMs, as these models

do not rely on any time-lag assumption and resolve the

forcing–response relation automatically. Nevertheless,

the above analysis provides a quantitative estimate of

the skills due to different formulations of the external

forcing. In particular, the use of different formulations of

the external forcing does not lead to substantial changes

in skill on the time scale of a decade.

For a comparison of the RMSE from our model to those

obtained by Laepple et al. (2008) and Smith et al. (2007),

we performed hindcasts over the same periods, namely

1930–2006 (Laepple et al. 2008) and 1982–2004 (Smith et al.

2007). Note that we used the averaged model parameters

(see section 2) and the CO2 concentration of the Special

Report on Emissions Scenarios (SRES) A1B scenario

(Nakicenovic et al. 2000), which has been used in the last

IPCC report to obtain hindcasts for the years after 2000.

For global-mean temperature, Smith et al. found an RMSE

of about 0.07 K at a lead time of 1 yr and 0.13 K at a lead

time of 9 yr, while we obtain 0.09 and 0.10 K, respectively,

for the same period. Thus, we have lower skill at a lead time

of 1 yr, but higher skill at a lead time of 9 yr. The result is

consistent with the fact that much more effort has been

made by Smith et al. to produce a more realistic simulation

of the internal variability. It is also possible that their higher

skill in the first years results from including the description

of volcanic activity for the hindcast period. As we use the

nonvolcanic CMIP3 ensemble mean, our model cannot

explicitly predict the temperature response to volcanic ac-

tivity. Laepple et al., on the other hand, obtained an RMSE

of about 0.11 and 0.14 K for lead times of 1 and 9 yr, which

is larger than the 0.10 and 0.12 K that we obtained with our

model for the same period at lead times of 1 and 9 yr.

Consider now the skill in hindcasting local temperature

anomalies. For this purpose, the prediction model (10)

has been derived and fitted to the temperature anom-

alies in each of the 58 3 58 grid boxes. Figure 3 shows

maps of the cross-validated hindcast correlation skill and

hindcast RMSE of the prediction model (10) at lead times

of 1 and 10 yr. In the case of the hindcast correlation,

positive values indicate skill. Thus, only grid boxes with

correlations significantly greater than 0 are shown, which

has been determined via a one-sided t test at the 5% level

with Fisher-Z transformed values. White areas also in-

dicate grid boxes where the observed data are missing.

For a lead time of 1 yr, correlation skills larger than

0.6 are found mainly over the Atlantic and the northern

part of the Indian Ocean (Fig. 3a). Over Northern

Hemispheric lands, the skill is, for the most part, below

0.2–0.3 and becomes insignificant at some locations. These

low skills likely result from the high internal variability

in the respective regions, although boundary conditions

are also important for regional skill (Lee et al. 2006).

Predicting 10 years ahead (Fig. 3b) degrades the pre-

dictability at many grid points. Nevertheless, the skill in

the northern part of the Indian Ocean and in the South

Atlantic remains above 0.6.

The hindcast RMSE (Figs. 3c,d) is mostly consistent with

the behavior of the correlation skill. It is small over some

regions that are covered by high hindcast correlations; for

example, the RMSE in the tropical Indian Ocean is about

15 FEBRUARY 2011 K R U E G E R A N D V O N S T O R C H 1281

Brought to you by MAX-PLANCK-INSTITUTE FOR METEOROLOGY | Unauthenticated | Downloaded 02/15/21 09:04 PM UTC



0.2–0.4 K at a lead time of 1 (Fig. 3c) and 10 yr (Fig. 3d).

The RMSE is often large in areas where the hindcast

correlation is low or insignificant. The North Pacific, the

western North Atlantic, and the ENSO region are such

examples where the RMSE is at least 0.8 K at a lead

time of 10 yr. In the North Atlantic, where the Atlantic

multidecadal oscillation (AMO) (Trenberth and Shea

2006) dominates, and in the North Pacific, which is in-

fluenced by the Pacific interdecadal oscillation (Mantua

et al. 1997), internal variability on decadal time scales is

the main source of decadal predictability (Keenlyside

et al. 2008; Latif et al. 2006). Our results are also in

agreement with Hawkins and Sutton (2009), who found

the internal variability to be the main source of uncertainty

on the decadal time scale for regional predictions. Based

on an AR(1)-process, our model cannot properly describe

the internal variability regionally.

There are also regions with high hindcast correlations

and high RMSE values. The correlation over Central

Asia and the southern Indian Ocean is larger than 0.6 at

a lead time of 10 yr, while the RMSE is larger than 1 K.

Although temperature predictions over such areas are

in phase with observed temperatures, the simple model

is not able to forecast the magnitude of the temperature.

The highest RMSE values are obtained over continental

regions. The RMSE over Asia, Europe, North America,

and parts of Africa is larger than 1 K at 10-yr lead time in

many grid boxes, indicating that the simple model over-

or underestimates the temperature in such regions. Since

the internal variability of continental climate is stronger

than that of oceanic climate, the model lacks the ability

to describe areas influenced by continental climate. Note

that the low skill in the North Atlantic can also be, at least

partly, attributed to some of the CMIP3 models that re-

veal remarkable temperature biases there (van Old-

enborgh et al. 2009). The high skills in the tropical Indian

Ocean are also identified in other studies (Pohlmann

et al. 2009). They mainly result from the correct simu-

lation of the upward temperature trend in the twentieth

century.

FIG. 3. Cross-validated hindcast skills for hindcasts obtained from model (10) fitted to temperatures in each of the 58 3 58 grid boxes. The

hindcast correlation at (a) 1-yr and (b) 10-yr lead time, and the hindcast RMSE at (c) 1-yr and (d) 10-yr lead time. Only correlations

significantly greater than 0 at the 5% level are shown.
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5. Summary

This study aims at a simple empirical model for decadal

forecasts of surface temperature anomalies, which can be

used to benchmark numerical climate models. The skill of

the simple model originates from the temperature re-

sponse to changes in the CO2 concentration and from

the internal variability. On the global scale, the response

to CO2 represents the main source of prediction skill and

even results in a correlation skill increase with lead time

to ;0.84 at year 10. Furthermore, the temperature re-

sponse to CO2 is able to keep the RMSE nearly un-

changed with increasing lead time. At year 10, the RMSE

is about 0.12 K. The role of the externally forced re-

sponse may be somewhat overemphasized through the

simple description of internal variability via an AR(1)-

process. On local scales, the response to CO2 becomes

less important relative to the internal variability. A proper

description of internal variability is crucial for skillful

predictions. As our simple model uses a rudimentary

description for the local internal variability, the skill, as

measured by the hindcast correlation and the RMSE, is

generally lower than that obtained for the global-mean

temperature anomalies. This is particularly true over

Northern Hemisphere lands and in the tropical Pacific

and becomes more evident at long lead times.
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