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ABSTRACT

The inclusion of polarimetric measurements for the quantitative precipitation estimation (QPE) by weather

radars as well as space- and airborne radars is considered most promising now-a-days. Because the melting

layer region is usually marked by a distinct peak of the linear depolarization ratio (LDR), a possible corre-

lation between LDR peak values and underlying drop sizes in terms of the Z–R relation is investigated, that is,

the empirical relation between radar reflectivity factor Z and rain rate R. For this purpose, data taken during

the Convective and Orographically Induced Precipitation Study (COPS) campaign in 2007 from two vertically

pointing radars—a 24.15-GHz Micro Rain Radar (MRR) and a 35.5-GHz polarimetric cloud radar—were

analyzed.

In this analysis a correlation between parameters of the Z–R relation and LDR peak values are revealed,

implying that the LDR magnitude within the melting layer must be influenced by the size of melting particles.

Furthermore, an LDR classification scheme shows an improvement of R retrieval with respect to the global

Z–R relation optimized for the dataset herein. However, to asses the impact for improved QPE in the above-

mentioned applications, future research is necessary.

1. Introduction

Weather radars play an essential role in the quantitative

precipitation estimation (QPE), which is a fundamental

basis for various applications, such as flood forecasting or

weather modeling (Meischner 2005). The capability of a

single weather radar to monitor large areas at high spatial

(less than a kilometer) and high temporal (about a min-

ute) resolution makes it superior to local measurements.

On the downside, the rain-rate retrieval by weather radars

relies on an empirical relation to the received power of

backscattered radar echoes, which strongly depends on

the drop size distribution (DSD) of interfering hydrome-

teors. Because the DSD is subject to great variability, this

causes, among other sources of error, great uncertainty to

the rain-rate retrieval; therefore, additional information is

needed to allow useful rain-rate estimates.

Early attempts to classify relations between the re-

flectivity factor Z and rain rate R are based on the

detectability of the melting layer in the radar reflectivity

profiles (Ulbrich and Atlas 2002).

In case of a vertically pointing direction, DSDs can

be retrieved from the Doppler spectra as proposed by

Atlas et al. (1973). While this pointing direction pro-

vides only local measurements for stationary radar setup,

the method suffers from Doppler broadening in air-

and spaceborne applications (Meneghini and Kozu 1990;

Bolen and Chandrasekar 2000; Hildebrand et al. 1994).

To tackle these problems, the inclusion of polari-

metric measurements from modern radars may be con-

sidered promising to improve rain-rate retrievals. In

particular, the melting layer region of stratiform clouds

can show strong signatures within parameters that are

sensitive to depolarization (Kropfli et al. 1984). This

motivates the idea of investigating whether these sig-

natures can add valuable information to current rain-

rate retrieval methods. Furthermore, this investigation

may also contribute to our understanding of melting

layer microphysics. It is worth mentioning that mod-

eling the melting layer remains a challenging task and

various modeling attempts can be found in the litera-

ture (e.g., Szyrmer and Zawadzki 1999; D’Amico et al.

1998; Russchenberg and Ligthart 1996).
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This study focuses on the linear depolarization ratio

(LDR) within the melting layer region. Measurements

of LDR were retrieved by the cloud radar, type MIRA36,

deployed in Achern, Germany, by the Meteorological

Institute of the University of Hamburg (MI) and the

Max Planck Institute for Meteorology (MPI) during the

Convectively and Orographically Induced Precipitation

Study (COPS; online at http://www.cops2007.de) in the

summer of 2007. A Micro Rain Radar (MRR), which is

capable of resolving DSDs from the radar signals, was

deployed next to the cloud radar. Accordingly, we in-

troduce an LDR classification scheme, which enables us to

evaluate the impact of LDR values to the DSDs of pre-

cipitation. Furthermore, we investigate whether the in-

clusion of LDR values can be useful for improving the

empirical relation between rain rate and radar reflectivity.

2. Instrumentation

a. Micro Rain Radar (MRR)

The MRR data that we analyze in this study were col-

lected from a 24.15-GHz K-band frequency-modulated,

continuous-wave (FM–CW) Doppler radar. It is a verti-

cally pointing radar, which is capable of resolving DSDs

from the retrieved Doppler spectra by using the relation

between drop size and terminal fall velocity according to

Atlas et al. (1973). Although the MIRA36 is also capable

of resolving DSDs from its Doppler spectra, the larger

dynamic range of the MRR makes it superior for the

analysis of raindrops.

Vertical profiles of the DSD and other variables, such

as the reflectivity factor Z and corresponding rain rate R

(deduced from the DSD), are recorded with a temporal

resolution of 60 s and a spatial resolution of 100 m, with

a maximum range of 3100 m. A detailed discussion of

the MRR can also be found in Peters et al. (2002, 2005).

b. MIRA36 cloud radar

The cloud radar data were retrieved from the vertically

pointing MIRA36 Ka-band Doppler radar, which oper-

ates at 35.5 GHz. In contrast to the MRR, this radar is

equipped with a polarization filter and a second inde-

pendent receiver channel for simultaneously receiving co-

and cross-polarized return signals, making it capable of

retrieving LDR measurements. Vertical profiles of LDR

are retrieved with temporal resolution of 10 s and spatial

resolution of 30 m, with a maximum range of more than

14 km. Further information is also available at the man-

ufacturer’s homepage (online at http://www.metek.de).

c. Error discussion

Because our analysis is based on correlations between

measurements taken from both radars, we make the

assumption that errors of both systems are independent

from each other; that is, they will not cause an artificial

correlation between both measurements. Therefore, we

will just briefly address two noticeable error sources here;

for a more detailed discussion on these error sources we

refer to Peters et al. (2005, 2010).

One error source is caused by vertical wind fields that

are associated with turbulence or convection, because

this will affect the assumed relation between drop size

and terminal fall velocity. However, this error source

should be more relevant for convective rain rather than

for considered stratiform rain.

Another error source is caused by the attenuation of

the radar signal. For the MRR data, an attenuation

correction algorithm has been applied, whereas for the

MIRA36 data, any attenuation effects of the LDR

should be negligible.

3. LDR classification scheme

a. LDR in the melting layer

The LDR analysis in this study focuses on the melting

layer region, that is, the transition zone of melting hy-

drometeors from ice phase to liquid phase. In particular,

stratiform rain events show distinct melting layer char-

acteristics within the radar profiles.

By definition, the LDR is the ratio of the cross-polar

signal power to the copolar signal power (Doviak and

Zrnić 1993). A time–height profile of the LDR taken

from MIRA36 is shown in Fig. 1b. Among other pa-

rameters, the LDR shows a significant peak within the

vertical profile, which is traditionally believed to be due

to the nonsphericity of melting hydrometeors and the

enhanced refractive index caused by water coating

(Houze 1994). Accordingly, the LDR is primarily dis-

cussed in the literature as a shape-sensitive measurand,

whereas the target size dependency seems to play a

minor role (Bringi and Chandrasekar 2001). However,

by taking the departure from the Rayleigh condition

into account the question arises whether the increase

in target size (e.g., resulting from target aggregation

within the melting layer) might significantly enhance

the target shape effect to the incident radar signal.

Furthermore, in situ measurements within ice clouds

revealed a significant correlation between target size

and departure from ‘‘target roundness’’ (Korolev and

Isaac 2003). Both arguments motivate the idea that

a possible correlation might exist between the LDR

peak values (LDRP) within the melting layer and the

underlying raindrop sizes. Thus, we consider whether

LDRP is one candidate to classify coefficients of the

Z–R relation.
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b. Characteristic drop size

The relation between the coefficients of a Z–R relation

Z 5 aRb (1)

and the DSD as function of rain rate has been discussed

in depth by Steiner and Smith (2004). For a qualitative

interpretation of the a and b coefficients based on this

discussion, we consider Z as a function of DSD, as

FIG. 1. (a) The MRR time–height profiles (above ground level) of the reflectivity factor Z for

22 Jun 2007. (b) The corresponding LDR profile taken from the MIRA36. (c) The time–height

profile of the a coefficient derived from a 5 Z/R1.4.
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Z 5

ðD5‘

D50

N(D)D6 dD. (2)

Here, N(D) denotes the number of drops with diameter

between D and D 1 dD. If we assume that the shape of

DSD remains fixed, any change of N(D) in Eq. (2) results

in a constant factor. Therefore, we have a linear response

between Z and R for a fixed DSD shape, corresponding to

b 5 1 in Eq. (1). Consequently, the a coefficient of the Z–R

relation is a purely drop size–controlled parameter. On the

other hand, if we allow the shape of DSD to change with

rain rate, we account for this with the b coefficient in

Eq. (1). Therefore, we interpret the b coefficient as a mea-

sure of the change of DSD shape with varying rain rate.

Based on this consideration, we will use the a co-

efficient of Eq. (1) as a characteristic measure of drop

size within the DSD.

c. Coefficient retrieval

Transformation of Eq. (1) into logarithmic domain

results in a linear equation,

log(Z) 5 a
log

1 b
log

log(R), (3)

with alog 5 log(a) and b 5 blog. This allows us to de-

termine both coefficients by linear regression for a given

sample of Z and R values. However, the evaluation of

this regression from measurements usually results in

large scattering with increasing sample number because

of either temporally or spatially inhomogeneous rain-

fall. To illustrate the inhomogeneity of the Z–R relations

within rainfall profiles, we set the b coefficient to a fixed

value. This enables us to unambiguously retrieve an

a coefficient for each single Z–R pair, where Z and R are

derived from the corresponding DSD.

Figure 1 shows a time–height cross section of Z and

the corresponding a coefficient cross section. Slanted

trails are clearly visible in both profiles, where high

a coefficient trails precede high reflectivity trails. Be-

cause high a coefficients reflect the presence of large

raindrops according to our consideration, this finding re-

veals the drop-sorting effect within the observed rainfall

event. On the other hand, the slanting underlines another

problem with respect to the analysis of vertical profiles.

Apparently, the correlation between two independent

measurements—one being taken within the melting layer

and the other being taken below—is affected by the ver-

tical distance between them. Hence, a best correlation is

expected at closest distances to the melting layer.

d. Analysis

The scheme that we choose to investigate a possible

correlation between the a coefficient and LDR values

within the melting layer relies on a classification of ver-

tical Z and R profiles according to their corresponding

LDRP values. To assign each profile with an LDRP value,

if it exists, we resampled the MIRA36 data down to the

time and height resolution of the MRR data. Further-

more, a melting layer detection algorithm, which analyzes

enhancements in the vertical reflectivity and LDR pro-

files, as well as enhancements in the Doppler velocity

gradient (Bumke et al. 2006), must have found a melting

layer close to the LDRP height, or the Z and R profiles

are discarded from the analysis. According to our dataset,

this selection criterion reduces the rain data by 20%.

For a period of 92 days, starting from 1 July 2007, we

assign each profile to the corresponding LDRP value.

Then, we define LDRP classes that are binned by 1-dB

increments. Accordingly, each LDRP class contains a set

of Z and R values. In the next step, we select samples of

Z and R pairs from these sets according to the corre-

sponding distances d to the LDR peak height. From these

subsets we could already retrieve the a and b coefficients

as functions of d and LDRP by evaluating Eq. (3). How-

ever, we modified this regression analysis to a neutral

regression analysis, because we do not see any obvious

reason why we should prefer to set either Z or R as a

dependent variable. Once we have evaluated the neutral

regression coefficients for each subset, we look for a

possible correlation between the regression coefficients

and corresponding LDRP classes.

FIG. 2. The a coefficients as function of LDRP class and four LDR

peak distance ranges Ddi; 95% prediction bands for a coefficients

(maximum with respect to d) are indicated (gray shading). An ex-

ponential fit of the a coefficients is indicated (dashed line).
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4. Results

a. Correlation analysis

The retrieved a coefficients for each LDRP class, with

d values ranging from 300 to 2300 m, are presented in

Fig. 2. Here we averaged the a coefficient over layers of

500 m. Because each a coefficient results from a neutral

regression analysis, we evaluated its 95% prediction

band. The maximum prediction bands for each d are

indicated by gray shades in Fig. 2.

A positive correlation exists between a coefficients and

LDRP values beginning at about LDRP 5 0.09 (linear

units). The large scattering at the highest LDRP class can

be explained by the decreasing population size, which

also becomes apparent in a broadening of the prediction

bands. Furthermore, the order of a coefficients with re-

spect to d is flipping at about the 0.175 LDRP class.

However, we cannot decide at this point to what extent

this reflects a microphysical process on the fall path or

statistical artifacts.

The question arises whether the observed correlation

between LDR and a may be mainly related to the drop-

sorting effect. Because drop sorting evolves on the fall

path, we would also expect a dependence of the pre-

diction interval on d. Nevertheless, no significant de-

pendence of individual prediction bands (not shown) on

d was observed. Hence, we believe that the correlation is

less influenced by the drop-sorting effect.

b. Z–R sets

To get a better sense for the Z–R subsets that we select

in our analysis, we include three Z–R scatterplots in

Fig. 3. Each scatterplot belongs to a specific LDRP class,

while a composite plot of corresponding regression lines

is shown in the lower-right plot. Again, we can see that

the intercept of the regression lines (i.e., a coefficient) is

moving upward for higher LDRP classes. Referring back

to the idea that the inclusion of polarimetric parameters

may contribute to the rain-rate retrieval, we might ask

whether the Z–R subsets show a better agreement for

FIG. 3. Three Z–R scatterplots of different LDRP classes, where d is ranging from 800 to

1300 m. The neutral linear regression is denoted (solid line), and a composite plot of all lines is

shown in the lower-right plot.
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a linear regression model than the total set of Z–R

will do.

c. Improvement of Z–R relation

To assess this question, we compare rain rates re-

trieved from a global Z–R relation (optimized for this

dataset) with rain rates retrieved from Z–R relations of

subsets according to our LDR classification scheme. For

this part of the analysis, we restrict the global population

of Z and R pairs to a corresponding LDRP range from

0.03 to 0.22, with d ranging from 300 to 2300 m.

As previously mentioned, the MRR retrieves rain rates

directly from the DSD; hence, we denote these rain rates

as ‘‘true’’ rain rates (Rtrue) in the following. Figure 4a

shows a 2D histogram of the global Z–Rtrue sample

and its neutral linear regression based on Eq. (3), which

represents the optimized global Z versus Rtrue relation.

If we evaluate the rain rates from the reflectivity factor

and the global Z–Rtrue relation, a comparison with true

rain rates shows large scattering (Fig. 4b). Instead of

using this global Z–R relation for the rain-rate retrieval,

we determine conditional Z–R relations for each LDRP

class in the next step. The comparison between true

rain rates and retrieved rain rates from the conditional

Z–R relations reveals that large scattering persists (not

shown). However, a noticeable rise of population appears

at the ideal match line, which is denoted by the dashed

line in Figs. 4b,c. To visualize this effect, we subtract the

population sizes of Fig. 4b from the population sizes

corresponding to conditional Z–R relations. The color-

coded losses and gains are shown in Fig. 4c. As can be

seen, noticeable gains (indicated by red) occur at the ideal

match line, but similar losses (indicated by blue) also

occur in adjacent domains, indicating an improvement to

the Z–R evaluation method according to LDRP classes.

On the other hand, large domains of small changes exist,

FIG. 4. (a)–(c) 2D histograms. (a) The global Z–R population; the independent linear re-

gression is denoted (dashed line). (b) A comparison between rain rates derived from the global

Z–R relation (ordinate) and ‘‘true’’ rain rates derived from the DSD (abscissa); the ideal match

line is denoted (dashed line). (c) Population losses and gains with respect to (b) if rain rates are

derived from Z–R relations as function of LDRP class instead of the global Z–R relation. (d)

Derived b coefficients of considered LDRP range. Unity (red dashed line) and b coefficients of

the global population (black dotted line) are denoted.
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which do not significantly deplete outliers in Fig. 4b.

Despite the noticeable accumulation of samples in close

vicinity to the ideal match line (15% increase for 0-dB

Rtrue to 12-dB Rtrue) in Fig. 4c, we failed to find a suitable

statistic parameter showing a significant improvement.

Finally, in Fig. 4d we show that the conditional b co-

efficients are closer to unity than the global b coefficient,

which indicates that our selection of Z–R pairs prefers

DSDs with constant shapes.

5. Discussion and conclusions

This study reveals two findings. First, the positive cor-

relation that we found between LDRP values and a

coefficients suggests that high LDR values within the

melting layer is size controlled rather than purely shape

controlled. This supports the modeling results of Tynnelä

et al. (2009), who state that the increase in LDR with size

is due to the increased impact of particle shape on scat-

tering with increased size parameters as the Rayleigh-

type behavior starts to diminish.

The second finding is the observed improvement of the

global Z–R relation by the LDRP classification scheme.

However, in terms of statistical significance, we can only

state a small improvement so far. One problem might be

the diminishing causality with fall depth between Z–R

pairs and their assigned LDRP values resulting from the

slanted rain trails in the time–height profiles. Apart from

this problem, further questions need to be addressed be-

fore our findings could be transformed to applications

with grazing scanning angles. For example, the impact of

partial attenuation needs to be investigated.

On the other hand, the K-band radar that is to be

mounted on the High Altitude and Long Range Research

Aircraft (HALO; Mech et al. 2009) this year will be an

interesting testing ground for our classification scheme. In

addition to LDR, other polarimetric parameters in the

melting layer might provide valuable information as well

for Z–R classification in analogy to the proposed scheme.
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