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ABSTRACT

The key to the improvement of the quality of ensemble forecasts assessing the inherent flow uncertainties is

the choice of the initial ensemble perturbations. To generate such perturbations, the breeding of growing

modes approach has been used for the past two decades. Here, the fastest-growing error modes of the initial

model state are estimated. However, the resulting bred vectors (BVs) mainly point in the phase space di-

rection of the leading Lyapunov vector and therefore favor one direction of growing errors. To overcome this

characteristic and obtain growing modes pointing to Lyapunov vectors different from the leading one, an

orthogonalization implemented as a singular value decomposition based on the similarity between the BVs is

applied. This transformation is similar to that used in the ensemble transform technique currently in opera-

tional use at NCEP but with certain differences in the metric used and in the implementation. In this study,

results of this approach using BVs generated in the Ensemble Forecasting System (EFS) based on the global

numerical weather prediction model GME of the German Meteorological Service are presented. The gain in

forecast performance achieved with the orthogonalized BV initialization is shown by using different proba-

bilistic forecast scores evaluating ensemble reliability, variance, and resolution. For a 3-month period in

summer 2007, the results are compared to forecasts generated with simple BV initializations of the same en-

semble prediction system as well as operational ensemble forecasts from ECMWF and NCEP. The orthogo-

nalization vastly improves the GME–EFS scores and makes them competitive with the two other centers.

1. Introduction

A basic assumption in modern numerical weather pre-

diction (NWP) is that a forecast of a possible future

atmospheric state is to some extent uncertain. The mag-

nitude of this uncertainty strongly increases with forecast

lead time and is dependent on the space–time structure

of the three-dimensional atmospheric flow. During the

last 15 years, ensemble weather prediction has become

the dominant forecasting tool on the global scale. The

cause for this development is not only the fact that the

ensemble mean generally provides a better prediction

of a future atmospheric state than a single deterministic

forecast, but also that a posteriori probabilistic assess-

ments of the forecasts allow an estimation of the uncer-

tainty of the forecast and communicate it to potential

users.

The sources of uncertainties are (i) the lack of knowl-

edge about the true state of the atmosphere at the ini-

tialization time and (ii) the inherent deficiencies in the

forecast model’s description of the atmospheric pro-

cesses. Hence, ensemble forecasts strongly depend on

the initialization of the distinct ensemble members and,

therefore, the use of an appropriate ensemble genera-

tion method proves crucial to the quality of the proba-

bilistic forecast. Corresponding to the aforementioned

reasons for forecast uncertainties, two different ensemble

generation techniques have become prevalent in nu-

merical weather prediction:
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d the perturbation of the initial atmospheric state, which

aims at the errors in the initial state, be it from ob-

servational or model errors, and
d the perturbation of parameterized processes (such as

turbulence or convection) to account for the uncer-

tainties that arise from the estimation of values origi-

nating from the subgrid scale.

A general overview of the different ensemble forecasting

techniques is given by, for example, Kalnay (2003).

In this study we will focus on the uncertainties esti-

mated by the former method—the perturbation of the

initial conditions. We concentrate on estimating the per-

turbed initial states x9a(t0), which evolve in the strongest

growing error modes. Thus, the perturbed initial states

can be described by

x9
a
(t

0
) 5 x

a
(t

0
) 1 z

g
(t

0
), (1)

with xa(t0) being the original analysis state and zg(t0) the

perturbations leading to the strongest growing modes of

the ensemble forecast.

Mainly, three different techniques have been devel-

oped during the past 15–20 years to find such initial

perturbations. The singular vector method and the bred

vector method focus on the model errors or, more pre-

cisely, on the direct estimation of the strongest growing

error modes, while the perturbed observations method

focuses on the uncertainties in the initial analysis field

caused by deficiencies in the observational network, ei-

ther from the lack of observations in a certain region or

the measurement errors. However, the analysis error de-

pends on both the dynamical and observational errors.

This study mainly focuses on the ensemble initializa-

tion method called breeding of growing modes or the

bred vector (BV) technique described by Toth and Kalnay

(1993, 1997). As it is quite easy to implement, this method

has been used in the Global Ensemble Forecasting Sys-

tem (GEFS) of the National Centers for Environmental

Prediction (NCEP). The breeding technique is based on

a recursive rescaling of perturbed short-range forecasts in

relation to an unperturbed control forecast. Hence, such

a system ‘‘breeds’’ the fastest error-growing modes of the

current model’s representation of the atmospheric state.

BV perturbations are closely related to (local) atmo-

spheric Lyapunov vectors (see Trevisan and Legnani

1995), which can be calculated together with the Lyapunov

exponents that describe the temporal growth rate of the

respective spatial modes. If at least one of the global

Lyapunov exponents is positive, the behavior of the sys-

tem is chaotic; that is, formerly nearby points on the

model’s attractor will separate into unrelated points (Wolf

et al. 1985). The idea of the BV method is to estimate the

leading Lyapunov vectors for a complex system such as

a forecast model with an acceptable effort, for example,

without the explicit calculation of the Tangent Linear

Model (TLM; Eckmann and Ruelle 1985).

Through the Lyapunov vectors, the BV method is

related to another technique called singular vectors ini-

tialization (SVs; see Buizza and Palmer 1995), which

explicitly uses the TLM. Both methods are used to de-

termine the fastest-growing error modes for the first

guess of the analysis state. Buizza and Palmer (1995)

point out that if their TLM approach to identifying sin-

gular vectors is not conducted for a small optimization

time period around a single stationary point, but for a

sufficiently long time with the evolving trajectory cov-

ering the full attractor, the singular values will have an

exponential dependence on the optimization time. This

dependence is controlled by the Lyapunov exponents,

and the corresponding set of singular vectors is then

referred to as local Lyapunov vectors.

Both aforementioned methods are still subject to

ongoing improvement. A major modification of the BV

implementation at NCEP has recently been made by

applying a transformation to the perturbations given by

the latest ensemble forecasts replacing the BVs (see Wei

et al. 2008). This modification, called ensemble transform

(ET), aims at the orthogonalization of initial perturba-

tions by constraining them with the analysis variance of

the data assimilation (DA) system and the recentering

of the perturbations around the analysis by using a sim-

plex transform (ST).

ET was originally formulated by Bishop and Toth

(1999) for targeting observations and is adopted for the

generation of initial ensemble perturbations in the NCEP

ensemble forecasting system as described by Wei et al.

(2008). For further details on analysis error covariance

and the ET method, the reader is referred to Wang and

Bishop (2003) and Wei et al. (2006, 2008).

As the ET method is an extension to the classical BV

approach, the perturbations are based on flow-dependent

spatial structures, but the recentering of the perturba-

tions (while preserving the analysis covariance) ensures

that the initial perturbations have the maximum number

of effective degrees of freedom. However, the perturba-

tions are not orthogonal for a finite number of ensemble

members.

In this study we present another improvement to the

BV approach by generating orthogonal initial pertur-

bations for ensemble forecasting created from BVs. The

BVs are generated with an ensemble forecasting system

based on the German Meteorological Service’s global

NWP model—the GME–EFS (described in Keller et al.

2008, hereafter K08).

The experiment setup with simple BV perturbations

presented in K08 indicates that the breeding cycle
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implemented in the GME–EFS is not able to generate

well-developed breeding patterns with the given lead

time prior to the beginning of the ensemble forecasts.

The spatial structure of the single BVs is very similar and

therefore leads to an insufficient ensemble spread. The

implemented ad hoc solution is to inflate the initial en-

semble perturbations by a constant factor, which results

in a reasonable ensemble spread averaged over a 3-month

simulation period. As the BVs are significantly enhanced

during this time, the initial inflation factor is too large for

the subsequent simulations. Though the performance in

terms of the ensemble spread score is quite reasonable,

the results of a verification analysis with respect to the

resolution component of the ensemble forecasts depict

a poor level of performance by the simple BV approach.

2. Methodology

In the following sections, we summarize the genera-

tion of BVs in K08, describe the implementation of the

BV orthogonalization in the GME–EFS, and discuss the

theory of ET-based orthogonalization techniques in gen-

eral. Finally, we give some concluding remarks on the

differences between the NCEP ET procedure and our

orthogonalization approach.

a. Generation of BVs

The BVs that we want to orthogonalize are generated

by the GME–EFS. K08 illustrates how the breeding

cycle is implemented and how the BVs are used to per-

turb the initial state. The GME–EFS makes use of a

weighted total energy norm to measure the degree of

perturbation and thus to calculate the rescaling factor in

each breeding cycle. The weighted total energy norm is

given by

kZ
f
k2 5 wu

ð
1

2
u92 dV 1 wv

ð
1

2
v92 dV

1 wT

ð
1

2

c
p

T
T92 dV 1 wp

s

1

g

ð
1

p
s

p92
s F

s
dF ,

(2)

with T the mean temperature at the corresponding level,

ps the mean surface pressure, and Fs the orographic

height expressed by the surface geopotential. The weight-

ing factors wu, wv, wT, and wps
are calculated as the re-

spective energy contribution at the initial time of the

breeding cycle. Each of the four energy contributions

equals 0.25 for the initial time, allowing the norm to

measure the relative change of the energy perturbation

for all four contributions. The symbols u9, v9, T9, and p9s
denote the u and y wind components, the temperature,

and the surface pressure component of the BVs. The

weighted total energy norm accounts for the respective

perturbation growth of each component relative to its ini-

tial value. For further details, the reader is referred to K08.

First, the GME–EFS simulations revealed consider-

able similarities in the structures of the single BVs (see

section 4 for an example). Therefore, the spread in the

ensemble simulations initialized with these BVs was far

too small and had to be amplified artificially to result in

a reasonable spread–error growth relation, giving rise to

the idea of orthogonalization, for example, as in Wolf

et al. (1985) or Bergemann et al. (2009).

The similarities between the BVs may be a conse-

quence of the fact that BVs are all qualitatively similar

to the leading Lyapunov vector (Kalnay et al. 2002).

Therefore, all BVs are also similar to each other, rep-

resenting the strongest growing error mode of the given

atmospheric state and forecast model. Kalnay et al. (2002)

argue that BVs are never orthogonalized as this would

shift them toward the subsequent Lyapunov vectors, thus

changing the error growth characteristic to the subseq-

uent smaller one. However, it may be necessary to re-

produce not only the strongest growing errors but also

different growing error modes to obtain larger ensemble

spreads. Therefore, we decided to implement an or-

thogonalization in the GME–EFS ensemble generation

process.

b. Implementation of the SVD-based
orthogonalization

In contrast to Wolf et al. (1985), who applied a Gram–

Schmidt orthogonalization, our method is based on a

singular value decomposition (SVD). The orthogonali-

zation is accomplished by transforming the set of BVs

based on an estimation of the BVs’ similarities. These

similarities are expressed by the matrix of spatial co-

variance–correlation.

In our approach, we start with the k 3 m forecast

perturbation matrix:

Z
f
5 (z

f ,1
, z

f ,2
, . . . , z

f ,k
), (3)

which consists of the k single BVs zf,i of dimension m as

columns. To account for the total energy scalar product,

we introduce the m 3 m weight matrix M with

M
ij

5 m
j

(4)

for every column i. The single weighting factors mj are

the coefficients for the transformation of the jth com-

ponent of a BV to its energy contribution to the total

energy of the perturbation as given in the definition of

the weighted total energy norm [cf. Eq. (2); that is,
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m 5
1

2
, . . . ,

1

2|fflfflfflfflffl{zfflfflfflfflffl}
dim(u)1dim(v)

,
c

p

T
, . . . ,

c
p

T|fflfflfflfflfflffl{zfflfflfflfflfflffl}
dim(T)

,
1

p
s
g

, . . . ,
1

p
s
g|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

dim(p
s
)

0
BBBB@

1
CCCCA

T

. (5)

We are seeking an expansion of the Zf matrix by a set

of as yet unknown basis vectors ei with i 5 1, . . . , k,

which we arrange as columns in the matrix E. We require

these basis vectors to form an orthonormal basis under

the metric M; that is,

Z
a

5 EA with ETME 5 I
m

, (6)

where A is the matrix of the expansion coefficients,

A 5 ETMZ
a
. (7)

With the definition of this metric, the SVD-based or-

thogonalization can be seen as an ET; that is, the set of

ensemble perturbations is altered by a transformation

matrix such that the resulting perturbations are an op-

timal estimate of the analysis error. This approach is

similar to the ET approach described by Bishop and Toth

(1999) for adaptive observations.

If the number of basis vectors is smaller than m, the

expansion is not exact but leaves a residual R. Mini-

mizing this residual in a least squares sense under the

orthogonality constraint leads to the standard formula-

tion for the derivation of empirical orthogonal functions

(von Storch and Zwiers 1999) that the basis vectors for

the expansion can be computed as eigenvectors of the

matrix ZfZf
T under the metric M:

Z
f
ZT

f ME 5 EL, (8)

where L is a diagonal matrix with the m positive ei-

genvalues li with i 5 1, . . . , m. In the case where the

number of BV k is smaller than their dimension m, the

matrix ZfZf
T has the rank k. Then, only k eigenvalues are

nonzero, while m 2 k are equal to zero. To account for

this, we instead solve the eigenproblem (8) premulti-

plied with Zf
TM:

ZT
f M(Z

f
ZT

f ME) 5 ZT
f MEL

(ZT
f MZ

f
)ZT

f ME 5 ZT
f MEL

(ZT
f MZ

f
)eE 5 eEL. (9)

The symmetric and positive definite matrix in brackets

on the left-hand side is of dimension k and measures the

similarity between the BVs under the total energy norm.

The resulting diagonal matrix L has k positive eigenvalues

as required. To recover the corresponding k original ei-

genvectors from the modified eigenvectors eE, we multiply

the latter by Zf, use their definition indicated in (9), and

obtain

Z
f
eE 5 Z

f
ZT

f ME 5 EL0E 5 Z
f
eEL�1,

with the convention that only the k nonzero eigenvalues

li define the inverse L21. To obtain the proper normal-

ization, it is better to define

E 5 Z
f
eEL�1/2. (10)

Then, it is straightforward to show that the constraint

ETME 5 Ik is fulfilled.

The covariance matrix Zf
TMZf is a quadratic symmet-

ric k 3 k matrix whose eigenvalues and eigenvectors can

be calculated easily and very quickly. Within the GME–

EFS, the procedure is implemented by using the QR

matrix factorization of the Lapack package. The or-

thogonalized BV perturbations Za are now defined by

taking the expansion amplitude matrix as the identity

matrix Ik:

Z
a

5 EA 5 Z
f
eEL�1/2I

k
. (11)

From a linear point of view, our method maintains the

wind–mass balance in the initial perturbation patterns,

which is a key factor to fast ensemble spread growth

because each orthogonalized pattern is a linear combi-

nation of balanced flow patterns (namely the original

BVs).

c. Theory on ET-based orthogonalization

In the following, we discuss the theoretical background

of ET-based orthogonalization techniques. Thereby, we

clarify the relationship between our implementation and

other approaches (e.g., the operational NCEP ET) by

showing that such techniques all originate from the same

general orthogonalization approach.

The ET of a set of i 5 1, . . . , k linear independent but

otherwise arbitrary perturbation vectors zf,i of dimension

m into the new set Za formed by za,i as column vectors

can be written as a right multiplication with a yet un-

known transform matrix T:

Z
a

5 Z
f
T, (12)

with T acting on the matrix Zf formed by zf,i (McLay

and Reynolds 2009).

We will now show that a general ET can be written as

an optimization problem with respect to an arbitrary

metric W. The derivation follows closely that of empirical
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orthogonal functions (EOFs), well-known in multivari-

ate statistics (von Storch and Zwiers 1999).

We would like to find a vector Za,1 from all pertur-

bations Zf,i that picks up as much spatial variability as

possible; that is, the vector should represent that spatial

pattern that has, in a quadratic sense, the largest spatial

similarity with all of the perturbations Zf,i, subject to

a normalization constraint ZT
a,1WZa,1 5 1:

1

k
�

k

i51
ZT

a,1W(Z
f ,i

ZT
f ,i)WZ

a,1
1 l

1
(1� ZT

a,1WZ
a,1

) 5
!

max.

(13)

The solution is found by solving the eigen problem:

1

k
�

k

i51
(Z

f ,i
ZT

f ,i)WZ
a,1

5 l
1
Z

a,1
. (14)

The additional vectors Za,i;i$2 are found with the same

ansatz subject to the additional constraints ZT
a,iWZa,i 5

dk,i9, where dk,i9 is Kronecker’s delta (von Storch and

Zwiers 1999). Arranging all eigenvectors in the matrix Za

and all eigenvalues in the diagonal matrix L, we have to

solve the eigen problem:

1

k
�

k

i51
(Z

f ,i
ZT

f ,i)WZ
a

5
1

k
Z

f
ZT

f WZ
a

5 Z
a
L. (15)

The matrix (1/k)ZfZf
T is not of full rank because k� m.

Instead, one has to solve the eigenvalue problem by left

multiplying with Zf
TW:

1

k
(ZT

f WZ
f
) ZT

f WZ
a|fflfflfflffl{zfflfflfflffl}

5eZ
a

5 ZT
f WZ

a
L. (16)

This assures that only k nonzero eigenvalues and the

corresponding eigenvectors eZa are determined.

The derivation of the desired transform matrix T is the

formal inversion of the equation

eZ
a

5 ZT
f WZ

a
. (17)

This is an underdetermined equation, which can be

solved by an optimization, again requiring (½)Za
TWZa

to be small, subject to the constraint eZa� ZT
f WZa 5 0:

1

2
ZT

a WZ
a

1 gT(eZ
a
� ZT

f WZ
a
) 5

!
min. (18)

The resulting Euler–Lagrange equations read

Z
a
� Z

f
g 5 0 and (19)

eZ
a
� ZT

f WZ
a

5 0. (20)

The solution for the matrix of the Lagrange multiplier

reads

ZT
f WZ

f
g 5 eZ

a
. (21)

With the help of the eigen equation (16), it is easy to

show that

g 5
1

k
eZ

a
L�1 (22)

is a solution for Eq. (21). Inserting this into the first

Euler–Lagrange equation results in

Z
a

5
1

k
Z

f
eZ

a
L�1. (23)

This is exactly the form as our orthogonalized BV ET or

the formulation by Wei et al. (2008) for the current

NCEP ET version.

d. Relationship between our approach and
the NCEP ET

Now, we show that both methods, our approach and

the NCEP ET, originate from the same general formu-

lation for ET-based orthogonalization. However, there

are certain differences between the methods that will be

described in the following.

First of all, we have learned in the previous section

that ET-based orthogonalization procedures differ in

the metrics used to set up the eigen problem. Therefore,

the well-known ET in use, for example, at NCEP and

our method are different specifications of the general

approach. Making use of the weighted total energy

matrix W 5 M will lead to our implementation while

choosing the inverse analysis covariance matrix W 5

Pa
21 will result in the NCEP approach. The Pa

21 metric

does in general not depend on the inherent flow un-

certainties, which may on the one hand be beneficial by

taking into account errors from both the first guess and

the observations. On the other hand, it could turn out to

be a restraint for the perturbation growth as the two

sources of error may not need to be correlated in time

and space. The resulting perturbations do not neces-

sarily properly represent either source of uncertainty

and, therefore, a metric purely based on the errors aris-

ing from the dynamics might be advantageous. There-

fore, we choose a metric purely based on the inherent

flow uncertainties given by the breeding cycle. Anyway,

the two implementations are likely to produce different

results.
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A second difference is in the way the two methods are

connected to the breeding cycle. The NCEP ET is car-

ried out at every analysis step, thus replacing the breed-

ing cycle with the ET, whereas, in our approach, the

orthogonalization is applied to the BVs just prior to the

initialization of the ensemble forecasts, leaving the breed-

ing cycle unchanged.

3. Experiment setup and verification

a. Experiment setup

The basis for this study is given by the experiment de-

scribed in K08. Therein, ensemble simulations have been

performed using the GME–EFS with a simple BV en-

semble initialization for a period from 1 June to 31 August

2007 (hereafter referred to as JJA07). Ensemble simu-

lations have been started each day at 0000 UTC and run

for 144 h. The breeding cycle was initiated at 0000 UTC

28 May 2007 with a recycling interval of 12 h. The initial

perturbations for the ensemble simulations in this study

are generated from this set of BVs.

In the current experiment, the BV perturbations are

orthogonalized prior to the ensemble initialization (but

not within the breeding cycle) with the method described

in section 2b. As in K08, 20 ensemble simulations with

a forecast lead time of 144 h are performed for JJA07

initiated every day at 0000 UTC. The resolution of all

the runs is set to a resolution such that the horizontal

grid size is approximately equivalent to 120 km.

As references, two operational ensemble forecasting

systems are used for comparison: the ECMWF EPS and

the NCEP GEFS. To ensure the comparability of the

verification results presented in the following section,

data from all three ensemble prediction systems are in-

terpolated onto a regular 1.258 3 1.258 latitude–longitude

verification grid. Additionally, the number of ensemble

members of the ECMWF EPS ensemble is reduced to

20 ensemble members from the full 50-member set. The

reduction was tested using two methods: 1) randomly

choosing 20 members and 2) taking the first 20 members

of the full set. A comparison of the verification results

of the two methods showed only small differences for

nearly all verification scores. However, the second method

exhibited a significantly better level of performance for

the continuous ranked probability score. Therefore, we

chose to present the results from the reduced set of EPS

ensemble forecasts using the second method. The data

for the ECMWF EPS and NCEP GEFS are retrieved

from the The Observing System Research and Pre-

dictability Experiment (THORPEX) Interactive Grand

Global Ensemble [TIGGE; information online at http://

tigge.ecmwf.int TIGGE; see also WMO (2005), Bougeault

(2008), and Raoult and Fuentes (2008)] database.

To simplify the notation, the GME–EFS ensemble

forecasts based on the simple BV initialization will be

referred to as SBVs and those based on the orthogo-

nalized BV perturbations as OBVs hereafter.

b. Verification methods

To study the impacts of the BV orthogonalization on

the quality of the resulting ensemble forecasts, different

verification methods are applied to the forecast data. In

section 4, several verification techniques will be used

that are presented in the following. For a general over-

view on forecast verification methods, the reader is re-

ferred to several examples in the literature (e.g., Stanski

et al. 1989; Jolliffe and Stephenson 2003).

Two different parameters are used in our verification

analysis to represent the tropospheric upper-air struc-

ture, namely the 500-hPa geopotential for the northern

extratropics (408–808N) and the 200-hPa zonal wind

speed for the tropics (308S–308N). The parameters will

be abbreviated as F500 and U200 hereafter. The verifi-

cation is conducted by using the corresponding opera-

tional ECMWF analyses at the forecast lead times as

representations of the true state of the atmosphere.

Tests showed that differences in the verification results

are negligible when using GME or NCEP analyses.

The first characteristic we want to examine is the re-

liability of the ensemble forecasts, that is, the ensemble’s

ability to properly estimate the uncertainty of the fore-

cast itself. Therefore, the ensemble spread score is cal-

culated for F500 and U200, which represents the ratio of

the ensemble spread Espd and the forecast error Eerr.

The score equals 1 for a perfect ensemble spread and is

lower (higher) than 1 for an underestimation (overesti-

mation) of the forecast uncertainty. Both contributions

are calculated in terms of a mean square as proposed in

Palmer et al. (2006);

E
spd

5 kX� hXik
MS

(24)

is the spread of an ensemble, where X are the forecasted

values of the single ensemble members, hXi is the ensem-

ble mean, and

E
err

5 jx
T
� hXij

MS
(25)

is the error of the ensemble forecast with xT the ‘‘true’’

state of the atmosphere (represented by the verifying

analysis). The overbar denotes the mean over all grid

points under consideration.

In addition, the reliability is examined using analysis

rank histograms or Talagrand diagrams (e.g., Talagrand

et al. 1998; Toth et al. 2003). Such a diagram is con-

structed by accumulating the number of events when the
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observed value lies within a specific histogram bin. The

k 1 1 bins are defined by the k values of the single en-

semble member forecasts sorted in increasing order.

Accordingly, the first (last) bin is the number of verifying

events when the observation is lower than the smallest

(higher than the largest) ensemble member forecast.

The histogram bins are filled with values by accumu-

lating over space and/or time.

The next property of the ensembles to be verified is the

forecast error variance, which can be explained by the

ensemble forecast. The perturbation versus error correla-

tion analysis (PECA) is used to examine how well an

ensemble can account for the corresponding error of the

deterministic forecasts. PECA evaluates the quality of

a forecast by calculating the pattern anomaly correlation

between a perturbed forecast (P) and the error of the

deterministic forecast (E) of the same meteorological

center (i.e., GME, ECMWF, and NCEP forecasts).

Therefore, the perturbed forecast is constructed as an

optimal combination, Poptimal 5 �aiPi, of the original

perturbed ensemble forecasts Pi. This optimal combi-

nation is estimated by finding the set of ai, which pro-

vides the minimum for jE 2 �aiPij. More details about

PECA can be found in Wei and Toth (2003).

Both of the aforementioned verification methods

benefit primarily from a larger spread in the ensemble

forecasts. This might tempt the forecaster to exaggerate

the ensemble spread in order to obtain higher scores.

Hence, we conduct an analysis to assess the ensemble

resolution, that is, the gain in forecast quality with re-

spect to a reference forecast (climatology). The perfor-

mance of the OBVs of upper-air fields is therefore tested

by using the continuous ranked probability score (CRPS).

The CRPS is a continuous extension of the ranked

probability score (RPS) defined as the integral of the

Brier score over all possible threshold values. Here, the

CRPS is calculated following the approach proposed by

Hersbach (2000) together with a decomposition of the

CRPS into reliability and resolution components. In

addition, the CRPS is presented as a skill score that ex-

presses the improvement of the forecast under consider-

ation, in relation to a climatological forecast.

The forecast quality is also assessed by using relative

operating characteristics (ROCs). Therefore, the hit rate

(HR) and the false-alarm rate (FAR) of a forecast are

computed and sorted by ascending FAR. In that way,

the HR can be plotted as a function of the FAR that

constitutes the ROC curve. A diagonal line in such a di-

agram would represent the skill of a climatological fore-

cast, whereas curves to the upper left (lower right) would

represent a higher (lower) level of forecast skill. Hence,

the area under the ROC curve (ROCA) can be used as

a measure for the forecast quality. Here, an HR–FAR

pair is computed for each ensemble member using sev-

eral threshold values at each grid point. Then, the ROCA

is calculated as the area under the ROC curve minus 0.5

(the area under the diagonal) times 2, which leads to a

ROCA value of 1 for a perfect forecast and 0 (and below)

for a forecast without skill. For further information on

ROC, the reader is referred to Harvey et al. (1992) and

Fawcett (2006).

To estimate the uncertainty of the aforementioned

verification scores, confidence intervals are calculated

using the bootstrap method (Efron and Tibshirani 1991).

The idea of the bootstrap technique is to create a new

dataset y* of the given data y 5 [y1, y2, y3 . . . , yn] (both

of size n), which has the same empirical probability

distribution as the original. This leads to a permutated

sample drawn from y with replacements, i.e., y* 5 [y4,

y9, y6, y2, y9, . . .], to which the statistic (i.e., the verifi-

cation score) can be applied. This procedure is repeated

Nboot times for independent bootstrap samples y*, lead-

ing to Nboot different verification scores. Then, the con-

fidence intervals can be estimated from this set of scores.

c. Case study: 2007 Midwest flooding

In addition to the verifications based on the overall

scores, we present a case study to illustrate the actual

improvement of the OBV in relation to the SBV in

a specific forecast situation. The case study focuses on

the so-called 2007 Midwest flooding (MF07), which was

a flood event in the midwestern United States that took

place during August 2007. This flood event impacted

six states (Illinois, Indiana, Iowa, Minnesota, Ohio, and

Wisconsin), claiming 18 lives and causing over $500

million in damage.

The flooding was caused by heavy rainfall from nu-

merous thunderstorms constantly redeveloping along the

west–east axis of a warm front that became stationary on

18 August 2007. For the following days, the front ex-

tended into the states of Indiana and Ohio while large

amounts of moisture originating from Tropical Storm

Erin were transported northward over the warm front,

thus intensifying the thunderstorm activity along the front.

Rainfall amounts reached record levels in several

counties with an average precipitation sum of more than

100 mm for all areas along the front. The highest amount

of rainfall was observed in La Crescent, Minnesota, with

a total of 462 mm for the whole event. Figure 1 shows a

map of the affected region. The contours denote the

rainfall sums estimated in the National Weather Service

(NWS) Advanced Hydrologic Prediction Service (AHPS)

precipitation dataset (information online at http://water.

weather.gov/) by combining data from radar and rain

gauge observations. The data shown were interpolated

to the verification grid and therefore the maximum values
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are lower (maximum value of 191 mm compared to

382 mm in the original AHPS dataset).

Weather forecasts of a horizontal resolution of ap-

proximately 120 km, at which we are looking, have lim-

ited ability to represent the convective processes that led

to the large amounts of rainfall in MF07. In addition, the

precipitation forecast values of the forecast model have

to be interpreted as area means. Hence, the observed

precipitation data are interpolated to the verification

grid, thus representing comparable area-mean values.

One has to keep in mind that MF07 was an extreme

event, one that normally falls into the outermost upper

tail of a probabilistic forecast. Therefore, we define a new

measure for forecast errors using ensemble quantiles for

further evaluation. Let

d( p)(i) 5 jP( p)
f (i)� P

o
(i)j (26)

be the absolute deviation of the precipitation forecast

Pf
( p)

of ensemble quantile p from the observation Po of

the AHPS dataset. Both values are interpolated to the

verification grid at a given grid point i. Then,

D( p) 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
g

�
i

[d( p)
(i)]2

s
(27)

is the RMS of the forecast error given the ensemble fore-

cast quantile p for all Ng grid points under consideration.

To test the performance of the GME–EFS simulations

in the medium range and to account for the time scale

given by the MF07 event, ensemble forecasts leading to

SBV as well as OBV are constructed as follows:

d Accumulated precipitation is calculated as the differ-

ence of the 108- and 84-h precipitation forecasts, de-

noting the 24-h rainfall sum at 1200 UTC on the fourth

forecast day.
d These 24-h sums are accumulated for forecasts initiated

from 0000 UTC 15 August to 0000 UTC 18 August

2007, thus covering a period from 1200 UTC 18 August

to 1200 UTC 22 August 2007.

The forecasted precipitation sums are used to calculate

the ensemble spread, representing forecast uncertainty,

and d( p)(i) and D( p)(i), to account for the forecast error.

4. Results

In the following, results from the OBV are presented

and compared to the SBV experiment described in K08

as well as the aforementioned operational ensembles.

The scores and methods are described in section 3b.

A first look at the differences between the initializa-

tions of OBV and SBV is given in the Figs. 2 and 3.

Figures 2 and 3 show maps of the northern Atlantic and

European region, with gray contours representing the

positive or negative 850-hPa temperature anomalies of

the perturbed analysis from the control analysis for

1 July 2007. Anomalies in Fig. 2 are calculated with four

of the simple BVs, while the anomalies in Fig. 3 originate

from the orthogonalized set of BVs.

When comparing the initial perturbations for SBV, it

is obvious that most patterns are similar in all of the

analyses; for example, between Iceland and Scandinavia

all of the analyses show a large-scale positive anomaly

(light gray shading). The perturbation patterns for OBV

show much more variability in the horizontal structure;

for example, through the orthogonalization the afore-

mentioned large-scale positive anomaly is altered in shape

or replaced by negative anomalies (dark gray shading)

or small-scale variations. However, not all features are

changed similarly: the negative anomaly over southern

Scandinavia, for example, remains in all of the orthog-

onalized BVs. Hence, the similar structures in the BVs

leading to small ensemble spread growth are altered.

Some features in the perturbation patterns may however

remain unchanged.

In the following, we investigate if the induced changes

in the BV structure also enhance the performance of the

ensemble forecasts.

a. Ensemble reliability

To examine the performance of the ensembles re-

garding ensemble reliability, the ensemble spread score

FIG. 1. Map of the region impacted by the MF07 event. Points on

the verification grid inside the area struck by heavy rainfall and

subsequent flooding are marked by dark crosses and outlined with

a dark thick line. In addition, a contour map overlay shows the

accumulated precipitation from 1200 UTC 18 Aug to 1200 UTC

22 Aug 2007 estimated from radar and rain gauge data and in-

terpolated to the verification grid. Canadian territories are shaded,

as precipitation data is only provided within the boundaries of the

United States.
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is calculated for F500. The results for the score as a func-

tion of the forecast lead time are shown in Fig. 4. Com-

paring OBV and SBV, a significantly higher ensemble

spread score is clearly visible as a consequence of the

orthogonalization procedure. Although the uncertainty is

heavily overestimated in the beginning (maybe as a result

of exaggerated ensemble spread), the OBV simulations

perform very well in the medium range (3–6 days) with an

ensemble spread score near one.

In comparison to the operational ensembles, the

ensemble spread score reveals a better level of per-

formance for the OBV against the NCEP GEFS, which

FIG. 2. Structure of the 850-hPa temperature anomaly determined by the difference of (a)–(d) four perturbed

analyses from the control analysis at 0000 UTC 1 Jul 2007. The perturbations are taken from the breeding cycle.

Patterns are shown for the northern Atlantic and Europe.

FIG. 3. As in Fig. 2, but from the control analysis at 0000 UTC 1 Jul 2007. The perturbations are taken from the

orthogonalized BV set.
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drops below 1 after about 30 h of simulation. The ECMWF

EPS performs best as the ensemble spread score stays on

a level above 1 for the whole forecast lead time.

The ensemble reliability regarding F500 is further as-

sessed by using Talagrand diagrams shown in Fig. 5.

Here, the diagrams are constructed for forecast lead

times from 6 to 48, 54 to 96, and 102 to 144 h. The results

for the OBV (Fig. 5a) indicate an overestimation of fore-

cast uncertainty for the first 48 h. The gain in uncertainty

estimation quality achieved by the orthogonalized per-

turbations becomes apparent with progressing forecast

time. The ensemble forecast distribution significantly en-

hances toward a flat histogram representing reasonable

spread growth characteristics for orthogonalized BVs.

However, a small bias to higher forecast values can still

be determined.

The results of the SBV shown in Fig. 5b exhibit a

strong U shape, which increases with forecast lead time.

Despite the inflation of the initial perturbation, the un-

derestimation of the uncertainty is still quite large even

for the first 48 h. When comparing SBV to OBV, the

strong beneficial effects of the SVD orthogonalization

on the BV structure (i.e. the growing mode character-

istics) become obvious.

To compare the GME–EFS results to the operational

ensembles, Talagrand diagrams for the ECMWF EPS

and the NCEP GEFS are provided in Figs. 5c and 5d,

respectively. The results from the ECMWF EPS fore-

casts exhibit a similarity to the OBV results for lead

times greater than 48 h, both in terms of shape and bias

to higher forecast values. On the contrary, the NCEP

GEFS produces a U shape for longer lead times com-

parable to that of the SBV, although the uncertainty un-

derestimation is not as strong as that of the SBV.

For the tropical region, the results of the ensemble

spread score analysis of U200 are given in Fig. 6. Obvi-

ously, all ensembles have problems generating sufficient

ensemble spread in this region. However, the OBV sim-

ulations provide large spread in the beginning, but exhibit

a strong decrease in the first 48 h. This may be an in-

dication of the perturbations not being in balance with

the atmospheric background, which could be caused by

the missing moisture perturbations. The ensemble spread

score stabilizes a value of around 0.7 in the medium range

and lies within the performance range of the ECMWF

ensembles and above the NCEP GEFS simulations. In

comparison to the SBV, the OBV simulations provide

FIG. 4. Ensemble spread score calculated with 500-hPa geo-

potential in the Northern Hemisphere extratropics (408–808N) over

JJA07 vs forecast lead time. The vertical lines denote the 95%

confidence intervals.

FIG. 5. Talagrand diagrams calculated with 500-hPa geopotential in the Northern Hemisphere extra-

tropics (408–808N) over JJA07 for (a) GME with OBV, (b) GME with SBV, (c) ECMWF EPS, and

(d) NCEP GEFS. The results for three different forecast time intervals: (top) 6–48, (middle) 54–96,

and (bottom) 102–144 h.
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a significantly higher ensemble spread score for all fore-

cast lead times.

b. Explained variance

To evaluate the ability of the ensemble to represent

the deterministic forecast error, PECA scores are com-

puted for the upper-air fields. The results for F500 can be

found in Fig. 7. The OBV and SBV PECA values overlap

for forecast lead times shorter than 72 h. Thereafter, the

OBV exhibits higher PECA values than SBV with the

difference increasing with forecast lead time. This indi-

cates an enhanced ensemble quality due to the orthog-

onalization of the BVs, which becomes apparent in the

medium range.

For short forecast lead times, the optimal perturba-

tion vectors of the OBV and SBV ensembles constructed

as linear combinations of the corresponding perturbed

forecasts are very similar (not shown). This is a result

of the implemented orthogonalization procedure, which

works as a linear operator on the BVs, combining them

according to their covariance structure to overcome the

similarity among them. Therefore, there is nearly no im-

provement in the forecast error variance explained by

the ensembles. However, under the nonlinearities of the

model, the OBV forecasts evolve into a larger variety

of directions in the subspace of growing error modes

spanned by the initial BVs. Hence, in the medium range

the OBV ensembles allow for a better explanation of the

forecast error variance.

The same illustration is given in Fig. 8 for U200. Here,

the OBV clearly outperforms the SBV for all forecast

lead times. The different results of the F500 and U200

PECA scores can be explained with different structures

of perturbations in the tropics and the midlatitudes. The

single BVs are even more alike in the tropics and their

amplitudes are quite small. Hence, the orthogonaliza-

tion of the BVs leads to a significantly larger ensemble

spread and therefore it is more likely that the OBV

ensemble may cover the true analysis state and future

state of the atmosphere than the SBV ensemble.

c. Ensemble resolution

To also account for the forecast quality, the skill score

of the CRPS is computed. The results of the F500 CRPS

for all four ensembles are presented in Fig. 9. The SBV

simulations exhibit the worst CRPS of the ensembles

under consideration. The improvement achieved through

the orthogonalization is considerable as the OBV’s CRPS

is significantly higher than the SBV’s CRPS and is pos-

itive over the whole forecast lead time. In addition, com-

parison to the operational ensembles shows that the OBV

produces even higher CRPS values than the operational

ensembles for the medium range. The good performance

FIG. 6. As in Fig. 4, but for the 200-hPa zonal wind component in

the tropical region (308N–308S).

FIG. 7. PECA score of the 500-hPa geopotential calculated for

the Northern Hemisphere extratropics (408–808N) over JJA07. The

vertical lines denote the 95% confidence intervals.

FIG. 8. As in Fig. 7, but for the 200-hPa zonal wind component

calculated for the tropical region (308N–308S).
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of the OBV can also be seen when looking at U200, as

presented in Fig. 10. Again, the OBV exhibits a much

higher CRPS than the SBV. In comparison to the op-

erational ensembles, the forecast quality of the OBV is

slightly worse in the medium range. However, it still

provides reasonable forecast quality in terms of CRPS.

With the decomposition of the CRPS, a reliability and

a resolution component can be retrieved. The resolution

is the difference between the potential CRPS (which

in turn is the difference between the CRPS and the

reliability component) and the climatological uncertainty

(cf. Hersbach 2000). Therefore, the resolution of an en-

semble system is positive (negative) if it performs better

(worse) than the climatologic probabilistic forecast; that

is, larger values of resolution indicate better ensemble

performance.

A comparison of OBV and SBV for the CRPS reso-

lution component of F500 (Fig. 11) shows a significant

gain in resolution for the OBV, with the difference be-

tween the two ensembles increasing with forecast lead

time. Again, the OBV performs better than the NCEP

GEFS in the medium range, while the ECMWF EPS is

superior to all of the ensembles presented.

For U200, (Fig. 12) the SBV resolution becomes neg-

ative for larger forecast lead times, indicating poor per-

formance that is even worse than a climatological forecast.

As with the CRPS itself, the NCEP GEFS performs best

for the medium range. The OBV ensemble exhibits the

highest resolution for the first 2 days, but a stronger

decrease with forecast lead time nearing zero for the end

of the simulation period. However, the increase in en-

semble resolution induced by the orthogonalization is

still considerable.

Another analysis regarding forecast resolution is con-

ducted using ROCs. Results are given in Figs. 13 and 14,

which show the ROCA as a function of forecast lead

time. For F500 (Fig. 13), the ROCA of both GME en-

sembles exhibits lower values than the operational en-

sembles. However, the OBV simulations provide a higher

ROCA than the SBV ensembles with the difference be-

tween the two slightly increasing after the fourth fore-

cast day.

For the U200 ROCA, the values are significantly lower

for all ensembles, which is an indication of the poorer

performance of the ensemble forecast in the tropics

compared to the midlatitudes. While the ECMWF and

NCEP ensembles exhibit a nearly constant ROCA for

all forecast lead times, the ROCAs of the GME simu-

lations decline with progressing forecast time. Again,

the OBV produces higher values than the SBV with the

difference being larger than in the midlatitudes and the

difference between the two decreasing over forecast lead

FIG. 9. CRPS score of the 500-hPa geopotential calculated for

the Northern Hemisphere extratropics (408–808N) over JJA07. The

vertical lines denote the 95% confidence intervals.

FIG. 10. As in Fig. 9, but for the 200-hPa zonal wind component

calculated for the tropical region (308N–308S).

FIG. 11. Resolution component of the CRPS of the 500-hPa

geopotential calculated for the Northern Hemisphere extratropics

(408–808N) over JJA07. The vertical lines denote the 95% confi-

dence intervals.
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time. This points to difficulties of the GME model fore-

casts for the tropical region that cannot be compensated

by the ensemble spread growth induced by the orthog-

onalized BV initialization.

d. Case study

Figure 15 shows the results of d95 (absolute forecast

error of the 95th quantile of the ensemble at each grid

point) for SBV (Fig. 15a) and OBV (Fig. 15b) in the re-

gion affected by MF07. Both GME–EFS forecasts have

a northeastern shift of the stationary warm front leading

to the large forecast errors over the Great Lakes and the

Canadian border region. However, significant differences

between the two ensembles can be found. When con-

centrating on the region of major flooding (depicted by

crosses and outlined with a dark thick line), the errors of

the OBV are generally lower than those of the SBV.

Especially in the northwestern part of the area (southern

Minnesota) where the most significant amount of dam-

age was reported, the OBV forecasts perform better as

a result of the larger ensemble spread.

Similar results can be found with the uncertainty fore-

cast expressed through the ensemble spread (Fig. 16).

Here, the spread is calculated as the difference between

the 0.975th and the 0.025th quantiles, which are estimated

by kernel dressing using standard Gaussian distribution

functions as the kernel [for further information on ker-

nel dressing, see Broecker and Smith (2008)]. Again, the

OBV (Fig. 16b) performs better as the uncertainty es-

timation for the forecast is higher in the MF07 region than

in the SBV simulations (Fig. 16a). The spread also indi-

cates higher uncertainties for southern Minnesota, where

the rainfalls reached up to 190 mm (area mean).

The impacts of orthogonalization on the ensemble

forecast spread can also be seen in Fig. 17. Here, the

ratio of the RMS forecast errors for the SBV and OBV

simulations (D
( p)
SBV/D

( p)
OBV), calculated for the region of

major flooding, is shown. For quantiles smaller than 0.45,

the ratio is positive, indicating larger forecast errors for

OBV than for SBV. With higher forecast quantiles, the

ratio increases, climbing above 1 beyond the quantile

value of 0.45. The poorer performance for the lower

quantiles and the significantly better performance for

the higher quantiles of the OBV are consequences of

the larger ensemble spread. Due to the fact that the

probabilistic forecast becomes broader in terms of the

probability density function, a larger number of possible

developments is covered by the ensemble. Especially in

cases of extreme events like MF07, this can be beneficial,

for example, in estimating the probabilities of different

scenarios (worst-case scenario).

5. Conclusions

The experiment conducted in K08 revealed several

shortcomings of the GME–EFS ensemble initialization

FIG. 12. As in Fig. 11, but for the 200-hPa zonal wind component

calculated for the tropical region (308N–308S).
FIG. 13. ROCA vs forecast lead time of the 500-hPa geopotential

calculated for the Northern Hemisphere extratropics (408–808N)

over JJA07. The vertical lines denote the 95% confidence intervals.

FIG. 14. As in Fig. 13, but for the 200-hPa zonal wind component

calculated for the tropical region (308N–308S).
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procedure using simple BVs. The major issue is the sim-

ilarity among the BVs (cf. Bowler 2006), which is a result

of the BVs’ tendency to point in the direction of the

leading Lyapunov vector. As a consequence, an orthog-

onalization of the BVs leads to an enhanced utilization

of the subspace of growing error modes spanned by the

BVs. This is because the orthogonalized perturbation

patterns are similar to Lyapunov vectors different from

the leading one. While Kalnay et al. (2002) state that such

an orthogonalization is not needed, as the BVs remain

distinct from another due to the different initialization

and the nonlinearities of the system, this study shows

otherwise. The analysis exhibits significant improvement

in forecast skill as an effect of the orthogonalization.

As the spread of the SBV simulations is quite small, its

ensemble reliability is poor. Hence, considerable im-

provement in reliability can be achieved by applying an

SVD orthogonalization to the BVs. In the medium range,

the OBV even outperforms the NCEP GEFS opera-

tional ensemble in terms of ensemble spread score and

CRPS for F500. Forecast enhancements due to the or-

thogonalization can also be found for specific weather

situations. The MF07 case study provides an example of

the impacts of the larger ensemble spread on precipi-

tation forecasts. These forecasts can be an enhancement

to the probabilistic assessment of near-future hazardous

weather events.

However, the results of the ROCA analysis point to a

shortcoming of the orthogonalized BV implementation.

The orthogonalized ensemble perturbations are not cen-

tered around the unperturbed analysis and, therefore,

lead to a shift in the ensemble mean. Although the en-

semble itself provides a far better estimation of the fore-

cast uncertainty, the quality of single forecast quantities

such as the ensemble mean or median is poorer than in

the SBV approach. Implementing a simplex transform

(ST) to recenter the orthogonalized perturbations as

described in Wei et al. (2008) in the forthcoming version

of the GME–EFS is planned.

For the tropical region, the systematic difficulties of

the GME model forecasts have become apparent. The

higher ensemble spread of the OBV simulations leads to

a gain in the explained error variance and better forecast

FIG. 15. Map of the absolute forecast error for the 0.95%

quantile of the ensemble for (a) SBV and (b) OBV simulations

[d95(i)]. Designation of the main area of flooding is as in Fig. 1.

FIG. 16. Map of the forecast uncertainty expressed through en-

semble spread for (a) SBV and (b) OBV simulations. The spread is

calculated as the difference between the 0.025% and 0.975%

quantiles of the ensemble forecast estimated by kernel dressing.

Designation of the main area of flooding is as in Fig. 1.
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quality in terms of ROCA. This is because the GME–

EFS (as well as many operational ensembles) has dif-

ficulties generating reasonable spread in the tropical

region. The increased ensemble spread of the orthogo-

nalized initialization therefore instantaneously increases

the quality of the ensemble forecasts, but cannot ac-

count for deficiencies in the tropical region forecast of

the model itself. Another reason for the poor perfor-

mance of the GME–EFS compared to the operational

ensembles in the tropics may be the lack of moisture

perturbations in the ensemble initialization as well as

the purely dynamical error representation given by BVs,

as the operational ensembles also make use of stochastic

parameterizations.
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