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Relationship between ocean velocity and motionally
induced electrical signals:
1. In the presence of horizontal velocity gradients
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[1] Motionally induced electric fields and electric currents in the ocean depend to first
order solely on the vertical dimension. We investigate the significance of two‐dimensional
(2‐D) perturbations that arise in the presence of horizontal velocity gradients. The full
electric response is calculated for two schematic geometries that contain horizontal
velocity gradients, have a two‐layer ocean with a layer of sediment beneath, and are
described by four nondimensional parameters. When considered over the realistic ranges
of oceanic aspect ratio (the ratio of water depth to the width of velocity), sediment
thickness, and sediment conductivity, velocity errors arising from 2‐D perturbations are
found to be less than a few percent of the dominant one‐dimensional (1‐D) signal. All
errors depend on the aspect ratio to the power of 1.9 (1) for signals induced by the vertical
(horizontal) component of the Earth’s magnetic field. Depth‐uniform velocity errors are
proportional to the 1‐D sediment conductance ratio, whereas depth‐varying velocity errors
are independent of sediment thickness or conductivity. Errors are weakly (proportionally)
dependent on the jet depth for signals induced by the vertical (horizontal) component
of the magnetic field. Two‐dimensional perturbations decay away from the forcing region
with a half width of 0.2–1 times the 1‐D effective water depth. This study extends the
first‐order theory to the maximum expected aspect ratios for oceanic flow and finds small
perturbations with simple dependencies on the nondimensional parameters.

Citation: Szuts, Z. B. (2010), Relationship between ocean velocity and motionally induced electrical signals: 1. In the presence
of horizontal velocity gradients, J. Geophys. Res., 115, C06003, doi:10.1029/2009JC006053.

1. Introduction

[2] Measuring horizontal electromagnetic fields (EM) that
are generated from the motion of seawater through the
Earth’s magnetic field is a convenient way to indirectly
measure ocean velocity. Observations can be made from a
variety of platforms, including submarine cables, bottom‐
mounted sensors, vertical profilers, and horizontally drifting
floats. The technique has unique advantages, and in many
cases electric field observations are the only practical means
for measuring the desired quantity. For example, EM profil-
ing floats (Expendable Current Profiler (XCP) [Sanford et al.,
1982], ElectroMagnetic APEX float (EM‐APEX) [Sanford
et al., 2007]) are the only current profilers suitable for
deployment by aircraft or for shipboard deployment under
heavy sea states that prevent normal over‐the‐side operations
[Girton et al., 2001]. Cables or bottom electrometers [Meinen
et al., 2002] (Horizontal electric field PIES (HPIES), T. B.

Sanford, personal communication, 2008) measure a time series
of spatially integrated absolute velocity that is dynamically
similar to transport [Luther and Chave, 1993], a measure-
ment that is more expensive to replicate with standard
techniques.
[3] The availability of commercial EM instruments (XCP,

EM‐APEX, or HPIES) and cables indicate a wide accessi-
bility to the oceanographic community. The success of
measurements of the transport of the Florida current made
over the past 35 years [Larsen and Sanford, 1985; Baringer
and Larsen, 2001] suggests the utility of EM measurements
in global observing systems [Cunningham et al., 2007] and
cabled observatories. The increasing availability of motional
induction techniques, however, necessitates a closer inspec-
tion of the underlying theory in a broader range of environ-
ments than considered in the literature.
[4] The theory of motional induction that relates ocean

velocity to electric fields (EF) and electric currents depends
only on the vertical dimension, a one‐dimensional (1‐D)
relationship. This is the form typically used to interpret
observations and to calculate water velocity.
[5] The higher‐order terms of this theory that depend on

velocity or topographic gradients have not yet been directly
calculated or observed in situations where they are expected
to be significant. Although small horizontal perturbations of
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velocity and topography were considered by Sanford
[1971], his use of a perturbation technique means that the
solution is strictly valid only for small gradients and cannot
be directly applied to regions such as continental slopes or
the edges of highly energetic eddies.
[6] Here we are concerned with the structure and magni-

tude of oceanic electric fields in the presence of strong
horizontal gradients of velocity. Electromagnetic solutions
are calculated directly for two simplified geometries and are
evaluated for the magnitude of perturbation from the first‐
order theory. In particular, we focus on the errors that arise
in calculating velocity from electric field observations in the
presence of these higher‐order effects. A companion article
[Szuts, 2010, hereafter SzII] considers the role of sloping
topography in generated higher‐order EM perturbations. A
complementary paper (Z. B. Szuts, in preparation, 2010)
analyzes electric field observations collected across the Gulf
Stream at Cape Hatteras, North Carolina, USA and con-
siders the same processes discussed here but for observa-
tions in a specific and complex location.
[7] The background theory is presented first in section 2,

as is the physical basis for higher‐order terms. A common
method of evaluating the solutions is presented next
(section 3), after which the results from the geometries are
discussed in sections 4 and 5. The discussion (section 6)
generalizes the results for application to realistic situations,
and is followed by the conclusion (section 7). Additional
synthesis and estimated errors at one study site are contained
in the discussion of SzII.

2. Theory

[8] Electric fields occur in the ocean due to the motion of
conductive salt water through the Earth’s magnetic field;
this is generally called motional induction. The thin aspect
ratio of the ocean and the assumption of small horizontal
gradients of velocity and topography allow for great sim-
plification of the three‐dimensional (3‐D) governing equa-
tions. Although other analyses focus on additional details of
oceanic electromagnetism, the results of Sanford [1971] are
most appropriate for this investigation because his perturba-
tion technique includes the effect of small horizontal gra-
dients. Other theoretical analyses offer discussions of long
period waves [Larsen, 1968, 1971; Tyler, 2005], the influ-
ence of deep earth conductivity structure [Chave and Luther,
1990], and spherical coordinates [Tyler and Mysak, 1995b],
among others.
[9] The principal electric fields (E) and electric currents

(J) generated by ocean flow fall into two modes. The tra-
ditional and generally more important mode restricts E and
J to the vertical plane. This is a toroidal mode that describes,
for instance, electric currents in the surface layer forced by
surface flow with weaker electric currents returning in the
motionless deep ocean. The magnitude of E or J depends on
the strength of the vertically averaged (defined as baro-
tropic) or vertically varying (defined as baroclinic) velocity
signals, respectively. At the simplest, this is exemplified
by two cases of an ocean over a nonconductive seafloor: if
water motion is vertically uniform, E is maximal and J is
zero everywhere, in analogy to the Hall effect of classical

physics; while if water motion is purely baroclinic there is
no E but J is maximal.
[10] The second mode, called poloidal, is characterized by

E that uniformly fill the water column and are directed in the
horizontal plane. This mode only exists in situations where
there are gradients in the downstream direction and thus is a
3‐D effect. Such effects, often called nonlocal currents, will
not be discussed further [see Tyler et al., 1997, 2003;
Flosadóttir et al., 1997].

2.1. General Solution

[11] Sanford [1971] solves for a general solution that
makes use of a number of assumptions. The first‐order
solution he obtained is now well established [Chave and
Luther, 1990; Tyler and Mysak, 1995a]. Although the ana-
lytic form of the higher‐order terms is specific to his
assumptions, it suggests the underlying physical factors
relating the EM solution to perturbations of velocity and
topography. The assumptions he made are: a horizontal
ocean bottom (H) with small topographic perturbations (h,
where h/H � 1), width scales (L) much larger than bottom
depth (H/L � 1), predominantly horizontal oceanic velocity
(v = (u, v, 0)), distant lateral boundaries, a layer of under-
lying sediment that has a uniform electrical conductivity,
and a highly conductive deep earth to approximate the deep
but conductive mantle.
[12] Although it is readily shown that time variations of

motionally induced E in turn induce magnetic fields that are
negligible compared to the Earth’s magnetic field, a less
evident process is inductive coupling between the ocean and
the conductive mantle. The strength of inductive coupling
depends on both the frequency and the spatial extent of
oceanic flow, and has been shown to be small (<5%) for
ocean flows that are smaller than basin scale (<1000 km)
and slower than tidal frequencies [Sanford, 1971; Chave and
Luther, 1990]. These constraints will be used here to define
the quasi‐static form of motional induction.
[13] In general form, the quasi‐static horizontal electric

field Eh is

�Eh ¼ rh� ¼ v� k̂Fz � J h=�; ð1Þ

where rh is the horizontal gradient operator, � is electric
potential, v is oceanic velocity, Fz is the vertical component
of Earth’s magnetic field, k̂ is the vertical unit vector
(pointing upward), s is electrical conductivity, and Jh is
horizontal electric current density. The electromotive driv-
ing force v × k̂Fz is what generates electric field and electric
currents.
[14] A general form for horizontal electric current density

divided by conductivity with the above assumptions is
[Sanford, 1971]

J h

�
¼ v� v*ð Þ � Fzk̂

�rh
1

H 1þ �ð Þ
Z�

�H

k̂ � v� Fð Þz0 dz0
8<
: þ

Zz

�H

k̂ � v� Fð Þ dz0
9=
;;

ð2Þ
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with

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� x0ð Þ2þ y� y0ð Þ2

q

D ¼ H þ � � hþ �s

�
Hs � H þ hð Þ

v* ¼
Z �

�Hþh
�v dz0

Z �

�Hs

� dz0
�

;

ð3Þ

where z is the sea surface, −H is the mean position of the
seafloor, h is the perturbation of the seafloor, −Hs is the
bottom of conductive sediment, D is a scaled water depth, ss
is the uniform sediment conductivity, l is the sediment
conductance factor (D/H = 1 + l), and v* is the conduc-
tivity‐weighted vertically averaged velocity. The coordinate
directions are x is positive east, y is positive north, and z is
positive upward. The first and second terms on the right‐
hand side of (2) represent first‐order and higher‐order pro-
cesses. The addition of a third term caused by 3‐D effects
makes Jh nondivergent to order H2/L2 [Sanford, 1971].
2.1.1. First‐Order Term
[15] The first term on the right‐hand side of (2) is the

principal toroidal mode. This term is one‐dimensional
because it only depends on the vertical dimension: a vertical
integral of velocity (3) defines the depth‐uniform electric
field v*Fz, while vertical variations of s(v(z) − v*) determine
the electric current density. The 1‐D approximation used to
interpret observations is obtained by keeping only this term,
which is interchangeably called 1‐D or first order.
[16] The quantity v* corresponds physically to the verti-

cally uniform horizontal electric field divided by Fz and is
called the vertically averaged conductivity‐weighted veloc-
ity. In the 1‐D approximation, the constraint that Jh must
vertically integrate to zero to conserve charge leads to the
definition of v*.
[17] The electric current density divided by s is the dif-

ference between that driven by the depth‐uniform electric
field and that generated by local horizontal water motion,
(v(z) − v*) × k̂Fz. In the limiting situation where the flow field
is entirely barotropic and there is no sediment layer, there will
be no electric currents.
[18] A simpler definition of v* is obtained by simplifying

the numerator and denominator of (3). A Reynolds
decomposition of the numerator defines the vertical corre-
lation factor g

1

H � hþ �

Z�

�Hþh

�v dz ¼ �v ¼ � vþ �0v0 ¼ � v 1þ �ð Þ; ð4Þ

where for the variables v(z) and s(z), v and � indicate a
vertical average in the water column and v′ and s′ indicate
perturbations about the vertical mean.
[19] Dividing the denominator by the vertical conductance

of the water column and rearranging gives

1þ � ¼
Z �

�Hs

� zð Þ dz
Z �

�Hþh
� zð Þ dz

�

¼ 1þ Hs � H þ hð Þ�s H � hþ �ð Þ�= ; ð5Þ

where l is the bottom conductance factor, the ratio of the
sediment conductance to the water column conductance.
[20] Combining (4) and (5) yields a simplified form of

v* more suitable for interpreting observed E

v* ¼ v
1þ �

1þ �

� �
: ð6Þ

Although this form has no horizontal dependence because
of the assumption of H/L � 1, Chave and Luther [1990]
show that the variables v*, g, and l are horizontally
averaged within a few times the water depth.
[21] The factor l quantifies the amount of shorting

through the bottom sediment. The physical meaning of it is
clarified by the definition ofD, equation (3), orD =H (1 + l).
The scaled bottom depth D is the depth of the water column
plus a thickness of seawater with the same conductance as
the sediments. Thus, the barotropic velocity generates an
electric field that is reduced by the additional conductance of
the seafloor.
[22] By parameterizing conductive sediment with l, we

make the simplifying assumption that the sediment can be
treated as a layer with uniform conductivity ss. In reality,
conductivity depends on the porosity of sediment, the
interstitial fluid (typically salt water, but possibly less con-
ductive substances such as fresh water or gas hydrates), and
the type of sediment. Salt water is the most common pore
fluid, and, combined with a decrease in porosity with depth
due to compaction, sediment conductivity is expected to
decrease logarithmically in the sediment column via Archie’s
Law [Simpson and Bahr, 2005]. Despite these general trends,
sediment conductivity is a poorly characterized variable
outside of commercial exploration geophysics. Total sedi-
ment conductance can be estimated on the scale of sedi-
mentary basins from sediment thickness [Flosadóttir et al.,
1997; Tyler et al., 1997] or from detailed and local geo-
physical data [Szuts, 2008]. As far as concerns the first‐order
response, the use of l emphasizes that it is the total con-
ductance of the sediment column that matters, and not its
breakdown into either average conductivity or thickness.
[23] The vertical correlation factor g = �0v0/� v corrects for

vertical correlations of velocity and water conductivity that
alter the electric field v*Fz. For instance, if a layer of fast
moving water (large motional induction source) is also more
conductive, then that layer drives a larger electric current at
that depth compared to a uniformly conductive case. The
larger electric current in turn generates a larger electric field.
The sign of g is positive in this case, and v* is accordingly
larger. Measurements of temperature and salinity simulta-
neous with Jh/s allow direct calculation of g, or it can be
estimated from nearby or historic profiles [Luther and
Chave, 1993]. Prior calculations of g found it to have less
than a 10% influence on v* for open ocean baroclinic
modes, with large values only occurring in strong baroclinic
flows [Chave and Luther, 1990; Szuts, 2004].
2.1.2. Higher‐Order Term: Horizontal Gradients
[24] The second term on the right‐hand side of (2) is a

higher‐order term because it scales as H/L. It is also two‐
dimensional (toroidal) because it couples with a term of
similar form for Jz (not shown). The poloidal mode (not
shown) also scales as H/L but describes 3‐D effects.
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[25] The second term is nonzero if there are horizontal
gradients of H, l, F or velocity. It includes both depth‐
uniform and depth‐varying components (the first and second
integrals of term 2, respectively). In analogy with the hori-
zontal averaging of the first‐order term, it is expected that
the higher order terms depend on a region within a few
times the water depth. The H/L scaling explains why the 1‐D
approximation is sufficiently accurate for the small aspect
ratios typically found in the open ocean.
[26] In highly energetic regions that are often of interest to

physical oceanographers, however,H/L is not necessarily� 1.
The perturbation technique used to obtain (2) is not valid for
situations that break the initial assumptions, and to accurately
calculate the EM response under such conditions it is neces-
sary to calculate solutions with alternative techniques.

2.2. Sampling Techniques

[27] To be able to apply our results to interpreting elec-
tromagnetic observations, we must discuss briefly how field
measurements are obtained. Most common methods for
obtaining velocity use electrodes, although for other pur-
poses the magnetic field is also relevant. Electrodes can be
mounted on two broad types of platforms: a stationary
platform or one that drifts freely in the horizontal plane.
[28] Stationary platforms such as cables or bottom elec-

trometers measure the electric field, which in the 1‐D
approximation is equivalent to v* × k̂Fz. For stationary
electrodes the local velocity in (1) (v × F ) cancels that in the
first term of Jh/s, leaving only the electric fields caused by
v* and higher‐order terms.
[29] Untethered floats such as Lagrangian drifters (e.g.,

EM‐APEX) or vertical profilers (e.g., XCP) move hori-
zontally at the local unknown water velocity. The electric
potential across the instrument body comes from the electric
current density divided by s. Instruments with an elongated
shape are insensitive to small relative motion between the
instrument and the local water [Sanford et al., 1978]. The
measured signal is equivalent to (v(z) − v*) × k̂Fz in the 1‐D

approximation, with possible contributions from higher‐
order terms.
[30] Any independent and absolute measurement of the

horizontal velocity can be used to reference the relative
velocity of a float, from which the absolute velocity profile
and v* can be recovered. Some instruments include a sec-
ondary velocity sensor, such as a bottom‐reflecting acoustic
Doppler velocity sensor on the Absolute Velocity Profiler
(AVP) [Sanford et al., 1985] or the RAFOS tracking for an
electrode‐equipped RAFOS float (Electric Field Float) [Szuts,
2004], or surface GPS fixes for a multicycle EM‐APEX
float. Independent but concurrent velocity measurements
can also be used, such as shipboard ADCP profiles for XCPs
[e.g., Girton et al., 2001].
[31] In analogy to the two types of measurements that can

be made, the higher‐order cases presented below will be
evaluated for the perturbations of the depth‐averaged E and
the depth‐varying J/s from the dominant 1‐D signal. These
two aspects of the solution are further appealing because
they correspond to the decomposition of velocity into bar-
otropic and baroclinic components.

3. Approach for Resolving Higher‐Order Electric
Fields

[32] Because of the difficulty of obtaining general ana-
lytical forms for arbitrarily large gradients of velocity or
topography, we instead consider limited geometries that
contain horizontal velocity gradients in a two‐dimensional
plane. The solutions are technically magnetostatic, because
continuously flowing charge in J generates magnetic fields
(magneto‐) and because the quasi‐static approximation
excludes inductive coupling between J and B (static).

3.1. Schematic Geometries

[33] Two geometries are considered that both have three
layers (Figure 1): a surface ocean that is in motion, a
motionless deep ocean, and a mildly conductive sediment
layer. The surface layer has a vertically uniform velocity
that varies with the cross‐stream coordinate. The velocity in
the first geometry is sinusoidal and extends to infinity, while
that of the second takes the shape of a cosine over a finite
region and is zero outside this. These geometries will thus
be referred to as ‘sinusoidal’ or ‘cosine jet’. Each is
described by four nondimensional parameters, which are
varied systematically to obtain solutions over the four‐
dimensional parameter space. The results from each geom-
etry are discussed in sections 4 and 5.
[34] Although the results are analyzed based on the non-

dimensionalized parameters, the solutions are calculated
with realistic values for each parameter. The maximum
velocity v0 of the surface layer is set at 1 m s−1, an appropriate
value for energetic flows in the ocean. The equations are linear
with respect to v0, so this choice is without loss of generality.
[35] The Earth’s magnetic field is set to be representative of

midlatitude northern hemisphere values: Fz = −40,000 nT,
Fh = 20,000 nT. The vertical component Fz induces the
dominant signal as well as a two‐dimensional (2‐D)
perturbation, whereas the horizontal component Fh only
induces a 2‐D perturbation. For reasons related to the
geometries chosen, the Fh‐induced perturbation is only
considered for the cosine jet geometry.

Figure 1. Geometries for which magnetostatic solutions
are calculated, both with three layers: a surface ocean jet
(region 1), a motionless deep ocean (region 2), and a layer
of conductive sediment (region 3). The top layer moves into
the page (positive ŷ) with the vertically uniform velocity
shown in the top. (a) Sinusoidal geometry (see section 4),
with (top) an infinite sinusoidal velocity and (bottom) 3
horizontal layers. (b) Cosine jet geometry (see section 5),
with (top) a finite cosine jet velocity and (bottom) the same
3 horizontal layers. The 6 parameters that define each
geometry are shown in bold.
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[36] Implicitly assumed by the three‐layer geometry is a
nonconductive crust underlying the sediment layer. Realis-
tically, the crust has conductivities of 0.0001–0.03 S m−1

[Chave et al., 1992; Simpson and Bahr, 2005], which is at
least an order of magnitude smaller than typical sediment
conductivity and does not support a significant flow of
electric current for the motionally induced signals consid-
ered here.

3.2. Calculating 2‐D Perturbations

[37] The 2‐D solutions can be considered as the sum of
the expected signal from the first‐order solution plus a 2‐D
perturbation: the depth‐uniform signal is contained in E,
while the depth‐varying signal is contained in J/s. Pertur-
bations generated by Fh are defined in section 5.2.2. The
magnitude of the perturbation is the primary focus, but its
shape is also considered by the decay half width of the
perturbations.
3.2.1. Depth‐Uniform Mode
[38] The depth‐uniform mode is the vertically uniform

electric field (v*Fz) defined in (6). In the 1‐D approximation
it is driven by the vertically averaged velocity (v) with
proportionality factors due to sediment conductance (l) and
vertical correlations of conductivity and velocity (g).
Although in general the baroclinic correlation is removed
from v* by dividing by 1 + g, the choice of uniformly
conductive oceans makes this factor zero in the three
geometries.
[39] For 2‐D situations Ex is no longer vertically uniform,

so a 2‐D quantity v2‐D* is calculated by averaging Ex in the
water column and dividing by Fz. Although this quantity has
physical units of m s−1, it must be corrected for the effective
sediment shorting to be directly analogous to the physically
relevant quantity v. In analogy to the 1‐D approximation,
then, the quantity v2‐D* can be related to v by a 2‐D quantity
l2‐D according to v2‐D* = v/(1+ l2‐D).
[40] In terms of calculating a depth‐uniform perturbation,

however, l2‐D is not known a priori. As the electrical
properties of the sediment are fully known for our solutions,
the 1‐D approximation of l1‐D = (Hs − H)sr/H is the most
obvious way to correct v2‐D* . When l1‐D is not known,
alternative techniques can recover l (see section 5.2.2 or
Szuts [2008]).
[41] The depth‐uniform perturbation (in m s−1) is thus

defined as

� xð Þ ¼ v xð Þ � v2-D* xð Þ 1þ �1-Dð Þ: ð7Þ

This quantity decreases to 0 as H/L → 0. To obtain one
number that characterizes the magnitude of the depth‐
uniform error for a given set of parameters, we define a
depth‐uniform error � by calculating the standard deviation
of � over the region ∣x∣ < L/2. Relative errors are found by
dividing by v, or vH′/H.
3.2.2. Depth‐Varying Mode
[42] The depth‐varying perturbation is the difference

between J/s predicted by the 1‐D approximation and the 2‐D
solution. Cast into units of velocity, the 2‐D perturbation is

�0 x; zð Þ ¼ v x; zð Þ � Jx x; zð Þ
� zð ÞFz

� �0 xð Þ: ð8Þ

A vertical mean �0 is subtracted to remove the influence of
the depth‐uniform mode

�0 xð Þ ¼ 1

H

Z0

�H

v x; zð Þ � Jx x; zð Þ
�Fz

� �
dz: ð9Þ

Relative perturbations are obtained by scaling with the
maximum velocity v0 = 1 m s−1.
[43] The vertical dimension of d′ is compressed by taking

the vertical second moment d′std

�0std xð Þ ¼ 1

H

Z0

�H

�02 dz

0
@

1
A

1=2

: ð10Þ

The magnitude of depth‐varying perturbations is character-
ized by definition of a depth‐varying error �′, calculated by
the second moment of d′std over ∣x∣ < L/2.
[44] In practice, the correction to absolute velocity �0 is

usually calculated from reference velocities collected over
less than the full water column, adding a potential bias to the
depth‐varying velocity error. For instance, shipboard ADCP
velocities used to reference XCPs are only obtained in the
upper 300–700 m of the water column [Girton et al., 2001].
The second moment and maximum velocities can be
recalculated using the alternate expressions

�0bias x; zð Þ ¼ v x; zð Þ � Jx x; zð Þ
� zð ÞFz

� �0bias xð Þ

�0bias ¼ 1

H2 � H1

Z�H2

�H1

v x; zð Þ � Jx x; zð Þ
� zð ÞFz

� �
dz

�0std;bias ¼ 1

H

Z0

�H

�02bias dz

0
@

1
A

1=2

:

ð11Þ

The integration limits used here are chosen to represent an
XCP referenced with a 150 kHz shipboard ADCP, H1 =
−300 m and H2 = −50 m. Similar results are obtained with
integration limits representative of other instruments, such
as middepth referencing (EFF) [Szuts, 2004] or near‐bottom
referencing (AVP) [Sanford et al., 1985].
3.2.3. Horizontal Averaging Scales
[45] Aside from its magnitude, the horizontal distance that

the perturbation � or d′std spreads is one way to consider the
shape of the perturbation. Because the perturbations are
forced to follow the velocity disturbance width scale within
∣x∣ < L/2, passive spreading is calculated outside of this
region.
[46] Specifically, the half width is defined as the distance

away from the origin in which the perturbation at x = ±L/2 is
reduced by half. This is denoted L� and Ld′ for the depth‐
uniform and depth‐varying perturbations. If H/L is large
enough, the local velocity error maximum can occur outside
of ∣x∣ < L/2, in which case the half width is the distance in
which the maximum is reduced by half.

4. Sinusoidal Velocity

[47] The electromagnetic solution for three horizontal
layers can be solved analytically if the velocity varies as a
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sinusoid (Figure 1a). The top layer is a surface jet over
−H′ ≤ z ≤ 0 with a vertically uniform velocity v(x) = v0
cos(ax)ŷ that extends to x = ±∞, the underlying water is
motionless over −H < z ≤ −H′, and there is a conductive
sediment layer beneath (−Hs < z ≤ −H). The wave number is
a = 2p/L, where L is the wavelength of the velocity forcing.
The ocean and sediment each have uniform conductivities of
s and ss.
[48] Three nondimensional scales can be formed from the

four spatial scales L, H′, H, Hs. Nondimensional parameters
arise in the solutions by normalizing the vertical scales with
L (or 1/a). As the solution only depends on the relative
magnitude of the vertical scales, however, we normalize the
vertical scales by H instead to obtain more intuitive nondi-
mensional parameters. Thus, there are 4 nondimensional
scales for this geometry: the aspect ratio H/L, the relative
depth of the jet H′/H (≤1), the relative thickness of the sedi-
ment (Hs − H)/H, and the relative conductivity sr = ss/s.

4.1. Solution Method

[49] The magnetostatic solution is obtained by solving
Ohm’s law for � defined in the standard form (E = −∇�),
with constraints coming from Maxwell’s equations of con-
tinuity of �, continuity of Jz, and zero flow of Jz at the upper
and lower boundaries z = 0, −Hs. The form of the solution is
readily found that meets ∇ · E = 0 and the upper and lower
boundary conditions, with the unknown coefficients deter-
mined algebraically from the internal continuity conditions.
The full solution is

�1 ¼ Cz 1� scpcs 	 H � H 0ð Þð Þ
scpcs 	Hð Þ cosh 	zð Þ

� �

þ Cx
ccpss 	 H � H 0ð Þð Þ � ccpss 	Hð Þ

scpcs 	Hð Þ cosh 	zð Þ
�

� sinh 	zð Þ
�

�2 ¼ Cz sinh 	H 0ð Þ ccpss 	 zþ Hð Þð Þ
scpcs 	Hð Þ

� �

þ Cx cosh 	H 0ð Þ � 1½ � ccpss 	 zþ Hð Þð Þ
scpcs 	Hð Þ

�3 ¼ Cz sinh 	H 0ð Þ cosh 	 zþ Hsð Þð Þ
scpcs 	Hð Þ

þ Cx cosh 	H 0ð Þ � 1½ � cosh 	 zþ Hsð Þð Þ
scpcs 	Hð Þ : ð12Þ

[50] The three regions correspond to those in Figure 1a.
For notational brevity the following definitions are used:

Cz ¼ v0Fz

	
sin 	xð Þ

Cx ¼ v0Fx

	
cos 	xð Þ

scpcs að Þ ¼ sinh að Þ cosh 	 Hs � Hð Þð Þ
þ �r cosh að Þ sinh 	 Hs � Hð Þð Þ

ccpss að Þ ¼ cosh að Þ cosh 	 Hs � Hð Þð Þ
þ �r sinh að Þ sinh 	 Hs � Hð Þð Þ; ð13Þ

where the last two definitions are for any variable a. The
fieldsE, J, andB are calculated fromOhm’s Law and ∇ ×B =

mJ. The electric current stream function y, defined as J = ∇ ×
y, is simply a multiple of B.

4.2. Results

[51] Initial evaluation of the solution can be done directly
with the solutions for Ex and Jx (not shown). We limit the
analysis to the depth‐uniform mode induced by Fz, however,
because the depth‐varying mode does not approach the 1‐D
approximation in the small wave number limit. The presence
of adjacent regions of oppositely signed velocity always
generates connecting cells of J regardless of wave number.
In particular, elliptical cells of J are strongest at z = −H′ even
for H/L � 1, instead of becoming nearly horizontal and
evenly distributed in the two ocean layers as expected for
the 1‐D approximation. Similarly, vertical cells from the
contribution of Fh are present for all wave numbers. These
difficulties are not present in the second geometry, which
makes use of bounded velocity signals.
[52] To calculate the depth‐uniform perturbation a two‐

dimensional l is defined as

1þ �2-D ¼ v

v*2-D
¼ vFz

Ex
: ð14Þ

Calculated exactly from Ex by vertically averaging in the
water column, l2‐D is

1

1þ �2-D
¼ 1þ 1

	H 0 sinh 	H 0ð Þ sinh 	 Hs � Hð Þð Þ ��rð Þ=
h
sinh 	Hð Þ cosh 	 Hs � Hð Þð Þ:

þ �r cosh 	Hð Þ sinh 	 Hs � Hð Þð Þ
i
:

ð15Þ

[53] The quantity l2‐D has two properties: an indepen-
dence on x indicates that E is in phase with v, even though v
or v* in (14) may be small or even 0; and l2‐D is always less
than or equal to l1‐D. The second property is equivalent to
stating that v2‐D* ≥ v1‐D* . Alternatively, l2‐D can be defined by
averaging Ex over the water depth and the sediment, in
which case l2‐D ≥ l1‐D. The physical meaning is the same
for either definition of l2‐D: in the presence of 2‐D pertur-
bations, E is larger in the water column relative to that
expected from the 1‐D approximation, while in the sedi-
ments E is weaker by a greater amount. Averaging only over
the water column is preferred, however, because observa-
tions can only be made in the water column.
[54] The small wave number limit of (15) should converge

to the 1‐D theory when 1/a is much greater than H′, H,
and Hs. For comparison, the 1‐D v* is v /(1 + l1‐D), where
l1‐D = (Hs − H)sr /H from (5).
[55] The small wave number limit is obtained from (15) by

keeping the first term of Taylor expansions for the hyper-
bolic trigonometric functions. It is straightforward to show
that the 1‐D form is obtained. The governing vertical scale
arises as the small wave number limit of

D2-D � 1

	
sinh 	Hð Þ cosh 	 Hs � Hð Þð Þ

þ �r

	
cosh 	Hð Þ sinh 	 Hs � Hð Þð Þ; ð16Þ
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where D1‐D is defined as H(1 + l1‐D) for this geometry. The
equivalent governing scale for this 2‐D geometry now
includes a dependence on L (via a).
[56] A second limiting case results from removing the

sediment layer by letting Hs → H or sr → 0. The numerator
of the fraction in (15) becomes 0, and so 1 + l2‐D → 1 as
expected: there is no longer any shorting of the electric field
through the sediment.
[57] A brief discussion of the Fh‐induced perturbation

component is presented here for completeness, but results
from the cosine jet geometry are better suited for detailed
analysis. The same reason applies as for why Jx induced by Fz

is not realistic: adjacent regions of opposite velocity prevent
the Fh‐induced signal from decreasing to 0 as H/L → 0.
[58] All of the signal induced by Fh is a perturbation from

the 1‐D approximation, so the depth‐uniform perturbation is
found by averaging the resulting Ex (denoted Ex,Fh) in the
water column (not shown). In the small wave number limit
this becomes

lim
	!0

Ex;Fh ! H 0

H
v0 sin 	xð ÞFh 1� H

Hs

� �
�r: ð17Þ

The magnitude of error at any x is independent of a, and so
does not asymptotically approach the 1‐D approximation.
Nevertheless, its qualitative importance for small wave
numbers is seen by the ratio of Ex,Fh

/Ex,Fz

Fh

Fz

sin 	xð Þ
cos 	xð Þ 1� H=Hsð Þ�r 1þ �1-Dð Þ: ð18Þ

This equation shows that Ex,Fh
is out of phase with the

velocity forcing and that it scales with Fh/Fz, sr, H/Hs, and
1 + l1‐D.

4.3. Parameter Space

[59] To analyze the four‐dimensional parameter space we
rely on the definitions in 3.1. The depth uniform perturba-
tion is simplified by noting that l2‐D is uniform for all x.
Dividing (7) by v gives the relative perturbation

�

v
¼ 1� 1þ �1-D

1þ �2-D
: ð19Þ

Note that (1 + l1‐D)/(1 + l2‐D) is always larger than 1. If, for
instance, this fraction is 1.1, then the relative perturbation is
10%. Although equation (19) is always negative, the abso-
lute value is shown in Figure 2a instead.
[60] There is a strong dependence of the depth‐uniform

relative perturbation ∣�/v∣ onH/L and (Hs −H)/H (Figure 2a).
A transition point occurs at H/L = 1, below which the rel-
ative perturbation decreases exponentially with H/L, while
above the relative perturbation is constant. The transition
point makes sense by noting that the 1‐D approximation
requires a small vertical domain H relative to L to make E
vertically uniform. Since electric fields tend to spread
equally in all dimensions, thick sediments generate larger �
because Ex does not penetrate evenly to the bottom of the
sediment layer. The high wave number region H/L > 1 is not
realistic, however, because geophysical ocean currents are
always wider than they are deep.
[61] The sensitivity of the depth‐uniform perturbation to

sr is presented by ∂(�/v)/∂sr (Figure 2b). This differential
quantity is approximated by a centered difference, where the
change in �/v calculated for sr of

ffiffiffi
2

p
/10 and

ffiffiffi
2

p
/20 is

simply divided by the twofold change in sr. For thin
sediments (small (Hs − H)/H), l2‐D varies proportionally to
sr, as expected from the 1‐D definition of l1‐D, but if the
sediments are very thick the relative change is smaller. This
demonstrates that if the electric field reaches fully to the
bottom of the sediments then the sensitivity to sr is linear.
[62] Combining the dependence on (Hs − H)/H and sr,

both of which are linear in the lower left hand region of
Figure 2, the perturbation turns out to be proportional to l1‐D.
This result is valid for sediment thinner than (Hs − H)/H ≤ 1
and for aspect ratios less than H/L ≤ 0.5.

5. Cosine Jet

[63] Although the sinusoidal geometry is analytically
tractable, the solution does not asymptotically approach the
1‐D approximation in the small wave number limit because
of the infinite extent of the velocity field. A bounded
velocity field is obtained by a finite Fourier summation of
the sinusoidal solution for the cosine‐jet velocity shown in
Figure 1b. Similar approaches were used by Longuet‐
Higgins et al. [1954] and Fristedt and Sigray [2005], but

Figure 2. The depth‐uniform relative velocity perturbation ∣�/v∣ from (19), induced by Fz for sinusoidal
velocity. (a) The relative perturbation plotted for (Hs − H)/H against H/L, with sr = 0.1. (b) The sensitivity
of ∣�/v∣ to sr at sr = 0.1, or ∂(�/v)/∂sr (see text). Both have the common value H′/H = 0.5.
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they solved for more restrictive geometries and did not seek
general dependencies on the parameter space.
[64] The four nondimensional parameters are the same as

in the sinusoidal velocity geometry, except now L refers to
the full width of a bounded velocity field.

5.1. Solution Method

[65] The forcing is taken to be

v xð Þ ¼
1

2
1þ cos

2
x

L

� �� �
jxj < L=2

0 jxj � L=2

8><
>: ; ð20Þ

because this form is symmetric about x = 0 and smoothly
goes to 0 at x = ±L/2 (Figure 1b).
[66] The solution becomes

�i x; zð Þ ¼ PN
n¼0

an;M Ai zð Þ cos kn;Mx
� 	
 þBi zð Þ sin kn;Mx

� 	�
; ð21Þ

where an,M is the Fourier coefficient for the (n, M)th wave
number kn,M = 2pn/(M L), n = 0, 1, 2, …, N, M is an integer
1 < M < N that determines the wave number resolution, and
Ai(z) and Bi(z) are the depth‐dependent coefficients for
cos(ax) and sin(ax) for the regions i = 1, 2, 3 from (12). The
coefficients an,M are found by multiplying (20) by cos(kn,M x)
and integrating over −∞ < x < ∞ [Szuts, 2008].
[67] Although (21) is exact in the limit of M, N → ∞, the

fact that both of these constants are finite introduces two
considerations for the solution. First, there is little loss of
accuracy by terminating the summation at N 	 M, because
the coefficients an,M decay to 0 for n 	 M. Second, the
value of M determines the repeat length of the solution, a
fundamental property of finite Fourier expansions. The steep
decrease in � across the jet must be balanced by a gentle
increase in potential outside of the jet for continuity of the
cosine expansion at x/L = ±M, which generates a nonzero
electric field outside of the jet whose magnitude depends on
M (see Appendix A).
[68] This background Ex is physically unrealistic and is

removed as follows. A large value of M is chosen such that
the background Ex is much smaller than Ex(x = 0). An
uniform Ex is added to the entire domain to obtain a zero
background field and the result is scaled to maintain the
initial maximum value of Ex. This procedure produces a
valid solution because solutions to the Laplace equations are
linear, and its accuracy is substantiated by the fact that the
same final results are obtained for all values of M. The
numerical dependence on M is discussed in greater detail in
Appendix A, while the accuracy of the Fourier expansion
technique is validated in Appendix B by comparison with
the numerical Model for Ocean ElectroDynamics (MOED)
[Tyler et al., 2004; also see SzII].

5.2. Representative Example

[69] The solution for one set of parameters is presented
first to provide a physical basis for the 2‐D solution and the
velocity errors defined earlier. The example shown is for the
largest aspect ratio (H/L = 0.1) that could be realistically
expected, so that the 2‐D perturbations are most obvious.
The parameters used are width L = 10 km, jet depth H′ =

500m, water depthH = 1000m, sediment depthHs = 2000m,
and relative sediment conductivity sr = 0.1.
5.2.1. Velocity Errors Induced by Fz

[70] The fields Ex and Jx induced by Fz are close to that
expected from the 1‐D approximation (Figures 3a and 3d).
The horizontal electric field is not entirely vertically uni-
form, however, and there are negative but weak regions of
Ex in the water column outside of the jet. The electric current
density also varies slightly within each layer.
[71] The depth‐uniform components and their perturba-

tions are shown in Figure 3 (left). With l1‐D = 0.1 for this
geometry, v* (dashed line, Figure 3b) is only 10% smaller
than v (black line) and does not differ much from v1‐D* (thick
gray line). The depth‐uniform velocity perturbation � from
(7) (solid line, Figure 3c) has amplitudes of 0.002–0.004 m s−1

with a central maximum and minima close to x = ±L/2 and
spreads outside of the jet region. Even if this electric field
outside the jet is incorrectly interpreted as due to a local
velocity, the magnitude is less than 0.002 m s−1 (<2%
relative to maximum v). The magnitude of the depth‐
uniform error is summarized by � (thick black line), which is
0.0025 m s−1. The half width L� is 0.04 L.
[72] If l1‐D can’t be calculated for a particular observation

location, it is possible to calculate an empirical l if v is also
known, denoted lemp. Either independent measurements of
the absolute velocity can be made to find v [Larsen and
Sanford, 1985], or else profiling instruments can be
referenced to an absolute velocity [Nash et al., 2006]. At its
simplest, the ratio v/v* should be equal to 1 + lemp

according to the 1‐D approximation. For greater statistical
confidence, however, it is better to fit 1 + lemp to multiple
observations of the variable velocity field [Spain and Sanford,
1987; Larsen, 1992].
[73] To apply this method to the cosine jet geometry, we

assume that temporal changes in forcing (velocity) at one
location can be described as horizontal meandering of the
jet. With a flat bottom this is equivalent to sampling across a
stationary jet. Thus, lemp is calculated by a horizontal
average (denoted < >Dx) over a horizontal range x0 − Dx <
x < x0 + Dx of

1þ �emp ¼ < v= v* >�x : ð22Þ

The value used for Dx is 100 m. The resulting depth‐
averaged perturbation analogous to (7) is

�emp ¼ v� v* 1þ �emp

� 	
: ð23Þ

[74] The depth‐uniform perturbation from lemp (dashed
line, Figure 3c) is much smaller than that from l1‐D for this
simple case. It is near zero in the center of the jet, with
maximum values of 0.002 m s−1 in a small region near the
edge of the jet.
[75] For comparison, the transport error from a submarine

cable is also shown (dash‐dotted line, Figure 3c). Submarine
cables integrate the electric field on the seafloor across their
length. The cable error is calculated as the difference
between the horizontal integrals of Ex(1 + l1‐D)/Fz and the
exact quantity v(x), normalized by the total transport of the
jet and divided by 10 for display purposes. Despite a
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maximum error of 0.8%, there is no error if the cable spans
either half of the jet because of symmetry.
[76] The other type of perturbation is depth varying,

shown in Figure 3 (right). In the water column, the depth‐
varying perturbations (Figure 3d) are surface and bottom
intensified. The vertical second moment d′std is at most
0.01 m s−1 (thin black line, Figure 3e), with an RMS value
�′ of 0.0065 m s−1 (thick black line). The bias introduced
by referencing the relative velocity profile near the surface
results in 60% larger perturbations.
5.2.2. Velocity Errors Induced by Fh

[77] The 1‐D approximation only accounts for signals
induced by Fz, so any signal from Fh is considered a per-
turbation in full. With the bounded velocity of the cosine jet,
the perturbations induced by Fh decay to 0 as the aspect

ratio decreases, in agreement with the expectation from the
1‐D approximation.
[78] These calculations assume that the ocean velocity

flows towards magnetic east, and thus that the Fh‐induced
signal is maximum. Flows with no magnetic east component
generate no Fh‐induced signal, and more generally the
magnitude depends on sin(�), where � is the heading in
magnetic coordinates (clockwise from 0 at magnetic north).
[79] The velocity perturbations defined earlier need to be

modified slightly for the Fh‐induced components. The quan-
tities Fz and l1‐D are used for normalizing to obtain velocity,
because any perturbations induced by Fh will be initially
indistinguishable from the first‐order signal. The velocity
perturbations will thus also depend linearly on Fh/Fz and be
larger near the magnetic equator and smaller near the poles.

Figure 3. The solution induced by Fz for the cosine jet geometry with H/L = 0.1. The (left) depth‐
uniform and (right) depth‐varying components are shown. (a) Electric field Ex, contours every 1 mV
m−1. (b) Depth‐averaged velocity v (solid black), v1‐D* (thick gray), and v* (dashed black). (c) Velocity
perturbation � (thin solid) and error � (thick solid), empirical depth‐uniform velocity perturbations �emp

(dashed), and the cable error divided by 10 (see text, dash‐dotted). (d) Electric current density Jx, contours
every 1 mA m−2. (e) Depth‐varying perturbation d′, contours every 0.002 m s−1. (f) For the depth‐varying
perturbations d′std (solid) and the biased perturbations (dashed), the vertical second moment d′std(x) (thin)
and depth‐varying error �′ (thick). Dots in Figures 3c and 3f show the end points of the half‐width decay
length. The solution is for a small width jet defined by L = 10 km, H′ = 500 m, H = 1000 m, Hs = 2000 m,
and sr = 0.1. The boxes in Figures 3a, 3d, and 3e delineate where velocity is nonzero.
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[80] The velocity perturbations defined by (7), (8) and
(11) are modified by removing the expected velocities v and
v(x, z) from the equations, giving the modified forms

��1-D;Fh ¼ v*Fh
1þ �1-Dð Þ ð24Þ

�0Fh x; zð Þ ¼ Jx x; zð Þ
� zð ÞFz

� �0Fh xð Þ

�0Fh xð Þ ¼ 1

H

Z0

�H

Jx x; zð Þ
�Fz

� �
dz:

ð25Þ

The definitions of the biased quantities d′bias,Fh
and �0bias,Fh

are obvious by comparison with the above. The quantity l
has no physical meaning for the contribution from Fh

because l1‐D,Fh
= 0, so (22) and (23) are not calculated.

[81] The perturbations induced by Fh are most important
near edges of the velocity jet (Figure 4), which is also where
the relative perturbation is largest because the dominant
signal induced by Fz decays to zero. The RMS depth‐
uniform quantity �Fh

is 0.0012 m s−1, the same order of
magnitude but slightly smaller than that generated by Fz.
The cable transport error, now the integrated and scaled
electric field divided by the maximum jet transport (still
scaled by 0.1 for display purposes), is small compared with
the total transport (2.4%) and still integrates to 0 if the cable
fully spans the jet.
[82] The depth‐varying velocity error �′ is 0.019 cm s−1,

roughly 2 times larger than that induced by Fz. The biased

perturbations are only 25% larger than d′std and �′. The half
widths are similar to those induced by Fz.

5.3. Parameter Space

[83] Having described the 2‐D perturbations for one set of
parameters, now we present the dependence of these
velocity errors (in m s−1) or half widths (normalized byD1‐D)
on the nondimensional parameters (Figures 5 and 6). Based
on the realistic range of H/L discussed in section 6, the dis-
cussion focuses on H/L ≤ 10−0.5 even though a wider range is
shown for completeness.
[84] The shape of lines of constant error � (Figure 5a) are

similar to the sinusoidal velocity forcing (Figure 2a) but do
not have as sharp a transition between the small and large
regimes of H/L. A weaker transition region remains at H/L
of 0.5–1, below which the depth‐uniform velocity error
decreases exponentially with H/L and (Hs − H)/H. The
dependence on sr is close to linear for (Hs − H)/H < 1 (not
shown), in agreement with the results for the sinusoidal
geometry. Combining the dependence on (Hs − H)/H and
sr, for sediment as thick as the water column the error is
<0.01 m s−1 if H/L ≤ 0.01 l1‐D

−5/2 (approximating the
10−2 contour).
[85] The depth‐uniform error can also be quantified for a

cable, with the understanding that any cable that spans either
half of the velocity jet will have a net error of zero. The
maximum cable error within −L/2 < x < L/2 (not shown) is
independent of sediment thickness for (Hs − H)/H < 1 and
is roughly 100 times smaller than Figure 5b, while for
thicker sediments the maximum cable error increases

Figure 4. The solution induced by Fh for the cosine jet geometry with H/L = 0.1, if they are interpreted
as generated by Fz (see text). (a) The depth‐varying velocity perturbation d′Fh

, contours every 0.005 m s−1.
(b) The depth‐uniform velocity perturbation �Fh

(thin), � (thick), the location of the half widths on either
side of the jet (dots), and the cable error (see text, dash‐dotted). (c) The depth‐varying perturbation, same
as Figure 3f. Aside from Fh/Fz = 0.5, the other parameters are the same as in Figure 3.
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Figure 5. (left) Depth‐uniform and (right) depth‐varying velocity errors for the cosine jet geometry
induced (top) by Fz and (bottom) by Fh: (a) � (m s−1), (b) �′ (m s−1), (c) �Fh

(m s−1), and (d) �′Fh
(m s−1).

The remaining parameters are H′/H = 0.5 and sr = 0.1. Dots indicate where solutions are calculated,
and shading indicates the region over which the error is fit (see Table 1).

Figure 6. Half widths normalized byD1‐D of (left) depth‐uniform and (right) depth‐varying perturbations
induced by (top) Fz and by (bottom) Fh: (a) L�/D1‐D, (b) Ld′/D1‐D, (c) L�,Fh

/D1‐D, and (d) Ld′,Fh
/D1‐D.

The remaining parameters are the same as in Figure 5.
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strongly with (Hs − H)/H, similar to the part of Figure 5a
for (Hs − H)/H > 1.
[86] The depth‐varying velocity error �′ (Figure 5b) has no

dependence on the sediment thickness, and the magnitude of
the error decreases exponentially with H/L for H/L < 0.5.
The error is <0.01 m s−1 if H/L ≤ 0.2. The dependence on sr
is very weak.
[87] A factor 5 change in H′ (from H′/H = 0.5 to 0.1)

reduces the depth‐uniform and depth‐varying errors by
factors of 3–5, where the larger reduction occurs for thick
sediment and large H/L (not shown). These reductions can
be generalized by a linear (or slightly less than linear)
dependence of both errors on v = v0H′/H.
[88] The depth‐uniform errors induced by Fh are generally

smaller than those induced by Fz and depend mostly on the
sediment thickness (Figure 5c). For any aspect ratio, errors
are below 0.003 m s−1 if the sediment is less than 3 times as
thick as the water column. By contrast, the depth‐varying
errors due to Fh (Figure 5d) are larger than those due to Fz:
an error <0.01 m s−1 occurs if H/L ≤ 0.06. The transition
region to uniform error �′ with H/L still occurs at H/L = 0.5.
[89] The influence of H′ is much stronger for the Fh

contribution (not shown): if H′/H changes from 0.5 to 0.1,
the depth‐uniform error is reduced by 2–10, while the
depth‐varying error is reduced by 25–30.
[90] Over the lower left corner of the parameter spaces

indicated by gray shading in Figure 5, the errors � and �′ can
be summarized by the functional form of (Table 1)

H

L

� �a Hs � H

H

� �b H 0

H

� �c

�rð Þd e: ð26Þ

The large R2 values (>0.993) indicate a highly accurate fit,
and the RMS fractional residual is less than 20%. The errors
induced by Fz (Fh) depend on H/L to the power of 1.85
(0.90). The depth‐uniform errors depend nearly propor-
tionally to the sediment thickness and sediment conductivity
(powers of 1) and on the jet depth to the power of 0.5;
whereas the depth‐varying errors have few other depen-
dencies. Note that the depth‐uniform error induced by Fz has
a larger dependence on sediment thickness if (Hs − H)/H > 1.
The jet depth influences the depth‐uniform error induced by
Fz slightly (powers less than 0.4) as well as stronger
dependencies for the depth‐uniform (power 2) and depth‐
varying (power 1.2) errors induced by Fh.
[91] The decay half widths outside of the forcing region

are shown in Figure 6, where normalization by D1‐D corrects
for the 1‐D effect of sediment thickness. The ratio plotted is

the scale factor for D1‐D that describes an effective hori-
zontal averaging distance. That the values are almost iden-
tical for perturbations induced by Fz or by Fh confirms that
the passive response of the geometry is independent of the
forcing (for this set of H′ and sr). For L�, the half width has
a lower limit of 0.3 D1‐D (10−0.5) at H/L = 0.1 for moder-
ately thin sediment ((Hs − H)/H < 10−0.5) and it increases
proportionally with sediment thickness and inversely with
H/L. Although depth‐varying errors have slightly smaller
half widths for the same aspect ratio, Ld′ is relatively unaf-
fected by sediment thickness if H/L < 0.1. The parameter
space does not suggest that an asymptotic value of L� or Ld′
is reached for very small H/L, with maximum values of 0.5–
1.2 D1‐D obtained at the smallest resolved H/L.

6. Discussion

[92] Overall, this study aims to address the relative
importance of 2‐D perturbations in motionally induced
signals that arise in the presence of velocity gradients. Our
approach isolates the 2‐D errors in calculating velocity from
E and J on the basis of nondimensional scales. Additional
context is necessary for understanding the physical
implications of these results and their extension to different
situations.
[93] Specifically, before the results are generalized two

matters need to be discussed: the nondimensional para-
meters were prescribed without recourse to geophysical
constraints, so it remains to proscribe the regions of
parameter space that are unrealistic; and the shape of the two
geometries was reductionist by necessity, thus salient fea-
tures are discussed as a guide for extrapolating our results to
different geometries.
[94] The previous two points provide a basis for gener-

alizing the results. First a physical explanation of 2‐D per-
turbations is presented. Then, over the realistic region of the
parameter space previously defined, we specify the sensi-
tivity of 2‐D perturbations to geometrical and electrical
parameters as well as their magnitudes.
[95] Broader discussion of these results and their appli-

cation to one study site is presented in SzII, where the
addition of 2‐D perturbations caused by sloping topography
is needed for a more complete discussion.

6.1. Constraints on Aspect Ratio and Other Parameters

[96] The schematic geometries were chosen to facilitate a
parameter‐space analysis and were not constrained to be
realistic a priori. Fluid dynamics theory and observed
oceanic flows provide a sense of the maximum aspect ratios
possible.
[97] In the open ocean, geostrophic balance is the primary

dynamic equilibrium. Flow adjusts to geostrophy within a
distance of the Rossby radius, whether for barotropic
responses (RBT =

ffiffiffiffiffiffiffi
gH

p
/∣f ∣) or for baroclinic responses

(RBC = cn/∣f ∣, where cn is the wave speed of the nth bar-
oclinic mode). The definitions of barotropic and baroclinic
velocities used here are depth‐averaged and depth‐varying
velocities, respectively. Even at high latitudes and in shal-
low water the barotropic Rossby radius is greater than
200 km (for H ≥ 100 m, all latitudes), such that H/RBT ≤
0.005 and the 1‐D approximation is appropriate; while the
baroclinic Rossby radius is 10–30 km at high latitudes and

Table 1. Fits of the Velocity Errors � or �′ to (26) Over the
Regions in Figure 5 Indicated by Gray Shading and for H′/H =
{0.25, 0.5, 0.75} and sr = {0.05, 0.1, 0.2}a

Error F a b c d e
Relative

RMS Error

� Fz 1.87 1.09 0.44 1.02 0.87 0.17
� Fh 0.86 0.97 2.03 1.00 0.31 0.13
�′ Fz 1.83 0.050 0.15 0.08 0.44 0.17
�′ Fh 0.94 –0.0006 1.19 –0.0014 0.31 0.06

aThe relative RMS error of the fit is calculated as RMS(�/�fit − 1). The
coefficients are precise to ±0.01, a–d are dimensionless, e has
dimensions of velocity, and all fits have R2 ≥ 0.993.
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increases towards the equator [Gill, 1982], such that H/RBC

can potentially reach 0.1 at high latitudes.
[98] A second way to consider baroclinic aspect ratios is

with the Burger number S1/2 = N H/(f L), the ratio of H/L to
the eccentricity of ellipse f/N described by geostrophic
motion. The value of S is typically less than 1, which, for
typical stratification (N ≤ 0.003 s−1) and latitudes equator-
ward of 60°, implies that H/L is less than 0.003. For a given
Burger number, the width L is set by the forcing: a baroclinic
response occurs if the water depth is shallower than f LS1/2/N,
otherwise the response is barotropic with a smaller aspect
ratio (H/L < f S1/2/N).
[99] A brief survey of fine‐scale processes and locations is

in agreement with the general theoretical constraints men-
tioned above: equatorial internal waves (H/L = 0.1 [Lien et
al., 2002]), internal solitons (H/L = 0.1 [Chang et al.,
2008]), coastal currents (California Current H/L = 0.005,
California Undercurrent H/L = 0.025 [Hickey, 1979]),
headland eddies (H/L = 0.02 [Pawlak et al., 2003]), and
eddies along a shelf break front (H/L = 0.01 [Churchill and
Gawarkiewicz, 2009]).
[100] Hydraulic constraints lead to different dynamic

scalings, such as flow through sills in which the velocity jet
is bottom trapped and constrained by topography. Consid-
ering the barotropic component to be set by the sill cross
section, the aspect ratios of depth to width have a maximum
of 0.03 for a number of examples (0.012 for the Denmark
Strait [Girton et al., 2001], 0.01–0.02 for the Strait of
Gibraltar [Baringer and Price, 1997], 0.0003–0.007 for
Indonesian sills [Hautala et al., 2001], or 0.03 for the
Windward Passages [Wilson and Johns, 1997]).
[101] This limited discussion suggests an upper limit for

H/L of 0.03 for barotropic flows and 0.1 for baroclinic
flows. Ultimately, the wide disparity between the definition
of nondimensional parameters in our geometry compared to
analytical theory prevent more than a qualitative comparison
of the two.
[102] The ranges of other parameters are limited in more

obvious fashions. The depth of the moving surface layer
clearly occupies values 0 < H′/H ≤ 1 and cannot be further
constrained. Sediment thickness and relative sediment con-
ductivity have ranges of 0–10 km and 0.02–0.5 and are
discussed in more detail in SzII.

6.2. Limitations of Resolved Geometries

[103] Both geometries investigated contain surface inten-
sified oceanic flow that has depth‐averaged and depth‐
varying components. Although these geometries were chosen
to be broadly applicable, there are four limitations to note
for applying our results to other situations and geometries.
[104] 1. The cosine jet geometry is an idealized cross

section, and the side boundaries of velocity can be sharper
or the central region of large transport can be wider. Both
changes would generate larger 2‐D perturbations at the
edges than the cosine jet. It is not just the local velocity
gradient that is important, but the spatial distribution of
nearby velocity.
[105] 2. The two layer ocean flow describes a vertical step

change in velocity. This sharp boundary maximizes the
vertical second moment of velocity error. Smoother vertical
structure will generate smaller depth‐varying errors.

[106] 3. The choice of uniform conductivity in the ocean
layers ignores salinity stratification. The small range of
conductivity in the open ocean leads to a small distortion
that is corrected with the factor g (<10% affect for open
ocean modes [Chave and Luther, 1990]). Further investi-
gation of this correction procedure is needed in regions with
extreme salinity contrasts, especially if the geometry can
lead to 2‐D perturbations.
[107] 4. All geometries have a barotropic velocity, so care

needs to be taken when extending these results to the pre-
dominantly baroclinic flow often measured with profiling
floats. In particular, this analysis can’t distinguish the rela-
tive contributions of the barotropic and baroclinic velocity
forcing to the depth‐varying perturbations. The aspect ratio
of baroclinic flows is expected to remain a key parameter to
describe 2‐D perturbations for internal waves or modes. It is
difficult to generalize the aspect ratios of baroclinic features,
because internal modes or waves have small vertical struc-
ture, propagate at an angle in the vertical, and have a wide
range of horizontal coherence (whether a mode or beam).
Length scales in both horizontal directions must be con-
sidered. The analytical study of Preisendorfer et al. [1974]
discusses baroclinic velocity modes based on infinite sinu-
soidal forcing, similar to the sinusoidal velocity geometry
presented here. From this similarity, we expect that the
deficiency of our analytic solution is also apparent in theirs,
namely that electric currents do not asymptotically approach
the 1‐D approximation as the aspect ratio decreases. Further
study is needed to more accurately resolve the depth‐varying
velocity errors associated with high‐mode baroclinic flow.

6.3. Physical Meaning, Sensitivity, and Magnitude
of 2‐D Perturbations

[108] The example shown in Figure 3 uses an aspect ratio
at the upper limit of what is realistic. To illustrate the 2‐D
perturbations in general, however, unrealistically narrow
width scales are necessary to accentuate the changes. The
perturbations induced by Fz are illustrated in Figure 7 with
an electric current stream function y (Figure 7, top, defined
as ∇ × |̂||| y = J) and by the electric potential � (Figure 7,
bottom). The stream function is calculated directly with the
same Fourier summation used to calculate E and J.
[109] When the velocity aspect ratio is very small, a nearly

1‐D solution, vertical isopotentials (Figure 7c) show that
electric currents (Figure 7a) are confined within the jet and
are nearly horizontal. With a large aspect ratio, these cur-
rents have a significant vertical component and no longer
fully reach the bottom of the sediment column (Figure 7b).
The electric field is weaker in the sediment and is no longer
vertically uniform (Figure 7d). When the aspect ratio
increases the thin layer approximation breaks down, and,
because E and J spread isotropically, nonnegligible circuits
form in the vertical.
[110] The parameter space analyses show that there is a

common transition point in the velocity errors atH/L of 0.5–1,
which fortuitously coincides with the realistic range of H/L
for both depth‐averaged (]0.03) and depth‐varying (]0.1)
flows. This feature allows the errors to be described as
powers of the nondimensional parameters, which aids in
determining the sensitivity of errors as well as predicting
their magnitude.

SZUTS: 2‐D EM FIELDS FROM VELOCITY GRADIENTS C06003C06003

13 of 17



[111] Although independent of the magnitude of the
errors, their sensitivity to the nondimensional parameters is
a more robust result given that it better reflects the under-
lying magnetostatic response independent of the specific
geometry. Perturbations induced by Fz (Fh) depend on H/L
to the power of 1.9 (0.9), which provides a more specific
relationship than the order of magnitude H/L scaling
described in the perturbation analysis of Sanford [1971].
This dependence on H/L holds and is uniform over its
realistic range (H/L < 0.5). Depth‐uniform errors depend on
the sediment thickness and conductivity to the power of one,
which means their combined dependence is proportional to
l1‐D. On the other hand, depth‐varying errors are nearly
independent of sediment thickness and conductivity. Lastly,
the depth of the jet has little impact on the perturbations
induced by Fz (powers of 0.15–0.5), whereas they have
stronger influences on perturbations induced by Fh (powers
or 1–2).
[112] For the same aspect ratio (H/L = 0.1), depth‐varying

errors generated by velocity gradients and Fh are larger
(0.015 m s−1) than those generated by Fz (0.003 m s−1).
Because the relative magnitude of errors induced by Fz and
Fh depends on the ratio Fz/Fh, set here to represent midlat-
itudes, the relative importance changes with geomagnetic
latitude. Although the 1‐D approximation breaks down at
the geomagnetic equator (where Fz = 0), there have been
successful measurements with profiling instruments up to 2°

in latitude from the geomagnetic equator [Kennelly et al.,
1986].
[113] The effective horizontal averaging distance is found

to be 0.2–1.2 D1‐D. The half widths do not approach an
upper asymptote at the lowest resolved values of H/L, as
might be expected for a 1‐D asymptote. This merely reflects
the dominance of the forcing width scale at small aspect
ratios, for which the small magnitude perturbations (<0.1%)
are of little importance. Our results are consistent with
Chave and Luther [1990], who found that EF solutions are
averaged over a radius a “couple times the water depth” in
their flat‐bottomed ocean with H/L � 1, with the specifi-
cation that D1‐D is the vertical scale that best describes the
motionally induced response.

7. Conclusion

[114] In regions where there are strong horizontal velocity
gradients, there can be 2‐D perturbations on top of the
dominant 1‐D motionally induced signals. This article
addresses the extent to which these perturbations depend on
the surrounding geometrical and electrical nondimensional
parameters. More specifically, we characterize the magni-
tude and sensitivity of 2‐D perturbations generated by
velocity gradients. The parameter with the greatest influence
on 2‐D perturbations is the aspect ratio of the oceanic flow,
but there are additional contributions from the remaining
parameters of sediment thickness, sediment conductivity,
and the thickness of the oceanic flow.
[115] For typical values of the nondimensional parameters,

the maximum errors introduced by a 1‐D interpretation of
the 2‐D solution are no larger than a few percent. Over the
realistic range of the parameter space (aspect ratios smaller
than 0.1, sediments thinner than 10 times the water depth,
and sediments on average 10 times less conductive than
seawater) the simple shape of the 2‐D velocity errors
enables their sensitivity to the nondimensional parameters to
be readily calculated. The depth‐uniform and depth‐varying
velocity errors depend on the aspect ratio to the power of 1.9
(induced by Fz) or 1 (induced by Fh). Depth‐uniform errors
are linearly proportional to l1‐D, which includes both sedi-
ment thickness and sediment conductivity. Depth‐varying
errors, by contrast, have minimal dependence on either
sediment thickness or sediment conductivity. The jet depth
has a stronger influence on signals induced by Fh (powers of
1–2) and a weaker influence on signals induced by Fz

(powers of 0.2–0.4).
[116] In both geometries, the velocity error decays out-

ward from the forcing over a half width of 0.2–1 D1‐D, the
effective water depth from the 1‐D approximation. This
result suggests that D1‐D/L is a more accurate assessment
than H/L of whether a given situation contains 2‐D effects in
the depth‐uniform component. In contrast, because depth‐
varying errors are insensitive to sediment properties, the
depth‐varying errors are governed by H/L.
[117] This analysis has sought general results that are

applicable to many types of oceanic electromagnetic mea-
surements and that allow estimates of the magnitude of 2‐D
perturbations generated by velocity gradients. Further dis-
cussion is given after the role of sloping topography is
quantified in SzII. The expected errors generated by velocity

Figure 7. The 2‐D perturbations in (top) the electric cur-
rent stream function y and (bottom) the electric potential
� induced by Fz for small and large aspect ratios with the
cosine jet geometry. (left) A nearly 1‐D response (H/L =
0.002, vertical exaggeration of 500) contrasts with (right)
a strongly 2‐D response (H/L = 1, no vertical exaggeration).
Contour spacings are (a) 0.004 A m−1, (b) 0.002 A m−1,
(c) 0.4 V, and (d) 0.002 V. Unspecified nondimensional
parameters are the same as in Figure 5 from SzII, which
describes sloping topography.

SZUTS: 2‐D EM FIELDS FROM VELOCITY GRADIENTS C06003C06003

14 of 17



gradients, however, are both small and sensitive to the
geometric parameters in a simple fashion, which confirms
the accuracy of measurements based on motional induction.

Appendix A: Convergence of Finite Velocity
Numerical Evaluation

[118] A numerical difficulty with the discrete and finite
Fourier cosine expansion used in section 5 is the presence of
a nonzero but uniform background Ex. By varying the value
ofM for one set of parameters (Figure A1), it is clear that the
background Ex scales as M−1. This result is confirmed
analytically by Szuts [2008]: to first order, the finite Fourier
expansion is in error from the exact continuous equivalent
by M−1/2 − M−2/6.
[119] There are two ways to minimize the influence of this

numerical issue: choose a very large M (>100), or subtract a
uniform Ex from the solution and scale the result. The for-
mer was at the expense of computation time and was too
prohibitive if solutions over a wide parameter space are

desired. The latter choice is physically sound, since solu-
tions of the Laplace equations are linearly independent.
With this choice, M is chosen to make the offset in Ex

outside of the jet much smaller than the forcing amplitude at
x = 0. Adjusted solutions thus obtained are independent of
M and are close to the asymptotic solution for very large M
[Szuts, 2008].
[120] In practice, the value ofM depends on H/L. For large

values of H/L the electric field spreads horizontally far
outside of the jet. The repeating nature of the Fourier
expansion thus requires a larger repeat length (larger M) to
properly resolve the uniform offset in Ex. This is
implemented first by defining an heuristic distance at which
Ex becomes uniform as

Mh ¼ 12 H þ Hs � Hð Þ�s

�

� 

=Lþ 1 ¼ 12D1-D=Lþ 1:

This formulation stresses that D1‐D is the key vertical scale
for the magnetostatic response. The value of M used is the

Figure A1. (a) The electric potential � at z = −H′/H for M = 4 (dotted), M = 8 (dash‐dotted), M = 16
(dashed), andM = 256 (solid). For lower values ofM the domain is small enough to show that the solution
has a period M x/L. (b) The normalized background Ex (Ex/max(Ex)) plotted against the wave number
resolution 1/M. In logspace, the slope of the best‐fit line is −1.028 ± 0.007. The parameter set used is
H = 3000 m, H′ = 500 m, Hs = 6000 m, L = 100 km, and ss/s = 0.4.

Figure B1. Comparison of Fourier summation of analytic results with MOED output for Ex. (a) Ex from
MOED. (b) Ex for the cosine jet geometry with Fourier expansion. For both, the parameters that define the
geometry are L = 5 km, H′ = 500 m, H = 3000 m, Hs = 6000 m, and sr = 0.4, and contours of Ex are every
1 mV m−1. (c) The difference between Figures B1a and B1b gridded to the MOED grid, with contours
every 0.02 mV m−1. Negative regions are shaded gray.

SZUTS: 2‐D EM FIELDS FROM VELOCITY GRADIENTS C06003C06003

15 of 17



second higher power of two. A minimum value of 8 is used
for small Mh, while the maximum used is 128 to keep
computation times reasonable.

Appendix B: Cross Validation of the Analytic
Solution and MOED

[121] To cross validate the Fourier‐expanded cosine jet
technique (section 5.1) and the MOED model (section 4 in
SzII), solutions for the same geometry are compared here.
[122] The different numerical techniques give rise to slight

differences in the output. The analytic solution is calculated
exactly at every location, with any error from the true
solution resulting from the truncated and finite Fourier
summation. The accuracy of the numerical model, however,
depends on how well the grid resolves the step changes in
conductivity structure. Much care is needed in setting the
resolution and the grid over a large parameter space.
[123] The discrete nature of a grid also introduces a dif-

ference between the desired geometry and that resolved by
the model. For instance, the vertical step change in velocity
at z = −H′ is interpreted by the model as a linear change
between two vertical grid points. Similarly, the vertically
integrated conductivity or velocity are discrete approxima-
tions that lead to small differences in v and l1‐D in relation
to the analytical solution. The MOED solution is scaled by
1/1.09 to correct for solutions that are 9% larger than in the
cosine jet solution.
[124] The horizontal and vertical grid spacings used in

MOED are Dx = 10 m and Dz = 5 m in the jet, with Dz
slowly increasing outside of the forcing region. In the cosine
jet solution, the z grid is resolved within � = ±5 × 10−8 m of
z = −H′ and z = −H to allow for more accurate vertical in-
tegrals of the resulting output.
[125] A small L and a small H′ are chosen for this com-

parison so that the situation is fully 2‐D. The two techniques
agree very well for Ex (Figure B1) and Ez (not shown). The
difference between the solutions (Figure B1c) is an order of
magnitude smaller than the solution itself. The maximum
magnitude of Ex is 12.4 mV m−1, and the maximum, mean,
and second moments of the difference between the solu-
tions over the region −1/2 ≤ x/L ≤ 1/2 and −Hs ≤ z ≤ 0 are
0.11 mV m−1 (relative error of 0.9%), 0.012 mV m−1 (0.1%),
and 0.05 mV m−1 (0.4%). The maximum magnitude of Ez is
7.5 mV m−1, and the maximum, mean, and second moments
of their difference over the same region are 0.66 mV m−1

(9%), 0.0000014 mV m−1 (0.0002%), and 0.09 mV m−1

(1.2%).
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