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Abstract—Due to its nonlinear nature, the climate system shows quite high natural variability on different time scales, including
multiyear oscillations such as the El Niño Southern Oscillation phenomenon. Beside a shift of the mean states and of extreme values
of climate variables, climate change may also change the frequency or the spatial patterns of these natural climate variations. Wavelet
analysis is a well established tool to investigate variability in the frequency domain. However, due to the size and complexity of the
analysis results, only few time series are commonly analyzed concurrently. In this paper we will explore different techniques to visually
assist the user in the analysis of variability and variability changes to allow for a holistic analysis of a global climate model data set
consisting of several variables and extending over 250 years. Our new framework and data from the IPCC AR4 simulations with the
coupled climate model ECHAM5/MPI-OM are used to explore the temporal evolution of El Niño due to climate change.

Index Terms—Wavelet analysis, multivariate data, time-dependent data, climate variability change visualization, El Niño.

1 INTRODUCTION

The El Niño phenomenon is a very strong natural climate fluctuation,
characterized by a positive anomaly of the sea surface temperature
(SST) in the eastern tropical Pacific Ocean, which occurs in the win-
tertime at irregular intervals with a mean frequency of 4-7 years. The
SST anomaly, the difference between the actual SST and the clima-
tological SST, is correlated with strong weather anomalies around the
Pacific and thus has a large impact on the ecology and economy.

Commonly, the Nino3 Index, the SST anomaly averaged over a
rectangular area in the equatorial Pacific, is used [32] to determine
the state of this natural climate fluctuation. El Ninos occur when the
water is much warmer than normal for a sustained period of time. This
phenomenon is reflected by a large positive Nino3 index. In the atmo-
sphere, an anomalous pattern of sea level pressure imposing an east
west gradient on the equator is associated with this SST anomaly. The
Southern Oscillation Index (SOI) reflects the air pressure difference
between Tahiti and Darwin (Australia). In the coupled atmosphere-
ocean system the oscillation is called El Niño Southern Oscillation
(ENSO). The gradient in surface pressure leads to anomalous zonal
winds on the equatorial Pacific.

Due to the potential large impact on economy and ecology, the de-
velopment of the strength and of the frequency of El Niño in a warm-
ing world is a quite important aspect of climate change. Although
climate projections with different models differed in their results [33],
several recent publications [15, 30] described an increase of the am-
plitude and of the frequency of ENSO as a potential consequence of
global warming. We have developed a framework which visually as-
sists the user in the spatio-temporal analysis of climate variability.

Climate change is a very important and widely discussed subject.
However, only few visualization papers are directly concerned with
climate applications. Looking at summaries on visualization of cli-
mate data [12, 18], one can see that most techniques that are com-
monly used are standard 2D techniques such as colormaps, height-
fields, isolines and glyphs. Recent visualization methods for climate
data analysis are iconic representation [17], volume rendering [24] or
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interaction-based frameworks [3, 8, 23]. Visualization of time-varying
data in general is covered in [11]. Alternative applications of wavelets
in visualization can be found for example in [6, 16]. Most of these
techniques aim at a general visualization of the data and do not take
domain specific knowledge into account.
One such widely known fact is that the climate system shows high

natural variability on different time scales, and scientists have devel-
oped a large variety of techniques to reduce the dimensionality of the
system and to find the most relevant patterns explaining the variation.
The technique most widely used in climate research is empirical or-
thogonal functions (EOF) [21], commonly known as principle com-
ponent analysis (PCA). In EOF analysis, the eigenvectors of the co-
variance matrix of the anomaly data (departure from the climatology)
are used to reduce the time dependent 2D data to time series of pat-
terns with greatest variance (eigenvectors with greatest eigenvalue).
The eigenvalue gives a measure of the explained variance by its cor-
responding eigenvector. Projecting the anomaly field onto one of the
eigenvectors highlights areas of large variance. EOFs are orthogo-
nal in both space and time, which is not necessarily true for physical
modes [26]. Hence, different derivatives of EOF such as rotated EOFs
(REOF) and extended EOFs (EEOFs) have been developed.
An alternative approach is taken by wavelet analysis, which does

not try to find global patterns of variance but analyzes the data locally
and reveals active frequencies in a time series and their changes over
time. An excellent introduction to wavelet analysis related to climate
research is given by Torrence and Compo [31] (see also references
therein). Wavelet analysis has been used to investigate global [10,
27] and local [20] climate changes or the evolution of characteristic
parameters such as the Nino3 index used to define El Niño events [14,
31]. All of these studies have in common that they only analyze few
time series that are either directly given or defined by averaging larger
regions.
In this paper we will explore different techniques to make the

wavelet analysis applicable to an entire multivariate two-dimensional
climate data set with almost 3000 time steps.

2 CLIMATE SIMULATION DATA

For our work we have used results of the Intergovernmental Panel on
Climate Change (IPCC) AR4 [33] simulations carried out at DKRZ
by the Max-Planck-Institute for Meteorology [25]. The simulation,
which starts at 1860, is first forced by observed greenhouse gas con-
centrations until the year 2000. For the time from 2001 to 2100 we
have chosen the IPCC A1B scenario results [33]. For control purposes
we have also used the CTL experiment, where the greenhouse gas con-
centrations have been kept frozen at the preindustrial level of 1860.
The atmospheric component of the coupled atmosphere-ocean

model ECHAM5/MPI-OM has a horizontal resolution of approxi-
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(a) Sea surface temperature anomaly - DJF (b) Anomaly of the mean sea level pressure - DJF (c) Anomaly of U10M - DJF

(d) Sea surface temperature anomaly - JJA (e) Anomaly of the mean sea level pressure - JJA (f) Anomaly of U10M - JJA

Fig. 1. Mean northern hemisphere summer (JuneJulyAugust) and winter (DecemberJanuaryFebruary) anomalies of sea surface temperature,
mean sea level pressure and the west-east component of the 10m wind (U10M) for 2071-2100 (IPCC A1B) relative to 1961-1990. The anomalies
show the projected change of the seasonally averaged fields due to global warming relative to the according seasonally averaged fields of the
undisturbed climate. The regional impact varies for the different seasons.

mately 200 km, yielding a grid size of 192x96 on 31 vertical lev-
els. Since for this work we were mainly interested in the variability
range from months to a few decades, we have only used a small subset
of the original data: the monthly mean data of some typical surface
fields (sea surface temperature (SST), 2m temperature (T2M), mean
sea level pressure (MSLP), 10 m wind components (U10M, V10M),
and precipitation rate (PREC)).
Most quantities show a strong annual cycle. In order to differentiate

between the ”normal” variability and the variability induced by global
warming, we have used the anomalies of these quantities relative to the
simulated corresponding multiyear monthly means of the normal pe-
riod 1961-1990. By building the difference between the monthly mean
fields and the means of the corresponding 30 monthly mean fields of
the reference period, the mean annual cycle is removed from the data.
In Figure 1, we show the seasonally averaged northern hemisphere
winter (DecemberJanuaryFebruary) and northern hemisphere summer
(JuneJulyAugust) anomalies of the SST (a and d), MSLP (b and e) and
U10M (c and f) for 2071-2100 relative to 1961-1990. For summer and
winter, all mean anomalies show regionally different responses to the
increase of greenhouse gases. Regionally different responses imply
that the mean seasonal cycle is going to change differently for dis-
tinct locations in a warmer world. In Figure 1(a), a strong positive
SST anomaly can be observed in the eastern tropical Pacific for DJF.
This is exactly the area and season where positive SST anomalies are
observed in ElNiño years. Further analysis is needed to investigate
if changes in the variability are associated with the shift in the mean
climate.

3 WAVELET ANALYSIS

Wavelet analysis is a method to investigate signals that change over
time. By decomposing the time series into time-frequency space, one
can determine which frequencies are dominant in certain time inter-
vals. Figure 2 illustrates this concept. While the upper image gives
the original time series, the lower one shows a visual representation
of the wavelet analysis, the power spectrum. The x-axis corresponds
to time and the y-axis to frequency. Dark regions indicate periods in
the data, where it oscillates with the corresponding frequency. The
bathtub-shaped curve separates between valid (above) and invalid (be-
low) areas. Between 2026 and 2046, for example, the data features a

strong underlying oscillation at a period of 2 to 8 years. Using this
visualization, changes in frequency can be observed easily. In the fol-
lowing, we will first explain the wavelet transform and afterwards the
computation of the power spectrum and a significance test to detect
relevant structures in the power spectrum.

3.1 Wavelet Transform
Assume that one has a time series, xn, consisting of n = 0, ...,N− 1
time steps with equal spacing as given in Figure 2(a). The goal is to
determine at which frequencies this time series oscillates on a local
scale. Therefore, the data is filtered locally with an oscillating kernel
(cf. Fig. 3(a)). The stronger the result of this filtering is, the stronger
the data oscillates at the frequency encoded by the kernel. We require
a local measure as the frequency of events might change due to climate
change. Global techniques, such as the Fourier transform, are not able
to detect such time-dependent characteristics.
In wavelet analysis, the wavelet function forms the local kernel. A

wavelet function,Φ0(η), can be an arbitrary function, but has to fulfill
two requirements: It must have zero mean and must be localized in
both time and frequency space [4]. A wavelet widely used in climate
research is the Morlet wavelet as depicted in Figure 3, consisting of a
plane wave modulated by a Gaussian [31]:

Φ0(η) = π−1/4eiω0η e−η2/2 (1)
where ω0 is the non-dimensional frequency, here taken to be 6 to sat-
isfy the admissibility condition [4]. As the Morlet wavelet is a com-
plex function, it is better adapted for capturing oscillatory behavior as
it will return information about both amplitude and phase [31].
The filtering of the time series with the wavelet could be easily per-

formed in time space. However, this procedure would be very slow.
From digital signal processing, it is well known that the computational
intensive convolution in the time domain is a simple point-wise mul-
tiplication in the frequency domain (convolution theorem, e.g. [7]).
Hence, we will first Fourier transform the time series and the wavelet,
then multiply both transformed signals and finally perform an inverse
transformation of the multiplied signals to receive the filtered signal.
The discrete Fourier transform of the input time series xn is given by

F{X}k = x̂k =
N−1
∑
n=0

xne−i2πkn/N , (2)
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(a) Time series

(b) Power Spectrum with contours for 1% significance level

(c) Power Spectrum with contours for 5% significance level

Fig. 2. Wavelet Transform: (a) Original time series. (b,c) Wavelet power
spectrum of signal given in (a) with different levels of significance. The
time axis is the same for all three illustrations.

where k = 0, . . . ,N−1 is the frequency index [19]. The Fourier trans-
form of the Morlet wavelet is

F{Φ0}s,ω = Φ̂o(sω) = π−1/4H(ω)e−(sω−ω0)2/2, (3)

where s is the scale and ωk the angular frequency

ωk =

⎧⎨
⎩

2πk
Nδ t for k ≤ N

2

− 2πk
Nδ t for k > N

2

(4)

andH(ω) is the Heaviside step function,H(ω) = 1 ifω > 0,H(ω) = 0
otherwise. To ensure that the wavelet transforms at different scales are
comparable, the wavelet function at each scale s is normalized to have
unit energy:

Φ̂(sωk) =

√
2πs
δ t

Φ̂0(sωk) (5)

Now that we have transformed both signals to frequency space, they
are multiplied point-wise. The wavelet transform is the inverse Fourier
transform of the multiplied signal:

Wn(s) = xn ∗Φ0 =
1

N

N−1
∑
k=0

x̂kΦ̂∗(sωk)expiωknδ t . (6)

For further details on wavelet theory see [4, 19, 31].

3.2 Power Spectrum
The wavelet transform as given in Equation (6) computes the filtered
signal for a specific frequency given by the scale s of the wavelet.
Hence, the result is a single line of the image in Figure 2(bottom).
To provide the big picture about the changes in frequency over time,
the analysis has to be performed on different levels/scales. Combining
these different scales in a single image gives the wavelet power spec-
trum. The question that remains is: How many scales and how many
samples at each scale are required? In orthogonal wavelet analysis, a
“wavelet basis” is used, which is an orthogonal set of functions. The
number of convolutions at each scale is proportional to the width of
the wavelet basis at that scale. This most compact representation of
the signal is useful for signal processing, but is rather difficult to in-
terpret visually as it produces discrete blocks and an aperiodic shift in
the time series results in a different image [31]. Thus, nonorthogonal
wavelet analysis is commonly used which provides a smoother (arbi-
trary number of scales and number of samples per scale) and more
intuitive representation of the data.
Torrence and Compo [31] suggest the following formula to compute

the scale parameter:

s j = s02 jδ j j = 0, . . . ,J (7)

J = log2(Nδ t/s0)
δ j ,

(a) Time domain (b) Frequency domain

Fig. 3. Morlet Wavelet: (a) Plot of the complex Morlet function. The
black line shows the real part, the green line the imaginary one. (b) The
Fourier transform of the Morlet wavelet (s = 10δ t).

where s0 is the smallest resolvable scale and J determines the largest
scale. The choice of a sufficiently small δ j depends on the width in
spectral-space of the wavelet function. For the Morlet wavelet, 0.5
is the largest value for which δ j gives adequate sampling. For more
details see [31].

3.3 Test of Significance
The power spectra computed so far comprise a large variety of subtle
structures and not all of them encode significant changes. When an-
alyzing, for example, a random signal, the resulting power spectrum
will feature coherent structures as well. To distinguish between signif-
icant and random structures, a test of significance can be used [13]. If
a value in a power spectrum is considered to be statistically significant
according to this test, it is unlikely to have occurred by chance. The
confidence is quantified by the test’s confidence level.
Every test of significance begins with a null hypothesis H0. The

null hypothesis tells what is commonly expected and is used to iden-
tify extraordinary events. To establish such a hypothesis, some knowl-
edge/assumption about the underlying process is required. Therefore,
a background spectrum is chosen and it is assumed that different re-
alizations of the process will be randomly distributed about the back-
ground spectrum. For many geophysical phenomena, an appropriate
background spectrum is either white or red noise [31].
A simple model for red noise is the univariate lag-1 autoregressive

or Markov process [31]:

xn = αxn−1+ zn, (8)

where α is the assumed lag-1 autocorrelation, x0 = 0 and zn are taken
from Gaussian white noise. lag-1 autocorrelation measures the corre-
lation between the current and the preceding time step. A red noise
spectrum can be modeled using the discrete Fourier power spectrum
of (8):

Pk =
1−α2

1+α2−2α cos(2πk/N)
, (9)

where k = 0, . . . ,N/2 is the frequency index. If α = 0, the equation
gives a white noise spectrum.
The null hypothesis for the wavelet power spectrum is that the time

series xn has a mean power spectrum given by (9). If a peak in the
power spectrum of xn is significantly larger than what would have been
expected given (9), it is assumed to be a true feature with a certain
confidence. The required confidence level is a parameter of the test.
A common parameter is the 95% confidence level, which is equivalent
to the 5% significance level. The significance level corresponds to the
probability of observing an extreme value by chance. To choose the
appropriate test statistic, the distribution of the time series has to be
determined. Assuming that xn is a normally distributed random vari-
able, then both the real and imaginary part of the transformed signal
x̂k are normally distributed as well. Since the square of a normally dis-
tributed variable is χ2 distributed with one degree of freedom (DOF),
then |x̂k|2 is χ2 distributed with two DOFs, denoted by χ22 [9]. Tor-
rence and Compo [31] showed that if the original Fourier components
are normally distributed, then the wavelet power spectrum |Wn(s)|2 is
χ22 distributed:

|Wn(s)|2
σ2

⇒ 1

2
Pkχ22 (10)
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(a) SST - Mean intensity (b) SST - Size of significant structures (c) SST - Similarity

(d) MSLP - Mean intensity (e) MSLP - Size of significant structures (f) MSLP - Similarity

Fig. 4. Display of wavelet characteristics: (a,d) Mean intensity of the significant structures in each power spectrum. White areas indicate positions
whose power spectra feature no significant structures. (b,e) Size of the significant structures given by number of included pixels. (c,f) Similarity
fields for a position in the Nino3 region.

at time t and scale s, where⇒ indicates “is distributed as” and k is the
frequency index.
To test whether a pixel in the power spectrum belongs to a signif-

icant feature, it has to be compared to the critical value given by the
test statistic (10). To obtain the critical value, the variance σ2 of the
time series is computed first. Afterwards, the background spectrum
(9) is multiplied by the critical value of the χ22 test and the variance
and divided by two. If the value at the current pixel is greater than the
critical value of the corresponding frequency, the pixel is considered
to belong to a significant feature.
Examples of significant regions with different significance levels

are shown in Figure 2.

4 ANALYSIS OF CLIMATE DATA

When applying the theory explained so far to real world data sets,
different aspects in the implementation and visualization have to be
considered. In the following, we will first give a few details on the im-
plementation, continue with the post-processing of the wavelet plots
to allow for an easier analysis of the data and conclude with the lay-
out of the graphical user interface that is used for visualization and
exploration.

4.1 Implementation Details
The first step in the wavelet analysis pipeline is the computation of the
wavelet power spectra. The computation of a single line in a power
spectrum consists of three steps: (1) Fourier transformation of the data
and the wavelet. (2) Multiplication of the two signals in Fourier space.
(3) Inverse transformation of the multiplied signal.
For the Fourier transform x̂n of the input time series xn, we use the

FFTW library [5] which provides a fast implementation of the DFT.
The DFT of the data is computed only once for the entire power spec-
trum. On each scale, however, the Fourier transform of the wavelet
Φ̂(sωk) has to be recomputed. As the transformed wavelet can be
given in analytic form, the Fourier transforms ofΦ(sωk) with required
angular frequencies ωk (see Eq. 4) can be directly evaluated using
Equation 3. The result of the multiplication of corresponding data and
wavelet frequencies is stored in a new data vector. The inverse DFT of
the multiplied signal in the new vector is performed using the FFTW
library. This procedure is conducted for all scales s0 through sJ and
stored in an image (matrix of size N×nScales).
The computation of the power spectra for all time series at all posi-

tions in the data set is rather costly (about 1h for each variable). In the
following, we will compute coherent structures in the data by com-
paring power spectra at different positions. To increase the perfor-
mance in these steps, we store a discretized version of each power
spectrum using 1 byte (range [0;255]) per pixel value. Hence, we need

a quantization stepsize. Using the minimum and maximum of the en-
tire data (all positions at all time steps), a theoretical global maximum
of the wavelet transform can be computed analytically. This maxi-
mum would allow for an automated quantization of all power spectra
(quantization: max/256). However, this theoretic maximum is hardly
ever met and the actual maximum in the real data is much smaller and
depends heavily on the structure of the data. Thus, we use an adaptive
quantization that requires slightly more memory by storing the mini-
mum and the maximum for each power spectrum and the individually
quantized version of it (quantization: (max-min)/256).
For the test of significance, Equation (9) has to be evaluated which

requires the lag-1 autocorrelation α . This parameter is estimated for
each variable separately. The lag-k autocorrelation function of a time
series xn with N time steps is defined as [1]

rk =
∑N−k

i=1 (xi− x)(xi+k− x)

∑N
i=1(xi− x)2

(11)

where x denotes the mean of the time series. The lag 1 coefficient is
evaluated for each position and the global lag 1 autocorrelation param-
eter is the mean of these values.

4.2 Information-Assisted Variability Analysis
The visual representation of the power spectrum of a time series gives
a simple and easy to analyze overview over significant frequencies
and their distribution through time. However, the wavelet analysis of
a standard climate data set with grid size 200×100 positions and 2000
time steps results in a set of 20,000 images (∼ 2000×50 pixels each).
A simple investigation of all these images is very labor-intensive and
cumbersome. Thus, methods are required that provide a more abstract
representation of the wealth of information. In the following, we will
present three strategies: The first method extracts scalar characteris-
tics about the individual power spectra, which can be displayed us-
ing a colormap. The second one clusters regions with similar patterns
in the spectra and allows for information-assisted interaction and the
third technique allows for the identification of reoccuring patterns in
different places of the data set using similarity fields.

4.2.1 Definition of Characteristics -
How to Find Power Spectra with Special Properties

Special characteristics of power spectra can give an easy overview over
the structure in the entire data set. Figures 4(a) and 4(d), for example,
highlight areas where the power spectra feature structures with very
high values and hence, high variability in the data. One such simpli-
fying statistic is to assign each position in the data set the mean value
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Fig. 5. Wavelet power spectra featuring different structures.

of the power spectrum. However, this simple statistic often hides rele-
vant structures, as can be seen when comparing the two power spectra
in Figure 5 which have both the same mean (average over all pixel
values). While the first image features one distinct dark structure on a
light background, the second one lacks such a clear formation. To al-
low for a better characterization of significant structures, we first have
to partition the image into relevant structures and background. The
test of significance described in Section 3.3 gives an isovalue (criti-
cal value) for each scale. Pixels holding a value above this threshold
belong with high probability to a significant feature. Using these iso-
values, the power spectra can easily be segmented into relevant signal
and noise (cf. Fig. 2).
After the segmentation of the power spectrum, different scalar

quantities can be derived. Figure 4 depicts (a,d) the mean intensity
of the structures in each power spectrum and (b,e) the size in pixels of
significant structures for different variables. If the user is interested in
signals with a large amplitude, the mean intensity is the better indica-
tor. Large structures that often extend over a longer time period can be
found using the second statistic. A combination of both characteristics
helps finding large structures with large values. Furthermore, we found
the following statistics helpful: the number of contours, the length of
the longest contour and whether the major contour exhibits an upwards
or downwards trend, revealing phenomena that change their frequency
over time.

4.2.2 Clustering using Mutual Information -
How to Find Coherent Structures

While the first technique concentrated on the aggregation of individ-
ual power spectra to a single scalar value, we will now concentrate on
the identification of regions with similar patterns. Thus, the physical
domain is divided into different subregions each holding a character-
istic pattern. Picking few large subregions and displaying their power
spectra simultaneously gives a more detailed overview over the entire
data set and its subdivision into different climatic behavior.
From the large variety of clustering algorithms, we chose the region

growing paradigm as we are looking for contiguous spatial subsets.
The region growing requires three additional pieces of input: Positions
where to start the region growing, a distance measure and a stopping
criterion which tells when to abort the growing process.
As starting positions we chose regions with structures holding high

values. Therefore, each power spectrum in the data set is segmented
using the thresholding technique from the previous section and the
mean of the values above the threshold is computed. The vector of
mean intensities is sorted in decreasing order. The region growing
starts at the position with the power spectrum featuring the structure
with highest values. The distance measure is the mutual information
between both power spectra. Mutual information is a well known sim-
ilarity measure widely used in image registration. To define mutual
information, we need a few basic quantities from information theory
[2].
Entropy is a measure of the uncertainty in the random variable X

and gives the number of bits that are required on average to describe
this random variable. Let X be a discrete random variable with alpha-
bet X and probability mass function p(x) = Pr(X = x), x ∈X . The
entropy H(X) of a discrete random variable X is defined by [2]

H(X) =− ∑
x∈X

p(x) log2 p(x). (12)

The joint entropy measures the uncertainty in a pair of random vari-
ables. The joint entropy H(X ,Y ) of a pair of discrete random variables

(a) SST - Clustering

(b) MSLP - Clustering

Fig. 6. Clustering of power spectra using mutual information.

(X ,Y ) with a joint distribution p(x,y) is defined as [2]

H(X ,Y ) =− ∑
x∈X

∑
y∈Y

p(x,y) log2 p(x,y) (13)

The mutual information is a measure of the amount of informa-
tion that one random variable contains about another. Alternatively,
it can be thought of as the reduction in the uncertainty of one ran-
dom variable due to the knowledge of the other one. Consider two
random variables X and Y with joint probability mass function p(x,y)
and marginal probability mass functions p(x) and p(y). The mutual
information I(X ,Y ) is then defined by [2]

I(X ,Y ) = ∑
x∈X

∑
y∈Y

p(x,y) log2
p(x,y)

p(x)p(y)

= H(X)+H(Y )−H(X ,Y ). (14)

Mutual information is symmetric, i.e., I(X ,Y ) = I(Y,X). It can be
thought of as the dependence between the two random variables and
is equal to zero if and only if X and Y are independent.
In the present case, the two random variables X and Y represent the

pixel values in the two power spectra to be compared. The probability
mass function p(X = x) gives the probability that the power spectrum
contains a pixel of value x. Therefore, a distribution containing 256
bins ranging from 0 to 255 is constructed and for each pixel in the
power spectrum, the bin with the corresponding value is incremented.
The probability p(X = x) is given by getting the value of bin x and di-
viding it by the number of pixels in the power spectrum. Analogous to
the individual distributions the joint distribution p(x,y) is constructed
by using a matrix of size 256×256 and counting the cooccurrence of
value x in the first and value y in the second power spectrum at the
same pixel coordinate. Again, probabilities are calculated by dividing
the matrix entry by the number of pixels in the power spectrum. Af-
terwards, the mutual information, i.e., the distance between two power
spectra, can be directly evaluated using Equation (14).
As mutual information as defined in Equation (14) has no upper

bound, the choice of an appropriate stopping criterion would be diffi-
cult. Hence, normalized mutual information is used to obtain similar-
ity values in the range [0;1]. Normalized mutual information is defined
by [29]

NMI(X ,Y ) =
I(X ,Y )√

H(X)H(Y )
. (15)
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Several other definitions of normalized mutual information exist
(e.g. [22]), which achieve similar results. We chose the normaliza-
tion presented in equation (15), as it ranges precisely from 0 to 1
(NMI(X ,X) = 1) and as it is analog to a normalized inner product
in Hilbert space.
The third input parameter is the stopping criterion, which speci-

fies how much information the current power spectrum has to contain
about the central one (the starting point of the growing process) in or-
der to belong to the same cluster. The stopping criterion is commonly
a scalar parameter specified by the user telling how much difference
between power spectra is allowed. An automatic suggestion would
be helpful, but is difficult to provide, as it highly depends on the struc-
ture of the data. Finding an appropriate threshold is similar to finding a
good isovalue when displaying isocontours, which is not solved either.
In our application we commonly found a threshold for minimal nor-
malized mutual information of 0.5 appropriate. Further studies might
give better insight into a good automatic choice.
Now that we have the three input parameters, the clustering can be

computed. Starting at the power spectrum containing structures with
the highest mean, we iteratively add pixels in the 4-neighborhood of
the current cluster whose normalized mutual information to the power
spectrum of the starting point is greater than the threshold. A status
vector is updated synchronously. Value -2 indicates that the pixel has
not yet been assigned to a cluster. Value -1 indicates that the pixel is
already in the queue of pixels to be checked for similarity. Positive
values give the ID of the cluster the pixel has been assigned to. The
algorithm stops when all pixels have been assigned to a cluster, i.e.,
the power spectrum with lowest structural mean is reached.

4.2.3 Similarity Fields -
How to Find Locations With A Similar Evolution

In climate research the statistical characteristics of several phenom-
ena and their location are well known. In the coupled climate system,
however, events at distinct locations might be linked to each other over
large distances or at different phases. Understanding such teleconnec-
tions, which, for example, are known for the ENSO phenomenon [15],
helps to understand the physical mechanisms of these climate anoma-
lies. To provide assistance in this direction, we found similarity fields
helpful. Similarity fields show for a defined position or cluster the
normalized mutual information between each position in the data set
and the reference point or the mean of the reference subset. Figures
4(c) and 4(f) illustrate this concept for a position in the Nino3 region.
The SST anomaly shows high similarity values for most of the tropi-
cal oceans, implying that teleconnections are likely to occur in these
regions. The similarity field for the MSLP shows a large and strong
maximum in the central tropical Pacific as well as a large maximum
in southeast Asia - both regions which are known to be teleconnected
within the El Niño Phenomenon. This example nicely illustrates the
ability of the similarity fields to highlight teleconnections.

4.3 GUI and Interaction
The GUI of the wavelet analysis program consists of several windows.
The main window as illustrated in Figure 7 visualizes the data set to
be analyzed using a colormap. The user can interactively switch be-
tween the following representations: single time step of the original
data, clustered regions, and property fields (i.e., mean intensity or size
of relevant structures). By clicking with the right mouse button into
the field, a pop-up menu is started providing access to additional in-
formation. The user can display the time series data and/or the wavelet
power spectrum at the selected position. Moreover, we integrated an
automatic selection of regions that are relevant in climate change re-
search such as the Nino3 and Nino3.4 regions [32] and the positions
used for the definition of the NAO and SOI index and corresponding
differences. When selecting either of the options an additional window
opens to display the required information.

5 RESULTS

In order to verify the robustness of the framework described above,
we have analyzed the IPCC A1B simulation data with respect to the

Fig. 7. Main window of the wavelet analysis application.

Fig. 8. Analyzed positions: The difference between the mean sealevel
pressure of Tahiti and Darwin is used to define the southern oscillation
index (SOI). Position 1 is located inside the Nino3 region. Extraordinary
wavelet patterns are observed at position 2. (Image courtesy of the blue
marble project [28].)

suspected variability changes of the El Niño phenomenon. We always
repeated the same analysis steps with a subset of the Control simula-
tion (CTL), where the CO2 concentration was kept frozen at the prein-
dustrial level of 1860. Changes of the frequency and the magnitude
of the fluctuations caused by climate change should supposedly not be
detectable in the CTL run.
Figure 4(a) shows the intensity map of the SST variability for the

entire time series. A pronounced maximum spans the tropical Pacific
in east-west direction. In the northern mid-latitudes, two other even
stronger maxima are visible. These are frontal regions, where the sub-
polar and subtropical gyre waters meet. In the Atlantic, variations
in the position of the strong meridional temperature gradient between
northward advected warm Gulf Stream water masses and southward
advected cold water masses of the Labrador Current can be observed.
Variations in the positions of the front cause the regional maximum
of temperature variations. Another strong maximum is located in the
north Atlantic at the edge of the Arctic sea ice. The maximum reflects
the retreat of the sea ice due to anthropogenic warming.
The map with the size of the significant regions (Fig. 4(b)) does not

show outstanding features for the SST, except for some maxima along
the sea ice edges. The clustering (Fig. 6), though, shows some larger
and therefore interesting structures in the Tropics. In the mid-latitudes,
the clustering yielded mainly smaller regions, which can be explained
by a spatially more heterogeneous variability.
The intensity map for the MSLP (Fig. 4(d)) shows quite strong

maxima in the mid latitudes and over the poles, while the variability
in the Tropics is relatively weak. The analysis of the size of the sig-
nificant structures (Fig. 4(e)), though, results in strong maxima in the
tropics. The statistical properties of the cyclone activity in the mid lat-
itudes causes strong variability, while the less noisy MSLP patterns in
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(a) CTL SST at Position 1 - Significance Level 5%

(b) A1B SST at Position 1 - Significance Level 5%

Fig. 9. Wavelet power spectrum and original time series of (a) CTL SST
and (b) SST for a position in the Nino3 region (position 1 in Fig. 8).

the Tropics allow to identify larger similar regions, finally resulting in
larger coherent structures through the clustering process (Fig. 6).

In order to find and analyze teleconnections, it proved to be helpful
to display regions with similar variability properties for a given region
or location. In Figure 4(c) and 4(f), the similarity of the SST and
MSLP variability is shown for a selected location within the Nino3
region.

Figure 9 shows, for the Nino3 region, the time series of the SST
(red curves) and the according temporal development of the power
spectrum for the CTL experiment (a) and for the IPCC A1B simulation
(b). While the CTL simulation (a) does not show any trends in the time
series and in the power spectrum, the expected global warming trend
and a shift towards enhanced amplitudes can be observed in the time
series of the A1B run (b). The according power spectrum shows a shift
towards shorter periods: throughout the 21th century, an increasing
number of events can be observed in the range between 2 and 4 years.

The variability of the SOI shows a similar change towards shorter
time scales as the SST in the Nino3 region (reduction of energy in
time band between 4 and 8 years and enhanced variability below 2
years). However, the enhancement of the amplitude of variability is
not as obvious (cw. Fig. 10). The zonal wind on the equator west of
the Nino3 region shows a behavior rather similar to the SST (Fig. 11):
enhanced variance and more variability during the 21st century with
time scales below 4 years. But this quantity also shows a tendency
towards more decadal variability.

The time series of SST east of Tasmania shows a quite interesting
behavior (see position 2 in Fig. 8 and wavelet plot Fig. 12). The strong
amplitude in the 1-year band reflects a change of the seasonal cycle of
the SST in a warming climate. The temperature maximum shifts from
February to March and the coldest month from September to October
(Fig. 13). Besides, the warming in summer is stronger than in winter,
thus leading to a larger amplitude of the seasonal cycle. For the last
50 years of the experiment, IPCC-A1B shows characteristics of jumps
between two separate states. This would explain the strong increase of
the decadal variability towards the end of the experiment. Figure 14
shows the mean zonal wind (U10M) for the period 1961-1990 encoded
as height field. The height field is colorized by the projected change
of U10M for 2071-2100 relative to 1961-1990. The long and high

Fig. 10. Southern Oscillation Index (SOI): Wavelet power spectrum for
the difference time series between the time series of Tahiti and Darwin
as used for the definition of the SOI (cf. positions in Fig. 8).

Fig. 11. Time series and wavelet power spectrum of the west-east com-
ponent of the 10m wind (U10M) west of the Nino3 region.

ridge north of Antarctica show the westerlies, a very strong wind band
around Antarctica. The red southern side and blue northern side of
the ridge visually show the simulated annual mean poleward shift of
the westerlies due to climate change. The associated changes in wind
stress curl cause a poleward shift of the gyre systems in the South
Pacific. As a consequence warm subtropical waters penetrate further
poleward east of Australia/Tasmania. Whereas in the first part of the
simulation (and in the control simulation) the influence of subtropical
water masses at this location is rather small, it increases in the course
of the simulation. Decadal variability and the associated movement of
a strong water mass front lead to the apparently bipolar distribution of
SSTs at the end of the simulation.

6 DISCUSSION AND CONCLUSION

In this paper we described a framework based on wavelet analysis to
investigate variability climate change data. To make the wavelet anal-
ysis applicable to an entire 2D multivariate data set, three different
approaches were proposed: First, scalar characteristics allow for an
easy overview over the entire data by compressing the data to a single
scalar field. Second, the clustering based on mutual information parti-
tions the domain into regions of similar variability patterns and can be
used to either investigate the spatial dynamics of climate change or to
compare larger regions featuring similar patterns. The third technique,
similarity fields, supports the expert user in identifying regions that
feature similar temporal patterns as familiar ones. Additionally, areas
and locations used by climate researchers to track climate variability
have been integrated into the framework. Direct access to the accord-
ing visualizations for the predefined markers allows for the compari-
son of the data with references found in the literature.
Using the current implementation of the wavelet transform, the

computation of all power spectra for one data set takes approximately
one hour on a standard PC. After this pre-processing step the analy-
sis of the loaded data set is possible with interactive response time.
To decrease preprocessing time, the power spectra can be computed
in parallel. As each computation requires only a single time series of
approximately 3000 double values, memory is not an issue and com-
puting time can be reduced tremendously. A case study evaluating the
use of the different scalar characteristics would be beneficial to auto-
matically suggest appropriate techniques for different fields.
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Fig. 12. Power spectrum and time series of the SST at position 2 -
significance level 5%

Fig. 13. Mean annual cycle of the SST for an area surrounding position
2: (red) 2071 - 2100 and (blue) 1961 - 1990 .

Extending the results of [15] we were able to visually analyze the
transient change of El Niño frequency due to climate change. More-
over, we could identify further interesting warming induced variability
changes east of Tasmania, which has not been described in literature
before.
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