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Abstract

We investigate the late Paleocene to early Eocene (PE) climate about 55 million

years ago, and its sensitivity to a variation of atmospheric carbon dioxide concen-

trations (pCO2) using the coupled atmosphere-ocean-sea ice general circulation model

ECHAM5/MPI-OM.

Applying a moderate pCO2 of 560 ppm yields a warm and ice-free climate with,

compared to a pre-industrial reference, 5 to 8K warmer low latitudes and up to 40 K

warmer high latitudes. This high-latitude amplification is in line with proxy data, yet

the Arctic surface temperatures may still be too low. Using a zero-dimensional energy

balance model as a diagnostic tool reveals that about two thirds of the warming are due

to a reduced atmospheric longwave emissivity, mostly from an increased atmospheric

water vapour content. The remaining one third of the warming is due to a reduced

planetary albedo. The planetary albedo reduction is caused by the lack of glaciers, the

lack of sea ice, reduced snow cover, and a darker vegetation. We suggest that these local

radiative effects, rather than increased meridional heat transports, were responsible for

the low equator-to-pole temperature gradient during the PE.

Increasing pCO2 from 560 to 840 ppm yields an additional surface warming of 3.8 K,

further increasing pCO2 to 1120 ppm yields a runaway climate. The warming during

both pCO2 increase experiments is caused by a decreased longwave emissivity of the

clear sky atmosphere and a decreased shortwave cloud radiative effect, at a ratio of

about 3:1. The large climate sensitivities have to be regarded with caution, as they

may in part be caused by an artificial interaction with ozone.

Irrespective of the pCO2, we find North Atlantic Deep Water (NADW) formation in

the proto-Labrador Sea and a southward deep western boundary current in all stable

simulations. The NADW becomes shallower for larger pCO2. Southern Ocean deep wa-

ter formation for a pCO2 of 560 ppm is relatively weak, exhibits centennial oscillations,

and drives a northward deep water flow in the eastern Atlantic. Decreasing pCO2 from

560 to 280 ppm leads to the onset of strong South Pacific sinking. Increasing pCO2

from 560 to 840 ppm yields reduced Southern Ocean sinking. We do not find sinking

in the North Pacific in any of our runs.

Summing up, we present the first coupled PE climate model solution with moder-

ate pCO2 that shows relatively warm, sea-ice-free high latitudes, and still reasonably

matches lower-latitude sea surface temperature reconstructions. Our runs do not sup-

port the notion that an ocean circulation switch triggered the Paleocene/Eocene Ther-

mal Maximum (PETM). However, our results indicate that the PE climate was very

sensitive to a variation of pCO2, which implies that a relatively small input of carbon —

possibly from methane hydrates — could have caused the warming during the PETM.
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Chapter 1

Introduction

1.1 Motivation and research questions

Warm periods in the Earth’s past provide a challenging test of our understanding of

climate system processes and our ability to predict them (Huber et al. 2000). The late

Paleocene to early Eocene (PE) about 55 to 50 million years ago was the warmest period

during the Cenozoic Era (65 million years ago to present; review in Zachos et al. 2001).

Moreover, the boundary between the Paleocene and the Eocene (54.8 million years ago)

was marked by an extraordinary, short-lived global warming event known as the Pale-

ocene/Eocene Thermal Maximum (PETM), also named Late Paleocene Thermal Max-

imum (LPTM) or Eocene Thermal Maximum 1 (ETM1), which was associated with an

increase of atmospheric greenhouse gas concentrations (e.g., Dickens et al. 1995). This

abrupt warm climate aberration was superimposed on the long-term warming trend

during the Paleocene towards the Early Eocene Climatic Optimum (about 51 million

years ago). In this study, we use the atmosphere-ocean-sea ice general circulation model

(GCM) ECHAM5/MPI-OM to investigate the warm PE climate, the warming during

the PETM, the role of the ocean for the PE climate, and the hypothesis that an ocean

circulation change triggered the PETM.

Paleo-reconstructions suggest that high-latitudes during the PE were very warm —

for example, Estes and Hutchinson (1980) suggested that alligators lived on Ellesmere

Island —, while tropical and subtropical temperatures were only moderately warmer

than at present (e.g., Tripati and Elderfield 2004). This indicates that the equator-

to-pole temperature gradient during the PE was much lower than at present. Climate

models have not been able to reproduce this low equator-to-pole temperature gradient

(Barron 1987; Huber and Sloan 2001; Shellito et al. 2003). To our knowledge, there is

no PE coupled climate model solution consistent with the geologic record. Hence, the

first research question of this study is:

(1) Can we simulate the warm PE climate with its low equator-to-pole temperature

gradient using ECHAM5/MPI-OM?

Because the previous climate models could not reproduce the low temperature gradient,

it was suggested that they lack mechanisms that reduce the temperature gradient.
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Chapter 1 Introduction

Proposed mechanisms include a largely increased ocean heat transport (Covey and

Barron 1988; Sloan et al. 1995), or a high-latitude warming due to changing cloud

properties (Sloan and Pollard 1998; Kump and Pollard 2008; Abbot and Tziperman

2008). We will attempt to answer the question:

(2) What mechanisms may have led to the warm PE climate and the low temperature

gradient?

Estimates for the atmospheric CO2 concentration (pCO2) during the PE range from

near present-day values (300 ppm, Royer et al. 2001) to more than 2000 ppm (Pearson

and Palmer 2000) even before the PETM. We investigate the climate response to a

variation of atmospheric pCO2, to answer the question:

(3) What was the atmospheric pCO2 before the PETM / how much greenhouse gas

forcing do we need to match the reconstructed PE temperatures?

Paleo-reconstructions indicate that the Earth’s surface at the beginning of the PETM

warmed by 3 to 9 K in less than 10,000 years (Röhl et al. 2000; Thomas et al. 2002;

Zachos et al. 2003; Tripati and Elderfield 2004; Sluijs et al. 2006; Zachos et al. 2006).

This surface warming was associated with an input of isotopically light carbon to the

atmosphere-ocean system, which led to a δ13C carbon isotope excursion (CIE) of about

-2.5� and an acidification of the ocean. The CIE and the acidification support the

notion that elevated atmospheric pCO2 drove the PETM (Bowen et al. 2004; Pagani

et al. 2006b; Handley et al. 2008). Yet the source of the carbon remains a mystery

(Pagani et al. 2006a). Dickens et al. (1995) suggested that dissociation of methane

hydrates buried in marine sediments represented the carbon source. The amount of

methane needed to explain the large CIE is relatively small, because the carbon from

bacterially produced methane has a very low average δ13C of -60� (Kvenvolden 1993).

If the carbon originated from the Earth’s mantle (δ13C of about -25�) or from organic

carbon (δ13C of about -5�), the magnitude of the carbon addition necessary to explain

the CIE would be much larger (Dickens et al. 1995). Given the source of the carbon, the

magnitude of the CIE and the magnitude of the surface warming during the PETM can

be used to estimate the PE equilibrium climate sensitivity to a doubling of atmospheric

pCO2. Assuming that methane was the primary driver of the PETM, Pagani et al.

(2006a) computed that an equilibrium climate sensitivity of 6.8 to 7.8 K would be

necessary to explain the warming. They conclude that the PETM either resulted

from an enormous input of CO2 that currently defies a mechanistic explanation, or

climate sensitivity was extremely high. Previous PE modelling studies do not support

such large climate sensitivities. For example, Shellito et al. (2003) found a climate

sensitivity of about 2 K using a slab ocean version of the NCAR Climate System Model

CSM. Recently, Winguth et al. (submitted) confirmed this low climate sensitivity using
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1.2 Outline of the thesis

a PE version of the fully coupled NCAR atmosphere-ocean model CCSM3. Therefore,

we ask the following question:

(4) Does our PE model exhibit a large enough climate sensitivity to support the hy-

pothesis that a methane release caused the PETM?

The methane hydrate dissociation hypothesis requires a trigger. One appealing hy-

pothesis is that an ocean circulation switch caused rapid bottom water warming and

the thermal dissociation of methane hydrates. In fact, Bice and Marotzke (2002) found

an ocean circulation switch from South Pacific to North Pacific sinking, which led to a

widespread bottom water warming in an ocean GCM. In their model setup, the ocean

circulation switch was triggered by an increase of the strength of the hydrological cycle

by 60 %. Relatively recent paleo-reconstructions of ’deep water ages’ support the no-

tion that the onset of the PETM was associated with a switch from southern sinking to

northern sinking (Tripati and Elderfield 2005; Nunes and Norris 2006). The following

question arises:

(5) Using a coupled GCM, can we confirm the hypothesis that an ocean circulation

switch triggered the PETM?

Using a coupled GCM advances the ocean-only GCM approach of Bice and Marotzke

(2002), and necessitates a different strategy in our numerical experiments. Instead of

studying the effect of a stronger, prescribed hydrological cycle, we investigate the ocean

circulation response to a variation of atmospheric pCO2 with all its feedbacks, such as

a variation of the hydrological cycle.

1.2 Outline of the thesis

In Chapter 2, we introduce the PE setup of the coupled atmosphere-ocean-sea ice

GCM ECHAM5/MPI-OM, and we describe and analyse the PE control climate, ad-

dressing the above-defined research questions (1) and (2). In Chapter 3, Section 3.1,

we investigate the sensitivity of our PE model solution to a variation of atmospheric

pCO2, addressing the research questions (3) and (4). In order to maintain numeri-

cal stability of ECHAM5 at high surface temperatures, a modification of its longwave

radiative transport module becomes necessary. We motivate and describe this modifi-

cation in Section 3.2. Moreover, we adapt the prescribed ozone climatology to increased

tropopause heights. This adaptation of the ozone climatology is necessary to avoid ar-

tificial warming in response to too high ozone concentrations in the upper troposphere.

We motivate this ozone adaptation and investigate the sensitivity of our PE simulations

with respect to this ozone adaptation in Section 3.3. In Chapter 4, we concentrate on

the role of the ocean circulation for the PE climate, and investigate the possibility of

9



Chapter 1 Introduction

an ocean circulation switch as a trigger for the PETM, addressing our last research

question (5). We present our conclusions and an outlook in Chapter 5.

Chapter 2 has been submitted for publication in Climate of the Past, and it has been

published in the journal’s access reviewed discussion forum 1. Similarly, the Chapters 3

and 4 are intended as paper drafts, and each of them can be read on its own.

1Heinemann, M., Jungclaus, J. H., and Marotzke, J.: Warm Paleocene/Eocene climate as simulated

in ECHAM5/MPI-OM, Climate of the Past Discussions, 5, 1297-1336, 2009.
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Chapter 2

Warm PE climate

2.1 Introduction

Simulating warm periods in Earth history is a major challenge in climate research.

The very warm climates during the late Cretaceous to early Paleogene (about 100 to

35 Million years ago) seem especially problematic, since model results are not consistent

with paleo-reconstructions of low pole-to-equator temperature gradients and reduced

seasonalities on high-latitude continents. In this study, we aim at reducing this gap

between modelling and proxy data for the late Paleocene to early Eocene (PE), about 50

to 55 million years ago. To this end, we set up a PE version of the coupled atmosphere-

ocean-sea ice general circulation model (GCM) ECHAM5/MPI-OM. Using a simple

energy balance model, we quantify the mechanisms that lead to the warm climate in

our PE GCM.

Evidence for the warm PE climate is provided by a wide range of proxies. Sea surface

temperatures (SSTs) inferred from oxygen isotopes, Mg/Ca ratios, and biomarkers

suggest that the tropics were moderately warmer than at present, while high latitudes

and especially Arctic temperatures were much warmer (e.g., Thomas et al. 2002; Tripati

and Elderfield 2004; Zachos et al. 2003, 2006; Sluijs et al. 2006). Estes and Hutchinson

(1980) found warm-climate proxies such as salamanders, lizards, snakes, turtles, and

an alligator on the Canadian Archipelago (see also Markwick 1994, 1998). Greenwood

and Scott (1995) inferred from the existence of high-latitude palm trees that a large

part of the Earth surface, including continental interiors, had climates with winter

temperatures much higher than today.

Climate models, employing large greenhouse gas concentrations, have been able to

reproduce the high mean temperature of the PE (e.g., Shellito et al. 2003). However,

it has long been noticed that they fail to match the low pole-to-equator temperature

gradient (e.g., Barron 1987). Note that, when Barron (1987) discussed the low pole-to-

equator temperature gradient problem, it was believed that tropical SSTs during the

PE were even lower than at present (e.g., Shackleton and Boersma 1981). This led

Barron (1987) to the conclusion that ’the Eocene polar warmth could be explained by

an energy redistribution, a more efficient poleward heat transport, and external factors
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Chapter 2 Warm PE climate

would be not required’. Ever since, tropical temperature reconstructions have been

adjusted towards warmer conditions (e.g., Sexton et al. 2006). If very high tropical

temperatures are confirmed by further proxy analyses, the mismatch between models

and proxy data may be reduced further (Huber 2008).

Taking the warm poles, relatively cold tropics, and reduced seasonality at face value,

it has been suggested that the climate models lack one or more mechanisms that lead

to such a so-called ’equable’ climate. Increased ocean heat transport has often been

invoked to explain the problematic warm poles (e.g., Covey and Barron 1988). Sloan

et al. (1995) estimated that a 30% increase in (total) poleward heat transport would

be required to maintain Eocene high-latitude temperatures. Huber and Sloan (2001)

revisited the hypothesis of increased oceanic heat transport, and simulated the Eocene

with a fully coupled atmosphere-ocean-sea ice GCM, the Climate System Model (CSM)

version 1 developed at the National Center for Atmospheric Research (NCAR). Their

Eocene model solution showed a near-modern meridional temperature gradient, and a

near-modern oceanic heat transport. They concluded that the theory of increased ocean

heat transport for maintaining low temperature gradients was incorrect or incomplete.

Other hypotheses draw on local radiative changes rather than heat transport. Sloan and

Pollard (1998) suggested that, given high atmospheric methane concentrations, polar

stratospheric clouds might contribute to a high-latitude warming. Kump and Pollard

(2008) found that increased cloud droplet radii and precipitation efficiency could cause

an additional warming and high-latitude amplification. They argued that this change of

the cloud properties could have been a response to a reduced global primary production

by temperature stress, causing a reduction in cloud condensation nuclei concentration.

Abbot and Tziperman (2008) suggested another mechanism related to clouds. They

argued that deep convection during winter in ice-free high-latitude oceans might lead

to high-latitude warming.

Still, to our knowledge, there is no PE model solution consistent with the geologic

record. Modelling the PE remains a major challenge in climate research. We aim at

testing whether the model-proxy data mismatch persists in a PE setup of the state-of-

the-art coupled model ECHAM5/MPI-OM.

The boundary between the Paleocene and the Eocene is marked by an extraordinary,

short-lived global warming event known as the Paleocene/Eocene Thermal Maximum

(PETM), also named Late Paleocene Thermal Maximum (LPTM) or Eocene Thermal

Maximum 1 (ETM1). This event is associated with a massive increase of atmospheric

greenhouse gas concentrations (e.g., Dickens et al. 1995), and is frequently assumed to

be an analogue for future greenhouse warming scenarios (e.g., Alley et al. 2002). Note

that we aim at modelling the already warm background climate during the PE, not the

PETM itself.

To better understand the processes that lead to the warm PE climate in our model,

we compare the PE simulation to a pre-industrial reference simulation (PR). We briefly

12



2.2 Numerical model setup

analyse the atmospheric and oceanic meridional heat transports in the PE model so-

lution compared to PR. However, this study focuses on understanding the radiative

effects responsible for the warm PE climate. Using a simple energy balance model,

we assign the simulated warming of the PE climate compared to the PR climate to

greenhouse gas forcing, albedo changes, cloud feedback processes, orographic effects,

and orbital changes.

The chapter is organised as follows. In Section 2.2, we describe the atmosphere-

ocean-sea ice GCM ECHAM5/MPI-OM, focussing on the settings specific to the PE.

In Section 2.3, we describe the simulated PE climate, briefly compare it to the geologic

record, and highlight differences compared to PR. In Section 2.4, we analyse the differ-

ent mechanisms that lead to the warm PE climate in our simulation. In Section 2.5,

we present a discussion and conclusions.

2.2 Numerical model setup

The model ECHAM5/MPI-OM is based on the tropospheric model ECHAM5 resolving

the atmosphere up to 10 hPa, the ocean-sea ice model MPI-OM, and the OASIS coupler.

In this chapter, we describe the basic model properties, boundary conditions, and

parameter choices we use in our PE setup of ECHAM5/MPI-OM.

2.2.1 Atmosphere model (ECHAM5)

The atmosphere general circulation model ECHAM5 (here: version 5.3, Roeckner et al.

2003) has been developed from the operational forecast model of the European Centre

for Medium-Range Weather Forecasts (ECMWF) and a parameterisation package de-

veloped in Hamburg. ECHAM5 has a spectral dynamical core that solves the equations

for vorticity, divergence, temperature and the logarithm of surface pressure in terms

of spherical harmonics with a triangular truncation. Transport of water vapour, cloud

liquid water, and cloud ice is computed on a Gaussian grid, using a flux-form semi-

Lagrangian scheme (Lin and Rood 1996). We use the spectral truncation T31, which

corresponds to a Gaussian grid with a gridpoint spacing of approximately 3.75◦.

The shortwave radiation scheme (Fouquart and Bonnel 1980) has four spectral bands,

one for visible and ultraviolet, and three for the near infrared. The scheme includes

Rayleigh scattering, absorption by water vapour, ozone (O3), carbon dioxide (CO2),

methane (CH4) and nitrous oxide (N2O). Water vapour is a prognostic variable. Ozone

is interpolated in time from a monthly zonal mean climatology (Fortuin and Kelder

1998). Carbon dioxide, methane and nitrous oxide are assumed to be uniformly mixed.

Carbon dioxide estimates for the PE range from 300 ppm to more than 2000 ppm before

the PETM, and even higher concentrations during the PETM (e.g., Pearson and Palmer

2000; Royer et al. 2001). Since we aim at simulating the PE background climate, we
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Chapter 2 Warm PE climate

use a relatively low carbon dioxide concentration of 560 ppm, which is twice the pre-

industrial value. There is no proxy available for methane nor for nitrous oxide. For

simplicity, methane and nitrous oxide are set to pre-industrial values (concentrations

given in Table 2.1).

Longwave radiation is computed in the Rapid Radiative Transfer Model (RRTM)

developed by Mlawer et al. (1997). The RRTM scheme computes fluxes in the spectral

range 10 cm−1 to 3000 cm−1. The computation is organised in 16 spectral bands and

includes line absorption by water, carbon dioxide, ozone, methane, nitrous oxide, and

aerosols. Aerosol distributions are prescribed following Tanré et al. (1984).

The cloud scheme consists of prognostic equations for water vapour, liquid and solid

water, and bulk cloud microphysics. Cloud cover is computed diagnostically from

relative humidity following Lohmann and Roeckner (1996).

We interpolate the orography from a 55 Ma 2◦×2◦geography reconstructed by Bice

and Marotzke (2001) (Fig. 2.1a). The standard version of ECHAM5 utilises a param-

eterisation developed by Lott and Miller (1997) to account for interactions between

subgrid-scale orography (SSO) and the atmospheric flow. This SSO parameterisation

needs the standard deviation, anisotropy, slope, orientation, minimum, maximum, and

mean elevation of the orography for each gridpoint. Since we do not have that infor-

mation for the PE, we switch the SSO parameterisation off in the PE run.

For simplicity, we prescribe a globally homogeneous vegetation (parameters given

in Table 2.1), which is characterised by a lower albedo compared to the PR average,

a slightly larger leaf area index, and a larger forest fraction, consistent with a larger

fraction of high-latitude and dark, tropical forests (see, e.g., Utescher and Mosbrugger

2007, for an Eocene vegetation reconstruction). The leaf area index does not vary

seasonally in the PE setup. We prescribe a surface roughness length that resembles

the pre-industrial average over land. The soil and vegetation parameter settings are

akin to a present-day, woody savanna during its growing season (Hagemann et al. 1999;

Hagemann 2002).

River runoff is treated interactively in the atmosphere model, and the respective fresh

water flux is passed to the ocean as part of the atmospheric freshwater flux field. In

our PE setup, we assume that rivers flow along the geopotential height gradient but

overleap valleys such that no lakes are formed.

Orbital parameters in our PE simulation are set to constant values (see Table 2.1).

The longitude of perihelion, the obliquity, and the eccentricity as computed by Laskar

et al. (2004) vary on timescales much shorter than the length of the PE period (Fig. 2.2).

Moreover, Laskar et al. (2004) reported that their simulation of the orbital parameters

becomes uncertain for more than 40 to 50 Ma ago. We select a longitude of perihelion

such that the northern hemisphere winter occurs in the aphelion (almost like today).

The present-day obliquity and eccentricity are rather extreme values. For the PE, we

select an obliquity and an eccentricity closer to the temporal average of the solution by
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Figure 2.1: (a) PE orography interpolated on the Gaussian grid that corresponds to the

T31 spectral truncation; displayed orography not spectrally filtered. (b) PE bathymetry

as used in MPI-OM.
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Figure 2.2: (a) Eccentricity, (b) obliquity, and (c) longitude of perihelion as computed

by Laskar et al. (2004) (thin grey line), constant values as used for the PE setup (heavy

black), and pre-industrial values (heavy black, dashed; for the year 2000 a.d. according

to Berger 1978, see also Table 2.1).

Laskar et al. (2004, see Fig. 2.2).

2.2.2 Ocean and sea ice model (MPI-OM)

The Max-Planck-Institute Ocean Model (MPI-OM, here: version 1.2) is a z-coordinate

global GCM based on the primitive equations for a hydrostatic Boussinesq fluid with

a free surface (Marsland et al. 2003). Scalar and vector variables are formulated on

an orthogonal curvilinear C-grid (Arakawa and Lamb 1977). Along-isopycnal diffu-

sion is implemented following Griffies (1998). Horizontal tracer mixing by unresolved

eddies is parameterised following Gent et al. (1995). For the vertical eddy viscosity

and diffusion the Richardson-number dependent scheme of Pacanowski and Philander

(1981) is applied. Since the Pacanowski-Philander (PP) scheme in its classical form

underestimates the turbulent mixing close to the surface, an additional wind mixing

parameterisation is included. In the presence of static instability, convective overturn-

ing is parameterised by greatly enhanced vertical diffusion. A bottom boundary layer

slope convection scheme allows for an improved representation of the flow of statically

unstable dense water over sills. The effect of ocean currents on surface wind stress is

accounted for following Luo et al. (2005). The embedded sea ice model consists of sea

ice dynamics following Hibler (1979) and zero-dimensional thermodynamics following

Semtner (1976). For more details on MPI-OM and the embedded sea ice model see

Marsland et al. (2003) and Jungclaus et al. (2006).

To apply MPI-OM to the PE, we include the PE bathymetry and generate an ap-

propriate model grid. As for the orography in the atmospheric model, we interpolate

the bathymetry from the reconstruction by Bice and Marotzke (2001). The MPI-OM
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2.2 Numerical model setup

parameter PR PE

carbon dioxide concentration (pCO2) 278 ppm 560 ppm

methane concentration (pCH4) 0.65ppm 0.8 ppm

nitrous oxide concentration (pN2O) 0.27ppm 0.288ppm

total solar irradiance 1367W m−2 1367W m−2

eccentricity of the Earth’s orbit 0.0167 0.0300

obliquity or inclination of the Earth’s axis 23.44o 23.25o

longitude of perihelion 283o 270o

land surface background albedo 0.25 0.16

sea surface albedo 0.07 0.07

vegetation ratio 0.4 0.4

leaf area index (LAI) 2.2 2.3

forest fraction 0.26 0.40

maximum field capacity of soil (single bucket water height) 0.6m 1.2m

FAO soil data flag (1∼sand, 3∼mud, 5∼clay) 2.6 3

surface roughness length over land 1.6m 1.6m

Table 2.1: ECHAM5 input parameters as used in the PE model setup compared to those

in the pre-industrial reference run (PR); FAO determines volumetric heat capacity and

thermal diffusivity of soil; note that, while the PE land surface is homogeneous, the

land surface parameters for PR are spatially variable; the PR values given here are

mean values. The pre-industrial orbital parameters are given for the year 2000 a.d.

according to Berger (1978) while, actually, the orbital parameters in PR vary temporally

according to VSOP87 (Variations Séculaire des Orbites Planétaires, Bretagnon and

Francou 1988).
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Figure 2.3: Hovmöller diagram of the global ocean potential temperature in the PE

simulation (50 year running mean).

grid structure allows for an arbitrary placement of the grid poles; we generate a grid

with a grid-North Pole on Paleo-Asia and a grid-South Pole on Paleo-South America

(Fig. 2.1b). This model grid has several advantages. Positioning the grid-poles over

land removes the numerical singularities associated with the convergence of meridians

at the geographical poles. Positioning the grid-poles on wide landmasses allows us to

reduce the total number of gridpoints. Moreover, this setup yields a higher resolution

of many small but important seaways (e.g., open North Atlantic, Central American

Seaway, Tethys Seaway, India-Eurasia gateway; Bice and Marotzke 2002). The grid

spacing varies between 70 km around South America and 430 km in the Pacific. We

use 40 levels in the vertical, of which 9 levels are in the uppermost 100 meters and 18

levels in the uppermost 500 meters.

2.2.3 Model spinup

To approach the equilibrium PE climate state, we run the model for 2500 years. The

atmosphere and the ocean are initialised at rest. The ocean is initialised at a potential

temperature of 283 K, and a salinity of 34.3 psu, which is approximately the salinity we

would get in the present-day ocean if all glaciers melted completely. The atmosphere

approaches its equilibrium after some 150 years, whereas in most ocean basins the

transient phase lasts for about 1000 years. After 1000 years, the globally averaged

temperatures even at the deepest levels only increase by less than 0.3 K per 1000 years

(Fig. 2.3).

The Arctic deep ocean takes especially long to equilibrate, since it is only connected

to the other basins via shallow sills. Moreover, the Arctic is stratified due to fresh

surface water that inhibits vertical mixing. After 2000 years, the Arctic deep ocean is
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2.3 Description of simulated PE climate

8 to 10 K warm and still warming by more than 1K per 1000 years (not shown).

2.2.4 Pre-industrial reference (PR)

In this study, we compare the PE simulation to a 2200 year long ECHAM5/MPI-OM

simulation with pre-industrial boundary conditions that has been initialised from Levi-

tus data. We refer to this pre-industrial reference simulation as PR. The pre-industrial

boundary conditions include the bathymetry, orography, greenhouse gas concentrations,

soil and vegetation properties, and orbital parameters (Table 2.1). The pre-industrial

boundary conditions also include the subgrid-scale orographic information; the SSO

parameterisation is switched on. Moreover, PR uses a modified physical parameteri-

sation of friction and diffusion to improve the representation of the El Niño-Southern

Oscillation (ENSO, see Jungclaus et al. 2006), while PE uses the standard MPI-OM

parameter settings as specified by Marsland et al. (2003). While the orbital parame-

ters in PE are constant, the parameters in PR vary temporally according to VSOP87

(Variations Séculaire des Orbites Planétaires, Bretagnon and Francou 1988). The phi-

losophy behind this approach is to compare the PE simulation to an as good as possible

representation of the pre-industrial climate.

An alternative approach to set up a pre-industrial reference would be to degrade the

pre-industrial boundary conditions to the level of accuracy available for the PE (see,

e.g., Huber et al. 2003), which would worsen the representation of the pre-industrial

climate. Such a degradation would also include to switch off the SSO parameterisation.

To test the effect of the SSO parameterisation, and to ensure that neither the ENSO-

tuning nor the dynamic orbital parameters have a major effect on the pre-industrial

climate, we perform a 400 year long pre-industrial sensitivity run. This sensitivity

run restarts from PR, it does not use the SSO parameterisation nor the ENSO-tuning,

and it uses constant orbital parameters as specified in Table 2.1. Moreover, it uses

the PE concentrations of nitrous oxide and methane (Table 2.1), and a carbon dioxide

concentration of 280 ppm (instead of 278 ppm). We find that these differences in the

model setup compared to PR lead to a global warming of approximately 0.8 K. The

warming is largest at northern high latitudes, where it reaches up to 3 K. However, the

differences between this pre-industrial sensitivity run and PR remain small compared

to the differences between PE and PR. Using the pre-industrial sensitivity run instead

of PR would lead to a small modification of some quantitative results, but the general

results and conclusions of this work are not affected.

2.3 Description of simulated PE climate

The aim of this section is to describe the simulated PE climate, to briefly compare it

to proxy data, and to identify the main differences between PE and PR.
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Figure 2.4: Annual mean surface temperature averaged over the last 200 years of (a)

PE, and (b) the pre-industrial reference (PR).

2.3.1 Surface temperature

The simulated PE Earth’s surface is on average 297 K warm and basically ice-free.

There is one small area in the Weddell Sea, and one small area north of proto-Greenland

that do have a little bit of sea ice in a few, exceptionally cold winters. The sea ice

fraction in these areas amounts to less than 0.1% with a sea ice thickness of less than

3 mm.

The highest annual mean surface temperatures of 313 to 314 K occur in low altitude

areas of South Asia, some areas in central South America, and Africa (Figure 2.4a).

During local summers, surface temperatures reach up to 325 K in South Asia, 322 K in

central South America, and 318 K in North Africa (temperatures are 200-year means

of the warmest month).
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2.3 Description of simulated PE climate

The lowest annual mean surface temperatures of about 270 K occur over the Antarctic

continent. Antarctic summer surface temperatures are around 295 K even at the coldest

places. In the northern hemisphere, the lowest surface temperature of 271 K occurs in

the Rocky Mountains, where monthly means vary between 261 K and 285 K. The Arctic

has the coldest summers on the PE globe; the warmest Arctic monthly mean SSTs only

reach about 280 K.

Local winter snow depths reach 1.2 m in the Rocky Mountains, 40 cm in Greenland,

30 cm on the Antarctic continent, and 20 cm in Siberia. During local summers all the

snow melts away; there is no long-term snow accumulation.

2.3.2 Comparison to proxy data

We select six different SST reconstructions from the literature to compare them to the

simulated zonal mean SSTs (Figure 2.5a). We find that five of the six selected SST

reconstructions are close to the simulated seasonal variability of the zonal means. One

reconstruction differs very much from the simulated zonal mean SST: Sluijs et al. (2006)

inferred Arctic SSTs of about 291 K from the biomarker TEX86. The reconstruction

may, however, be biased toward summer SSTs. The simulated monthly mean Arctic

SSTs vary between 276 and 280 K. Thus, the simulated Arctic surface is 11 to 13 K

colder than inferred by Sluijs et al. (2006).

The annual mean SSTs in the proto-Labrador Sea amount to about 290 K. Note

that Ellesmere Island, where Estes and Hutchinson (1980) found the varanid, tortoise

and alligator remains, is in the vicinity of the Labrador Sea. According to Markwick

(1998), the minimum thermal limit for crocodiles is a coldest-month mean temperature

of 278.7 K. While our coldest-month proto-Labrador Sea surface temperature amounts

to more than 285 K, our coldest-month land surface temperatures in the vicinity of the

proto-Labrador Sea fall just below 270 K. Note that SSTs in the proto-Labrador Sea

are about 7 K warmer than SSTs in the North Pacific at similar latitudes. We will

attempt to explain this zonal temperature difference in Chapter 4. North American

continental temperatures east of the Rocky Mountains amount to more than 285 K,

and monthly means are above freezing all year round south of 55◦ N in that area. This

relatively warm area matches the continental area where Markwick (1994) found fossil

crocodiles.

2.3.3 PE-PR temperature differences

The PE surface is on average 9.4 K warmer than the PR surface (Table 2.2). We find a

large high-latitude amplification of this warming (Figure 2.5b). The low-latitude zonal

mean PE surface temperatures are about 5 to 8 K warmer than in PR, while northern

high latitudes are warmer by up to 20 K, and southern high latitudes are warmer by

up to 40 K. The SST PE-PR differences are smallest in the South Atlantic and North

21



Chapter 2 Warm PE climate

−90 −45 −30 −15 0 15 30 45 90
270

280

290

300

310

latitude [oN]

se
a 

su
rf

ac
e 

te
m

pe
ra

tu
re

 [K
] a)                                                                             

1)

2) 3) 4)

5)

6)

−90 −45 −30 −15 0 15 30 45 90
0

10

20

30

40

latitude [oN]

P
E

−
P

R
 te

m
pe

ra
tu

re
 d

iff
er

en
ce

 [K
]

b)                                                                            

 

 
sea surface
land surface
total potential
total surface

Figure 2.5: (a) Sea surface temperature in PE (solid), and in PR (dashed); the shading

indicates the seasonal variability of the 200-year climatology (differences between the

warmest and coldest months); crosses are SST estimates from proxy data for the pre-

PETM published by 1) Thomas et al. (2002) based on δ18O, 2) and 3) Tripati and

Elderfield (2004) based on Mg/Ca ratios assuming the Mg/Ca ratio of seawater to be

5.15 mmol/mol, 4) Zachos et al. (2003) based on TEX86, 5) Zachos et al. (2006) based

on TEX86, 6) Sluijs et al. (2006) based on TEX86. (b) Annual mean temperature

differences between PE and PR for the total surface (heavy, black), the dry potential

temperature at the global mean surface pressure of 985.5 hPa (grey), only land surface

(green), and only sea surface (blue). The horizontal scale is such that the spacing

between the latitudes is proportional to the area of the Earth’s surface between them,

i.e., is linear in the sine of the latitude.
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2.3 Description of simulated PE climate

and South Pacific subtropical gyres at about ±15◦ N. The PE zonal mean SSTs are

about 5 K warmer at low latitudes, about 10 K warmer in the Southern Ocean, and up

to 12 K warmer at 45◦ N.

While the surface temperature PE-PR difference increases towards higher latitudes,

the SST PE-PR difference north of 50◦ N decreases towards the North Pole. This

difference occurs because the SSTs in PR cannot fall below the freezing point of sea

water. Over land, the surface temperature as defined in ECHAM5 is computed from

the energy balance at the land surface - atmosphere interface. It is not identical but

close to the 2 m air temperature. Over water, the surface temperature in ECHAM5 is

identical to the SST, which in MPI-OM is the mean temperature of the uppermost,

12 m thick layer. In the presence of sea ice, the surface temperature is defined as the

temperature at the sea ice - atmosphere interface. Note that PE is basically sea ice

free, while PR has sea ice both in the northern and in the southern hemisphere (see

below-freezing surface temperatures in Figure 2.4b). At least 80% of the PR Arctic

ocean remain sea-ice covered all year round, the average sea ice thickness amounts to

about 3m. During the northern hemisphere winter, the sea ice extends to about 50◦ N.

The Antarctic sea ice border in the southern hemisphere winter reaches about 65◦ S,

most of the Antarctic sea ice is less than 1m thick.

2.3.4 Differences in the hydrological cycle

Compared to PR, the PE hydrological cycle is intensified by about 25% (Figure 2.6).

Convective precipitation is higher by about 0.3 m per year (20 to 30%) at low latitudes

between ±10◦ N. Also, convective precipitation is higher by about 0.2 m per year at

latitudes higher than 30◦, which is remarkable since there is hardly any convective pre-

cipitation at high latitudes in PR. This is consistent with the hypothesis that convective

clouds cause high-latitude warming in PE (Abbot and Tziperman 2008). The PE peak

large-scale precipitation is higher than in PR by more than 0.2 m per year, and it is

shifted to higher latitudes. Snowfall is reduced and occurs at higher latitudes only.

Evaporation is enhanced by -0.2 to -0.4 m per year with the largest absolute changes

in the northern-hemisphere low latitudes, and the largest relative changes at the poles.

2.3.5 Meridional heat transport

The total PE and PR atmospheric heat transports are fairly symmetric about the equa-

tor, with maximum poleward transports of about 5.3 PW (1 PW=1015W) at ±40◦ N.

We find that the meridional transport of latent heat is increased in PE compared to

PR, especially the poleward transports around ±45◦ N, and the equatorward transport

in the northern Hadley cell (around 15◦ N). The meridional transports of dry static

energy reduce such that the total atmospheric heat transport in PE and PR hardly

differ from each other (Figure 2.7a).
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Figure 2.6: (a) Zonal mean convective precipitation (red), large scale precipitation

(dark blue), and snowfall (grey); (b) zonal mean evaporation; both precipitation and

evaporation are diagnosed from the last 200 years of PE (solid) and PR (dashed). The

horizontal scale is linear in the sine of the latitude.

The maximum northward heat transport in PE is about 0.5 PW smaller than in PR.

We find that most of this difference is due to a decreased heat transport by the merid-

ional overturning circulation (MOC, see Figure 2.7b). However, the poleward oceanic

gyre heat transport across 45◦ N is also reduced by almost 0.4 PW in PE compared to

PR.

2.4 Analysis of mechanisms causing PE-PR differences

The aim of this section is to isolate and quantify the most important mechanisms that

lead to the surface temperature differences between PE and PR.

2.4.1 Zero-dimensional energy balance model (EBM)

The Earth’s surface in PE is on average 9.4 K warmer than in PR (Table 2.2). To

better understand this large difference in surface temperature, we first compare the

planetary albedos and the effective longwave emissivities in PE to those in PR. The PE

planetary albedo is smaller by 0.026 (Table 2.2); less shortwave radiation is reflected

by the atmosphere. This causes PE to be warmer than PR. The PE effective longwave

emissivity is smaller by 0.044; the fraction of the longwave radiation emitted at the

surface and leaving the top of the atmosphere is reduced. This also causes PE to be

warmer than PR.

To quantify these effects, we apply a zero-dimensional energy balance model (EBM)
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Figure 2.7: (a) Zonally integrated meridional heat transport in the atmosphere due to

the advection of dry air (green), due to the advection of moisture/latent heat (blue),

and the sum (black), for PE (solid) and PR (dashed), computed from the last 100 years

of each run with 6 hourly instantaneous sampling; (b) zonally integrated oceanic merid-

ional transport of internal energy due to the meridional overturning circulation (MOC,

blue), due to the gyre circulation (green), and the sum (black), for PE (solid) and

PR (dashed), computed from monthly means of the last 1000 years of each run. The

horizontal scale is linear in the sine of the latitude.
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parameter PR PE

surface temperature τs 287.6K 297.0K

mean surface pressure 985.5 hPa 985.5hPa

mean sea level pressure (SLP) 1012hPa 1001hPa

potential temperature at SLP 289.9K 298.4K

planetary albedo α 0.318 0.292

clear sky planetary albedo αc 0.173 0.133

surface albedo αs 0.137 0.094

effective emissivity ǫ 0.585 0.541

clear sky effective emissivity ǫc 0.658 0.608

surface temperature τs,ebm 289.5 298.0

surface temperature τs,ebm,c 295.7 304.9

longwave cloud radiative forcing (CRF) 28.8 Wm−2 29.6Wm−2

upward longwave radiation at the surface LWup
s -395Wm−2 -445Wm−2

shortwave CRF -49.6Wm−2 -54.3Wm−2

total cloud cover 0.617 0.576

vertically integrated water vapour 25.5 kgm−2 45.3 kgm−2

spectrally filtered surface height h 231m 141m

Table 2.2: Some key global mean climate parameters; while τs is the global mean

surface temperature as diagnosed from the GCM, τs,ebm is the EBM derived surface

temperature (see Eq. (2.1)) using the GCM diagnosed planetary albedo α and effective

longwave emissivity ǫ, τs,ebm,c is computed from the clear sky values αc and ǫc.

that equates incoming shortwave radiation and outgoing longwave radiation for a grey

atmosphere:
S0

4
(1 − α) = ǫστ4

s,ebm (2.1)

where τs,ebm is the surface temperature predicted by the EBM, S0=1367 Wm−2 the

total solar irradiance, and σ=5.67·10−8Wm−2K−4 the Stefan-Boltzmann constant. The

factor 1/4 accounts for the difference between the area of the circular Earth profile in

the sunshine, and the area of the spherical Earth. We derive the planetary albedo α

and the effective longwave emissivity ǫ from the globally averaged radiative fluxes in

our coupled GCM

α =
SW up

t

SW down
t

, ǫ =
LW up

t

LW up
s

(2.2)

where SW up
t and SW down

t are the upward and downward shortwave fluxes at the top

of the atmosphere, and LW up
t and LW up

s are the upward longwave fluxes at the top of

the atmosphere and the surface, respectively.
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2.4 Analysis of mechanisms causing PE-PR differences

The EBM (2.1), fed with these albedos and emissivities, yields surface temperatures

of 298.0 K and 289.5 K for the PE and PR simulations, respectively (Table 2.2). These

temperatures are off the GCM temperatures by less than 2 K. The EBM temperature

difference between PE and PR of about 8.5 K compares relatively well to the 9.4 K

temperature difference in the GCM. According to the EBM, about 5.7 K of the warming

are due to the reduced emissivity of longwave radiation, and about 2.8 K are due to

the reduced planetary albedo (Figure 2.8). The PE-PR planetary albedo difference is

in line with the PE-PR surface albedo difference of −0.043. The largest zonal mean

PE-PR surface albedo differences are located at high latitudes (Figure 2.9). This is

in part caused by our assumption that there are no glaciers in PE. The other main

factor is that PE, in contrast to PR, is basically sea ice free. Moreover, there is less

high-latitude snowfall in PE compared to PR (Section 2.3.1). Notice that the planetary

albedo change is smaller than the surface albedo change because of cloud effects (see

Section 2.4.2).

2.4.2 Cloud radiative forcing

To estimate the effect of clouds in both GCM simulations, we again apply the EBM

(Eq. (2.1)). This time, however, we use the clear sky radiative fluxes to compute the

clear sky albedo αc and clear sky effective longwave emissivity ǫc

αc =
SW up

t,c

SW down
t

, ǫc =
LW up

t,c

LW up
s

(2.3)

where SW up
t,c is the upward clear sky shortwave flux, and LW up

t,c is the upward clear

sky longwave flux at the top of the atmosphere. Note that the surface emits longwave

radiation depending on the surface temperature, no matter what the cloudiness. The

clear sky fluxes in ECHAM5 are computed assuming that there are no clouds; the

difference between the albedos / emissivities computed from the clear sky and full sky

fluxes thus yields the effect of clouds.

We find that clouds cause a 1 K stronger cooling in PE than in PR (namely 6.5 K

compared to 5.5 K, see Figure 2.10). This is due to a larger increase of the planetary

albedo in PE compared to PR. The planetary albedo increase due to clouds amounts

to 0.159 for PE and only 0.145 for PR. By multiplication with S0/4, this translates

into a shortwave cloud radiative forcing (CRF) of −54.3 Wm−2 in PE compared to

−49.6 Wm−2 in PR. Note that this larger negative shortwave CRF in PE occurs despite

a reduced total cloud cover (Table 2.2). Even though the cloud cover is reduced, the

shortwave effect of the clouds is larger in PE because the surface is darker. According

to the EBM, the PE shortwave CRF causes a cooling of 15.0 or 15.5 K, depending on

whether we change the albedo or the emissivity first (black auxiliary lines in Figure 2.10

are only drawn for emissivity decrease first). The pre-industrial shortwave CRF causes
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Figure 2.8: Using the EBM to trace back the temperature difference between PE and

PR to albedo and emissivity changes in the GCM; grey lines are contour lines of the

EBM-predicted temperature for certain emissivities and albedos, contour intervals are

1K; the red and blue lines are the GCM-diagnosed temperatures for PE and PR, re-

spectively; the circles are the surface temperatures predicted by the EBM using the

GCM-diagnosed emissivities and albedos; the black arrow indicates the EBM-predicted

PE-PR temperature difference; the black lines are auxiliary lines to estimate the albedo

and emissivity caused temperature difference separately.
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Figure 2.9: (a) Zonal mean planetary albedo, (b) surface albedo, and (c) effective long-

wave emissivity for PE (solid) and PR (dashed); (d) PE-PR emissivity change (black)

and PE-PR emissivity change due to clouds (grey) diagnosed from the difference be-

tween the full sky and clear sky emissivities. The horizontal scale is linear in the sine

of the latitude.
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Figure 2.10: Using the EBM to estimate the effect of clouds on the PE-PR temperature

difference; grey lines are contour lines of the EBM-predicted temperature, contour

intervals are 2K; the red and blue lines are the GCM-diagnosed temperatures for PE and

PR, respectively; the circles are the temperatures as computed from the EBM using the

GCM-diagnosed full sky emissivities and albedos; the squares are EBM temperatures

computed for the GCM-diagnosed clear sky emissivities and albedos; the red and blue

arrows indicate the cooling due to clouds in PE and PR, respectively; the black lines

are auxiliary lines to decompose the temperature differences into differences caused by

albedo and emissivity; green numbers are emissivity and albedo changes due to clouds

and the according cloud radiative forcing.
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Figure 2.11: Zonal mean longwave (grey) and shortwave (black) cloud radiative forcing

as diagnosed from PE (solid), and PR (dashed). The horizontal scale is linear in the

sine of the latitude.

a cooling of 13.9 or 14.3 K. The difference of 0.7 to 1.6 K is reduced by about 0.2 K

due to a larger positive longwave CRF for PE (29.6 Wm−2 compared to 28.8 Wm−2).

This larger longwave CRF in PE occurs despite a smaller emissivity change, because

the absolute amount of longwave radiation emitted from the surface is much larger

(445 Wm−2 compared to 395 Wm−2, Table 2.2).

Note that the global mean PE-PR emissivity difference due to cloud cover changes

is small only because the reduced emissivity due to clouds at high latitudes is over-

compensated by an increased low latitude emissivity (grey lines in Figures 2.9c and

2.11). Thus, cloud changes via absorption of longwave radiation cause a high-latitude

amplification of the PE-PR temperature difference. On the other hand, clouds via the

reflection of shortwave radiation diminish the high-latitude amplification due to surface

albedo changes (Figure 2.9a compared to b, and Figure 2.11).

2.4.3 Topographic changes

Some of the regional PE-PR surface temperature differences are caused by topographic

height changes. To estimate this effect, we compare the PE-PR surface temperature

difference to the potential temperature difference. We compute the potential temper-

atures at the global mean surface pressure, assuming a dry adiabatic lapse rate of

9.8 K(km)−1. We find the largest topographic effects in Antarctica, where the lower

PE orography accounts for a zonal mean surface warming of up to 15 K, and in the

present-day Himalaya, where it accounts for a surface warming of about 3 K (compare

solid black to grey line in Figure 2.5b). The global mean spectrally averaged surface

height in PE is about 90 m lower than in PR (Table 2.2). The global mean PE and PR
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potential temperatures at the respective mean sea level pressures differ by 0.9 K less

than the global mean surface temperatures. However, since the global mean surface

pressure in ECHAM5 is prescribed at 985.5 hPa (the atmosphere does not change its

mass; see Trenberth and Smith 2005), the variation of the global mean surface height

does not influence the global mean surface temperature.

2.4.4 Greenhouse gas forcing

As we have seen in Section 2.4.2, clouds only slightly affect the global mean PE-PR

emissivity difference. The non-CO2 well-mixed greenhouse gases in the PE simulation

are kept at pre-industrial levels (Table 2.1). Hence the lower emissivity in the PE sim-

ulation should be due to the doubled CO2 concentration and an increased atmospheric

water vapour content. A doubled CO2 concentration yields an additional radiative

forcing of 3.7 Wm−2 (e.g., Forster et al. 2007). The temperature change due to this

additional radiative forcing can be computed from

S0

4
(1 − α) + 3.7Wm−2

≡ ǫστ ′4

s,ebm

which defines the changed surface temperature τ ′

s,ebm, and results in

τ ′

s,ebm − τs,ebm ≈ 1.1K. (2.4)

The globally averaged, vertically integrated atmospheric water vapour content has

almost doubled in PE compared to PR (Table 2.2). Note the large relative changes

of the water vapour content at high latitudes (Figure 2.12). Unfortunately, we cannot

diagnose the radiative forcing of this water vapour increase directly from our GCM

setup; however, we can compute the water vapour effect as a residual. The total

PE-PR surface temperature difference due to emissivity changes amounts to +5.7 K

(Section 2.4.1). The stronger positive longwave CRF in PE only yields about +0.2 K

(Section 2.4.2). Doubled pCO2 yields +1.1 K. The residual, which we ascribe to the

larger PE atmospheric water vapour content, amounts to +4.4 K.

2.4.5 Orbital forcing

The choice of the orbital parameters as described in Section 2.2 leads to the following

changes in PE, compared to PR: less incoming shortwave radiation in the northern

hemisphere in May, June, and July; less incoming radiation in the Arctic spring and

autumn; and more radiation mostly during December and January in low and mid

latitudes (Figure 2.13b). Integrated over the annual cycle, this amounts to about

0.3 Wm−2 more incoming shortwave radiation at low and middle latitudes in PE, and

about 1 Wm−2 less incoming shortwave radiation at high latitudes (Figure 2.13a). This
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Figure 2.12: Zonal mean vertically integrated water vapour in the PE simulation (solid)

compared to the pre-industrial simulation (dashed). The horizontal scale is linear in

the sine of the latitude.
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Figure 2.13: (a) Annual mean and (b) seasonal cycle of the difference of the zonal mean

incoming shortwave radiation at the top of the atmosphere between PE and PR; red

indicates more incoming radiation in the PE simulation. Contour intervals are 3 Wm−2.

The horizontal scale is linear in the sine of the latitude.
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redistribution of the incoming shortwave radiation at the top of the atmosphere, from

high latitudes to low latitudes, is due to the reduced obliquity in PE (Figure 2.2).

As mentioned in Section 2.2, the orbital parameters obliquity, eccentricity, and lon-

gitude of perihelion vary on timescales that are short compared to the length of the

PE period. Changes of these parameters do not lead to a change of the global mean

incoming shortwave radiation and thus should not, in the first approximation, affect the

global mean temperature. However, other results might change; for example, choos-

ing a larger obliquity in our PE setup would have caused a smaller pole-to-equator

temperature gradient.

From the theory of stellar evolution, it is known that the Sun has gradually bright-

ened by more than 30 % since it settled down to steady nuclear burning of hydrogen

roughly 4.5 billion years ago (e.g., Endal and Sofia 1981; Peltier 2003). Due to this

brightening, the total solar irradiance 55 million years ago was up to 0.6 % (about

8 Wm−2) smaller than at present. According to the EBM (2.1), and given the PE albe-

dos and emissivities, the temperature change due to such a reduction of the radiative

forcing would amount to less than −0.5 K.

2.5 Discussion and conclusions

Using the coupled atmosphere-ocean-sea ice general circulation model ECHAM5/MPI-

OM, we perform a long, stable climate simulation for the late Paleocene to early Eocene

(PE). The simulated PE Earth surface is on average 297 K warm and ice-free. To our

knowledge, we have obtained the first coupled PE simulation with moderate GHG

forcing that is warm enough at high latitudes to keep the poles free from sea ice,

while reasonably matching the lower latitude SST reconstructions. However, if we take

the SST proxy data by Sluijs et al. (2006) at face value, the simulated Arctic surface

temperature is still too cold.

A possible shortcoming of this study is the assumption of a globally homogeneous

vegetation. Including a more realistic vegetation distribution such as the one recon-

structed by Utescher and Mosbrugger (2007) may, at least regionally, affect the climate

(Sewall et al. 2000). Also, we did not include lakes in our PE model setup. Includ-

ing lakes (e.g., the North American Green River lake system) could lead to a further

reduction of the seasonality in the continental interiors (Sloan 1994).

We find that the total atmospheric heat transports in PE and the pre-industrial

reference (PR) are very similar, although the latent heat fraction is larger in PE than

in PR. The total poleward heat transport by the ocean is smaller in PE compared to

PR. We conclude that, looking at zonal averages, the meridional heat transports do not

contribute to the more equable PE climate in our simulation (confirming the results of

Huber and Sloan 2001). The influence of the ocean circulation on the PE climate will

be discussed in more detail in Chapter 4.
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Compared to PR, the simulated PE Earth surface is on average 9.4 K warmer. While

low latitudes in PE are on average about 5 to 8K warmer, northern high latitudes

are warmer by up to 20 K, and southern high latitudes are warmer by up to 40 K.

As a diagnostic tool to roughly understand this temperature difference, we fit a zero-

dimensional energy balance model (EBM) to the PE and PR GCM solutions.

According to the EBM, one third of the PE-PR surface temperature difference is due

to a reduced planetary albedo. The surface albedo in PE compared to PR is reduced

mostly due to the lack of glaciers, the lack of sea ice, and reduced snowfall. However,

this large high-latitude surface albedo change is partly compensated by a more negative

shortwave cloud radiative forcing. In that sense, clouds in our PE model work against

the high-latitude amplification of the snow and ice albedo feedback. Nevertheless, the

planetary albedo reduction is largest at high latitudes.

Two thirds of the warming are due to a reduction of the effective longwave emissivity.

We find that clouds cause a significant reduction of the effective longwave emissivity at

high latitudes. This reduction of the emissivity at high latitudes is overcompensated

by an increase of the emissivity due to clouds at lower latitudes. This way —via their

effect on the longwave emissivity—, clouds in PE compared to PR hardly affect the

global mean temperature, but they cause a polar warming and a tropical cooling.

The doubled atmospheric pCO2 directly causes a warming of about 1 K. We ascribe

the residual of the emissivity-induced PE-PR temperature difference, which amounts

to more than 4 K, to the water vapour feedback. The emissivity change due to the

combination of the doubled pCO2 and the water vapour feedback is also largest at high

latitudes, and thus leads to a high-latitude amplification.

The reduced orographic height in the PE setup should not affect the global mean

temperature, but it does have large regional effects. Up to 15 K of the southern high-

latitude PE-PR surface temperature difference is due to the lower Antarctic surface

height in PE.

As a consequence of the reduced obliquity in our PE setup, a small amount of incom-

ing shortwave radiation at the top of the atmosphere is redistributed from high latitudes

to low latitudes. The resulting annual mean reduction of the radiative forcing by about

1 Wm−2 at high latitudes should only slightly increase the pole-to-equator temperature

gradient in the PE simulation. Note that, for comparison, the cloud-induced emissivity

reduction at high latitudes yields an additional, annual mean CRF of up to 20 Wm−2.

Summing up, the equable PE climate as simulated in ECHAM5/MPI-OM is due

to topographic effects, due to surface albedo changes, and most importantly due to a

reduction of the effective longwave emissivity that is largest at high latitudes.
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Chapter 3

Sensitive PE climate

3.1 Sensitivity to atmospheric carbon dioxide

3.1.1 Introduction

In this section, we investigate the sensitivity of the simulated PE climate to a variation

of the atmospheric carbon dioxide concentration (pCO2). We do this for two reasons.

First, estimates for the atmospheric pCO2 before the PETM range from 300 ppm (Royer

et al. 2001) to more than 2000 ppm (Pearson and Palmer 2000). For the PE control sim-

ulation as described in the previous chapter, we use an atmospheric pCO2 of 560 ppm.

To assess the sensitivity of the PE model solution to the uncertain GHG forcing, we

investigate the climate response to decreased and increased atmospheric pCO2. Second,

the PETM is associated with an increase of atmospheric pCO2. However, neither the

source nor the magnitude of the CO2 input are certain. We compare the pCO2 sensi-

tivity runs, especially the pCO2 increase experiments, to the reconstructed warming at

the beginning of the PETM.

Proxy data indicate that the Earth’s surface at the start of the PETM warmed by

3 to 9K in less than 10,000 years (Thomas et al. 2002; Zachos et al. 2003; Tripati and

Elderfield 2004; Sluijs et al. 2006; Zachos et al. 2006). This on geological timescales

relatively abrupt warming was followed by a more gradual cooling that lasted about

200,000 years (Röhl et al. 2000).

The surface warming was associated with a large input of light carbon (C) to the

atmosphere-ocean system (light meaning a low 13C/12C isotopic ratio). The magnitude

of this light carbon input is measured in terms of δ13C, which expresses the 13C/12C

ratio of a sample, for example of carbon from calcite shells of marine plankton that

sedimented during the PE, relative to the standard of the Vienna Pee Dee Belemnite

fossil (V-PDB) or the Vienna Standard Mean Ocean Water (V-SMOW)

δ13C =
13C/12Csample −

13 C/12Cstandard

13C/12Cstandard

. (3.1)

The size of the δ13C carbon isotope excursion during the PETM was probably about

-2.5� (for an overview on δ13C changes during the last 65 Ma see Zachos et al. 2001;
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Bowen et al. 2004; Pagani et al. 2006a,b; Handley et al. 2008). Zachos et al. (2005)

presented geochemical data indicating a rapid acidification of the ocean during the

PETM, and a shoaling of the ocean’s carbonate compensation depth within less than

10,000 years. Both the acidification and the carbon isotopic excursion support the

notion that elevated atmospheric pCO2 drove the PETM. Yet, the source of the CO2

remains a mystery (Pagani et al. 2006a).

Dickens et al. (1995) suggested that an increase in bottom water temperature could

have led to a change in sediment thermal gradients, dissociation of large quantities

of oceanic hydrate, and release of methane to the ocean-atmosphere inorganic carbon

reservoir. The amount of methane needed to explain the large carbon isotope excursion

is relatively small, because the carbon from bacterially produced methane has a very

low average δ13C of -60� (Kvenvolden 1993). Note that methane, once it is released

to the oxic, sunlit atmosphere, oxidises to form CO2 on a timescale of about a decade

(Brasseur and Solomon 1986; Archer 2007).

Given the source of the carbon (i.e., given its δ13C), the magnitude of the carbon iso-

topic excursion plus the proxy-derived warming at the PETM can be used to constrain

the PE equilibrium climate sensitivity. The equilibrium climate sensitivity is defined

as the global annual mean surface air temperature change experienced by the climate

system after it has attained a new equilibrium in response to a doubling of atmospheric

pCO2 (Randall et al. 2007). Assuming methane as the primary driver of the PETM,

Pagani et al. (2006a) computed that an equilibrium climate sensitivity of 6.8 to 7.8 K

would be necessary to explain the warming.

The acidification and associated rise of the carbonate compensation depth indicate

that the size of the carbon addition was larger than can be accounted for by the methane

hydrate hypothesis (Zachos et al. 2005; Higgins and Schrag 2006). Panchuk et al. (2008)

used an intermediate complexity Earth system model to investigate the sedimentary

response to different PETM carbon release scenarios. They found that 6800 Pg C (δ13C

of -22�) was the smallest pulse to reasonably reproduce observations of the extent of

seafloor CaCO3 dissolution. If 6800 Pg C is the lower bound on pulse size, then the

upper bound on climate sensitivity is reduced to about 4K (second Figure in Pagani

et al. 2006a; Panchuk et al. 2008).

Previous PE modelling studies do not support large climate sensitivities. For exam-

ple, Shellito et al. (2003) found a climate sensitivity of about 2K using a slab ocean

version of the NCAR Climate System Model CSM. Recently, Winguth et al. (sub-

mitted) confirmed this low climate sensitivity using a PE version of the fully coupled

NCAR atmosphere-ocean model CCSM3.

The low CCSM PE climate sensitivity is in line with the relatively low transient

response of 1.5 K, and the low long-term sensitivity of 2.7 K of the CCSM contemporary

climate (Randall et al. 2007). For comparison, the transient response and long-term

sensitivity of the ECHAM5/MPI-OM contemporary climate amount to 2.2 K and 3.4 K,
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Figure 3.1: Experimental setup of the atmospheric carbon dioxide sensitivity exper-

iments. Solid lines show the atmospheric carbon dioxide concentrations in the PE

simulations. We refer to the PE simulations with onefold, twofold, threefold, and

fourfold pre-industrial carbon dioxide concentrations as PE1 (blue), PE2 (black), PE3

(red), and PE4 (orange) respectively. The dashed grey line indicates the pre-industrial

reference.

respectively. Note that the contemporary, long-term climate sensitivities were derived

from simulations using the full atmosphere GCMs coupled to slab oceans, not to the

full ocean GCMs. We investigate the PE climate sensitivity using the fully-coupled

atmosphere-ocean-sea ice GCM ECHAM5/MPI-OM.

This section is organised as follows. In Section 3.1.2, we present the experimental

setup of the CO2 sensitivity runs. In Section 3.1.3, we describe the climate response to

the pCO2 variation. In Section 3.1.4, we compare the simulated surface temperature

change to the reconstructed SST increase during the PETM. In Section 3.1.5, we study

the mechanisms that lead to the surface temperature changes using a zero-dimensional

EBM. In Section 3.1.6, we briefly describe meridional heat transport changes. In Sec-

tion 3.1.7, we focus on the Arctic climate change in response to the pCO2 variation.

Section 3.1.8 presents a discussion of the results and conclusions.

3.1.2 Experimental setup

Using the PE version of ECHAM5/MPI-OM, we perform the following pCO2 sensitivity

runs. Starting in year 2000 of our PE control simulation, we decrease the atmospheric

pCO2 by one percent per year until stabilising in year 2069 at the pre-industrial pCO2

of 280 ppm, and we increase pCO2 by one percent per year until stabilising at 840 ppm

in year 2041, and 1120 ppm in year 2070 (Figure 3.1). We refer to these PE simulations

with onefold, twofold, threefold, and fourfold pre-industrial pCO2 as PE1, PE2, PE3,

and PE4, respectively.
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Figure 3.2: Time series of the global mean surface temperatures for the Paleocene-

Eocene pCO2 sensitivity experiments PE1 (blue; pCO2-decrease to 280 ppm), PE2

(black; control simulation with pCO2 of 560 ppm), PE3 (red; pCO2-increase to

840 ppm), and PE4 (orange; pCO2-increase to 1120 ppm). The indicated tempera-

ture differences are based on the last 200 years of PE1, PE2, and PE3. The black

circles show the points at which the pCO2 concentrations are stabilised.

For the pCO2 increase experiments we modify ECHAM5 in two ways. First, to main-

tain numerical stability of ECHAM5 at high surface temperatures, we ensure positive

definite optical thicknesses in the longwave radiative transport model. We describe

the details of this modification in Section 3.2. Second, we adapt the prescribed ozone

climatology to increased tropopause heights. This adaptation of the ozone climatology

is necessary to avoid artificial warming in response to too high ozone concentrations in

the upper troposphere. The details of this ozone adaptation, and the sensitivity of our

PE simulations with respect to this ozone adaptation are discussed in Section 3.3.

3.1.3 Surface temperature response

The pCO2 decrease from 560 to 280 ppm in PE1 leads to a drop of the equilibrium

surface temperature by more than 4.7 K (Figure 3.2). Note that the global mean surface

temperature at the end of PE1 is still about 4.7 K warmer than in PR, although PE1
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Figure 3.3: (a) PE3-PE2 surface temperature difference; black dots indicate the paleo-

locations for temperature reconstructions by 1) Thomas et al. (2002, based on δ18O),

2) and 3) Tripati and Elderfield (2004, based on Mg/Ca ratios assuming the Mg/Ca

ratio of seawater to be 5.15 mmol/mol), 4) Zachos et al. (2003, based on TEX86), 5)

Zachos et al. (2006, based on TEX86), and 6) Sluijs et al. (2006, based on TEX86);

the numbers indicate the reconstructed SST increase during the PETM. (b) PE1-PE2

surface temperature difference.
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and PR basically have the same prescribed greenhouse gas forcing (Table 3.1). This

means that the PE-PR boundary condition differences other than greenhouse gases

yield a global mean surface temperature difference of about +4.7 K, which is half of

the PE-PR surface temperature difference of 9.4 K as described in Chapter 2. These

4.7 K also include the switched-off SSO parameterisation and ENSO-tuning, and the

constant instead of dynamic orbital parameters, which in combination with the internal

feedback mechanisms cause a warming of about 0.8 K in the pre-industrial simulation

(Section 2.2.4).

Increasing pCO2 to 840 ppm causes a warming of about 3.8 K. This warming due to

the 1.5 fold pCO2 increase, assuming a logarithmic increase of the surface temperature

with pCO2, translates into an equilibrium climate sensitivity of

3.8K

log2(1.5)
= 6.5K. (3.2)

Note that we compute the climate sensitivities from the surface temperatures; if we

used the 2 m air temperatures, we would even get slightly larger climate sensitivities

(Table 3.1). This PE climate sensitivity is almost twice as large as the ECHAM5/MPI-

OM equilibrium climate sensitivity computed for the contemporary climate using a slab

ocean model. It is more than three times as large as the PE climate sensitivity reported

by Shellito et al. (2003) and Winguth et al. (submitted). We will attempt to isolate

the mechanisms that lead to this large climate sensitivity in Section 3.1.5.

Increasing pCO2 to 1120 ppm leads to a runaway effect. After the stabilisation of the

atmospheric pCO2, the global mean surface temperature keeps rising until numerical

problems occur in year 2629 at a global mean surface temperature of more than 313 K.

Note that the global mean surface temperature exhibits a transient drop around the

year 2444. We will explain this drop in Chapter 4. Note that the results of the pCO2

increase experiments depend on the tropospheric ozone parameterisation, which will be

discussed in Section 3.3.

3.1.4 Comparison to reconstructed PETM warming

Sea surface temperature reconstructions suggest that the Arctic had been warm and sea

ice free already before the PETM (Chapter 2, Figure 2.5a, Sluijs et al. 2006). In PE1,

the Arctic surface cools down by more than 11 K to less than 270 K, and is seasonally sea

ice covered. This Arctic climate change will be discussed in more detail in Section 3.1.7.

Overall, PE1 is too cold at high latitudes to appropriately represent the PE climate.

Note feedback mechanisms associated with the formation of sea ice were probably not

at work during the PETM. We should compare the warming during the PETM to the

warming during PE3 rather than to the PE2-PE1 temperature differences.

According to Zachos et al. (2003) and Tripati and Elderfield (2004), the low and mid

latitudes warmed by 3 to 5 K during the PETM (Figures 3.3a and 3.4b). According to
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Figure 3.4: (a) Zonal mean surface temperature difference for PE3 (red), and PE1

(blue) compared to PE2; (b) zonal mean sea surface temperature (SST) difference

for PE3 (red), and PE1 (blue) compared to PE2; crosses indicate differences between

SST estimates from proxy data during and before the PETM; proxy data sources: 1)

Thomas et al. (2002), 2) and 3) Tripati and Elderfield (2004), 4) Zachos et al. (2003),

5) Zachos et al. (2006), 6) Sluijs et al. (2006). The horizontal scale is linear in the sine

of the latitude.

Sluijs et al. (2006), Arctic SSTs warmed by about 5 K. The SST increase in PE3 more

or less matches these reconstructed SST increases. According to Thomas et al. (2002),

the SST in the proto-Weddell Sea increased by as much as 9 K. While the zonal mean

SST increase in PE3 in the Southern Ocean amounts to less than 5K (Figure 3.4b),

locally, we do find a temperature increase of more than 7 K relatively close to the proto-

Weddell Sea (Figure 3.3a). We will attempt to explain this large zonal difference in

Chapter 4. However, the relatively small warming of about 3K at the paleo-location of

Wilson Lake (New Jersey) in PE3 does not at all match the reconstructed SST increase

of 8K by Zachos et al. (2006).

3.1.5 Analysis of climate response and comparison to EBM

Decreasing pCO2 in PE1 leads to an increase of the planetary albedo by 0.012 (Ta-

ble 3.1); the atmosphere reflects more shortwave radiation, which leads to a cooler

climate. At the same time, the effective longwave emissivity in PE1 increases by 0.027;

a larger fraction of the longwave radiation emitted by the surface leaves the top of

the atmosphere, which also leads to a cooler climate. The emissivity increase and the

albedo increase are largest at high latitudes (Figure 3.5a-b). Increasing pCO2 leads

to the reverse effects, a reduction of the planetary albedo by 0.013 and a reduction of

the effective longwave emissivity by 0.016, which both lead to a warmer climate. The
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planetary albedo reduction due to the pCO2 increase in PE3 does not show a very

clear latitudinal structure; the largest reduction occurs over the Antarctic continent.

The emissivity reduction during PE3 is largest at high latitudes. Thus, most of the

relatively small high-latitude amplification of the warming during PE3 in response to

the pCO2 increase should be due to the high-latitude amplification of the emissivity

reduction.

To quantify the different contributions of the albedo and effective emissivity changes

to the global mean surface temperature changes in PE1, PE3, and PE4, we fit a zero-

dimensional EBM to the GCM output. The EBM is described in Section 2.4.1.

For the well equilibrated runs PE1, PE2, and PE3, the EBM-derived global mean

surface temperatures τ ebm
s are 0.8 to 1.0 K higher than the GCM-diagnosed surface

temperatures τs (Table 3.1, Figure 3.6). The EBM, fed with the GCM albedo and

effective emissivity responses to the pCO2 decrease in PE1, predicts a global mean

cooling of 4.8 K, which is very close to the GCM-predicted cooling of 4.7 K. According

to the EBM, the GCM-predicted increase of the effective emissivity causes about 3.6 K

of the cooling. Only about 1.2 K of the cooling are due to the increased planetary

albedo. For the pCO2 increase from 560 to 840 ppm, the EBM predicts a warming of

3.6 K, which is also close to the GCM-predicted warming of 3.8 K. Here, according to

the EBM, the emissivity reduction causes about 2.3 K of the warming. The remaining

warming of 1.3 K is due to a decreased planetary albedo.

To constrain the effects that lead to the runaway climate, we also apply the EBM to

the average of the years 2430 to 2439 of PE4. We refer to this transient time interval

as PE4T. The EBM-predicted temperature for PE4T is 1.4 K higher than the GCM-

diagnosed temperature. The EBM, fed with the GCM albedo and effective emissivity

decreases from PE3 to PE4T, predicts a global mean surface temperature increase by

4.9 K. The GCM-diagnosed temperature increase amounts to only 4.3 K. This mismatch

of 0.6 K occurs because we apply an energy balance model to the unbalanced, transient

climate state PE4T. In the GCM, the surface temperature response lags the emissiv-

ity and planetary albedo changes. At the Earth’s surface, shortwave radiative fluxes,

longwave radiative fluxes, sensible heat fluxes, latent heat fluxes, and conductive heat

fluxes through sea ice should be balanced on a temporal mean if the ocean is in a quasi-

steady state. For PE4T, the global mean heatflux imbalance at the surface amounts

to +2 Wm−2 (Table 3.1), indicating that the ocean still absorbs a significant amount

of heat. For PE1, PE2, and PE3 the global mean oceanic heat uptake amounts to less

than 1 Wm−2.

Surprisingly, for PE1, the heat flux imbalances at the top of the atmosphere and

at the surface amount to +0.9 and +0.1 Wm−2, respectively, even though the global

mean surface temperature shows a small cooling trend during the last 200 years of the

simulation (Figure 3.2). Theoretically, the difference between the imbalance at the top

of the atmosphere and the imbalance at the surface, which amounts to +0.8 Wm−2,
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Figure 3.5: Zonal mean differences between PE3 and PE2 (red), and PE1 and PE2

(blue) of (a) the planetary albedo, (b) the effective longwave emissivity, (c) the plane-

tary albedo computed from the clear sky radiative fluxes, (d) the longwave emissivity

computed from the clear sky radiative fluxes, and (e) the surface albedo. The horizontal

scale is linear in the sine of the latitude.
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Figure 3.6: Climate response to the variation of atmospheric pCO2 decomposed using

the zero-dimensional EBM 2.1. The grey isolines show the EBM surface temperature

as a function of the global mean albedo and emissivity. Isoline intervals are 1 K. The

blue (PE1), black (PE2), red (PE3), and orange (PE4T) lines indicate the global mean

surface temperature τs as diagnosed from the respective GCM runs. Note that, while

the diagnoses for PE1 to PE3 are based on the last 200 years of the equilibrated runs,

the diagnosis for PE4T (T for transient) is based on the years 2430 to 2439 of the not

equilibrated run PE4. To decompose the surface temperature response into albedo-

and emissivity-driven parts, we compute the global mean surface temperatures using

the GCM-diagnosed planetary albedo α and effective emissivity ǫ (circles), the clear

sky planetary albedo αc and clear sky effective emissivity ǫc (squares), and the surface

albedo αs and clear sky effective emissivity ǫc (crosses). Thus, the differences between

the circles and squares are due to clouds, the differences between the squares and

crosses are due to effects of the clear sky atmosphere on the shortwave radiation, i.e.,

absorption and scattering. Pre-industrial reference values are shown in grey (based on

the last 200 years of PR).
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should lead to a warming of the atmosphere. We do not see the atmosphere warm in

PE1. Similar top of atmosphere - surface heatflux imbalances occur for the other simu-

lations. According to Roeckner (personal communication), relatively small mismatches

of less than 1 Wm−2 are an acceptable numerical artefact of ECHAM5.

To differentiate between effects of the surface albedo, effects of the clear sky atmo-

sphere, and effects of clouds, we compute (1) the clear sky effective longwave emis-

sivities and clear sky planetary albedos, and (2) the surface albedos from the GCM.

The EBM, fed with the clear sky emissivities and albedos, yields the global mean sur-

face temperatures for the different climates under the assumption of instantaneously

removed clouds (squares in Figure 3.6). The difference between the temperatures de-

rived from the clear sky planetary albedo and the surface albedo, respectively, reflects

the effects of the clear sky atmosphere on the shortwave radiation (difference between

squares and crosses in Figure 3.6). In ECHAM5, these effects are Rayleigh scattering

and absorption of shortwave radiation by aerosols, CO2, water vapour, ozone, methane,

and nitrous oxide.

The cooling effect of clouds amounts to 6.5 K in PE2, and 5.6 K in PE3. This means

that clouds lead to a positive feedback of 0.9 K in response to the pCO2 increase in PE3.

Compared to PE2, the total cloud cover in PE3 is decreased by about 2% (from 57.6 %

to 55.7 %). The decreased cloud cover in PE3 leads to a reduced reflection of shortwave

radiation, the shortwave cloud radiative effect (CRF) is reduced by 3.2 Wm−2; the

reduced reflection leads to a reduced cooling, hence, to a relative warming. Moreover,

although the total cloud cover is reduced in PE3 compared to PE2, the clouds have a

0.4 Wm−2 larger longwave CRF (Table 3.1), because the surface temperature and thus

the absolute amount of longwave radiation emitted at the surface is larger. Most of

the emissivity reduction in PE3 compared to PE2 is due to the effects of the clear sky

atmosphere. According to Forster et al. (2007), a pCO2 doubling yields a radiative

forcing of 3.7 Wm−2. Hence, the pCO2 increase from 560 to 840 ppm leads to a direct

radiative forcing of 3.7 Wm−2
× log2(1.5) ≈ 2.2 Wm−2, which causes a warming of

about 0.7 K according to our EBM (computation analogue to that in Section 2.4.4).

We attribute the residual clear sky emissivity-driven warming of about 1.5 K to the

increased water vapour content (Table 3.1).

The cooling effect of clouds in PE1 amounts to 6.7 K. This means that, although the

total cloud cover in PE1 is increased by almost 3 % compared to PE2 (Table 3.1), the

positive (cooling) feedback of clouds in response to the pCO2 decrease only amounts to

0.2 K. We now explain why the feedback is so small. The effect of the planetary albedo

decrease by 0.013 during PE1 is diminished, because the clear sky planetary albedo

also increases by 0.008 (Table 3.1). This increased clear sky planetary albedo in PE1

is due to two effects. First, it is due to stronger reflection of shortwave radiation by

the clear sky atmosphere. This effect of the clear sky atmosphere increases the clear

sky planetary albedo at all latitudes (difference between Figure 3.5c and e). Second, it
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is due to an increased surface albedo at high latitudes. This increased surface albedo

is in line with a larger snow and sea ice cover in PE1 (Figure 3.5e, see Arctic climate

change in Section 3.1.7). Moreover, the emissivity increase during the cooling in PE1

is reduced due to clouds; clouds in PE1 have a larger longwave CRF than clouds in

PE2 (Table 3.1).

During the runaway effect in PE4, the surface albedo does not change (Table 3.1).

There is no more snow to be melted. The cooling effect of clouds in PE4T amounts

to 4.3 K, which is 1.3 K less than in PE3. The total EBM-predicted warming in PE4T

compared to PE3 amounts to 4.9 K. This indicates that a reduction of the total cloud

cover (burned clouds) in PE4 causes about 1/4 of the runaway. Although the total

cloud cover is reduced in PE4T compared to PE3, the longwave CRF is increased by

about 1.3 Wm−2. Note that the reduction of the shortwave CRF is about three times

as large as this longwave CRF increase (Table 3.1). Most of the runaway is caused by

a decreased clear sky emissivity. This decreased clear sky emissivity is in line with a

large increase in the vertically integrated water vapour content. According to Forster

et al. (2007) and the EBM, the pCO2 increase from 840 to 1120 ppm directly causes a

warming of about 0.4 K. Note that, using our GCM model setup, we cannot distinguish

between the radiative effects of the different components of the clear sky atmosphere. In

particular, we cannot distinguish between the effect of water vapour and the potentially

large effect of ozone (Section 3.3).

3.1.6 Meridional heat transport changes

We find that the total meridional heat transport hardly changes in response to the

pCO2 variation (Figure 3.7a). The maximum northward heat transport occurs around

30◦ N and amounts to about 5.9 PW for all simulations. The maximum southward heat

transport occurs at about 30◦ S and amounts to 6.6 PW, 6.9 PW, and 7.2 PW for PE1,

PE2, and PE3, respectively. The larger latent heat fluxes in the warmer PE climates

are widely compensated by changes of the dry static energy transports (Figures 3.7b-d).

The reduced atmospheric heat transport in PE1 is partly compensated by an increased

meridional heat transport by oceanic gyres, and by the oceanic meridional overturning

circulation (Figure 3.7e-g). We will describe the PE ocean circulation, and the ocean

circulation changes associated with these heat transports in Chapter 4.

3.1.7 Arctic climate change

The cooling in response to the pCO2 decrease in PE1 is largest in the Arctic, where

the annual mean surface temperature decreases by as much as 11 K (Figures 3.3b and

3.4a). This cooling is largest during the Northern Hemisphere winter (Figure 3.8a), and

is associated with the development of Arctic sea ice (Figure 3.8b). While the Arctic in

PE2 is sea ice free, the Arctic in PE1 is seasonally ice covered. Sea ice starts growing in
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Figure 3.7: Meridional heat transport (MHT) by (a) the total atmosphere-ocean system,

(b) the atmosphere, (c) latent heat in the atmosphere, (d) dry static energy in the

atmosphere, (e) the ocean, (f) oceanic gyres, and (g) the oceanic meridional overturning

circulation (MOC) for PR (grey), PE1 (blue), PE2 (black), and PE3 (red); oceanic

MHT computed from the last 200 years of each run, atmospheric MHTs computed

from 6 hourly values of the last 100 years of each run. The horizontal scale is linear in

the sine of the latitude.
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Figure 3.8: Seasonal variation of (a) surface temperature, (b) sea ice thickness, (c)

effective longwave emissivity, (d) planetary albedo, (e) imbalance of the shortwave

radiation, longwave radiation, sensible heat flux, latent heat flux, and conductive heat

flux through sea ice; positive values mean that the ocean and/or sea ice take up heat

from the atmosphere, and (f) convective precipitation averaged over the Arctic (north of

75◦ N) for PR (grey), PE1 (blue), PE2 (black), and PE3 (red); monthly means derived

from the last 200 years of each simulation.
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September, and on average reaches a maximum thickness of about 1 m (averages taken

over the area north of 75◦ N). For comparison, the average Arctic sea ice thickness in

the pre-industrial reference run amounts to about 3 m all year round.

The largest increases of the planetary albedo and the effective longwave emissivity

in PE1 compared to PE2 occur in the northern hemisphere spring and early summer;

they correlate with the sea ice differences (Figure 3.8). These changes in spring are

the main reason for the high-latitude amplification of the annual mean zonal mean

emissivity and albedo differences between PE2 and PE1 as seen in Figure 3.5. During

the pCO2 increase in PE3, the Arctic planetary albedo is only slightly reduced, because

the sea ice is already gone in PE2 (Figure 3.8d). The Arctic warming in response to the

pCO2 increase from PE2 to PE3 is due to a seasonally homogeneously reduced effective

longwave emissivity (Figure 3.8d). Consequently, the Arctic surface temperatures in

PE3 compared to PE2 are equally warmer by about 5 K for all seasons (Figure 3.8a).

The disappeared sea ice also gives rise to an increased ocean-atmosphere heat ex-

change. During the northern hemisphere winter, the lack of sea ice in PE2 and PE3

leads to an increased oceanic heat release to the atmosphere compared to PE1 (Fig-

ure 3.8e). During summer, the ocean takes up more heat.

Abbot and Tziperman (2008) suggested that deep convection during winter in ice-free

high-latitude oceans might lead to high-latitude warming. We do find that convective

precipitation in the Arctic increases during winter and during summer (Figure 3.8f).

This is consistent with the hypothesis of Abbot and Tziperman (2008). However,

the large-scale precipitation in the Arctic also increases by about 0.2 m per year in

PE2 compared to PE1 (not shown). This large-scale PE2-PE1 precipitation difference

is four times as large as the convective precipitation difference. From the ECHAM5

output fields, we cannot separate the contributions to the emissivity and albedo changes

from the different cloud-types. Hence, we cannot quantify the effect of the mechanism

hypothesised by Abbot and Tziperman (2008) in this model setup.

3.1.8 Discussion and conclusions

We find that reducing pCO2 to 280 ppm starting from the PE control simulation with

560 ppm leads to a cooling of about 4.7 K and regrowing sea ice. Taking proxy data

at face value that suggest warm and sea ice free high latitudes even before the PETM

(Sluijs et al. 2006), we conclude that a CO2 concentration of 280 ppm is too low to

appropriately simulate the PE climate. Our PE simulation with a CO2 concentration

of 560 ppm (PE2) is the best equivalent to the reconstructed pre-PETM climate (see

comparison to proxy data in Chapter 2).

Changes in convective precipitation in the Arctic associated with the sea ice formation

in response to the pCO2 decrease in PE1 support the hypothesis that convective clouds

cause high-latitude warming when sea ice melts (Abbot and Tziperman 2008). However,
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we did not quantify this effect yet.

According to our model, increasing pCO2 from 560 ppm to 840 ppm in PE3 leads

to an increase of the global mean surface temperature by 3.8 K. The zonally averaged

warming amounts to about 3 K at low latitudes and up to 5K at high latitudes. The

warming is already large enough to explain the reconstructed temperature increase

during the PETM at some locations. We find large zonal differences in the warming

pattern, which we will further discuss in Chapter 4.

The surface temperature increase by 3.8 K in PE3 in response to the 1.5-fold pCO2

increase is equivalent to an equilibrium climate sensitivity of about 6.5 K. This extrap-

olated climate sensitivity is three times larger than the PE climate sensitivity reported

by Shellito et al. (2003) and Winguth et al. (submitted). About 2/3 of the warming in

PE3 are due to a reduced longwave emissivity, 1/3 of the warming is due to a reduced

planetary albedo. Most of the planetary albedo reduction originates from a reduced

cloud cover, surface albedo changes are small. The longwave cloud radiative effect

hardly changes. Thus, most of the emissivity-driven warming is due to the radiative

effects of the clear sky atmosphere. Our results indicate that the water vapour increase

during PE3 has an effect that is twice as large as the direct effect of the pCO2 increase.

The pCO2 increase experiment further indicates that the high-latitude amplification of

the warming during the PETM was small - at least if we only look at zonal means.

In terms of the present-day oceanic methane hydrate reservoir, thermal dissociation

of oceanic methane hydrate during the PETM could have released more than 1100 Pg

to 2100 Pg C to the ocean and atmosphere (Dickens et al. 1995). Adding that much

carbon entirely to the atmosphere is equivalent to an increase of atmospheric pCO2

from 560 ppm to about 1500 ppm. However, not all of the carbon from such a methane

release must end up in the atmosphere. Some part of it may be taken up by the ocean

via dissolution or biological pumps, another part of it may enter the biogeochemical

cycle over land (e.g., Denman et al. 2007). Our results indicate that a pCO2 increase

from 560 ppm to 840 ppm is already large enough to explain some estimates of SST

increases during the PETM. Such a pCO2 increase by 280 ppm is equivalent to the

addition of less than 600 Pg C to the atmosphere. Even with the lower estimate of

Dickens et al. (1995), the carbon input into the atmosphere would be large enough

to explain the lowest estimates for the warming during the PETM, if not more than

50% of this release were taken up by the ocean, soil, and vegetation. We conclude

that, according to our simulations, from the perspective of climate sensitivity, methane

hydrates may have been the source of the GHG that caused the PETM. However, the

question of how to explain the large increase of the carbonate compensation depth

remains.

Increasing pCO2 to 1120 ppm leads to a destabilisation of the simulated climate; a

runaway effect occurs. We find that almost 1/4 of the warming during the runaway are

caused by a reduction of the total cloud cover and the consequent relative warming due
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to reduced reflection of shortwave radiation by clouds. Our results indicate that most

of the residual warming is due to a decrease of the clear sky emissivity. We describe

in Section 3.3 that the pCO2 sensitivity critically depends on the ozone parameteri-

sation. Unfortunately, using our GCM model setup, we cannot distinguish between

the radiative effect of ozone and the other components of the clear sky atmosphere.

Hence, we cannot rule out that the PE runaway climate is an artefact of unrealistic

ozone concentrations. Note that, even if the runaway is not an artefact of overstressed

parameterisations, it could still be due to the lack of feedback mechanisms from other

Earth system components, for example the lack of vegetation feedbacks.
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parameter PR PE1 PE2 PE3 PE4T

pCO2 [ppm] 278 280 560 840 1120

2 m air temperature [K] 286.8 291.6 296.6 300.5 305.0

surface temperature τs [K] 287.6 292.3 297.0 300.8 305.1

τebm
s (α, ǫ) [K] 289.5 293.2 298.0 301.6 306.5

τebm
s (αc, ǫ) [K] 303.8 309.0 313.5 316.1 320.3

τebm
s (α, ǫc) [K] 281.1 284.5 289.4 293.1 297.4

τebm
s (αc, ǫc) [K] 295.0 299.9 304.5 307.2 310.8

τebm
s (αs, ǫc) [K] 298.2 303.6 307.8 310.4 313.8

planetary albedo α [1] 0.318 0.304 0.292 0.279 0.268

clear sky plan. alb. αc [1] 0.173 0.141 0.133 0.130 0.127

surface albedo αs [1] 0.137 0.098 0.094 0.093 0.093

emissivity ǫ [1] 0.585 0.568 0.541 0.525 0.501

clear sky emissivity ǫc [1] 0.658 0.640 0.608 0.589 0.564

vert. int. water vapour [kg m−2] 25.5 31.4 45.3 59.2 82.4

total cloud cover [1] 0.617 0.604 0.576 0.557 0.544

shortwave CRF [Wm−2] -49.6 -55.6 -54.2 -51.0 -48.1

longwave CRF [Wm−2] 28.8 30.0 29.6 30.0 31.3

albedo change due to clouds [1] +0.145 +0.163 +0.159 +0.149 +0.141

emissivity change due to clouds [1] -0.073 -0.072 -0.067 -0.064 -0.063

SWnet
t [Wm−2] 233.0 238.1 242.1 246.4 250.4

LWnet
t [Wm−2] -231.2 -237.2 -240.8 -245.1 -247.8

heatflux imbalance (t) [Wm−2] +1.8 +0.9 +1.3 +1.3 +2.6

SWnet
s [Wm−2] 154.7 159.5 159.2 160.5 160.8

LWnet
s [Wm−2] -55.2 -52.2 -44.3 -38.4 -30.5

latent heatflux [Wm−2] -80.1 -89.8 -99.6 -108.3 -116.9

sensible heatflux [Wm−2] -18.2 -17.3 -14.7 -13.0 -11.4

conductive (sea ice) [Wm−2] -0.4 -0.1 0 0 0

heatflux imbalance (s) [Wm−2] +0.8 +0.1 +0.6 +0.8 +2.0

Table 3.1: Global mean parameters as diagnosed from the preindustrial reference sim-

ulation (PR), and the PE simulations with onefold (PE1), twofold (PE2), threefold

(PE3), and fourfold (PE4T) pre-industrial carbon dioxide concentrations. The diag-

nostics for the equilibrated runs PR and PE1 to PE3 are based on the last 200 years

of each simulation. PE4 does not equilibrate, however, the column PE4T contains

diagnostics based on the years 2430 to 2439 of the transient run PE4.
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3.2 Rapid radiative transport model out of bounds?

3.2.1 Problem

Forcing the standard PE version of ECHAM5/MPI-OM with carbon dioxide concen-

trations of 840 ppm or 1120 ppm leads to unhoped-for stops of ECHAM5 at a global

mean temperature of approximately 300 K (red dots in Figure 3.9). ECHAM5 stops at

those timesteps because the temperature of a single gridbox in the atmosphere exceeds

a pre-defined temperature range. Additional experiments (not shown) have revealed

that these so-called lookup table overflows occur over land and over the ocean, and they

occur at intermediate model levels rather than at the highest temperatures close to the

surface. The lookup table overflows are detected in differing routines (e.g., vdiff.f90, cu-

call.f90), and are due to too low or too high temperatures. Moreover, the pre-defined,

’allowed’ temperature range is not left gradually, but within single timesteps due to

large temperature tendencies of sometimes up to several hundred Kelvin per hour. We

find that these extreme, unrealistic temperature tendencies originate from extreme ver-

tical longwave radiative transports as computed in the rapid radiative transfer model

(RRTM).

The closer analysis of one of the lookup table overflows reveals that the extreme

longwave radiative flux only appears in the full sky but not in the clear sky compu-

tation, suggesting that there is a problem related to clouds. However, we find that

the actual reason for the large longwave radiative fluxes are negative optical depths

from gases or aerosols. Optical depths are found by integrating extinction coefficients

for electromagnetic radiation over incremental distances. The unitless optical depth

thus quantifies scattering and absorption that occurs along a certain distance (see, e.g.,

Jacobson 1999). A negative optical depth would mean an increase of the radiative flux

along the incremental distance due to scattering or absorption. This is physically not

reasonable. In the above mentioned case, the negative optical depth occurs in the 100th

of the 140 intervals in the RRTM g-space. The 100th g-space interval belongs to the

longwave radiation band 9, which covers the wavenumber range of 1180 to 1390 cm−1.

Key species for this band are water and methane in the lower atmosphere, and methane

in the middle/upper atmosphere (Mlawer et al. 1997).

However, negative optical depths on their own do not necessarily lead to extreme

longwave radiative fluxes. In the above mentioned case, negative values occur for

several timesteps in a row, before a singularity during a Padé approximation in the full

sky code of the RRTM routine RRTM RTRN1A 140GP leads to the extremely high

longwave flux.
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Figure 3.9: Timeseries of the global mean surface temperature for the different ex-

periments discussed in this chapter. Black solid lines are runs that use the original

ECHAM5 source code. The lowest and the middle black solid lines are computed from

PE1 and PE2, respectively. The red dots indicate the first occurrences of lookup ta-

ble overflows in the 840 ppm and 1120 ppm carbon dioxide increase experiments. The

lower and upper black dotted lines indicate the 840 ppm and 1120 ppm experiments

with temperature tendencies limited to ±24 K per timestep. The grey line indicates

the 1120 ppm experiment with the RRTM modified such that negative optical depths

are set to zero. Blue lines are runs with tropospheric ozone limited to 400 ppb. The

orange line corresponds to a run with tropospheric ozone limited to 150 ppb. The

green line corresponds to a carbon dioxide increase experiment to 1120 ppm with all

tropospheric ozone moved into the uppermost level of ECHAM5. All blue runs, the

upper grey run, the orange run, and the green run make use of the RRTM modification

which sets negative optical depths to zero. The dashed red line is a run similar to the

blue 1120 ppm run (PE4), however, in that red run, the algorithm for the tropopause

diagnostic fails, which leads to an artificial acceleration of the runaway by too high

tropospheric ozone concentrations; therefore, in PE4, we apply an adaptation of the

algorithm to ensure a correct detection of the tropopause (see Appendix A).
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3.2.2 Bugfix

One approach to keep ECHAM5 running despite the negative optical depths is to limit

the temperature trends. As a result of limiting the temperature trends in the PE sim-

ulation with 840 ppm to ±24K per timestep, there are no more lookup table overflows,

and ECHAM5 runs numerically stable. However, the global mean surface tempera-

ture does not equilibrate after the carbon dioxide forcing is held constant at 840 ppm

(Figure 3.9). The global mean surface temperature first approaches a plateau at about

300 K, but subsequently increases exponentially. The climate becomes unstable. We

find that this runaway effect is artificially caused by the prescribed ozone climatology

(Section 3.3).

Another workaround is to set negative optical depths in the RRTM to zero, which

tackles the problem closer to its source. We apply this workaround to the 1120 ppm

simulation. As a consequence, the simulation becomes numerically stable again without

any extreme temperature trends nor lookup table overflows. We find that both bugfix

types —setting negative optical depths to zero, or limiting the temperature tendencies—

lead to similar 1120 ppm simulations (Figure 3.9, solid grey line and dashed black line

are on top of each other). In both simulations, the global mean surface temperature

increases rapidly without any sign of stabilisation.

3.2.3 Relevance of the modification

We find that negative optical depths in our PE model setup occur for all carbon dioxide

concentrations of 280 ppm to 1120 ppm. Both the frequency and the magnitude of the

negative optical depths increase with higher global mean surface temperatures. In

the PE simulation with 280 ppm, at temperatures around 294 K, the magnitude of the

negative values does not exceed 0.1, and there are less than 1000 occurrences of negative

values per timestep. Note that typical optical depths are in the order of 1 to 10. In the

control simulation with 560 ppm, at a global mean surface temperature of about 297 K,

there are already several thousand small negative optical depths, and negative values in

the order of 1 do occur at some timesteps. In the simulation with 1120 ppm, at a global

mean surface temperature of more than 305 K, these relatively large negative values

occur several thousand times per timestep. However, also note that the total number

of optical depths computed per timestep is in the order of 107 (one optical depth for

each of the 140 intervals in g-space, 96×48 horizontal gridpoints, and 19 vertical levels).

Setting these relatively few negative optical depths to zero helps to numerically sta-

bilise ECHAM5. At the same time, because the relative number of these modifications

is small, the effect of these modifications on the actual, simulated climate state may be

small. The fact that the 1120 ppm runs with and without the optical depth bugfix are

similar during the years 2000 to 2073 (Figure 3.9) supports the notion that the optical

depth modifications do not have a large effect on the simulated climate state.
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However, negative optical depths are a bad sign, and may be a hint to basic limita-

tions of the rapid radiative transfer model.

3.3 Climate sensitivity to tropospheric ozone

3.3.1 Motivation

Unfortunately, there is no proxy for the atmospheric ozone concentrations during the

PE. For simplicity, the ozone concentration in our PE model setup is based on ozone ob-

servations over the period 1980 to 1991 (Section 2.2, Fortuin and Kelder 1998). In the-

ory, we could compute the ozone concentrations using a middle atmosphere model with

fully interactive chemistry. However, a long-term, coupled ocean-atmosphere-chemistry

GCM simulation is computationally too expensive at present. Moreover, even if we find

a workaround for the computational cost, determining PE boundary conditions for the

chemistry model is difficult. For example, nitrous oxide, which is produced by bacterial

processes in soils (Brasseur and Solomon 1986), influences the chemical cycle of ozone;

determining nitrous oxide sources is difficult even in the present-day climate (McElroy

1980). To account for all effects that influence the tropospheric and stratospheric ozone

concentrations is beyond of the scope of this work. Nevertheless, in this section, we

argue that a prescribed ozone distribution based on the observations of Fortuin and

Kelder (1998) is inappropriate for very warm climate simulations, and may lead to

artificial warming. We propose a simple ozone parameterisation scheme to avoid such

artificial warming.

3.3.2 Ozone parameterisation

Ozone is naturally produced in two steps. First, photodissociation of molecular oxygen

by ultraviolet radiation at wavelengths shorter than 242.4 nm produces atomic oxygen

(Chapman 1930):

O2 + hv −→ O + O. (3.3)

In the second step, which competes with other recombination processes (Brasseur and

Solomon 1986), the oxygen atom undergoes a binding collision with an oxygen molecule

to form an ozone molecule

O + O2 −→ O3. (3.4)

As a result of these mechanisms, the greatest ozone production occurs in the tropi-

cal stratosphere. Ozone concentrations in the troposphere are much smaller than in

the stratosphere (e.g., Fahey 2007). In our simulations with prescribed ozone, the

tropopause, which is the border between the stratosphere and the troposphere, moves

upward with increasing global mean temperatures (Figure 3.10a). An upward shift

of the tropopause should go in hand with an upward shift of the maximum ozone
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Figure 3.10: (a) Global mean vertical temperature profile for the pre-industrial run (PR,

grey dashed), the PE control run (black), and two different intervals of the carbon

dioxide increase experiment to 1120 ppm (brown: years 2070-2079, red: years 2210

to 2219; run with negative optical depths set to zero, grey line in Figure 3.9). (b)

Global mean vertical ozone profile as prescribed in the standard version of ECHAM5

(interpolated from Fortuin and Kelder 1998); dotted line indicates ozone concentration

of 0.4 ppm.

concentration. An upward shift of the tropopause without adjustment of the ozone dis-

tribution leads to large ozone concentrations in the upper troposphere, although these

large concentrations belong into the stratosphere (compare Figures 3.10a and b). To

avoid these artificial, large ozone concentrations in the upper troposphere, we define a

maximum ozone concentration (pO∗

3
) within the troposphere. Ozone molecules from

below the tropopause that contribute to concentrations above pO∗

3
are moved into the

uppermost level in ECHAM5, such that the vertically integrated number of molecules

is preserved.

A further analysis of HAMMONIA chemistry climate model simulations published

by Schmidt et al. (2006) revealed that, for contemporary conditions, doubling the

atmospheric carbon dioxide leads to an increased tropopause height, an upward shift

of the ozone concentrations, and an increased stratospheric ozone concentration in the

tropics (Schmidt, personal communication). This suggests that our parameterisation,

which shifts ozone upwards along with the tropopause height, may be a reasonable,

first-order approximation of the actual dynamical and chemical processes.

3.3.3 Results

We investigate the effect of this tropospheric ozone limitation in the four different

carbon dioxide experiments (with 280, 560, 840, and 1120 ppm pCO2). We set pO∗

3
to
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0.4 ppm (see Figure 3.10b, dotted line).

The ozone limitation has little effect on the ozone distribution in the control simula-

tion with 560 ppm carbon dioxide (Figure 3.11a and c). The annual mean ozone con-

centrations at about 100 hPa are reduced by less than 0.1 ppm; the largest reductions

occur at northern high latitudes. Note that, when ozone is shifted to the uppermost

level, the total number of ozone molecules is preserved, not the average ozone concen-

tration. For the 560 ppm control run, the reduction of tropospheric ozone does not

affect the temporal mean of the global mean surface temperature (Figure 3.9). The

effect of the ozone limitation in the experiment with 280 ppm carbon dioxide is even

smaller, because the tropopause is lower (Figure 3.11b). Thus, as for the control run,

the temporal mean of the global mean surface temperature is not affected.

By contrast, for the carbon dioxide increase experiments, the tropospheric ozone lim-

itation has a large climatic effect. Including the ozone parameterisation in the 840 ppm

carbon dioxide experiment leads to a stabilisation of the climate (Figure 3.9). This sta-

bilisation is due to a reduction of ozone concentrations at the tropopause by less than

1 ppm (Figure 3.11d). It is remarkable that an ozone increase in the upper troposphere

by less than 1 ppm could cause a runaway climate. Luckily, we produced these increased

upper tropospheric ozone concentrations artificially. Still, this result points out that

atmospheric chemistry has potentially large effects on the surface climate. The climate

of the 1120 ppm carbon dioxide experiment, even with limited tropospheric ozone con-

centrations, remains unstable (Figure 3.9). However, the reduced ozone concentrations

(Figure 3.11e) lead to a strong reduction of the global mean surface heating rate.

Maybe the runaway climate in the 1120 ppm simulation persists because the allowed

tropospheric ozone concentration is still too high. To test this hypothesis, we again

run the 1120 ppm carbon dioxide experiment this time with all tropospheric ozone re-

moved (Figure 3.9, green line). If the runaway effect is due to tropospheric ozone, the

1120 ppm simulation without tropospheric ozone must stabilise. If it does not stabilise,

another (possibly not artificial) mechanism must be responsible for the climate desta-

bilisation. We find that the 1120 ppm run without tropospheric ozone does stabilise.

It equilibrates at a global mean surface temperature of about 301 K. Moving all tro-

pospheric ozone from the troposphere into the stratosphere has a strong cooling effect

—even on the control climate, as seen from the initial cooling despite the carbon diox-

ide increase. The equilibrium global mean surface temperature of this 1120 ppm run is

similar to the one with 840 ppm and tropospheric ozone limited to 0.4 ppm. Because

the surface temperatures in the 1120 ppm run without tropospheric ozone are relatively

cold, we cannot exclude the possibility that a different mechanism would lead to a run-

away climate for warmer temperatures; in other words, we may not have reached the

bifurcation. One possibility to affirm that all runaway climates we have seen here are

artificially induced by tropospheric ozone would be to assure that the simulation with-

out tropospheric ozone remains stable for even higher carbon dioxide concentrations.
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Figure 3.11: (a) Annual mean ozone climatology as interpolated from Fortuin and

Kelder (1998), and differences from the ozone climatology for runs that use the ozone

parameterisation and carbon dioxide concentrations of (b) 280 ppm (years 2240-2249),

(c) 560 ppm (years 2240-2249), (d) 840 ppm (years 3000-3199), and (e) 1120 ppm (years

2430-2439); blue shading indicates a reduction of ozone due to the parameterisation;

all the respective runs (b-e) are plotted as blue lines in Figure 3.9.
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This is left for future studies.

For the present-day climate, the maximum tropospheric ozone concentration may be

as low as 0.15 ppm (Rast, personal communication). Allowing for tropospheric ozone

concentrations of up to 0.4 ppm may induce some warming of the surface climate in the

(compared to the present-day climate) already relatively warm 280 and 560 ppm PE

simulations. In other words, part of the PE-PR effective emissivity reduction (Chap-

ter 2) may be artificially caused by too high tropospheric ozone concentrations. To

pursue this presumption, we rerun part of the control simulation with a maximum

tropospheric ozone concentration of 0.15 ppm. The resulting global mean surface tem-

perature decreases by about 0.5 K (Figure 3.9, orange line). We conclude that the

artificial contribution of tropospheric ozone to the emissivity-induced PE-PR surface

warming as discussed in Chapter 2 amounts to at most 0.5 K.
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Chapter 4

PE ocean circulation

4.1 Introduction

Previous studies based on numerical modelling and paleo-reconstructions of the PE

ocean circulation suggested that the warming during the PETM was associated with,

and possibly initialised by, an abrupt change of the global ocean cirulation. To test

this hypothesis, we use ECHAM5/MPI-OM to study the PE ocean circulation and its

sensitivity to a variation of atmospheric pCO2.

As discussed in Section 3.1, the PETM was linked to an increase of atmospheric

pCO2, but the source of the CO2 input is unknown. Dickens et al. (1995) argued

that the CO2 most likely originated from methane hydrates in ocean sediments. They

suggested that bottom water warming could have led to thermal dissociation of those

methane hydrates and the subsequent release of methane to the ocean and atmosphere.

The methane hydrate dissociation hypothesis requires a trigger. Thomas and Shack-

leton (1996) speculated that CO2 from volcanism in the North Atlantic could have

warmed high latitudes, leading to the shutdown of high-latitude sinking and the onset

of subtropical warm and salty deep water formation. The change from high-latitude to

subtropical sinking had previously been suggested to explain the reconstructed rapid

bottom water warming during the PETM (Kennett and Stott 1991, this was before the

methane hydrate dissociation hypothesis came up).

Bice and Marotzke (2002) found that bottom water warming can also result from

a switch from high-southern to high-northern latitude sinking. In their ocean GCM

study, an intensification of the atmospheric hydrological cycle (i.e., increased evapora-

tion in the subtropics and increased precipitation in the tropics and at high latitudes)

initially led to a warming of intermediate waters due to increased downward movement

of relatively saline, warm, subtropical surface waters (see also Bice and Marotzke 2001).

Given the existence of a land bridge between proto-Britain and proto-Greenland as a

barrier to North Atlantic flow, increasing the strength of the hydrological cycle by 60%

caused the sudden onset of sinking in their North Pacific. As their North Pacific was

warmer than the previous sinking region, the South Pacific, this switch in dominant

deep water source led to a widespread bottom water warming.
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Bottom water warming is not the only mechanism that can lead to dissociation of

methane hydrates. For example, Katz et al. (2001) suggested that continental slope

failure resulted in a catastrophic methane release. Röhl et al. (2000) found that the

carbon isotope excursion (CIE) at the onset of the PETM at ODP Site 690 in the

Weddell Sea occurred in several, distinct steps. These CIE-steps are consistent with

methane releases due to several, distinct continental slope failures. Other suggested

mechanisms for methane release include sea level lowering, a comet impact, or the ex-

plosive release of metamorphic thermogenic methane from the North Atlantic Volcanic

Province (Svensen et al. 2004; Thomas et al. 2006; Thomas 2007).

The hypothesis that a global ocean circulation change significantly contributed to

the climate change during the PETM was strengthened by relatively recent evidence

from proxy-data. Carbon isotope records indicate that the meridional overturning

circulation (MOC) changed from southern sinking to northern sinking at the start of

the PETM (Tripati and Elderfield 2005; Nunes and Norris 2006).

In this chapter, we test the hypothesis of ocean circulation changes at the start

of the PETM using the coupled atmosphere-ocean GCM ECHAM5/MPI-OM. This

advances the ocean-only GCM approach of Bice and Marotzke (2002), and necessitates

a different strategy in our numerical experiments. Instead of studying the effect of a

stronger, prescribed hydrological cycle, we investigate the ocean circulation response

to a variation of atmospheric pCO2 with all its feedbacks, such as a change of the

hydrological cycle.

The philosophy behind this approach is as follows. We aim at testing whether

some boundary condition change may have triggered an ocean circulation switch. This

boundary condition change may have been the input of volcanogenic CO2, as suggested

by Thomas and Shackleton (1996). It may also have been the several million years long

warming trend during the Paleocene towards the Early Eocene Climatic Optimum (Za-

chos et al. 2001). Whether that warming trend was indeed due to a pCO2 increase

or not, we mimic that warming by a pCO2 increase. We also study the ocean circu-

lation response to a pCO2 decrease. This sounds counter-intuitive, because it appears

more likely that the PETM-triggering boundary condition change is to be mimicked

by a pCO2 increase. However, our motivation is to search the PE ocean circulation

phase space for qualitatively different solutions. If we do find different ocean circula-

tion solutions, we can then think about possible transitions between them, and their

implications for the PETM.

This chapter is organised as follows. In Section 4.2, we describe the ocean circulation

in the PE control simulation (PE≡PE2), and identify main differences compared to

the pre-industrial reference simulation (PR). In Section 4.3, we study the response of

the global ocean circulation to a variation of atmospheric pCO2. In Section 4.4, we

compare the simulated PE ocean circulation and ocean circulation changes to paleo-

reconstructions. In Section 4.5, we discuss our results and present the conclusions.
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4.2 Simulated PE ocean circulation

4.2.1 Surface and barotropic flows

In our PE model setup, the Indian Ocean, the North Atlantic, and the Arctic are

connected via the open Tethys Seaway. At the surface, the open Tethys Seaway allows

for a westward current from the Indian Ocean into the Atlantic along the coastline of

Africa (Figure 4.1). Integrated over the entire depth, we find a westward flow of about

11 Sv into the Tethys between the north-eastern tip of Africa and the largest island in

the Tethys (Figure 4.2). Part of this inflow is balanced by a southward transport of

about 3 Sv from the Tethys into the Indian Ocean between that largest Tethys island

and Asia. About 7 Sv are transported from the Tethys into the Atlantic along the

African north coast. About 0.7 Sv are transported northward into the Arctic from the

Tethys across the 200 m shallow sill between Europe and Asia. The transport between

proto-Greenland and Europe is also northward, but only amounts to less than 0.1 Sv.

The oceanic transport into the Arctic is overbalanced by a southward transport of

about 1.1 Sv through the Bering Strait into the North Pacific. Note that the oceanic

volume transport thus leads to a net export of Arctic water into the North Pacific, while

atmospheric moisture transport and river runoff lead to a net import of freshwater into

the Arctic (Figure 4.3a).

The more southward position of Australia and the almost closed Drake Passage

inhibit a strong Antarctic Circumpolar Current in PE (Figure 4.2). The Drake Passage

and the sill between Australia and Antarctica are about 300 to 400 m deep in PE

(Figure 2.1a). The eastward Drake Passage transport in PR amounts to about 140 Sv,

while it is only 5 Sv in PE. The transport between Australia and Antarctica in PR

amounts to 200 Sv, while it is only 5 Sv in PE.

The narrower PE North Atlantic bathymetry inhibits the formation of the North

Atlantic current and the subpolar gyre (Figures 4.1 and 4.2). The lack of this subpolar

gyre in PE explains the reduced northward meridional oceanic gyre heat transport in

PE compared to PR (Figure 2.7b).

The position of the MPI-OM grid-South Pole on South America yields a relatively

fine resolution of the open Central American Isthmus in PE. The center of the isthmus

is up to 2000 m deep. However, the sill depth at the boundary between the East-Pacific-

Caribbean Plate and the North American Plate amounts to only about 700 m (Cuba

is on that boundary, see Figure 9 in Sykes et al. 1982; Bice and Marotzke 2001). Even

though the Central American Isthmus in PE is open, the westward Equatorial Atlantic

Current does not entirely end up in the Pacific, but instead flows northward around

Cuba to form a proto-Gulf Stream (Figure 4.1). In contrast to the mainly westward

surface velocities along the South American coast, the total volume transport through

the Central American Isthmus is eastward from the Pacific into the Atlantic. The total
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Figure 4.1: Horizontal velocity in the surface layer (uppermost 12 m) averaged over the

last 200 years of (a) PE, and (b) PR; for readability, the velocity vectors are interpolated

onto a coarse regular grid; background colors indicate the magnitude of the velocity.
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Figure 4.2: Horizontal barotropic streamfunction averaged over the last 200 years of (a)

PE, and (b) PR; red maxima are to the right of the flow, blue maxima to the left; the

vectors indicate volume transports in Sv.
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Figure 4.3: Annual mean total precipitation minus evaporation plus river runoff into

the ocean averaged over the last 200 years of (a) PE, and (b) PR.

68



4.2 Simulated PE ocean circulation

transport amounts to about 5 Sv. It is composed of an eastward barotropic flow of

about 7 Sv from the Pacific into the Atlantic along the coastline of South America.

This eastward flow is partly compensated by a westward flow into the Pacific of about

2 Sv around the southern tip of North America (Figure 4.2).

4.2.2 Meridional overturning circulation (MOC)

The PE global meridional overturning circulation (MOC) is weaker than the MOC in

PR (Figure 4.4), but the large-scale structures of the MOCs in PE and PR are quite

similar. Both PE and PR show North Atlantic sinking. The maximum value of the

PE Atlantic MOC amouts to about 12 Sv at 40◦ N and 800 m depth. For comparison,

the maximum value of the Atlantic MOC in PR amounts to more than 15 Sv at 30◦ N

and 1300 m depth. The Antarctic Bottom Water (AABW) outflow in PR amounts to

more than 6Sv, less than 3 Sv of this outflow reach the North Atlantic. In PE, AABW

formation is much weaker.

During the last 200 years of PE, AABW is mostly formed in the South Pacific,

but there is also some sinking in the South Atlantic and Indian Ocean (Figure 4.4).

Note that the Southern Ocean sinking exhibits a large temporal variability. Deep

water formation occurs in episodic flushes. The flushes in the South Pacific seem to

be anticorrelated to the flushes in the South Atlantic and Indian Ocean (Figure 4.5).

However, we have not yet understood the processes that lead to these flushes.

As in PR, there is no sinking in the North Pacific in PE because of too low sea

surface salinities. The sea surface salinity in the North Pacific in PE only amounts to

about 31 psu, which is about 4 psu lower than in the proto-Labrador Sea. In the North

Atlantic as well as the North Pacific, precipitation and river runoff exceed evaporation

(Figure 4.3). The large difference between the North Atlantic and North Pacific sea

surface salinities could arise because the proto-Gulf Stream carries saltier water than

the proto-Kuroshio (Figures 4.7 and 4.1). Moreover, there is an inflow of surface water

with very low salinities from the Arctic Ocean through the shallow Bering Strait into

the North Pacific.

On a basin-wide scale, the global ocean circulation in PE with sinking in the North

Atlantic and upwelling in the North Pacific resembles the global oceanic ’conveyor belt’

as found in PR and the present-day real ocean. However, the MOC as illustrated in

Figure 4.4 as a basin-wide integrated streamfunction belies the rather complex zonal

structure of the actual ocean circulation.

In the PE Atlantic, warm (Figure 4.6a), saline (Figure 4.7a), subtropical surface

water flows northward along the east coast of North America into the proto-Labrador

Sea (Figure 4.1a). On its way, the surface water cools down to approximately 290 K,

maintains a salinity of about 35 psu, and becomes the densest surface water in the

northern hemisphere (about 1026 kg m−3, Figure 4.8a). Because the surface water is so
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Figure 4.4: Meridional overturning circulation (MOC) averaged over the last 200 years

for (a) PE; computed for the global ocean (Global), the North Atlantic and Tethys

(NAtl+Tethys), the South Atlantic and Indian Ocean (SAtl+Ind), the South Pacific

(SPac), and the North Pacific (NPac), and (b) PR. Contour intervals are as indicated

in the color scale; positive values correspond to clockwise circulation as viewed from

reader’s perspective.

70



4.2 Simulated PE ocean circulation

1500 2000 2500

−10

−5

0

time [years]

M
O

C
 [S

v]

SPac versus SAtl+SInd 67.5oS 1085m

SAtl+SInd

SPac

Figure 4.5: Time series of the meridional overturning circulation (MOC) in PE at 67.5◦ S

at 1085 m depth integrated over the South Pacific (blue), and the South Atlantic and

Indian Ocean (black).

dense, the water column easily becomes unstable, and convection occurs (Figure 4.9a).

This convection and the net sinking as seen from the MOC (Figure 4.4a) lead to the

formation of North Atlantic Deep Water (NADW). This NADW spreads southward

first as a relatively wide stream until it becomes a narrower western boundary current

along the coast of North America (Figure 4.10a). Although the Central American

Isthmus in PE is open, the NADW crosses the equator below the sill and follows the

South American east coast through the Atlantic into the Southern Ocean. In PR,

the densest surface water in the Atlantic forms in the Norwegian Sea north of the

Greenland-Scotland ridge (Figure 4.8b); deep convection occurs in the Norwegian Sea

and around the southern tip of Greenland (Figure 4.9b).

PE surface water in the Southern Ocean is even heavier than in the proto-Labrador

Sea (Figure 4.8a). Relative to the surface water in the proto-Labrador Sea, surface wa-

ter in the South Pacific (proto-Ross Sea) is about 2 psu fresher (Figure 4.7a), but about

10 K colder (Figure 2.3.1a). In PE, deep convective events occur in the South Atlantic

(or proto-Weddell Sea), Southern Indian Ocean, and the South Pacific (Figure 4.9a).

In PR, deep convection mainly occurs in the South Atlantic (Figure 4.9b).

Convection and sinking in the proto-Labrador Sea in PE are associated with a heat

release of up to 150 Wm−2 from the ocean to the atmosphere (Figure 4.12). By contrast,

the oceanic heat release associated with the NADW formation in PR is concentrated at

the deep water formation sites in the Norwegian Sea. The largest oceanic heat release in

the Southern Ocean is located south-east of proto-Australia, and in the South Pacific.

By contrast, the largest oceanic heat release in the Southern Ocean in PR occurs along

the Antarctic coast south of Africa, which is also the Southern Ocean area of deep

convection in PR.
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Figure 4.6: Sea surface temperature (uppermost 12 m) averaged over the last 200 years

for (a) PE, and (b) PR.
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Figure 4.7: Sea surface salinity (uppermost 12 m) averaged over the last 200 years for

(a) PE, and (b) PR.
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Figure 4.8: Density of the surface water (uppermost 12 m) averaged over the last

200 years for (a) PE, and (b) PR.
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Figure 4.9: Maximum convective depth during the last 200 years of (a) PE, and (b)

PR.
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Figure 4.10: Horizontal velocity at 1700 m depth averaged over the last 200 years of

(a) PE, and (b) PR; for readability, the velocity vectors are interpolated onto a coarse

regular grid; background colors indicate the magnitude of the velocity.
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Figure 4.11: Horizontal velocity at 3070 m depth averaged over the last 200 years of

(a) PE, and (b) PR; for readability, the velocity vectors are interpolated onto a coarse

regular grid; background colors indicate the magnitude of the velocity.
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Figure 4.12: Ocean heat uptake averaged over the last 200 years for (a) PE, and (b)

PR.
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4.3 Sensitivity of the MOC to atmospheric pCO2

In this section, we study the sensitivity of the PE MOC to a variation of the atmospheric

pCO2. The respective experimental setup is described in Section 3.1.2.

In PE3, we increase pCO2 from 560 to 840 ppm within 40 years. In response to this

increase, the NADW formation rate decreases from about 15 Sv to less than 10 Sv within

200 years, before it recovers to 12 Sv during the subsequent 700 years (Figure 4.13a).

Moreover, the NADW formation becomes more shallow in PE3 compared to PE2 (Fig-

ures 4.4a and 4.14). While the southward NADW flow occurs between 800 and 3000 m

depth in PE2, it occurs between 800 and 2000 m depth in PE3. Consistent with the

shallower overturning, the maximum depth of convection in the proto-Labrador Sea is

reduced in PE3 compared to PE2 (Figure 4.15a compared to Figure 4.9a). The south-

ern hemisphere overturning in PE3 becomes weaker and shallower (Figure 4.13b-d).

The globally integrated MOC at 67.5◦ S and 1085 m depth decreases from about 10 Sv

to less than 3Sv within a few decades. While Southern Ocean deep water sinks to

depths of more than 2000 m in PE2 (Figure 4.4a), it only sinks to about 1000 m in PE3

(Figure 4.14). However, the response in the South Pacific differs from the response in

the South Atlantic and Indian Ocean. While the South Pacific overturning seems to

remain shut down, the South Atlantic and Indian Ocean deep water formation seems

to slowly recover from its initial, fast shutdown (Figure 4.13c). The South Atlantic and

Indian Ocean overturning also shows increasing temporal variability during its recovery.

This indicates that the actual long-term behaviour of the deep water formation in the

South Atlantic and Indian Ocean in PE3 may be somewhat similar to the oscillatory

long-term behaviour in PE2. However, the locations of deep convection in the South

Atlantic and Indian Ocean during the last 200 years of PE3 differ from those during

the last 200 years of PE2. In particular, convection at the Antarctic coastline south

of Africa is deeper in PE3 than in PE2. This deeper convection in PE3 is associated

with a larger oceanic heat release to the atmosphere compared to PE2 (Figure 4.18b

compared to Figure 4.12a). This indicates that the amplification of the PE3-PE2 SST

difference at the Antarctic coastline south of Africa (Figure 4.16a) is caused by en-

hanced convection in PE3. Note that the largest reconstructed SST increase (Thomas

et al. 2002) is also situated in that area. However, remember that the South Atlantic

and Indian Ocean deep water formation especially in PE2 exhibits a large centennial

variability. We have not yet tested these results against that temporal variability.

As described in Chapter 3, the pCO2 increase to 1120 ppm in PE4 leads to a runaway

climate. In that runaway climate, the Southern Ocean deep water formation is shut

down entirely after a few decades (Figure 4.13b-d). The sinking in the North Atlantic

decreases more or less steadily, until it shuts down abruptly about 400 years after the

pCO2 stabilisation. A closer look reveals that the MOC at 42.5◦ N and 740 m depth

not only decreases to zero, but becomes slightly negative (Figure 4.17a). The North
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Figure 4.13: Time series of the meridional overturning circulation (MOC) for (a) 42.5◦ N

and 740 m depth integrated over the North Atlantic and Tethys, (b) at 67.5◦ S and

1085 m depth integrated over the global domain, (c) at 67.5◦ S and 1085 m depth in-

tegrated over the South Atlantic and Southern Indian Ocean, and (d) at 67.5◦ S and

1085 m depth integrated over the South Pacific basin for PE1 (blue), PE2 (black), PE3

(red), and PE4 (orange).
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Figure 4.14: Meridional overturning circulation (MOC) during the last 200 years of

PE3 for the global ocean (Global), the North Atlantic and Tethys (NAtl+Tethys), the

South Atlantic and Indian Ocean (SAtl+SInd), the South Pacific (SPac), and the North

Pacific (NPac). Contour intervals are as indicated in the color scale; positive values

correspond to clockwise circulation as viewed from reader’s perspective.
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PE1.
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in Figure 3.3 of Chapter 3, black dots indicate the paleo-locations for temperature

reconstructions by 1) Thomas et al. (2002, based on δ18O), 2) and 3) Tripati and

Elderfield (2004, based on Mg/Ca ratios assuming the Mg/Ca ratio of seawater to be

5.15 mmol/mol), 4) Zachos et al. (2003, based on TEX86), 5) Zachos et al. (2006,

based on TEX86), and 6) Sluijs et al. (2006, based on TEX86); the numbers indicate

the reconstructed SST increase during the PETM. (b) Annual mean PE1-PE2 SST

difference. SST differences computed from the last 200 years of each simulation.
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Figure 4.17: (a) Zooming into the PE4 MOC time series from Figure 4.13a (at 42.5◦ N

and 740 m depth integrated over the North Atlantic and Tethys). (b) Time series of

the annual mean sea surface temperature in the central Labrador Sea (blue, 65◦ N

322.5◦ E), and the annual mean land surface temperature on Ellesmere Island (black,

72◦ N 315◦ E); the vertical dashed lines indicate the change of sign of the MOC in year

2444.

Atlantic sinking turns into a weak North Atlantic upwelling. Sinking and convection in

the Labrador Sea involve an oceanic release of large amounts of heat to the atmosphere

(Figure 4.12a). The shutdown of Labrador Sea sinking is associated with a shutdown

of the oceanic heat release (Figure 4.18). The change in the overturning circulation

from sinking to weak upwelling during the runaway effect in PE4 leads to a cooling of

the Labrador Sea surface by more than 4K within less than 50 years, and explains the

sudden, transient drop of the global mean surface temperature around the year 2444

during PE4 as seen in Figure 3.2. This cooling in response to the NADW shutdown

is not only seen at the sea surface. Also, for example, the annual mean land surface

temperatures on Ellesmere Island —where Estes and Hutchinson (1980) found the PE

alligator remains— cool by about 2 K. At the end of PE4, the meridional overturning

below 1000 m depth basically stands still (Figure 4.19).

In PE1, the experiment with pCO2 decrease from 560 to 280 ppm, the North Atlantic

MOC becomes stronger by about 2 Sv (Figure 4.13a), and it significantly deepens (Fig-

ure 4.20). The integrated South Atlantic plus Indian Ocean deep water formation

hardly changes in PE1 compared to PE2 (Figure 4.13c). However, we find that con-

vection in the proto-Weddell Sea completely shuts down in PE1 (Figure 4.15b). This

indicates that the integrated South Atlantic and Indian Ocean sinking originates solely

from the Southern Indian Ocean in PE1. This shutdown of the proto-Weddell Sea

deep water formation is associated with a shutdown of the oceanic heat release to the
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Figure 4.18: Ocean heat uptake for (a) PE4 (average of years 2600 to 2628), (b) PE3

(average of years 3000 to 3199), and (c) PE1 (average of years 3000 to 3199).
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Figure 4.19: Meridional overturning circulation (MOC) averaged over the years 2600

to 2628 of PE4 for the global ocean (Global), the North Atlantic and Tethys

(NAtl+Tethys), the South Atlantic and Indian Ocean (SAtl+SInd), the South Pa-

cific (SPac), and the North Pacific (NPac). Contour intervals are as indicated in the

color scale; positive values correspond to clockwise circulation as viewed from reader’s

perspective.
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Figure 4.20: Meridional overturning circulation (MOC) during the last 200 years of

PE1 for the global ocean (Global), the North Atlantic and Tethys (NAtl+Tethys), the

South Atlantic and Indian Ocean (SAtl+SInd), the South Pacific (SPac), and the North

Pacific (NPac). Contour intervals are as indicated in the color scale; positive values

correspond to clockwise circulation as viewed from reader’s perspective.

atmosphere (Figure 4.18c), and an amplification of the proto-Weddell Sea surface tem-

perature decrease during PE1 (Figure 4.16b). In the South Pacific, decreasing pCO2

causes a transition from sporadic, weak deep water formation to strong, steady deep

water formation (Figure 4.13d). This strong South Pacific sinking is associated with an

increased oceanic heat release to the atmosphere in PE1 compared to PE2 (Figure 4.12c

compared to Figure 4.12a). Similar to the warm surface water in the Labrador Sea be-

cause of deep water formation, the South Pacific SSTs in PE1 are relatively high; this

explains the small South Pacific SST decrease in PE1 compared to PE2 (Figure 3.3b).

After its formation, the South Pacific deep water in PE1 flows northward between a

depth of 2000 m and the ocean bottom (Figure 4.20), mostly as a deep western bound-

ary current (Figure 4.21). Note that this deep, northward western boundary current

makes a detour into the Indian Ocean.
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Figure 4.21: Horizontal velocity at 3070 m depth averaged over the last 200 years of (a)

PE3, and (b) PE1; for readability, the velocity vectors are interpolated onto a coarse

regular grid; background colors indicate the magnitude of the velocity.
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4.4 Ocean circulation reconstructions

One way to obtain information about the PE ocean circulation is to study carbon

isotope ratios from benthic foraminifera. Benthic foraminifera are calcite-shelled zoo-

plankta living at the bottom of the ocean. The δ13C composition of their shell reflects

the isotopic composition of the surrounding water at the time of calcification. Since

deep water becomes isotopically more negative with time due to the rain of organic ma-

terial that progressively adds 12C, more negative benthic foraminiferal δ13C indicates

’older’ deep water (e.g., Corfield 1994).

Miller et al. (1987) showed evidence from benthic foraminiferal δ13C that the western

Atlantic Newfoundland, American, and Brazil basins (Sites 20, 21, 144, 356, 357, 384)

were filled with ’old’ bottom water during the late Paleocene, suggesting absense of

NADW formation. By contrast, we find NADW formation in all our stable PE climate

simulations. However, the NADW formation in our simulation becomes shallower for

larger CO2 concentrations. This indicates that deep western Atlantic waters may have

been poorly ventilated despite North Atlantic sinking. Miller et al. (1987) also found

evidence that the eastern Atlantic Cape Basin (Site 524) was filled with ’young’ bottom

water. They suggested that this ’young’ bottom water originated from the Antarctic,

since (1) the ’old’ bottom water in the western Atlantic indicated that the North At-

lantic/Arctic was not the source region, and (2) oxygen isotope comparisons supported

a high-latitude source region precluding the Tethys. The ’young’ eastern Atlantic bot-

tom water is consistent with our simulated deep convection in the proto-Weddell Sea

in PE2, and the northward deep water track in the eastern Atlantic at about 3000 m

depth (Figures 4.9a and 4.11a).

Tripati and Elderfield (2005) investigated benthic foraminiferal δ13C from the tropical

North Pacific (Site 1209, Shatsky Rise) and the subtropical eastern South Atlantic (Site

527, Walvis Ridge). For the late Paleocene, they inferred that the South Atlantic was

more ventilated than the North Pacific. This is consistent with our simulation. We

find deep convection in the proto-Weddell Sea, while there is neither convection nor

sinking in the North Pacific. Actually, except for PE1, the North Pacific is not even

ventilated by the MOC associated with the southern hemisphere sinking (Figures 4.4a

and 4.14). During the latest Paleocene, prior to the CIE associated with the PETM,

intermediate waters exhibited a warming, the South Atlantic became less ventilated,

and the North Atlantic became slightly more ventilated. Tripati and Elderfield (2005)

suggested that, during the PETM, warm and saline deep water was formed in the North

Pacific. According to our simulations, increased pCO2 leads to a reduced, shallower

MOC and to reduced convection at least in the North Atlantic, bottom water in the

North Atlantic should become less ventilated.

Nunes and Norris (2006) compared four South Atlantic and Southern Ocean δ13C

records (Sites 525, 527, 690, 738) to three North Atlantic δ13C records (Sites 401, 1051,
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ALM). They found that, for the time period before the PETM, the average δ13C of the

southern sites was about 0.15� higher than the average δ13C of the northern sites.

From this difference, they concluded that deep water most likely flew northward in

the Atlantic. In contrast to this conclusion by Nunes and Norris (2006), the largest

Atlantic deep water flow in our simulation is southward (Figure 4.10). However, the

simulated southward track is a western boundary current, while the two South Atlantic

sites with high δ13C used by Nunes and Norris (2006) are located on the Walvis Ridge

in the eastern Atlantic. Such high δ13C (i.e. ’young’ water) in the eastern Atlantic

would again be in line with the simulated proto-Weddell Sea sinking and northward

deep water track in the eastern Atlantic around 3000 m depth (Figure 4.11).

Nunes and Norris (2006) found that the sign of the δ13C difference between the

northern and southern sites changed during the PETM. They concluded that the ocean

circulation may have switched from southern sinking before the PETM to northern

sinking during the PETM. Our simulations indicate that increasing pCO2 (mimicking

the onset of the PETM) leads to a generally weaker MOC and to shallower convection.

Hence, according to our simulations, from the broad perspective of southern versus

northern hemisphere sinking as discussed by Nunes and Norris (2006), the δ13C gradient

should not have changed. However, the comparison of the last 200 years of PE1, PE2,

and PE3 suggests that, locally, the South Atlantic may have become slightly more

ventilated in response to a pCO2 increase (remember 1. proto-Weddell Sea convection

in PE2, but not in PE1, and 2. small area at Antarctic coastline south of Africa with

increased convection in PE3 compared to PE2). If at all, this would suggest a change

of the δ13C gradient in the opposite direction of that inferred by Nunes and Norris

(2006).

Thomas et al. (2003) used fish tooth Neodymium (Nd) isotopic records from eight

DSDP and ODP sites to reconstruct the PE deep water circulation. Neodymium mainly

originates from continental weathering and runoff. After its drainage into the ocean as

dissolved and suspended material, Nd remains in the ocean for about 1000 years. Due to

this short residence time relative to the mixing time of the oceans (several 1000 years),

Nd can be used to classify different deep water masses. Fish teeth acquire their high

Nd concentrations during a diagenetic reaction at the sediment/water interface. Thus

Nd isotopes from fish teeth reflect the isotopic composition of the overlying bottom

water. Thomas et al. (2003) found that fish teeth from the Atlantic, Southern Ocean,

and Indian Ocean (Sites 549, 401, 1051, 527, 690, 213) were characterised by relatively

non-radiogenic Nd, while fish teeth from the Pacific (Site 865) were characterised by

more radiogenic Nd. They concluded that the Pacific had a different source of Nd than

the Atlantic, Indian, and Southern Ocean, and suggested that the Atlantic, Indian, and

Southern Ocean were bathed by a common water mass. They argued that the North

Atlantic as a source of the common deep water was unlikely, since (1) the Labrador Sea

had just begun opening, and (2) δ18O reconstructions indicate that the surface water in
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the Southern Ocean was much colder than in the North Atlantic. Therefore, Thomas

et al. (2003) suggested that deep water was formed in the Southern Ocean before and

during the PETM. However, in our numerical simulation, we find NADW formation in

the Labrador Sea even though SSTs in the Labrador Sea are up to 10 K warmer than

in the Southern Ocean. And actually, our simulations indicate that the SSTs in the

Labrador Sea were so high (at least partly) because of deep water formation.

4.5 Discussion and conclusions

In our control simulation with 560 ppm pCO2, which is the simulation that best matches

reconstructed pre-PETM surface temperatures, we find North Atlantic Deep Water

(NADW) formation in the proto-Labrador Sea and a southward western boundary

current at about 800 to 3000 m depth. Deep water in the southern hemisphere forms

in centennial flushes in the South Atlantic and Indian Ocean, and in the South Pacific.

In addition to the deep, southward, western boundary current in the Atlantic, we also

find a deep, northward transport in the eastern Atlantic at about 3000 m depth.

Irrespective of the CO2 concentration, all our stable solutions exhibit sinking and

deep convection in the proto-Labrador Sea. Only during the unstable simulation with

1120 ppm pCO2 do we find a shutdown of the sinking. This shutdown immediately

leads to a cooling not only of the proto-Labrador Sea, but also, for example, at the

paleo-location of Ellesmere Island. This indicates that the Labrador Sea and Ellesmere

Island in our stable simulations would be colder, if there was no NADW formation in

the proto-Labrador Sea. We speculate that deep water formation in the proto-Labrador

Sea contributed to the living conditions for alligators on Ellesmere Island.

Increasing pCO2 from 560 to 840 ppm leads to a generally weaker, shallower con-

vection and weaker, shallower meridional overturning. Our analysis indicates that

increasing pCO2 may have led to enhanced convection at the coastline of Antarctica

south of Africa, increased ocean heat release, and a local amplification of the warming

in the proto-Weddell Sea, consistent with a large reconstructed SST increase. This

result indicates that changes in the ocean circulation can lead to large, local differences

in the SST response to a variation of atmospheric pCO2. In turn, the regional patterns

of SST changes during the PETM may contain valuable information about the ocean

cirulation changes. We propose that SST changes derived from proxy data may be used

as an indicator for ocean circulation changes.

Assume that the long-term behaviour of PE1 resembles the pre-PETM climate state

(although the PE1 high-latitudes are probably too cold). Moreover, assume that a

pCO2 increase to 560 ppm starting from PE1 will finally yield PE2 again. Then, our

simulations indicate that the PETM may have been associated with the onset of deep

convection in the proto-Weddell Sea. We do not know whether such an onset of deep

water formation would lead to bottom water warming. However, even if such a change
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did lead to bottom water warming, the change of the deep water formation would have

a relatively small areal extent. The amount of methane that could have been released

in response to this ocean circulation change is probably quite small. We conclude that,

according to our simulations, ocean circulation changes did not lead to the dissolution

of large amounts of methane hydrates.

The coupled NCAR CCSM Eocene simulation described by Huber et al. (2003)

showed a different meridional overturning structure. They also found sinking in the

North Atlantic (about 15 Sv). But their simulation did not show any deep convection

nor sinking in the southern hemisphere. Instead, they found sinking in the North Pacific

to about 2000 m depth. This difference may be related to differences in the bathymetry

between the CCSM Eocene setup and our PE setup. In the setup of Huber et al.

(2003), the Arctic Ocean is completely isolated, while our Arctic Ocean is connected

to the Atlantic, to the Tethys, and to the Pacific. The surface-water of the Arctic

Ocean in our simulations has a very low salinity. This low-salinity water is transported

southward through the Bering Strait into the North Pacific. We speculate that this

fresh-water input has the potential to inhibit North Pacific deep water formation in our

simulations. Whether or not the Bering Strait was closed during the PE is currently

under discussion (Winguth, personal communication).

The ocean GCM control simulation described by Bice and Marotzke (2002) showed

southern hemisphere overturning of about 60 Sv, and a northern hemisphere overturning

of about 3 Sv. Introducing a land bridge between proto-Britain and Greenland as a

barrier to North Atlantic flow led to a northern hemisphere overturning of about 20 Sv

in their runs. The bathymetry we use does not have that land bridge between Britain

and Greenland, but we still find NADW formation of about 15 Sv. Moreover, our

simulations do not support the very strong southern hemisphere overturning.

Bice and Marotzke (2002) found a sudden onset of sinking in their North Pacific in

response to multiplying their prescribed moisture flux (precipitation minus evaporation)

by 1.6. In our simulations, the strength of the hydrological cycle is modified in response

to the pCO2 variation. However, we do not find North Pacific deep water formation.

Because of uncertainties in the boundary conditions, for example, regarding the Bering

Strait or the land bridge between proto-Britain and Greenland, and because we do

not know whether the PE climate model solutions as described here are unique (there

may be more than one long-term solution to our PE climate model setup for each CO2

concentration), we cannot rule out the hypothesis that an ocean circulation switch

as suggested by Bice and Marotzke (2002) caused the methane hydrate dissociation.

But our simulations do not support that hypothesis. Moreover, we note that the

multiplication of P-E by 1.6 is large compared to the hydrological cycle changes in our

stable pCO2 sensitivity experiments (Figure 4.22).

We note that our solution of the PE ocean circulation is relatively similar to the

present-day circulation (or, to PR). For example, we find NADW formation in PE
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Figure 4.22: Zonal mean annual mean precipitation minus evaporation (P-E) computed

from the last 200 years of PE3 (red), PE2 (black), and PE1 (blue); the dashed line

indicates the zonal mean P-E field of PE2 multiplied by 1.6 to imitate the 60 % increase

at which Bice and Marotzke (2002) found the onset of North Pacific sinking.

despite the open Central American Isthmus. Maier-Reimer et al. (1990) found a shut-

down of the NADW formation in response to an opening of the Central American

Isthmus in a present-day setup of an ocean GCM. This illustrates that the described

PE ocean circulation solution is a result of the combination of all boundary condition

differences (in this case also including the atmospheric forcing). The various PE-PR

boundary condition differences interact, and it is not always meaningful to isolate the

effect of a single difference in boundary conditions.

The inhomogeneous vertical and zonal structure of the convection and meridional

overturning in the Atlantic in our simulations challenges previous conclusions from

’deep water age’ reconstructions, which are based on single, local ocean drilling sites.

Nunes and Norris (2006) inferred southern hemisphere deep water formation from car-

bon isotope data. We argue that the relatively shallow NADW-track in combination

with South Atlantic convection and a northward flow of Antarctic bottom water in the

eastern Atlantic, in other words, co-existing northern and southern hemisphere deep

water formation, may also be consistent with the carbon isotope records. Our simu-

lations do not show any increase in deep water formation in the northern hemisphere

in response to increased pCO2. Hence, our simulations do not support the notion of

Nunes and Norris (2006) that the onset of the PETM was associated with a switch

from southern hemisphere to northern hemisphere deep water formation.
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Conclusions and outlook

5.1 Conclusions

To conclude this thesis, we answer the questions posed in the introduction (Chapter 1).

(1) Can we simulate the warm PE climate with its low equator-to-pole temperature

gradient using ECHAM5/MPI-OM?

We are getting close. To our knowledge, we have obtained the first coupled PE sim-

ulation with moderate greenhouse gas forcing that is warm enough at high latitudes

to keep the poles free from sea ice, while reasonably matching the lower-latitude SST

reconstructions. However, if we take the SST proxy data by Sluijs et al. (2006) at face

value, the simulated Arctic surface temperature is still too cold.

(2) What mechanisms may have led to the warm PE climate and the low temperature

gradient?

To answer this question, we compare the PE climate simulation to a pre-industrial

reference (PR) using a zero-dimensional energy balance model as a diagnostic tool. We

find that, according to our simulations, the warm PE climate with its low equator-to-

pole temperature gradient was mostly due to a smaller (compared to PR) longwave

emissivity especially at high latitudes. The global-mean longwave cloud radiative effect

in PE does not differ much from that in PR, but we find that the longwave cloud radia-

tive effect may have contributed to the lower equator-to-pole temperature gradient. We

attribute most of the emissivity reduction to an increased atmospheric water vapour

content in PE compared to PR. The removed glaciers and associated lower Antarc-

tic topography also contributed to the low PE equator-to-pole temperature gradient.

Compared to the emissivity changes, the darker surface at high latitudes associated

with the lack of glaciers, a relatively dark land surface and vegetation, the lack of sea

ice, and the reduction of snow cover had a relatively small effect. The surface albedo

effect was diminished by a larger shortwave radiative effect above the darker surface.
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According to our model, the zonally integrated meridional heat transport by the

atmosphere and the ocean during the PE was not very different from the present-day

transport. Actually, our results indicate that the zonally integrated meridional heat

transport by the ocean was probably even weaker than at present (confirming the results

of Huber and Sloan 2001). However, locally, the ocean heat transport may have been

very important. For example, we find North Atlantic Deep Water (NADW) formation

in the proto-Labrador Sea, and our results indicate that this NADW formation may

have contributed to relatively high surface temperatures — and thus to the living

conditions for alligators — on proto-Ellesmere Island.

(3) What was the atmospheric pCO2 before the PETM / how much greenhouse gas

forcing do we need to match the reconstructed PE temperatures?

We find that reducing pCO2 to 280 ppm starting from the PE control simulation with

560 ppm leads to a global cooling of about 4.7 K, a cooling of up to 11 K in the Arctic,

and regrowing sea ice, which is in contrast to proxy data that suggest warm and sea-ice-

free high latitudes even before the PETM (Sluijs et al. 2006). Our PE simulation with

a CO2 concentration of 560 ppm is the best equivalent to the reconstructed pre-PETM

surface temperatures. We conclude that the pre-PETM atmospheric CO2 concentration

was probably about 500 ppm. Note that the concentrations of other greenhouse gases

such as methane or nitrous oxide during the PE are uncertain. In our simulations, we

assume pre-industrial values. A different greenhouse gas mix with possibly lower pCO2

may also lead to a similar PE model-data match.

(4) Does our PE model exhibit a large enough climate sensitivity to support the hy-

pothesis that a methane release caused the PETM?

Yes. According to our model, increasing pCO2 from 560 ppm to 840 ppm leads to an

increase of the global-mean surface temperature by 3.8 K. The warming amounts to

about 3K at low latitudes and up to 5K at high latitudes and (although at the lower

bound) matches the reconstructed surface temperature increase during the PETM at

some locations. This pCO2 increase by 280 ppm is equivalent to the addition of less

than 600 Pg C to the atmosphere. Even if the global methane hydrate reservoir was

smaller than at present (<2000 Pg C, Buffett and Archer 2004), a total collapse of

the hydrate reservoir would leave some space for ocean and biosphere carbon uptake,

leaving enough carbon in the atmosphere to explain the warming during the PETM.

Note that a warming by 3.8 K in response to the 1.5-fold pCO2 increase is equivalent

to an equilibrium climate sensitivity of about 6.5 K, suggesting that the PE climate was

much more sensitive to pCO2 than previously simulated by Shellito et al. (2003) and
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Winguth et al. (submitted). The analysis of the pCO2 increase experiment using an

EBM reveals that about 2/3 of the warming are due to a reduced longwave emissivity,

1/3 of the warming is due to a reduced planetary albedo. Most of the planetary

albedo reduction originates from a reduced cloud cover, surface albedo changes are

small because there is no sea ice to be melted (a small reduction of the high-latitude

surface albedo originates from decreased snowfall). The longwave cloud radiative effect

hardly changes. Thus, most of the emissivity-driven warming is due to the radiative

effects of the clear-sky atmosphere. Unfortunately, we cannot distinguish between

the longwave radiative effects of the different clear-sky atmospheric compartments.

However, assuming that we know the direct radiative forcing of CO2, we attribute the

residual and largest part of the clear sky emissivity-driven warming to the increased

atmospheric water vapour content.

Increasing pCO2 to 1120 ppm leads to a destabilisation of the simulated climate; a

runaway effect occurs. We find that almost 1/4 of the warming during the runaway is

caused by a reduction of the total cloud cover and the consequent relative warming due

to reduced reflection of shortwave radiation by clouds. Our results indicate that most

of the residual warming is due to a decrease of the clear sky emissivity. We find that

prescribing present-day ozone concentrations may lead to artificial warming in warmer-

than-present simulations. However, for now, we have not excluded the possibility that

another mechanism (i.e., a mechanism other than artificially high tropospheric ozone)

causes the runaway climate for 1120 ppm. Using our GCM model setup, we cannot

distinguish between the radiative effect of ozone and the other components of the

clear-sky atmosphere. Hence, we cannot rule out that the PE runaway climate is an

artefact of unrealistic ozone concentrations. Note that, even if the runaway is not an

artefact of overstressed parameterisations, it could still be due to the lack of feedback

mechanisms from other Earth system components, for example the lack of vegetation

feedbacks.

(5) Can we confirm the hypothesis that an ocean circulation switch triggered the

PETM using a coupled GCM?

No. According to our simulations, there was no ocean circulation switch that could have

triggered the thermal dissociation of large amounts of methane from marine sediments.

In our control simulation with 560 ppm pCO2, which is the simulation that best matches

reconstructed pre-PETM surface temperatures, we find NADW formation in the proto-

Labrador Sea and a southward western boundary current at about 800 to 3000 m depth.

Deep water in the southern hemisphere forms in centennial flushes in the South Atlantic

and Indian Ocean, and in the South Pacific. In addition to the deep, southward,

western boundary current in the Atlantic, we also find a deep, northward transport

in the eastern Atlantic at about 3000 m depth. Increasing pCO2 leads to a generally
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weaker, shallower meridional overturning circulation. We do not find a switch to North

Pacific deep water formation, as suggested by Bice and Marotzke (2002). Moreover,

our results indicate that the hydrological cycle change that Bice and Marotzke (2002)

applied to achieve the circulation switch was very large. However, because of the large

uncertainties associated with deep time paleo-simulations, for example uncertainties in

the bathymetry, we cannot rule out the possibility that an ocean circulation switch as

suggested by Bice and Marotzke (2002) caused the methane hydrate dissociation.

The inhomogeneous vertical and zonal structure of the convection and meridional

overturning in the Atlantic in our simulations challenges previous conclusions from

’deep water age’ reconstructions, which are based on single, local ocean drilling sites.

Nunes and Norris (2006) inferred southern-hemisphere deep water formation from car-

bon isotope data. We argue that the relatively shallow NADW-track in combination

with South Atlantic convection and a northward flow of Antarctic bottom water in the

eastern Atlantic, in other words, co-existing northern and southern hemisphere deep

water formation, may also be consistent with the carbon isotope records. Our simu-

lations do not show any increase in deep water formation in the northern hemisphere

in response to increased pCO2. Hence, our simulations do not support the notion of

Nunes and Norris (2006) that the onset of the PETM was associated with a switch

from southern hemisphere to northern hemisphere deep water formation.

5.2 Outlook

We speculate that fresh-water input from the Arctic into the North Pacific has the po-

tential to inhibit North Pacific deep water formation in our PE simulations. Whether or

not the Bering Strait was closed during the PE is currently under discussion (Winguth,

personal communication). Thus, a possible extension of this study would be to test the

sensitivity of our results against the closure of the Bering Strait.

A limitation of this study is the assumption of a globally homogeneous vegetation.

One approach to overcome this limitation could be to perform additional land surface

sensitivity runs with prescribed vegetation distributions (such as the one reconstructed

by Utescher and Mosbrugger 2007). Another approach could be to include interactive

vegetation.

The analysis of the standard ECHAM5 output fields combined with the simple EBM

as a diagnostic tool has allowed us to constrain the mechanisms that, according to our

simulations, caused the warm and sensitive PE climate. However, this model-diagnosis

setup is limited. For example, it does not allow us to quantify the radiative effect of

water vapour separately from the other greenhouse gases. We have to speculate that

water vapour is one main driver of the large PE climate sensitivity, possibly even leading

to a runaway climate. Using additional diagnostic tools (such as a multiple column
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version of the ECHAM5 radiation scheme) may help to improve the understanding of

our simulations, and of the PE climate.

5.3 Résumé

We present the first coupled late Paleocene to early Eocene (PE) climate model solu-

tion with moderate pCO2 that shows relatively warm, sea-ice-free high latitudes, and

still reasonably matches lower-latitude sea surface temperature reconstructions. Our

runs do not support the notion that an ocean circulation switch triggered the Pale-

ocene/Eocene Thermal Maximum (PETM). However, our results indicate that the PE

climate was very sensitive to a variation of pCO2, which implies that a relatively small

input of carbon — possibly from methane hydrates — could have caused the warming

during the PETM.
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Appendix A

Modified tropopause diagnostic

The ozone parameterisation (Section 3.3) critically depends on the detection of a cor-

rect tropopause height. ECHAM5 comes with a module that computes the tropopause

height following the definition of the first tropopause of the World Meteorological Or-

ganization (1992, WMO). However, we find that this tropopause module becomes in-

applicable during the PE runaway climate for a CO2 concentration of 1120 ppm. The

tropopause module fails to detect the correct tropopause at low latitudes, and sets

the diagnosed tropopause height to 200 hPa. Consequently, the ozone parameterisation

does not remove the artificial ozone surplus from the upper troposphere (Figure A.1;

compare to Figure 3.11e). Consequently, the runaway is artificially accelerated (Fig-

ure 3.9, red dashed line).

The first tropopause as defined by the WMO is the lowest level at which the lapse

rate decreases to 2K per 1000 m, provided also that the average lapse rate between

this level and all higher levels within 2000 m does not exceed 2 K. In the ECHAM5

tropopause module, these criteria are only checked at limited model levels; the search

algorithm has an upper and a lower pressure bound. These pressure bounds depend on

the maximum and minimum pressure levels for the formation of convective clouds. We

decrease the minimum pressure limit to allow for a tropopause search at greater heights.

Moreover, we modify the WMO first tropopause definition such that a low temperature

gradient is only accepted to define the correct tropopause height, if the lapse rate does

not exceed 2 K per 1000 m within 5000 m above that low gradient (instead of within

2000 m according to the WMO). This accounts for the larger distances between the

(higher) levels at lower pressures. With these two modifications, the tropopause module

detects correct tropopause heights during PE4 (Figure A.2).
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Figure A.1: Differences between the annual mean zonal mean ozone climatology as

interpolated from Fortuin and Kelder (1998) and the ozone concentration averaged

over the years 2470 to 2479 in the 1120 ppm run without the corrected tropopause

detection algorithm; dotted line indicates the zonal mean tropopause height.
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Figure A.2: Time series of the global mean tropopause height for the 1120 ppm run

with the original WMO tropopause diagnostic as implemented in the standard version

of ECHAM5 (red dashed), and for PE4 with the corrected algorithm for the tropopause

detection (blue).
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Seiffert, Fanny Adloff, Annette Lilje, Freja Vamborg, Dr. Dirk Notz, Rosina Grimm,

Daniel Bakosch, Maria Paz Chidichimo, Anna Kildemoes, Dr. Dirk Rannacher, and

Waldemar Matis for their supporting and/or distracting company, for absorbing frus-

tration, and for making me feel comfortable in Hamburg. I would like to thank my

sister, my brother-in-law, and my parents for their support throughout my studies.

113



Die gesamten Veröffentlichungen in der Publikationsreihe des MPI-M
„Berichte zur Erdsystemforschung“,
„Reports on Earth System Science“, 
  ISSN 1614-1199

sind über die Internetseiten des Max-Planck-Instituts für Meteorologie erhältlich:

http://www.mpimet.mpg.de/wissenschaft/publikationen.html





ISSN 1614-1199




