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Abstract

The study focuses on the analysis of the occurrence and changes of extreme tem-
perature and precipitation events in global climate simulations of the present and
future climate. Two approaches are followed to identify and analyze these extreme
events in data of the global climate model ECHAM5/MPI-OM.

First, indices for extreme events, which capture moderate and statistical robust
extreme events, are calculated on the basis of model data and are compared with
indices from the global observational dataset HadEX. This comparison shows that
the model is able to realistically capture the observed climatological large-scale pat-
terns of the extreme indices, although the quality of the simulations depends on
the index and region under consideration. In the future climate, as represented
by the IPCC emission scenarios B1 and A1B, all considered temperature-based in-
dices (yearly minimum and maximum temperatures and frequency of tropical nights)
encounter a significant increase worldwide. The precipitation-based indices (max.
5-day precipitation amount and 95th percentile of precipitation) also increase sig-
nificantly, particularly in those regions that are relatively wet already in present
climate. Analogously, dry spells increase especially in regions with dry conditions
under present climate. The future changes of the indices reveal distinct regional and
seasonal patterns as shown exemplarily in three European regions.

Further, it is investigated whether the occurrence of extreme events and their
changes in a warming climate are related to large-scale circulation patterns. This
study particularly concentrates on the influence of Euro-Atlantic atmospheric block-
ing on extreme events in Europe. First, it is analyzed how well the model is able
to represent blocking conditions in summer and winter by comparing blocking fre-
quencies and their spatial and seasonal distributions with ERA-40 re-analysis data.
Secondly, correlations between blocking frequency and selected monthly indices for
extreme events are calculated. Blocking frequencies and their seasonal distribution
are well captured by the model and especially for the winter minimum temperature
significant correlations with blocking events are found in central Europe. In the
future climate, the blocking frequency is slightly diminished but the influence on
the European winter climate remains robust.

The second approach to identify extremes in global model data concentrates
on the statistical modeling of extreme values. Here, the Generalized Extreme Value
distribution (GEV) is fitted to monthly minima (maxima) of winter minimum (max-
imum) temperatures in Europe. The behavior of the distribution’s parameters and
20-year return values are analyzed for present and future climate conditions. Com-
pared to the extreme indices, similar regional warming patterns in Europe can be
found in the A1B scenario. Finally, an attempt is made to improve the fit of the
GEV by conditioning the parameters on a covariate derived from Euro-Atlantic
atmospheric blocking. It is demonstrated that including atmospheric blocking as
covariate improves the GEV fit particularly to the minimum temperature data in
certain regions of Europe. This has also considerable impact on the return values.
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Chapter 1

Introduction

1.1 Motivation

Extreme events occur within the natural variability of the climate (IPCC (2007)).
However, events like the hurricane Katrina of 2005 in southeastern U.S.A., the heat
wave of 2003 in central Europe, or the Elbe flood of 2002 in central and eastern
Europe have demonstrated how susceptible our present society is to the destructive-
ness of such extreme events and how climate can produce conditions that are outside
the coping range of our society (McGregor et al. (2005)). Statistics of insurances
(e.g., MunichRe (2002)) have further illustrated that the costs of damages due to
extreme climate events have exponentially risen in the last decades. This statistic
is, however, strongly related to higher technology standards and higher population
densities in risk-prone areas compared to past decades and to a corresponding rise
in insured infrastructure (Beniston & Stephenson (2004)). Thus, this statistic does
not indicate whether extreme climate events have increased due to anthropogenic
climate change. Hence, the scientific study of the nature of extreme climate events
is essential to gain an understanding of their possible occurrence and dimensions
in present and future climate. The knowledge gained can enable us to develop re-
liable prediction methods as well as adaptation and mitigation strategies to avoid
unnecessary human and financial losses.

1.2 Extreme climate events - a general introduction

A unique definition of an extreme event is difficult to formulate (e.g., Beniston &
Stephenson (2004)). In general we can characterize an extreme event as a very sel-
dom (as rare as or rarer than the 10th or 90th percentile of the observed probability
density function according to IPCC (2007)) and very intense event with severe im-
pacts on society and biophysical systems. The severity of a particular extreme event,
however, highly depends on the vulnerability and adaptability of the system under
consideration (Meehl et al. (2000)).

In particular, an extreme climate event can be classified as a pattern of extreme
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Figure 1.1— Spatial and temporal scale of extreme climate events

weather that persists for some time, especially if it yields an average or total that is
itself extreme (e.g., drought or heavy rainfall over several days or a season) (IPCC
(2007)). Extreme climate events can occur on different spatial and temporal scales as
illustrated in figure 1.1 and can involve one or more climate variables (e.g., temper-
ature, precipitation, wind, etc.), which define their complexity. Due to the fact that
extreme events are scarce, we need long data records to analyze their characteristics
and possible changes in a warming climate. Single extreme events cannot be simply
and directly attributed to anthropogenic climate change, since there is always the fi-
nite chance that the considered event could have occurred naturally (IPCC (2007)).
Further, the more scarce the event, the more difficult it is to identify long-term
changes.

Observational datasets would be an optimal basis for the analysis of extreme
events. However, observed temperature and precipitation data records are in the
most cases too short, do not uniformly cover the whole planet and suffer from in-
homogeneities, e.g., due to changes in observing practices. These limitations make
it difficult to use observational datasets for a global or even regional study of ex-
treme events (IPCC (2007)). To circumvent the aforementioned limitations, we
can make use of long present and future climate simulations from a state-of-the-art
global atmosphere-ocean coupled general circulation model (CGCM). The fast de-
velopment of CGCMs in the last decades regarding their complexity and resolution
as well as the inclusion of more and more physical processes makes them a funda-
mental tool for studying various aspects of the climate. The current resolution of
a CGCM as used e.g., for the Forth Assessment Report of the Intergovernmental
Panel on Climate Change (IPCC AR4) (IPCC (2007)) corresponds to a grid box
size of approximately 200km (mid-latitudes). This model resolution allows us to
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study particularly large-scale climate extreme events of a single or more climate
variables, such as floods, heat and cold waves as well as droughts (see also figure
1.1). Small-scale extreme weather events (such as hail or storms) cannot be resolved
by a CGCM with the described resolution. To assess these events, regional climate
models and statistical downscaling methods can be applied (see e.g., Beniston et al.
(2007); Friederichs & Hense (2007); Leckebusch et al. (2006); Woth et al. (2006);
Katz et al. (2002); Wilby et al. (1998)).

1.3 Assessment of extreme events in climate data

A particular interest in the study of extreme climate events arose not more than two
decades ago (e.g., Mearns et al. (1984); Katz & Brown (1992); Karl et al. (1993)).
At that time also the discussion awoke how to assess extreme climate events in
climate data and how to make the results comparable for different regions, models,
and climate change simulations.

Basically, there exist two approaches, a parametric and a non-parametric, for the
diagnostic analysis of extreme events in climate data. The non-parametric approach
is established by the definition of indices for extreme events that characterize mod-
erate and statistical robust extreme events with short return periods (Karl et al.
(1999)). Subsequently, the Expert Team on Climate Change Detection Monitoring
and Indices developed a set of 27 indices based on daily minimum and maximum
temperature and precipitation data (Peterson (2005)). Various studies have been ac-
complished with a selection of these indices using observational data (e.g., Frich et al.
(2002); Klein Tank & Koennen (2003)) or climate model simulations (e.g., Alexander
et al. (2006); Sillmann & Roeckner (2008)). This approach made it further possible
to quantitatively analyze moderate extreme events in future climate model simula-
tions and to perform model inter-comparison studies (Tebaldi et al. (2006)) as well
as compare model results with observations (e.g., Kiktev et al. (2003); Sillmann &
Roeckner (2008)). However, this approach only considers absolute extreme values
and lacks the ability to extrapolate the results towards damage-relevant extremes
with much larger return periods than those observed (Frei (2003)).

The parametric approach based on the extreme value theory, in fact, enables
such extrapolation of extreme events with long return periods and allows studies
considering all features of the extreme’s distribution. The extreme value theory
goes back to the extremal limit theorem of Fisher & Tippett (1928), which states
that the distribution of the maxima (or minima) of a sample of random variables
approaches one of three limiting forms as sample size increases. Gnedenko (1943)
has defined this theorem in full generality. Gumbel (1958) was then one of the first
promoting the extreme value theory as a tool for modeling the extremal behavior
of observed physical processes. Leadbetter et al. (1983) further achieved some great
advances of the applicability of extreme value techniques by extending the extreme
value theory to non-stationary processes and broadening the characterization of
the extremal behavior. A detailed description of various methods regarding the
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statistical modeling of extreme events is given in, e.g., Palutikof et al. (1999); Coles
(2001); Katz et al. (2002).

The classical extreme value theory is based on the block maxima approach, where
the maxima (or minima) of a given a sample of random variables (e.g., temperature,
precipitation, or wind speed) are drawn from intervals (blocks) of distinct length
(e.g., month, season, year). The distribution of these maxima or minima asymp-
totically converges to the Generalized Extreme Value (GEV) distribution as block
length goes to infinity. The advantage of this approach is its fairly straightforward
application requiring only a few decisions during parameter calculation (Palutikof
et al. (1999)).

Another approach making more efficient use of the available data is based on
threshold models where the distribution of maxima or minima that exceed some high
threshold (e.g., Peaks Over Threshold (POT) approach) converge to a family of dis-
tribution called Generalized Pareto Distribution (GPD) (Coles (2001)). In practice,
some drawbacks are however associated with the threshold models making it difficult
to apply those to large (spatial extension) climate data sets. The difficulties concern
the lack of reliable or recommendable automatic techniques for threshold selection
(Davison & Smith (1990); Palutikof et al. (1999)) and also the trade-off between
choosing the threshold high enough, but still ensuring a large enough number of
exceedances for a reliable parameter estimation (Katz et al. (2005)). Furthermore,
climate variables such as temperature exhibit clustering that has to be taken care
of even for high thresholds (Coles (2001)).

In recent years, the idea of including covariates in the extreme value distribution
evolved to improve the statistical modeling of extreme values (e.g., Coles (2001);
Katz et al. (2002, 2005)). So far, only a few studies in climate research followed this
approach, which concentrate yet exclusively on a time trend as covariate to take into
account anthropogenic climate change in the simulation of extreme temperature and
precipitation events (e.g., Kharin & Zwiers (2000, 2005); Nogaj et al. (2007)).

Katz et al. (2002) however points out that the GEV distribution can be regarded
as valuable method for statistical downscaling of extreme values in CGCM data if
one can find one or more appropriate covariate(s) arising from large-scale circula-
tion variables (e.g., mean sea level pressure, sea surface temperature, or potential
vorticity, etc.). Thus, finding appropriate covariates remains a challenge in climate
research.

1.4 Atmospheric blocking and its connection with ex-
treme climate events focusing on Europe

According to Corti et al. (1999) most atmospheric changes are attributable to
changes in the frequency of the global atmospheric flow regimes. In various recent
studies, it has also been presumed (e.g., Klein Tank & Koennen (2003); Haylock
& Goddess (2004); Cassou et al. (2005)) that large-scale circulation patterns have
an influence on the occurrence and distribution of extreme events. State-of-the-art
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CGCMs, and in particular the ECHAMS5/MPI-OM (Jungclaus et al. (2006)), per-
form well in simulating large-scale atmospheric variables as a study of Van Ulden
& van Oldenborgh (2006) points out. Consequently, it is of major concern to use
this skill of the CGCMs to explore the nature of extreme climate events and to

improve their prediction by investigating their link to large-scale atmospheric con-
ditions (Yiou et al. (2007)).

The European climate strongly depends on the atmospheric circulation, in par-
ticular the alternation between westerlies bringing moist maritime air from the At-
lantic to the European continent and the easterlies being responsible for dry and
cold (warm) weather in winter (summer) (Van Ulden & van Oldenborgh (2006)). In
this respect atmospheric blocking plays a key role in the European flow variability
due to its capability to disturb predominant cyclonic westerly flow. Atmospheric
blocking conditions are in general defined as anti-cyclonic quasi-stationary high-
pressure systems persisting for several days up to weeks. They act as an important
counterpart to the North Atlantic Oscillation (NAO) (Cassou et al. (2004); Terray
et al. (2004); Yiou & Nogaj (2004)) and explain approximately 15% of the European
climate variability (Scherrer et al. (2006)). Concerning its large spatial extent and
long temporal existence, atmospheric blocking has an ample influence on the sea-
sonal winter climate in Europe (e.g., Beniston et al. (1994); Lupo et al. (1997)). In
winter, atmospheric blocking can be responsible for anomalous dry and cold weather
conditions at its core (Tyrlis & Hoskins (2008)) and wet conditions around the block
(Trigo et al. (2004); Rex (1950a)).

Pioneer work, concerning a detailed climatology of blocking frequency and deriv-
ing a subjective detection method for blocking occurrence, has been done by Elliott
& Smith (1949) and Rex (1950a,b). Most subjective detection methods are based
on the latitudinal (1D) or latitudinal and longitudinal (2D) gradient of the absolute
(e.g., Tibaldi & Molteni (1990); Lupo & Smith (1995)) or anomaly field (e.g., Shukla
& Mo (1983); Sausen et al. (1995)) of the geopotential height at 500 hPa (Z500).
However, blocking indicators based on geopotential height are not able to capture the
dynamical features of atmospheric blocking, thus making model validation difficult
(Doblas-Reyes et al. (2002)).

Recently, blocking indicators based on dynamical variables, such as potential
temperature or potential vorticity have been developed (Tyrlis & Hoskins (2008);
Pelly & Hoskins (2003b)). According to Schwierz et al. (2004), a dynamical-based
index should be consistent with the intrinsic blocking features, such as spatial scale
and structure, amplitude, life cycle, duration, movement as well as geographical
location. A quasi three-dimensional approach to capture all of these features is the
dynamical blocking indicator based upon the potential vorticity (PV) anomaly field
averaged over the tropopause level (2 pvu) between 500 and 150hPa (Schwierz et al.
(2004); Croci-Maspoli et al. (2007b)).

Figure 1.2 illustrates the basic concept (following the dynamical approach) of a
blocked situation at a specific time over the Euro-Atlantic region where the colored
(green to blue) surface represents the height of the dynamical tropopause. Dark
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Figure 1.2— Example of an Euro-Atlantic atmospheric blocking situation (January 23th, 1987
00UTC) (Croci-Maspoli (2005)). Please find a detailed description in the text.

blue regions indicate an elevation of the tropopause aligned with strong negative
PV-anomalies (PV < -1.3 pvu). Thus, the westerly flow, indicated by the red ar-
rows, is blocked and changes its path to the north and south of the blocked region
resulting in a more cellular flow with a significant meridional component. The dy-
namical blocking detection method by Schwierz et al. (2004) tracks these negative
PV-anomalies from their genesis to their lysis, requiring a minimum lifetime of 5
days and a spatial extension of at least 1.8 - 10 km?. Consequently, this blocking
indicator is beneficial for blocking life time studies, model validations, and allows
further insight in the dynamics of blocking events in climate change experiments.

1.5 Scope of the thesis

The scope of this dissertation is the assessment of large-scale extreme temperature
and precipitation events by different methods as described in section 1.3. The focus
lies primarily on the analysis of CGCM data, in particular on climate simulations
performed with the ECHAM5/MPI-OM of the Max Planck Institute for Meteorol-
ogy, Hamburg (Roeckner et al. (2006a)). Furthermore, this thesis aims to introduce
a method of including information about a large-scale atmospheric pattern, namely
atmospheric blocking, in the statistical modeling of extreme temperature events.
The following aspects will be addressed in the thesis:
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e Is the model able to realistically represent extreme climate events in the present
climate?

e What changes regarding extreme climate events can we expect under anthro-
pogenic climate change in future climate model simulations?

e Are there regional and seasonal differences attached to the changes in extreme
events under anthropogenic climate change?

e Can we find associations between large-scale atmospheric circulation patterns,
in particular atmospheric blocking, and present and future climate extreme
events?

e Do these associations change under anthropogenic climate change?

e Can we use the associations between large-scale atmospheric circulation pat-
terns and climate extremes for improvement of the statistical modeling of
extreme values?

1.6 Thesis outline

The thesis is structured in 3 chapters (besides the general introduction and sum-
mary), each addressing a subset of the questions mentioned above. One chapter is
already published, one is submitted and the other one is in preparation for publi-
cation. Thus, each chapter forms a largely independent study with a corresponding
introduction as well as a model and methodology description section, but with some
reference to the previous chapters concerning the results. This structure implies a
partial overlap of some contents between the chapters.

Chapter 2 concentrates on the non-parametric approach by assessing extreme
events in climate model data with indices for climate extremes. It mainly addresses
the question whether the model can represent observed extreme temperature and
precipitation events and how extreme events change globally in future climate model
simulations. Also regional and seasonal differences are analyzed with focus on Eu-
rope. This chapter has been published in Climatic Change'.

Chapter 3 deals with the associations between Euro-Atlantic atmospheric block-
ing and extreme temperature and precipitation events in Europe. Associations are
studied by means of composite maps and correlation analysis. This chapter is sub-
mitted to Geophysical Research Letters®

1Sillmann, J. and E. Roeckner, 2008, Indices of extreme events in projections of anthropogenic
climate change, Climatic Change, 86:83-104.

2Sillmann, J. and M. Croci-Maspoli, 2008, Euro-Atlantic blocking and extreme events in present
and future climate simulations, submitted to Geophysical Research Letters.
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Chapter 4 comprises the statistical modeling of extreme temperature events in
present and future climate model simulations. This chapter also concentrates on
Europe. An attempt of statistical downscaling is made by including Euro-Atlantic
atmospheric blocking as covariate in the GEV distribution, which is fitted to the
CGCM data. This chapter is in preparation for submission to Climate Dynamics
with M. Kallache and M. Croci-Maspoli as co-authors.

Chapter 5 summarizes the results from the previous chapters by answering the
questions mentioned in section 1.5. Furthermore, the main findings of this thesis are
concluded and an outlook is given for further research.



Chapter 2

Indices for extreme events in
projections of anthropogenic
climate change!

Abstract

Indices for temperature and precipitation extremes are calculated on the basis
of the global climate model ECHAMS5/MPI-OM simulations of the 20th century
and SRES A1B and B1 emission scenarios for the 21st century. For model evalu-
ation, the simulated indices representing the present climate were compared with
indices based on observational data. This comparison shows that the model is able
to realistically capture the observed climatological large-scale patterns of tempera-
ture and precipitation indices, although the quality of the simulations depends on
the index and region under consideration. In the climate projections for the 21st
century, all considered temperature-based indices, yearly minimum (maximum) of
the minimum (maximum) temperature and the frequency of tropical nights, show
a significant increase worldwide. Similarly, extreme precipitation, as represented
by the maximum 5-day precipitation and the 95th percentile of precipitation, is
projected to increase significantly in most regions of the world, especially in those
that are relatively wet already under present climate conditions. Analogously, dry
spells increase particularly in those regions that are characterized by dry conditions
in present-day climate. Future changes in the indices exhibit distinct regional and
seasonal patterns as identified exemplarily in three European regions.

Lpublished in Climatic Change, 2008, with E. Roeckner as co-author.
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2.1 Introduction

Nowadays a major worry of mankind is anthropogenic climate change and its so-
cioeconomic impacts. Global surface temperature has significantly risen during the
last century and will continue to rise unless greenhouse gas emissions are drasti-
cally reduced (IPCC (2001)). The impacts of climate change are manifold and vary
regionally, even locally, in their severity. However, immediate damages to humans
and their properties are not obviously caused by gradual changes in temperature or
precipitation but mainly by so-called extreme climate events. The rare occurrence
of extremes makes it necessary to investigate long data records to determine signifi-
cant changes in the frequency and intensity of extreme events. To this end, coupled
atmosphere-ocean general circulation models (AOGCMSs) are appropriate tools to
simulate past, present, and future climate states. Thus, AOGCMs are able to gen-
erate long time series that can be used for model evaluation and also for analyses of
possible future changes in extreme events.

There are various methods to characterize extreme events, for instance by means
of percentile-, threshold- or duration-based indices, or by analyzing the statistical
behavior of the tail of a weather element’s probability distribution. The focus of
this study is on the non-parametric approach. Indices for climate extremes based on
daily temperature and precipitation data were defined by an international commit-
tee to assess extremes in temperature and precipitation and to make a global and
multi-model comparison possible (Folland et al. (1999); Karl et al. (1999); Nicholls
& Murray (1999)). Frich et al. (2002) defined ten key indices, which should be
statistically robust with fairly short return periods and represent a wide variety of
climate aspects. Several studies subsequently focused on the analysis of this set of
key indices. However, the definitions and usefulness of some of these indices, al-
though meant to be globally valid, became the subject of discussion and, as a result,
definitions of some indices as well as their calculations were reconsidered (Alexander
et al. (2006); Zhang et al. (2005); Tebaldi et al. (2006); Kiktev et al. (2003); Haylock
& Goddess (2004), etc.). Several studies to date have concentrated on the analysis of
indices for climate extremes based on observational data from weather stations (e.g.,
Frich et al. (2002); Klein Tank & Koennen (2003)), while others focused primarily
on the changes of extremes in future climate projections (e.g., Meehl et al. (2000);
Meehl & Tebaldi (2004); Tebaldi et al. (2006)).

The objectives of the present study are, first, to investigate whether the model is
able to capture the observed spatial and temporal patterns of extreme temperature
and precipitation events and, second, to analyze the changes of extreme indices
in future climate projections. The paper is organized as follows. The model and
the experiments are briefly described in section 2.2, followed by a discussion of the
climate indices selected for this study in section 2.3. The results are presented in
section 2.4, which has two parts. In sub-section 2.4.1 the simulated indices are
compared with the observed ones, whilst the changes obtained in future climate
projections are presented in sub-section 2.4.2. A discussion of the main results in
section 2.5 concludes this paper.
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2.2 Model description and experiments

All model-based indices described in this paper were calculated from data gener-
ated with the coupled AOGCM ECHAMS5/MPI-OM developed at the Max Planck
Institute for Meteorology (Jungclaus et al. (2006)). The atmospheric component
ECHAMS5 (Roeckner et al. (2003)) has a horizontal resolution of 63 wave numbers
in spectral space (T63), corresponding to 1.875°x1.875° in grid-point space, and 31
vertical levels. The oceanic component of the coupled model (MPI-OM) is a GCM
with integrated sea ice model (Marsland et al. (2003)). It has a nominal horizontal
resolution of 1.5° and 40 vertical levels. The coupled model does not employ flux
adjustments.

The model experiments analyzed in this study include a 500-year pre-industrial
control run (CON), three 20th century simulations (20C) initialized at different
states of CON, and three realizations of the IPCC scenarios A1B and B1, respec-
tively, initialized at year 2000 of the respective 20C experiments. In CON, the
greenhouse gas concentrations were kept constant at levels for the year 1860 and
anthropogenic sulfate aerosols were set to zero. In the 20C runs, greenhouse gases
(COq9, CHy4, N2O, CFCs, O3) and sulfate aerosols were prescribed year to year ac-
cording to observations and chemical transport model results, respectively. In the
future scenario experiments, greenhouse gas and sulfate aerosol concentrations were
prescribed year to year according to the scenarios A1B and B1 in the Special Report
on Emissions Scenarios (SRES) (Nakicenovic & Swart (2000)) of the Intergovern-
mental Panel on Climate Change (IPCC). A1B is the part of the Al family that
describes a balance across all energy sources, resulting in a total radiative forcing
of about 6 Wm~=2 in year 2100 compared to pre-industrial times (IPCC (2001)).
B1 describes a storyline with rapid changes in economic structures toward a service
and information economy with reductions in material intensity and the introduction
of clean and resource-efficient technologies, resulting in a total radiative forcing of
about 4 Wm~2 in year 2100 (IPCC (2001)).

2.3 Methodology

Daily 2-meter maximum and minimum temperature (T2MAX and T2MIN, respec-
tively) as well as precipitation data were used to calculate 27 indices for climate
extremes as defined by the Expert Team on Climate Change Detection Monitoring
and Indices (ETCCDMI), which is jointly sponsored by the World Meteorological
Organization (WMO) Commission of Climatology (CCI) and the Climate Variability
and Predictability (CLIVAR) project (Peterson (2005)). An excerpt of these indices
can be seen in Table 2.1. CLIVAR also provided the basic computer software used
for the calculation of these indices (FclimDex), which was modified for the needs of
gridded climate model data. The threshold-based indices that have to be calculated
relative to a base period were calculated according to the bootstrap method outlined
by Zhang et al. (2005).
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All indices mentioned in this paper were calculated on an annual basis for the
three ensemble members and ensemble means of the 20C and the scenario simula-
tions, respectively. Additionally, some of the model-based indices were calculated
on a monthly basis (cf. section 2.4.3). For the comparison of the 20C model runs
with observations, we used the indices for climate extremes based on data from
worldwide weather observation stations as described in Alexander et al. (2006). The
Hadley Centre for Climate Prediction and Research provides these indices on an an-
nual basis for the time period 1951-2003 and gridded to a spatial resolution of 3.75°
longitude by 2.5° latitude (HadleyCentre (2006)). Those indices will be referred to
as HadEX indices in the following. It is important to note that all observation-
based indices were first calculated for all weather stations and then interpolated
onto the latitude-longitude grid, whereas the model-based indices were calculated
from the variables representative for the whole grid-box area. These methodological
differences are likely to cause systematic differences in the probability distribution
of spatially inhomogeneous data such as precipitation, for example.

The present analysis is limited to a few key indices (indicated in bold letters in
Table 1). The selection was based on the following criteria. The indices should be
robust and plausible considering the comparably coarse model resolution and the
information deducible from the indices should be useful for climate change impact
studies. The minimum T2MIN (TNn) and maximum T2MAX (TXx) as well as
the number of tropical nights (TR) represent the temperature indices for climate
extremes in this paper. TNn and TXx correspond to the absolute temperature
extremes within a year. Tropical nights are defined as days with T2MIN greater
than 20°C. TR was chosen to provide information about possible heat stress for
organisms. During heat wave events, higher nighttime temperatures can increase
the heat stress experienced by organisms. An increase in the frequency of tropical
nights could thus be an indicator for more heat stress.

The selected key indices for precipitation are the maximum 5-day precipitation
amount during a year (RX5day), the 95th percentile of precipitation on wet days
(R95p), and the number of consecutive dry days during a year (CDD). Days with
precipitation above (below) lmm are defined as wet (dry) days, respectively. For
spell indices (in Table 2.1 marked with a *), such as CDD and consecutive wet
days (CWD), it has to be mentioned that if a spell lasts longer than a year, it is
counted against the year in which the spell ends. RX5day can be used as a flood
indicator because severe floods, on the space scales considered here, are generally not
caused by a single heavy thunderstorm event, but more likely, by long-lasting heavy
precipitation events that are extended over a large region. R95p characterizes the
upper tail of the precipitation distribution. CDD is the only index that refers to the
dry part of the year and can indicate regions vulnerable to droughts. Real drought
conditions, however, are caused by more complex conditions than captured by CDD,
e.g. interactions of precipitation deficits as well as soil and land use characteristics
(Tebaldi et al. (2006)). The selected key indices were also chosen by Alexander et al.
(2006); Tebaldi et al. (2006); Kiktev et al. (2003); Easterling et al. (1997), and Karl
et al. (1993), thus enabling a comparison with their results.
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2.4 Results

2.4.1 Comparison of model- and observation-based indices for ex-
treme events

The comparison of model- and observation-based indices was carried out on the basis
of global maps and 53-year time series (1951-2003). First, the model-based indices
were interpolated onto the Hadley Center HadCM3 model grid (3.75° x 2.5°, 96 x
73 grid boxes). Furthermore, the time-dependent mask of missing grid values in
the HadEX dataset was applied to the model-based indices when displaying global
maps of time averages and calculating time series. All indices mentioned in Table
2.1 were analyzed on an annual basis. However, results are presented only for the
key indices shown in boldface in Table 2.1. The global maps allow a comparison
of the large-scale patterns of the individual indices. The time series show spatial
averages of the indices for three European regions as defined in Table 2.2. When
comparing the time series of HadEX and model-based indices, not only the ensemble
mean is considered, but also the range of the three ensemble members of the 20C
model simulations.

Temperature

In most regions, the maximum T2MAX (TXx) shown in figures 2.1 a, b is well
captured by the model. However, TXx at high northern latitudes is systematically
underestimated by typically 10°C and also on the Tibetan Plateau. Additional in-
dices based on T2MAX reveal corresponding features at high northern latitudes. For
example, the number of ice days (ID) is too high and the number of summer days
(SU) is much too low. On the other hand, the minimum T2MAX (TXn) is in good
agreement with the HadEX data (not shown). Similarly, both the spatial distribu-
tion and the absolute values of the minimum T2MIN (TNn) are very well simulated
(Fig. 2.1 ¢, d). Other indices based on T2MIN, e.g. frost days (FD), also show good
agreement between the model and HadEX data (not shown). The diurnal temper-
ature range (DTR) (not shown), which is the difference between daily T2MAX and
T2MIN, is generally underestimated, especially at high northern latitudes. How-
ever, the global spatial patterns of DTR in the model show a good agreement with
the HadEX data. Although the large-scale distribution of tropical nights (TR) is
reasonably well represented by the model, there are differences in the details (Fig.
2.1 e, f). For example, the area with TR > 150 days is more extended in the model
(Southeast Asia, Australia, southern USA). Similarly, the cold regions with TR < 1
day are too widespread (western USA, southern Europe, Tibetan Plateau, southern
part of South America) so that the transition zones cover a smaller area than in the
observations.

For a more quantitative assessment of model errors, the temporal evolution of

observed and simulated indices is shown in Fig. 2.2 for three European regions (cf.,
Table 2.2). Consistent with the spatial pattern of TXx (cf., Fig. 2.1 a, b) the model
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a) TXx [deg C] HadEX data b) TXx [deg C] model data

Figure 2.1— Time averaged temperature-based indices (1951-2003) for HadEX data (left) and
model data (right). The model data represent the respective ensemble means of three 20C realiza-
tions. Missing values in the HadEX data are masked out in the model data as well.

simulation deteriorates with increasing northern latitude (Fig. 2.2 a-c). Whereas
TXx is generally close to the observations in southern Europe, larger differences of
about -2°C can be found in central Europe and, in particular, in northern Europe
where the error becomes as large as -4°C. In comparison with the HadEX data,
the model overestimates the number of ice days (ID) especially in northern Europe
and underestimates the number of summer days (SU) in all European regions (not
shown). Consistent with the spatial pattern of TNn (cf. Fig. 2.1 ¢, d), the HadEX
data are mostly within the ensemble spread of the model data in all European regions
(Fig. 2.2 d-f). In northern Europe, the model overestimates the number of frost days
(not shown). The diurnal temperature range (DTR) (not shown) is underestimated
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a) TXx — Southern Europe b) TXx — Central Europe c) TXx — Northern Europe
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Figure 2.2— Time series (1951-2003) of spatially averaged (land only) temperature-based
HadEX indices (blue) and the ensemble mean of the model-based indices (red) for three regions
in Europe (cf., Table 2.2). Compared are the maximum T2MAX [°C] in the three regions (a, b, c), the
minimum T2MIN (d, e, f) [°C] and the tropical nights (g, h, i) [days]. The shading indicates the spread
of the three 20C realizations.

in all regions, but mostly in northern Europe (about 2.5°C on average). The number
of tropical nights TR (Fig. 2.2 g-i) is just about 50% of the observed one in central
Europe, whereas in northern Europe tropical nights are very rare events in both
the observations and simulations. For southern Europe, the interpretation of the
TR time series is more ambiguous. Here the simulated time-mean TR is close to
the observed one, but the decline in the observed record until about 1970, and
the marked increase thereafter, is missing in the model simulations. The question
whether these multi-decadal changes are due to natural variability or induced by
external forcing cannot be answered with confidence.

The model captures the threshold-based indices cool nights (TN10p), warm nights
(TN90p), cool days (TX10p), and warm days (TX90p) (not shown) reasonably well
in all European regions. However, since the actual thresholds needed to calculate
these indices were not provided with the HadEX data, a meaningful comparison was
not possible. Hence, these threshold-based indices are excluded from this study.
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a) RX5day [mm] HadEX data b) RX5day [mm] model data

Figure 2.3— As figure 2.1, but for the precipitation-based indices, maximum 5-day precipitation
(a, b), 95th percentile of precipitation on wet days (c, d), and maximum number of consecutive dry
days (e, f).

Precipitation

The spatial distribution of the maximum 5-day precipitation (RX5day) is generally
well represented in the model (Fig. 2.3 a, b). However, the model slightly underesti-
mates the absolute values of RX5day in most regions, except in the western part of
North America. The spatial pattern of the precipitation amount on very wet days
(R95p) is very well captured (Fig. 2.3 ¢, d), but an overestimation of the absolute
values can be seen in the western part of North America and Northeast Asia. Fur-
thermore, the model underestimates R95p around the Mediterranean Sea, in India
and Southeast Asia, and in the eastern parts of Africa and Brazil. Although the
model represents the total annual wet-day precipitation (PRCPTOT) (not shown)
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Figure 2.4— As figure 2.2, but for the precipitation-based indices maximum 5-day precipitation
(a, b, c) [mm], 95th percentile of precipitation on wet days (d, e, f) [mm], and maximum number of
consecutive dry days (g, h, i) [days].

well, it generally tends to underestimate extreme precipitation events as described
by RXbday or R95p. This is also noticeable in other precipitation-based indices,
such as maximum 1-day precipitation (RX1day) and very heavy precipitation days
(R20) (not shown). In comparison with the HadEX data, the model reveals some
problems in describing the precipitation distribution in terms of the number of wet
days and the precipitation intensity on wet days. For instance, the model simulates
too many consecutive wet days (CWD) while the actual amount of precipitation is
too little on the individual wet day as indicated by the index SDII (simple daily
intensity) (both not shown). The large-scale pattern of the number of consecutive
dry days (CDD) is reasonably well captured (Fig. 2.3 e, f). However, at high north-
ern latitudes, CDD is systematically lower than observed. Moreover, a significant
underestimation of CDD can be seen in some dry regions, such as the northern part
of Mexico, where the model and HadEX data differ by up to 60 days. In India and
in the region west of the Caspian Sea, on the other hand, the model overestimates
CDD by more than 50 days, on average.

The temporal evolution of RX5day for three European regions is shown in figures
2.4 a~c. In northern Europe, the HadEX time series generally falls within the en-
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semble spread of the model, except in the 1990’s where the observed upward trend is
not simulated by the model. In regions further south, RX5day is systematically too
low. For example, in central Europe this underestimation amounts to 15mm, corre-
sponding to 20%, and in southern Europe it is about 25mm, corresponding to 28%,
on average. Similar to RX5day, the R95p index is very well simulated in northern
Europe (Fig. 2.4 f). Differences between the HadEX and the model data are more
pronounced in central Europe (Fig. 2.4 e) and become even larger in southern Eu-
rope (Fig. 2.4 d), where the model underestimates R95p by approximately 50mm,
corresponding to 30%, on average. The inter-annual variability of R95p increases
towards southern Europe in both the HadEX data and model simulations. The un-
derestimation of extreme precipitation, especially in southern Europe, can also be
seen in other indices, such as the maximum 1-day precipitation (RX1day), the sim-
ple daily intensity index (SDII), the number of heavy precipitation days (R10), and
the number of very heavy precipitation days (R20) (not shown). The consecutive
wet days (CWD) (not shown) are well captured by the model in southern Europe
but become increasingly overestimated at higher latitudes. The model represents
the annual total wet-day precipitation (PRCPTOT) (not shown) best in central
Europe, but overestimates this index in northern Europe and underestimates it in
southern Europe. The consecutive dry days (CDD) index shown in figures 2.4 g-i is
very well simulated in central Europe and reasonably well in northern Europe. The
ensemble spread in northern Europe is very small and the model underestimates
CDD by only a few days. In southern Europe, the model overestimates CDD by
more than 20 days, corresponding to 30% on average, except in the 1950’s when the
simulated CDD is closer to the observed one. However, the abrupt change in the
simulated CDD is not a real effect but can be attributed to a changed masking of
missing values in the HadEX data (cf., section 2.4.1).

2.4.2 Changes in extremes in future climate projections

To detect changes in the indices for climate extremes in the climate projections of the
21st century, time intervals of 30 years at the end of the 20th and the 21st century,
respectively, were chosen, and the time means for these periods were compared.
The present-day climate state (1971-2000) was derived from the 20C ensemble, the
future one (2071-2100) from the three ensemble members of the scenario runs A1B
and B1, respectively. The statistical significance of the differences between these
climate states was assessed through a non-parametric test as described in Roeckner
et al. (2006c). The null hypothesis assumes that the difference (DIFF=Scenario-
20C) is within the range of variations between randomly chosen 30-year segments
of the control run (CON). This null hypothesis was tested against the alternative
hypothesis that DIFF is larger than such random differences. The total of 500 years
in CON was split into n = 16 chunks of 30 years length. By forming differences
across all available chunks n(n-1)/2 = 120 differences were obtained. A Gaussian
test was applied, where the distribution of these 120 differences for the individual
indices in the control run were determined, and assessed whether the respective
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a) TXx [deg C] A1B-20C b) TXx [deg C] B1-20C

c) TNn [deg C] A1B-20C

e) TR [days] A1B-20C f) TR [days] B1-20C

Figure 2.5— Differences of temperature-based indices between the ensemble mean of (left) A1B
(2071-2100) and 20C (1971-2000) as well as (right) B1 (2071-2100) and 20C (1971-2000) simula-
tions. Shown are the respective differences for maximum T2MAX (a, b), minimum T2MIN (c, d) and
tropical nights (e, f). All changes displayed in this figure are significant at the 95% confidence level.

DIFF was larger than the 95th percentile of the CON distribution. In that case the
null hypothesis was rejected with a risk of less than 5%.

Temperature

The projected changes of temperature-based indices are shown in figure 2.5. In
both scenarios, all changes in the displayed temperature indices are significant at
the 95% confidence level, but the changes in A1B are generally more pronounced
than in B1. The maximum T2MAX (TXx) reveals the largest increase around the
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Mediterranean Sea, in southern Africa, in the northwestern part of South America
but also in the far north of Siberia. Little increase can be seen in Scandinavia
and in the adjacent part of Russia. The minimum T2MIN (TNn), on the other
hand, reveals the largest increase at high northern latitudes, i.e., in those regions
where the increase in TXx is comparatively small. In the southern hemisphere,
TNn does not increase by more than 3-4°C, which is systematically smaller than the
change in mean temperature (not shown). The tropical night index (TR) increases
mostly around the Mediterranean Sea, in central America, central to southern Brazil,
southern Africa and along the East coast of Australia. In both scenarios, tropical
nights can be expected in regions like Canada and parts of Eurasia, which do not
experience tropical nights under present climate conditions.
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Figure 2.6— Time series (1860-2100) of spatially averaged (land only) temperature-based in-
dices for three regions in Europe (cf., Table 2.2) in 20C (black), A1B (red) and B1 (blue) model
simulations. Shown are the maximum T2MAX [°C] in the three regions (a, b, c), the minimum T2MIN
(d, e, f; °C) and the tropical nights (g, h, i; days). Displayed are the respective ensemble means and
the spread in the ensemble members is indicated by light (B1) and dark (A1B) shading. Data are
smoothed by a 10-yr running mean.

In the time series of temperature-based indices for three European regions (Fig.
2.6), distinguishable differences between the two scenarios cannot be seen before year
2040, considering the ensemble spread indicated by shading around the ensemble
mean. TXx increases mostly in southern Europe from about 37°C in the present
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climate to 42°C (B1) and 44°C (A1B), respectively, in year 2100. In central Europe,
the trend of TXx is similar with an increase of 5°C in B1 and 6°C in A1B until year
2100. In northern Europe, TXx rises by only 2-3°C, and the changes remain similar
in both scenarios even beyond the year 2040. The regional changes of TNn are
opposite to those of TXx. In contrast to TXx, the rise in TNn is most pronounced
in northern Europe, from -27°C in the present climate to approximately -19°C in
B1 and -18°C in A1B until the end of this century. In central and southern Europe,
TNn rises by about 4°C in Bl and 6-7°C in A1B. It is interesting to note that,
probably as a result of large natural variability on the regional scale, the ensemble
mean changes of TNn until about year 2025 are larger in B1 than in A1B. Further it
should be pointed out, that both TXx and TNn increase at a similar rate in southern
and central Europe (about 4-5°C in B1 and 6-7°C in A1B). However, in northern
Europe TNn increases much faster (by up to 9°C in A1B) than TXx (by only 3°C
in A1B). The most striking increase of tropical nights is simulated for southern
Europe, from about 15 nights per year in the present climate up to 65 nights in
B1 and 80 nights in A1B until the end of this century. In central Europe, the TR
increases from about 3 nights per year to 18 in B1 and 25 in A1B. A widening of
the ensemble spread towards the end of the 21st century is also noticeable in that
region, indicating that the inter-annual variability in the number of tropical nights
is expected to increase. Even northern Europe, where no tropical nights occur in
present climate, will experience a few tropical nights per year at the end of the 21st
century.

Precipitation

As apparent from Fig. 2.7a-d, RX5day and R95p, which describe the wet part of
precipitation extremes, show a significant increase in many regions of the world. The
changes are more pronounced in A1B than in B1. The largest increase can be found
at lower latitudes, in the eastern part of North America and along the West coast
of Canada. Further, the R95p increases strongly in the northern part of Eurasia.
A significant decrease of RXbday is found only in a few regions, for example, in
southern Spain, Morocco and along the coast of southern Chile. The consecutive
dry day (CDD) index increases significantly in regions around the Mediterranean
Sea, especially along the African coast (Fig. 2.7 e, ). Further increases of CDD can
be found in Australia, southern Africa, in the northeastern part of South America
as well as along the Pacific coast of Central and South America (especially Chile).
The CDD changes are systematically larger in A1B than in B1 and also the regions
with significant changes are more extended in A1B than in Bl (e.g., Australia). In
a few regions of the northern hemisphere, namely in parts of Alaska, Siberia and
Greenland, the number of consecutive dry days tends to decrease in both scenarios.

According to the time series of precipitation-based indices for three European
regions (Fig. 2.8) RX5day decreases slightly in the 21st century in southern Europe,
whereas R95p shows hardly any trend. In northern Europe, however, there is a
marked increase of both RX5day and R95p. In A1B, RXb5day increases by about
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Figure 2.7— As figure 2.5, but for projected changes in the precipitation-based indices maximum
5-day precipitation (a, b), 95th percentile of precipitation on wet days (c, d), and maximum number
of consecutive dry days (e, f). Changes that are statistically insignificant at the 95% confidence level
are not displayed (white areas).

9mm until the end of this century, and the R95p rises by approximately 90mm. This
corresponds to an increase of 17% in RX5day and 64% in R95p. In general, the
RX5day differences between B1 and A1B are not pronounced in the three European
regions. For R95p, differences in the ensemble means are visible in northern Europe
from year 2040 onward, and in central Europe from year 2060 onward, but there
is a large overlap of the respective ensemble spreads during the whole simulation
period. In central Europe, RX5day and R95p increase as well, but not as strongly
as in northern Europe. Distinguishable differences between the two scenarios cannot
be seen until the very end of the scenario runs, where the indices undergo a sharp
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Figure 2.8— As figure 2.6, but for the temporal evolution of the precipitation-based indices
maximum 5-day precipitation (a, b, ¢; mm), 95th percentile of precipitation on wet days (d, e, f; mm),
and maximum number of consecutive dry days (g, h, i; days).

decrease in the last 10 years of the B1 scenario. In the A1B scenario, RX5day and
R95p continue to rise until the end of the 21st century whereas RX5day rises by
about 7mm, corresponding to an increase of 13%, and R95p rises by about 60mm
(46%). In contrast to the wet extreme precipitation events, CDD is projected to
increase substantially in southern Europe, from approximately 75 days in the present
climate to 105 days in B1 and 115 days in A1B. This means that the longest dry
period within a year is prolonged by 1 (1.5) months at the end of this century in
B1 (A1B). Differences between the scenarios do not emerge before the year 2040. In
northern Europe, CDD has no trend and stays at about 19 days per year on average
in both scenarios. In central Europe, CDD increases by approximately 7 days in B1
and 10 days in A1B, whereas significant differences between the scenarios cannot be
distinguished since the respective ensemble ranges continue to overlap until the end
of the 21st century.
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2.4.3 Seasonal changes

In order to analyze seasonal changes in TXx, TNn and RXb5day, 30-year monthly
means of these indices were calculated at each grid point for the 20C simulations
(1971-2000) and for the A1B and B1 scenarios (2071-2100), respectively, and the
results for the three European regions were then obtained by spatial averaging (land
only). Since three ensemble members are available for both the 20C experiments
and the scenarios, it is possible to compute 32 differences between the respective
scenario and the 20C experiment. Results are displayed for both the ensemble mean
differences for every month and for the respective standard deviations obtained from
all 9 individual differences.

a) TXx — Northern Europe b) TNn — Northern Europe
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Figure 2.9— Simulated changes in the climatological annual cycle of maximum T2MAX (a, c, e;
°C) and minimum T2MIN (b, d, f; °C) for three regions in Europe (cf., Table 2.2). Red: Differences
between A1B (2071-2100) and 20C (1971-2000). Blue: Differences between B1 (2071-2100) and
20C (1971-2000). The standard deviation (1¢), calculated from 9 differences between the respective
ensemble members, is indicated by vertical bars.
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Temperature

Figure 2.9 shows the simulated changes in the climatological annual cycle of
temperature-based indices for the three European regions. TXx and TNn increase
in all months and in all European regions in both scenarios, but the changes are
generally seasonally dependent. An exception is TXx in northern Europe, which
increases more or less constantly throughout the year. In contrast, TNn in northern
Europe shows the largest increase (up to 9°C in A1B) in the winter months, and
the smallest increase (down to 3°C in A1B) in the summer months. The standard
deviations are also largest in winter and smallest in summer. Significant differences
between A1B and Bl are evident, as indicated by the separation of the blue and red
bars in almost all months. In central Europe, the changes in the annual cycles of
TXx and TNn are largely out of phase. TXx increases predominantly from July to
October (above 5°C in A1B), whereas TNn reveals the largest increase in the winter
months (around 6°C in A1B). The increase in TNn is relatively small in May and
June (less than 3°C), where also the smallest standard deviations occur. The small-
est increase of TXx can be found in spring (3°C in A1B) and from late autumn to
spring (2.5°C in B1). Standard deviations of TXx overlap in January and in spring.
The smallest standard deviations, in both scenarios, occur in July and August. In
southern Europe, the changes in the annual cycles of TXx and TNn differ as well.
The largest increase in TXx is found from June to September, which is around 6°C
in A1B and around 4.5°C in B1. The standard deviations do not overlap throughout
the year, i.e., the scenarios are well separated. In the winter months, the increase in
TXx is substantially smaller than in summer (2.5°C in Bl and 3.5 - 4°C in A1B).
The increase in TNn is smallest in spring (around 2.5°C in Bl and 3°C in A1B). The
largest increase in TNn is found between July and September (almost 4°C in Bl
and 5°C in A1B), but TNn remains relatively high in winter as well (about 4.5°C in
A1B). The standard deviations of TNn do not overlap except for March and April.
The standard deviations of TXx and TNn are, in general, smallest in southern Eu-
rope and largest in northern Europe due to the north-south gradient in inter-annual
variability, especially in the winter months.

Precipitation

According to figure 2.10a, which shows the simulated changes in the climatological
annual cycle of the precipitation-based index RX5day in northern Europe, the largest
increase of about 6mm in A1B (corresponding to about 20% on average) can be found
in late autumn to winter (October-February). In B1 the largest increase of 4-5mm,
corresponding to 15% on average, occurs from October to December. The standard
deviations in both scenarios do not overlap in January, February and November. In
both scenarios, the smallest increase of about 2mm, corresponding to 6%, is found
in August. In central Europe (Fig. 2.10b), RX5day increases between October
and April by about 4mm (14%) in A1B and 2mm (7%) in B1, and it decreases
in the summer months by up to 5mm (20%) in August (A1B). These changes are
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Figure 2.10— As figure 2.9, but for the precipitation-based index max. 5-day precipitation (mm).

more pronounced in A1B, but generally, except for February and November, the
standard deviations in the scenarios do overlap. In May and September the changes
of RX5day are insignificant. In southern Europe (Fig. 2.10c), RX5day decreases
in both scenarios. In A1B, this decrease is more pronounced than in B1, but the
standard deviations do overlap in all months. The largest decreases in A1B can
be found in May (6mm or 32%) and October (4.8mm or 17%). In B1, the smallest
decrease of RX5day is found in December (1mm or 3%) whereas the largest decrease,
as in A1B, is found in May (4mm or 21%).

2.5 Discussion and concluding remarks

The comparison with the HadEX indices shows that the ECHAMS5/MPI-OM model,
in general, is able to capture the climatological large-scale patterns of extreme tem-
perature and precipitation indices with good fidelity, although the quality of the
simulations depends on the index and region under consideration. For example, the
maximum summer temperatures, TXx, are severely underestimated by up to 10°C
at high northern latitudes, whereas the minimum T2MIN (TNn) pattern is realisti-
cally simulated. The negative bias of TXx at high northern latitudes may be caused
by an overly strong westerly flow in boreal summer (Roeckner et al. (2006b)) with
enhanced advection of relatively wet and cold maritime air masses and, consequently,
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high cloud amount and precipitation (Hagemann et al. (2006)). The simulated min-
imum winter temperatures TNn, on the other hand, are similar to those of HadEX
due to the fact that the large-scale circulation in boreal winter is well simulated
(Roeckner et al. (2006b)). In Europe, the biases mentioned above are obvious as
well. Whereas TNn is very well simulated in southern, central, and northern Eu-
rope, TXx is slightly underestimated in central Europe but severely underestimated
in northern Europe. As to be expected, there is a marked meridional gradient in TR,
with values close to zero in northern Europe and about 25 days in southern Europe
in both the simulations and observations. At lower latitudes the temperature-based
indices are in good agreement with the HadEX indices. This applies to both TXx
and TNn, whereas the number of tropical nights, TR, is slightly on the high side.

The large-scale patterns of precipitation-based indices, i.e., the 5-day maximum
(RX5day) and 95th percentile of precipitation (R95p) as well as the maximum num-
ber of consecutive dry days (CDD), are similar to the observed ones. However, in
most regions both RX5day and R95p are smaller than observed. To some extent, this
might be due to methodological differences in the computation of observation-based
and model-based indices, respectively (see section 2.3). The model input available
for calculating the indices represents averages for grid-box areas of up to some 40000
km?, whilst the observed indices were computed from data at measurement sites and
gridded thereafter. Very likely, the former method implies a stronger smoothing of
extremes than the latter, in particular for spatially inhomogeneous variables like
precipitation. In addition, regional biases in the simulated mean climate state do
contribute to biases in precipitation extremes as well. For example, in the Mediter-
ranean region, the dry bias in the mean state is reflected in the underrepresentation
of RX5day and R95p and overestimation of CDD. In most regions, the number of
consecutive wet days is higher than observed, whereas the mean rain intensity is too
low.

In conclusion, the simulated broad-scale patterns of temperature- and
precipitation-based indices are in good agreement with those obtained from the
HadEX data, but the model biases can be substantial in certain regions (e.g., TXx
at northern high latitudes, precipitation-based indices in the Mediterranean region).

In the climate projections for the 21st century, all temperature-based indices
show a significant increase worldwide at the end of this century. Similarly, extreme
precipitation (RX5day and R95p) is projected to increase significantly in most re-
gions of the world, especially in those regions that are relatively wet already under
present climate conditions (middle and high northern latitudes, Southeast Asia,
Indonesia, Central Africa, South America). Analogously, CDD increases particu-
larly in those regions that are already relatively dry under present climate condi-
tions (Mediterranean countries, California and northern Mexico, Mauritania, South
Africa, Australia). An exception is the northeastern part of South America where
all precipitation indices, RX5day, R95p, and CDD, increase significantly. In general,
the differences between humid and arid climate zones tend to increase under global
warming. This has been found already for the changes in the mean state (e.g., IPCC
(2001)) but it seems to apply to the changes in the precipitation extremes as well.
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Northern high latitudes are affected by a strong increase of T2MIN, which causes
an extension of the growing season length and a substantial reduction in the number
of frost days in both climate scenarios. This has a major impact on the terrestrial
biota (Parmesan et al. (2000)) and on the permafrost soils. The northern part of
Siberia will be mostly affected since both extremes of the temperature distribution,
TXx and TNn, increase substantially in that region. The fact that TNn increases
faster than TXx, especially in northern Europe, can be related to a northward shift
of the westerly wind regime during winter months causing enhanced advection of
warm and moist maritime air, higher cloud amount and reduced nighttime cooling in
the winter months. This finding is consistent with the results obtained by Easterling
et al. (1997) and Giorgi et al. (2001). The substantial rise of TNn in winter in central
and northern Europe leads to less snowfall and a shorter retention period of snow,
especially in the low mountain ranges in central Europe. This will have a major
impact on tourism in those regions. On the other hand, in southern and central
Europe, TXx rises predominantly in summer and early autumn, which is consistent
with the prolongation of dry spells in these regions.

Agriculture will be diversely affected in northern and southern Europe, respec-
tively. In northern Europe, higher temperatures and a longer growing season length
are favorable conditions for agriculture, whereas in southern Europe extensive ir-
rigation will be required because of higher temperatures, less precipitation, and
prolonged dry spells in the future climate.

There is also a significant increase worldwide in the number of tropical nights.
At the end of this century, a tropical night will not be the exception in southern
Europe, as in the present climate, but the rule in all summer months. This inten-
sifies the heat stress on humans and other living organisms provoked by increasing
heat waves or daytime temperatures (Meehl & Tebaldi (2004)). This heat stress is
further enhanced by the increasing number of consecutive dry days. These changes
in climate extremes will have a severe impact on living conditions, water supply,
and agriculture in the regions around the Mediterranean Sea. Northern regions,
where no tropical nights occur in the present climate, will face an increasing number
of tropical nights as well, which will occur in summer during sporadic heat wave
periods. This will demand socio-economic adaptation measures of northern popula-
tions that are not used to tropical nights, e.g. enhanced cooling systems and special
health care for elderly people and children.

The regional analysis of the annual cycle indicates that the increase of maximum
5-day precipitation in central and northern Europe occurs predominantly in the
winter months, caused primarily by a northward shift of the storm tracks (Bengtsson
et al. (2006)). In central Europe, RX5day decreases during summer, especially in
August, induced by an eastward extension of the Azores high, which leads to a
reduction of moisture supply from the Atlantic and thus causes an intense drying
in the Mediterranean region (Giorgi et al. (2001)). The prolongation of dry spells
will also affect central Europe. In general, the regions with extended dry spells
broaden and, therefore, regions endangered by desertification grow. In particular,
the Mediterranean regions will face longer drought conditions lasting for more than
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3 months, especially in summer. In some studies, heavy rainstorm events (smaller in
scale than RX5day) will become more probable (Christensen & Christensen (2003)).
This amplifies the risk of erosion of dried-out, uncovered soils in these regions. The
northern part of Europe will not be endangered by longer dry periods, but the
increase of RX5day enforces the risk of flooding.

A crucial point to ask is to what extent the simulated changes might be affected by
the model biases identified in the comparison with the HadEX indices. For example,
is the modest increase in TXx at high northern latitudes affected by the negative
bias in these regions or is it just the result of enhanced advection of moist maritime
air in the warmer climate? Similarly, is the enhanced warming and drying in the
Mediterranean countries partially caused by the dry model bias in these regions?
Is the projected increase in RX5day and R95p too small because these indices are
generally underestimated compared to the HadEX data? To answer these questions,
a multi-model study would be required allowing to investigate the impact of model
biases on the robustness of the response. Nevertheless, it seems fair to conclude
that more confidence should be placed in the projections of those indices that are
realistically captured by the model under present-day climate conditions.

In many respects, the results found in our simulations are consistent with the
multi-model study of Tebaldi et al. (2006) and other studies on changes in extremes
of temperature and precipitation (e.g., Meehl et al. (2000); Meehl & Tebaldi (2004)).
This study further showed that, in addition to the large-scale patterns, it is useful
to focus on regional scales such as the three European regions, which show distinct
differences in the temporal evolution of the extreme indices on both annual and
seasonal time scales. Many of these changes are likely to be related to changes
in the large-scale atmospheric circulation (e.g., Haylock & Goddess (2004); Cassou
et al. (2005)). The robustness of the correlations between the large-scale flow and
extreme indices will be investigated in a separate study.
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Table

2.1—

Excerpt of

the extreme
(http://cccma.seos.uvic.ca/ETCCDMI/list_27_indices.shtml).

indices recommended by

in this study are highlighted in bold letters. * Spell indices

the ETCCDMI
Indices that are described in detail

1D

Indicator name

Indicator definitions

Units

10

11

12

TN10p

TX10p

TN90p

TX90p

TXx

TXn

TNx

TNn

FD

SU

TR

Cool nights

Cool days

Warm nights

Warm days

Max
T2MAX

Min T2MAX

Max T2MIN

Min T2MIN

Frost days

Ice days

Summer days

Tropical
nights

Let TN;; be the daily minimum temperature on
day ¢ in period j and let TIN;,,10 be the calendar
day 10th percentile centered on a 5-day window.
The percentage of days in a year is determined
where TNij < TN;,10

Let TX;; be the daily maximum temperature
on day ¢ in period j and let TX;,,10 be the cal-
endar day 10th percentile centered on a 5-day
window. The percentage of days is determined
where TXij < TX;,10

Let TN;; be the daily minimum temperature on
day ¢ in period j and let TN;,90 be the cal-
endar day 90th percentile centered on a 5-day
window. The percentage of days is determined
where TNiJ‘ > TN;,90

Let TX;; be the daily maximum temperature
on day ¢ in period j and let TX;,90 be the cal-
endar day 90th percentile centered on a 5-day
window. The percentage of days is determined
where TX;; > TX;,90

Let TXx be the daily maximum tempera-
tures in month k, period j. The maximum
daily maximum temperature each month
is then: TXxy; = max(TXxy;)

Let TXn be the daily maximum temperature in
month £, period 7. The minimum daily maxi-
mum temperature each month is then: TXny;
= min(TXny;)

Let TNx be the daily minimum temperatures in
month k, period j. The maximum daily mini-
mum temperature each month is then: TNxy;
= max(TNxy;)

Let TNn be the daily minimum tempera-
ture in month k, period j. The minimum
daily minimum temperature each month
is then: TNn;; = min(TNny;)

Let TN be the daily minimum temperature on
day 7 in period j. Count the number of days
where TN@j <0°C

Let TX be the daily maximum temperature on
day 4 in period j. Count the number of days
where TXiJ‘ <0°C

Let TX be the daily maximum temperature on
day ¢ in period j. Count the number of days
where TX;; > 25 °C

Let TN be the daily minimum tempera-
ture on day 7 in period j. Count the num-
ber of days where TN;; > 20 °C

%

%

%

%

°C

°C

°C

°C

days

days

days

days
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Table 2.1— continued
1D Indicator name Indicator definitions Units
13 GSL Growing season Let T be the mean temperature on day i in pe- days
length riod j. Count the number of days between the
first occurrence of at least 6 consecutive days
with T > 5 °C and the first occurrence after
1st July (NH) or 1st January (SH) of at least 6
consecutive days with T;; < 5 °C
14 DTR Diurnal tempera- Let TN and TX be the daily minimum and max- °C
ture range imum temperature respectively on day [ in pe-
riod j. If I represents the number of days in j,
then: DTR; = YF _, (TXy; - TNy;)/ I
15 RXlday Max 1-day Let RR;; be the daily precipitation amount on mm
precipitation day 4 in period j. The maximum 1-day value for
amount period j are: RX1day; = max (RR;;)
16 RX5day Max 5-day Let RRj; be the precipitation amount mm
precipitation for the 5-day interval ending k, period j.
amount Then maximum 5-day values for period j
are: RX5day; = max (RRy;)
17 SDII Simple daily in- Let RR,,; be the daily precipitation amount on mm/d
tensity index wet days, RR >= lmm in period j. If W rep-
resents number of wet days in j, then: SDII; =
(Sis RRuj) / W
18 R10 Number of heavy Let RR;; be the daily precipitation amount on days
precipitation day 4 in period j. Count the number of days
days where RR;; > 10mm
19 R20 Number of very Let RR;; be the daily precipitation amount on days
heavy precipita- day ¢ in period j. Count the number of days
tion days where RR;; > 20mm
20 CDD* Consecutive Let RR;; be the daily precipitation days
dry days amount on day ¢ in period j. Count the
largest number of consecutive days where
RRZ‘j < 1mm
21 CWD* Consecutive wet Let RR;; be the daily precipitation amount on days
days day ¢ in period j. Count the largest number of
consecutive days where RR;; > 1mm
22 R95p Very wet days Let RR,; be the daily precipitation mm
amount on a wet day w (RR >= lmm)
in period ¢ and let RR,,,95 be the 95th
percentile of precipitation on wet days in
the 1961-1990 period. If W represents
the number of wet days in the period,
then: R95p; = 23/:1 RR,;, where RR,;
> RR,,»,95
23 PRCP Annual total wet- Let RR;; be the daily precipitation amount on mm
TOT day precipitation  day 4 in period j. If I represents the number of

days in j, then: PRCPTOT; = Y1

n=1

RR;
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Table 2.2— Spatial definition of three European regions

Region Longitudes Latitudes

Southern Europe 12°W - 40°E  35°N - 45°N
Central Europe 12°W - 40°E  45°N - 55°N
Northern Europe 12°W - 40°E  55°N - 70°N




33

Chapter 3

Euro-Atlantic atmospheric
blocking conditions and extreme
events in present and future
climate simulations!

Abstract

The impact of Euro-Atlantic blocks on the present and future (SRES A1B) Euro-
pean climate is studied. Composite maps show that blocking events are associated
with anomalously dry and cold winters in Europe. Especially the extreme winter
nighttime temperature is significantly anti-correlated with blocking events closed to
Europe. In A1B the blocking frequency is slightly diminished but the influence on
the European winter climate remains robust. Due to a northeastward shift of the
blocking pattern from the northeastern North Atlantic towards the Norwegian Sea,
a larger part of Europe will experience anomalously cold episodes during the win-
ter months than under present climate conditions. In general, winter blocks tend
to moderate the changes in both temperature and precipitation resulting from the
anthropogenic increase in greenhouse gases. In summer, the correlations between
blocking frequency and extreme events are statistically insignificant.

lsubmitted to Geophysical Research Letters, with M. Croci-Maspoli as co-author.
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3.1 Introduction

Extreme temperature and precipitation events moved in the center of attention,
since the susceptibility of human society to the destructiveness of extreme events is
increasing due to advancing technology and living standards as well as rising pop-
ulation density (Meehl et al. (2000)). For a better understanding and improved
prediction of extreme events it is of major importance to investigate their link to
large-scale atmospheric circulation patterns. The latter are assumed to have an im-
portant effect on the occurrence of extreme events (Klein Tank & Koennen (2003)).
In this respect atmospheric blocking acts as a prominent feature with consider-
able impacts on the Euro-Atlantic climate. It plays a key role in the European
flow variability due to its capability to disturb predominant cyclonic westerly flow.
Atmospheric blocking is in general defined as anti-cyclonic quasi-stationary high-
pressure system persisting for several days up to weeks. Owing to its large spatial
extent and temporal persistence, it can be responsible for dry and cold winter (Trigo
et al. (2004)) and hot summer at its core and wet conditions around the block (Rex
(1951)).

In the past, several studies have pointed to the lacking accuracy of coupled general
circulation models (CGCMs) to represent atmospheric blocking, particularly in the
Euro-Atlantic region (e.g., Tibaldi & Molteni (1990); D’Andrea et al. (1998); Pelly
& Hoskins (2003a)). Therefore, we first investigate how well Euro-Atlantic blocks,
represented by a Potential Vorticity (PV)-based blocking indicator, are simulated
in the coupled atmosphere-ocean model ECHAMS5/MPI-OM. We then analyze vari-
ables such as the 500hPa geopotential height, surface temperature and precipitation
during blocking conditions close to the European continent to illustrate the anoma-
lous climate associated with blocking events. Finally, we follow the argument that
atmospheric blocking is associated with extreme precipitation and temperature and
we investigate changes of Euro-Atlantic blocking frequency under future climate
conditions and their associations to projected changes in extreme events.

3.2 Data and methodologies

3.2.1 Model experiments

In this study, the climate model ECHAMS5/MPI-OM (Jungclaus et al. (2006)) is
employed, hereinafter referred to as ECHAMS. The atmospheric component has
a horizontal resolution of 63 wave numbers in spectral space (1.875° x 1.875° in
grid-point space) and 31 vertical levels up to 10 hPa. The oceanic component has
a nominal horizontal resolution of 1.5° and 40 vertical levels. The model does not
employ flux adjustments. Greenhouse gases (GHG) and sulfate aerosols in the 20th
century simulations (20C) are prescribed according to observations and chemical
transport model results, respectively. For the analysis of the present-day climate,
we use 6-hourly data generated from the 20C simulations consisting of an ensemble
of three members. We compare the 20C results with ERA-40 re-analysis data (Up-
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pala et al. (2005)), hereinafter referred to as ERA-40, for the time period 1961 to
2000. The analysis of the future climate is based on 6-hourly data generated from a
three-member ensemble simulation of the IPCC SRES scenario A1B. We use the last
40 years (2160-2199) of the stabilization period, where the GHG and aerosol con-
centrations are kept constant at the level of year 2100. We concentrate our analyses
on the winter (December to February, DJF) and summer season (June to August,

JIA).

3.2.2 Blocking indicator

In recent years several attempts have been undertaken to objectively define atmo-
spheric blocking events. They all tie in with the common characteristics of blocking
such as enhanced sea level pressure, elevated geopotential height or anticyclonic
wind field. The 500 hPa geopotential height (Z500)) is the most frequently applied
base field for blocking indicators (e.g., Tibaldi & Molteni (1990) (hereinafter TM90),
Dole & Gordon (1983); Sausen et al. (1995)). More recently, indices based upon the
potential vorticity field have been developed (e.g., Pelly & Hoskins (2003a); Schwierz
et al. (2004)). The climatological distribution (temporal, spatial and frequency) of
blocks depends on the indicators applied and can differ in several aspects (some are
described in Scherrer et al. (2006)). Nevertheless the overall distribution of these
climatologies shows similarities and depending on the study’s preferences a specific
indicator is more or less adequate.

The blocking detection method used in this study is based upon the signature
of the block in the three-dimensional potential vorticity (PV) field. The block-
ing detection algorithm is separated into two steps. First, regions of negative PV
anomalies between 500 hPa and 150 hPa are identified. These anomalies are cal-
culated with respect to the 1961-2000 and 2160-2199 periods, respectively. Second,
these negative PV anomalies are temporally tracked and structures with a lifetime
longer/equal than a specified time (here 10 days) are defined as blocking events.
As a result we obtain a two-dimensional blocking representation for every instance
of time (6-hourly resolution). For further details upon the blocking index and its
climatological application to the ERA-40 data set, see Schwierz et al. (2004) or
Croci-Maspoli et al. (2007b), respectively.

The here applied blocking index allows a wide spectrum of applications. It is
highly accurate for dynamical blocking lifetime studies since the method is able to
track a block from its genesis to its lysis. The method is particularly useful for model
validation studies, and gives a better understanding of the dynamics of blocking in
climate change experiments. Due to the fact that we concentrate on the analysis of
extreme events in Europe, we focus on blocks occurring close to Europe in their life
cycle (15°W-30°E, 50°N-70°N) as depicted by the black box in figure 3.1 (hereinafter
referred to as European Blocks (EB)).
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3.2.3 Indices for extreme events

Extreme events can be defined by selected indices, such as maximum 5-day precipi-
tation (RX5day), minimum of the minimum 2-m temperature (TNn) and maximum
of the maximum 2-m temperature (TXx) described in Frich et al. (2002). These
indices characterize moderate but robust large-scale extreme events that are well
captured by ECHAMS5 (Sillmann & Roeckner (2008)). RXb5day is a useful indi-
cator for large-scale flooding events that are caused by long lasting and spatially
extended heavy precipitation events. TXx and TNn represent the tails of the tem-
perature distribution, corresponding to extreme day- and nighttime temperatures,
respectively.

3.2.4 Composite maps

To depict the typical flow pattern as well as the typical temperature and precipitation
fields associated with EB, we calculate composite maps for monthly means of 500
hPa geopotential height (Z500), 2m-temperature (TEMP2) as well as precipitation
(PREC) for months with high blocking frequencies within the EB region. High
blocking frequencies are defined as frequencies greater than one standard deviation
above the respective monthly climatological means.

3.2.5 Correlation analysis

We determine the associations between the blocking indicator and the indices for
extreme events by calculating the Spearman’s rank correlation coefficient. This
is a robust correlation index in terms of outliers and does not rely on a normal
distribution. We test for correlations at the 5% significance level with a two-sided
Spearman’s rank correlation test according to Best & Roberts (1975). Due to the
chosen significance level, at least 5% of the grid points with significant correlations
could be falsely detected. For this reason we performed a field significance test (with
a global test level of 5%) proposed by Wilks (2006), estimating the false discovery
rate (FDR) of erroneously rejected null hypothesis (no correlation). This test is very
conservative concerning potential spatial correlations.

For the correlation analysis, the field average of blocking frequency over the EB
region is calculated. We concatenated the respective 40-year time slices (1961-2000)
and (2160-2199) of the three ensemble members, thus receiving time series of 120
years for the analysis of blocking frequencies and extreme indices in the 20C and
A1B climate, respectively. Correlations between the EB blocking indicator and the
extreme indices are then calculated at each grid point in the Euro-Atlantic domain
for a particular season.
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Figure 3.1— Climatologies of blocking frequency [%] for winter (DJF, left panels) and summer
(JJA, right panels; note different scale). Shown are results for the present climate (1961-2000) in
(a, b) ERA-40 and (c, d) ECHAMS (ensemble means), and (e, f) for the A1B scenario (ensemble
means 2160-2199). The black box frames blocking events in the EB region (15°W-30°E, 50°N-70°N),
considered in the analyses.

3.3 Results

3.3.1 Blocking climatology

In figure 3.1, climatologies of blocking frequencies are compared for ERA-40, 20C,
and A1B. Blocking frequencies are defined here as the percentage of time a particular
grid point is blocked by a block with a lifetime > 10 days. Hence, a blocking
frequency of 1%, for example, corresponds to about one blocked day per season.

In general, there is good agreement between ECHAMS5 and ERA-40 concerning
the seasonal distribution and location of blocking. In the winter months, the location



38 3 European blocking and extreme events

of highest blocking frequency in ERA-40 is found over southeastern Greenland. In
ECHAMS5 the center is shifted southward and is more extended than in ERA-40.
Studies based on the Z500 anomaly maxima (e.g., Dole & Gordon (1983); Bates
& Meehl (1986); Sausen et al. (1995)) also found the winter maxima of blocking
frequency to the southeast of Greenland, whereas studies based on the meridional
2500 gradient (e.g., TM90) find a maximum between the northern British Isles and
Scandinavia (see Scherrer et al. (2006) for a discussion of these differences). In A1B,
the DJF maximum blocking frequency decreases by about 15% relative to 20C and
by about 8% on average in the EB region. There is little change in the pattern, but
a slight increase west of Greenland and also in the western part of the EB region
can be identified.

In summer (JJA) blockings are far less frequent than in winter. The area of high
frequency in the Davies Strait is well captured, but the model misses the second
maximum between Greenland and Iceland and overestimates the blocking frequency
in the EB region. Summer blocking events experience a major decrease in A1B. The
Davis Strait maximum disappears completely and a weak maximum appears south-
west of Iceland. In the following we exclude the summer because the correlations
between the EB index and extreme events are statistically insignificant as inferred
from a field significance test.

3.3.2 Composite maps

To get additional information about the impact of blocking over the Euro-Atlantic
region, we illustrate the mean height pattern as well as the mean surface temperature
and precipitation patterns associated with EB in winter in figure 3.2. Positive Z500
anomalies (Fig. 3.2a) centered in the northeastern North Atlantic suggest northerly
flow anomalies further east leading to anomalously cold and dry winter months over
large parts of Europe. In A1B, the positive anomaly moves northeastward towards
the Norwegian Sea, whereas the negative anomalies around the block combine into
a single belt stretching from Newfoundland to the Black Sea and beyond.

The composite map of surface temperature (TEMP2) shows cold anomalies from
northeastern to central Europe and positive anomalies over Greenland resulting from
the southerly inflow of warm and humid air masses. In A1B, this pattern remains
almost unchanged but the negative anomalies over Europe are more pronounced
than in 20C.

The composite map of precipitation (PREC) depicts anomalously dry conditions
over the eastern Atlantic and western Europe, in areas where the mean winter pre-
cipitation is also larger than in central and eastern Europe (not shown). Positive
anomalies can be found around the block. The PREC pattern is very similar to
that found by Trigo et al. (2004) in the NCEP/NCAR re-analysis, but using the
TM90 index. In A1B the negative anomaly moves northeastward and the positive
anomalies around the block are intensified and shifted eastward in the southern part,
unisonous with the eastward extension of the cyclonic flow anomaly around 40°N.
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Figure 3.2— Composite maps of monthly anomalies of (a, b) 500hPa geopotential height [m],
(c, d) 2m-temperature [K], and (e, f), precipitation [mm/d] for months with high blocking frequencies
in the EB region averaged over the winter months. Shown are three-member ensemble means. Left
panels: 20C (1961-2000); right panels: A1B (2160-2199).

3.3.3 Correlation analysis

In figure 3.3 we show associations between long lasting blocks close to Europe and se-
lected temperature and precipitation extremes in 20C and A1B for winter (DJF). In
20C, a coherent pattern of anti-correlation between blocking frequency and seasonal
minimum temperature (TNn) ranging from the Mediterranean Sea to northern Eu-
rope indicates very low nighttime temperatures in the presence of a block. In A1B,
this pattern moves northeastward so that the Iberian Peninsula will be less affected
by blocking episodes than in 20C. The seasonal maximum temperature (TXx) over
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Figure 3.3— Spearman’s rank correlation coefficients showing significant correlations at the 5%
significance level for winter between blocking events in the EB region and extreme indices (a, b) TNn,
(c, d) TXx and (e, f) RX5day. Left panels: 20C (1961-2000); right panels: A1B (2160-2199).

Europe is largely uncorrelated with the EB index but significant positive correla-
tions are found over Greenland, as already suggested by the positive temperature
anomalies in the composite pattern. In A1B, the positive correlations over Green-
land persist while negative correlations over Europe cover a larger area than in 20C
and are extended northeastward, similar to the TNn pattern.

The extreme precipitation index RX5day shows regions of positive correlation
over Greenland and the North Atlantic, which bear some resemblance with the
regions of positive anomalies in the composite maps. The Atlantic feature can be
related to cyclonic systems at the southern flank of the block causing precipitation
extremes in southern Europe. On the other hand, hardly any correlation is found in
the core region where a coherent area of negative precipitation anomalies can be seen
in the composite map. In A1B, more grid points showing anti-correlation appear over
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northern Europe, but still no coherent pattern emerges. The positive correlations
over Greenland diminish, but the pattern over the North Atlantic spreads eastward,
impacting the coast of Portugal and part of the Mediterranean area.

The field significance test based on the FDR method reveals that the null hy-
pothesis of no correlation can be rejected for all correlation patterns shown in figure
3.3, indicating that the correlations obtained with the Spearman’s rank test are not
an artifact of the chosen local test level.

3.4 Summary and concluding remarks

Using a dynamical PV-based blocking indicator we demonstrate that, compared to
ERA-40, ECHAMS5 simulates atmospheric blocking in the Euro-Atlantic region rea-
sonably well with respect to location and frequency in both winter and summer.
In winter, composite maps of 500hPa geopotential height, surface temperature and
precipitation anomalies for high blocking frequencies close to Europe (15°W-30°E,
50°N-70°N) reveal a dipole structure with cold temperatures over Europe and warm
temperatures over Greenland, in striking resemblance to the respective compos-
ites for the negative phase of the North Atlantic Oscillation index (Shabbar et al.
(2001)). Furthermore, northerly flow anomalies to the east of the blocking core
region and southerly flow anomalies to the west lead to dry (wet) conditions over
Europe (Greenland).

These results are largely consistent with the correlations obtained between EB
frequency and selected indices of extreme events. In particular, seasonal minimum
temperatures over much of Europe are negatively correlated with EB frequency. This
is primarily caused by the anomalous northerly flow but also by enhanced nighttime
radiative cooling due to reduced humidity and cloudiness in the presence of blocking.
The correlations for seasonal maximum temperature and seasonal maximum 5-day
precipitation are somewhat weaker; but a field significance test shows that the cor-
relation patterns in the Euro-Atlantic region are indeed significant. In summer, the
null hypothesis of no correlation of the field significance test is accepted, probably
due to the small sample size since blocking frequencies are well below 1% in the EB
region.

In the A1B scenario, the frequency of winter blocks in the EB region is slightly
diminished (by 8% on average). Fewer blocks are found in the southeastern sec-
tor of the domain but more in the northwestern sector. These changes in blocking
frequency result in a shift of the associated Z500 anomaly from the northeastern
North Atlantic to the Norwegian Sea so that a larger part of Europe is affected
by anomalously cold and dry winter months, whereas the warm and wet anoma-
lies over Greenland remain largely unchanged. In addition, a belt of negative Z500
anomalies evolves from Newfoundland to the Black Sea and beyond with enhanced
precipitation relative to the A1B mean. Most of these results are reflected also in
the correlation analysis between EB frequency and seasonal extremes of minimum
temperature, maximum temperature and maximum 5-day precipitation during the
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winter months. Compared to 20C, the respective correlation patterns move east-
ward and generally weaken due to the reduced number of blocks. As in 20C, posi-
tive correlations are found for the seasonal maximum temperature over Greenland,
whereas the positive correlations between EB frequency and seasonal maximum 5-
day precipitation around 40°N are spatially more coherent in A1B and affect also
Mediterranean countries like Portugal, Spain and Italy.

In conclusion, although the frequency of Euro-Atlantic blockings is slightly di-
minished in A1B their influence on the European winter climate remains robust.
Nevertheless, there are some systematic differences caused primarily by a northeast-
ward shift of the European blocking pattern so that a larger part of Europe will
experience anomalously cold events during the winter months than in the present
climate. However, it is important to note that these anomalies are measured against
the warmer mean winter climate simulated in the A1B scenario (Sillmann & Roeck-
ner (2008)). The A1B projection also suggests a stronger indirect effect of European
blocking episodes on the winter precipitation in southern Europe as a result of en-
hanced cyclogenesis at the southern flank of the block in a region where the mean
precipitation is reduced compared to the present climate. Thus, in the A1B climate,
blocking events tend to moderate the changes in both temperature and precipitation
resulting from the anthropogenic increase in greenhouse gases. We should note, fi-
nally, that European blocking explains roughly 14% of the winter climate variability
over Europe (cf. Pavan et al. (2000); Scherrer et al. (2006)). Thus changes in block-
ing occurrence can only be responsible for a small fraction of the projected changes
in extremes events.
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Chapter 4

Statistical modeling of winter
temperature extremes in
Europe including Euro-Atlantic
atmospheric blocking as
covariatel

Abstract

In this study, we apply a parametric approach to identify winter (DJF) temper-
ature extremes in Europe using global climate model data. In particular, we fit
the Generalized Extreme Value distribution (GEV) to monthly minima (maxima)
of DJF minimum (maximum) temperatures in Europe. The behavior of the dis-
tribution’s parameters and the 20-year return values are analyzed for 20th century
and future climate ensemble simulations (represented by the SRES A1B emission
scenario) using the ECHAMS5/MPI-OM climate model. Furthermore, we test the
hypothesis that climate extremes are influenced by certain large-scale atmospheric
circulation patterns. We make an attempt to improve the fit of the GEV distribu-
tion to winter temperature extremes by conditioning the distribution’s parameters
on a covariate. In this respect atmospheric blocking acts as a prominent feature
explaining parts of the European winter climate variability. We demonstrate that
relating particularly the location parameter of the GEV distribution to atmospheric
blocking improves the fit to the minimum temperature data in large areas of Europe
with considerable impact on the 20-year return values. This relation remains robust
under future climate conditions, however with less magnitude due to decreasing
blocking frequency in A1B.

Lin preparation for submission in Climate Dynamics with M. Kallache and M. Croci-Maspoli as
co-authors.
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4.1 Introduction

In the last decades, changes in climate extremes became of major concern, because
these events cause even higher financial and personal damages with growing popula-
tion and technology standards in risk-prone areas than changes in the mean climate
state (Beniston & Stephenson (2004)). It is thus of great interest to understand
the mechanisms behind the occurrence of extreme climate events and to achieve
reliable projections of their future changes (Meehl et al. (2000)). Coupled General
Circulation Models (CGCM) are the state-of-the-art tools to simulate the present
and future climate providing long data series necessary for the analyses of very rare
extreme events (IPCC (2007)).

In this study, we make use of daily temperature data from climate simulations
of a coupled atmosphere-ocean general circulation model to analyze global changes
in the probability distribution of extreme climate events. We apply a parametric
approach that considers the statistical behavior of the outermost tail of a climate
variable’s probability distribution. According to the extremal limit theorem (Fisher
& Tippett (1928)), the maximum of a sample of independent and identically dis-
tributed (iid) variables converges asymptotically to one of three asymptotic extreme
value distributions, which are combined in the Generalized Extreme Value (GEV)
distribution, as sample length goes to infinity. This theorem holds for a wide class of
distributions, and is therefore applicable to a lot of empirical time series. Leadbetter
et al. (1983) extended this theory to non-stationary processes. Later, Coles (2001)
proposed the inclusion of covariates in the GEV distribution. In the last years, this
theory found application in climate research. Various studies (e.g., Kharin & Zwiers
(2005); Nadarajah (2005); Nogaj et al. (2006, 2007); Kallache et al. (2007); Gaetan
& Grigoletto (2007)) have implemented a time trend as covariate into the extreme
value distribution to simulate the effects of anthropogenic climate change in the
statistical modeling of extreme temperature and precipitation events.

In recent studies (e.g., Klein Tank & Koennen (2003); Haylock & Goddess (2004);
Cassou et al. (2005)), it has been indicated that large-scale circulation patterns
have an influence on the occurrence and distribution of extreme events. In this
study we want to follow this argument by conditioning the GEV distribution on a
covariate that is derived from a large-scale atmospheric circulation pattern. Katz
et al. (2002) have emphasized that if one successfully applies the GEV distribution
with an appropriate covariate arising from a large-scale atmospheric variable, this
can be viewed as statistical downscaling approach for CGCM data. However in
climate research, only very few attempts have been undertaken so far to include
covariates other than time into the GEV distribution; most of them concentrating
on hydrological applications (Coles (2001); Katz et al. (2002); Wang et al. (2004);
Chavez-Demoulin & Davison (2005); El Adlouni et al. (2007)). Thus, with this study
we are trying to make a step towards the approach proposed by Katz et al. (2002).

We particularly concentrate on the European continent and its winter climate
that can be strongly influenced by atmospheric blocking conditions (e.g., Rex
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(1950b); Beniston et al. (1994)). Atmospheric blocking disturbs the predominant
westerly flow over Europe and the anti-cyclonic conditions associated with it allow
a northeasterly inflow of cold and dry air masses. This leads to persistent clear sky
conditions favoring increased out-going long wave radiation during winter nights,
which result in a strong cooling of the earth surface and anomalous cold surface
temperatures (e.g., Rex (1951); Trigo et al. (2004)). Sillmann & Croci-Maspoli
(2008) further showed that atmospheric blocking conditions not only influence the
mean winter climate, but also are associated with extreme temperature events in the
Euro-Atlantic region. Hence, we want to investigate in this study, whether the fit
of the GEV distribution to daily extreme winter temperature data can be improved
by conditioning the GEV parameters on a covariate derived from an atmospheric
blocking indicator.

The study is organized as follows. In section 4.2, we describe the model and data
we have used for our analysis and introduce the blocking indicator in more detail.
Section 4.3 concentrates on the methodology of the applied GEV distribution for
stationary and non-stationary processes. The results of our analysis are shown and
discussed in section 4.4. In the last section, we summarize the results and give an
outlook for further studies that could complement our work.

4.2 Model simulations and blocking indicator

4.2.1 ECHAMS5/MPI-OM model simulations

We use climate simulations from the CGCM ECHAMS5/MPI-OM (Jungclaus et al.
(2006)) developed at the Max Planck Institute for Meteorology (Hamburg, Ger-
many). The atmospheric component of the model (ECHAMS5: Roeckner et al.
(2003)) has a horizontal resolution of T63 in spectral space (corresponding to 1.875°
x 1.875° in grid point space) and 31 vertical levels. The oceanic component (MPI-
OM: Marsland et al. (2003)) is a z-coordinate GCM with integrated sea-ice model
and has a nominal horizontal resolution of 1.5° and 40 vertical levels. The coupling
of the atmosphere to the ocean component requires no flux adjustments.

For our analyses, we use daily (2-meter) minimum (T2MIN) and maximum
(T2MAX) temperature data generated from ensemble simulations (each with 3 en-
semble members) of the ECHAM5/MPI-OM model for the present and future cli-
mate. For the 20th century simulations, greenhouse gases (GHG) and sulfate aerosols
are prescribed according to observations and chemical transport model results, re-
spectively. The scenario simulations are forced according to the SRES emission
scenario A1B as described in Nakicenovic & Swart (2000). Each A1B ensemble
member is a continuance of the corresponding 20C ensemble member.

We particularly concentrate on the winter months (DJF) in two 40-year time
slices in this study. The first is taken from the present climate simulation ranging
from 1961-2000 (hereinafter referred to as 20C). The second time slice, ranging from
2160-2199, is taken from the stabilization period of the SRES scenario A1B, where
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a) ERA—40

Figure 4.1— Climatology of the Euro-Atlantic (80°W-30°E, 45°N-75°N) atmospheric blocking
frequencies [%] for a) ERA-40 and b) the ensemble mean of the 20C simulations (1961-2000) and c)
the A1B simulations (2160-2199) of the ECHAM5/MPI-OM.

the atmospheric composition is kept constant at the level of year 2100. The latter
is referred to as A1B hereinafter.

4.2.2 The blocking indicator

To capture atmospheric blocking conditions in the ECHAM5/MPI-OM model, we
apply a dynamical blocking indicator introduced by Schwierz et al. (2004). It is
based upon the three-dimensional potential vorticity (PV) anomaly field averaged
on tropopause level. The blocking indicator is calculated in two steps: first by com-
puting the vertically averaged PV between 500 and 150hPa and second by tracking
the negative PV anomalies. Anomalies are calculated relative to the long-term
climatology over the time period 1961-2000 and 2160-2199 for 20C and A1B, respec-
tively. Structures of negative PV anomalies that have a minimum spatial extension
of 1.8-10%%km? and that persist longer than 10 days are captured as block at every in-
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stance of time (6-hourly). The blocking frequency is then defined as the percentage
of the number of blocked days at a given grid point compared to a total number of
days considered. For more details about the blocking indicator and its application
to ERA-40 re-analysis data (Uppala et al. (2005), ERA-40 hereinafter), the reader
is referred to Croci-Maspoli et al. (2007a,b). A comparison between blocking events
derived by the PV-based blocking indicator in ERA-40 and the present and future
climate simulations of the ECHAM5/MPI-OM model can be found in Sillmann &
Croci-Maspoli (2008).

In comparison to other blocking detection methods using the meridional gradient
of the geopotential height (e.g., Lejenaes & Okland (1983); Tibaldi & Molteni (1990))
or surface pressure anomalies (e.g., Elliott & Smith (1949); Dole & Gordon (1983)),
the PV-based blocking indicator is able to capture the dynamical features (e.g.,
spatial extension, life cycle, geographical location and movement) of the atmospheric
blocking phenomenon in its entire range (Schwierz et al. (2004)).

The winter (DJF) blocking climatology of Euro-Atlantic blocks (80°W-30°E,
45°N-75°N) used in this study is shown in figure 4.1 for ERA-40 in comparison
with the ensemble mean of the ECHAM5/MPI-OM simulations of 20C and A1B.
The model agrees well with ERA-40 in respect to the spatial distribution and repre-
sentation of blocking frequency in present climate. However, the center of maximum
blocking frequency is located further south in the model leading to higher blocking
frequencies between Iceland and the British Isles. Because of these differences we
cannot limit or study to European blockings (15°W-30°E, 50°N-70°N) as proposed
in Sillmann & Croci-Maspoli (2008), but have to consider the entire Euro-Atlantic
blocking region to be able to compare the model results with ERA-40. In A1B
(Fig. 4.1c), the blocking frequency is diminished south of Greenland, but increased
towards north-western Canada compared to the present climate.

4.3 Methodology

4.3.1 GEV distribution for stationary processes

We briefly revisit the extreme value theory here to provide a basis to our assessment
of extreme temperature events in climate model data. A detailed review on extreme
value theory in climate research can be found e.g., in Palutikof et al. (1999); Coles
(2001); Katz et al. (2002). In this study, we apply the Generalized Extreme Value
(GEV) distribution as described in detail in Coles (2001) to seasonal and monthly
extremes in time series of the minimum and maximum 2-meter temperature. We
follow the block maxima approach,

M, = mazx{X1, Xo, -, X} (4.1)

where M,, are the maxima drawn from a series of random variables X;, for i=1,,n,
over a number of defined time blocks (e.g., month, season, year). In this study we
chose the time blocks to be a winter month (December, January, and February) or
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Figure 4.2— GEV distribution with varying shape parameter (red: ¢ = -0.5, black: ¢ = 0, green:
& = 0.5) for a location u=7 and scale o=2, consisting of the Weibull, Gumbel and Fréchet distribution,
respectively.

a winter season (DJF). For the minima, we follow the approach outlined by Coles
(2001), letting Y; = -X;, for i=1,...,n, thus modifying Eq. 4.1 to

M, = max{¥1,Ys,--- Y.} (4.2)

Small values of X;, hence correspond to large values of Y; due to the sign change.

According to the Fisher-Tippett theorem (Fisher & Tippett (1928)), the distribu-
tion of M,, asymptotically (i.e., as the block size n goes to infinity) converges towards
the GEV distribution with a non-degenerate distribution function G, representing a
member of the GEV family:

G(x) = eap{—[1 +&(@ — 1) /o] T } (4.3)

defined on {x: 1 + &(x - u)/o > 0}, where -co < p < 0o, 0 > 0 and -c0 < & <
0o. However, for values of £ below -0.5, the maximum likelihood estimators become
difficult or unlikely to obtain according to Coles (2001).

The GEV distribution has three parameters u, o and &, which denote the location,
scale and shape of the distribution function, respectively. The shape parameter &
distinguishes between three distribution functions, which are summarized by the
GEV distribution. The influence of this parameter on the shape and particularly on
the tail of the GEV distribution can be exemplarily seen in figure 4.2. The Gumbel
distribution, for £ = 0, is a special case of the GEV distribution. The Weibull
(bounded tail) or Fréchet (heavy-tailed) distribution occurs if & is less or greater
than zero, respectively. Generally spoken, the location parameter determines the
overall position and the scale parameter the spread of the distribution. Changes in
the location parameter, thus, imply a change in the mean value and changes in the
scale parameter, being a measure of variability, stretch or shrink the distribution
(cf. Fig. 2 in Goubanova & Li (2007)).
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Parameter estimation

Most common methods for parameter estimation in climate research are the Maxi-
mum Likelihood (ML) estimation (e.g., Katz et al. (2002, 2005)) and the method of
L-Moments (e.g., Hosking (1990); Zwiers & Kharin (1998)). A comparison of these
methods is discussed in Coles & Dixon (1999). The ML method, although problem-
atic when applied to very small samples (n<25), is the preferable method due to
its universal applicability, i.e. for the presence of covariates in non-stationary data
(Coles (2001); Katz et al. (2005)). Thus, the parameters of the GEV distribution
are estimated by the ML estimation (see Coles (2001) for more details) in this study.

Goodness-of-fit test

To examine whether the GEV distribution is able to represent the extreme temper-
ature data, a standard Kolmogorov-Smirnov (KS) test (Stephens (1970)) is applied.
This test measures the overall differences between two (cumulative) distribution
functions:

Diff = mazx|F(x) — Gn(z)], (4.4)

where F(x) is the theoretical distribution, which we fit to the data, and Guy(x)
the empirical distribution function estimated from a sample of size N. When the
maximum Diff exceeds a certain critical value, then the null hypothesis, that the
observed extremes are drawn from the fitted distribution F(x), is rejected.

Because the theoretical distribution is not known, but has to be estimated by a
fit to the data, the standard critical values of the KS test are not applicable here.
Therefore, to obtain the significance levels for the distribution of Diff, we apply
a parametric bootstrap procedure (e.g., Kharin & Zwiers (2000); Goubanova & Li
(2007)). In this procedure, 1000 samples of the same size as the modeling series
of extremes (120 for monthly DJF extremes) are generated from each fitted GEV
distribution and Diff is derived from each generated sample. The 95 quantile of
the resulting distribution of Diff;, i=1:1000, is employed as the critical value for the
rejection of the null hypothesis at the 5% significance level.

Return Values

Extremes can also be expressed by return values, which summarize the behavior of
the parameters and can further describe the changes in extreme events. The T-year
return value X, which is defined as the (1-1/T)* quantile, can be derived from the
quantile function by inverting the fitted GEV distribution function:

o {u — {1 - (1= P8, €40

1 — oln[—In(1 — 1), £=0 (4.5)

In this study, we calculate 20-year return values (RV20 hereinafter) for the 20C and
A1B time slices. We chose 20-year return values as an example to illustrate the
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influence of the covariate (cf. section 4.3.2) on the return values. The confidence
intervals (thus sampling errors) are rather small compared to return periods (e.g.
100 years) that exceed the time slice length of 40 years, which can be chosen to
extrapolate extreme events beyond the observed time period. In this study, however,
we indicate future climate change by taking a time period of the 20C and compare
it with a time period in the climate scenario A1B. Significant differences between
the two periods are determined by calculating the 90% confidence intervals of the
20C RV20 using a parametric bootstrap approach, where 1000 samples (of size 120)
are generated from the fitted GEV distribution. The 5* and 95" percentiles of
the distribution of RV20;, i=1:1000, derived from the generated samples are used
as lower and upper bounds for the 90% confidence interval of the RV20 from the
initial sample. Accordingly, changes in the A1B RV20 are statistically significant at
the 10% significance level if the A1B RV20 does not fall within the 90% confidence
interval of the 20C RV20. The significance of changes in the GEV parameters
(location, scale, and shape) is defined in the same manner.

4.3.2 GEYV distribution for non-stationary processes

The extreme value theory as described in section 4.3.1 can be extended to non-
stationary processes by including covariates in the GEV distribution as shown ex-
emplarily in the following equation (e.g. Coles (2001)):

F(2|COV(t) = 2) ~ GEV (u(2),0(2),£(2)) (4.6)

where the parameters of the GEV distribution are conditioned on a (time varying)
covariate (COV(t)). In climate research, commonly a linear time trend is applied as
covariate in the extreme value distribution, as already referenced in section 4.1, to
include anthropogenic climate change in the extreme value modeling. In this study
however, we are making an attempt to include a large-scale atmospheric circulation
pattern into the modeling of extreme temperature events in Europe to investigate
whether this can improve the fit to the GEV distribution. We particularly concen-
trate on atmospheric blocking (see section 4.2.2) as covariate, since various studies
have pointed out the importance of atmospheric blocking to the European winter
temperatures (e.g., Rex (1951); Beniston et al. (1994); Trigo et al. (2004)). A field
average over the Euro-Atlantic domain (80°W-30°E, 45°N-75°N) is calculated for
the respective time slice (20C and A1B) to be able to use the information gained
from the atmospheric blocking indicator (cf. section 4.2.2) as covariate.

We assume the relationship between the location (and the log-transformed scale
parameter) and the covariate atmospheric blocking (CAB hereinafter) to be linear:

u(t) = Po + 51 - CAB(t) (4.7)
Ino(t) =+ - CAB(t) (4.8)

The choice of a linear inverse link function can be justified by a study of Sillmann &
Croci-Maspoli (2008) that implies the existence of a monotone association between
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European blocking and temperature extremes in Europe. Following other studies
(e.g., Katz et al. (2002); Kharin & Zwiers (2005)), we implement a log-transformed
scale parameter to ensure that this parameter remains positive.

The rate of change in the mean of the analyzed temperature extremes per change
in blocking frequency is described by parameter 8; in Eq. 4.7. If we assume (3 =
0, we receive a homogeneous model over time with u(t)= .

The shape parameter will not be conditioned on CAB in this study, because of
the difficulties in estimating and interpreting changes of this parameter with time
correctly. A shape parameter that changes its sign over time would imply that the
underlying distribution of the temperature values changes. Such behavior is not in
the focus of this study. Thus, we restrict the shape parameter to be constant with
time within each time slice (for 20C and A1B, respectively).

We set up a collection of nested models, where one or more parameters of the GEV
distribution are conditioned on CAB. Table 4.1 summarizes the model collection.
The degree of freedom (d.f.) for each model corresponds to the number of parameters
in the respective GEV distribution function.

Table 4.1— Model collection of the GEV distribution for the stationary case (model 0) and the
non-stationary case (model 1, 2), where one or more parameters are conditioned on CAB and their
corresponding degrees of freedom (d.f.).

Model o o £ GEYV distribution function d.f.
0 0 0 0 F(x) ~ GEV(u, 0, &) 3
1 CAB 0 0 F(x| CAB(t)=z) ~ GEV(u(2), o, &) 4
2 CAB CAB 0 F(x| CAB(t)=2z) ~ GEV(u(2), 0(z), &) 5

Model selection

In the literature exist various methods to identify the best model out of a set of cau-
tiously selected candidate models. One approach involves the information criteria,
e.g. the Bayesian information criterion (BIC, e.g. Katz et al. (2005)), the Akaike
information criterion (AIC, e.g. Burnham & Anderson (2003)), and the Hannan-
Quinn information criterion (HIC, e.g. Grasa (1989)). All of these criteria are based
on the Maximum Likelihood (ML) associated to each candidate model, but vary
with the emphasis put on the number of parameters to be estimated and the sample
size. Another approach is the deviance statistic (DEV), which is a statistical test
based on the Maximum Likelihood ratio test (e.g. Coles (2001)). In contrast to
the information criteria, we can associate a significance level to the results of this
statistical test.

In this study we concentrate on DEV since it is appropriate for comparing nested
models fitted by ML (Coles (2001)). We use DEV to find out whether the stationary
model or one of the non-stationary models (cf. Table 4.1) is best to describe the
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underlying data. According to our analysis (not shown), the HIC provided the most
similar results compared to the DEV.

The deviance statistic (Eq. 4.9) distinguishes between the negative log-likelihood
(nllh) of two models, My and M; (likelihood ratio test):

D= Q{Tbllho(Mo) — nllhl(Ml)} > Cq (4.9)

Let model My be a subset of model M; by limiting the d.f. in My (e.g., by constrain-
ing some of the parameters to be zero). This means M; is the more complicated
model with higher degrees of freedom. The simplest model would be the stationary
case (model 0), where all 3 parameters are constant with time. The deviance (D)
is, for a sufficient large sample size, approximately X% distributed with k degrees of
freedom. Here k is equal to the difference in degrees of freedom between the two
models compared. As described in Coles (2001), we can test the validity of model
My relative to My at the « level of significance and reject My in favor of My if D >
Ca, Where ¢, is the (1-a) quantile of this x7 distribution.

We estimate the parameters of each candidate model by the ML technique as
described in section 4.3.1 and evaluate D for each candidate model. If D falls above
Ca, With @ = 0.1 in this study, then model M; explains more variation in the data
than model My at the 10% significance level.

4.4 Results

4.4.1 Stationary GEV distribution

Here we compare the results of fitting the stationary GEV distribution to extreme
winter minimum and maximum temperature data over land from the 20C ensemble
simulation of the ECHAM5/MPI-OM model with data of the ERA-40 re-analysis.
We decided to choose monthly instead of seasonal DJF block minima (maxima) of
40-year (1961-2000) minimum (maximum) temperature time series to receive 120
instead of 40 resulting blocks to which the GEV distribution is fitted. Compared
to the seasonal DJF block minima (maxima), the standard error (s.e.) of the shape
parameter &, which is the most delicate parameter to estimate, is reduced by a
factor of 2 as also described in Parey (2008). Table 4.2 shows, exemplarily for the
minimum temperature extremes, the beneficial effect of the reduction of block length
on the GEV parameters for the 20C ensemble mean spatially averaged over Europe
(resembling the behavior at each grid point).

Goodness-of-fit tests

To assess whether it is adequate to assume a GEV distribution for monthly maxima
or minima, the Quantile-Plot (QQ-Plot) is exemplarily shown for one grid point as a
typical result for European land areas in both 20C and A1B (Fig. 4.3). The QQ-Plot
is a useful tool to visualize the goodness-of-fit of a distribution by comparing the
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Table 4.2— GEV parameters and their standard errors (s.e.) for seasonal and monthly block
length for the ensemble mean of the 20C model simulation averaged over land grid-points in Europe.
The GEV distribution was fitted to block minima of T2MIN.

Block length u (s.e.) o (s.e) € (s.e.)
seasonal DJF (~90days) -17.6 (0.580)  3.29 (0.418) -0.233 (0.113)
monthly DJF (~30days)  -13.8 (0.435)  4.33 (0.306)  -0.247 (0.056)

model
2
I

empirical

Figure 4.3— Quantile- (QQ-) Plot of the empirical data and the fitted stationary (blue points) and
Gumbel scaled non-stationary model (red points) for the extreme T2MIN of 20C at grid point 24°E
and 53°N. In the non-stationary model, the location parameter is dependent on CAB (cf. Table 4.1,
model 1)

quantiles of the fitted distribution to those of the empirical data. The quantiles of the
fitted stationary and non-stationary GEV distribution (Gumbel scaled, according to
Coles (2001)) are distributed closely around the diagonal line, indicating that the
GEV distribution is a good fit to monthly T2MIN block minima even for the tails
of the distribution.

Another goodness-of-fit test of the GEV distribution is the Kolmogorov-Smirnov
test (cf. section 4.3.1). In figure 4.4 we show a comparison of the GEV parameters
and the RV20 between the 20C ensemble mean and ERA-40 for the extreme T2MIN.
Grid-points (over land), where the null hypothesis (extremes are drawn from the fit-
ted distribution) of the KS test is rejected, remain blank. We keep this procedure
also for the non-stationary GEV distribution in section 4.4.2. Since there are only
very few points in figure 4.4, where the null hypotheses is rejected for the 20C model
simulations, the GEV distribution can be considered as an overall good representa-
tion of the extreme winter minimum temperature in Europe. For ERA-40, the KS
test failed at most grid-points over the Iberian Peninsula and northwestern France.
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a) location 20C b) scale 20C c) shape 20C d) RvV20 20C
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Figure 4.4— GEV parameters (location [°C], scale, and shape) and 20-year return values RV20
[°C] for the monthly minimum temperature extremes in DJF of the 20C ensemble mean and the
ERA-40 data for the time period 1961-2000. Grid-points over land where the KS test failed are left
blank.

GEV distribution parameters and RV20

As shown in figure 4.4, there is an overall good agreement in the spatial patterns
of the GEV parameters and the RV20 between the 20C and ERA-40. A distinct
north-south gradient can be seen with higher (lower) values in the south and lower
(higher values) in the north for the location (scale) parameter (Fig. 4.4a, b (e, f)).
This gradient reflects the overall spatial European temperature pattern with gener-
ally warmer temperatures and less variability in the south and colder temperatures
and higher variability in northern Europe. In Scandinavia, however, the location
parameter of the GEV distribution fitted to the 20C simulations is lower (-5°C on
average) and the scale parameter higher than for the ERA-40 re-analysis. This in-
dicates that the model simulates colder extreme T2MIN with higher variability in
northern latitudes than ERA-40. The shape parameter is always negative (within
the standard error), indicating a Weibull distribution, for both 20C and ERA-40
data.

The RV20, combining the information of the three individual GEV parameters,
reveals also a north-south gradient with lower return values in the north and higher
values in the south. The reduced location parameter over Scandinavia is also re-
flected in lower RV20 in that area for the 20C. For the extreme T2MAX, as depicted
by figure 4.5, the GEV parameters and the RV20 of 20C and ERA-40 show a reversed
gradient compared to T2MIN. The location parameter (Fig. 4.5a, e) is highest in
southern Europe, decreasing northward. The same holds for the RV20 (Fig. 4.5d,
h). The values for scale (Fig. 4.5b, f) and shape (Fig. 4.5c¢, g) parameters in
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a) location 20C b) scale 20C c) shape 20C d) RvV20 20C
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Figure 4.5— As figure 4.4, but for DJF maximum temperature extremes.

20C and ERA-40 are comparable and increase from south to north. However, since
the null hypotheses of the KS test is rejected for most grid points in northeastern
Europe (20C and ERA-40) and the British Isles (ERA-40), the GEV distribution
cannot be considered as an overall good representation for extreme winter T2MAX.
Thus, in the following, we will not further discuss the results for extreme T2MAX
temperatures.

In figure 4.6, we illustrate significant changes (10% significance level) in the GEV
parameters as well as in RV20 between 20C and A1B for extreme winter T2MIN.
The changes in the location parameter (Fig. 4.6a) are significant almost all over Eu-
rope with large increase (12°C-14°C) in northeastern Europe and smaller increase
(2°C-4°C) in southwestern Europe. The scale parameter (Fig. 4.6b) decreases sig-
nificantly in parts of Europe reaching from the British Isles to southeastern Europe,
indicating less variability in these regions under future climate conditions. The
shape parameter (Fig. 4.6¢) does not reveal significant changes in most parts of Eu-
rope and remains negative (-0.02) even for the greatest increase of 0.257 in central
Europe. Thus, extreme T2MIN remain Weibull distributed in A1B.

The changes in the RV20 (Fig. 4.6d) are significant throughout Europe and are
comparable with the changes in the location parameter. There is a large increase in
the return values (up to 16°C) in northeastern Europe and smaller increase towards
southwestern Europe (5°C on average). This overall increase of RV20 indicates also
an increase in the waiting time of a certain T2MIN extreme event.
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a) location A1B—20C b) scale A1B—20C c) shape A1B—20C d) RV20 20C
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Figure 4.6— Significant difference of the GEV parameters (location [°C], scale, shape) and
RV20 [°C] for T2MIN between the ensemble mean of the A1B (2160-2199) and 20C (1961-2000)
model simulations.

4.4.2 Non-stationary GEV distribution
GEYV distribution parameters

In this part, we include atmospheric blocking as covariate into the GEV distribution
of monthly DJF extreme T2MIN. According to table 4.1, we have set up a collection
of models, where one or more parameters of the GEV distribution are linked to the
CAB. For each grid point over land in Europe, the best model is determined by
means of the Deviance statistic (DEV, cf. section 4.3.2) taking into account the
negative maximized log-likelihood (nllh) associated with each model.

As an example for this procedure, we show a summary of the results of fitting
different models to the extreme T2MIN of ensemble member 20C1 at one grid-
point (at 9°E, 53°N) in table 4.3. Model 1 was selected as best model at this grid
point, although model 2 has a slightly smaller nllh. However, the difference D =
2{nllh(model2)-nllh(modell)} = 0.46 is not significantly large enough on the scale
of the X7 distribution (for k=1) to explain substantially more of the variability in
the data.

Table 4.3— Negative maximized log-likelihoods (nllh) and parameter estimates with standard
errors (s.e.) for the model collection (cf. table 4.1) of the stationary (model 0) and non-stationary
GEV distribution (model 1, 2) at grid point 9°E, 53°N.

Model nllh w(s.e.) o (s.e.) ¢ (s.e)
0 353.38 -9.23 4.51 -0.232
(0.45) (0.31) (0.051)
1 349.17 -8.61 -0.36 4.33 -0.227
(0.49) (0.12) (0.30) (0.051)
2 348.94 -8.61 -0.35 1.49 -0.014 -0.22
(0.48) (0.09) 0.075)  (0.021)  (0.056)

In figure 4.7 we display the results of the model selection via DEV for all land
grid points in Europe for each 20C ensemble member (Fig. 4.7a-c) in comparison
with ERA-40 (Fig. 4.7d). Grid points were the KS test (cf. section 4.3.1) failed
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Figure 4.7— Best model (a-d) selected with the deviance statistic for each 20C ensemble mem-
ber and ERA-40, and the corresponding slope of the location parameter (e-h). See text for more
details.

are left blank. We can see large differences between the individual ensemble mem-
bers. Only one ensemble member (20C2) agrees very well with ERA-40 with model
1 being selected as best model in most parts of Europe. This implies that atmo-
spheric blocking (linked to the location parameter) explains a substantial part of
the variability in the data. In the other two ensemble members 20C0 and 20C1, the
stationary model (model 0) is predominantly the best model. In 20C0, model 1 is
chosen as best in central western Europe, southern Scandinavia and on the British
Isles, whereas in 20C1 only central Europe shows a coherent area with model 1 as
best. Model 2 appears to be best at some scattered grid points in each 20C ensemble
member and ERA-40, but does not reveal a preferred spatial pattern or location.
Thus, the choice of model 2 might be an artifact of the chosen significance level «
=0.1 for the DEV, which allows 10% of the test results to be erroneously correct.
Consequently, the model selection for the 20C and ERA-40, as depicted in figure
4.7a-d, imply that either the stationary model or model 1 are best to describe the
variability in the underlying data. This also indicates that atmospheric blocking
influences primarily the location parameter of extreme T2MIN.

In model 1 the location parameter of the GEV distribution is linearly linked
to the CAB as shown in Eq. 4.7. Hence, the parameter 51 (Eq. 4.7) describes
the slope of the linear association between the location parameter and atmospheric
blocking. The slope is, in this particular analysis, an expression for the change in
temperature [°C] per change in blocking frequency. Since blocking frequency does
not have a unit, the unit of the slope is °C. Figure 4.7e-h illustrates that the slope
is predominantly negative (except at very few grid points in southern latitudes) for
both the 20C ensemble members and ERA-40. Here again, ensemble member 20C2
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Figure 4.8— As figure 4.7, but for the A1B ensemble members.

and ERA-40 agree very well, although the values for the slope are less negative for
ERA-40 (minimum at -0.57°C) than for 20C2 (minimum at -0.75°C). A negative
slope implies that with increasing blocking frequency we can expect lower extreme
T2MIN. For example, for a slope of 0.5°C we can expect a decrease in location
parameter of 0.5°C per 1% increase in blocking frequency. The greatest absolute
values for the slope can be found around the Baltic Sea in 20C2 and ERA-40. The
other two ensemble members show comparably weaker values for the slope (20C0
minimum at 0.45°C; 20C1 minimum at 0.4°C).

In A1B, as depicted in figure 4.8a-c, model 1 is also selected as best model in
large parts of Europe in 2 ensemble members, whereas in one ensemble member
(A1B2) the stationary model represents the underlying data best. As already seen
in the 20C ensemble, the slope for the location parameter in the A1B ensemble (Fig.
4.8d-f), in particular A1B1 (minimum at 0.64°C) and A1B3 (minimum at 0.41°C),
is mainly negative within the same range as in 20C.

Return Values

In the following we will have a closer look on the influence of CAB on the 20-
year return values (RV20) for ERA-40 and the 20C and A1B ensembles. Since
RV 20 for non-stationary GEV distribution varies over time according to the blocking
frequency at each time step, we have to determine RV20 for a certain time step within
the time period analyzed. Hence, we calculated RV20 at the time point where the
maximum blocking frequency occurred in 20C or ERA-40 (1961-2000) and A1B
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Figure 4.9— Significant differences between RV20nonstat [°C] and RV20stat [°C], considering
the month with the highest blocking frequency within 1961-2000 for the 20C ensemble members (a-c)
and ERA-40 (d) and within 2160-2199 for the A1B ensemble members (e-f).

(2160-2199), respectively.

To illustrate the influence of the covariate on the return values of a non-stationary
model compared to a stationary model, we calculate the difference between RV20
from the stationary model (RV20stat hereinafter) and the non-stationary model
(RV20nonstat hereinafter) at those grid points, where the non-stationary GEV dis-
tribution (model 1 or 2) was selected as best. Changes between RV20stat and
RV20nonstat are only counted as significant if the change in RV20 is larger than the
90% confidence interval of the RV20stat (cf. section 4.3.1).

It becomes obvious from figure 4.9 that in 20C, ERA-40, and in A1B the
RV20nonstat are generally reduced compared to RV20stat at those grid points where
model 1 is selected as best model. This indicates that if considering a blocking event
in a winter month, the waiting time for a particular extreme T2MIN event will be
reduced compared to the stationary case. Hence, we can anticipate colder minimum
temperatures in that month. The range of this reduction varies, however, consider-
ably between the ensemble members of 20C and A1B as well as ERA-40. This result
depends strongly on the maximum blocking frequency encountered in each ensemble
member and ERA-40, because the stronger the blocking frequency the stronger the
differences in RV20. For example, the maximum blocking frequency of 20C2 and
A1BL1 is 14% compared to 10% in 20C0 and A1B3 (where 10% blocking frequency
means approx. 3 blocked days per month). The maximum blocking frequency in
ERA-40 is 12%. The highest blocking frequency of 27% occurred in 20C1 (Fig.
4.9b). Here, we also see the largest differences (> 9°C) in RV20 in central Europe.

At grid-points where model 2 is selected as best model (e.g., around the Gulf of
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a) best model 20C b) slope 20C ¢c) RV20 20C

Figure 4.10— Best model, slope of location parameter and the difference between RV20nonstat
[°C] and RV20stat [°C] for the concatenated ensemble members of 20C (a-c) and A1B (d-f), respec-
tively.

Venice in 20C1, cf. Fig. 4.7b), the RV20nonstat increases compared to RV20stat for
maximum blocking frequency as depicted in figure 4.9b. This effect will be discussed
in the following section 4.4.3.

To obtain a clearer picture of the changes between 20C and A1B, we concate-
nated the time slices (1961-2000 or 2160-2199) of the 3 ensemble members for each
simulation, respectively. Thus, we receive a time series of 360 monthly DJF T2MIN
to which the non-stationary GEV distribution is fitted. The resulting time series
for A1B and 20C, respectively, include the variability of all three ensemble members
considering the T2MIN and atmospheric blocking. This approach is justified since
time trends within each time slice only play a minor role in explaining the variability
in the underlying data.

Model 1 is selected as best for the concatenated ensemble members of 20C (20C-
all hereinafter) in most of Europe, except in southeastern Europe and some grid
points in northern Scandinavia as shown in figure 4.10a. The slope of the location
parameter for model 1 in 20C-all (Fig. 4.10b) ranges from -0.02°C in southwest-
ern Europe to -0.5°C around the Baltic Sea, indicating that atmospheric blocking
has the strongest influence on central to eastern Europe and southern Scandinavia.
Significant differences between RV20stat and RV20nonstat for the month with max-
imum blocking frequency (26.6%) within 20C-all (Fig. 4.10c) are also greatest in
these areas reaching up to -10°C along the European Plain. It is important to note
that the patterns for the best model and the slope depicted for 20C-all (Fig. 4.10a,
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Figure 4.11— Grid-point at 9°E, 53°N (GP1): a) Median (dashed) and RV20 (solid) for the
stationary (black) and non-stationary (red) GEV distribution fitted to the extreme T2MIN of 20C1
(grey line) for DUF months from 1961-2000. b) Histogram and density distribution (red line) of RV20
over time for the non-stationary GEV distribution in comparison to the stationary RV20 (solid black
line).

b) correspond closely to the pattern found in ERA-40 (cf. Fig. 4.7d, h). The larger
differences between RV20stat and RV20nonstat in 20C-all compared to ERA-40 (cf.
Fig. 4.9d) result from the smaller blocking maximum in ERA-40 (12%).

For the concatenated A1B ensemble members (A1B-all hereinafter), model 1 is
selected in a smaller area of Europe compared to 20C-all and ERA-40, ranging
from the Balkans to southwestern Scandinavia (Fig. 4.10d). In eastern Europe
mainly the stationary model was selected best, except in a small area along the
European Plain. Model 2 is predominant on the Iberian Peninsula in A1B-all.
The slope of the location parameter (Fig. 4.10e) is reduced compared to 20C-all
with 0.27°C as maximum in southern Scandinavia. Also the significant differences
between RV20stat and RV20nonstat (-1°C - -4°C) are reduced in A1B-all compared
to 20C-all, which is mainly caused by the reduction of maximum blocking frequency
to0 16.3% in A1B-all and by the northwestward movement of the center of maximum
blocking frequency (cf. Fig. 4.1c).

4.4.3 Grid-point examples

The results described in the previous sections have emphasized that including CAB
into the GEV distribution improves the fit significantly in large parts of Europe.
In this part we want to illustrate and explain the differences in RV20 between the
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Figure 4.12— GEV distributions at GP1(20C1) for the stationary model (black) and the non-
stationary model 1 for blocking frequencies of zero (green) and 26.6% (red) and the corresponding
5% quantiles (RV20, dashed lines) with their 90% confidence interval as grey shading.

stationary and non-stationary GEV distribution in more detail at two grid-points
for one particular 20C ensemble member. We chose one grid-point (GP1 hereinafter)
in central Europe (9°E, 53°N), where model 1 was selected as the best fitting model
and another grid-point (GP2 hereinafter) in southern Europe (15°W, 46°N), where
model 2 was best in the 20C1 ensemble member.

In fact, a stationary GEV distribution possesses stationary parameters and, con-
sequently, stationary return values over time. On the contrary, non-stationary GEV
distributions, where the parameters depend on a covariate, vary with the covariate
(in our case atmospheric blocking) over time. This is also reflected in the return
values. We illustrate this in figure 11a and 13a for GP1 and GP2, respectively.
There we display the median (dashed) and the RV20 (solid) as black and red line
for the stationary and non-stationary GEV distribution, respectively. The median
is the 0.5 quantile of the GEV probability distribution and also stands for the 2-year
return values. It is shown here for comparison with the underlying time series of
extreme T2MIN (grey line) over 120 months (DJF) from 1961-2000, to which the
GEV distributions were fitted.

We can see that the median and the RV20 for the stationary GEV distribution
are generally lower than for the non-stationary distribution for very small (< 5%)
or zero blocking frequencies within the 90% confidence interval as indicated by a
grey band for the RV20stat in figure 4.11a. For those months where the blocking
frequency is greater than 5%, RV20nonstat exceeds the 90% confidence interval and
return values become significantly reduced compared to RV20stat.

The distribution of all RV20nonstat values is shown as histogram and overlaid
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Figure 4.13— As figure 4.11, but for grid-point at 15°W, 46°N (GP2).

density distribution (red curve, Fig. 4.11b), ranging from 18.0°C to 27.6°C com-
pared to RV20stat with a constant value at -18.9°C. Most RV20nonstat values are
distributed around -18°C, because months with zero or small blocking frequencies
occur much more often than months with a high blocking frequency.

Since for model 1 only the location parameter is dependent on CAB, the GEV
distribution moves along the x-axis with changing blocking frequency as depicted in
figure 4.12. For zero blocking frequency (green curve), the distribution is very close
to the stationary GEV distribution, however not the same. With increasing blocking
frequency the distribution curve moves to lower temperatures, as represented by the
red curve for a maximum blocking frequency of 26.6% in 20C1.

Along with the mean change of the location of the GEV distributions for different
blocking frequencies also their 5% quantile (dashed lines) changes, being equivalent
to RV20. It can clearly be seen that the 90% confidence interval (light grey shading)
of the RV20stat does not overlap with the RV20nonstat value (-27.6°C) for maxi-
mum blocking frequency, implying a significant change in RV20nonstat. In addition,
also the 90% confidence interval of RV20nonstat (dark grey shading) for maximum
blocking frequency does not overlap with the RV20stat confidence interval. Thus,
for months with maximum blocking frequency, the RV20nonstat (red dashed line)
is significantly reduced by -8.7°C or -9.6°C compared to the RV20stat (black) or
RV20nonstat (green) for zero blocking frequency, respectively.

A different picture occurs when looking at GP2 (Fig. 4.13), where both the lo-
cation and scale parameter are dependent on CAB, according to model 2. First,
we can see that the median and the RV20 for the non-stationary GEV distribu-
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Figure 4.14— As figure 4.12, but for grid-point at 15°W, 46°N (GP2).

tion vary differently over time with changing blocking frequency. The median of
the non-stationary GEV distribution is remarkably reduced only in months with
very high blocking frequencies (> 10%), while RV20nonstat for blocking frequen-
cies above 5% is significantly increased compared to the 90% confidence interval of
RV20stat. Values for RV20nonstat range from -17.6°C to -15.8°C, but most val-
ues for RV20nonstat are distributed around -17.6°C, which is slightly lower than
the constant value -17.4°C for RV20stat. On the contrary, for model 1 at GP1
(cf. Fig. 4.11a, b), RV20nonstat for zero and small blocking frequencies is higher
than RV20stat, and RV20nonstat values for high blocking frequencies are reduced
in comparison to RV20stat.

The dependence of the scale parameter on CAB seems to have a considerable
impact on the variability of the extreme T2MIN distribution. In figure 4.14, the
stationary GEV distribution (black) is very similar to that of the non-stationary
GEV distribution for zero blocking frequency (green), but with increasing block-
ing frequency the non-stationary GEV distribution shrinks, implying less variabil-
ity in the extreme T2MIN, as shown here for the maximum blocking frequency
in 20C1. This leads to the above-mentioned phenomenon that the median of the
non-stationary GEV distribution (cf. Fig. 4.13) decreases with increasing blocking
frequency, whereas the RV20nonstat (red dashed line) increases compared to the
RV20stat (black dashed line). This leads to an increase in RV20nonstat at grid
points where model 2 is selected as best (cf. section 4.4.2).

Figure 4.14 illustrates that RV20nonstat (-15.8°C) for maximum blocking fre-
quency lies outside of the 90% confidence interval of RV20stat (light grey shading).
However, the latter is overlapping with the 90% confidence interval of RV20nonstat
(dark grey shading, Fig. 4.14). Thus, even for maximum blocking frequency, a signif-
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Figure 4.15— GEV distributions at GP1 of the stationary model in A1B3 (grey) in comparison
to the non-stationary model 1 for maximum blocking frequency in 20C2 (red) and in A1B3 (orange)
and the corresponding 5% quantiles (RV20, dashed lines) with their 90% confidence interval as grey
shading.

icant difference between RV20nonstat and RV20stat for model 2 cannot be detected.
This finding supports our statement that atmospheric blocking has a considerable

influence primarily on the location parameter of the GEV distribution of extreme
T2MIN.

In A1B, the influence of atmospheric blocking on the location parameter of ex-
treme T2MIN is similar to the findings for 20C, as can be seen exemplarily for GP1 in
figure 4.15. The GEV distribution of the non-stationary model 1 (orange) for max-
imum blocking frequency (11%) in the ensemble member A1B3 is shifted to lower
temperature values in comparison to the stationary model (grey). Consequently,
also RV20nonstat (orange dashed line) is reduced to -12.3°C compared to -9.2°C
for RV20stat. However, RV20nonstat of A1B is shifted to warmer temperatures
in comparison to the RV20nonstat of 20C (red dashed line) for maximum blocking
frequency (14%). This is consistent with the general warming trend in A1B (cf.
Fig. 4.6). The difference between RV20nonstat in 20C (-22.1°C) and RV20nonstat
in A1B (-12.3°C) is very large and can be considered as significant, since their 90%
confidence intervals (grey shading) do not overlap (Fig. 4.15).

4.5 Summary and conclusion

In this study, we fit the GEV distribution to extreme winter minimum and maximum
temperatures, respectively. We found that the GEV distribution is a good choice for
representing extreme winter T2MIN in Europe, but fails to represent extreme winter
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T2MAX. This is mainly due to the fact that extreme T2MAX occur in summer and
block maxima taken from winter months do not represent real extreme values of
T2MAX, thus cannot be correctly described by the GEV distribution.

In a comparison of the 20C ensemble simulations with ERA-40 re-analysis for
the time period 1961 to 2000, we further showed that the model generally per-
forms well with respect to the simulation of temperature extremes expressed by the
parameters and return values of the stationary GEV distribution. In general, tem-
perature extremes in Europe are Weibull distributed, which is in agreement with
other studies (e.g., Kharin & Zwiers (2005); Parey (2008)). The model and ERA-
40 reveal a distinct north-south gradient in the location and scale parameter with
increasing (warmer) temperature extremes (indicated by the location parameter)
and decreasing variability (indicated by the scale parameter) from north to south.
In northeastern Europe, however, the model tends to simulate colder (on average
5°C lower) extreme T2MIN and higher variability than ERA-40. The difference in
location parameter can be up to 9°C in northern Russia. Compared to ERA-40,
the model overestimates winter sea level pressure in the Norwegian Sea and far-
ther eastward (e.g., Van Ulden & van Oldenborgh (2006)), which leads to a weaker
westerly flow and anomalous easterly winds in high northern latitudes. This mis-
representation of surface pressure patterns in the model results in anomalous cold
winter temperature extremes in northeastern Europe. However, it has to be noted
that, compared to observations, ERA-40 has a warm surface air temperature bias
in winter at northern latitudes (Hagemann et al. (2005)). Thus, the model bias in
T2MIN might not be as large as suggested from the comparison with ERA-40.

We also assessed differences between 20C and A1B scenario for the distribu-
tion parameters and RV20 of the stationary GEV distribution. For the extreme
T2MIN, we identified significant differences in the location parameter and RV20
all over Europe. Both show similar patterns with a strong temperature increase
in northeastern Europe (e.g. 14°C for location parameter) that decreases towards
southwestern Europe (e.g. 3.5°C for location parameter). Goubanova & Li (2007)
and Kharin & Zwiers (2000) have also identified this pattern for other models, giving
further confidence to our results. In addition, we found a significant decrease in the
scale parameter in parts of Europe, reaching from the British Isles and France to
southeastern Europe. These results imply that future changes in extreme T2MIN
in Europe are mainly governed by changes in the location parameter, which agrees
with results of Kharin & Zwiers (2005). However in some regions, such as central
Europe, changes in the scale parameter have to be considered as well.

Furthermore, we included a large-scale atmospheric circulation pattern, namely
atmospheric blocking frequency, as covariate in the GEV distribution to improve
the fit to extreme T2MIN. We set up a collection of models, where one or more
parameters of the GEV distribution were linearly linked to the covariate atmospheric
blocking.

In ERA-40 and in one 20C ensemble member we found that the fit of the GEV
distribution can be significantly improved in large parts of Europe when the location
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parameter is dependent on CAB. In the other two 20C ensemble members, the fit
was improved by including CAB only in parts of central Europe. The differences
between the ensemble members in the response to CAB reflect the natural variability
at decadal and longer timescales. The spatial distribution of blocks as well as the
length and the number of blocking events within the considered time slice vary
between the ensemble members leading to different patterns in the response to the
extreme T2MIN. Especially variations in blocking frequencies close to Europe (EB)
between the ensemble members seem to play an important role for these differences.
We tried to reduce the impact of the natural variability by concatenating the three
ensemble members of 20C and A1B, respectively. The results for the concatenated
20C ensemble concerning the best model and the slope of the location parameter
are very similar to ERA-40, thus giving confidence to our approach. Other reasons
for the differences could be the length of time series considered for the analysis or
systematic errors due to the short block length.

In those European regions, where linking the location to CAB improved the fit
of the GEV distribution, we demonstrated a consistently decreasing slope of the
location parameter for the 20C ensemble members and ERA-40. This implies a
decrease in extreme T2MIN with increasing blocking frequency (up to -0.7°C per
1% blocking), meaning that we can expect colder nighttime temperatures for more
persistent blocks within a month. RV20 is also significantly affected if the location
parameter is dependent on CAB. Compared to the stationary GEV distribution it
decreases with increasing blocking frequency. Especially for blocking frequencies
above 5%, the RV20nonstat is significantly reduced with respect to RV20stat. Since
we have calculated RV20nonstat for the month with maximum blocking frequency
within the 20C and A1B time slice of each ensemble member, we receive the strongest
response in the ensemble member with the highest blocking frequency (e.g. 27% in
20C1). This in turn corresponds with our statement mentioned above that we can
expect even colder nighttime temperatures with increasing the blocking frequency.

We could only detect few scattered grid-points in 20C, where linking the scale
parameter to CAB in addition to the location parameter, could further improve the
fit. Thus, we conclude that a linear relation of the location parameter to atmospheric
blocking frequency is sufficient to represent the variations in the underlying data.
However, since atmospheric blocking explains only part of the variability of the
European winter climate, the inclusion of other large-scale atmospheric circulation
patterns (e.g. NAO (Scaife et al. (2008))) could probably further improve the fit of
the GEV distribution to extreme T2MIN and explain more of the variation in the
data.

The relationship between atmospheric blocking and extreme T2MIN remains ro-
bust also under future climate conditions. We still can expect colder extreme T2MIN
when atmospheric blocking occurs in A1B. However, along with the general warm-
ing trend under anthropogenic climate change also the extreme T2MIN and their
return values will increase, thus waiting times for a particular cold extreme event
will be increased in a warmer climate. Due to the northwestward movement of
Euro-Atlantic blocking and the reduced blocking frequency in A1B, as indicated
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by several climate simulations (e.g., Sillmann & Croci-Maspoli (2008); Lupo et al.
(1997); Bates & Meehl (1986)), an association between the location parameter and
CAB is found over a smaller area in Europe. Furthermore, the cooling effect of at-
mospheric blocking on European winters will also diminish, because we can expect
less blocking events in future climate.

We conclude that conditioning of the location parameter on atmospheric blocking
improves the fit of the GEV distribution in present and future simulations. This
enables us to statistically simulate colder extreme winter nighttime temperatures and
to receive a distribution of possible return values. Since this relationship remains
robust under future climate conditions, we can also use atmospheric blocking as
predictor for extreme T2MIN in Europe in the context of statistical downscaling.
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Chapter 5

Summary and Outlook

5.1 General summary

The objective of this dissertation was the assessment of extreme climate events in
CGCM simulations of the present and future climate. Furthermore, associations
between climate extremes and large-scale atmospheric circulation patterns were in-
vestigated to enable a better understanding of the mechanisms behind the occurrence
of extreme climate events. In the beginning (section 1.5) several questions had been
raised, which were answered throughout this study and will be summarized in the
following:

Is the model able to realistically represent extreme climate events in the present
climate?

Indices for extreme temperature and precipitation events were calculated from
ECHAMS5/MPI-OM data and compared with the Hadley Centre Observational
Datasets (HadleyCentre (2006); Alexander et al. (2006)). This comparison revealed
that the model is in general able to represent broad-scale patterns of the analyzed
extreme indices under present climate conditions. However, the model bias can be
substantial in certain regions. In a more detailed analysis of three European regions
(northern, central, and southern Europe), distinct differences between the model
and the observations could be found e.g., a cold bias in high northern latitudes and
a dry bias in the Mediterranean region. These misrepresentations of extreme events
in the model are mainly caused by shortcomings in the model simulation of large-
scale atmospheric flow patterns in the respective regions. Furthermore, the coarse
spatial resolution of the model can lead to biases in mountainous regions. The latter
could be resolved by dynamical or statistical downscaling methods.

In addition, the GEV distribution of extreme winter temperatures in Europe was
analyzed in respect to the distribution’s parameters and 20-year return values for
model and ERA-40 re-analysis data. This analysis supported the argument that
the model is able to realistically simulate extreme temperature events, but also
exhibited the aforementioned cold bias in northeastern Europe. This can partly be
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explained by a positive surface pressure bias in the model northeast of the Norwegian
Sea resulting in an anomalous northeasterly flow, which brings cold Arctic air into
northeastern Europe.

What changes regarding extreme climate events can we expect under anthro-
pogenic climate change in future climate model simulations? Are there regional and
seasonal differences attached to these changes?

In the course of anthropogenic climate change, we can expect changes in extreme
temperature and precipitation events as well. Depending on the chosen emission
scenario (A1B or B1), the changes will be more or less pronounced. The increase in
temperature extremes is found to be significant worldwide. Extreme precipitation
events tend to significantly increase in regions that are already wet in present climate,
and presently dry regions tend to dry out even more under future climate conditions.

A regional and seasonal assessment of extreme climate events is essential to an-
alyze changes in extremes (e.g., Moberg & Coauthors (2006)). The study of three
European regions could show distinct differences in the changes of extremes under
future climate conditions (A1B scenario). In particular, the minimum temperature
extremes rise faster than the maximum temperature extremes in northern latitudes.
Furthermore, the minimum temperature extremes increase particularly in winter
and early spring in central and northern Europe whereas the maximum tempera-
ture extremes increase predominately in summer in southern Europe together with a
prolongation of dry spells in the Mediterranean region. An intensification of precip-
itation extremes is concentrated on central and northern Europe in winter and early
spring, whereas precipitation extremes decrease throughout the year in southern
Europe and particularly in summer in central Europe.

The patterns of changes determined in the future climate simulations are in gen-
eral agreement with the observed changes in climate extremes of recent decades (e.g.,
Easterling et al. (1997); Moberg & Jones (2005); Alexander et al. (2006); Caesar et al.
(2006)) and constitute a continuance of the observed trends. However, model biases
as mentioned before can prejudice the quantitative assessment of future changes in
extremes.

Can we find associations between large-scale atmospheric circulation patterns, in
particular atmospheric blocking, and present and future climate extreme events? Do
these associations change under anthropogenic climate change?

A composite analysis and studies by e.g., Rex (1950b, 1951) and Trigo et al.
(2004), have indicated a physical coherence between the occurrence of Euro-Atlantic
blocking events in winter and anomalous cold temperatures and less precipitation in
central Europe. Based on that knowledge, statistical analyses were performed in this
study to further investigate the association between atmospheric blocking (captured
by a PV-based blocking indicator) and extreme temperature and precipitation events
in the Euro-Atlantic region. In particular in winter, significant negative correlations
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could be determined for the extreme minimum temperature in large parts of Europe,
which denote colder nighttime temperatures during winter blocking events in present
climate. Negative correlations with winter maximum temperature extremes and
maximum 5-day precipitation amounts and blocking events also exist, but are less
pronounced or not spatially coherent.

Under future climate conditions (A1B scenario), the correlation patterns remain
robust, but become less in magnitude due to the decrease in blocking frequency in the
analyzed A1B scenario. A reduction of winter blocking frequency was also found
in future climate simulations of other studies (e.g., Bates & Meehl (1986); Lupo
et al. (1997)) as well as in ERA-40 re-analysis data (Croci-Maspoli et al. (2007b)).
Furthermore, the northwestward movement of blocking action and changes in the
spatial extension of blocking frequency in the Euro-Atlantic domain results in a
change of the spatial patterns of correlations over Europe.

The impact of blocking events onto European climate extremes seems to be very
sensitive to the location of blocking occurrence. Long-lasting blocking events reach-
ing Europe (e.g., between Iceland and the British Isles as well as around the North
Sea) have a stronger influence on European climate extremes than blocking events re-
stricted to the northwestern North Atlantic. According to a study by Croci-Maspoli
et al. (2007a), the latter is the primary genesis and lysis region of blocking events
during the negative NAO phase, whereas blocking events reveal a distinctive lysis
region over Northern Europe during the positive phase of the NAO.

Recent studies have also pointed out associations between European temperature
and precipitation extremes with the NAO index (e.g., Haylock & Goddess (2004);
Santos & Corte-Real (2006); Santos et al. (2007); Scaife et al. (2008)). Changes
in the predominant circulation regimes in Europe will thus have a considerable
impact on the changes in extreme events. However, these considerations should
be explored separately for different regions (e.g., southern, northern, western, and
eastern Europe) since the influence of circulation regimes on the extremes may vary
substantially over the regions (e.g., Bardin (2007)).

The full spatial and temporal description of the blocking phenomenon also with
respect to other circulation regimes (e.g., NAO) and its influence on extreme events is
facilitated by the use of the dynamical PV-based blocking indicator used in this study
and motivates its preference compared to blocking indicators based on geopotential
height.

Can we use the associations between large-scale atmospheric circulation patterns
and climate extremes for the improvement of the statistical modeling of extreme
values?

In this study, Euro-Atlantic atmospheric blocking events were linearly related
to extreme winter minimum temperatures by including atmospheric blocking as
covariate in the Generalized Extreme Value distribution. It is shown that especially
linking the location parameter to atmospheric blocking could improve the fit of the
GEV distribution to extreme minimum temperature data in present as well as in
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future climate simulations. The spatial representation of these results varies among
the ensemble members. However when taking into account the natural variability of
all three ensemble members by concatenating them (20C and A1B, respectively) to
one time series, a robust pattern could be obtained, which for the present climate
is in agreement with the ERA-40 re-analysis. In the latter, the fit was improved in
most areas of Europe (except the Iberian Peninsula). In A1B the area got reduced
to western Europe due to the northwestward movement of blockings in the Euro-
Atlantic domain.

In those areas where the fit for 20C and A1B could be improved by linking at-
mospheric blocking to the location parameter, a decreasing slope was determined.
This particularly indicates decreasing nighttime temperatures with increasing block-
ing frequency. Including atmospheric blocking into the GEV distribution also has a
considerable impact on the 20-year return values of minimum temperature extremes.
In the presence of high blocking frequencies, the return values are significantly re-
duced in comparison to no blocking, which implies a reduced waiting time for a
particular extreme nighttime temperature event. Without including atmospheric
blocking into the GEV distribution, it was impossible to statistically model these
very low nighttime temperature events.

In general, the relationship between the covariate atmospheric blocking and the
extreme minimum temperature remains robust also in the A1B scenario, however,
with less magnitude due to diminishing blocking frequencies compared to 20C. Con-
sequently, also the cooling effect of atmospheric blocking events is reduced. In future
climate, colder nighttime temperatures can still be expected during blocking events.
However, along with the general warming trend under anthropogenic climate change,
also the extreme minimum temperatures and their return values will be increased
compared to present climate even when blocking occurs.

5.2 Conclusion and outlook

It has been shown in this study that the ECHAMS5/MPI-OM is able to represent ob-
served patterns of large-scale temperature and precipitation extremes, however with
regional exceptions as, for example, the high northern latitudes and areas with com-
plex orography. These findings are very important also for regional climate model
(RCM) studies, which perform much better than a CGCM in areas with complex
orography. However, the skill of a RCM to realistically represent climate extremes
also strongly depends on the skill of the driving CGCM to represent the prognostic
variables (e.g. wind, temperature, etc.), which serve as boundary conditions for the
RCM. A misrepresentation of these variables would also be reflected in an erroneous
simulation of extreme climate events simulated in both the CGCM and RCM. Thus,
it is essential to improve the representation of large-scale atmospheric and oceanic
flow patterns in CGCMs to be able to simulate extreme climate events correctly. On
top of that also an increase in the spatial resolution of CGCMs could improve their
representation of distinct regional and local features of extremes.
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Furthermore, large-scale atmospheric circulation patterns are important for the
understanding and interpretation of changes in extreme climate events. This study
has shown that the inclusion of atmospheric blocking in the statistical modeling
of extreme nighttime temperatures in European winter can explain more of the
variability in the underlying data. Thus, Euro-Atlantic blocking could be used as
predictor for extreme winter temperatures in the context of statistical downscaling.

Nevertheless, the statistical modeling can further be expanded and improved
in various ways. For example, longer time series of temperature or precipitation
data could be used, e.g. from a 500-year pre-industrial control simulation of the
ECHAMS5-MPI-OM model, to further test the statistical significance of the results
presented in this study. Other circulation regimes derived by, e.g., EOF analysis
(e.g., Pavan et al. (2000); Scherrer et al. (2006)) and also time trends could be
included in the statistical models to be able to simulate more of the variability in
the underlying data and to improve the estimates of return values. The statistical
modeling can further be expanded to precipitation extremes or dry spells given a
physical coherence between the considered circulation regime and the extreme event.

Besides the GEV distribution also the Generalized Pareto Distribution (GPD)
can be applied to threshold models (c.f. section 1.3), which could further improve the
results of the statistical modeling of extreme values. It would be a very interesting
task to compare the results derived from fitting block maxima of extreme climate
events to the GEV distribution with results from the threshold models fitted to the
GPD.

Regarding the usage of atmospheric blocking as predictor for statistical down-
scaling, further testing and improvement of the methodology is also required. The
method should be tested not only with ERA-40 re-analysis data but also with ob-
servational data sets. A comparison with re-analysis data is helpful when validating
gridded CGCM data, but cannot represent the true story since ERA-40 contains
model biases as well (e.g., Simmons et al. (2004); Hagemann et al. (2005); Uppala
et al. (2005)).

A good representation of the entire blocking phenomenon in the model includ-
ing its spatial and temporal characteristics forms an important basis for the usage
of blocking events as predictor in the statistical downscaling of CGCM data. An
improvement of the representation of blockings in models could be achieved by e.g.,
using a CGCM with higher resolved stratosphere. Stratospheric influences have al-
ready been discovered in respect to a more realistically representation of NAO in a
CGCM by Scaife et al. (2005, 2008).

The PV-based blocking indicator used in this study has emerged to be a valu-
able tool for representing the dynamical features and the evolution of the blocking
phenomenon. Thus, using this indicator can be helpful to investigate, which spatial
dimension, geographical location, and time persistence of a blocking event is most
prominent to the occurrence of extreme events in Europe.

PV is already used as operational forecast tool in studies of cyclone development
(e.g., Mansfield (1996); Georgiev (1999)), because it has two major advantages.
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First, PV is a conserved quantity of an air mass evolving under adiabatic condi-
tions. Thus significant features that are related to synoptic scale weather systems
can be identified and followed in space and time. Secondly, due to its invertibility
one can obtain familiar meteorological fields (e.g., geopotential, wind, temperature
and static stability), when the distribution of the PV and the boundary conditions
(potential temperature at the surface) are known. Furthermore, with the help of
the invertibility it is possible to quantify the importance of PV-anomalies and the
strength of their associated circulation and temperature patterns. Thus, due to the
fact that the blocking indicator is based on the potential vorticity and not geopoten-
tial height, important prediction skills are attached to it. For example, the evolution
of a blocking event could be predicted to a certain extent (which has yet to be in-
vestigated) and consequently also its impact on European climate or weather.
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Appendix A

Software

The correlation analysis as well as the statistical modeling of extreme events have
been performed with the statistical software R. R is available as free software under
the terms of the Free Software Foundation’s GNU General Public License and can
be obtained at http://www.r-project.org/.

For the extreme value analysis the packages ismev from Stuart Coles and Alec
Stephenson and ewd also from Alec Stephenson have been applied in my statistical
programs. Furthermore the package fdrtool from Korbinian Strimmer has been
used to calculate the false discovery rate in my correlation analyses. All packages
can be obtained via http://www.r-project.org/.
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List of Acronyms

20C 20th century simulations (3 ensemble members)

20C-all concatenated 20C ensemble members

Al1B A1B scenario simulations (3 ensemble members)

Al1B-all concatenated A1B ensemble members

AIC Akaike information criterion

AOGCM Atmosphere-Ocean General Circulation Model

BIC Bayesian information criterion

CAB Covariate atmospheric blocking

CCI Commision of Climatology

CGCM Coupled General Circulation Model

CLIVAR Climate Variability and Predictability project

CON Control run

COV Covariate

d.f. degrees of freedom

DEV Deviance statistic

DJF climatological winter (December, January, February)

EB European Blockings (15°W-30°E, 50°N-70°N)

ERA-40 ERA-40 re-analysis

ETCCDMI Expert Team on Climate Change Detection Monitoring and
Indices

FclimDex computer software to calculate indices for extremes in FOR-
TRAN

FDR False Discovery Rate

GCM General Circulation Model

GEV Generalized Extreme Value

GHG Greenhouse gases

GP1 grid point at 9°E, 53°N (central Europe)

GP2 grid point at 15°W, 46°N (southern Europe)

GPD Generalized Pareto Distribution
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HadEX indices for extreme events based on the Hadley Centre ob-
servational datasets

HIC Hannan-Quinn information criterion

iid independent and identical distributed

IPCC (AR4) Intergovernmental Panel on Climate Change (Fourth Assess-
ment Report)

JIJA climatological summer (June, July, August)

KS Kolmogorov-Smirnov

ML Maximum Likelihood

NAO North Atlantic Oscillation

nllh negative log-likelihood

POT Peaks over Threshold

PREC daily precipitation

PV Potentail vorticity

pvu potential vorticity unit [1076 m? s~ K kg™!]

QQ-Plot Quantile-Quantile Plot

RCM Regional Climate Model

RV20 20-year return values

RV20nonstat 20-year return values for the non-stationary GEV distribu-
tion

RV20stat 20-year return values for the stationary GEV distribution

s.e. standard error

SRES Special Report on Emission Scenarios

T2MAX daily 2-meter maximum temperature

T2MIN daily 2-meter minimum temperature

TEMP2 daily mean 2-meter temperature

WMO World Meteorological Organization

7500 Geopotential height at 500m
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