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ABSTRACT

Predictability studies of the second kind are often carried out to address the potential in predicting
atmospheric variables based on knowledge of changes in sea surface temperature (SST). Here a predict-
ability study of the second kind is performed for the coupled atmosphere–ocean system based on knowledge
of changes in CO2 concentration. The focus is on potential predictabilities obtained after imposing a CO2

forcing over a short time period (i.e., a few years), which are less sensitive to the exact future time evolution
of the CO2 forcing. Potential predictability is measured by the ensemble mean difference resulting from the
CO2 forcing relative to the ensemble spread subjected to the same forcing. The measure is calculated from
a 50-member prediction ensemble obtained from an atmosphere–ocean GCM forced by a 3% increase in
CO2 concentration per year and a reference ensemble obtained under a constant CO2 concentration.

The largest potential predictabilities are found in and over the Southern Ocean. The origin of these
predictabilities is a positive feedback involving interactions between the atmosphere and the upper ocean.
An increase in the meridional gradient of SST resulting from a large SST increase in the southern subtropics
leads to a strengthening of atmospheric circulation, and from that increases in surface zonal wind stress
result. The latter enhances the northward Ekman transport over the southern high latitudes, which trans-
ports polar water equatorward, whereby maintaining the meridional temperature gradient. Potential pre-
dictability is also found in the deep ocean, characterized by the downward propagation of the surface
warming within a few years through two “corridors,” located at 40°S and 40°N and extending from the near
surface to about 3000–3500 m. The warming in the atmosphere and the upper ocean is reduced by half
because of this downward heat propagation.

1. Introduction

Weather predictions, as they are performed in vari-
ous meteorological centers, generally have a lead time
of about several days. The short lead time reflects the
limit set by the chaotic nature of the system, which
initiates predictability studies of the first kind. A small
uncertainty in the initial condition could make the pre-
diction quickly deviate from the true evolution. Be-
cause the external forcing of the climate system changes
little during a lead time of several days, weather pre-
diction is traditionally performed under a constant ex-
ternal forcing or a constant boundary condition.

A climate prediction is generally understood as a pre-
diction of some averaged climate variables, for ex-

ample, January mean temperature, over a longer lead
time, for example, several months or even longer. Dur-
ing such a long time period, forcing external to climate
can change notably. If the change in the forcing pro-
duces systematic responses, one would be able to pre-
dict the climate for a given time evolution of forcing,
even though the skill of weather prediction is limited.
Studies on predictability induced by changing external
forcing are known as predictability studies of the second
kind. Thus far, the focus has been mainly on the sea-
sonal forecast of the atmosphere, and thereby consid-
ering the SST anomalies, for example, those resulting
from an ENSO event, as the external forcing. A devia-
tion of the SST from its climatological mean value can
result in a predictable atmospheric response. This pa-
per extends the predictability study of the second kind
for the atmosphere to one for the coupled atmosphere–
ocean system. The external forcing considered is that
resulting from changes in the CO2 concentration.

When constraining a real-time prediction by a chang-
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ing external forcing, one encounters the problem that
the future evolution of the forcing must be known prior
to the prediction. This means that one needs to first
predict the SST changes in case of seasonal forecasts,
and the future CO2 changes in the case of climate
changes. Often, predictions of the external forcing are
highly uncertain. Some of previous studies on seasonal
prediction tackle the problem by forcing the prediction
model using SST anomalies observed in the past de-
cades (e.g., Rowell 1998; Compo and Sardeshmukh
2004; Tippett et al. 2004; Kumar and Hoerling 1998). In
the case for which a response to SST is identified from
predictability studies using past SST forcing, a predic-
tion based on this forcing-response relation would have
notable prediction skill, given the sign of the emergence
of SST anomalies.

It seems that studying predictability of the second
kind is possible, even when predicting the exact future
evolution of external forcing is still unresolved. This is
particularly true for short lead times. To formulate this
in a more formal way, consider the evolution of the
coupled system x[F(t)] forced by the time-varying forc-
ing F(t). Here, F(t) can be decomposed into a constant
term F0 and a time-varying component F�, which is
switched on at time t0 � 0. For a sufficiently small lead
time t (after F� being switched on), the response of x to
F�, �x � x(t) � x(0), can be approximated by the lead-
ing term in the Taylor expansion

�x �
�x

�F |0
�F |0 . �1�

The amplitude of the response is determined by �F | 0 �
�F�/�t | 0t, that is, by the time rate of change of F� at t0 �
0; �x /�F | 0 is the sensitivity of x to F at time t0. For a
multivariate variable x, the structure of the response is
described by�x /�F | 0. Because �x /�F | 0 describes the de-
pendence of x on F before F starts to change, the struc-
ture of the response is independent of F�. As long as
Eq. (1) is appropriate, the same responses, at least with
respect to their structure, will be obtained. Equation (1)
is appropriate for small �F | 0 � �F�/�t | 0t, which is gen-
erally the case when t is small.

The situation is different for a large t for which Eq.
(1) is no longer appropriate. The response has to be
determined by time integrating the equations of x sub-
jected to F. When x is a nonlinear function of F, the
sensitivity �x /�F generally changes during the time in-
tegration, depending on the time evolution of F�. Ac-
cordingly, the structure of the responses changes with
lead time, depending on the time evolution of F�. Pre-
dicting x based on the knowledge of F� is only possible,
when the exact future evolution of F� is known.

The above consideration is consistent with the view
(Zwiers 2002) that simulations of the twenty-first cen-
tury using different scenarios of future emission change
can be considered as forecasts of future climate change,
at least for relatively short 1–2 decade periods. This is
because climate responses at these lead times, at least
their structures, appear not to be very sensitive to the
details of the forcing scenario chosen. The view is fur-
ther confirmed by a recent study (Lee et al. 2006), in
which notable prediction skills are found based on the
estimated response to historical external forcing.

The present predictability study makes use of the
above consideration and concentrates on first re-
sponses, that is, responses obtained after the change in
CO2 forcing has been imposed over a short lead time,
for example, less than one decade. By concentrating on
small lead times, the identified predictability, in par-
ticular its structure can be considered less sensitive to
the exact time evolution of the forcing.

Generally, the potential predictability resulting from
an increase in CO2 concentration is strongly related to
studies concerning detection of the climate change sig-
nal and climate projections summarized by the Inter-
governmental Panel on Climate Change (IPCC) Fourth
Assessment Report (AR4). However, both the detec-
tion studies (e.g., Hegerl et al. 1996) and the IPCC
scenario runs have been focused on large climate re-
sponses obtained after forcing a climate model with
increasing CO2 concentration over 1–2 centuries, rather
than responses obtained over a short time period of a
few years.

When studying first responses, one faces the problem
that the signal-to-noise ratio is generally low. This
makes the use of ensembles more pressing than in de-
tection and projection studies. The result presented be-
low is based on a 50-member ensemble.

The paper is organized as follows. The method used
to identify potential predictability is outlined in section
2. The model and the ensemble experiments are de-
scribed in section 3. The potential predictability in the
atmosphere at the air–sea interface and in the ocean is
discussed in sections 4–6. Discussion and conclusions
are given in section 7.

2. Method

Predictability studies require a quantitative measure
of predictability. Thus far an assortment of different
measures has been used. Many of them consider the
assessment of predictability to be a stochastic problem
and utilize two ensembles to quantify predictability.
The ensembles are described in the phase space of the
prediction model in which, at any time, the state of one

4608 J O U R N A L O F C L I M A T E VOLUME 21



ensemble member is represented by a point and the
states of an ensemble by a cloud of points. The latter
defines a probability density function (PDF). One en-
semble, hereafter referred to as the prediction en-
semble, consists of predicted states at different lead
times. The other one, the reference ensemble, consists
of the states of a “control” climate obtained under fixed
forcing conditions. Normally the shape of the predic-
tion ensemble changes with lead time, whereas the ref-
erence ensemble is assumed to have a stationary distri-
bution. The latter is described by the distribution de-
rived from a long single control integration under
ergodicity assumption.

In many previous studies, predictability is defined by
a measure of the difference between a prediction and
the reference PDF. As long as there is a difference, the
prediction is considered to have more skill than the
prediction obtained by just a randomly chosen state
from the reference climate. Predictability is said to be
completely lost, when the prediction PDF becomes
identical to the reference PDF. The predictability mea-
sures used can be classified into two classes.

The first class of measures focuses on the difference
in variances (or the spreads) of the two PDFs (Murphy
1988; Shukla 1981). If the spread of the prediction en-
semble becomes equal to the spread of some reference
ensemble, the predictability is said to be completely
lost. For multivariate predictions, Schneider and Grif-
fies (1999) further generalized this class of measures by
using entropy based on information theoretical prin-
ciples. For Gaussian distributions, the resulting mea-
sure is related to the ratio of the covariance matrix of
the actual PDF to that of the reference PDF. Generally,
measures based on variances are used when the mean
of the prediction ensemble is the same as the mean of
the reference ensemble.

The second class of measures takes the difference in
the whole probability distribution, including that in the
mean, into account (Anderson and Stern 1996; Klee-
man 2002; Tippett et al. 2004). The ensemble mean is
important for predictability studies of the second kind,
that is, when predictability is assumed to originate from
a time-varying forcing. This is particularly true when
the external forcing persists with the same sign and
even increases its amplitude with time, so that notable
changes in the mean are expected as lead time in-
creases. The reference ensemble is defined as the cli-
mate obtained under the constant external forcing F0.
As the change �F becomes increasingly noticeable with
increasing lead time, the mean of the prediction en-
semble is expected to become increasingly different
from that of the reference one. This difference in the

mean, which leads to the potential predictability, has to
be taken into account by the measure chosen.

If one is interested in detecting the changes in the
mean only, predictability measures used by Anderson
and Stern (1996) and Tippett et al. (2004), or even a
simpler one based on a t test, should be sufficient. How-
ever, a large change in the mean does not always imply
a high prediction skill. This is because, for a given ex-
ternal forcing, there are generally many different states
that are all consistent with the forcing. If a large change
in the mean is accompanied by a large uncertainty, it
would be difficult to turn the predictability that is iden-
tified by the change in the mean only into true predic-
tion skill.

To explicitly take the uncertainty resulting from the
ambiguity of forcing into account, the predictability will
be measured by a signal-to-noise ratio

St �
ensemble mean difference

ensemble spread
�

|xp,t � xr |
�̂p,t

, �2�

where x is a component of the state x of the prediction
model, the subscripts p and r indicate a quantity of the
prediction and reference ensemble, t is the lead time
and is the ensemble average. The ensemble mean dif-
ference xp,t � xr represents the signal resulting from the
changing CO2 forcing for component x at lead time t.
The ensemble spread

�̂p,t � �xp,t � xp,t�
2 1�2

�3�

quantifies the uncertainty that results from the internal
dynamics independent of the CO2 forcing. A large
change in the mean enhances predictability, while a
large ensemble spread lowers the predictability.

The usefulness of signal-to-noise ratio has been
pointed out by several studies concerning predictabili-
ties induced by SST forcing (Kumar and Hoerling 2000;
Sardeshmukh et al. 2000; Compo and Sardeshmukh
2004). In particular, it is found that the signal-to-noise
ratio is related to the expected correlation skill of an
ensemble mean forecast.

The true value of S (i.e., S obtained from the entire
prediction and reference populations) ranges from
zero, when there is no gain in predictability resulting
from external forcing, to infinite, when the external
forcing uniquely determines the state of the prediction
model so that the ensemble spread is zero. When work-
ing with finite samples of the prediction and reference
ensembles, S can be nonzero even when the prediction
ensemble has the same mean as the reference en-
semble. This situation is assessed by testing the null
hypothesis of no change in the mean.

When considering yearly values, as it is the case in
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this paper, xp and xr are by and large independent.
Furthermore, xp and xr are, by virtue of the central limit
theorem, approximately Gaussian distributed. Thus,
when neglecting difference in the variance, xp and xr

will be independent and identically distributed under
the null hypothesis. Under this circumstance,

R �
xp � xr

�̂pr�1�np � 1�nr�
1�2 � S

�̂p

�̂pr�1�np � 1�nr�
1�2 �4�

is t distributed with np � nr � 2 degrees of freedom,
where 	̂2

pr is the pooled estimate of the common vari-
ance and np and nr are the sizes of the prediction and
reference ensemble. In the present case with np � 100
and nr � 50, np � nr � 2 is sufficiently large so that the
respective t distribution approaches the standard nor-
mal distribution. The critical value S*, obtained such
that the probability for S 
 S* under the null hypoth-
esis is 5%, equals 1.96 � (1/np � 1/nr)

1/2 � 0.34. If the
observed value of S is larger than S*, the null hypoth-
esis of no change in the mean is rejected at 5% signifi-
cance level. In the following, the strength of predict-
ability will be quantified by the values of S that are
nonzero at 5% significant level.

Strictly speaking, the assumptions of equal variance
and independence (i.e., no serial correlation) are not
satisfied. An examination of variances and serial corre-
lations in the model data suggests that nonequal vari-
ances and serial correlations can alter the critical value
by up to 20% and increases S* from 0.34 to about 0.4.
Thus, care should be taken when interpreting S values
of about 0.4.

It is noted that the critical value S* decreases with
increasing sample size and approaches zero as np and nr

go to infinite. Thus, a nonzero S will always be statis-
tically significant when sufficiently large ensembles are
considered, which is a problem discussed extensively in
von Storch and Zwiers (1999). Because of this problem,
one should not blindly rely on the result of the statis-
tical test. Instead, physical interpretations of the signals
found should also be sought.

In Eq. (2), the signal-to-noise ratio is given in a uni-
variate form. This is done deliberately to cooperate
with marginal distribution functions, which is important
in the present study. Given a short lead time, the in-
crease in the CO2 forcing may be so small that only a
few components of x[F(t)] respond to the increase,
while others, in particular the oceanic components, re-
main essentially unchanged. Such a situation can be
described by considering marginal distributions. It is
possible that one component responds notably to the
changing external forcing, while another one remains
more or less unaffected by the change in the external

forcing. These different behaviors can only be sorted
out by considering components individually.

In the following, the signal-to-noise ratio S will be
calculated for individual components of x. Because a
coupled GCM will be used as the prediction model,
components of x represent model variables (e.g., tem-
perature, velocity) at model grid points. The result will
be used to assess the question of which climate variable
in what part of the world is potentially more predictable
given an increase in CO2 concentration under the per-
fect model approach. The answer obtained using the
measure S is generally consistent with that obtained
from the Kuiper statistic used by Anderson and Stern
(1996), which focuses on the change in the distribution
of the prediction ensemble (not shown).

It should be noted that predictability of the second
kind can also be studied using a measure derived from
“analysis of variance” (Zwiers 1996; Rowell 1998). This
measure describes the percentage variance resulting
from external forcing. The present study prefers S,
which is directly related to the mean responses.

3. The prediction model and the ensemble
integrations

A predictability study requires not only a predictabil-
ity measure, but also a prediction model and the pre-
diction and reference ensembles. This study uses the
ECHAM5/Max Planck Institute Ocean Model (MPI-
OM) atmosphere–ocean GCM developed at the Max-
Planck Institute for Meteorology. The atmospheric
component is the ECHAM5 model described by
Roeckner et al. (2003). An earlier version of ECHAM
is shown to represent the observed climate reasonably
well (Roeckner et al. 1998). In the present study, the
atmospheric component is run at the T31 spectral reso-
lution with 19 levels. The main features of the oceanic
component, MPI-OM, which includes a sea ice model,
are provided by Marsland et al. (2003) and Jungclaus et
al. (2005). The ocean model uses a curvilinear grid with
the “North Pole” grid over Greenland and the “South
Pole” grid over the Antarctic. The horizontal resolution
varies from about 20 km near Greenland to about 350
km in the tropics. The grid allows a high resolution in
the deep water formation regions of the Greenland,
Labrador, and Weddell Seas. The two components are
coupled without flux adjustments. A higher-resolution
version of this coupled model is described in Jungclaus
et al. (2006) and has been used to perform the scenario
runs for the IPCC Fourth Assessment Report.

The reference ensemble is obtained from a multicen-
tury integration with the ECAHM5/MPI-OM subjected
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to the standard forcing with a constant CO2 concentra-
tion of 280 ppm. Over the last 100 yr, the coupled sys-
tem, in particular the atmosphere and the upper ocean
are more or less in a stationary state. Figure 1 shows the
yearly values of the maximum meridional overturning
circulation at 30°N over the 100 yr. Assuming ergodic-
ity, the states obtained from this 100 yr are used to form
the reference ensemble. Because only yearly values are
considered, the size of the reference ensemble nr is 100.
In Eq. (2), xr is the mean over the 100 yr.

The prediction ensemble consists of predictions with
the ECHAM5/MPI-OM under the same CO2 forcing,
but starting from different states in the 100-yr reference
run. More precisely, the initial conditions are taken on
1 January of every second year in the 100-yr reference
run. The years from which the initial conditions are
drawn are marked by crosses in Fig. 1. The size of the
resulting ensemble np is 50. Formulating the initial en-
semble using states from a long control run is consistent
with the fact that there are numerous states that are
consistent with a given external forcing.

Starting from the collected initial conditions, each
ensemble member has been integrated over 10 yr
forced by a 3% increase in CO2 concentration per year,
starting from year 1. The 3% increase enhances the
CO2 level by a factor of 1.34 in year 10. Such a large
forcing was chosen because of the initial apprehension
that the coupled system may not respond noticeably
within a short lead time of a few years. It will be shown
later that some components respond astonishingly fast.
For these components, the response in year 10 may not
be approximated well by Eq. (1). This complication
should be kept in mind when interpreting the response.

On the other hand, if Eq. (1) is appropriate, the re-
sponses discussed below would also apply to the case
with, say, a 1% increase in CO2 concentration per year.
One needs only to reduce the 3% responses by factor
ln(1.01)/ln(1.03) � 1⁄3. The factor is obtained using Eq.
(1), whereby taking �x /�F | 0 as the same for both the
1% and 3% forcing. Because the ensemble spread does
not change much, the same scaling applies also to the
values of S.

A CO2 concentration of 280 ppm was chosen as base-
line for the present study because a long integration
with this CO2 concentration was available at the time of
experimental design. Strictly speaking, the sensitivity of
a climate with 280 ppm is different from that of a cli-
mate with the present-day value of about 380 ppm. Shin
et al. (2006) suggest that the atmospheric sensitivity
may not change much between similar variations of at-
mospheric composition. A negligible change in sensi-
tivity from 280 to 380 ppm has to be assumed when

applying the result described below to the present-day
situation.

It should be noted that this paper considers the CO2

concentration as the only varying external forcing for
the coupled system. Other greenhouse gases, such as
methane, could enhance and the aerosol changes may
offset the predictability found.

4. Potential predictability of the atmosphere

Significant potential predictability resulting from an
increase in CO2 concentration is found for air tempera-
ture. Figure 2 shows the signal-to-noise ratio for air
temperature at 2 m in years 1, 4, 7, and 10. Given nr �
100 and np � 50, the critical value at the 5% signifi-
cance level equals 0.34. In Fig. 2 and all other maps of
S, areas with S 
 0.34 are shaded gray.

Already in the first year (Fig. 2a), potential predict-
ability is identified over Eurasia. In year 4, significantly
nonzero S is found in the subtropics. This subtropical
signal, which extends more or less zonally, persists and
intensifies with increasing lead time, whereby it is
modified by some large signals over land. It stands out
more clearly and remains zonally oriented over the
Southern Ocean in year 10, because a zonal band of
large S centered near 30°S is found. This band contrasts
a zonal band of low values centered near 60°S, which
are not significantly nonzero.

Figure 3 displays the ensemble mean differences in
2-m air temperature. As expected, the change is a
warming over most part of the globe. In year 1, signifi-
cantly nonzero S (gray areas in Fig. 2a) is associated
with a warming over Eurasia and some cooling over the

FIG. 1. Yearly time series of the maximum overturning stream-
function at 30°N (Sv) obtained from 100 yr of the control inte-
gration. The crosses indicate the years from which the initial con-
ditions of the ensemble integrations were taken.
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Arctic. With increasing lead time, the warming over
Eurasia extends to most of the northern continents and
covers the entire subtropical and tropical region from
40°N to 40°S. Over the Arctic, where there is a cooling
in year 1, the air warms up at a speed faster than the
warming over most of the other oceans. The ensemble
mean differences in years 7 and 10 (lower panel in Fig.
3) reveal warming up to 1–1.5 K over land. Different
from the changes in the Northern Hemisphere, changes
in the Southern Hemisphere are more or less zonally
symmetric. The associated warming in the southern
subtropics and the slight cooling near 60°S suggest an
increase in the meridional temperature gradient over
the Southern Ocean.

Note that the increase in the meridional temperature
gradient over the Southern Ocean, which is significant
because of the significant increase north of 40°S, cannot
be clearly seen when averaging the responses over two
decades, as shown in IPCC AR4 Working Group 1 Fi-
nal Report (their Fig. 10.8; Meehl et al. 2007).

By and large, areas with large signal-to-noise ratio
coincide with areas with large ensemble mean differ-
ence shown in Fig. 3. Notable exceptions are found over

the northern mid- and high-latitude land, where a large
ensemble spread over land is found. As a result, the
largest value of S of about 2.5 occurs over North Africa,
while the largest warming of about 1.5°C is found over
the Tibetan Plateau and in some northern spots of Eur-
asia and North America.

For many variables, area-averaging leads to an in-
crease in signal-to-noise ratio. This is particularly true
for temperature. Figure 4 shows the result for zonally
averaged 2-m air temperature, along with 
one stan-
dard deviation (
	̂p) of the zonal mean 2-m tempera-
ture in year 10 (shading). The shading shows how en-
semble spread in year 10 changes with latitudes. Con-
sistent with the assumption that the spread of the
prediction ensemble equals the spread of the reference
ensemble, 	̂p strongly resembles the spread in the ref-
erence run (	̂r) and changes little with lead time (not
shown).

In the southern subtropics and tropics, the ensemble
mean difference in Fig. 4a has essentially the same mag-
nitude as that in Fig. 3. Despite of that, the signal-to-
noise ratio for zonally averaged temperature is about 3
times larger than for gridpoint temperature, suggesting

FIG. 2. Signal-to-noise ratio S for 2-m air temperature calculated according to Eq. (2). The gray shading indicates values larger than
the critical value S* � 0.34, obtained such that the probability for S 
 S* under the null hypothesis is smaller than 5%.
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that zonal averaging significantly reduces the ensemble
spread. In fact, the subtropics near 30°S are one of the
two places where the zonal mean air temperature has
the smallest spread. The result suggests that the zonally
averaged temperature is potentially more predictable
than gridpoint temperature. The most significant in-
crease in 2-m temperature at about 30°S, together with
a near-zero change at about 55°S, further confirm the
increase in the meridional temperature gradient over
the Southern Ocean.

The meridional profiles given in Fig. 4 do not vary
substantially with height (not shown). In particular, an
increase in meridional temperature gradient over the
Southern Ocean can be identified throughout the tro-
posphere. This is because, on the one hand, the en-
semble mean change in the zonally averaged tempera-
ture increases with height in the tropics and reaches the
largest value of about 1°C near 200 hPa in the tropics,
and on the other hand, the minimum change centered
near 60°S extends to about 300–400 hPa.

The increase in temperature gradient is accompanied
by changes in the zonal mean zonal wind. Because

these changes are essentially barotropic, Fig. 5 shows
only the vertical average of zonal mean zonal wind,
along with 
one standard deviation (
	̂p) of the zonal
mean zonal wind in year 10 (shading). The largest posi-
tive changes describe an intensification of the mean
westerly jet over 50°–60°S (Fig. 5a). The associated sig-
nal-to-noise ratio S is significantly nonzero and reaches
maximum values of about 0.7–0.8 after year 4 (Fig. 5b).
North of 40°S, some negative changes are found. They
could, together with the positive changes centered near
50°–60°S, suggest a southward shift of the zonal mean
zonal wind. However, they are hardly significant at the
5% level.

Different from air temperature, the response in the
zonal mean zonal wind does not gradually increase with
increasing lead time. The response in year 10 (black) is
not the largest, and the response in year 4 (dark blue)
is comparable to those in the last 3 yr. The amplitude of
S (Fig. 5a) evolves similarly with lead time.

The changes in the zonal mean zonal wind are related
to changes in the intensity and location of the Ferrel
cells. This is shown by the ensemble mean difference in

FIG. 3. Ensemble mean difference xp � xr for 2-m air temperature in year (top left) 1, (top right) 4, (bottom left) 7, and (bottom
right) 10 (°C). The isoline interval is 0.1°C. Solid (dashed) lines indicate positive (negative) values. Zero line is not plotted.

15 SEPTEMBER 2008 V O N S T O R C H 4613



the vertically and zonally averaged vertical velocity � in
Fig. 6a. Systematic changes are found over the South-
ern Ocean, characterized by descending motion (posi-
tive �) centered at 40°S and ascending motion (nega-
tive �) between 50° and 80°S. In the reference en-
semble, the descending branch of the Hadley cell and
the Ferrel cell extends from 15° to 40°S and the ascend-
ing branch of the Ferrel cell and the polar cell extends
from 40° to 65°S. Comparing this structure of the ref-

erence ensemble with the ensemble difference in Fig.
6a suggests an intensification and somewhat southward
shift of the Ferrel cell. The signal-to-noise ratio (Fig.
6b) suggests that the intensification of the ascending
branch of the Ferrel cell is significant in the last 5 yr.

5. Potential predictability of surface fluxes

This section considers the potential predictability of
the fluxes of heat, freshwater, and momentum into the

FIG. 4. (a) Ensemble mean difference in zonally averaged 2-m air temperature (°C) and (b)
the respective signal-to-noise ratio. The horizontal line in (b) indicates S* � 0.34, the same
critical value explained in Fig. 2. In both (a) and (b), the results for each year are shown with
the same color codes as indicated in the box in (b). The shaded area in (a) is the 
1 std dev
(
	p) in year 10.
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oceans resulting from the increase in CO2 concentra-
tion. For all surface fluxes, there is hardly any notable
signal-to-noise ratio in the first 2–3 yr. As lead time
further increases, a gradual increase in potential pre-
dictability is found. Figure 7a shows the situation for
the total downward heat flux in year 10. Predictability is
found predominantly over the Southern Ocean be-
tween 40° and 60°S and over the Arctic. Other areas
with potential predictability are the Indonesia region,
partially the central equatorial Pacific, and some spots
in the North Pacific and the North Atlantic between
40° and 60°N. No significant change in the net down-
ward heat flux is found in the subtropical Pacific and
the subtropical Atlantic. The maps of ensemble mean

differences show that the signal is characterized by a
gradual increase in downward (positive) heat flux
with increasing lead time (not shown). The largest dif-
ference reaches about 5–15 W m�2 in year 10 (Fig. 7b)
over the areas with significantly nonzero signal-to-noise
ratio.

Comparing Fig. 7 with the result of the last section
suggests that an increase in downward heat flux does
not occur in places with the strongest tropospheric
warming: The large and significant increase in the
downward heat flux occurs over the Southern Ocean
and partly in the northern North Atlantic and North
Pacific, where the warming signal is the smallest (lower
right plot in Fig. 3), while smaller and insignificant

FIG. 5. Same as Fig. 4, but for vertically and zonally averaged zonal wind. The unit in (a) is
m s�1.
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changes in the downward heat flux are found in the
subtropics, where the largest significant warming signal
is located (Fig. 4). Thus, an increase in air temperature
does not lead to a local increase in the downward heat
flux into the ocean.

The just mentioned feature becomes more apparent
when considering heat flux zonally averaged over the
oceans (not shown). The largest increase in downward
heat flux occurs at around 55°N and 55°S, where the
increase in 2-m air temperature is the smallest (Fig. 4).

The smallest increase on the other hand occurs in the
subtropics around 30° in both hemispheres, where sec-
ondary maxima in 2-m air temperature changes are
found. The zonal average notably enhances the signal-
to-noise ratio, and results in S � 1.6 near 55°S and S �
1 near 55°N in year 10.

Integrated globally, one finds a gradual increase in
the net downward heat flux (green line in Fig. 8). By
year 10, this heat flux reaches 440 TW (1012 watts). The
increase is by and large linear. To have some idea about

FIG. 6. Same as Fig. 4, but for vertically and zonally averaged vertical velocity. Positive
values indicate downward movements. The unit in (a) is Pa s�1.
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how much of this amount of heat flux is inputted into
different oceans, various area integrals are calculated.
Figure 8 shows that about one-third of the total down-
ward heat flux enters the Southern Ocean between 38°
and 65°S (red) and only a small portion enters the
northern North Atlantic (blue).

If the net heat flux of 440 TW in year 10 results from
a linear increase with time, and if this heat flux is dis-
tributed uniformly over the ocean area, one would have
an increase in heat flux of about 1.2 W m�2 in 10 yr, or
c � 0.12 W m�2 yr�1. Here, c is obtained by fitting a

linear trend into the evolution of the globally integrated
heat flux. In the case that the ocean consists only of a
mixed layer of depth h, the change in SST after 10 yr
can be calculated using

d�SST�

dt
�

Q�t�

hcp�
, �5�

where t is time, cp is the specific heat, and � the density
of seawater. Using Q(t) � c � t, with c � 0.12 W (m2

yr)�1, cp � 4000 J (kg C)�1, and h � 88.6 m, which

FIG. 7. (a) Signal-to-noise ratio S for the total heat flux (i.e., the sum of the sensible, latent,
and radiative fluxes) in year 10 and (b) the ensemble mean difference xp � xr in year 10. The
isoline interval in (b) is 2 W m�2. Solid (dashed) lines indicate positive (negative) values. Zero
line is not plotted. Positive (negative) values indicate enhanced downward (upward) heat flux.
The signal-to-noise ratio is plotted in the same way as in Fig. 2.
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equals the mean mixed layer depth in the reference run,
the solution of Eq. (5) gives a globally averaged SST
increase of about 0.53°C in year 10. This number is
about twice as large as 0.26°C, the global mean SST
change obtained from ensemble mean difference in
year 10 shown in section 6.

Also shown in Fig. 8 is the net heat flux into the
northern North Atlantic from 38° to 72°N (blue), an
area where the increase in the downward heat flux
could affect the static stability, and consequently the
deep water formation. There is a gradual increase of
downward heat flux into the northern North Atlantic.

FIG. 8. (a) Ensemble mean difference (in W) and (b) the signal-to-noise ratio for the total
heat flux integrated over the global ocean area (green), the Southern Ocean (red), and the
northern North Atlantic (blue) as function of lead time t. The shading indicates the spread of
the prediction ensemble for the globally integrated total heat flux. The Southern Ocean area
used for the integration extends from 38° to 65°S and that for the northern North Atlantic
from 38° to 72°N.
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The signal-to-noise ratio is significantly nonzero in year
6 and onward.

The CO2 increase also leads to potential predictabil-
ity for the net freshwater flux (precipitation minus
evaporation). Figure 9a shows that significantly non-
zero signal-to-noise ratio S is found in two separate
bands over the Southern Ocean in year 10—one cen-
tered near 35°S and the other near 60°S. Nonzero val-
ues of S are also found in the central North Pacific, in
some spots in the northern North Atlantic and over the
Arctic. The nonzero values of S are related to a net

downward freshwater flux (precipitation excess evapo-
ration) over a band centered near 60°S in the Southern
Ocean, the Arctic, and the northern North Pacific and
northern North Atlantic, and a net upward freshwater
flux (evaporation excess precipitation) over most of the
subtropical oceans (Fig. 9b). The largest changes occur
in the tropics. However, because of the large variability
there, these changes are not significant.

The general tendency to have a latitudinal dipole,
characterized by an increase in downward freshwater
flux at mid- and high latitudes and an increase in up-

FIG. 9. Same as Fig. 7, but for the net freshwater flux (precipitation minus evaporation) in
10�6 kg s�1. The isoline interval is 1 � 10�6 kg s�1. Solid (dashed) lines indicate positive
(negative) values. Zero line is not plotted.
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ward flux in the subtropics, is more clearly demon-
strated using zonal averages. This is the case in particu-
lar in the Southern Hemisphere, where the signal-to-
noise ratio of zonally averaged flux is about 4 times
larger than the values shown in Fig. 9 and reaches maxi-
mum values of about 1 (not shown). The significance of
the dipole structure is consistent with a warming in the
southern subtropics (Fig. 4), which allows the atmo-
sphere to contain more water vapor in favor of evapo-
ration (i.e., negative changes in freshwater flux), and
the strengthening of the westerlies, which could lead to
strengthening of the storm track and the related pre-
cipitation, leading to positive changes in freshwater
flux. In the Northern Hemisphere, zonal averaging also
results in an increase in the signal-to-noise ratio, which
confirms the dipole structure with the ocean losing
freshwater in the subtropics and gaining at midlati-
tudes. However, the Northern Hemisphere signal is
much weaker than that in the Southern Hemisphere.

The global integral of the net freshwater flux (green
in Fig. 10) shows negative values (i.e., enhanced upward
freshwater flux), in particular for lead times larger
than 5 yr. The value in year 10 corresponds to 0.03 Sv
(1 Sv � 106 m3 s�1). The enhanced upward flux is as-
sociated with the increased evaporation in the subtrop-
ics. This is suggested by the net freshwater flux into the
subtropical band extending from 13° to 42° in both
hemispheres (red). The situation in the North Atlantic
is characterized by an increase in upward flux in the
subtropics (black) and a tiny increase in the downward
flux in the subpolar region (blue). The latter is not
significant at 5% significance level.

The potential predictability of zonal wind stress con-
centrates mainly over the Southern Ocean (Fig. 11).
Consistent with changes in the westerly winds in the
Southern Hemisphere, the zonal wind stress increases
between 50° and 60°S and decreases around 40°S. Dif-
ferent from the vertically averaged zonal mean zonal
wind, not only the increase but also the decrease is at
least partially significant in year 10. Applying zonal av-
eraging enhances the signal-to-noise ratio and results in
two maxima with significantly nonzero S in year 4 and
the last 3 yr, one centered near 35°S and the other near
55°S. The result suggests intensification and a south-
ward shift of the zonal wind stress. The signal-to-noise
ratio does not increase linearly with lead time. Instead,
it evolves in a way similar to the vertically and zonally
averaged zonal wind, for example, having a notably
large value in year 4, but not the largest value in year
10.

The strengthening and poleward shift of zonal wind
stress are found in twentieth- and twenty-first-century
simulations performed with different climate models

(Fyfe and Saenko 2006). This suggests that the wind
stress signal is not a feature of the particular model
used.

The fact that the signal-to-noise ratio is notably
larger for zonally averaged fluxes than for gridpoint
fluxes is an indication that the response of surface
fluxes to an increase in CO2 concentration is primarily
zonally orientated.

6. Potential predictability of the ocean

The increase of heat flux into the northern North
Atlantic becomes significant from year 6 onward. This
increase could lead to a reduction of the Atlantic me-
ridional overturning circulation (MOC). The consider-
ation of a zonally averaged streamfunction suggests
that this is not the case (not shown).

What does change significantly is the wind-driven
Ekman circulation in the upper ocean. Figure 12 shows
the ensemble mean changes in zonally averaged merid-
ional velocity in the first five model layers in year 10.
The largest change in the zonally averaged meridional
velocity is an increase in northward velocity from about
40° to 60°S and a decrease north of 40°S. These velocity
changes are consistent with the changes in the zonal
wind stress �x (Fig. 11) that favor a strengthening in the
northward Ekman transport from 40° to 60°S and a
strengthening of the southward Ekman transport north
of about 40°S. The signal-to-noise ratio further con-
firms the role of wind forcing by showing that the ve-
locity changes in the surface layer is only significant in
the years when the change in the atmospheric circula-
tion is the largest, that is, in year 4 and in the last 3 yr
(not shown).

The changes in the meridional Ekman transport can
be responsible for the changes in SST. Figure 13 shows
the ensemble mean changes in the zonally averaged
SST (top) and grid point SST in year 10 (bottom). The
global average of the change is 0.26°C in year 10. The
meridional profiles within 60°S and 60°N resemble, to a
large extent, those of the 2-m air temperature, with the
only difference being the much larger increase at the
northern high latitudes for air temperature than for
SST. Thus, the increase in meridional gradient in air
temperature discussed in section 4 is directly coupled to
the increase in meridional gradient in SST. Similar to
the air temperature, the meridional profile of the
changes in SST does not follow that of the downward
heat flux (Fig. 7). Little warming occurs at the 50°–55°S
latitudes where large increases in the downward heat
flux are found, whereas large warming takes place at
about 30°S, where the change in the downward heat
flux is small. This meridional profile, which would not
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be obtained if SST changes were directly forced by the
change in the downward heat flux, is likely the result of
the meridional Ekman transport. The southern lati-
tudes with little SST changes represent the region
where the mean (not shown) and the enhanced north-
ward Ekman transport (Fig. 12) are found. Given the
strong mean surface temperature gradient from the

subtropics to about 60°S in the reference run (not
shown), the mean and the enhanced northward trans-
port can significantly reduce the effect of the increased
downward heat flux by persistently importing cold wa-
ter from high latitudes into this region. On the other
hand, the enhanced southward Ekman transport north
of 40°S can increase the SST, thereby persistently im-

FIG. 10. (a) Ensemble mean difference (kg s�1) and (b) signal-to-noise ratios for freshwater
flux integrated over the global ocean area (green), the subtropical oceans (red), and the
northern (blue) and subpolar (black) North Atlantic as function of lead time t. The shading
indicates the spread of the prediction ensemble for the globally integrated freshwater flux.
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porting warmer water from the subtropical region, de-
spite a weaker increase in the net downward heat flux.

Note that both sea ice cover and sea ice thickness did
not notably change over the 10-yr prediction time pe-
riod (not shown). This is consistent with the suggestion
that changes over the Southern Ocean are related to
interactions between atmosphere and ocean, without
involving changes in sea ice.

The situation is somewhat different in the North Pa-
cific and North Atlantic. There an enhancement of
poleward velocity is found near 60°–70°N (Fig. 12). This
change works to increase the SST near 60°–70°N (Fig.

13), making the increase in temperature gradient much
less pronounced than in the Southern Ocean.

The above discussion suggests only that changes in
the wind stress over the Southern Ocean can signifi-
cantly affect the changes in the meridional distribution
of SST. The question remained to be answered is
whether and how the warming signal at the surface is
propagated downward to the deep ocean.

The signal-to-noise ratio of zonally averaged ocean
temperature (Fig. 14) suggests a fast downward propa-
gation. Significantly nonzero values of S are found
down to about 1000–3000 m at about 40°S in year 5 and

FIG. 11. Same as Fig. 7, but for zonal wind stress (10�2 Pa). The isoline interval is 0.2 �
10�2 Pa. Solid (dashed) lines indicate positive (negative) values. Zero line is not plotted.
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onward. Similar deep-penetrating structure of nonzero
values of S also emerges near 40°N. The warming signal
seems to propagate through two “corridors” located
near 40°S and 40°N that extend from the surface to
about 3000–3500 m. Outside the corridors, no signifi-
cant increase in temperature is found in the deep ocean.
The downward propagation does not seem to be related
to the changes in the atmospheric circulation, because
the downward propagation signal gradually increases
with lead time, rather than being particularly large in
years (e.g., in year 4) when large changes in wind stress
are found. The magnitude of the warming reaches 0.3°C
near the surface and 0.05°–0.1°C in the deeper ocean
(Fig. 15).

It is noted that the deep ocean in the reference run
reveals a drift. For the temperature, the amplitude of
the drift can be on the order of 0.02°C decade�1. When
starting the prediction experiments from the states in
the reference run, the deep ocean continues to drift,
independent of the changes in the CO2 forcing. To ob-
tain the signal that originates from the changing CO2

forcing only, a mean linear drift is estimated from the
100 yr of the reference run and subtracted from the
prediction experiments before performing the calcula-
tions that result in Figs. 14 and 15.

There are three ways for the warming signal to be
transported down into the deep ocean, namely, via ver-
tical advection, convective mixing, and vertical diffu-
sion. The mean vertical velocity is downward near 40°S
and 40°N. However, it is too small for vertical advection
to be important. Given a typical vertical velocity on the
order of 10�6 m s�1, it will take about 63 yr for a signal

at the surface to be advected over a distance of 2000 m
into the ocean interior. This certainly cannot explain
the much faster downward propagation suggested by
Fig. 14.

The convective mixing is parameterized in MPI-OM
by a strong vertical diffusion, which is switched on in
case of static instability. The respective diffusion coef-
ficient is 10�1 m2 s�1, which generally dominates the
other processes that also contribute to the vertical dif-
fusion (to be discussed below). Thus, if the changing
CO2 forcing induces a change in convective activity,
one would obtain large changes in the total vertical
diffusion. As will be discussed below, the total vertical
diffusion near 40°S and 40°N decreases with increasing
lead time.

In principle, vertical diffusion can be responsible
for downward propagation of a surface signal. In MPI-
OM, temperature diffusion consists of two compo-
nents—an isoneutral–dianeutral component and a ver-
tical component. The vertical diffusion coefficient is, in
static stable situation, a function of a Richardson num-
ber–dependent mixing, a wind-induced mixing, and a
background diffusivity. The background diffusion is set
to 10�5 m2 s�1. The wind-induced mixing, which can in
principle be of the order of 10�1 m2 s�1 and be affected
by wind changes discussed in section 4, is confined to
the first 40 m. Thus, below 40 m and outside convective
regions, a change in the vertical diffusion coefficient is
determined by the change in the Richardson number–
dependent mixing only.

Even though vertical diffusion can in principle bring
the warming signal downward, it might not be of pri-

FIG. 12. Ensemble mean difference in zonally averaged meridional velocity (cm s�1) in the
first five model layers in year 10. The isoline interval is 0.04 cm s�1. Solid (dashed) lines
indicate positive (negative) values. Zero line is not plotted.
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mary importance. The ensemble mean changes in the
total vertical diffusion coefficient reveal notable de-
creases at the midlatitudes from the first a few hundred
to 1000 m (not shown). This reduction, likely caused by
a general increase in the stability of the ocean resulting
from the surface warming, does not fit to the gradual
increase in downward propagation with increasing lead
time.

The isoneutral–dianeutral diffusion makes use of a
rotation of the diffusion tensor from horizontal–vertical
directions to neutral and dianeutral directions (Redi
1982) and is numerically implemented following Grif-
fies et al. (1998). The strength of the isoneutral diffu-
sion depends linearly on the grid size and equals 1000
m2 s�1 for �x � 400 km, which is about the largest grid
size. Thus, isoneutral mixing is much stronger than the

FIG. 13. (a) Ensemble mean difference in zonally averaged SST (C°) and (b) ensemble mean
difference in SST in year 10. In (b), the isoline interval is 0.1 C°. Solid (dashed) lines indicate
positive (negative) values. Zero line is not plotted.
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vertical mixing. In regions where the surface of neutral
density is tilted toward the vertical direction, isoneutral
mixing will effectively diffuse the surface warming sig-
nal down to the deeper ocean.

The isoneutral surfaces are related to the surfaces of
potential density. The mean zonally averaged potential
density in the reference run (Fig. 16) identifies two re-
gions where the isopycnals are strongly tilted toward
the vertical direction. One is located at about 40°S and
the other at 40°N. The two regions coincide with the
“corridors” through which the surface warming is prop-
agated downward (Fig. 14), suggesting the dominant
role of isoneutral mixing for the downward propagation
of surface signal.

It is noted the above consideration is based on the
analysis of yearly data. The situation could be different
when considering processes on time scales shorter than
1 yr. For these processes, the mean vertical mixing ob-
tained from the reference run under the control condi-
tion could play an important role.

To this end, it is worthwhile to revisit the rough-and-
dirty estimate of the effect of the increased net down-

ward heat flux in section 5. Using Eq. (5) again, one
finds that if the mixed layer of about 88.6-m thickness
receives only half of the increased heat flux (i.e., 200
TW instead of 400 TW in 10 yr), then the globally av-
eraged SST would be about the same magnitude as
obtained from the coupled model. This suggests that, in
order to arrive at the globally averaged SST value pro-
duced by the coupled model, half of the increased net
heat flux must be efficiently removed from the mixed
layer and transported down into the deep ocean within
short time. The representation of mixing processes
could affect the efficiency of the downward propaga-
tion of heat.

7. Discussion and conclusions

a. Potential predictability resulting from external
forcing

One important difference between predictability of
the first and second kind is that predictability of the
first kind generally decreases with lead time because of
uncertainty in the initial condition, while predictability

FIG. 14. Signal-to-noise ratio for zonally averaged ocean temperature as function of latitude and depth in year (top left) 1, (top
right) 5, (bottom left) 7, and (bottom right) 10.
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of the second kind can be notably enhanced if the ex-
ternal forcing persists and amplifies over lead time. De-
spite this favorable feature, predicting the coupled at-
mosphere–ocean system under a changing CO2 forcing
is far from being straightforward. One major obstacle is
the lack of knowledge about the future evolution of
CO2 forcing, whose prediction requires modeling of in-
teractions between economy and policy. Without a re-
liable prediction of the future CO2 forcing, all predic-
tions will be subject to, in addition to the perfect model
assumption, the assumption about the possible future
forcing changes. The problem could be particularly se-
vere for a nonlinear system with multiple equilibriums.
In this case, predictions could be distinctly different
(i.e., they differ not only in amplitude but also in struc-
ture), depending on whether or not the forcing used can
make the system to reach certain thresholds. For small
forcing changes, on the other hand, the dependence of
the responses on the detailed evolution of the forcing is
expected to be weak. This paper provides a detailed
analysis of the potential predictability subject to small-

amplitude forcing changes obtained after imposing the
change over a short time period. The skill derived by
utilizing such potential predictability is assessed by Lee
et al. (2006). Further investigations are needed to quan-
tify the difference between the short- and long-term
responses.

The second obstacle is that an external forcing like
that resulting from CO2 concentration does not
uniquely determine the climate state. Instead there are
a large number of states, all of which are consistent with
a given CO2 concentration, implying a large uncertainty
related to the forcing. This uncertainty can be quanti-
fied by the ensemble spread. When measuring the po-
tential predictability by mean changes between predic-
tion and reference ensemble, the utility of this predict-
ability will be limited by the uncertainty resulting from
ambiguous control of the external forcing. To take this
explicitly into account, the present paper uses the sig-
nal-to-noise ratio, that is, the ratio of the magnitude of
the mean ensemble difference to ensemble spread, as a
measure to quantify the gain in the predictability re-

FIG. 15. Meridional and depth sections of ensemble mean difference in zonally averaged ocean temperature (C°) in year (top left)
1, (top right) 5, (bottom left) 7, and (bottom right) 10. The isoline interval is 0.04 C°. Solid (dashed) lines indicate positive (negative)
values. Zero line is not plotted.
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sulting from imposing CO2 forcing. In general, proba-
bilistic concepts are required to deal with these uncer-
tainties.

b. First responses of the coupled system to an
increase in CO2 concentration

The origin of the potential predictability lies in the
first responses, that is, responses obtained after the sys-
tem is subjected to an increase in CO2 forcing for a
short time period. The responses describe how the
coupled system is steered by the CO2 forcing.

A forcing resulting from an increase in CO2 concen-
tration is a global-scale forcing according to the IPCC
Fourth Assessment Report (see “Summary for Policy-
makers” online at http://www.ipcc.ch/) and can be con-
sidered as being homogeneously distributed. Neverthe-
less, the response of the coupled system to this forcing
is highly nonhomogeneous and reveals strong spatial
variations, particularly in the meridional direction. The
main meridionally orientated responses are, in one way
or another, related to the significant increase in merid-
ional gradient of SST in the Southern Ocean. The in-
crease in meridional temperature gradient results from
a stronger warming in the subtropics relative to that
near 55°–60°S. Related to the increase in the meridio-
nal temperature gradient are

• a strengthening of the Ferrel cell in the Southern
Hemisphere,

• a strengthening of the vertically averaged zonal mean
zonal winds over the Southern Ocean,

• an increase in zonal wind stress at the sea surface
centered at about 55°S and a decrease centered at
about 35°S,

• a strengthening of northward Ekman transport be-
tween 40° and 60°S and a strengthening of southward
Ekman transport north of 40°S.

These features constitute the following positive feed-
back: The increase in temperature gradient changes the
atmospheric circulation, leading to a stronger north-
ward Ekman transport centered near 55°S. The latter
transports cold Antarctic water northward and counter-
acts on the increased downward heat flux at about 55°S,
thereby maintaining the temperature gradient. The
strengthening of the Ferrel cell indicates that the feed-
back process is initialized by an increase in temperature
gradient, which presumably results from the subtropical
warming induced by the radiative forcing. The identi-
fied responses are not described by the long scenario
runs of the IPCC Fourth Assessment Report, in which
the high-latitude warming was identified as the main
temperature signal. The positive feedback could affect
the storms in the Southern Ocean. However, further
analysis is required to clarify this issue.

The positive feedback, which is confined to the at-
mosphere and the upper ocean, controls only the hori-
zontal distribution of heat. Below the first few hundred

FIG. 16. Mean zonally averaged potential density as function of latitude and depth (m), as
derived from the reference run. Plotted are potential density minus 1000 in kb/m3
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meters of the ocean, the warming signal propagates
downward through two corridors, one near 40°S and
the other near 40°N, and reaches 1000–2500 m already
in year 5.There is some evidence that the downward
propagation of the warming signal is caused by the iso-
neutral mixing. Further studies are needed to verify this
issue. The downward propagation of the warming sig-
nal effectively reduces the warming in the atmosphere
and the upper ocean.

It should be stressed that the present study is based
on the perfect model assumption. Because the extent to
which the ocean model realistically represent mixing
processes is still debatable, the way in which the warm-
ing signal is transported downward, and consequently
the rate of the warming in the atmosphere and the up-
per ocean, may depend strongly on the parameteriza-
tion implemented in the ocean model.
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