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1. INTRODUCTION

With its decision of April 2, 2007, on Mas-

3

The recent decision of the U.S. Supreme Court on the regulation of CO, emissions from
new motor vehicles!)) shows the need for a robust methodology to evaluate the fraction of
attributable risk from such emissions. The methodology must enable decisionmakers to reach
practically relevant conclusions on the basis of expert assessments the decisionmakers see
as an expression of research in progress, rather than as knowledge consolidated beyond any
reasonable doubt.>>% This article presents such a methodology and demonstrates its use
for the Alpine heat wave of 2003. In a Bayesian setting, different expert assessments on
temperature trends and volatility can be formalized as probability distributions, with initial
weights (priors) attached to them. By Bayesian learning, these weights can be adjusted in
the light of data. The fraction of heat wave risk attributable to anthropogenic climate change
can then be computed from the posterior distribution. We show that very different priors
consistently lead to the result that anthropogenic climate change has contributed more than
90% to the probability of the Alpine summer heat wave in 2003. The present method can be
extended to a wide range of applications where conclusions must be drawn from divergent
assessments under uncertainty.

KEY WORDS: Bayesian learning; climate change; climate damages; heat wave; fraction of attributable
risk

with global warming has already harmed and will con-
tinue to harm Massachusetts. The risk of catastrophic

sachusetts et al. v. Environmental Protection Agency
et al., the U.S. Supreme Court has given new rele-
vance to the task of assessing the fraction of climate-
related risks that can be attributed to human actions.
A group including state and local governments as well
as private organizations had challenged the EPA’s de-
nial to regulate the emissions of greenhouse gases un-
der the Clean Air Act. In its opinion, the Supreme
Court states that “the rise in sea levels associated

1 Potsdam Institute for Climate Impact Research, Potsdam, Ger-
many.

2 Freie Universitdt Berlin, Department of Mathematics and Com-
puter Science, Berlin, Germany.

3 Max Planck Institute for Meteorology, Hamburg, Germany.

* Address correspondence to Carlo Jaeger, Potsdam Institute for
Climate Impact Research, Telegrafenberg A31, 14473 Potsdam,
Germany; tel: +49-331-288-2601; carlo.jaeger@pik-potsdam.de.

harm, though remote, is nevertheless real. That risk
would be reduced to some extent if petitioners re-
ceived the relief they seek. We therefore hold that pe-
titioners have standing to challenge the EPA’s denial
of their rulemaking petition.”("P?® This reinforces
the claim that “[t]here is an urgent need to develop
improved methods and tools of climate impact assess-
ment (such as the use of probabilities and Bayesian
analysis).”>P-1415) A key challenge for such a method-
ology is the need to reach conclusions on the basis of
conflicting expert judgments, and to do so with limited
resources.

2. BAYESIAN ASSESSMENT OF THE FAR

A suitable methodology can be developed with
the help of Bayesian decision theory (see Refs.
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6-8 for the use of Bayesian techniques in cli-
mate research, Ref. 9 for a discussion of decision
theory related to climate change, and Refs. 10 and 11
for a Bayesian approach to decision theory). Differ-
ent expert claims about a sequence of risks are then
regarded as hypotheses that may guide action deal-
ing with those risks. By assigning mixture weights to
those hypotheses one obtains a convex set of further
hypotheses that may guide action as well.

Let X;;; be some damaging event the decision-
maker isinterested in. In this case, this will be an event
that may be influenced by climate change in ways that
are not fully understood. The probability of that event
can be assessed with the hypotheses the decision-
maker is willing to consider as well as with mixtures
of these. On the basis of available new evidence, the
decisionmaker can update the initial weights she as-
signs to the hypotheses. Using these updated weights,
she can then assign revised probabilities to the event
X:41. Call Py(X;11|e;) the probability she assigns to
that event on the basis of the evidence e, available
at time ¢, but taking into account only hypotheses
without anthropogenic climate change. Call the prob-
ability she assigns to the same event on the basis of
the same evidence but including also the hypotheses
with anthropogenic climate change PA(X;41|e;). As
explained in the Appendix, the FAR, the fraction F;
of attributable risk, can then be computed as:
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F = Pa(Xii1le) — Pn(Xiy1ler) (1)
Pa(Xiy1le)

To take advantage of Bayesian learning when assess-
ing the FAR of some critical event with regard to cli-
mate change, the following steps are necessary. First,
identify a sequence of data that can be used to test a
set of models, and define a critical event the FAR for
which is to be estimated. Second, define a set of model
hypotheses including both hypotheses under the as-
sumption that there is and that there is no anthro-
pogenic climate change. Third, define initial weights
for the different model hypotheses and update these
weights on the basis of the sequence of evidence. And
fourth, compute the probability of the critical event
for the different hypotheses and the FAR.

3. AN APPLICATION TO CLIMATE CHANGE
AND THE SWISS SUMMER HEAT WAVE

It seems promising to analyze the Alpine sum-
mer heat wave with this methodology. From 2002 to
2003, Swiss summer temperatures jumped by 3.6°C
from 18.7°Ct022.3°C (see Fig. 1). The 2003 heat wave
increased mortality in Switzerland by 7%. The statis-
tics of the 1,000 additional deaths show that by no
means all can be attributed to people already being
in bad health.(> Throughout Europe, the 2003 heat
wave caused about 35,000 people to die, many in an
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Fig. 1. Swiss mean summer temperature
from 1864 through 2006, averaged over
the four stations Basel-Binningen,
Bern-Liebefeld, Geneéve-Cointrin, and

-4 Zurich and over the three summer
months June, July, and August.
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undignified manner.('3 The question arises whether
the extreme 2003 summer temperatures and thus
these deaths can be attributed to climate change.

Different authors have shown that the 2003 sum-
mer heat wave exhibited characteristics resembling
those projected to occur more frequently by the end of
the 21st century under scenarios of anthropogenic cli-
mate change.(*'®) Multimodel multiscenario simula-
tions predict that in the absence of effective mitigation
measures the frequency of occurrence of extremely
warm seasons will rise remarkably in many parts of the
world by the end of the 21st century.!”) Investigations
of temperature records and model simulations sug-
gest that there is an anthropogenic influence not
only on recent warming,**2 but also on temper-
ature extremes.*» Applying time series analysis to
German summer surface air temperature, Schonwiese
et al.® find that the probability of summer temper-
ature anomalies in the range of those experienced in
2003 has increased by a factor of 20 since 1760 due to
a progressive warming trend since 1870.

With regard to the 2003 heat wave in Europe,
Stott et al.'® have used climate model simulations
to quantify the fraction of risk attributable to hu-
man influence. Using a temperature threshold that
was exceeded in 2003, but in no previous year since
the beginning of instrumental records, they offer
a lower bound of 0.5 as their assessment of the
fraction of attributable risk that European summer
temperature would exceed that threshold in 2003.
As regards the Alpine region, however, their study
misses a key feature of the empirical record, namely,
the increasing variability of summer temperatures
around their long-term mean—perhaps because the
area selected was too large and the data grid too
coarse in this respect.®® In the case of global mean
temperature, the anthropogenic signal has clearly
been demonstrated to lie well above the natural
variability noise—independently of recent controver-
sies over the precise level of the natural variability
background.?’-*) However, on regional scales, the
anthropogenic influence is more difficult to detect
with statistical confidence, particularly with respect
to extreme events. In view of the unavoidable scien-
tific uncertainties, any attempt to assess the risks of
anthropogenic climate change must in this case de-
pend on subjective judgments and is thus amenable
to a Bayesian approach.

3.1. Hypotheses on Temperature Development

“Summer 2003 was the hottest in Europe since
1500, very likely due in part to anthropogenic climate

change.”%P-1483) Our goal is to specify the phrases
“very likely” and “in part” in quantitative terms. For
this purpose, we consider the following four model hy-
potheses as well as mixtures of these. Each one of the
four hypotheses assumes normally distributed ran-
dom variables with no interannual correlation; their
mixtures, however, include the possibility of nonnor-
mal distributions and autocorrelated values. Each hy-
pothesis corresponds to one of four patterns that may
be used in the description of regional climate change.

H1: There is no climate change, just short-term ran-
dom fluctuations. The model consists of arandom
variable distributed around the mean of the years
1864-2002 with a standard deviation (SD) equal
to the SD of the same period.

1 =1715+¢, &~ N(0,0.945)

H2: There is a modest constant warming trend that
may be explained by natural causes; interannual
random fluctuations as in H1 are superimposed.
The model consists of a random variable dis-
tributed around a linear trend leading to a tem-
perature increase of about 0.3°C over the past 150
years. This corresponds to the assessment that
“solar forcing may have contributed about half
of the observed 0.55°C surface warming since
1860.”CGLP3195) Ag both changes in solar forcing
and changes in mean summer temperatures have
been relatively small, linearization appears justi-
fied to describe their relationship. As the initial
value for the trend we use the average of the first
30 years, corrected for the model slope. (Let u
be the average temperature of the first 30 years
and a the slope according to the hypothesis un-
der consideration. Then the initial value is set to
u —15a. We will use the same procedure for the
initial values of H3 and H4 as well as for the initial
value for the standard deviation in H3.)

7, =16.952 +0.002 +&, & ~ N(0,0.924)

H3: Anthropogenic climate change leads to a
significantly stronger warming trend that
steadily increases Alpine summer temperatures;
interannual random fluctuations increase lin-
early with time. The model consists again of
a random variable distributed around a linear
trend, starting with the average temperature of
the first 30 years, but now we let the trend end
with the average temperature of the last 30 years.
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This corresponds to an average annual tempera-
ture increase of 0.007°C, roughly consistent with
the IPCC third assessment: “The best estimate
of global surface temperature change is a 0.6°C
increase since the late 19th century.”(>pP-10D)
Theoretical analyses predict a logarithmic
increase of global mean temperatures with
increasing greenhouse gas concentrations.?)

As the greenhouse gas content of the atmo-
sphere is observed to increase exponentially,
a linear global temperature response would
accordingly be expected. H3 assumes that
regional changes over Switzerland directly
reflect this global trend. In accordance with the
widespread view that anthropogenic climate
change is accompanied with increasing climate
variability,®” we let the SD increase linearly
from the SD of the residuals in the first 30 years
to the SD of the residuals in the last 30 years.

73 =16.876 +0.007t + &, &~ N(0, 03(t)).
o3(t) = 0.798 + 0.0006:.

Anthropogenic climate change is raising Alpine
summer temperatures at an accelerating pace;
the variance of interannual random fluctuations
remains constant. In this case a least-square ex-
ponential trend is fitted to the deviations from
the mean temperature of the first 30 years, start-
ing with a random fluctuation of 0.01°C. With
this trend, the SD of the residuals from the expo-
nential fit does not increase (it decreases slightly
by —3 % 1074°C p.a.). We set it equal to the SD

1900
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of the residuals. The model behind this hypoth-
esis may be interpreted as follows: a determinis-
tic linear instability is driving the regional mean
summer temperatures away from their preindus-
trial levels, resulting in an exponential growth.
Superimposed one finds fluctuations with time
independent variance, which indicates that the
mean trend and the fluctuations are likely driven
by independent mechanisms.*

74 =16.965 4+ 0.01 * exp(0.0375¢) + &, & ~N(0, 0.868)
For a representation of the four hypotheses, see Fig. 2.

3.2. Bayesian Updating of Hypotheses’ Weights

Bayesian learning starts with a set of priors,
and different decisionmakers—as well as different
scientists—usually hold different priors with regard to
a given problem. We, therefore, compare two sets of

4 H4 was motivated by preliminary analyses that aimed at finding
a transformation of the temperature data into a new time series
of the transformed variable that would be approximately inde-
pendent, identically distributed (iid). For such time series, De-
Finetti’s theorem provides a rigorous framework for the present
Bayesian learning procedure.®> We found that an autoregressive
moving average process, fitted to the time series of the logarithms
of annual temperature growth rates, Log[(T;+1 — T;)/T;], pro-
vided such a transformation with high accuracy. We will report
on details of this study in a forthcoming publication. Moreover, a
more detailed analysis of the interactions between an accelerating
warming trend and the levels of interannual variability observed
in the last few decades seems warranted.
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initial priors representing two very different points of
view on climate change. The first point of view, called
“nonanthropogenic oriented priors,” assigns weight
0.4 to H1, 0.3 to H2, 0.2 to H3, and 0.1 to H4. The
second point of view uses the reverse order, we, there-
fore, call those priors “anthropogenic climate change
oriented priors.” Both priors can now be adjusted ac-
cording to a process of Bayesian updating (see the
Appendix). The resulting shift in the approximated
weights is represented in Figs. 3 and 4.

By 1980, the differences between the two sets of
priors have largely faded out. In 2002, for the nonan-

thropogenic oriented priors the (rounded) weights for
the four hypotheses are 5+ 1074,7 % 1072,1 % 1073, and
0.991. For the anthropogenic climate change oriented
priors the weights are 3 107, 1 % 1073, 4 + 1074, and
0.998.

3.3. The Critical Event and its FAR

In order to compute the probability of the crit-
ical event under each hypothesis, we need to define
that event in statistically meaningful terms. The sum-
mer temperature of 2003 exceeded the mean of the
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preceding 100 years by nearly 5 SD of those 100 years.
We define the critical event as a summer tempera-
ture in 2003 exceeding the mean of the preceding
100 years by at least 4 SD, that is, a temperature
of at least 21.26'C. Under the different hypotheses,
the probabilities for such an event are 7 * 107°, 6 *
107%,5 % 107>, and 3 * 10~3. Using the weights from
Bayesian learning, the overall probability for the criti-
cal event is the same (rounded to four digits) for both
perspectives, namely, 0.0029. Under the assumption
that there is no anthropogenic climate change, the re-
sulting probability is 6 % 10~® for both perspectives.
This leads to a FAR of 99.8% for both the nonan-
thropogenic and the anthropogenic climate change
oriented priors.

4. CONCLUSIONS

Three main conclusions can be drawn. First, the
present analysis supports the claim by Stott et al.(1*)
that the FAR of the 2003 heat wave is larger than
0.5—and it supports the much stronger claim of a
FAR of 0.9 and more. Second, the analysis shows
that this finding represents a consensus that can
be reached from widely diverging starting points.
Third, the method of Bayesian learning can be used
to track the evolution of probability assessments
based on the accumulation of additional evidence
and to compute a resulting FAR for possible climate
damages.

The FAR is a parameter of considerable practi-
cal importance. Insurance contracts, for example, may
specify payment of a fraction of damages depending
on FAR estimates. Moreover, it is standard practice
in liability trials to ground decisions on compensation
payments on some assessment of what proportion of
damage can be attributed to a specific cause. This leads
to one important advantage of the proposed Bayesian
learning method compared with simple model fitting.
The latter can identify a best model, and the fit can
be improved once additional data become available.
But simple model fitting cannot assess the FAR, and
itis not applicable to small data sets because it cannot
use priors.

Of course, Bayesian learning can only be as good
as the hypotheses available to start with. In this case,
Figs. 3 and 4 display a rapid shift in the weights of H3.
In the history of climate research, there has been a re-
lated shift from a debate about the dangers of global
cooling due to natural cycles®® or even due to hu-
man influence®®” to the current debate about global
warming. In climate science, this shift was based on a
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new model of climate change that combined a long-
term warming trend related to greenhouse gases with
atemporary cooling caused by aerosols, discarding the
possibility of a rapid end of the current interglacial.®)
This yields a pattern that cannot be produced by a mix-
ture of the hypotheses that were formulated before
1970. We restrict ourselves to those hypotheses. How-
ever, including the more complex pattern postulated
by Mitchell®® would strengthen, not weaken, our as-
sessment of the FAR for the 2003 Alpine heat wave.

Volatile patterns of Bayesian learning can show
decisionmakers that the set of proposed hypotheses
may neglect some important unknown mechanism.
But developing additional hypotheses is a business
for experts, and decisions may well need to be taken
before experts have developed a satisfactory set of hy-
potheses. For practical applications of the proposed
method, then, it is important to distinguish situations
where the available hypotheses yield a robust assess-
ment and those where this is not the case. Robust
here means stable through time and across different
priors. As long as this is not the case, risk-averse deci-
sionmakers may be well advised to focus on the worst
scenario, following the course of action that minimizes
maximum conceivable damage. When a robust assess-
ment is possible, standard risk management practices
that balance risks and opportunities are more appro-
priate.

In the case of the 2003 Alpine heat wave, attribut-
ing a FAR of at least 90% to anthropogenic climate
change is a robust assessment. An interesting case
that may or may not lead to a similar assessment
is the one of hurricane damages like those caused
by Hurricane Katrina. Investigating such cases with
the present method is a promising avenue for further
research.
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APPENDIX ON METHODS
A.1. Bayesian Updating of Prior Probabilities

The method of updating subjective probabilities
by means of available evidence is governed by Bayes’s
celebrated formula, based on the symmetrical relation

P(h|e)x P(e) = P(e,h) = P(e|h)« P(h) (A.1)

for conditional probabilities. Here, evidence (e) and
hypothesis (/) are both treated as possible proposi-
tions that may or may not turn out to be true. Equa-
tion (A.1) specifies the probability P(e, /) that the
evidence and hypothesis are both true. It implies that,
given the probability P(e|#k) that the evidence e is
true (i.e., that a prediction is verified) under the con-
dition that the hypothesis 4 is true, one can infer the
reciprocal P(h | e) that the hypothesis 4 is true for the
case that the evidence e is true. To update the a priori
probability P(h) (the “prior”), however, one needs to
know in addition the total probability P(e) that the
evidence is true, independent of the truth of the hy-
pothesis A.

Unfortunately, this information is not always
available. In our application to the Swiss summer heat
wave, for example, a given hypothesis % consists of a
particular model of the evolution of Swiss summer
temperatures, and the hypothesis test e is a predicted
temperature measurement. Assuming that the model
is correct, one can determine the probability P(e | &) of
verifying the prediction. However, the overall proba-
bility of verifying the prediction P(e), independent of
the particular model hypothesis, is not known, as the
correct model, among the infinite set of all conceiv-
able summer temperature models, is not known.

The usual application of Bayes’s theorem is there-
fore not to update the absolute probability of a single
hypothesis, but rather to update the relative prob-
abilities of two (or more) competing hypotheses.®)
These relative probabilities can be looked at as mixing
weights, approximating the correct model by a com-
bination of the given ones. Applying Equation (A.1)
to the ratio of the (relative) probabilities of two hy-
potheses A1, A, one obtains:

P(hile) _ Plelh) P(h)
P(]’L2|€) - P(€|h2) P(hz).

(A2)

Thus, the posterior ratio of the probabilities
of the two hypotheses is modified relative to the
prior probability ratio by the Bayes factor B =
P(e|h1)/ P(e| hy).C?

To analyze the 2003 Alpine heat wave, we gener-
alize Equation (A.2) to a set of n hypotheses /<<y,
which we subdivide into k hypotheses h;<;<x of cli-
mate variations without anthropogenic influence, and
n—k alternative hypotheses Ay, including such in-
fluence. We consider, furthermore, a sequence of up-
dated a posteriorirelative probabilities P(4; | ;) based
on a sequence of evidences e; that become avail-
able at times ¢t = 1,...,T. The relative probabilities,
by definition, sum to unity, Y ., P(h; |e) = 1. Fi-
nally, as evidence we require that the model-predicted
temperatures agree with the observed temperatures
within a given infinitesimal increment Atr. This im-
plies that the probability that the evidence is true
is infinitesimal, but as Equation (A.2) involves only
the ratio of probabilities, the formalism can be ap-
plied both to normal probabilities P and probability
densities p.

Forming the ratio of the posterior relative prob-
ability of the hypothesis 4; to the posterior sum of
relative probabilities one then obtains the algorithm
for updating these probabilities:

plecy1 | hi) * P(hi|e)
i pest | hj) x P(hjle)

This algorithm allows updating the weight of each
hypothesis on the basis of new evidence. As an ex-
ample, this is how it can be applied for updating the
weight of H1 according to the first available summer
temperature measurement of 1864. We start at 1963,
that is, = 0, define a set of hypotheses (H1 to H4, as
described above), and assign initial weights to them,
in this example the nonanthropogenic oriented priors
given in Section 3.2:

P(hile1) =

(A3)

P(hl | 60) = 04,
P(hy|e) = 0.1

P(l’lz | 80) = 03, P(h3 | 60) = 02,

We then consider the first data point, Swiss sum-
mer temperature of the year 1864, e¢,;1 = e =
16.2417°C. Now, the probability of this temperature
event within each of the four hypotheses has to be
calculated, that is, the probability density for the
value e; has to be computed for each hypothesis.
As the present hypotheses take the form of trends
with normally distributed deviations, probability den-
sity for an event e, within a hypothesis #; is given
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‘r+1 —H )2

as p(e;+1 | hi) = f we 2 , where u;, o; are
specified by hypothesm hi. As H1 is ©y =17.15+
e, & ~N(0,0.945), 1 = 17.15, and oy = 0.945. (In
fact, as for H1, neither the trend value nor deviations
from the trend change over time, these values remain
constant for all updating steps.)

Thus, pler|h) = goa7e
0.2660. Analogously, in correspondence with the
definitions of H2, H3, and H4, fort =1

_ 1162417 1715)2
xe 2 0.945

pler | hp) = m o) = 0.3208,
pler 1hs) = —— H) 0,361,
0.7986v27
and
pler | hy) = bRy 306,
0.868+v/27

Thus, the updating procedure yields as a posterior

weight for H1 after the first updating step: P(hy |e1) =
0.2660 % 0.4 — 0.3464

02660 % 0.4+ 0.3208+0.3 1+ 0.3619% 02+ 0.3216%0.1 _ °° .

The same procedure is carried out for all three

hypotheses at each updating step. For more details,

see the supplementary material provided.

A.2. Calculating the Fraction of Attributable Risk

Having updated the probabilities of the hypothe-
ses based on the sequence of evidence, one can then
compute the probabilities of observing a particular
damaging event X, 1 under the assumption of either
no anthropogenic influence (Py) or including such in-
fluence as well (Pa):

S P(Xor i) x Plhi | e)
S P(hiler)

PN/A(XzH le) =

(A4)
On the basis of these definitions, it is then natu-
ral to define the FAR, the fraction F, of attributable
risk, as in Equation (1). If climate change does indeed
increase P(X,+1), a number between 0 and 1 results
that can be used for purposes of damage attribution.
If climate change actually decreases P(X, 1), no dam-
age attribution problem arises and a negative number
without lower bound results. If in this case one wants
to attribute a fraction of the benefit resulting from
a lower P(X;,1), it is sufficient to consider the com-
plementary event X, that X,,; does not occur, and
compute F; for the resulting probabilities.
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