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ABSTRACT: A set of compressible non-hydrostatic equations for a turbulence-averaged model atmosphere comprising
dry air and water in three phases plus precipitating fluxes is presented, in which common approximations are introduced in
such a way that no inconsistencies occur in the associated budget equations for energy, mass and Ertel’s potential vorticity.
These conservation properties are a prerequisite for any climate simulation or NWP model.

It is shown that a Poisson bracket form for the ideal fluid part of the full-physics equation set can be found, while
turbulent friction and diabatic heating are added as separate ‘dissipative’ terms. This Poisson bracket is represented as a
sum of a two-fold antisymmetric triple bracket (a Nambu bracket represented as helicity bracket) plus two antisymmetric
brackets (so-called mass and thermodynamic brackets of the Poisson type).

The advantage of this approach is that the given conservation properties and the structure of the brackets provide a good
strategy for the construction of their discrete analogues. It is shown how discrete brackets are constructed to retain their
antisymmetric properties throughout the spatial discretisation process, and a method is demonstrated how the time scheme
can also be incorporated in this philosophy. Copyright  2008 Royal Meteorological Society
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1. Introduction

When designing an atmospheric numerical model for the
purpose of numerical weather prediction (NWP) and cli-
mate simulations, a careful formulation of the continuous
model equations is obviously the first step. Closely con-
nected, the construction of a physically adequate numeri-
cal scheme follows as the second step to form eventually
a satisfactory discrete analogue. The paper deals with
both of these main points. First, we start by formulating
a continuous model equation set, which is consistent with
respect to energy, mass, and Ertel’s (1942) potential vor-
ticity (EPV) conservation. It is written in Poisson bracket
form applying elements from Névir’s (1998, 2004) atmo-
spheric energy–vorticity theory and also the Hamiltonian
description from Morrison (1998) for an ideal fluid. Sec-
ond, we are going to propose a method to construct the
discrete analogue of the Poisson brackets both in space
and time. This philosophy allows us to retain the con-
tinuous conservation properties as already demonstrated
impressively by Salmon (2004, 2005, 2007) concerning
the spatial discretisation.

From the point of view of theoretical meteorology,
the formulation of continuous model equations seems
well established. Nevertheless, even today one becomes
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aware that notorious problems emerge when trying to use
in NWP in a consistent manner what is available from
theory. In a recent paper, Thuburn (2008) has carefully
reviewed this dilemma of how to design atmospheric
models under the aspect of conservation properties.

In the present paper, we take up this problem for the
compressible non-hydrostatic equations. This equation
type became of common interest for modelling because
of its suitability for atmospheric simulations over a wide
range of meteorological phenomena from planetary down
to local scales. Different non-hydrostatic regional models
currently exist as research and operational weather fore-
casting models. Concerning global modelling, a notable
development is taking place in Japan (Satoh 2002, 2003),
emphasizing the careful inclusion of moist processes and
conservative properties in the numerical scheme. Ulti-
mately, this development is directed towards a global
climate model with improved cloud–radiation interaction.
A particular example of the application of compressible
non-hydrostatic equations over the globe is the Unified
Model of the UK Met Office (Davies et al., 2005) based
on thorough research work with a fairly general concep-
tion to use it as a global NWP model, and for climate
simulations as well. In our case we are motivated to deal
with this model type in a running project also to develop
a new global NWP and climate simulation model, called
ICON (ICOsahedral Non-hydrostatic general circulation
model) (www.icon.enes.org).
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In the following approach we take advantage of our
experience with the compressible non-hydrostatic Lokal-
Modell (LM) (Doms and Schättler, 2002; Gassmann and
Herzog, 2007), which runs as a limited-area model opera-
tionally in the German Weather Service. The basic equa-
tions of the LM are in principle of rather general validity
so as to use them also as a basis to formulate a global
model. Our demanding approach begins with an equa-
tion set considering an atmosphere consisting of dry air
and water vapour as gaseous components, with the addi-
tion of water in liquid and solid form (cloud drops, cloud
ice, precipitating drops and ice particles). The concep-
tual way to take into account a multi-component system
is borrowed from Wacker et al. (2006). Additionally, the
complete equation system is written by applying a mass-
weighted turbulence averaging (known as Hesselberg
averaging). With minute approximations, this equation
set serves us as a reference model, having mass, energy
and EPV conservation. This is outlined in section 2.

Further, we introduce common approximations to
arrive at realistic averaged model equations available in
a more meteorological form with temperature and pres-
sure as model variables. Molecular fluxes are neglected
compared to the corresponding turbulent fluxes. In such a
way, the model equations are equations of averaged quan-
tities, where the molecular dissipation of kinetic energy is
omitted and should be replaced by turbulent dissipation
as a remedy to obtain energy conserving model equa-
tions. The mass conservation is simply fulfilled and it
is shown what mass control conditions are necessary to
be considered for the partial mass budget equations of
the multi-component system (Wacker et al., 2006). It is
shown that the EPV is also a conservable quantity. On
this way, we have found a full-physics model equation
set appropriate to apply the Hamiltonian tool. This is the
issue in section 3.

We invoke this theory because to the best of our belief
a Poisson bracket form with its specific antisymmetric
property offers an interesting new way to find conser-
vative numerical analogues (Salmon, 2004, 2005, 2007).
Although hardly recognised up to now in the common
literature, it is important to note that Névir and Blender
(1993), and then Névir (1998), have shown years ago a
way to formulate Nambu brackets for different classes
of atmospheric equations. We will show in section 4 that
it is possible to find a turbulence-averaged compressible
non-hydrostatic model equation set in Poisson–Nambu
bracket form including all water constituents, precipi-
tation fluxes, and diabatic sources/sinks in such a way
that, in the limit case for an ideal fluid, the bracket form
for a rotating atmosphere is exactly recovered (Névir,
1998). The authors were thus able to demonstrate that the
Hamiltonian theory for an ideal fluid is actually applica-
ble beyond this physical limitation. The bracket approach
provides a compact functional evolution equation from
which it is easy to derive corresponding model equation
sets in a well-structured form using different reasonable
model variables.

Salmon (2004, 2005, 2007) was inspired by the idea
to retain the antisymmetry properties of dynamic brackets
during model discretisation, in particular for the shallow-
water equations, using the Poisson bracket formulation
first, and then the more general Nambu bracket approach
to construct conservative spatial schemes. Sommer (2007,
personal communication) has taken up these ideas and
was successful in finding a discret Nambu bracket form
of a shallow-water model over the globe on the tri-
angular/hexagonal ICON grid. It is interesting to keep
in mind how the original and more intuitive Jacobian
approach from Arakawa (1966) now becomes raised to
the level of a much more general philosophy with very
practical meaning for up-to-date model development. In
this sense Dubinkina and Frank (2007) have reconsid-
ered Arakawa’s famous discretization using the Nambu
bracket formalism for long-term integrations of the quasi-
geostrophic potential vorticity model with orographic
forcing having conservation of discrete approximations of
energy and/or enstrophy. In section 5 we show a method
of formulating a numerical scheme both in space and
time using the Poisson–Nambu bracket form of the con-
sistently derived non-hydrostatic compressible equations.
Thereby, we closely follow Salmon’s suggestions repre-
senting global integrals by global sums, and considering
the rule of integration by parts in the spatial numerics. But
here, the rule of integration by parts in the time scheme
is also required if one of the brackets occurs in differ-
ent prognostic model equations. To confirm the suggested
method, first results of one-dimensional experiments are
shown in section 6.

2. Reference equation set for a heterogeneous
system

As a first point, we think of a quite general compressible
non-hydrostatic equation set describing a atmospheric
heterogeneous flow regime. Heterogeneity means here a
two-component system consisting of dry air and water.
Water is assumed to occur in all three phases including
precipitating drops and ice particles. With reference to
Wacker et al. (2006), partial densities �i are introduced
and summed up to total density for this atmospheric
mixture, � = ��i , where the subscripts i = d, v, l, f, r,
p refer to dry air, water vapour, liquid and frozen cloud
particles, rain drops and precipitating ice particles (snow,
graupel, etc.), respectively. A reference velocity vector
is defined as a weighted mean, v = ��ivi/�. Due to
this, an equation set for the mixture can be found, where
the momentum equation, the continuity equation and the
internal energy equation in this system are each formed
as a sum from their separate component equations. We
follow here the theoretical foundation of Wacker et al.
(2006) who discuss the Cauchy form conservation of
the momentum equation for a multicomponent system in
their section 3 with further supporting references such as
Gyarmati (1970) and Doms and Herbert (1985). Lange
(2002) presents the same problem in his textbook. An
alternative foundation is given by Bannon (2002) who
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considered a different reference velocity with respect
to dry air, but we do not pursue that approach. In a
further procedure, we carry out a turbulence (Reynolds)
averaging for these equations, where a barycentric mean
(Hesselberg, 1925) with respect to the total density is
used, ψ̂ = �ψ/�, having ψ = ψ̂ + ψ ′′ for the considered
variables. In this way we arrive at a sufficiently general
equation set:

�
d̂̂v
dt

= − ∇p − �∇� − 2� × �̂v

+ ∇ · (F − �v′′v′′) , (1)

d̂�

dt
= − �∇ · v̂ , (2)

�
d̂û

dt
= − p∇ · v̂ − p∇ · v′′ − ∇ · (W + �u′′v′′)

+ F · ·∇v̂ + F · ·∇v′′ , (3)

�
d̂q̂i

dt
= − ∇ · (Ji + �q ′′

i v′′) + Qi. (4)

In order to spare writing, the unaveraged multi-
component equations originally assumed are easily
obtained by omitting the turbulence averaging symbols
and all the turbulence flux terms in Equations (1)–(4). The
turbulence-averaged equations are the momentum equa-
tion (1), the continuity equation (2), the budget equation
for the mean internal (heat) energy, û, (3), and budget
equations for the partial mass fractions, q̂i = �i/�, (4),
having �q̂i = 1. It is important to note that, as a mass
control condition, the sum of the q̂i budget equations over
all i have to yield the continuity equation (2), which
implies �Qi = 0 (Qd = 0) , �Ji = 0 , ��q ′′

i v′′ = 0.
Further explanations of symbols and terms in these equa-
tions are given in Table I. In Equation (3) and in subse-
quent equations, the notation ·· means the double scalar
product between tensors.

Table I. Explanation of symbols.

Symbol Explanation

vi velocity of ith constituent
vi

(d) := vi − v diffusion velocity of ith constituent
� angular velocity of the Earth
� geopotential
Qi source/sink terms
Ji = �ivi

(d) diffusion flux of ith constituent
F viscous friction tensor
Ju heat diffusion flux vector
R radiation flux vector
W = Ju + R composed heat flux vector
�v′′v′′ turbulent momentum flux tensor
�u′′v′′ turbulent heat flux vector
�q ′′

i v′′ turbulent vector flux of ith partial
mass fraction

d̂
dt

= ∂
∂t

+ v̂ · ∇ average individual time change
operator

Such atmospheric model equations do not govern, but
rather attempt to represent real processes in the atmo-
sphere. Such forms will never be exact, and approxima-
tions are unavoidable. These approximations must not
violate the most important conservation properties regard-
ing mass, energy and EPV. This should be a guide, when
we are going to introduce further simplifications towards
more practical model equations compared to the refer-
ence equation set. Our model equations are to be valid for
turbulence-averaged variables with reference to (1)–(4).
This is an adequate assumption in view of realistic mod-
elling accompanied by discretisations in space and time,
where the turbulent flux terms represent subgrid-scale
processes determined by parametrizations. We omit now
as usual the viscous friction tensor against the turbulent
momentum flux tensor, −�v′′v′′ � F , and so the molec-
ular heat flux against the turbulent heat flux, �u′′v′′ � Ju,
from which we also have W ⇒ R. In the q̂i budget
equations (4), however, the diffusion fluxes Ji must not
be dropped against the turbulent fluxes �q ′′

i v′′ in view
of significant sedimentation (precipitation) fluxes. From
energetics reasoning, it is acceptable to neglect in the heat
energy equation (3) the direct energy transformation from
mean kinetic energy to mean internal energy compared
to the molecular dissipation term, F · ·∇v′′ � F · ·∇v̂.

With these approximations the averaged equation sys-
tem becomes

�
d̂̂v
dt

= − ∇p − �∇� − 2� × �̂v + ∇ · (−�v′′v′′),

(5)

d̂�

dt
= − �∇ · v̂, (6)

�
d̂û

dt
= − ∇ · (R + �u′′v′′) − p∇ · v̂ − p∇ · v′′

+ F · ·∇v′′ , (7)

�
d̂q̂i

dt
= − ∇ · (Ji + �q ′′

i v′′) + Qi. (8)

From the internal energy budget equation (7) and a
mechanical energy budget equation immediately derived
from the momentum equation (5),

�
d̂

dt

(
v̂2

2
+ �

)
= − ∇ · {pv̂ − (−�v′′v′′) · v̂} + p∇ · v̂

− (−�v′′v′′) · ·∇v̂ , (9)

a consistency requirement for the conservation of total
energy budget as the sum of (7) and (9) can be inferred.
Obviously, it reads

(−�v′′v′′) · ·∇v̂ + p∇ · v′′ − F · ·∇v′′ = 0. (10)

This requirement (10) can be interpreted as the equi-
librium case of a rudimentary mean turbulent kinetic
energy equation formed from three terms which are shear
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production, buoyancy production and molecular dissi-
pation. With this reasoning we arrive eventually at an
energy-consistent equation set, using the abbreviation
ε = −�v′′v′′ · ·∇v̂ > 0 ,

�
d̂̂v
dt

= − ∇p − �∇� − 2� × �̂v − ∇ · �v′′v′′ ,

(11)

d̂�

dt
= − �∇ · v̂, (12)

�
d̂û

dt
= − p∇ · v̂ − ∇ · (R + �u′′v′′) + ε, (13)

�
d̂q̂i

dt
= − ∇ · (Ji + �q ′′

i v′′) + Qi, (14)

together with a closed total energy budget

�
d̂

dt

(
v̂2

2
+ � + û

)

= −∇ ·
(
pv̂ + �v′′v′′ · v̂ + R + �u′′v′′

)
.

In addition to this, we formulate also the budget
equation for the EPV from the present system using (11)
and (12) with known operations. It follows that

�
d̂

dt

(
ω̂a · ∇ψ̂

�

)
= − ∇ ·

[
ψ̂

(
∇ 1

�
× ∇p

)

− ω̂a
d̂ψ̂

dt
− ψ̂ (∇ × fr)

]
. (15)

For the vector fr we have

fr = −ω′′ × �v′′

�
− 1

�
�∇ v′′2

2
= − 1

�
∇ · �v′′v′′, (16)

and, furthermore, ψ̂ is an arbitrary scalar turbulence-
averaged function, ω̂a = ω̂ + 2� = ∇ × v̂ + 2� is the
mean absolute vorticity vector, and ω′′ = ∇ × v′′ is the
turbulent vorticity vector. As can be seen, the EPV is also
a conservative quantity. It connects the vorticity nature
of the turbulent flow with the total mass conservation
and the moist thermodynamics (replacing ψ̂ by a model-
specific thermodynamic quantity which is still left open
here).

3. Towards model equations applicable to a Poisson
bracket form

In the following we are interested in a more meteoro-
logical form of the equation set (11)–(14) aiming at the
model variables v̂, T̂ , p, q̂i instead of v̂, �, û, q̂i . For that
purpose the turbulence-averaged specific enthalpy ĥ is
introduced due to its relation to pressure and specific
internal energy,

�ĥ = �û + p. (17)

Here, we make use of the assumption that the equation
of state and so the nonlinear relation for the total specific
enthalpy (20) are valid for averaged quantities as an
analogue to the unaveraged relations (cf. Herbert, 1975;
Doms and Herbert, 1985)

p = Rd � T̂ (1 + α̂). (18)

α̂ means the averaged virtual increment,

α̂ =
(

Rv

Rd
− 1
)

q̂v − q̂l − q̂f − q̂r − q̂p. (19)

In a similar manner we yield for the nonlinear relation
of the total specific enthalpy of the assumed mixture

ĥ =
∑

ĥi q̂i , (20)

with
ĥi = h0i + cpi(T̂ − T0) (21)

for the specific enthalpy of the ith component, and for
the specific heat capacities we have

ĉp =
∑

cpi q̂i ; ĉv =
∑

cvi q̂i . (22)

By use of (17)–(22), we arrive after a straightforward
analysis from (13) and (12) at the desired prognostic
equations for T̂ and p. This so-called meteorological
form of the consistent equation set reads

�
d̂̂v
dt

= − ∇p − �∇� − 2� × �̂v − ∇ · �v′′v′′,

(23)

ĉv�
d̂T̂

dt
= − p∇ · v̂ + Qh + Qm, (24)

d̂p

dt
= − ĉp

ĉv

p∇ · v̂ +
(

ĉp

ĉv

− 1
)

Qh + ĉp

ĉv

Qm,

(25)

�
d̂q̂i

dt
= − ∇ · (Ji + �q ′′

i v′′) + Qi, (26)

p =Rd � T̂ (1 + α̂). (27)

The thermal source function Qh and the moisture
source function Qm are defined as

Qh = − ∇ · (R + �u′′v′′) −
∑

ĥi�
d̂q̂i

dt
+ ε, (28)

Qm =Rd T̂ �
d̂α̂

dt
. (29)

However, the derivation of the equation system (23)–
(29) needs some more attention concerning mass con-
servation when sedimentation fluxes are incorporated in
the water budget equations (26). Invoking the approach
of Wacker et al. (2006) (and also Catry et al., 2007),
mass control conditions are necessary to be taken into
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account. One of them, �Ji = 0, is here of particular inter-
est. Assuming diffusion fluxes given only in the vertical
direction, the precipitation fluxes (rain, snow, etc.) are
to be described by a common ansatz from Rogers and
Yau (1989), Sj = −Jj = �q̂j V̂j

T
for j = r, p, where V̂j

T

is a terminal fall velocity to be parametrized. In order
not to violate mass conservation, it is important to con-
sider the rest of the diffusion fluxes, too, which have
to play a compensating role. In the most simple way,
these compensating fluxes may be read as Ji = �q̂iŵ

(d)

for i = d, v, l, f, assuming the same vertical diffusion
velocity ŵ(d) instead of different ŵ

(d)
i . Thus we have

ŵ(d) = q̂rV̂r
T + q̂pV̂p

T

1 − q̂r − q̂p
,

and the q̂i budget equations (26) read more specifically

�
d̂q̂i

dt
= −∇ · �q ′′

i v′′ − ∂�q̂iŵ
(d)

∂z
+ Qi;

i = d, v, l, f,

�
d̂q̂j

dt
= −∇ · �q ′′

j v′′ + ∂�q̂j V̂j
T

∂z
+ Qj ;

j = r, p.

The other mass control conditions are �q̂i = 1,
��q ′′

i v′′ = 0, and �Qi = 0 with Qd = 0.
In a further step the ‘meteorological’ system (23)–

(29) is now transformed into an obliging form in view
of a Poisson bracket construction on the base of these
equations. The works of Morrison (1998) and of Névir
(1998) serve as an example for the following analysis,
though both authors have treated an ideal fluid compared
to our much more realistic equation set. The treatment
of Névir is from the meteorological point of view more
interesting, because he includes the Coriolis effects, while
Morrison has discussed a non-rotating system. For the
following, we switch to the Eulerian form of our equation
set, and we take into account density � and virtual
potential temperature θ̂v as prognostic variables instead
of T̂ and p in the previous set. The reason why we have
chosen θ̂v is to arrive in (31) at a tractable form of the
pressure gradient term, and so to obtain simple functional
derivatives in (41) for the envisaged construction of a
Poisson bracket form.

An important point is here the formulation of the
momentum equation, where the advection term is iden-
tically reformulated due to the so-called Lamb transfor-
mation,

v · ∇v = ω × v + ∇
(

1

2
v2
)

. (30)

We have decided to split off the advection term into a
rotational term plus gradient of kinetic energy in order
to unveil the ubiquitous vorticity process due to the
rotational term, which otherwise would remain hidden. It
is convenient to incorporate the Coriolis terms into one

rotational term. In this point we follow the philosophy
of Névir (1998). Moreover, the equation set is to be
formulated in such a manner that in the limit case the
equations for an ideal fluid are exactly recovered. The
equation system equivalent to (23)–(29) may be written
in the following form

∂ v̂
∂t

= − ω̂a × v̂ − ∇
(

1

2
v̂2 + �

)
− θ̂v∇(cpd π) + fr,

(31)

∂�

∂t
= − ∇ · (�̂v), (32)

∂(�θ̂v)

∂t
= − ∇ · (θ̂v�̂v) + �Q(θv), (33)

∂(�q̂i)

∂t
= − ∇ · (�q̂i v̂ + Ji + �q ′′

i v′′) + Qi, (34)

p =Rd � T̂v, (35)

θ̂v =T̂v

(
p00

p

)Rd
cpd = T̂v

π
. (36)

π is the Exner function as usual. The source function
Q(θv) in the θ̂v equation (33) is defined by

cpd π � Q(θv) =
(

1 + cpd (1 + α̂) − ĉp

ĉv

)
Qh

+
(

cpd

Rd
+ cpd (1 + α̂) − ĉp

ĉv

)
Qm

+
(

cpd (1 + α̂) − ĉp

ĉv

)
(−p∇ · v̂) .

(37)

Strictly speaking, Q(θv) is not a pure diabatic source
function, because the third term on the RHS is actually
a moist adiabatic term. Bannon (2002) found a similar
form (his equation (7.5)).

From the equations (31)–(33), the associated EPV
budget equation may now be derived. With reference
to the more general form (15) we specify here ψ̂ = θ̂v.
This is the most suitable choice as discussed by Schubert
et al. (2001). We obtain

∂

∂t
(� 
a) = −∇ · [̂�
âv − ω̂aQ

(θv) − θ̂v (∇ × fr)
]
,

(38)

where the EPV is defined by


a = 1

�
(ω̂a · ∇ θ̂v). (39)

4. Poisson bracket description

Next we show how a Poisson bracket form can be
found from the equation set (31)–(37). The Poisson
formulation is here meant in a more limited sense. It
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concerns deliberately only those parts of the given full-
physics equation set which correspond in the limit case
to an ideal fluid. The turbulent friction terms in the
momentum equation and the heat and moisture source
terms will be left away from such a bracket form.
They are considered as additional ‘dissipative’ forcing
terms added to the ‘ideal-fluid’ part. Making the notation
simple enough, from now on the averaging symbols
over all model variables will be dropped. We differ
here from Névir (1998) in employing density times
virtual potential temperature, θ̃v = �θv , as a pressure-
like variable instead of an entropy-like variable. We are
going through the well-known Hamiltonian formulation.
Here we quote a contribution from Bannon (2003), who
has described a Hamiltonian form of an idealised binary
geophysical fluid. Compared to him we introduce a
more simplified Hamilton functional H, which is not the
complete Hamiltonian of the given system, but is it in
the dry limit case with Tv → T . It reads

H [u] =
∫

V

(
1

2
�v2 + �� + �cvd Tv

)
dτ, (40)

where we have defined the vector u = (v, �, θ̃v). The
functional derivations of H with respect to the variables
v, �, θ̃v are then

δH
δv

= �v ,
δH
δ�

= 1

2
v2 + � ,

δH
δθ̃v

= cpd π, (41)

to form the Hamiltonian form of the system (31)–(37)

∂v
∂t

= − ωa

�
× δH

δv
− ∇ δH

δ�
− θv∇ δH

δθ̃v

+ fr, (42)

∂�

∂t
= − ∇ · δH

δv
, (43)

∂θ̃v

∂t
= − ∇ ·

(
θv

δH
δv

)
+ �Q(θv). (44)

Here, the ‘physical’ terms fr and Q(θv) are assumed
to be prescribed, and we note that the budget equations
for the water constituents qi are really not lost in this
subsystem, because their summed effect is implied in the
continuity equation for total density.

We can obviously rewrite the given system to obtain
in compact form a general evolution equation for a
functional F [u]. Thus we have

∂F [u]

∂t
= {F,H} + (F, r) + (F, Q(θv)

)
. (45)

Here, the noncanonical Poisson bracket reads

{F,H} = −
∫

V

δF
δv

·
(

ωa

�
× δH

δv

)
dτ (46)

−
∫

V

[
δF
δ�

∇ · δH
δv

− δH
δ�

∇ · δF
δv

]
dτ

−
∫

V

[
δF
δθ̃v

∇ ·
(
θv

δH
δv

)
− δH

δθ̃v

∇ ·
(
θv

δF
δv

)]
dτ,

and in the present case real-fluid ‘physical’ brackets are
added in (45) due to turbulent frictional and diverse moist
and diabatic processes involved in fr and Q(θv):

(F, fr) =
∫

V

δF
δv

· fr dτ, (47)

(
F, Q(θv)

) =
∫

V

δF
δθ̃v

�Q(θv) dτ . (48)

The upgrading process to come from (42)–(44) to (45)
may be made more transparent by a formal transition
δF/δu ⇔ δ(r − r′) with F ⇔ u, and by use of the
generalised chain rule of differentiation,

∂F [u]

∂t
=
∫

V

δF
δu

· ∂u
∂t

dτ . (49)

By interchanging F and H the antisymmetric property
of the Poisson bracket is obvious, {F , H} = −{H,F}.
As discussed by Morrison (1998, p.490), the direct rela-
tion between the Poisson bracket (46) and the equa-
tions (42)–(44) is hidden and becomes only obvious after
performing some integrations by parts, and associated
boundary terms must vanish (see also Bannon, 2003).
Concerning the latter, we have assumed∫

V

∇ ·
(

δF
δv

δH
δ�

)
dτ = 0,

∫
V

∇ ·
(
θv

δF
δv

δH
δθ̃v

)
dτ = 0,

(50)

or the alternative form with interchanging F and H.
For a further discussion of the bracket form (46), four
functionals (a mass functional M, a theta functional v ,
a helicity functional ha and a EPV-functional Pa) are
introduced. They are

M =
∫

V

� dτ , v =
∫

V

θ̃v dτ, (51)

ha = 1

2

∫
V

ωa · va dτ, Pa =
∫

V

�
a dτ, (52)

and the functional derivatives relevant for operations
further below are

δM
δ�

= 1,
δv

δθ̃v

= 1,
δha

δv
= ωa. (53)

In (52) we have va = v + � × r, where r is a position
vector. The first two derivatives in (53) are trivial, but the
third is not. Névir (1998, and personal communication)
introduced the helicity functional in (52) and has proven
its functional derivation in (53). Following Névir, the
first of the three integral terms in the Poisson bracket
(46) can be rewritten by use of the helicity, which leads
to a Nambu bracket,

{ F, ha,H} = −
∫

V

δF
δv

·
(

1

�

δha

δv
× δH

δv

)
dτ. (54)

The permutation of two quantities of F , ha and H
shows the two-fold antisymmetry of this bracket which
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is the well-known property of a scalar triple product we
meet here. Thus, we have

{F, ha,H} = −{ha,F,H} = −{F,H, ha}. (55)

The two other integral terms are here defined as mass
bracket and theta-bracket, which are simply antisymmet-
ric:

{F,H}� = −
∫

V

[
δF
δ�

∇ · δH
δv

− δH
δ�

∇ · δF
δv

]
dτ

= −
∫

V

[
δF
δv

· ∇ δH
δ�

− δH
δv

· ∇ δF
δ�

]
dτ (56)

{F,H}θ̃v
= −

∫
V

[
δF
δθ̃v

∇ ·
(
θv

δH
δv

)
− δH

δθ̃v

∇ ·
(
θv

δF
δv

)]
dτ

= −
∫

V

θv

[
δF
δv

· ∇ δH
δθ̃v

− δH
δv

· ∇ δF
δθ̃v

]
dτ. (57)

As can be seen, for each of these two brackets an
alternative form is possible, which is a ‘divergence’ form
or a ‘gradient’ form, already valid in (46). This duality
of gradient and divergence rests on the assumption of
vanishing boundary values due to the assumption of∫
V

∇ · (...) dτ = 0 for arguments under the divergence
operator as already discussed above.

Thus, we consider the Poisson bracket as the sum of
a Nambu bracket (helicity bracket) plus a mass bracket
and a theta bracket with reference to (46), (54), (56) and
(57) ,

{F,H} = {F, ha,H} + {F,H}� + {F,H}θ̃v
. (58)

Due to (58) the evolution equation (45) is considered
in the form

∂F[u]

∂t
={F, ha,H} + {F,H}� + {F,H}θ̃v

+ (F, fr) + (F, Q(θv)). (59)

It describes in compact form our full-physics model
system. Though mass, energy and EPV conservation has
already been shown, the bracket form (59) confirms these
conservation properties in an elegant way once again.
These brackets can easily be evaluated by substituting H,
M, v , ha, 
a for the general functional F. The upper
part of Table II shows the result for each bracket. From
the evolution equation (59) then follows:

∂H
∂t

− (H, fr) − (H, Q(θv)
) = ∂H∗

∂t
= 0. (60)

∂M
∂t

= 0, (61)

∂v

∂t
=
∫

V

� Q(θv) dτ, (62)

∂ha

∂t
=
∫

V

cpd π� 
a dτ +
∫

V

ωa · fr dτ, (63)

∂
a

∂t
= 0. (64)

The relation (60) shows the energy conservation. It
indicates that H is not the Hamilton functional of our
full-physics system, but

H∗ =
∫

V

(
1

2
�v2 + �� + �u

)
dτ.

However, from a practical point of view, it remains for
us to use the bracket form expressed by H for our model
development. The mass conservation expressed by (61)
is a trivial result, and so the functional Pa is according
to (64) a conservable quantity which can also be inferred
from the given brackets. According to (62), v is not
conservative due to the global sum of the general source
Q(θv). We would refer to the fluid to be an ideal fluid,
if these Q(θv) contributions vanish everywhere. Although
the absolute helicity ha is an essential constituent in the
Nambu bracket (54), it is in general not a conservable

Table II. Bracket evaluation according to (59) for different functionals F.

F {F, ha,H} {F,H}� {F,H}θ̃v
(F, fr) (F, Q(θv))

H 0 0 0
∫
V

�v · fr dτ
∫
V

cpdπ�Q(θv) dτ

M 0 0 0 0 0
v 0 0 0 0

∫
V

�Q(θv) dτ

ha 0 0
∫
V

cpdπ�
a dτ
∫
V

ωa · fr dτ 0

a 0 0 0 0 0

v −ωa × v −∇(1
2v2 + �) −θv∇(cpdπ) fr 0

� 0 −∇ · (�v) 0 0 0
θ̃v 0 0 −∇ · (θv�v) 0 �Q(θv)

π 0 0 − Rd
cvd

π
θ̃v

∇ · (θv�v) 0 Rd
cvd

π
θ̃v

�Q(θv)

p 0 0 −cpd
cvd

p

θ̃v

∇ · (θv�v) 0
cpd
cvd

p

θ̃v

�Q(θv)

θv 0 θv
� ∇ · (�v) −θv

θ̃v

∇ · (θv�v) 0 Q(θv)

Tv 0 Tv
� ∇ · (�v) −cpd

cvd

Tv

θ̃v

∇ · (θv�v) 0
cpd
cvd

Tv

θ̃v

�Q(θv)
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quantity. As the relation (63) indicates, the EPV and
the turbulent friction are sources of helicity. Only for
the special case of vanishing EPV in a frictionless flow
regime is the helicity conservative, but otherwise not. The
budget relation (63) follows easily from the upper bracket
form of our model equation set, but was originally found
and discussed by Kurgansky (2006).

The reason why we get through the Poisson bracket
description is that the formulation of model equations
becomes well-structured. The given brackets, namely the
helicity bracket, the mass bracket, and the theta bracket,
determine the structural position and the role of each
term due to its association with one of these three brack-
ets. This then opens a conception of how to construct
a numerical scheme. In this context we start generating
diverse model equations from the general form (59) by
setting F as a functional of an appropriate model variable
according to (49). This is contained in the second part
of Table II. In all three cases of temperature variables,
F = (θv; Tv; θ̃v = �θv), we observe that the helicity
bracket and the turbulent frictional bracket do not occur.
In the case F = θ̃v, the mass bracket is absent, too. The
latter indicates that the variable θ̃v = �θv is a masked
pressure variable (�θv ∼ pcvd/cpd ). Thus, the result is sim-
ilar to the pressure variables p and π .

One can speculate from Table II how to make a
reasonable composite of model equations to form a full
equation set. The momentum equation is covered by
all three brackets (helicity, mass, and theta bracket).
The continuity equation should be involved, which is
constituted solely by the mass bracket. The system should
then be completed by a pressure-like equation choosing
the prognostic variables θ̃v = �θv , p, or π . Each of these
equations is represented by the theta bracket and not
also by the mass bracket, which is already governing
the continuity equation. This allows us to describe the
equation set by a minimal number of brackets, while
in case of a Tv or θv equation the mass bracket also
participates, which might be redundant concerning the
computational effort.

The following discretisation process on the basis of the
antisymmetric properties of these brackets as a guideline
must not approximate the same bracket type differently
in the various equations. The structure of the mass and
theta brackets suggests that their discretisation is concen-
trated on the discretisation of the divergence and gradient
operators which must be treated consistently as dual oper-
ators. The discretisation of the helicity bracket will be a
particularly intricate matter with its scalar-triple-product
structure and its specific property not producing kinetic
energy but anisotropically redistributing it. Seen as a
working hypothesis, the explicit representation of this
bracket is a concession to the ubiquitous vorticity nature
in the atmosphere, which might help to better simulate
smaller-scale structures like convective structures, etc.
For each of the three brackets, in view of the discreti-
sation process we are confronted with their inherently
nonlinear and three-dimensional structure.

5. Concept for the numerical discretisation of the
Poisson and Nambu brackets

5.1. Preliminaries to bracket discretisations

In the previous sections we dealt with the careful for-
mulation of the continuous model equations conserving
mass, energy and EPV. The particular point of view
was to find out a bracket form of those model equa-
tions, which provides a new approach to construct the
discrete analogue of the model equations, taking advan-
tage of the inherent structural properties of Poisson and
Nambu brackets. This follows as the second part of our
treatment, belonging seamlessly to our earlier analysis.
Here, we concentrate on demonstrating methods rather
than showing many details and final results.

Salmon (2005, 2007) was the first to propose a
general method to construct discretised Nambu brackets.
Before adopting this method for our three-dimensional
flow equations, we have to specify the circumstances
in which we want to apply it. Every discretisation
requires us to specify some properties in advance. These
are the grid, some basis functions – if working with
Galerkin methods – and some basic operators. Nambu
bracket discretisations are applicable within a variety
of approaches concerning these fundamental decisions.
Salmon and Talley (1989) have already pointed out
that their ansatz for the Jacobian, which is actually a
discretised Nambu bracket, ‘applies to finite difference,
finite elements, spectral truncations, or to any other
general method of producing discrete approximations’.
Since we have already a certain model application
in mind, namely the ICON model, we restrict our
investigations to the Arakawa–C/Lorenz grid staggering,
which is widely used in NWP models. Even though
the ICON model will use a triangular mesh and the
derivations will be given with a wide generality, we will
discuss the results by way of an example employing a
more common quadrilateral mesh.

We now closely follow the approach given by Salmon
and Talley (1989), and by Salmon (2004, 2005, 2007),
who replaced the functional integrals and the Nambu
bracket integrals by sums over grid boxes. The discrete
form of the chain rule of differentiation (49) then yields

∂F[u]

∂t
⇒

M∑
m=1

(
δF
δu

· ∂u
∂t

)
m

Vm. (65)

The discrete analogue of the functional derivative
δF/δu just selects individual grid points with a factor
1/Vm (Vm is the mth grid-box volume) and vanishes
otherwise. With that approach, our method turns out to
be similar to finite difference methods.

5.2. Discrete operators

First, we have to specify the spatial operators on the
grid. We can interpret the grid as an arrangement of
two grid types, a primal and a dual grid (Bonaventura
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Figure 1. Pairs of primal (solid line borders) and dual (dot-dashed
line borders) grids for quadrilateral and triangular primal meshes –
horizontal projection of grid cell volumes. Further explanations are

given in the text.

and Ringler, 2005), which is shown in Figure 1 for a
pair of quadrilateral meshes and a pair of triangular and
hexagonal grids. For the ICON model, the triangular grid
is referred to as the primal grid, but the opposite choice is
also possible (Nic̆ković et al., 2002; Torsvik et al., 2005).
Each edge of a primal cell is orthogonal to one edge of a
dual cell. We use here a horizontal C-grid arrangement,
for which the normal wind component locations n are
defined at the centres of the primal grid edges (faces
in three dimensions) and point normal to them. Their
direction is thought of as pointing outwards with respect
to the primal cell centre m. The scalar quantities are to
be found at the cell centres m. In three dimensions, we
combine a horizontal C-grid with a vertical L-grid. Then,
the vorticity components are placed at the edge centres
of the primal grid box and point tangential to this edge.

The generalized Gauss theorem is invoked for evalu-
ating the vorticity components on the grid∫

V

∇ × vdτ = −
∮

S

v × ds. (66)

The RHS of this equation is discretely represented by
a sum over the faces of a dual grid box. Contravariant
vectors with covariant measure numbers are chosen
if discretised in a terrain-following coordinate system
(e.g. Lagally and Franz, 1964, provide further details
of integral theorems and transformation rules between
coordinate systems). The divergence operator is similarly
defined via the Gauss theorem∫

V

∇ · gdτ =
∮

S

g · ds, (67)

where g is an arbitrary flux. The discretized version ends
up in a sum over the faces of a primal grid box for the
RHS that uses contravariant base vectors for the surface
elements and covariant ones for the fluxes. Bonaventura
and Ringler, 2005, provide details on the use of integral
theorems for the discretisation in the ICON model.

5.3. Spatial discretisation of the brackets

For the discretisation of the Poisson and Nambu brackets,
the divergence and the rotation operators are the only

ones needed. In particular, the gradient operator follows
as the dual counterpart of the divergence operator. This
duality is connected with the foundation on which the two
previously introduced Poisson brackets are built, namely
the rule of integration by parts. That rule is also the
background of the Arakawa Jacobian (cf. Salmon and
Talley, 1989; Salmon, 2007). The discretised form of the
mass bracket reads

{F,H}� ⇒

−
M∑

m=1

[
δF
δ�

∣∣∣∣∣
m

(
∇ · δH

δv

)
m

− δH
δ�

∣∣∣∣∣
m

(
∇ · δF

δv

)
m

]
Vm

= −
M∑

m=1

[
δF
δ�

∣∣∣∣∣
m

(
∇ · δH

δv

)
m

+
(

δF
δv

· ∇ δH
δ�

)
m

]
Vm,

(68)

where the boundary conditions as in the analytical
case are tacitly taken into account. Consequently, the
divergence and the gradient operators obey a discrete
version of ∫

V

ψ∇ · gdτ = −
∫

V

g · ∇ψdτ (69)

for arbitrary vector fluxes g and scalars ψ . The con-
sequence for the model designer is that the divergence
operator already defines the gradient operator. There is
no direct reference to the gradient operator. It will be
created automatically when writing down the equations
for the prognostic variables for which δF/δv does not
vanish.

We have assumed so far that the functional derivatives
δH/δ� are located in the centre m of the primal grid
box and that those of δH/δv are defined as normal
vector components at the faces n. But we have not
yet defined the Hamiltonian on the grid, so that our
assumptions are initially speculative. For the evaluation
of the Hamiltonian, especially its kinetic energy part, and
also the helicity functional, we need the definition of an
inner product at the centre point of the primal grid. This
is obtained by inspecting the role of the inner product in
∇ · ∇ψ = 	ψ . Illustratively and with direct reference to
Figure 1, we restrict ourselves again to a plane and find

∇ · ∇ψ |m = 1

Am

∑
n∈E(m)

ln
(ψo − ψm)n

dn

(70)

= 1

Am

∑
n∈E(m)

1

dn/2

(ψo − ψm)n

dn

lndn

2
, (71)

where Am is the area of the primal grid surrounded by the
edges E(m), ln and dn are the length of the primal edges
and the dual edges, respectively. The ψo values refer to
the outer (neighbouring) ψ values. Thus, the sought-for
inner product on a plane is

A · B|m = 1

Am

∑
n∈E(m)

anbn

Ae,n

2
, (72)
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where Ae,n = dnln is refered to as the elemental area
(the grey area in Figure 1), and an and bn are the
nomal components of the vectors at the edges. Similar
considerations hold for three-dimensional volume boxes
Vm and elemental volumes Ve,n, where one could easily
include terrain-following coordinates.

For obtaining the functional derivatives on the grid,
we need to specify the global integrals on the grid. We
first consider the helicity functional ha. For that, a spatial
reconstruction of the vorticity components (originally
tangential to the edges of the box) and normal vector
components (originally normal to the face of the box) to
a common point is required. There are only two places
in the grid, for which such a reconstruction takes all
contributors equally into account: for a quadrilateral grid
these are the centre point of the box m and the corner
point c of the grid box, so that we have

ha ⇒ 1

2

(
1

2

M∑
m=1

vm · ωa
mVm + 1

2

C∑
c=1

vc · ωa
cVc

)
.

(73)

Strictly speaking, the discrete analogue should also
satisfy the integration rule by parts as implied in the
continuous case in (53), that is

∇ · (δv × v) = v · (∇ × δv) − δv · (∇ × v).

We were able to prove this from (73) for a quadrilateral
grid, in which the rule

∑
ab =∑ ba may be applied

in all coordinate directions. For other grids, where the
coordinate lines are not linearly independent, more care
has to be taken, but that is beyond the scope of the
present article, where we confine the problem here to the
quadrilateral mesh. In the same way, the vortex charge
functional may be written

Pa ⇒ 1

2

M∑
m=1

∇θv
m · ωa

mVm + 1

2

C∑
c=1

∇θv
c · ωa

cVc.

(74)

A similar procedure is necessary for the Hamiltonian
(40). The functional derivative δH/δv then yields directly
the mass flux suitable for our divergence operator, only
if the density is averaged onto each of the velocity points
n separately. Thus we have

H ⇒
M∑

m=1

(
1

2
�nv · v

)
m

Vm + �m(� + cvTv)mVm. (75)

The discrete functionals of M and v , (51), follow
without difficulty and are given here for the sake of
completeness:

M ⇒
M∑

m=1

�mVm and v ⇒
M∑

m=1

θ̃v,mVm. (76)

The spatial averaging needed in the functionals is up
to the designer of the code. In general, arithmetic averag-
ing is thought to be sufficient. But especially the recon-
struction of the normal vortex vector from the tangential
vortex vector leads later to quite a lot of averaging oper-
ations, which might smooth the flow field too strongly.
Thus, higher-order reconstruction algorithms are worth
considering in that case.

The Nambu brackets should remain antisymmetric dur-
ing the discretisation process. Salmon (2005) proposed a
strategy to obtain antisymmetry by weighting each cyclic
permutation of the bracket arguments by one third, which
recovers the Arakawa Jacobian (Arakawa, 1966) in the
case of the barotropic vorticity equation. Inspection of
the Nambu bracket valid for non-hydrostatic compress-
ible dynamics reveals that no such weighting is necessary
to retain the antisymmetry in the discretized form of the
bracket, as will now be shown.

The helicity bracket {F, ha,H}, (54), invokes a scalar
triple product. The scalar triple product can only be
evaluated if its arguments are positioned at the same
grid point. Again we refer here to the midpoint and
upper corner point of the quadrilateral box. Then, the
helicity bracket obtains the following numerical form for
a quadrilateral mesh:

{F, ha,H} ⇒ −1

2

∑
(i,j,k)

V(i,j,k)

�(i,j,k)

×
[

δF
δu

x

(i+ 1
2 ,j,k)

(
�zw

(i,j,k+ 1
2 )

z
ω

y(i+ 1
2 ,j,k+ 1

2 )

x,z

−�yv
(i,j+ 1

2 ,k)

y
ω

z(i+ 1
2 ,j+ 1

2 ,k)

x,y

)

+δF
δv (i,j+ 1

2 ,k)

y

(. . .) + δF
δw (i,j,k+ 1

2 )

z

(. . .)

]

− 1

2

∑
(i+ 1

2 ,j+ 1
2 ,k+ 1

2 )

V
(i+ 1

2 ,j+ 1
2 ,k+ 1

2 )

�(i,j,k)
x,y,z

×
[

δF
δu (i+1/2,j,k)

y,z (
�zw(i,j,k+1/2)

x,y
ω

y(i+1/2,j,k+ 1
2 )

y

− �yv
(i,j+ 1

2 ,k)

x,z
ω

z(i+ 1
2 ,j+ 1

2 ,k)

z

)

+δF
δv (i,j+ 1

2 ,k)

x,z

(. . .) + δF
δw (i,j,k+ 1

2 )

x,y

(. . .)

]
. (77)

This expression is automatically antisymmetric, because
the scalar triple product of three vectors at the same grid
positions is evaluated.

The discretisation of the mass bracket {F,H}� was
already introduced in (68). But now we are sure that the
functional derivatives of the Hamiltonian give the val-
ues at the desired grid positions. When intending to use
upstream-biased or flux-limited operators for mass diver-
gence, caution is required. Within the bracket framework,
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the mass flux �v is an indivisible quantity originated from
the functional derivative δH/δv. Modifying the mass flux
would also modify the sum forming the discrete Hamil-
tonian (75), and consequently, the specific kinetic energy
as the functional derivative δH/δ�, and, as a result, its
gradient. Physical argument reveals that upstream-biased
or flux-limited operators tend to be diffusive and tend
to smooth out gradients involved. But Poisson brack-
ets do not permit energy production/loss by definition.
Therefore, a modified kinetic energy gradient serves as a
correction to drive the system back to consistency.

A numerical treatment of the theta bracket reads

{F,H}̃θv
⇒ −

M∑
m=1

(
δF
δθ̃v

∣∣∣∣∣
m

[
∇ ·
(
θv

δH
δv

)]
m

− δH
δθ̃v

∣∣∣∣∣
m

[
∇ ·
(
θv

δF
δv

)]
m

)
Vm.

(78)

Here, θv is a thermodynamic quantity, but it is always
needed at the velocity grid points. The kind of averaging
is not dictated by the discretised brackets, but may be
chosen by the model designer. In that way, we are free
to use higher-order and even upstream-biased schemes
for the virtual potential temperature, as long as the
mass flux is determined by δH/δv. Diffusive operations
coming along with flux limiters are allowed in the θ̃v

equation itself, because they may not produce or destroy
entropy – at least not in the limit of an ideal fluid. The
only responsibility for processes changing the entropy
is left to the ‘physical brackets’ (F, �R) and (F, Q(θv)),
which contain the dissipative terms and the adiabatic
contributions to θ̃v related to the presence of water in
the atmosphere.

5.4. Prototype formulae

We proceed to give prototype formulae for the different
brackets in an equi-quadrilateral C/L-grid. Let us consider
the helicity bracket alone and assume constant density.
Then it describes the following dynamics:

∂u

∂t
= 1

2

(
vyωz

x,yx − wzωy
x,zx
)

+ 1
2

(
vx,zωz

zy,z − wx,yωy
yy,z
)

,

∂v

∂t
= 1

2

(
wzωx

y,zy − uxωz
x,yy
)

+ 1
2

(
wx,yωx

xx,z − uy,zωz
zx,z
)

,

∂w

∂t
= 1

2

(
uxωy

x,zz − vyωx
y,zz
)

+ 1
2

(
uy,zωy

yx,y − vx,zωx
xx,y
)

. (79)

We observe here a lot of averaging. Dropping dou-
ble averaging in one direction in (79) leads to a simpler

scheme used by Bonaventura (2007, personal communi-
cation)

∂u

∂t
=vx,yωz

y − wx,zωy
z,

∂v

∂t
=wy,zωx

z − ux,yωz
x

∂w

∂t
=ux,zωy

x − vy,zωx
y. (80)

The difference between the two versions occurs due
to accounting for three-dimensional flows in (79) rather
than a formal application of a philosophy in (80) which
is borrowed from the two-dimensional shallow-water
regime. The lack of energy conservation in the Sadourny
(1975) enstrophy conserving scheme is carried over to
the three-dimensional case, whereas the version (79)
conserves energy automatically. It should also be stressed
that an enstrophy quantity defined similarly to the two-
dimensional enstrophy is not the structure-generating
quantity in three-dimensional flow, where this role is
taken over by the helicity. Therefore, a formal application
of (79) to the two-dimensional shallow-water case would
also be inadequate; it cannot conserve enstrophy.

From several studies the advantage of Sadourny’s
(1975) discretisation is known also in three-dimensional
flow (Tripoli, 1992; Bonaventura, 2007, personal com-
munication). Tripoli and Mayor (2000) simulate Ekman
boundary-layer flow and state that the turbulence para-
metrization scheme is now no longer misused to get rid
of numerical errors due to wrong enstrophy cascades, and
so the turbulent fluxes become smaller in amount and
more physically meaningful. A quantitative comparison
between (79) and (80) is currently under investigation.

The other two brackets, {F,H}� and {F,H}̃θv
, each

appear in two different equations, the momentum equa-
tion and the continuity or some kind of pressure equation,
respectively.

The gradient of the specific mechanical energy (kinetic
plus potential) is explained via the mass bracket. A
peculiarity is the evaluation of the specific kinetic energy
from the discrete Hamiltonian (75) and the inner product
used therein. In a one-dimensional C-grid approach, this
requires firstly the evaluation of the specific kinetic
energy at the velocity grid points and the subsequent
averaging to the central points before taking the gradient,
as given here as an example for an uniformly spaced grid

− ∂

∂x

(
v2

2

) ∣∣∣∣∣
i+ 1

2

⇒

− 1
�x

 1
2

v2

i+ 3
2

2
+

v2

i+ 1
2

2

− 1
2

v2

i+ 1
2

2
+

v2

i− 1
2

2


 .

Other possibilities, such as firstly reconstructing the
velocity vector at the central grid point and subsequently
evaluating the specific kinetic energy, would not match
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with a consistent bracket discretisation. To complete
the mass bracket discretisation, we refer again to the
Hamiltonian H (75), where we have now to evaluate its
functional derivative with respect to v. It gives us the
mass flux at the considered face of the grid box. Thus,
the one-dimensional example follows as

− ∂

∂x
(�v)

∣∣
i
⇒ − 1

�x

(
�x

i+ 1
2

v
i+ 1

2
− �x

i− 1
2

v
i− 1

2

)
. (81)

A similar expression follows for the divergent flux of
θv . Since the mass flux is an indivisible quantity as the
result of δH/δv, θ̃v cannot be used as an argument to the
divergence operator, but rather θv itself as given in the
following example:

− ∂(�vθv)

∂x
⇒

− 1
�x

(
�x

i+ 1
2

v
i+ 1

2
θv

x

i+ 1
2

− �x

i− 1
2

v
i− 1

2
θv

x

i− 1
2

)
.

(82)

The theta bracket reveals the pressure gradient term as
a simple centred difference gradient of the Exner pressure
together with a prefactor

−cpθv∇π
∣∣
i+ 1

2
⇒ −cpθv

x

i+ 1
2

πi+1 − πi

�x
. (83)

From the last two formulae, one observes that the
virtual potential temperature occurs always in the same
averaged manner. It becomes more obvious that a recon-
structed value of θv for higher-order advection establishes
the prefactor to the pressure gradient term.

After all this, the concerned reader may ask whether
the averaging operations imply some spurious modes
in the solution. We demonstrate here the discretisation
with an Arakawa-C/Lorenz grid from which it is known
to support such modes (Arakawa and Konor, 1996;
Herzog and Gassmann, 2005). A closer look at the
equations reveals that one crucial point is the virtual
potential temperature. This variable occurs only in an
averaged way and thus is exposed to spurious mode
development. A possibility to cope with that issue might
be to apply sophisticated reconstruction methods for θv

at the face positions, or even better to introduce the
vertical Charney–Phillips grid, where θv is placed at half-
levels. The latter option, however, brings about possible
difficulties formulating the divergence of θv-flux terms.

5.5. Temporal discretisation and conservation

The antisymmetric brackets {F,H}� and {F,H}̃θv
each

occur in two equations of the whole set, which leads to
the requirement to treat them equally in a consistent time
scheme. In the following, we investigate this point in
more detail.

We first consider the dynamics of the mass bracket
alone and omit contributions of the potential energy. The

mass bracket describes the conservation of kinetic energy,
and its dynamics are given by the combination of the
inviscid Burgers equation and the continuity equation:

∂v
∂t

= − ∇ v2

2
, (84)

∂�

∂t
= − ∇ · (�v). (85)

Analytically, the conservation of kinetic energy is
obtained by multiplying (84) with the mass flux. The
following sequence of transformations serves us as trace-
back:

�v · ∂v
∂t

= −�v · ∇ v2

2
= −∇ ·

(
�v

v2

2

)
+ v2

2
∇ · (�v)

= −∇ ·
(

�v
v2

2

)
− v2

2

∂�

∂t
,

�v· ∂v
∂t

+ v2

2

∂�

∂t
= ∂�v2/2

∂t
=−∇·

(
�v

v2

2

)
. (86)

The same sequence of transformations must hold in
the numerical analogue. The last line in the preceding
formula shows how the nonlinear conservable quantity,
kinetic energy, is obtained by use of the product rule
of differentiation in time. This conservation should also
be obtained by discrete time integration. Considering the
numerical conservation of a nonlinear quantity AB, we
find

∂AB

∂t
⇒An+1Bn+1 − AnBn

�t

=An+1 Bn+1 − Bn

�t
+ Bn An+1 − An

�t
. (87)

The kinetic energy in (86) is a product of three factors,
and thus, the preceding formula (87) must be applied
twice. The results for consistent time schemes are given
in Table III.

Inspection reveals in each of the possibilities one non-
linear product of the (n + 1)-values. Thus, the consistent
time scheme would be nonlinear apart from the special
case in which the mass bracket is the only contribution
to the dynamics. Then, methods (A) and (C) would lead
to a linear implicit solver in practice. In general practical
applications, a linearisation of the time scheme is often
more common. The most suitable choice in the sense of

Table III. Possibilities for a temporal discretisation of pairs of
mass flux and specific kinetic energy.

v2/2 �v

(A) vn · vn+1/2 (�nvn + �n+1vn+1)/2
(B) vn+1 · vn+1/2 (�nvn + �nvn+1)/2
(C) vn · vn/2 (�n+1vn + �n+1vn+1)/2
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linear numerical stability and symmetry is to linearise the
mass flux in method (A) to

�v ⇒ (�nvn+1 + �n+1vn)/2. (88)

The potential energy conservation also given by the
mass bracket does not pose a problem to the temporal
discretisation because the specific potential energy � is
time-independent on a time-fixed grid.

Obviously, energy conversion occurs between mechan-
ical and internal energy. In the last section we inves-
tigated the mechanical energy part represented by the
mass bracket. Now we concentrate on the internal energy
part, given by the theta bracket. The governing equations
reduce here to the dynamics of sound waves

∂v
∂t

= − cpθv∇π, (89)

∂θ̃v

∂t
= − ∇ · (�vθv). (90)

Energy budgets may be observed by multiplying the
first equation with the mass flux

�v · ∂v
∂t

= −�v · cpθv∇π

= −∇ · (�vcpθvπ
)+ cpπ∇ · (�vθv)

= −∇ · (�vh) − cv

∂θ̃vπ

∂t
. (91)

In this simplified and reduced case, the abbreviations
h := cpTv and u := cvTv may be used. The last term in
the preceding formula can be expressed in different ways

cpπ
∂θ̃v

∂t
= cvcp

Rd
θ̃v

∂π

∂t
= cv

∂πθ̃v

∂t
= cv

Rd

∂p

∂t
= ∂�u

∂t

if we write down the equations analytically. The equiv-
alence of these expressions is not automatically given
when replacing the continuous temporal derivative by a
finite difference because of the nonlinear functional rela-
tionships between the different pressure variables. Ulti-
mately, we aim at a time scheme which does not need
linearisations of such nonlinear interdependencies, espe-
cially when relating the Exner pressure in the pressure
gradient term to the actual prognostic pressure variable.
Related approaches are susceptible to errors in the energy
conservation. Therefore, we pursue a way from the only
practicable and linearized form we were able to find using
(87):

cv

(θ̃vπ)n+1 − (θ̃vπ)n

�t

= cvπ
n+1 θ̃ n+1

v − θ̃ n
v

�t
+ cvθ̃

n
v

πn+1 − πn

�t
(92)

= cvπ
n+1 [−∇ · (�vθv)

]+ cvθ̃
n
v

[
−Rd

cv

πn

θ̃n
v

∇ · (�vθv)

]
,

and, by backtracking the steps in (91), it follows for the
pressure gradient term

cpθv∇π ⇒ cpθv∇
(

cv

cp

πn+1 + Rd

cp

πn

)
. (93)

This result is unexpected compared to what is known
from the linear stability analysis of equations not written
in a bracket form, where emerging implicit weights are
more technical and equally chosen (Gassmann and Her-
zog, 2007). The weighting factors of 1/2 are often chosen
for time reversibility, but in the practice of NWP one
encounters largely off-centred implicit weights with the
intention of attenuating unphysical noise. With the cur-
rent approach we give up the formal reversibility and the
second-order temporal approximation, but we retain the
inherent nonlinearity by avoiding linearisations of nonlin-
ear relationships. It is evident from the given analysis that
the nonlinearity of the dynamics determines the weight-
ing factors. Furthermore, one can notice that the pressure
gradient term determines the actual prognostic thermo-
dynamic equations in the model, namely those for π and
θ̃v equally. Consequently, prognostic equations for vir-
tual temperature, virtual potential temperature or pressure
may not serve as model equations.

In the implementation of the numerical scheme, we
can rearrange the pressure gradient term to solve only
one thermodynamic equation for the variable π∗

cpθv∇π ⇒ cpθv∇π∗, (94)

π∗ = πn − �t
Rd

cp

πn

θ̃n
v

∇ · (θv�v), (95)

πn+1 = cpπ∗ − Rdπ
n

cv

. (96)

The mass flux �v in (95) has a temporal discretisation
obtained via the constraint of the mass bracket. The time
level of θ is optional and thus appropriately chosen at
time level n.

The last topic to be considered within the consistent
approach is the time scheme for the helicity bracket. In
fact, the time scheme requires the nonlinear product

ωa × v ⇒ 1

4
(ωn+1

a + ωn
a) × (vn+1 + vn) (97)

for its evaluation. This might easily be verified by
applying (87) for the kinetic energy budget in a constant
density flow regime for simplicity:

1

2

v(n+1)2 − v(n)2

�t
= vn+1/2 · vn+1 − vn

�t
(98)

= −vn+1/2 · (ωn+1/2
a × vn+1/2).

The scalar triple product can only vanish if also the
time levels are equal. Similar arguments are valid when
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considering the helicity budget. Linearisation of (97)
yields

ωa × v ⇒ 1

2
(ωn+1

a × vn + ωn
a × vn+1), (99)

which is also needed for numerical stability of the
forward-in-time integration of the Coriolis terms and
the implicit treatment of vertical advection terms. Both
requirements are known from literature (e.g. Pielke,
1984). In the practice of modelling, the helicity term is
the greatest challenge to the efficiency of the model. It
requires not only cumbersome spatial averaging proce-
dures but also a complicated implicit time scheme. In
the shallow-water model world, it is sufficient to esti-
mate the vorticity at an intermediate step by employing
the vorticity equation (Bonaventura and Ringler, 2005),
which appears as simple advection. However, in the
three-dimensional world, the vector vorticity equation
may no longer be efficiently used in that context, because
it contains baroclinic terms not present in the shallow-
water equations. Those terms would need much more
computational effort. Unfortunately, there seems no way
to overcome this dilemma. An explicit leapfrog time
integration scheme would only be an option for a hor-
izontal model part, but the Nambu bracket is inherently
three-dimensional, and splitting off the equations into
horizontal and vertical parts would destroy the structural
background described by the antisymmetry.

So far, we introduced some small approximations to a
consistent space and time discretisation, to linearise the
time scheme in (88) and (99). Numerical experiments
have to be carried out to evaluate the error of this
manipulation. As a first pilot study, a one-dimensional
experiment follows in section 6, to investigate the scheme
with respect to the linearisation applied.

6. One-dimensional experiments with {F,H}� and
{F,H}θ̃v

The simplest experiments with Poisson bracket discreti-
sations are one-dimensional. The mass bracket dynamics
introduced in (84) and (85) serve us as a first exam-
ple. Since our method is inviscid and does not produce
entropy by definition, the developing shock will not be
dissipated. Here, we perform an idealized experiment
with symbolic (and thus dimensionless) initial conditions
of the form

v0(x) = 1.5 + 0.5 cos(4πx/L), (100)

�0(x) = 0.5 + 0.1 sin(2πx/L). (101)

The domain of length L comprises 60 grid points with
�x = 3; 40 time steps of size �t = 1 are performed, and
the Courant–Friedrichs–Lewy value allows a maximum
v of 3. We perfomed five runs with different model
discretisations. Two versions, (A) and (C), are taken
from Table III, and a third (D) uses the linearized model

suggested in Equation (88). Additionally, we interchange
the temporal discretisations for the mass flux and the
specific kinetic energy from methods (A) and (C); version
(E) uses the kinetic energy from (A) and the mass flux
from (C), version (F) works vice versa. It is obvious that
these last two realizations are not consistent, but it is
interesting to study them also. Method (B) from Table III
is nonlinear and is thus not considered.

The results of the integrated energy are shown in
Figure 2. We observe that the consistent Nambu bracket
versions (A) and (C) conserve energy throughout the inte-
gration time. The linearized version (D) exhibits only a
marginal increase of energy, and the inconsistent ver-
sions (E) and (F) show no energy conservation. Version
(F) even breaks down completely. This behaviour is a
result of the linear instability occuring in version (F)
because of the explicit integration of the kinetic energy
gradient term. Linear instability occurs already in the
same way in version (C). Imposed energy conservation
masks this effect, but it is visible at time step 35 in
Figure 3. The velocities in (C) and (F) indicate jumps
over the maximal allowed velocity of 3 and exhibit
high-amplitude noise which afterwards collapses. The
model states (A) and (D) are very similar, though ver-
sion (D) has somewhat larger density amplitudes. Com-
paring all panels of Figure 3 together, the version (E)
seems the best, because it has only marginal fluctua-
tions in the density, but the energetics are wrong, as
known from Figure 2. The divergence operator – cho-
sen only with poor second-order accuracy and without
flux limiting – drives the density values even into the
negative range. This is not an inherent shortcoming of
the method. In addition to the energetics, we checked
also the mass conservation in all the five runs; it is
very accurate, with errors only in the order of machine
accuracy.

This simple experiment using only the mass bracket
has indicated that the linearised time discretisation (D)
behaves reasonably well regarding the conservation prop-
erties. Thus, we can put forward the matter and add
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Figure 2. Integrated energy time evolution for the five mass bracket
experiments (see text).
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Figure 3. Model states at time step 35 for the five mass bracket experiments (see text). The critical CFL value of 3 is indicated by a thin line.

the theta bracket {F,H}θ̃ to our simple equation sys-
tem. For comparison, we perform an experiment sug-
gested by Satoh (2002) in which a vertically propagating
sound wave is investigated. The initial state is given
by an isothermal temperature profile with T0 = 250 K
in hydrostatic state at rest. A pressure perturbation of
p′ = 100 Pa is superimposed in a layer between 2.5 and
5 km at initial time. The numerical grid consists of 30
equally spaced vertical levels with �z = 500 m, the time
step is 2 seconds. We set rigid lids at the lower and
upper boundaries. Figure 4(a) shows the development of
energy differences to the initial state in the vertical col-
umn during 100 seconds of integration. Total, kinetic, and
available (internal plus potential) energies are plotted. An
exact conversion between available and kinetic energy is
actually observed in Figure 4. By expanding the total
energy scale, Figure 4(b) indicates not an exact conser-
vation, but the variations of total energy are only 10−4

times as large as the physically relevant variations, and

are therefore negligible. This result is remarkable. The
method demonstrated works without using total energy
as a prognostic variable, and it does not need to enforce
energy conservation by an iterative algorithms as outlined
in Satoh (2002).

7. Conclusions and outlook

This work demonstrates the model construction towards
a new NWP and climate model over the globe. As a pre-
requisite for this project, as a first step we have carried
out the thorough derivation of the basic equations for
such a model. Our demand is to apply the compressible
non-hydrostatic equations with full physics. Therefore,
the equation set is formulated in turbulence-averaged
form implying the relevant turbulent fluxes, considering
radiation fluxes, and describing a model atmosphere con-
sisting of dry air and water in gaseous, liquid and solid
form. The essential point of these model equations is
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Figure 4. (a) Evolution of three kinds of energy differences in a vertical column to the initial state for a vertically propagating sound wave. (b)
Evolution of the total energy difference, enlarged.
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to ensure important conservation properties concerning
mass, total energy and EPV. By use of sufficient and
consistent thermodynamic approximations which main-
tain conservation, we were able to formulate this rather
general physical system in a structural form consisting
of two Poisson and one Nambu brackets as an applica-
tion of Névir’s energy–vorticity dynamics for an ideal
fluid plus further terms representing turbulent fluxes and
other sources and sinks. In the given case, these bracket
terms would be the only ones if the system were degraded
to an ideal fluid system. It is important to point out
that this formulation is valid independent of the specific
parametrization process which is here deliberately left
open.

Herewith we have the foundation to continue with
the second step of our contribution. As known from the
philosophy of Salmon (2004, 2005, 2007), Poisson and
Nambu brackets offer a new way to construct the discrete
analogue of a model in a systematic manner by exploiting
the antisymmetric properties of these brackets in connec-
tion with conservation laws. After having provided the
compressible non-hydrostatic model with full physics in
an appropriate form, we adopt Salmon’s basic idea to
discretise the bracket part of the continuous model equa-
tions. The method for constructing the related discrete
brackets is demonstrated here. It is striking that, prior
to the consistent discretisation of the brackets, only very
few decisions are necessary, i.e. the specification of the
divergence and rotation operators and the choice of the
grid type. So the principle of the discretisation process
rests on maintaining the antisymmetric properties of the
given brackets and the validity of the product rule of dif-
ferentiation. For the shallow-water regime investigated
by Salmon, and treated also by Sommer (2007, personal
communication), it is sufficient to focus on the product
rule of spatial differentiation, while the problem of the
time scheme is not considered. In the three-dimensional
case, we dealt with the time scheme included in the whole
discretisation process. Thus, the product rule of time dif-
ferentiation is taken into account, and it is demonstrated
that the time scheme is also determined by the structure
of the equations written in bracket form. Concerning the
advection of scalars, the philosophy allows great free-
dom to introduce higher-order differencing. Total vari-
ance diminishing methods are applicable. The averaging
operators in the demonstrated discretisation analysis are
not kept fixed.

Many aspects of our results are probably already
known or used in slightly altered form in existing
models. We hope to have brought together much of this
to shed new light on our conventional knowledge of
modelling. We speculate that the greatest benefit from
discretised brackets is expected to contribute essentially
to more accurate energy cascades. Truncation errors
may no longer disturb the high-wavenumber end of the
spectrum, and the turbulence parametrization can act its
real physical role and need not be tacitly misused as an
additional computational mixing. Truncation errors may
no longer lead to biases that could violate the climate

of a prediction model. However, this claim together with
the investigation of sufficient high local accuracy in the
presented scheme is still a challenge to ensure for NWP
application. There is a general consensus for climate
models to use discretisations with conserving properties.
We think, however, that conserving measures should not
be seen as an alternative to methods with higher local
accuracy, and vice versa, but both belong together. It
remains to be mentioned here a philosophical problem of
our approach, which implies the assumption that such a
discrete representation of conservation properties meets
only the ideal fluid part of the model with some possible
loss of exact conservation for the full-physics system. We
believe, however, that the given approach is in any case
a necessary measure.

The present contribution may be seen as a gen-
eral guide to build the new ICON (ICOsahedral Non-
hydrostatic) global model as a joint project of the Max
Planck Institute for Meteorology and the German Weather
Service. We are aware of many critical details towards the
goal of this project, but hope to have provided a new and
interesting approach for a broadly accepted foundation.
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Flux-conservative thermodynamic equations in a mass-weighted
framework. Tellus 59A(:): 71–79.

Davies T, Cullen MJP, Malcolm AJ, Mawson MH, Staniforth A,
White AA, Wood N. 2005. A new dynamical core for the Met
Office’s global and regional modelling of the atmosphere. Q. J. R.
Meteorol. Soc. 131: 1759–1782.

Doms G, Herbert F. 1985. Fluid- und Mikrodynamik in numerischen
Modellen konvektiver Wolken. Berichte Inst. Meteorologie un
Geodynamik: Univ. Frankfurt aM, Germany.

Copyright  2008 Royal Meteorological Society Q. J. R. Meteorol. Soc. 134: 1597–1613 (2008)
DOI: 10.1002/qj



CONSISTENT MODELLING WITH HAMILTONIAN TOOLS 1613

Doms G, Schättler U. 2002. ‘A description of the non-hydrostatic
regional model LM. Part I: Dynamics and numerics’. Deutscher Wet-
terdienst: Offenbach. Available online at http://cosmo-model.cscs.ch/
public/documentation.htm#p1.

Dubinkina S, Frank J. 2007. Statistical mechanics of Arakawa’s
discretizations. J. Comput. Phys. 227: 1286–1305.

Ertel H. 1942. Ein neuer hydrodynamischer Wirbelsatz. Meteorol. Z.
59: 277–281.

Gassmann A, Herzog H-J. 2007. A consistent time-split numerical
scheme applied to the non-hydrostatic compressible equations. Mon.
Weather Rev. 135: 20–36.

Gyarmati I. 1970. Non-equilibrium thermodynamics. Springer: Berlin.
Herbert F. 1975. Irreversible Prozesse in der Atmosphäre, Teil 3.
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