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[1] The first continuous assessment of the Atlantic
meridional overturning circulation (MOC) indicates strong
MOC variability on time scales of about a few weeks. A
large part of this variability results from, or is related to,
wind stress forcing, which is not predictable beyond a few
weeks. The presence of short-term MOC fluctuations could
significantly limit long-term MOC predictability which
owes its potential to the slow components in ocean
dynamics. To quantify this limitation, two null hypotheses
that address not only the existence but also the strength of
slow dynamics are tested. Daily and yearly MOC time
series generated by the ECHAM5/MPI-OM model are used
for this purpose. The tests compare the variance generated
by slow dynamics with that of short-terms fluctuations that
extend into low frequencies. The comparison is done for
total variances as well as for variances within different low-
frequency ranges. It is found that the model’s slow
dynamics become noticeable only on time scales longer
than three years. The variance generated by the slow
dynamics dominate that related to the low-frequency
extension of unpredictable noise only on time scales
longer than 10 years. In order to utilize the potential
predictability originating from slow processes, a prediction
should correctly capture slow processes in the initial state
by assimilating observations over a period of at least three
years. Citation: von Storch, J.-S., and H. Haak (2008), Impact

of daily fluctuations on long-term predictability of the Atlantic

meridional overturning circulation, Geophys. Res. Lett., 35,

L01609, doi:10.1029/2007GL032385.

1. Introduction

[2] Variations of the North Atlantic Meridional Over-
turning Circulation (MOC) can significantly affect climate.
Based on continuous observations within the framework of
the UK Rapid Climate Change (RAPID) Program, daily
estimates of the MOC at 26�N have become available
[Cunningham et al., 2007]. According to these estimates,
it is not uncommon to observe MOC changes of the order of
10 Sv within one to two weeks. The Atlantic MOC varies
hence not only on long (e.g. decadal to multidecadal time
scales) but also on much shorter time scales with much
larger amplitudes. The daily variations are driven partly by
surface wind stress and partly by density differences. Since
these fluctuations are not predictable beyond a lead time of
a week or so, their existence poses a challenge for MOC
prediction as an initial value problem.

[3] So far various modeling studies have suggested that
the Atlantic MOC varies on decadal to multidecadal time
scales [e.g., Weaver and Sarachik, 1991; Delworth et al.,
1993; Cheng et al., 2004]. If there is no strong intra-
seasonal variability, any prediction starting from a point on
the slow trajectory of the MOC would possess a notable
skill, simply due to the inertia of slow variations. Several
studies using ensemble coupled prediction experiments
[Griffies and Bryan, 1997; Pohlmann et al., 2004; Collins
et al., 2006; Latif et al., 2006] indeed demonstrated
impressive long-term predictability. However, all these
experiments were initialized with perturbed atmospheric
conditions, but unperturbed oceanic conditions. In the light
of strong short-term MOC fluctuations, the use of perfect
ocean initial conditions could lead to much too optimistic
results. This is because, by starting from ‘perfect’ ocean
initial conditions, one neglects the difficulty in correctly
identifying the track of the slow component and the
position on the slow track from which the prediction is
performed. In practice, such an identification could be
challenging, if not impossible, due to concealment through
strong short-term fluctuations. If this happens, the exis-
tence of decadal and interdecadal MOC variations alone
may not be sufficient for making skillful long-term MOC
predictions.
[4] Given the observational evidence of strong intra-

seasonal MOC variations, there is a need to study their
impact on the long-term MOC predictability. Such impacts
are studied here using yearly and daily MOC time series
obtained from a coupled atmosphere-ocean general circu-
lation model. The method used is the standard one-way
analysis of variance (ANOVA) [see, e.g., von Storch and
Zwiers, 1999, section 9.2]. However, the present analysis
is concerned not only with the existence of a slow
component that could facilitate a long-term MOC predic-
tion, as in the previous ANOVA applications. More
importantly, the analysis also addresses the question of
whether or not the slow component is strong enough to be
practically predictable in the face of unpredictable short-
term components.

2. Data

[5] The MOC time series to be analyzed are obtained
from integrations with the coupled ECHAM5/MPI-OM
model developed at the MPI for Meteorology in Hamburg
[Roeckner et al., 2003; Jungclaus et al., 2006]. The model
was used to perform scenario integrations for the IPCC
fourth assessment report. The integrations consist of three
130-year simulations forced by the observed greenhouse gas
concentration from 1880 to 1999 and continued with the
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IPCC A1B scenario from 2000 to 2009. The experiments
differ only in their initial conditions. Since the greenhouse
gas concentration changes only moderately from 1880 to
2009, its effect on the Atlantic MOC is small, as suggested
by an inspection of the yearly MOC time series (Figure 1a).
Unfortunately the oceanic outputs originally were not
stored on a daily basis. In order to assess the role of daily
variations, the coupled model was rerun for the period 1924
to 1945. Daily ocean velocities were stored and daily MOC
values were calculated.
[6] In the following, the Atlantic MOC is described by

the maximum of zonally averaged meridional overturning
streamfunction at 26�N below 1000 meter (for the model
time-mean overturning streamfunction see Figure 6 by
Jungclaus et al. [2006]). The maximum overturning repre-
sents the total northward volume transport across 26�N. Not
only density driven but also wind driven flows contribute to
this transport.
[7] In summary, three 130-year yearly MOC time series

and 22 years daily MOC time series are available. Apart
from removing a mean annual cycle from the daily data,

obtained by averaging over 22 years of daily data, no further
treatment is made.

3. Method

3.1. ANOVA and Two Different Null Hypotheses

[8] The standard one-way ANOVA is based on the
assumption that a climate variable x, in the present case
the MOC, can be decomposed into a slow component s,
which results from some slow external forcing or slow
internal dynamics, and a fast component f, which originates
from noise. The slow component s constitutes the poten-
tially predictable part of x, whereas f is not predictable.
Averaging x over time t, which is shorter than the charac-
teristic time scale of s, one obtains

xi ¼ si þ f i; i ¼ 1; � � � ; I ; ð1Þ

where the overbar indicates the average over time period t.
Hereafter, t is set to one year which is much shorter than
the expected time scales of the slow component. i indexes
years and I is the total number of years. Assuming that s is
independent of f, equation (1) implies that the variance of
�x, s�x

2, can be written as the sum of the variances of s and f,
ss
2+s�x

2.
[9] To obtain an estimate of s�x

2 from a time series, we
follow von Storch and Zwiers [1999, paragraph 17.2.3] and
determine s�x

2 by ‘inter-chunk’ variability

ŝ2
�x ¼

1

I � 1

XI

i¼1

xi � x
� �2 ð2Þ

with x being the overall time mean. s�f
2 is estimated by

ŝ2
�f ¼

1

2t
Ĝ

1

t

� �
; ð3Þ

where Ĝ(1t) is the chunk estimate of the spectral value at
the lowest frequency 1/t within a chunk of length t.
Hereafter^denotes an estimator or a test statistic as a random
variable. 1/2t is the length of the frequency interval (0, 1/2t]
over which the variance of �x is distributed. The spectral
approach is based on the idea that although f varies on
short time scales, it always has a white-noise extension over
low frequencies. This low-frequency white-noise (LFWN)
extension of f, as estimated by equation (3), forms the
unpredictable part of the low frequency variance of x
[Madden, 1976]. Having obtained ŝ�x

2 and ŝ�f
2, ss

2 is estimated
by ŝ�x

2 � ŝ�f
2.

[10] Previous predictability studies have concentrated on
the existence of the slow component s [e.g., Madden, 1976;
Rowell et al., 1995; Rowell, 1998; Zwiers, 1996; Boer,
2004; Pohlmann et al., 2004]. The existence of s is assessed
by testing the null hypothesis

H1 : P1 ¼
s2
�x

s2
�f

¼ 1; ð4Þ

H1 is equivalent to ss
2 = 0, or to ss

2/s�x
2 = 0. P1 compares the

variance of x over the low frequency range (0, 1/2t] with
the variance associated with the LFWN extension of f over
the same frequency range. Rejecting H1 using one-sided test
suggests the existence of the slow component.

Figure 1. MOC time series: (a) three 130-year realizations
of yearly MOC time series, and (b) the mean averaged over
22 years (red) and ± one standard deviation (shading) of
daily MOC deviations from the mean. The typical daily
variations are indicated by the daily time series for an
arbitrary year in Figure 1b (black line).

L01609 VON STORCH AND HAAK: MOC PREDICTABILITY L01609

2 of 5



[11] The existence of the slow component s forms the
necessary but not sufficient condition for having real
prediction skills, since a potential predictability can not
always be turned into a real predictive skill. It is conceiv-
able that a prediction is likely to fail when variations of �f
dominate those of s. To further quantify the degree of
difficulty in turning the potential predictability into a true
prediction skill, the null hypothesis

H2 : P2 ¼
s2
s

s2
�f

¼ P1 � 1 ¼ 1 ð5Þ

is tested. Here we assume that the variations of s should be
at least as strong as the LFWN extension of f so that s is not
buried under the variations of f. Rejecting H2 using one-
sided test suggests that the variations of s are stronger than
those related to the LFWN extension of the unpredictable
fast component. In the following, the statistic P̂1 is
evaluated against both H1 and H2.

3.2. Extension in the Frequency Domain

[12] So far the discussion concentrates on variances over
the entire frequency range Wo = (0, 1/2t], over which the
variance of yearly MOC time series is distributed. The
analysis can be extended by considering variances within
different frequency ranges. The extension under null hy-
pothesis H1 is described by Rowell and Zwiers [1999]. The
extension under H2 is given below in analogy to Rowell and
Zwiers. We consider frequency ranges Wk = (0, k/(I � t)],
with k = I/2, I/2 � 1, � � �, 1, to assess the situation on
increasingly longer time scales. Based on the fact that the
periodogram partitions the sample variance, the variance of
�x over the frequency range Wk can be estimated from

ŝ2
�x;Wk

¼ 2

I � 1

Xk
l¼1

Xncx
n¼1

Ĝ�x;n wlð Þ; ð6Þ

where ncx = 3 gives the total number of yearly time series
considered. Ĝ�x;n(wl) is the periodogram at frequency wl = l/I,
l = 1,� � �, k, and computed from one of the three yearly time
series.

[13] The variance associated with the LFWN extension of
f over Wk can be estimated by

ŝ2
�f ;Wk

¼ k

I � t
Ĝ

1

t

� �
; ð7Þ

where Ĝð1t) is the same spectral estimate as in equation 3.
k/I � t is the approximate length of the interval Wk. The
variance of s over frequency range Wk, ss,Wk

2 , is estimated as
the difference ŝ2

�x;Wk
� ŝ2

�f ;Wk
.

[14] The existence of non-zero variations s over Wk is
tested by the null hypothesis H1,k: P1,k = ŝ2

�x;Wk
=ŝ2

�f ;Wk
= 1,

which is equivalent to ss,Wk
2 = 0. Rejecting H1,k suggests the

existence of the slow variations in the frequency range Wk.
To further quantify the degree of difficulty in turning the
non-zero ss,Wk

2 into a true prediction skill, the null hypoth-
esis H2,k: P2,k = ss,Wk

2 /s�f ;Wk

2 = 1 is tested. Rejecting H2,k

indicates that the variations of s over the frequency range Wk

dominate those related to the LFWN extension of f over the
same frequency range.
[15] In summary, the consideration of H1,k and H2,k aims

at the same goals as the consideration of H1 and H2. The
only difference is that H1 and H2 study the situation over the
entire frequency range resolved by the yearly MOC time
series, while H1,k and H2,k examine the situation on increas-
ingly longer time scales.

4. Analysis of the Impact of Daily Variations

[16] The standard deviation of the daily MOC time series
produced by the ECHAM5/MPI-OM model (shading in
Figure 1b) ranges from about 2.5 to 5 Sv during the
northern summer to about 4 to 8 Sv during the northern
winter. These values are much larger than the standard
deviation of about 1 Sv obtained from the yearly time series
(Figure 1a). For an individual MOC time series (black line
in Figure 1b), it is not uncommon to observe changes of
about 10 Sv within one to two weeks. This behavior is in
broad agreement with the one year observation obtained
from the UK Rapid Climate Change Program [Cunningham
et al., 2007].
[17] The first column of Table 1 summarizes the result

found when considering the frequency interval Wo. The
variance related to the LFWN extension of daily fluctua-
tions is 0.7 Sv2 which is barely 3% of the total daily
variance of about 23 Sv2 (Figure 1b). The total yearly
variance is 1.1 Sv2. About 65% of this variance is related
to the LFWN extension of daily variations. The null
hypothesis H1 is just rejected at 5% significance level,
suggesting the existence of slow dynamics. The null hy-
pothesis H2, on the contrary, cannot be rejected at 5%
significance level. Variations generated by the slow dynam-
ics are much weaker than that resulting from LFWN
extension of the fast processes.
[18] What happens on time scales longer than a year? Can

one then more clearly identify variations that exist in
addition to the LFWN extension of f ? If so, will the
respective variance be larger than that associated with the
LFWN extension of f ? To answer these questions, P1,k and
P2,k are estimated according to section 3b and the hypoth-
eses P1,k = 1 and P2,k = 1 are tested.

Table 1. ANOVA Resulta

MOC MOC-Ekman

ŝ2
�f

0.73 0.16

ŝ2
�x 1.13 0.96

ŝ2
s 0.40 0.80

P̂1 1.55 (1.50) 5.91 (1.50)
P̂2 0.55 (2.00) 4.91 (2.00)

aŝ2
�f
and ŝ2

�x are estimates of the variance originating from unpredictable

daily fluctuations and the total variance of yearly MOC time series. ŝ2
s

equals ŝ2
�x � ŝ2

�f
. The test statistics P̂1 and P̂2 are given by ŝ2

�x=ŝ
2
�f
and ŝ2

s=ŝ
2
�f
,

respectively. Values in the brackets are critical values at 5% significance
level. To obtain those associated with P̂1, note that P̂1 is F-distributed with
nx and nf degrees of freedom under the null hypothesis P1 = 1. Here nx = 3�
130-1 and nf = 2 � 22 [von Storch and Zwiers, 1999, paragraph 17.2.4] are
the degrees of freedom of the estimators ŝ�x and ŝ�f , respectively. To obtain

those associated with P̂2, note that ŝ�x=2ŝ�f is F distributed under the null

hypothesis P2 = 1. The null hypothesis is rejected at 5% significance level,

when the statistics are smaller the critical values.
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[19] Figure 2 shows that slow processes exist on all
considered time scales. However, these slow processes are
unable to produce significant variations on time scales
shorter than about 3 years. Variations associated with slow
processes remain mostly not significantly stronger than
those originating from the LFWN extension on time scales
between 3 and 10 years. Only on time scales longer than
about 10 years, the variations of slow processes dominate
those of unpredictable noise.
[20] The result suggests that although there exist slow

variations in addition to the LFWN extension of f, the
slow variations cannot always dominate the LFWN exten-
sion of f. Furthermore, as long as the prediction model of
choice is the coupled ECHAM5/MPI-OM model, which
produces not only slow MOC variations but also strong

daily fluctuations, predicting MOC variations remains a
difficult task. The potentially predictable component dom-
inates the unpredictable fast component only on time scales
longer than 10 years.
[21] The above result is consistent with the spectra derived

from the daily and yearly MOC time series (not shown). The
spectral level on time scales around 2 to 3 years is only
slightly higher than the LFWN extension of the daily
fluctuations, consistent with rejecting H1 but accepting H2.
The maximum estimate of P2,k in Figure 2a is related to the
spectral maximum near 4 to 5 years. Only on time scales
longer than 30 years is the spectral level clearly higher than
the LFWN extension of the daily fluctuations.
[22] What produces the strong daily MOC fluctuations in

the model? The MOC time series is defined as the maxi-

Figure 2. Statistics P̂1,k (crosses) and P̂2,k (open circles and triangles) as functions of time scales for (a) the MOC index
and (b) the MOC index without the Ekman contribution. The time scale on the x-axis gives the smallest time scale in the
frequency range Wk. The critical values at 5% significance level under null hypotheses P1,k = 1 and P2,k = 1 are shown by
the solid and dashed lines, respectively. To obtain the former, note that P̂1,k is asymptotically F-distributed with vx,k and ncf
degrees of freedom under the null hypothesis P1,k = 1. nx,k = 2 � 3 � k and ncf = 2 � 22 are the degrees of freedom of the
estimates of s�x;Wk

and s�f ;Wk
, respectively. To obtain the latter, note that ŝ2

�x;Wk
/2ŝ2

�f ;Wk
is asymptotically F-distributed under

the null hypothesis P2,k = 1. The null hypothesis is rejected at 5% significance level, when the statistics are below the
critical values.
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mum northward transport. This transport contains contribu-
tions not only from density-driven, but also from wind-
driven flows. An important part of the latter is the Ekman
transport. It is conceivable that the strong daily fluctuations
represent the Ekman transport resulting from daily wind
stress variations. Using the zonal wind stress generated by
the coupled model, the zonally averaged Ekman transport
across 26�N is calculated and subtracted from the MOC
time series. The procedure efficiently removes short-term
fluctuations in the MOC, since high-frequency spikes in
MOC coincide mostly with those in Ekman transport,
similar to the observations [Cunningham et al., 2007,
Figure 3]. After subtracting Ekman transport from MOC,
both H1 and H2 can be rejected with almost no risk at all
(right column in Table 1). The triangles in Figure 2 show
that H2,k can be rejected with almost no risk for all Wk.
Consistent with this conclusion, the respective low-frequen-
cy spectrum is more than one order of magnitude higher
than the LFWN extension of f (not shown).

5. Discussion and Conclusions

[23] The long-term MOC predictability is reexamined
using simulated MOC data. In general, the variances gen-
erated by the model compare well with those found in the
RAPID array (S. Baehr et al., manuscript in preparation,
2007). The following conclusions are drawn:
[24] (1) The simulated MOC variations can be considered

as being generated by processes which have distinctly
different time scales. The dominant time scale of the slow
process is longer than 3 years, which is much longer than
the time scale of the fast process of about a few weeks.
[25] (2) Variations generated by the slow process are well

below the LFWN extension generated by the unpredictable
fast processes on time scales shorter than 3 years and remain
mainly below the LFWN extension on time scales between
3 to 10 years. They become only over and above the LFWN
extension on time scales beyond 10 years.
[26] (3) The unpredictable fast component results mainly

from the Ekman transport induced by wind stress forcing.
[27] The analysis of the present paper shows that about

65% of the variance obtained from yearly MOC time series
are related to unpredictable ‘‘weather’’ noise. This suggests
a short-term limit of the predictability of MOC. Even when
all slow variations are correctly predicted by the coupled
model, the prediction of yearly MOC values is still far from
being perfect, as long as there is no improvement in
predicting the other 65% of the variance that originates
from ‘‘weather noise’’.
[28] The analysis has also implications for initializations

of real MOC predictions. To utilize the potential predict-
ability originating from slow processes, one should make
sure that the initial condition correctly captures the states
generated by the slow processes. This can be done by
assimilating observations over a long period of about at
least three years. By doing so, one could ensure that
variations generated by slow processes, which only domi-
nate the LFWN extension generated by fast processes on

long time scales, are correctly captured in the initial
condition. Generally, it can be said that achieving skills in
real MOC predictions is unlikely as straightforward as
suggested by previous studies [e.g., Collins et al., 2006].
[29] Accepting that the wind-induced Ekman contribution

is not predictable, the skill of the prediction model used lies
entirely on the ability of the model in correctly representing
the slow dynamics in the ocean. This ability can be assessed
using data from an observational system, such as RAPID, in
which the non-Ekman contribution (e.g. the part which is
less affected by short-term wind forcing) is well separated
from the MOC transport.
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