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Abstract: The direct response of surface fluxes to an increase in green house gas concentration is a decrease in net up-

ward long-wave radiation (NLW). This paper examines the responses of the other three surface fluxes, i.e. the latent heat 

flux (HL), the sensible heat flux (HS) and the net short wave radiation (NSW), using a set of IPCC AR4 climate experi-

ments performed with the coupled ECHAM5/MPI-OM AO-GCM. In particular, the questions of whether and how these 

fluxes compensate the warming effect due to a decrease in upward NLW are studied. 

Consistent with the earlier studies, the decrease in upward NLW is strongly compensated by an increase in upward HL. By 

using the IPCC scenarios and a coupled AO-GCM, two new aspects of this compensation are identified. First, the degree 

of compensation decreases with the rate of increase in GHG concentration. Secondly, the compensation does not work 

over the North Atlantic, where the decrease in upward NLW develops parallel to a reduction in upward HL. This leads to 

large increases in the net downward heat flux over the North Atlantic and a reduction of the MOC. The responses in HS 

and NSW can further strengthen or suppress the warming effect of NLW, depending on geographical regions considered. 

There is a general tendency that HS changes in the same direction as NLW over sea, but in the opposite direction over 

land. For NSW, the response strengthens the NLW changes over land and suppresses the NLW changes over sea. 

1. INTRODUCTION 

 The energy budget at the surface is a fundamental ele-

ment of climate. Of crucial importance for this budget is the 

total surface heat flux, which is the sum of the net long-wave 

thermal radiation (LW), the net short wave solar radiation 

(SW), the latent heat flux (HL) and the sensible heat flux 

(HS). We use the convention that downward fluxes are posi-

tive and upward fluxes are negative. For changes in fluxes, 

positive (negative) values indicate an increase in downward 

(upward) fluxes, or equivalently a decrease in upward 

(downward) fluxes. If not mentioned otherwise, we will con-

sider the net long-wave and short-wave radiation (NLW and 

NSW) only and will not decompose it into the upward and 

downward long-wave and short-wave components. 

 In an equilibrium state, the global integral of the sum 

NLW+NSW+HL+HS vanishes, meaning the four fluxes bal-

ance each other globally. Increasing greenhouse gas (GHG) 

concentration perturbs this balance. The size of the imbal-

ance determines the extent to which the surface is heated up. 

The surface warming directly affects the surface climate. In 

this sense, understanding how the balance of surface fluxes 

can be perturbed by an increase in GHG concentration is 

crucial for understanding and predicting anthropogenic cli-

mate changes. 

 It is well appreciated that a direct response of surface 

fluxes to an increase in GHG concentration is the decrease in 

net upward long-wave radiation. An increase in GHG  
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concentration enhances the absorption of the outgoing long-

wave radiation from the surface, resulting in surface warm-

ing and convective mixing. This in turn leads to a tropo-

spheric warming and an additional decrease in the upward 

NLW at the surface. What is less clear is whether and how 

this change in NLW initializes positive or negative feed-

backs so that the warming effect of NLW is strengthened or 

suppressed by responses in NSW, HL and HS, leading to a 

stronger or weaker surface warming. 

 In principle, all three fluxes, HL, NSW, and HS, are able 

to counteract the warming effect due to the decrease in the 

upward NLW. A decrease in upward NLW can warm the 

surface. The warming can enhance evaporation and results in 

an increase in the upward HL that partially compensates the 

warming effect due to the decrease in upward NLW. Fur-

thermore, an increase in tropospheric water vapor can lead to 

an increase in cloud formation. An increase in cloud cover 

can reduce the downward solar radiation at the surface, lead-

ing to a weakening of the effect of NLW. Finally, if the sur-

face is warmed up faster than the air, there will be an in-

crease in upward HS. In this case, the warming effect of 

NLW is suppressed by HS. 

 On the other hand, all three fluxes NSW, HL and HS can 

also act to enhance the warming effect of decreased upward 

NLW and produce an even larger increase in the total heat 

flux. A warming induced by decreased upward NLW can 

lead to a reduction of sea ice that lowers the planetary albedo 

and increases the downward NSW. Evaporation and from 

that the upward HL could decrease, if surface wind speed is 

strongly reduced. The changes in HS could be downward, if 

the air warms up faster than the surface, which could easily 

happen over the ocean. 
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 Previous studies on surface energy budget [1-5] suggest 

both positive and negative feedbacks. With respect to glob-

ally averaged values, all of these studies identified a decrease 

in upward NLW as a direct response to an increase in GHG 

concentration. However, the way how NSW, HL and HS re-

spond to changes in GHG concentration are different in dif-

ferent models. Most of the models suggested that the reduced 

upward NLW is mainly balanced by an enhanced upward 

HL. But such a role of HL is not confirmed by the study of 

Wild et al. [4], where the reduced upward NLW is partially 

compensated by a reduction in NSW due to an increase in 

cloud amount and atmospheric water vapor. The main dis-

crepancy among the models considered concerns NSW. 

While some models suggested an increase in incoming solar 

radiation [1,3], other showed no changes [5] or the opposite 

[2,4,5]. 

 Given the different results of the previous studies, the 

present study reexamines the roles of surface fluxes and the 

feedbacks involved using climate change experiments per-

formed with an improved model. The model considered is 

the ECHAM5/MPI-OM coupled atmosphere ocean general 

circulation model (AO-GCM) developed at the Max-Planck 

Institute for Meteorology. Different from the runs analyzed 

earlier, the ECHAM5/MPIOM model contributes to the 

IPCC fourth Assessment Report and belongs in this sense to 

a new generation of models. Its horizontal resolution, T63 in 

the atmosphere (and a grid size of about 12 to 150 km in the 

ocean), is much higher than the R15 resolution in the NCAR 

and GFDL GCM and the 8
o
 (latitude) x 10

o
 (longitude) grid 

size in the GISS model considered in [1], the T31 resolution 

in the CCC GCMII in [2], and the R21 resolution in CSIRO9 

GCM in [3]. The only exception is the ECHAM3 model used 

in [4], who used the T106-resolution. Furthermore, most of 

the previous experiments are done with an atmospheric 

GCM coupled to a slab ocean, while the ECHAM5/MPIOM 

is a fully coupled AO-GCM. No flux corrections are applied 

for the coupling. Finally, the previous studies focused mainly 

on 2xCO2 experiments, while the experiments with the 

ECHAM5/ MPIOM are transient runs forced by the green-

house gas concentrations and aerosol (SO4) concentration 

resulting from the IPCC AR4 emission scenarios. Thus, the 

responses in surface fluxes result not only from an increase 

in GHG concentration, but also from changes in SO4-

concentration. 

 The paper is organized as following. After a short de-

scription of the model and experiments in section 2, signa-

tures of surface flux responses to an increase in GHG con-

centration are identified in section 3. Section 4, 5 and 6 ana-

lyze the effects and feedbacks that affect the responses in 

short-wave radiation NSW, HS and HL. Of particular concern 

is the question whether NSW, HS and HL will enhance or 

suppress the warming effect induced by the decrease in up-

ward NLW. Conclusions are given in section 7. 

2. CLIMATE CHANGE EXPERIMENTS 

 The climate change experiments considered are carried 

out with the ECHAM5/MPIOM model. More details  

 

concerning the atmospheric component, the ECHAM model, 

and the oceanic component, the MPIOM model, can be 

found in [6,7]. The same coupled model is used in [8]. The 

surface and atmospheric radiation budgets in two earlier ver-

sions of the ECHAM model were discussed in [9]. The con-

trol run was carried out first using the pre-industrial CO2 

concentration. Starting from the control run, the coupled 

model was forced by the observed anthropogenic (i.e. GHG 

and sulfate) and natural (i.e. solar and volcanic) forcing from 

1860 to 2000, and by the anthropogenic forcing (GHG and 

sulfate) until year 2100. The 21st century anthropogenic 

forcing follows the B1, A1B and A2 emission scenarios from 

the IPCC fourth assessment report. By the end of the 21st 

century, the CO2 concentration in B1, A1B and A2 scenario 

reaches 540, 700, 835 ppm, respectively. Both the 20th cen-

tury run and the 21st century scenario runs are carried out in 

form of an ensemble with three ensemble members which 

differ only in initial conditions. 

 The analysis below concentrates on the 21st century, 

more precisely on the changes relative to the 20th century. 

To study the spatial characteristics, differences between the 

ensemble mean of the last 20 years of the 21st century 

(2080-2099) and that of the first 20 years in the 20th century 

(1900-1919) are calculated. The periods are chosen to maxi-

mize the signal related to the GHG forcing. The time series 

are ensemble means of anomalies, which are obtained by 

subtracting the 20-year means (1900-1919). 

3. SIGNATURES OF SURFACE FLUX RESPONSES 
TO AN INCREASE IN GHG CONCENTRATION 

 All four surface fluxes respond notably to increases in 

GHG concentration in the scenario runs. The following con-

centrates on the spatial characteristics of the responses and 

the balances on global and continental scales. 

a) Spatial Characteristics 

 The differences of 20-year means for the four flux com-

ponents, NLW, NSW, HS and HL reveal similar structures for 

different scenarios, but their magnitude increases from B1-, 

to A1B- and A2-scenario. Consider first the spatial charac-

teristics derived from the A2-scenario runs. 

 As expected, the response of the thermal radiation is 

characterized by a decrease in upward NLW almost every-

where on the globe (solid lines and warm colors in Fig. 

(1a)). The largest positive values of about 10 to 20 W/m
2
 are 

found over the tropical and subtropical oceans. There are 

secondary maxima of about 6 to 8 W/m
2
 over the Southern 

Ocean around 55
o
S and over the North Atlantic around 55

o
N. 

Decreases in the downward NLW (dashed lines and cold 

colors in Fig. (1a)) occur only in limited areas along the 

Antarctic coast, over the northern North Atlantic and over 

some land areas. 

 The largest response of solar radiation (Fig. 1b) is an 

increase in downward NSW up to 20 W/m
2
 near the borders 

of the present-day sea-ice distribution and a decrease of up to 

20W/m
2
 over the tropical Pacific. Apart from these large 

changes, the incoming NSW is reduced over most of the  
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oceans. There are a few regions with an increase in NSW, for 

instance over central America, the Mediterranean, southern 

part of Africa and southwest of Australia. 

 Responses in HS (Fig. 2a) reveal a strong land-sea con-

trast. Generally, there is an increase in downward sensible 

heat over the oceans, in particular over the mid- and high-

latitude oceans, and an increase in upward sensible heat over 

land. 

 

Fig. (1). Difference maps for (a) long-wave and (b) short-wave radiation obtained from the A2 scenario. A difference map represents the 

difference between the ensemble mean over the last two decades in the 21st century (2080-2099) and the ensemble mean over the first two 
decades in the 20th century (1900-1919). The unit is W/m

2
 and the color scale is the same in both panels. 
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 The difference map for HL (Fig. 2b) shows an increase in 

upward latent heat flux over most of the globe, with the larg-

est values of about 10 to 20 W/m
2
 over the tropical and sub-

tropical oceans. These changes have about the same magni-

tude as the changes of the long wave radiation, suggesting a 

compensation between NLW and HL. Note that even though 

 

Fig. (2). Same as Fig. (1), but for (a) sensible heat flux and (b) latent heat flux. 
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large changes of opposite signs are found in the tropics and 

subtropics for both NLW and HL, the spatial distribution of 

NLW changes differ notably from that of HL. This difference 

could be related to the enhanced Hadley circulation associ-

ated with an increase in HL. Note also that the compensation 

does not occur everywhere. There are two exceptions, one in 

the North Atlantic, where a reduction in upward latent heat 

flux of about 20 W/m
2
 and more is found, another over the 

southern Pacific around 40
o
S to 60

o
S with the reduction be-

ing somewhat weaker than in the North Atlantic. In both 

regions, the warming effect of the downward thermal radia-

tion is enhanced, rather than reduced, by the responses in 

latent heat flux. 

 The above described spatial features are characteristic not 

only for the A2-scenario, but also for the A1B- and B1-

scenarios. To quantify the similarity between the different 

maps in A2-scenario and those in B1- or A1B-scenario, the 

pattern correlation r1 

r1 =
< pi , pA2 >

(< pi , pi >< pA2 , pA2 >)
1/2    (1) 

is calculated, where <,> indicates the scalar product between 

two fields, pA2 denotes the difference map in A2-scenario 

and pi with i=A1B, B1 the difference map for the B1- or 

A1B-scenario. To quantify the strength of the response in 

A1B- and B1-scenario relative to that in the A2 scenario, the 

pattern correlation r2 

r2 =
< pi , pA2 >

< pA2 , pA2 >
    (2) 

is calculated. 

 The values of r1 shown in Table 1 confirm that the re-

sponse structures shown in Figs. (1,2) do not depend on sce-

narios. The values of r2 show that the amplitudes of these 

structures increase from B1-, to A1B- and A2-scenario, with 

the response in the B1-scenario being about 65-70% and that 

in the A1B-scenario about 90% of that in the A2-scenario. 

Table 1. Pattern Correlation r1 and r2, as Defined in Eq. (1) 

and Eq. (2). 

 

 NLW NSW HS HL 

B1 0.99 0.95 0.96 0.96 
r1 

A1B 0.99 0.97 0.99 0.98 

B1 0.63 0.67 0.71 0.69 
r2 

A1B 0.89 0.91 0.91 0.93 

 

b) Balances on Global and Continental Scales 

 To study the balances on global and continental scales, 

the four flux components are averaged over the global sur-

face, the ocean and the land areas, for years 2000 to 2100 

and for each scenario. To concentrate on the changes, the 20-

year means (1900-1919) of the respective area averages in 

the 20th century are subtracted. 

 

Table 2. Globally Averaged Changes in NLW and HL and the 

Amplitude of |HL| Relative to NLW in Scenario A2, 

A1B and B1 at the End of the 21st Century.  

 

 A2 A1B B1 

NLW 7.7 6.7 4.4 

HL -6.0 -5.9 -4.2 

NLW/HL 0.78 0.88 0.95 

The values are obtained by averaging over the last five years shown by the green and 
black curves in Fig. (3). 

 

 Fig. (3) shows that the flux responses increase with in-

creasing GHG concentration and reach the largest amplitude 

by the end of the 21st century. There is clear evidence for a 

compensation of the decrease in upward NLW (green 

curves) by an increase in upward HL (black curves). The 

responses in NLW and HL over sea (green and black curves 

in Fig. (3b)) are about twice as large as those over land 

(green and black curves in Fig. (3c), note the different units 

in Fig. 3b,c). A closer look at the compensation between 

NLW and HL reveals some dependence on the scenarios. By 

the end of the 21st century, the globally averaged value of 

HL and NLW in scenario A2 are about -6 W/m
2
 and 7.7 

W/m
2
 (Table 2), indicating that HL 'accounts' about 78% of 

the warming effect of NLW. This number changes to about 

88% and 95% in scenario A1B and B1 (Table 2). The result 

suggests that the compensation of the decrease in upward 

NLW through an increase in upward HL is less efficient in a 

scenario with higher GHG concentration. In other words, as 

the increase in GHG concentration becomes faster from B1, 

to A1B and to A2 scenario, the direct response, namely the 

decrease in upward NLW, becomes less and less compen-

sated by the increase in upward HL, leading to an accelera-

tion of the warming. 

 Fig. (3) shows also that the responses in solar radiation 

NSW (blue) and HS (red) have opposite signs over land and 

over ocean. For the sensible heat flux, one finds an increase 

in downward HS over ocean (red curves in Fig. (3b)), but an 

increase in upward HS over land (red curves in Fig. (3c)). For 

the solar radiation, one finds a reduction in downward NSW 

over sea (blue curves in Fig. (3b)), but an increase in down-

ward NSW over land (blue curves in Fig. (3c)). Thus, the 

warming effect of the decreased upward long wave radiation 

is enhanced by the sensible heat flux but suppressed by the 

solar radiation over sea, whereas the opposite is true over 

land. Due to the different roles of HS and NSW over land and 

sea, the two fluxes contribute little to the global averages. 

 Another difference between land and ocean concerns the 

evolution of the balance over time. Different from Fig. (3b)), 

in which NLW and HS are balanced by NSW and HL 

throughoutly, the balance over land changes with time in 

Fig. (3c)). Until about 2050, NSW, HL and HS contribute 

equally to balance the changes in NLW. After this there is a 

dramatic change in the NSW contribution such that it 

changes sign and the balance is maintained through almost 

equal but increasing contributions from HL and HS. 
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Fig. (3). Yearly time series of (a) globally averaged, (b) ocean-area averaged and (c) land-area averaged responses in long wave radiation 

(green), short-wave radiation (blue), sensible heat flux (red) and latent heat flux (black) in W/m
2
, obtained from the A2 (solid), A1B (dashed) 

and B1 (dotted) scenarios. The time series represent the ensemble mean over the 21th century, relative to the respective time mean and en-
semble mean in the 20th century. 
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 The following sections consider effects and feedbacks 

affecting the NSW, HS and HL in more detail. 

4. EFFECTS AND FEEDBACKS AFFECTING SHORT-
WAVE RADIATION 

 The responses of short-wave radiation can be affected by 

various effects and feedbacks. Feedbacks can be studied by 

considering a simplified vertically-integrated energy balance 

equation [10, 11]. The present study is based on an ad-hoc 

analysis of surface variables. The effects of aerosol, the sea-

ice albedo feedback, and the cloud feedback will be consid-

ered. 

a) The Aerosol Effect 

 In the ECHAM5 model, the direct effect of aerosols is 

parameterized. An increase in aerosols leads to a stronger 

absorption and scattering of short-wave radiation, which can 

result in a decrease in downward NSW at the surface. Thus, 

one way to assess the role of aerosols is to compare the time 

evolution of the sulfate concentration, which is shown in Fig. 

(4), with that of NSW, which is plotted again in Fig. (5) to-

gether with the clear-sky short-wave radiation (NSWcsky) to 

eliminate the effect of clouds. 

 Fig. (5) shows a decrease in NSW (blue) and NSWcsky 

(red) for the first two decades of the 21st century. This corre-

sponds well to the increase in sulfate concentration shown in 

Fig. (4). The decrease in B1 is weaker than A1B and A2, in 

particular for NSWcsky, consistent with the stronger increase 

in sulfate concentration in A1B and A2 than in B1. During 

the second half of the 21st century, the sulfate concentration 

decreases with time (Fig. 4). The evolutions of NSW are 

notably different from those of NSWcsky, suggesting that 

cloud effects set in more clearly. When concentrating on 

NSWcsky, the decrease in sulfate concentration in the second 

half of the 21st century does result in a slight increase in 

NSWcsky in B1-scenario (red dotted), but there is no notable 

increase in A1B- and A2-scenario (red dashed and solid 

lines). On the contrary, there is a further decrease by the end 

of the 21st century in A1B- and A2-scenario. It appears that 

the direct aerosol effect dominates only in the first two dec-

ades. Afterwards, the strong increase in water vapor in A1B- 

and A2-scenario can result in a strong reduction in NSW due 

to absorption of NSW, which is included in the ECHAM5 

radiation scheme. The high concentrations of GHG gases by 

the end of the 21st century may lead to a further reduction in 

in NSW due to absorption of NSW. 

 

Fig. (4). Yearly time series of the area averaged sulfate burden in 

kg S/kg in A2 (red), A1b (blue) and B1 (green) scenario in the 21st 
century, relative to the mean values in the 20th century. 

b) The Sea-Ice Albedo Feedback 

 The response of NSW in climate change experiments can 

be affected by the positive feedback between temperature, 

sea-ice and albedo: An increase in GHG concentration leads 

to a decrease in upward NLW and a surface warming. The 

 

Fig. (5). Yearly time series of globally averaged short-wave radiation (blue) and clear-sky short wave radiation (red), obtained in the A2 
(solid), A1B (dashed) and B1 (dotted) scenarios. The time series are derived in the same way as those in Fig. (3). 
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latter triggers the sea-ice retreat and from that a decrease in 

albedo and an increase in downward NSW. Such a change in 

NSW favors a further warming and a further retreat of sea 

ice. 

 Differences in 20-year means for sea ice cover (not 

shown) reveals the notable retreat of annual sea ice in the 

Arctic and along the Antarctic coast. Related to that, albedo 

is reduced in regions polward of the 20th century sea-ice 

margin (Fig. 6a), with the largest amplitude reaching about 

0.5. Again the signal is strongest in the A2-scenario, but has 

the same spatial structure in the other two scenarios. Over 

regions with large albedo reduction, an increase in down-

ward NSW is found (Fig. 1b). Moreover, the increase in near 

 

Fig. (6). As Fig. (1), but for (a) albedo and (b) total cloud cover. Both the albedo and the total cloud cover are values between 0 and 1. 
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surface air temperature is greater over these regions than 

further equatorward (not shown). The result suggests that the 

sea-ice albedo feedback does play a major role for the re-

sponse in short-wav radiation. 

c) The Cloud Feedbacks 

 The cloud feedback is more complicated. Over sea, a 

warming due to an increase in GHG concentration can lead 

to an increase in evaporation and cloud formation. The latter 

reduces the downward NSW at the surface and results in a 

weakening of the initial warming, leading to a negative feed-

back. The situation could be different over land where the 

water reservoir is limited. There, an increase in GHG con-

centration can result in dry conditions that suppresses evapo-

ration and cloud formation. The latter allows an increase in 

NSW that strengthens the initial warming, leading to a posi-

tive feedback. 

 Fig. (6b) shows the difference in 20-year mean for the 

total cloud cover which represents the cloud area fraction. 

Over many land regions, such as central America, the south-

ern part of the African continent and southern part of Austra-

lia, and also over the Mediterranean, there is a reduction in 

cloud cover. This reduction coincides with the increase in 

downward NSW in Fig. (1b). However, a comparison with 

near-surface temperature changes (not shown) suggests that 

even though the reduction in cloud formation tends to de-

velop parallel to an increase in NSW, the increased NSW 

does not necessarily produce a large increase in surface tem-

perature. For instance, the increase in NSW over Mediterra-

nean does not lead to a large increase in surface temperature 

there (not shown). This suggests that a warming due to an 

increase in GHG concentration can trigger changes in 

cloudiness that alters the response of NSW. However, this 

response does not necessarily significantly feed back to the 

initial warming. 

 Over the tropical Pacific south of the equator, the in-

crease of cloudiness corresponds to the reduction of NSW. 

The near-surface temperature reveals a weaker warming in 

the tropical Pacific south of the equator than north of the 

equator (not shown). This suggests that an increase in GHG 

concentration can trigger an increase in cloud formation that 

reduces downward NSW and consequently reduces the ini-

tial warming, leading to a negative feedback. 

 Fig. (1b) shows also notable reduction in downward 

NSW over the Southern Ocean, the North Pacific and the 

North Atlantic. This reduction is not related to large changes 

in total cloud cover. An inspection of the vertically inte-

grated cloud water and the total precipitation (not shown) 

suggests that changes in NSW over the high-latitude oceans 

are likely caused by the large increases in the total amount of 

liquid water, rather than just by the increase in the total cloud 

cover. 

d) A Quantification of Different Effects 

 The above analysis shows that different effects and feed-

backs are locked to different geographical regions. This sug-

gests that the relative importance of the considered effects  

 

and feedbacks can be assessed by averaging NSW over se-

lected geographic regions. For instance, the sea-ice albedo 

feedback can be quantified by averaging NSW over regions 

polward of the 20th century sea-ice margin, where albedo 

changes pass a prescribed threshold. The cloud effect can be 

quantified by averaging NSW over regions where changes in 

total cloud cover pass a prescribed threshold. The relative 

amplitudes of the two conditioned area averages can indicate 

the relative strengths of the two effects. 

 Obviously, the conditioned area averages are only effi-

cient in determining the importance of different feedbacks 

when the selected areas do not overlap. To avoid overlap-

ping, the thresholds used to define the areas should not be 

too small. On the other hand, the values obtained depend 

crucially on the thresholds used. Thus, the conditioned area 

averages are only very crude quantifiers. This should be kept 

in mind when interpreting the results. 

 Fig. (7) shows that the effect of albedo leads to the larg-

est area-averaged changes in NSW. However, since the area 

affected by the albedo feedback is small, the sea-ice albedo 

effect (red), which reaches the estimated amplitude of about 

12 W/m
2
 by the end of the 21st century in the A2-scenario, 

does not dominate the total response of NSW (blue curve in 

Fig. (3a)). Relative to the sea-ice albedo effect, the effects of 

the total cloud cover, the precipitation and cloud water are 

much weaker. Over ocean, they reach comparable ampli-

tudes. Over land, the cloud cover is more important for 

changes in NSW. In particular, the increase in NSW aver-

aged over areas with a reduction in cloud cover can reach 

about 6 W/m
2
 (blue curve in Fig. (7b)). This increase could 

contribute to the total mean response of NSW over land 

(blue curve in Fig. (3c)). 

 It is noted that over land, areas with large precipitation 

changes overlap partially with the areas of large cloud cover 

changes, despite the fact that relative large thresholds are 

chosen for conditioned area averages. There are also over-

lapping areas between precipitation and cloud water over 

ocean areas. Thus, total response in NSW (black) is gener-

ally not the sum of responses due to different effects, as sug-

gested by the conditional area averages. 

 Note also that the cloud water effect over land (green 

curve in Fig. (7b)) is caused by large increases in cloud wa-

ter content over the northern part of North America and 

Eurasia (not shown). The effect of cloud water content is 

estimated to be up to about 3 to 4 W/m
2
 (green line in Fig. 

(7b)), which is smaller than the effect related to the increase 

in cloud cover in the land regions further equatorwards 

which leads to the blue line in Fig. (7b). The increase in 

cloud water over the northern part of North America and 

Eurasia, is also related to an increase in cloud cover and pre-

cipitation. However, the magnitudes of the latter are smaller 

than the threshold chosen for the calculation of the condi-

tioned area averages. One can conclude that the green line 

indicates the effect of cloud water content on NSW over the 

northern part of North America and Eurasia, whereas the 

blue and magenta lines describe the cloud cover and precipi-

tation effects on NSW over land areas further equatorward. 
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Fig. (7). Conditioned averages over land (bottom) and sea (top) 

areas. The thresholds used to calculate the conditional averages are 

0.3 for albedo, 0.05 for total cloud cover, 0.6 10-5 kg/(m
2
s) for 

precipitation and 0.04 kg/m
2
 vertically integrated cloud water. 

5. EFFECTS AFFECTING SENSIBLE HEAT FLUX 

 The sensible heat flux is determined by the difference in 

air temperature and surface temperature. To understand the 

change in HS, the change of T2m-Ts in the last two decades of 

the 21
st
 century (2080-2099) relative to that in the first two 

decades of the 20th century (1900-1919) is considered, 

where T2m indicates the 2-meter temperature and Ts the sur-

face temperature. Ts equals SST over sea. 

 The difference map for T2m-Ts (Fig. 8) reveals two strik-

ing features. First, T2m-Ts is increased over most of the ocean 

areas, but tends to be negative over land, in particular over 

the northern part of Eurasia and North America. The result 

suggests that the air is warmer than the surface over the 

oceans and mostly cooler than the surface over land. This 

behavior is likely caused by the different heat capacity of 

soil and water. Soil with a smaller heat capacity can be more 

easily warmed up than the ocean. The land-sea contrast in 

Fig. (8) corresponds well to that in Fig. (2a). This suggests 

that the different responses of HS over land and sea result 

from different changes in the air-surface temperature differ-

ence T2m-Ts. 

 Secondly, large negative values of T2m-Ts are found near 

the edge of the present-day sea-ice distribution (z.B. near 

80
o
N). As sea-ice migrates polwards by the end of the 21st 

century in A2-scenario, the oceans in the formerly ice cov-

ered areas are more often exposed to colder air, leading to 

the large increase in upward HS as sea ice retreats (Fig. 2a). 

However, this effect is, at least when integrated globally, 

weaker than the increase in downward HS over oceans due to 

the increase in T2m-Ts. 

6. EFFECTS AND FEEDBACKS AFFECTING LA-
TENT HEAT FLUX 

 The overall increase in upward latent heat flux in Fig. 

(2b) is clearly related to the water vapor feedback: An in-

crease in GHG concentration enhances the downward NLW, 

leading to a warming of the surface. The latter favors evapo-

ration and produces an increase in upward latent heat flux. 

The increase in water vapor in turn further strengthens the 

downward NLW and upward latent heat flux, resulting in a 

positive feedback. 

 Due to the water vapor feedback, the decrease in upward 

NLW is largely balanced by the increase in upward latent 

heat flux. However, there are a few exceptions. The most 

prominent one is that over the North Atlantic, where an in-

crease of downward latent heat flux is found and changes in 

NLW and HL reinforce, rather than compensate each other. 

Consequently, the change of the total flux (i.e. 

NLW+NSW+HS+HL) has the largest values of about 50 

W/m
2
 over the North Atlantic. This heat flux change is likely 

responsible for the weakening of the Atlantic meridional 

overturning circulation (AMOC) in the 21st century. 

 Why does the latent heat flux behave so differently over 

the North Atlantic? The latent heat flux is calculated using 

the bulk formula, 

HL = C� | vl | (ql � qs )     (3) 

where C is the transfer coefficient. vl is the horizontal wind 

vector at the lowest model level l. ql and qs are specific hu-

midity at level l and at the surface, respectively. According 

to Eq.(3), there are two ways to obtain a reduction in latent 

heat flux, namely by a reduction of the vertical contrast ql-qs, 

or by a reduction of the wind speed. 

 The difference map for the change in the wind speed (not 

shown) displays a large increase of wind speed over the 

Southern Ocean. Over the North Atlantic, the changes are 

much smaller. Around 55
o
N to 60

o
N, where the reduction in 

upward latent heat flux is found, the wind speed is even in-

creased by the end of the 21
st
 century. Thus, the wind speed 

change is not the cause for the reduction in upward latent 

heat flux. 

 Here we denote the changes in the low-level specific hu-

midity and surface saturation humidity by �ql and �qs, re-

spectively. In a warming climate, both �ql and �qs will be 

positive. In case of no change in wind speed, the change in 

latent heat flux is proportional to �ql-�qs. Since qs is propor-

tional to the saturation pressure es, qs must be, according to 

the Clausius-Claperyon equation, proportional to exp(-a/Ts) 



89    The Open Atmospheric Science Journal, 2008, Volume 2 von Storch et al. 

with a being a constant and Ts being the SST. The amplitude 

of �qs hence depends on the changes in SST. Assume that 

�ql does not vary too much from ocean basin to ocean basin, 

which is consistent with the distribution of low-level specific 

humidity changes. The contrast between the North Atlantic 

and other regions shown in Fig. (2b) is only possible when 

�qs is smaller than �ql in the North Atlantic, but larger than 

�ql outside the North Atlantic. 

 SST changes in the North Atlantic can be smaller than 

elsewhere, due to downward propagation of the surface 

warming via advection induced by the AMOC. As a result, 

the change in specific humidity �qs will be smaller over the 

North Atlantic than elsewhere. Thus, the exceptional posi-

tion of HL in the North Atlantic is likely directly coupled to 

the downward branch of the AMOC. 

 If this is correct, a reduction of upward latent heat flux 

over the North Atlantic should also be produced by IPCC 

integrations performed with other coupled models. To check 

this, latent heat flux data in the 20th century and in the 21st 

century in A2-scenario, that are produced by nine different 

coupled models, including those from climate research cen-

ters such as NCAR, GFDL and the UK Met Office, are ex-

tracted from the IPCC data distribution center. Indeed, all 

nine models simulate a reduction of upward latent heat flux 

over the North Atlantic. The amplitude of the reduction 

ranges from 15 to 25 W/m
2
. 

 As being directly coupled to the AMOC, the reduction of 

upward latent heat flux in the North Atlantic represents a 

coupled phenomenon. The reduction provides more down-

ward heat flux over the North Atlantic than elsewhere and is 

likely responsible for the weakening of the Atlantic MOC. 

7. CONCLUDING REMARKS 

 The response of surface fluxes to an increase in GHG 

concentration is analyzed using the IPCC AR4 climate 

change experiments with the ECHAM5/MPI-OM coupled 

model. The analysis concentrates on the changes in NSW, HS 

and HL. Similar in the previous studies, the decrease in up-

ward long wave radiation due to an increase in GHG concen-

tration is largely compensated by an increase in upward la-

tent heat flux, which results from an increase in evaporation. 

However, there are two new aspects, which could not be 

described by the earlier 2xCO2-experiments using AGCMs 

coupled to a mixed layer ocean model. The first aspect con-

cerns the degree of compensation. It is found that the offset 

of NLW by HL decreases from scenario B1, which has the 

slowest rate of increase in GHG concentration, to scenario 

A1B and A2, in which the GHG concentration increases 

much faster. It seems that the degree of compensation de-

creases with increasing rate of change of the GHG concen-

tration. The second aspect concerns the spatial distribution of 

compensation. Even though the compensation takes place 

almost everywhere, a few exceptions do exist. The most 

striking one occurs in the North Atlantic, where total surface 

heat flux is strongly increased due to reduced upward NLW 

and a reduction in upward HL. The latter can result from ver-

tical advection of heat through the Atlantic MOC which can-

not be simulated with a mixed layer model. This change in 

total surface heat flux is likely the cause for the weakening 

of the Atlantic MOC in the 21st century. 

 

 

Fig. (8). Same as Fig. (1), but for the air-surface temperature difference T2m-Ts, where T2m represents 2m air temperature and Ts the surface 
temperature which is identical to SST over ocean. 
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