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ABSTRACT

The Monte Carlo Independent Column Approximation (McICA) method for computing domain-average
radiative fluxes allows a flexible treatment of unresolved cloud structure, and it is unbiased with respect to
the full ICA, but its flux estimates contain conditional random noise. Here, tests of McICA in the ECHAM5
atmospheric GCM are reported. ECHAM5 provides an interesting test bed for McICA because it carries
prognostic variables for the subgrid-scale probability distribution of total water content, which allows us to
determine subgrid-scale cloud variability directly from the resolved-scale model variables.

Three experiments with differing levels of radiative noise, each consisting of ten 6-yr runs, are performed
to estimate the impact of McICA noise on simulated climate. In an experiment that attempted to deliber-
ately maximize McICA noise, a systematic reduction in low cloud fraction occurred. For a more reasonable
implementation of McICA, the impact of noise is very small, although statistically discernible.

In terms of the impacts of noise, McICA appears to be a viable approach for use in ECHAM5. However,
to improve the simulation of cloud radiative effects, realistic representation of both unresolved and resolved
cloud structures is needed, which remains a challenging problem. Comparison of ECHAM5 data with a
global cloud system–resolving model dataset and with International Satellite Cloud Climatology Project
data suggested two problems related to unresolved cloud structures. First, ECHAM5 appears to underes-
timate subgrid-scale cloud variability. This problem seems partly related to the use of the beta distribution
scheme for total water content in ECHAM5: in its current form, the scheme is unable to generate highly
inhomogeneous clouds (relative standard deviation of condensate amount �1). Second, it appears that in
ECHAM5, overcast cloud layers occur too frequently and partially cloudy layers too rarely. This problem
is not unique to the beta distribution scheme; in fact, it is more pronounced when using an alternative,
relative humidity–based cloud fraction scheme.

1. Introduction

Radiative processes play a central role in determin-
ing the climate of the earth, and hence, radiation cal-
culations are among the key physical parameterizations
in atmospheric general circulation models (GCMs)
used in climate modeling. The radiation schemes in
GCMs operate on discrete grid columns and attempt to

provide, for each column, accurate estimates of grid-
mean radiative fluxes and heating rates, given the in-
formation about atmospheric and surface state pro-
vided by the host model. However, the GCMs repre-
sent the atmosphere at rather coarse horizontal
resolution, a typical gridpoint spacing being 100–500
km. Grid-mean radiative fluxes and heating rates can
depend strongly on variations occurring at scales
smaller than GCM grid spacing, especially on unre-
solved cloud structure (e.g., Barker et al. 2003). Unre-
alistic assumptions such as neglect of subgrid-scale
cloud variability can result in large biases in both cloud
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shortwave (SW) albedo (e.g., Cahalan et al. 1994) and
longwave (LW) emissivity (e.g., Pomroy and Illing-
worth 2000).

In most current GCM radiation schemes, assump-
tions about unresolved cloud structure (cloud overlap
between different GCM layers and subgrid-scale vari-
ability within individual layers) are embedded within
the radiative transfer solver. Most often, maximum-
random overlap of homogeneous clouds is assumed (cf.
Barker et al. 2003). As a radical alternative, Barker et
al. (2002) and Pincus et al. (2003) proposed the Monte
Carlo Independent Column Approximation (McICA)
for estimating domain-average radiative fluxes. McICA
separates the description of cloud field structure from
the radiative transfer solver by dividing the cloud field
into a set of subcolumns. One or more randomly se-
lected subcolumns are then used for each point in the
spectral integration. The key features of McICA in-
clude the following: (i) it is unbiased with respect to the
full ICA, regardless of the assumptions about unre-
solved optical structure; (ii) it allows us to keep the
radiative transfer solver simple and relatively fast, in-
dependent of the cloud structure assumed, since each
subcolumn is horizontally homogeneous and either
cloud free or overcast; and (iii) the radiative fluxes and
heating rates produced by McICA contain conditional
random errors, or noise.

While the first two points listed above are clear ad-
vantages of McICA, the third is a potential problem.
Should the unbiased random errors lead, through non-
linear interactions, to significant systematic effects on
model climatology, this would call into question the
applicability of McICA. This issue needs to be resolved
through testing.

The impact of McICA noise has been already ad-
dressed in at least three global models. In the studies of
Pincus et al. (2003) for the European Centre for Me-
dium Range Weather Forecasts’ (ECMWF’s) global
model and Pincus et al. (2006) for the Geophysical
Fluid Dynamics Laboratory’s (GFDL’s) Atmosphere
Model version 2 (AM2) climate model, the impact of
noise was found to be negligible. On the contrary,
Räisänen et al. (2005, hereafter RBC05) found a slight
but distinct signal of McICA noise in tests made with
the National Center for Atmospheric Research’s
(NCAR’s) Community Atmosphere Model (CAM): in
simulations with a high noise level, low cloud fraction
was reduced over the oceans, especially in the Tropics.
This feature developed very rapidly, within a couple of
days, and probably resulted from short time-scale in-
teraction between low clouds and local radiative heat-
ing. It proved feasible to essentially eliminate this fea-
ture using the noise reduction techniques devised by

Räisänen and Barker (2004). In general, the above-
mentioned studies support the notion that McICA is a
viable approach for introducing a flexible description of
unresolved cloud structure into GCM radiation calcu-
lations. However, it is also evident that the impact of
noise is model dependent.

Another important issue related to the use of McICA
in GCMs is the specification of unresolved cloud struc-
ture. From the technical point of view, the subcolumns
needed by McICA can be supplied by the stochastic
cloud generator of Räisänen et al. (2004). However, the
generator needs as input data not only standard cloud
fields provided by GCMs (cloud fraction and grid-mean
liquid and ice water contents) but also parameters re-
lated to subgrid-scale cloud structure: variability of con-
densate amount and vertical decorrelation lengths re-
lated to overlap rates for cloud fraction and conden-
sate. For an initial implementation of McICA, a simple
prescription, such as judiciously selected constant val-
ues for these parameters might suffice. However, in the
end, the success of McICA in reducing biases in cloud–
radiation interaction in GCMs hinges on a realistic de-
scription of the parameters. It is therefore desirable to
link the unresolved cloud structure to the GCM’s prog-
nostic fields.

The current paper reports tests of McICA in the
ECHAM5 atmospheric GCM developed by the Max
Planck Institute for Meteorology (Roeckner et al. 2003,
2006). ECHAM5 provides an especially interesting test
bed for McICA because it carries prognostic variables
describing the probability density function (PDF) of
total water content in each model grid box (Tompkins
2002). This allows us to derive the PDF of condensate
amount needed for the cloud generator without further
assumptions. Two basic questions are considered. First,
what is the impact of McICA noise in ECHAM5; and
second, how realistic are the subgrid-scale cloud struc-
tures generated?

Section 2 describes the features of ECHAM5 most
relevant for this study. Section 3 outlines a series of
ensemble simulations, which are used to evaluate the
impact of McICA noise on the climate simulated by
ECHAM5 in section 4. The following two sections fo-
cus on the properties of subgrid-scale cloud fields in
ECHAM5, based on offline radiation calculations (sec-
tion 5) and comparison of cloud field characteristics
with global cloud system–resolving model (CSRM)
data and satellite data (section 6). The main results are
summarized in section 7.

2. Model

Version 5.3 of the ECHAM5 atmospheric GCM (Ro-
eckner et al. 2003, 2006) was used. The dynamical part
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of ECHAM5 is formulated in spherical harmonics,
while physical parameterizations are computed in grid-
point space. The simulations reported here used a hori-
zontal resolution of T42 (a grid spacing of �2.8°) with
31 layers in the vertical and the model top at 10 hPa. A
semi-implicit time integration scheme is used for model
dynamics with a time step of 20 min. Model physical
parameterizations include turbulent diffusion, cumulus
convection, a stratiform cloud scheme, SW and LW ra-
diation schemes, gravity wave drag, a land surface
model, and a simple lake model (for details, see Ro-
eckner et al. 2003). The parameterizations are invoked
every time step with the exception of radiation, which is
computed once in two hours. At intermediate time
steps, solar radiative fluxes are adjusted for the change
in solar zenith angle, without accounting for changes in
the atmospheric state.

The scheme for the representation of stratiform
clouds consists of prognostic equations for cloud liquid
water and ice, a cloud microphysical scheme based on
Lohmann and Roeckner (1996), and, as a unique fea-
ture, a statistical cloud cover scheme including prog-
nostic equations for the distribution moments of total
water mixing ratio qt within GCM grid cells (Tompkins
2002). A beta distribution is assumed for the PDF of qt:

P�qt� �
��� � ��

��������

�qt � a���1�b � qt�
��1

�b � a�����1 , �1�

qt � q� � ql � qi, �2�

where � is the gamma function, a and b are the lower
and upper limits of the distribution, 	 and 
 are shape
parameters, and q�, ql, and qi are mixing ratios of water
vapor, cloud liquid water, and cloud ice, respectively.
This form of the PDF was chosen by Tompkins as a
pragmatic compromise; it is relatively simple and flex-
ible, and provides, in most cases, a reasonable fit to
cloud-resolving model simulations of qt. Tompkins
(2002) mainly considered the use of this approach for
the diagnosis of cloud fraction, and it is used solely for
this purpose in the standard version of ECHAM5.
However, as detailed below, the PDF of qt can also be
utilized to determine the subgrid-scale distribution of
condensate amount.

Four parameters (a, b, 	, and 
) define the beta dis-
tribution. In the current implementation of the Tomp-
kins scheme in ECHAM5, parameter 	 is fixed at 	 �
2 while 
 is a prognostic variable, constrained to the
range 2 � 
 � 50. This implies that the distribution of
total water content is unimodal (“bell shaped”) and
either symmetrical or positively skewed. Two condi-
tions are required to determine the bounds a and b. In
partially cloudy cases, they can be deduced diagnosti-

cally from the grid-mean values of total water mixing
ratio qt and condensate mixing ratio qc � ql � qi, as-
suming that the saturation mixing ratio qs is constant
within the grid box. However, to close the system in
cloud-free and overcast cases (and only then), a prog-
nostic equation is used to calculate the distribution
width b � a (see Tompkins 2002 for details). Examples
of beta distributions of qt and the related cloud param-
eters are displayed in Fig. 1.

ECHAM5 does not explicitly define convective cloud
fraction or condensate amount. Rather, the cloud frac-
tion, liquid water, and ice fields in ECHAM5 only rep-
resent stratiform clouds, including anvil clouds formed
by detrainment of condensate in the upper part of con-
vective updrafts.

The ECHAM5 SW radiation scheme is based on

FIG. 1. Examples of 
 distributions of total water content qt and
the related cloud parameters. Cloud fraction C and subgrid-scale
cloud variability (characterized here by the relative std dev of
condensate amount �qc

) are diagnosed using grid-mean specific
humidity q� and cloud condensate content qc (prognostic variables
in ECHAM5), shape parameters 	 (prescribed) and 
 (prognos-
tic), and the width of the distribution 
 � b � a (prognostic, but
only used in overcast cases). The units are chosen so that the
saturated specific humidity qs � 1; hence qt � 1 indicates cloudy
regions. (a) Partially cloudy cases with q� � 0.95 and qc � 0.01, (b)
overcast cases with q� � 1.00 and qc � 0.10 (
 chosen so that the
lower limit is a � qs �1, except in the last case). Note that only the
cases with 	 � 2 can actually occur in ECHAM5. See section 6a
for more discussion of �qc

.
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Fouquart and Bonnel (1980), while the LW calculations
use the Rapid Radiative Transfer Model (RRTM;
Mlawer et al. 1997). As usual, molecular scattering, gas-
eous absorption, and effects of clouds and aerosols are
taken into account in the calculations. An important
detail for the current work is spectral resolution. The
SW (LW) region is divided into 4 (16) bands. Further-
more, the LW scheme makes use of the correlated-k
distribution method (e.g., Lacis and Oinas 1991), in
which the bands are subdivided into cumulative prob-
ability space (CPS) intervals according to the strength
of gaseous absorption. The total number of CPS inter-
vals in the LW region is 140. There is no such subdivi-
sion in the SW calculations, which use the photon path-
length distribution method (Bakan and Quenzel 1976;
Fouquart and Bonnel 1980) to handle the interaction
between gaseous absorption and multiple scattering.

Treatment of subgrid-scale cloud structure

The McICA experiments employed a version of the
radiative transfer code that operates on horizontally
homogeneous, overcast or cloud-free subcolumns. The
subcolumns were produced using the stochastic cloud
generator of Räisänen et al. (2004).

The generator first computes the profile of cloud
fraction (0 or 1) for each subcolumn. The state of cloud
overlap between two layers i and j is described in terms
of an overlap parameter 	i,j ∈ [0, 1], where 	i,j �
1(	i,j � 0) corresponds to maximum (random) overlap.
Analyses of observations by Hogan and Illingworth
(2000) and Mace and Benson-Troth (2002) suggest that
a reasonable formulation of 	i,j is

�i,j � exp���
zi

zj dz

Lcf�z��, �3�

where z is the altitude. As in RBC05, a globally con-
stant value of 2 km is assumed for the decorrelation
depth Lcf.

Second, the subgrid-scale distribution of cloud con-
densate is generated. The subgrid-scale variability of
condensate amount in each layer is derived directly
from the beta distribution of total water content. For
each cloudy subcell, the generator produces a cumula-
tive probability yc defined by

yc � �
0

qc

Pc�q�c� dq�c, �4�

where Pc(qc) is the PDF of cloud condensate amount
(qc � ql � qi � qt � qs, when q� � qs) across the cloudy
part of the layer. Since cloudy subcells correspond to
the high end of the PDF of total water content, yc can
be related to the cumulative probability for total water

yt � I�qt� � �
a

qt

P�q�t� dq�t �5�

through

yt � �1 � C� � Cyc, �6�

where C is the cloud fraction in this layer. Hence, the
condensate amount in subgrid-scale cloudy cells is ob-
tained as

qc � I�1�yt� � qs. �7�

The values of I�1 are tabulated as a function of yt and
the shape parameter 
.

The vertical profiles of yc depend on the overlap as-
sumption for cloud condensate, which is described here
by another decorrelation length Lcw. As in RBC05, a
globally constant value Lcw � 1 km is used. The use of
a smaller decorrelation length for condensate than
cloud fraction is supported by the observational analy-
sis of Hogan and Illingworth (2003) and analysis of
CSRM datasets by Räisänen et al. (2004) and Pincus et
al. (2005).

Finally, effective radius of liquid [re,l (�m)] and ice
particles [re,i (�m)] is determined for each cloudy sub-
cell following Martin et al. (1994) and Moss et al.
(1996):

re,l � 1000� 3LWC
4��wkNd

�1	3

, �8�

re,i � 83.8 � IWC0.216, �9�

where �w � 1000 kg m�3 is the density of liquid water,
k � 0.67 (0.80) over land (ocean) areas, LWC (g m�3)
and IWC (g m�3) are liquid and ice water content, and
Nd is droplet number concentration, which is prescribed
to vary from 50 cm�3 in the upper troposphere to 220
(80) cm�3 near the surface over land (ocean). Lower
and upper limits of 4 and 24 �m (10 and 150 �m) are
assumed for re,l (re,i).

3. Ensemble simulations

To test the impact of McICA noise on climate simu-
lated by ECHAM5, three ensemble simulations were
performed. All ensembles consisted of 10 members,
each of which was initialized with a unique seed num-
ber for the random number generator used by the sto-
chastic cloud generator. The simulations were run for
six years, using observed distributions of sea surface
temperature and sea ice for January 1985–December
1990. The analysis presented below uses data for the
last five years (1986–90). While the primary impact of
McICA noise appeared within the first few days of the
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simulations in the study of RBC05, and indeed also
here (see below), relatively long simulations were per-
formed to detect (or rule out) longer time-scale feed-
backs related to the land surface and snow cover, and to
improve the statistical robustness of the results.

The only difference between the three ensembles lies
in the different implementations of the McICA ap-
proach, which result in different levels of sampling
noise. The whole spectrum of options surveyed by
RBC05 is not considered here. Instead, results are pre-
sented for an approach with excessive sampling noise
(1COL), for one reasonable GCM implementation of
McICA (CLDS), and for a reference simulation with
low noise level but high computational costs (REF).

a. Experiment 1COL

In this experiment, broadband radiative fluxes are
computed as

F̂ � �
k�1

K

F �s, k�, �10�

where s is a single randomly generated subcolumn that
is used for all K spectral intervals. This is by no means
an optimal implementation of McICA. The sole moti-
vation for this experiment is to test the impact of large
sampling noise on climate simulated by ECHAM5.
However, an essentially similar approach has been em-
ployed in the Goddard Institute for Space Studies
(GISS) GCM (Hansen et al. 1983; Stubenrauch et al.
1997).

b. Experiment CLDS

CLDS is an abbreviation for the CLDSAMPL ap-
proach of Räisänen and Barker (2004). Broadband
fluxes are computed as

F̂ � �1 � Ĉtot��
k�1

K

F �sclr, k� � Ĉtot�
k�1

K

F �scld,k, k�

� �1 � Ĉtot�Fclr � ĈtotF̂cld, �11�

where Ĉtot is an estimate of total cloud fraction Ctot, sclr

is the clear-sky column, scld,k are randomly selected
cloudy subcolumns, and Fclr and F̂cld are clear-sky and
cloudy-sky broadband fluxes. Thus random sampling is
confined to the cloudy part of the GCM column. Here,
Ĉtot cannot be computed analytically when using the
decorrelation length formulation for cloud overlap.
Hence, Ĉtot is estimated by producing first J� � 100
cloud fraction profiles using only the cloud occurrence
portion of the generator (see Räisänen and Barker
2004).

There is one difference to the implementation of
CLDSAMPL in Räisänen and Barker (2004) and in
RBC05. For the ECHAM5 LW scheme, the number of
terms (i.e., CPS points for gaseous absorption) on the
rhs of (11) is quite high (K � 140). Generating conden-
sate amounts, effective radii, and cloud optical proper-
ties separately for each of them would be overkill, since
many of the terms k contribute very little to cloud ra-
diative effects. Therefore, the procedure was stream-
lined so that a single subcolumn is often used for many
terms k in the LW region. Thus, only Jcld � 50 cloudy
subcolumns are generated instead of Jcld � 140.

c. Experiment REF

In the reference simulation, broadband fluxes are
computed as

F̂ � �1 � Ĉtot��
k�1

K

F �Sclr, k�

� Ĉtot �
k � 1

K � 1
Nk

�
n � 1

Nk

F �scld,n,k,k��
� �1 � Ĉtot�Fclr � ĈtotF̂cld. �12�

Here, Nk 
 1 randomly selected cloudy subcolumns
scld,n,k are used for the kth interval. Selective spectral
sampling is utilized so that Nk is large for those spectral
intervals that contribute strongly to cloud radiative ef-
fects. It is demonstrated in section 5d of Räisänen and
Barker (2004) that this approach reduces the sampling
noise more efficiently than the use of the full ICA. The
total number of terms (�K

k�1Nk) equals 100 (574) for the
SW (LW) region, and J� � 1000 subcolumns are used to
estimate Ĉtot.

d. Quantification of sampling noise

The sampling noise present in the three McICA en-
semble simulations was estimated in offline radiation
calculations using the ECHAM5 dataset described in
section 5a. Table 1 reports global mean standard devia-
tions for LW, SW, and total (�LW�SW) net fluxes at
the surface and for atmospheric radiative heating rates,
computed from 30 realizations (i.e., 30 calls of the cloud
generator and McICA) for each GCM column. The
differences in radiative noise between the three en-
sembles are large. For the total net flux at the surface
and for the total radiative heating rate, the sampling
errors for CLDS are about 5 times larger than those for
REF but 2–3 times smaller than those for 1COL.

Another point worth noting is that much of the sam-
pling noise is associated with the SW calculations. For
example, for CLDS (which is the most relevant of these
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experiments for GCM use), the SW radiative flux er-
rors exceed the LW flux errors by an order of magni-
tude, and even the SW heating rate errors are slightly
larger than those in the LW region. The relatively large
SW sampling errors stem from the use of the photon
pathlength distribution method, in which the spectral
bands are not divided into subintervals as in the cur-
rently more widely used k distribution methods. Thus,
the number of terms in (11) for the ECHAM5 SW
scheme is as low as K � 4. In principle, the use of a k
distribution model, such as the RRTM SW scheme (Ia-
cono et al. 2001), would be more advantageous for
McICA.

Figure 2 shows that the zonal-mean sampling errors
in total net fluxes are largest in the Tropics, and that the
errors in total heating rate have a strong maximum in
the lowest layer. The latter feature stems at least partly

from high vertical resolution near the surface, the thick-
ness of the lowest layer being �65 m.

On a somewhat philosophical note, it may be argued
that rms values for the real world could, in theory, also
be included in Table 1 and Fig. 2. Namely, even if we
had an optimal parameterization for the decorrelation
lengths (instead of our use of constant values) that gives
unbiased estimates for all combinations of the resolved-
scale model variables, such a parameterization would
still have random errors when compared to the real
world. The point is that it is principally impossible to
describe the subgrid-scale structure perfectly by using
resolved-scale variables only. Consequently, grid-mean
radiative fluxes and heating rates should, in principle,
not depend deterministically on the resolved-scale vari-
ables; rather, they should exhibit some random varia-
tions. Of course, it is unlikely that McICA noise would
represent the nature of such variations correctly.

4. Impact of McICA noise on simulated climate

Table 2 lists global 5-yr (1986–90) mean values of
several variables for the REF simulation, together with
mean differences from REF in the CLDS and 1COL
simulations. The cloud radiative effect (CRE; also
known as cloud radiative forcing) is defined as the dif-
ference between all-sky and clear-sky net (down–up)
fluxes as

CRE � Fall-sky
net � F clear-sky

net . �13�

The statistical significance of the CLDS � REF and
1COL � REF differences is also indicated in Table 2,
based on a two-sided t test.

FIG. 2. (a) Zonal-mean std dev of total (SW�LW) net flux at the surface and (b) global-mean vertical profiles of std dev of total
radiative heating rate for the REF, CLDS, and 1COL approaches. The results have been computed using the ECHAM5 dataset
described in section 5a. They provide a measure for the magnitude of random errors in radiative fluxes and heating rates present in the
GCM simulations for individual time steps and GCM columns.

TABLE 1. Annual global-mean sampling error statistics for
the three McICA ensemble simulations, estimated from offline
radiation calculations for the ECHAM5 dataset described in sec-
tion 5a. The first three rows list mean std dev for LW, SW, and
total (TOT � SW � LW) net (down–up) radiative fluxes (W m�2)
at the surface. The last three rows give mass-weighted std dev for
SW, LW, and total atmospheric heating rates (K day�1).

Quantity 1COL CLDS REF

�(F )SW 57.3 25.0 4.8
�(F )LW 13.7 2.2 0.6
�(F )TOT 52.2 25.0 4.8
�(�T/�t)SW 0.490 0.324 0.059
�(�T/�t)LW 1.274 0.258 0.064
�(�T/�t)TOT 1.162 0.401 0.084
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Clearly, the larger McICA noise in the CLDS and
1COL simulations as compared to REF has some sta-
tistically discernible effects on the climate simulated by
ECHAM5. In many respects, the results resemble those
for NCAR CAM in RBC05. The primary impact of
McICA noise is a reduction in low cloud fraction and
cloud liquid water path (LWP), and consequently, in
SW CRE [both at the surface and at the top of the
atmosphere (TOA)] and LW CRE at the surface.
Quantitatively, the impact may be considered moder-
ately large for 1COL (e.g., nearly 4% reduction in LWP
and over 1.5 W m�2 in SW CRE). For the CLDS simu-
lation, the impact of McICA noise is much smaller and,
although statistically significant, probably unimportant
for practical purposes.

Figure 3 shows that the largest reductions in cloud
fraction due to McICA noise occur in the boundary
layer (� � p/ps � 0.9), with smaller reductions extend-
ing higher up, especially at middle and high latitudes.
As expected, the differences between 1COL and REF
are much larger than those between CLDS and REF. In
general, the 1COL – REF differences in low cloud frac-
tion were more pronounced over oceans than over land

(global-mean differences being �0.016 and �0.007, re-
spectively). The largest absolute differences (�0.05 to
�0.09) occurred in the stratocumulus areas off the
coasts of California, Peru, and Namibia. However,
overall, the reduction in cloud fraction due to McICA
noise is distributed more uniformly for ECHAM5 than
for NCAR CAM, which showed a substantial reduction
in the lowest model layer over equatorial oceans and
much less elsewhere (see RBC05).

Similar to the results for NCAR CAM, the negative
cloud fraction differences between 1COL and REF de-
veloped very rapidly, within a couple of days from the
start of the simulations (not shown). Moreover, just as
for NCAR CAM, the reduction in cloud fraction was
accompanied by reduced radiative cooling, increased
temperature, and reduced relative humidity (RH) in
the lower troposphere. These features were not as strik-
ing as those in Fig. 10 of RBC05, but (as noted above
for cloud fraction) they were more widespread both
horizontally and vertically. Most probably, the physical
mechanism behind the reduction in low cloud fraction
is basically the same for ECHAM5 as for NCAR CAM.
These clouds are partly maintained by local radiative
cooling induced by the clouds themselves; McICA
noise disrupts the cooling; and a positive feedback loop
is induced, in which reductions in low cloud fraction
lead to reduced radiative cooling and further reductions
in cloud fraction.

Yet this is only a partial explanation. McICA noise
can naturally also enhance the local instantaneous ra-
diative cooling, which could, conceivably, lead to in-
creased cloudiness in another positive feedback loop. It
remains unclear why the feedback loop leading to re-
duced low cloud fraction dominates.

Figure 4 displays zonal-mean temperature differ-
ences to REF for the CLDS and 1COL simulations.
Even the 1COL – REF differences are small (�0.35 K
everywhere), partly because the use of prescribed sea
surface temperatures also constrains atmospheric tem-
peratures. Nonetheless, some statistically robust fea-
tures appear. The largest differences (1COL warmer
than REF) occur in the lower troposphere at high
northern latitudes. In addition, the tropical tropopause
region is slightly warmer for 1COL than for REF, while
the stratosphere is slightly colder.

The positive temperature differences between 1COL
and REF at high northern latitudes resulted mainly
from higher summer temperatures in the 1COL simu-
lation over the northern parts of North America and
Eurasia (Fig. 5a). This feature was associated with re-
ductions in low cloud fraction and enhanced net SW
fluxes at the TOA and at the surface (Figs. 5b–c). The
1COL simulation also features higher zonal land area

TABLE 2. Summary of selected global-mean climatic parameters
for the years 1986–90. The column labeled REF lists values for the
reference simulation, and the last two columns give the differ-
ences from REF for the CLDS and 1COL simulations. Bold font
indicates differences that are statistically significant at the 99.9%
level according to a two-sided t test, while italic font stands for
95% statistical significance. High, middle, and low clouds refer to
the areal coverage of clouds above 450 hPa, between 450 and 740
hPa, and below 740 hPa, respectively.

Quantity REF 
CLDS 
1COL

SW CRE TOA (W m�2) �58.24 0.20 1.56
SW CRE SFC (W m�2) �62.42 0.24 1.82
LW CRE TOA (W m�2) 29.77 �0.03 �0.17
LW CRE SFC (W m�2) 29.12 �0.10 �0.93
Clouds, high 0.415 �0.000 0.000
Clouds, middle 0.216 �0.000 �0.001
Clouds, low 0.364 �0.001 �0.013
Clouds, total 0.656 �0.001 �0.009
LWP (g m�2) 62.05 �0.20 �2.27
IWP (g m�2) 25.65 �0.02 �0.17
T2 m (K) 287.74 0.00 0.05
T300 hPa (K) 231.82 0.01 0.01
Precipitation (mm day�1) 2.934 �0.001 �0.010
PW (kg m�2) 25.90 0.04 0.04

TOA � top of the atmosphere
SFC � surface
LWP � liquid water path
IWP � ice water path
T2 m � air temperature 2 m above surface
T300 hPa � temperature at 300 hPa
Precipitation � convective � stratiform
PW � precipitable water
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mean temperatures than REF during spring, especially
between 45° and 60°N. This mainly results from higher
temperatures over the Russian territory. There, the
springtime warming was associated with a slightly ear-
lier snowmelt, which can be seen as a slight reduction in
surface albedo that migrates toward the north when the

spring advances in Fig. 5d. It is not clear whether the
higher temperatures are more a consequence of the
earlier snowmelt, or the reason for it. An interesting
question is whether the large random errors in surface
SW fluxes inherent to the 1COL approach contribute to
this feature. Since changes in snow cover involve a posi-

FIG. 4. Zonal-mean temperature differences between (a) the CLDS and REF simulations and (b) the 1COL and REF simulations.
Light (dark) shading indicates differences that are statistically significant at the 90% (99%) level. Contour intervals are 0.05 K; zero
contours are omitted.

FIG. 3. Differences in zonal-mean cloud fraction (percentage) between (a) the CLDS and REF simulations and (b) the 1COL and
REF simulations in the lower and middle troposphere up to � � p/ps � 0.6. Light (dark) shading indicates differences that are
statistically significant at the 90% (99%) level. Contour intervals are 0.2% in (a) and 0.4% in (b).
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tive surface albedo feedback, it may be speculated that
it would be most likely in this kind of situations, if any,
that random errors in surface fluxes could influence the
model behavior.

To summarize the key findings of this section,
ECHAM5 does show some sensitivity to large random
noise in radiation calculations. However, for a reasonable
implementation of McICA, the impact of noise seems
small enough to allow the use of McICA in ECHAM5.

5. Offline radiation calculations

In order for McICA to improve the simulation of
cloud radiative effects in a GCM, a reasonable repre-

sentation of unresolved cloud structures is necessary.
Thus, we now turn our attention to unresolved cloud
features in ECHAM5. It is first investigated, by means
of offline calculations, how sensitive the radiative fluxes
for ECHAM5 are to assumptions made about unre-
solved clouds. To better interpret the findings of this
exercise, analysis of cloud field characteristics follows
in section 6.

a. Datasets

The primary dataset used here was extracted from
one of the CLDS simulations. The input data needed
for the radiative transfer scheme and for the stochastic

FIG. 5. Mean annual cycle of differences between the 1COL and REF simulations for land grid points between 40° and 80°N. (a)
Two-meter air temperature (K), (b) net SW flux at the top of the atmosphere (W m�2), (c) low cloud fraction, and (d) surface albedo.
Light (dark) shading indicates differences that are statistically significant at the 90% (99%) level. Zero contours are omitted.
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cloud generator were saved for every radiative time
step (i.e., at 2-h intervals) for the 15th day of each
month for the year 1986. Altogether, data for nearly 1.2
million GCM columns are included.

For comparison, some results are also shown for the
global “super-parameterization” dataset used by
Räisänen et al. (2004) and Barker and Räisänen (2005).
In this dataset, subgrid-scale cloud structure has been
simulated explicitly using a 2D cloud system–resolving
model (horizontal grid spacing of �4 km) within each
GCM column. Therefore, this dataset may provide a
more realistic description of subgrid-scale cloud struc-
ture than the data extracted from ECHAM5, although
it can by no means be regarded as an absolute bench-
mark. The dataset has the same horizontal resolution as
used in the ECHAM5 runs (T42), while the vertical
resolution is slightly lower (26 layers), and the data
represent a single day only (1 January).

For both datasets (denoted below as the ECHAM5
and CSRM datasets, respectively), ECHAM5 param-
eterizations for cloud particle size [Eqs. (8) and (9)] and
cloud optical properties were adopted in the calcula-
tions.

b. Results

A series of calculations was performed using the
ECHAM5 dataset with different assumptions about un-
resolved cloud structure. Table 3 summarizes global-
mean values of CRE for these experiments; in addition,
some results based on the CSRM dataset are given.

The first experiment (denoted simply as ECHAM5 in
Table 3) used the same parameterizations for cloud
overlap [Eq. (3)] and subgrid-scale cloud variability
(based on the beta distribution for total water content)

as used in the actual GCM runs. The resulting global-
mean CREs are within �0.3 W m�2 of the 5-yr en-
semble-mean values for the CLDS experiment (in
Table 2). In the second experiment (ECHAM5_PPH),
mean values of liquid and ice water content were used
throughout the cloudy part of each GCM grid box. The
difference between ECHAM5 and ECHAM5_PPH
thus gives the impact of subgrid-scale cloud variability.
Compared to the corresponding results for the CSRM
dataset (CSRM–CSRM_PPH), this impact is rather
small for ECHAM5. For example, inclusion of subgrid-
scale cloud variability weakens the global-mean SW
CRE at the TOA only by 2.2 W m�2 for ECHAM5, as
compared to 5.5 W m�2 for the CSRM dataset.

The lower part of Table 3 addresses the impact of
cloud overlap assumptions. ECHAM5_MAX and
ECHAM5_RAN provide results for the extreme cases
of pure maximum overlap (decorrelation lengths Lcf �
Lcw � � in the cloud generator) and pure random over-
lap (Lcf � Lcw � 0). As expected, random overlap pro-
vides larger values of CRE, for example, by 3.9 W m�2

for SW CRE at the TOA. However, this is only one-
third of the respective difference for the CSRM dataset
(CSRM_RAN–CSRM_MAX). Similarly, the total
cloud fraction Ctot is quite insensitive to the overlap
assumption for the ECHAM5 dataset. Going through
the whole range from maximum to random overlap in-
creases Ctot only by 0.023 (from 0.659 to 0.682), as com-
pared with 0.090 for the CSRM dataset (from 0.596 to
0.686). Recently, Morcrette and Jakob (2000) reported
a corresponding difference of 0.056 in Ctot for the
ECMWF model at a horizontal resolution of T42 with
31 layers in the vertical, with slightly larger differences
at higher vertical and horizontal resolution.

TABLE 3. Global-mean CREs (W m�2) in offline radiation calculations. SWTOA (SWSFC) and LWTOA (LWSFC) are shortwave
and longwave CRE at the top of the atmosphere (at the surface). ECHAM5 refers to results obtained using the ECHAM5 dataset and
the McICA version of the ECHAM5 radiation code, while CSRM refers to results for the global cloud system–resolving model dataset.

Experiment SWTOA SWSFC LWTOA LWSFC

Impact of subgrid-scale cloud variability
ECHAM5 �58.34 �62.51 29.89 29.24
ECHAM5_PPH �60.54 �65.01 30.59 29.83
ECHAM5 – ECHAM5_PPH 2.20 2.49 �0.70 �0.60
CSRM – CSRM_PPH 5.48 5.90 �3.64 �1.35

Impact of cloud overlap assumptions
ECHAM5_MAX �56.58 �60.51 29.23 28.62
ECHAM5_RAN �60.48 �64.92 30.45 30.44
ECHAM5_RAN – ECHAM5_MAX �3.90 �4.41 1.22 1.82
CSRM_RAN – CSRM_MAX �11.65 �12.95 4.55 3.84

PPH � plane-parallel homogeneous clouds
MAX � maximum overlap
RAN � random overlap
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To the limited extent that the CSRM data can be
considered a benchmark, the results suggest that
ECHAM5 may underestimate the impact of subgrid-
scale cloud variability and cloud overlap assumptions.
These issues are discussed further in section 6.

Finally, a short comment on the global-mean values
of CRE at the TOA is worth making. While the LW
CRE is compatible with the observed value of �30 W
m�2 (e.g., Kiehl and Trenberth 1997) in all experiments
with ECHAM5 data, the global-mean SW CRE (�56.6
to �60.5 W m�2) is significantly larger than observed
(� �50 W m�2). The SW CRE would be overestimated
even if the impact of subgrid-scale variability were as
large for ECHAM5 as for the CSRM dataset. This
serves as a healthy reminder of the fact that biases in
model-simulated CRE are not only caused by deficien-
cies in unresolved cloud structure, but can also depend
strongly on errors in grid-mean cloud quantities such as
cloud fraction, condensate amount, and effective par-
ticle size. Clearly, validation of grid-mean cloud prop-
erties in GCMs is a vitally important task, which should
proceed hand-in-hand with the improvement and vali-
dation of subgrid-scale cloud properties. For a recent
comparison of GCM-simulated cloudiness with satellite
data, see Zhang et al. (2005).

6. Analysis of unresolved cloud structures in
ECHAM5

a. Subgrid-scale cloud variability

Analysis of cloud fields revealed a straightforward
reason for the finding that subgrid-scale cloud variabil-
ity has a substantially smaller radiative impact for
ECHAM5 than for the CSRM dataset: the clouds are,
in general, less inhomogeneous for ECHAM5. A con-
venient measure of cloud variability is the relative stan-
dard deviation �qc

(i.e., standard deviation divided by
mean) of condensate amount within the cloudy parts of
GCM grid boxes. For the ECHAM5 dataset, highest
zonal-mean values of �qc

occur in the tropical lower to
middle troposphere (�qc

� 0.7–0.8); elsewhere, the typi-
cal values are �qc

� 0.5. For the CSRM dataset, �qc

varies more strongly and is generally higher, in particu-
lar, in the tropical middle and upper troposphere where
zonal-mean values of �qc

are � 1–1.5 (Fig. 6b in Barker
and Räisänen 2005). There is, however, a caveat in the
comparison of the ECHAM5 and CSRM results. As
noted in section 2, the condensate fields in ECHAM5
do not include the core parts (i.e., updraft regions) of
convective clouds. These regions, which generally have
high local condensate amounts, are included in the
CSRM fields.

Owing to the above-mentioned discrepancy, it can be

argued that values of �qc indeed should be smaller for
ECHAM5 than for the CSRM dataset, and that the
same applies to the radiative impacts of subgrid-scale
cloud variability. At the same time, it is important to
note a principal limitation related to the current form of
the beta distribution approach used for total water con-
tent qt in ECHAM5: it is simply impossible to produce
cloud layers with as strong subgrid-scale variability as
seen in the CSRM data.

It can be shown that when a beta distribution (1) is
assumed for qt, �qc

is determined uniquely by three
parameters: 	, 
, and (qs � a)/(b � a). Alternatively,
for a given cloud fraction C, �qc

is a unique function of
	 and 
 (except for one special case mentioned in the
caption of Fig. 6). Figure 6 shows that �qc

decreases
(increases) with increasing 	 (increasing 
), and that
the values are larger for the case with low cloud fraction
(C�0.2) than for the overcast case (C�1.0). However,
throughout the bell-shaped regime of the beta distribu-
tion (	 � 1; 
 � 1) considered in Fig. 6, �qc

� 1. Values
of �qc

� 1 could be attained if 	 � 1 were used in Eq.
(1) (see Fig. 1b for an example). However, it seems
unlikely that this would, in general, provide a good ap-
proximation for the PDF of total water content [in par-
ticular, in this case P(qt) → � when qt → a]. This sug-
gests that a more elaborate approach (e.g., a bimodal or
multimodal distribution of qt, or a separate parameter-
ization for the PDF of condensate amount in the cloudy
part of the layer) may be needed for a realistic descrip-
tion of subgrid-scale cloud variability and its radiative
effects, especially in convective regions.

Another viewpoint on cloud variability is obtained by
considering the parameter � (Rossow et al. 2002), which
is a measure of subgrid-scale horizontal variations in
total column optical thickness �. By definition,

� � 1 � 
̂	
, �14�

where � is the linear-mean value of � for the visible
spectral band for cloudy subcolumns within a GCM
column,


 �
1
N �

i�1

N


i, �15�

and �̂ is the corresponding radiative mean value, that is,
the optical thickness of a homogeneous cloud that
would have the same mean reflectance R as the actual
inhomogeneous cloud field:

R�
̂� �
1
N �

i�1

N

Ri�
i�. �16�

Figure 7 compares values of � for ECHAM5 data to
those derived from International Satellite Cloud Clima-
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tology Project (ISCCP) D1 data (downloaded from
http://isccp.giss.nasa.gov/products/browsemesos.html).
As discussed by Zhang et al. (2005), the comparison of
model results with ISCCP data is influenced by the
choice of the lower limit of the optical thickness of
model clouds included. Here, a cutoff value of �min �
0.3 was applied to the subcolumns in the ECHAM5
cloud fields, following the current specifications of the
ISCCP simulator (Klein and Jakob 1999; Webb et al.
2001). The ISCCP results are 5-yr (1986–90) mean val-
ues and represent cloud variations occurring at scales
below 280 km, which is comparable with the T42 hori-
zontal resolution of the ECHAM5 and CSRM datasets.
Note that inhomogeneity is resolution dependent and
generally increases with increasing gridbox size (Ros-
sow et al. 2002; Hogan and Illingworth 2003). Because
the ECHAM5 dataset only covers 12 separate days, the
results are noisier than those for ISCCP. The
ECHAM5 dataset reproduces qualitatively some fea-
tures seen in ISCCP data, such as relatively high values
of � along the ITCZ, and relatively low values in the
stratocumulus areas west of California, Peru, and
Namibia. Quantitatively, however, ECHAM5 underes-
timates � compared to ISCCP data nearly everywhere.

The lower values of � for ECHAM5 indicate that in
a vertically integrated sense, the ECHAM5 cloud fields
are less variable than the ISCCP observations suggest.
This is consistent with the notion that ECHAM5 may
underestimate cloud subgrid-scale variability within in-
dividual GCM layers, but it provides only supporting,

FIG. 7. Cloud variability parameter � for (a) the ECHAM5
dataset and (b) ISCCP data. The white spots along coastlines in
(b) indicate missing values in the ISCCP data.

FIG. 6. Relative std dev of cloud condensate amount �qc
as a function of 
 distribution shape parameters 	 and 
 for cloud fraction

of (a) C � 0.2 and (b) C � 1.0. The thick vertical lines indicate the parameter range considered in ECHAM5 (	 � 2, 
 � 2 . . . 50).
Note that in the overcast case, the results also depend on the lower limit, a, of the distribution of total water content. Here, a � qs, which
means that the minimum value of condensate amount is zero. For a � qs, �qc

would be smaller; an example of this is given in Fig. 1b.
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not conclusive evidence. Values of � can also depend
substantially on the vertical structure of clouds.

b. Why is the impact of cloud overlap assumptions
small for ECHAM5?

This subsection seeks to shed more light on the find-
ing that cloud overlap assumptions have a relatively
small impact for ECHAM5. Toward this end, frequency
distributions of layer cloud fraction C and total cloud
fraction Ctot are considered. In addition to the ECHAM5
dataset based on the Tompkins (2002) cloud fraction
scheme, it is instructive to consider the results for an
alternative dataset denoted below as ECHAM5_RH.
Like the ECHAM5 dataset, this dataset contains data
for the 15th day of each month for a single year, but it
was extracted from a run using a RH-based cloud
fraction scheme available as an option in ECHAM5.
Following Sundqvist et al. (1989) and Lohmann and
Roeckner (1996), cloud fraction is parameterized as

C � 1 ��1 �
RH � RHc

1 � RHc
, �17�

where the critical relative humidity RHc is usually de-
fined as a function of the � coordinate:

RHc � 0.7 � 0.2 exp�1 � ��4�. �18�

As an exception, lower RHc is used in subsidence in-
version layers over oceans to improve the simulation of
marine stratocumulus clouds.

Figure 8 compares the frequency distribution of C for
the three datasets. For the ECHAM5 dataset, overcast
layers are much more frequent than for the CSRM
dataset, while layers with partial cloudiness (0 � C � 1)
are generally less frequent. For ECHAM5_RH, these
tendencies are even more distinct. In particular, layers
with small but nonzero cloud fraction (0 � C � 0.3)
occur rarely in the ECHAM5_RH dataset. For
ECHAM5_RH, more than half of all cloudy layers are
overcast (area-weighted fraction: 54.3%), the corre-
sponding figures being 37.9% for the ECHAM5 dataset
and only 15.6% for the CSRM dataset. These differ-
ences become even more striking when considering that
the overlap assumption can affect Ctot only for those
GCM columns with (i) at least two partially cloudy lay-
ers and (ii) no overcast layers. The fraction of such
columns is 51.8% for the CSRM dataset, as compared
to 19.6% for ECHAM5 and only 7 .4% for
ECHAM5_RH. Consequently, for ECHAM5_RH, the
cloud overlap assumption matters even less than for
ECHAM5, the difference in global-mean Ctot between

random overlap (0.677) and maximum overlap (0.666)
being only 0.011.

Figure 9 compares the frequency distribution of Ctot

in the three model datasets to that reported in ISCCP
D2 satellite data. Two sets of model results are shown.
In Fig. 9a, all model clouds are included (as in Fig. 8),
whereas in Fig. 9b, subcolumns with visible optical
thickness below �min � 0.3 are omitted, following the
specifications of the ISCCP simulator. Screening out
the optically thinnest clouds reduces the global-mean
Ctot considerably, by �0.10 for all three datasets. How-
ever, the general features of the frequency distributions
remain mostly the same. Both for the ECHAM5 and
ECHAM5_RH datasets, cases with 0 � Ctot � 0.1 and
Ctot � 0.9 are more frequent than in the ISCCP data,
while cases with 0.1 � Ctot � 0.9 are less frequent. For
the CSRM dataset, the global-mean frequency distribu-
tion of Ctot agrees better, although by no means per-
fectly, with the ISCCP data.

Both Fig. 8 and Fig. 9 suggest that for ECHAM5,
overcast cloud layers occur too frequently, while par-
tially cloudy layers occur too rarely. Moreover, this fea-
ture is not unique to the Tompkins (2002) scheme. It is,
in fact, more pronounced, when the alternative RH-
based cloud fraction scheme is employed. Some under-
standing of this issue can be obtained by considering
statistics of cloud fraction as a function of RH.

FIG. 8. Global-mean frequency distribution of layer cloud frac-
tion C for the ECHAM5, ECHAM5_RH, and CSRM datasets,
plotted as the average number of layers per GCM column with C
in different cloud fraction bins. The first 10 bins give the number
of layers with 0 � C � 0.1, 0.1 � C � 0.2, . . . , 0.9 � C � 1, while
the last bin represents overcast cloud layers (C � 1). Note that
cloud-free layers are not included, and that the ECHAM5 and
ECHAM5_RH datasets have a vertical resolution of 31 layers, as
compared to 26 layers for the CSRM dataset. The average number
of cloudy layers per GCM column is given in parentheses in the
legend. The results have been weighted by GCM grid square area.
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Figure 10 displays, as an example, global-mean val-
ues of selected quantities for the ECHAM5 and
ECHAM5_RH datasets at model level 26 (average
pressure p � 838 hPa; � � 0.85), stratified according to
RH. At this particular level, the global-mean cloud
fraction is slightly larger for ECHAM5_RH (0.143)
than ECHAM5 (0.121), and this holds for almost all
values of RH in Fig. 10b. However, Figs. 10c and 10d
reveal a distinct difference in the distribution of values
of C for the two datasets. Cases with cloudiness (C � 0)
are actually more common for the ECHAM5 dataset,
but when clouds exist, the mean cloud fraction is sub-
stantially larger for the ECHAM5_RH dataset. Note
that even though the cloud fraction scheme used for
ECHAM5_RH [i.e., Eq. (17)] allows C � 0 at this
model level for grid-mean RHs down to RHc � 78%, C
is set to zero whenever the prognostic liquid and ice
water contents are zero. For the ECHAM5_RH

dataset, this is true for most cases with RH � 96%, and
for the ECHAM5 dataset, for most cases with RH �

93%. This difference likely stems from the fact that a
change from the Tompkins (2002) scheme to the RH-
based cloud fraction scheme [Eq. (17) also involves
changes in the calculation of deposition/sublimation
rates of cloud ice and condensation/evaporation rates
of liquid water in ECHAM5].

It may also be noted from Fig. 10d that for cases with
C � 0 (equivalently, cases with condensate content qc �
0), C is almost a single-valued function of RH for the
ECHAM5_RH dataset, which, of course, follows from
Eqs. (17) and (18). The ECHAM5 dataset based on the
Tompkins (2002) scheme shows a wider and presum-
ably more realistic variation of C for each RH bin.

An important point that Fig. 10 illustrates is that the
distribution of layer cloud fraction C not only depends
on the formulation used to diagnose C (e.g., the explic-
itly defined or implicitly assumed PDF of total water
content), but also on the distribution of simulated grid-
mean RH and condensate amounts. For example, the
existence of partial cloudiness requires that qc � 0 and
RH � 100%. Thus the relative lack of partially cloudy
cases for ECHAM5 and especially ECHAM5_RH
could be related to the inability of the cloud scheme to
form and sustain nonzero condensate amounts at grid-
mean RHs substantially below 100%. Similarly, the ap-
parent overabundance of overcast cases suggests that
grid-mean RH of 100% may occur too often. These
statements should be taken as tentative. Rigorous vali-
dation of them would be challenging, as it would re-
quire reliable observational information on both RH
and cloud fraction at GCM grid scales. Neither would it
be trivial to pinpoint the specific aspects of model for-
mulation that are responsible for the features seen.

7. Summary

This study consisted of two main parts. First, a set of
multiyear ensemble simulations was performed with
the ECHAM5 atmospheric GCM to evaluate the im-
pact of noise in radiative fluxes and heating rates that is
inherent to the Monte Carlo Independent Column Ap-
proximation. Second, the radiative impacts of cloud
overlap assumptions and subgrid-scale cloud variability
were evaluated for a dataset extracted from one of the
ECHAM5 simulations, followed by further analysis of
unresolved cloud structures to understand the results.
The use of a beta distribution scheme for the subgrid-
scale variations of total water content in ECHAM5
lends special importance to the latter exercise, since it
allows us to derive subgrid-scale cloud variability di-
rectly from the resolved-scale model variables.

FIG. 9. Global-mean frequency distribution of total cloud frac-
tion Ctot for ISCCP D2 satellite data, and for the ECHAM5,
ECHAM5_RH, and CSRM model datasets. The bin width is

Ctot � 0.1. Panel (a) represents the case in which all clouds are
included in the model datasets, while in (b), subcolumns with total
column optical thickness below �min � 0.3 have been screened out
from the model datasets. The results have been weighted by grid
square area. Note that unlike Fig. 8, cloud-free cases are included
in the lowest bin.
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The primary impact of McICA noise on climate
simulated by ECHAM5 was a slight reduction in low
cloud fraction, with associated changes in radiative
fluxes. This echoes earlier results obtained with the
NCAR CAM, with some differences in details. The un-
derlying physical mechanism could not be resolved
completely, but it is most likely related to McICA’s
local heating rate errors in cloud layers and positive
feedbacks that (apparently) preferentially amplify
negative rather than positive perturbations in cloud
fraction. For a degenerate high-noise version of McICA
(the 1COL simulation), the differences from a low-
noise reference simulation (REF) were fairly distinct,
while they were much smaller, although still statistically
robust, for a more reasonable GCM implementation of
McICA (the CLDS simulation). For example, the glo-
bal-mean 1COL � REF difference in the SW cloud
radiative effect at the TOA was 1.6 W m�2, while the
corresponding CLDS � REF difference was only 0.2
W m�2. For practical purposes, the main point is that

for a reasonable implementation of McICA, the im-
pacts of noise can be kept very small. It thus appears
that McICA provides a viable means to introduce a
flexible description of unresolved cloud structure in the
radiation calculations in ECHAM5.

A limitation that should be kept in mind is that this
study, like all previous tests of McICA, used prescribed
distributions of sea surface temperature and sea ice.
Tests of McICA including an interactive ocean model
are a part of our future plans.

Analysis of unresolved cloud structures and the as-
sociated radiative effects revealed two main points.
First, ECHAM5 appears to underestimate subgrid-
scale cloud variability. The radiative impact of subgrid-
scale variability was substantially smaller than that for a
global CSRM dataset used for comparison, and the sub-
grid-scale variations in vertically integrated cloud opti-
cal thickness were underestimated compared to ISCCP
satellite data. Part of the apparent underestimate prob-
ably stems from the fact that the core parts of convec-

FIG. 10. Global-mean cloud statistics at model level 26 (� � 0.85) stratified according to
grid-mean relative humidity (RH) (bin width � 2% for RH � 76%–100%; the last bin represents
saturated cases RH 
 100%). (a) Frequency distribution of RH for the ECHAM5 and
ECHAM5_RH datasets. (b) Mean cloud fraction (all cases), (c) fraction of cloudy cases (i.e.,
cloud fraction C � 0), and (d) cloud fraction statistics for the cloudy cases only. In (d), the thick
lines with symbols give the mean values, while the thin lines represent mean �1 std dev.
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tive clouds are not included in the cloud fraction and
condensate fields in ECHAM5. However, there is also
a principal limitation related to the current form of the
beta distribution approach used for total water content
qt in ECHAM5: it is impossible to produce cloud layers
with high subgrid-scale variability (relative standard de-
viation of condensate amount �qc

� 1). This suggests
that a more elaborate approach (e.g., a bimodal or mul-
timodal distribution of qt, or a separate parameteriza-
tion for the PDF of condensate amount in the cloudy
part of the layer) may be needed for a realistic descrip-
tion of subgrid-scale cloud variability.

Second, it was found that the impact of cloud overlap
assumptions is quite small for ECHAM5. This was
traced back to the frequency distribution of layer cloud
fraction: comparisons to CSRM data (for layer cloud
fraction) and to ISCCP data (for total cloud fraction)
both supported the notion that overcast cloud layers
occur too frequently in ECHAM5, while layers with
partial cloudiness occur too rarely. These features are,
however, not necessarily linked to the use of the beta
distribution scheme for diagnosis of cloud fraction, but
may be related to other aspects of the cloud scheme. In
fact, the same tendencies were more pronounced when
an alternative relative humidity–based cloud fraction
scheme was used.
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